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ABSTRACT
In this study, we investigated autonomous vessel obstacle avoidance using advanced techniques within the
Guidance, Navigation, and Control (GNC) framework. We propose aMixed Integer Linear Programming (MILP)
based Guidance system for robust path planning avoiding static and dynamic obstacles. For Navigation, we
suggest a multi-modal neural network for perception, demonstrating the identification of obstacle type, posi-
tion, and orientation using imaging sensors. Additionally, the paper compares an error-based PID control
strategy and a Model Predictive Control (MPC) scheme as well. This evaluation aids in better evaluating their
performance and determining their applicability within the GNC scheme. We detail the implementation of
these systems, present simulation results, and offer a performance evaluation using an experimental dataset.
Our findings, analysed through qualitative discussion and quantitative performance indicators, contribute to
advancements in autonomous navigation and the control strategies to achieve it.
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1. Introduction

Maritime goods transportation has significantly expanded over the
past two decades, with its market share doubling to encompass 90%
of global commodity transport (Sánchez-Beaskoetxea et al. 2021).
Supported by advancements in network infrastructure and vessel
efficiency, this modality’s growth is expected to continue, rising from
$537.07 billion in 2022 to $650.21 billion in 2026–an estimated
annual growth rate of approximately 5% (Sánchez-Beaskoetxea
et al. 2021). However, accompanying this growth is an increased
demand for technological improvements. According to statistics
from 1999 to 2019, human error contributed to 50% of pollution
incidents, 65% of personal injuries, 80% of property damages, and
90% of collisions (Corić et al. 2021). Overconfidence, recklessness,
fatigue, and inadequate communication are often cited as leading
factors. Autonomous navigation offers potential solutions to these
issues, potentially enhancing overall safety and efficiency inmaritime
goods transportation.

To enable autonomous navigation, an autonomous vessel typi-
cally integrates three distinct modules: the Guidance, Navigation,
and Control (GNC) system, as illustrated in Figure 1. This paper
explores the potential of employing advanced techniques within the
GNC subsystems to augment the current standard practices and
state-of-the-art in autonomous navigation, specifically in the areas
of obstacle vision recognition and avoidance.

The Guidance System in an autonomous vessel is tasked with
global and local path planning. The application of a Mixed Inte-
ger Linear Programming (MILP) algorithm, for instance, enables
the path-planning optimiser to update the global path to circum-
vent local obstacles. This technique, which requires the formula-
tion of a cost function and a set of constraints to minimise path
deviation amidst static and dynamic obstacles, has proven effective
for global trajectory planning across different fields (Schouwenaars
et al. 2001; Coleman 2024). This paper further explores its use in the
maritime domain. Alternative approaches, based on deep learning
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algorithms were taken into consideration as well (Parkes et al. 2018;
Sivaraj et al. 2023). However in the context of autonomous ship
navigation, particularly for obstacle avoidance, MILP offers distinct
advantages over deep learning approaches. MILP provides deter-
ministic outcomes crucial for safety and regulatory compliance in
maritime operations. It excels in efficiently handling multiple con-
straints and objectives, ensuring optimal pathfinding adaptable at
various navigational scenarios. Unlike deep learning, MILP requires
less computational power for real-time decision-making and is not
heavily reliant on large datasets for training, making it more adapt-
able to unpredictable maritime environments. Additionally, MILP’s
robustness against uncertainty, along with its capacity to incorpo-
rate safety regulations and its potential of scalability, makes it a more
suitable and reliable choice for the specific application in this studies.

Within a Navigation System, perception plays a vital role in
autonomous sailing. Obstacles must be detected, and their position
and orientation determined (Kim et al. 2018). Though point cloud
clustering is a common perception approach used by autonomous
vehicles (Khalid et al. 2013; Kato et al. 2015; Wang et al. 2019;
Choy et al. 2015), this research proposes a novel multi-modal neu-
ral network architecture to provide high-level situational awareness
for collision avoidance purposes. This approach utilises a CNN for
object detection from colour images and processes depth data to pro-
vide 3D data. The data is then fused to offer a cropped birds-eye view
input to a secondary neural network, which is trained specifically to
extract the orientation of an obstacle–in this case, a vessel.

Control strategy design forms the third pillar in the GNC frame-
work. In the context of autonomous navigation, its primary role is to
measure the internal state of a vessel system (i.e. position, velocity,
orientation) and minimise the error between the measurement and
the reference provided by the guidance module. Despite the preva-
lence of Proportional, Integral, and Derivative (PID) controllers
in industrial automation (accounting for 95% of closed-loop con-
trol algorithms) due to their simple implementation and robustness
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Figure 1. Guidance navigation and control system framework (Hepworth et al. 2021).

against external disturbances (Dey and Sen 2020), this paper inves-
tigates the Model Predictive Control an optimisation-based control
technique–as an alternative, used to regulate a process while fulfilling
a set of constraints (Haseltalab et al. 2020).

While considering the potential of deep learning-based control
methods (Parkes et al. 2022; Ye et al. 2023; Deraj et al. 2023), this
study has opted for these classical control strategies, recognising their
established efficacy in managing the dynamic and uncertain con-
ditions characteristic of an autonomous vessel navigation domain.
Their robust frameworks enable handling of variable conditions, a
challenge where deep learning approaches often require extensive,
context-specific training data to achieve similar levels of reliabil-
ity. Additionally, the reliance of deep learning on large and diverse
datasets for training is a significant limitation, especially in fields
where such datasets are scarce or challenging to compile. The com-
putational intensity and time requirements for training deep learning
models further enhance this issue, rendering them less practical for
the specific applications investigated in this paper.

The rest of this paper is organised as follows: Section 2 intro-
duces the proposed GNC scheme, with each sub-system discussed in
its own sub-section. Section 3 presents the results and performance
evaluations of the individual sub-systems, gleaned from both sim-
ulated and experimental testing. Finally, Section 4 summarises the
paper’s findings and offers conclusions and recommendations for
future work. This research paper is an expanded and enhanced ver-
sion of our previous work, which was presented at the International
Ship Control Systems Symposium (iSCSS) inDelft, TheNetherlands,
in November 2022 (Garofano et al. 2022).

2. Methodology

2.1. Guidance strategy

The general formulation of a Mixed Integer Linear Programming
problem can be formulated as (Vielma 2015; Richards et al. 2002):

min Z = cTx

s.t.,

Ax ≤ b

x = (x1, . . . , xn, i1, . . . , ik,w1, . . . ,wj)
T

xn,wj ∈ R, ik ∈ Z

(1)

Here, x denotes the vector containing the variables to be optimised
and cT corresponds to a coefficient vector. The optimisation vector
is comprised of continuous real variables xn and integer variables ik
and a number of slack variables are introducedwj. The slack variables
are introduced to transform hard constraints into soft constraints
that are penalised for in the cost function. This proves useful in the
context of path planning as will become evident. The linear matrix
inequalityAx ≤ b corresponds to the constraints on the optimisation
variables.

In the context of path planning, the continuous variables that are
to be optimised are defined assuming an a-priori planned path for
the vessel denoted by the vector ηref (t) and the optimisation solution
ηsol(t). Onemay define the state tracking error of the solution by rela-
tionship in Equation (2). Formaneuvering purposes, a vessel’s pose is
uniquely defined by its 2-dimensional position in NED-coordinates
and its heading angle as in Equation (3). For the purpose of path
deviation minimisation, the heading angle is neglected and the error
state is limited to the reduced 2-dimensional error vector defined by
Equation (4).

xn(t) = ηsol(t)− ηref (t) (2)

η(t) = (Y Xψ)T (3)

xn(t) =
(|Ysol(t)− Yref (t)|
|Xsol(t)− Xref (t)|

)
(4)

This l2 normmay be transformed to a l1 norm suitable for linear opti-
misation by introducing the augmented error system in Equation (5).
This error system can be transformed into a system of Linear Matrix
Inequalities (LMI) that are to be optimised. For the purpose of
path deviation minimisation, these are transformed into the LMIs
in Equation (6) as the first set of constraints used in the optimisation
problem. Where wỸ(t) and wX̃(t) represent the slack variables that
are introduced at every time step.

⎡
⎢⎢⎣

Ỹ(t)
−Ỹ(t)
X̃(t)
−X̃(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
(Ysol(t)− Yref (t))
−(Ysol(t)− Yref (t))
(Xsol(t)− Xref (t))
−(Xsol(t)− Xref (t))

⎤
⎥⎥⎦ (5)
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⎡
⎢⎣

1 0 −1 0
−1 0 −1 0
0 1 0 −1
0 −1 0 −1

⎤
⎥⎦

⎡
⎢⎢⎣

Ỹ(t)
X̃(t)
wỸ(t)
wX̃(t)

⎤
⎥⎥⎦ ≤

⎡
⎢⎣
0
0
0
0

⎤
⎥⎦ (6)

Hence, the hard constraints enforcing the path deviation are trans-
formed into soft constraints by introducing the slack variables. These
slack variables are thus included in the optimisation vector (4). By
setting the values in the coefficient vector as stated in (1) to appro-
priate values, one can minimise for the value of the slack variables
and thus for path deviation. For this purpose, these coefficient values
are set to positive, real values. Moreover, the vector elements in cT
corresponding to the errors themselves Ỹ(t) and X̃(t) are set to zero.

Having established the framework for path deviation minimi-
sation, additional constraints can be introduced. For the purpose
of enforcing a maximum speed constraint, LMI in Equation (7) is
formulated for the linearised maximum speed constraints. The max-
imum speeds in both positive and negative surge and sway directions
are assumed to be known in this application. Furthermore �t is a
designed parameter that defines the time interval between solutions
of the optimisation algorithm. The value of this time interval subse-
quently determines the update frequency of the algorithm and must
be chosen accordingly.

⎡
⎢⎣

1 0
−1 0
0 1
0 −1

⎤
⎥⎦

[
Ysol(t +�t)− Ysol(t)
Xsol(t +�t)− Xsol(t)

]

≤

⎡
⎢⎢⎣

(
Vmax
Y+ ∗�t

)− (
Yref (t +�t)− Yref (t)

)
−(

Vmax
Y− ∗�t

)+ (
Yref (t +�t)− Yref (t)

)
(
Vmax
X+ ∗�t

)− (
Xref (t +�t)− Xref (t)

)
−(

Vmax
X− ∗�t

)+ (
Xref (t +�t)− Xref (t)

)

⎤
⎥⎥⎦ (7)

Central to the goal of this guidance system is the incorporation of
an obstacle avoidance strategy which is introduced in the form of a
MILP problem. Once the positions of static and dynamic obstacles
are known, the avoidance constraints can be formulated. The space
to be avoided is formulated here such that a rectangular box is con-
structed around obstacles, with ik ∈ [0, 1] and Xmin

obs (t) and Ymin
obs (t)

denoting the minimum coordinates of the obstacle. For safety pur-
poses, obstacles are to be avoided by some safety distance, this is
taken into account in the strategy proposed by adding a constant
M, in metres, that correspond to a safe margin, i.e. the area around
the obstacle that is identified as a no-navigation zone. The obstacle
boundaries can then be extended to act as a safety factor as required.
The constraint in Equation (8) is added to guarantee that at least
one of the constraints is satisfied and a feasible path in any of the
given directions can be generated at all times. This results in the LMI
defined in Equation (9).

i1 + i2 + i3 + i4 ≤ 3 (8)

⎡
⎢⎢⎢⎣

1 0 −M 0 0 0
−1 0 0 −M 0 0
0 1 0 0 −M 0
0 −1 0 0 0 −M
0 0 1 1 1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Ysol(t)
Xsol(t)
i1
i2
i3
i4

⎤
⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎣

Ỹmin
obs (t)− Yref (t)
−Ỹmax

obs (t)+ Yref (t)
X̃min
obs (t)− Xref (t)
−X̃max

obs (t)+ Xref (t)
3

⎤
⎥⎥⎥⎥⎦ (9)

The linear programming framework also requires an equilibrium
solution in the form of a Linear Matrix Equality (LME). In the use
case presented here, the equilibrium solution that can be used is
the current state of the vessel, i.e. x(t = 0) = x0 = (Y0 X0)

T This
results in the Linear Matrix Equality in Equation (10) with ηY and
ηX corresponding to the current vessel position.

[
1 0
0 1

] [
Ỹ0
X̃0

]
=

[
ηY − Yref
ηX − Xref

]
(10)

These separate matrices can now be concatenated into one single
LMI and formulated as a single MILP problem as in Equation (11).
The main objective of the MILP approach proposed is to minimise
the path deviation and avoiding obstacles within a finite time hori-
zon. The final product yields the system of LMIs in Equation (12),
with k�t representing the time horizon. Using an MILP solver, a
solution for the values of [x(t), . . . , x(t + k�t)] can be calculated.
These are then used to generate a new set of way points that serve as
input for the control system.

Atotal(t)x(t) ≤ btotal(t) (11)⎡
⎢⎢⎢⎣

Atotal(t)
Atotal(t +�t)

...
Atotal(t + k�t)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x(t)
x(t +�t)

...
x(t + k�t)

⎤
⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎣

btotal(t)
btotal(t +�t)

...
btotal(t + k�t)

⎤
⎥⎥⎥⎦ (12)

2.2. Navigation system

Situational awareness is achieved through the implementation of a
vision system specifically configured to generate data pertinent to
the path planning technique, being capable of providing a constant
update of environmental conditions in the presence of both static
and dynamic obstacles. The perception approach presented hereon is
developed to complement the capacity of the MILP based guidance
system tomake use of a constantly updating environment, whilst fur-
ther providing a reliable estimation of orientation for both static and
dynamic obstacles alike.

The approach to perception proposed in this paper comes in the
form of a multi-modal neural network whose architecture is pre-
sented in Figure 4. A single stereovision device is deployed in this
system, namely the Intel© RealSense

TM
D435i which provides both

colour images through the RGB feed and stereo-depth frames via a
depth feed. These two feeds act as the input to the perception system
where they are subsequently processed individually with the results
then being fused. Both feeds are configured to a resolution of 848x480
and 30 frames per second. It is worth noting that other sensors capa-
ble of providing depth data could also be used within this network
structure.

The colour frames supplied by the RGB feed are utilised for obsta-
cle detection, achieved through the application of a Conventional
Neural Network trained to detect obstacles within the experimental
environment, referred to in this work as the ‘VesselNet’. The Vesssel-
Net is built upon the Faster R-CNN framework, with an Inception
101 feature extractor, with proposals limited to 50 to allow for an
adequate trade-off between speed and accuracy.For further details
on this algorithm and the training choices, the reader is directed to
the work of (Huang et al. 2016). Whilst this specific model, there-
fore the details of the algorithm shall not be any further divulged
in this work. The key outputs of this network are the bounding box
and classification of each obstacle detected in the frame. The deep
learning methodology, particularly concerning the training, testing,
and validation splits, as well as the variety and generalisation of the
training set, takes inspiration from the approach used in (Hepworth
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Figure 2. ‘Tito Neri’ model scale tugboat.

Figure 3. ‘Grey Seabax’ model scale offshore vessel.

et al. 2021). In this model, similar to the one presented in the other
study, a dataset of 1500 annotated colour frames was used for train-
ing. This dataset includes a diverse range ofmodel-scale tugboats and
offshore service vessels, as depicted in Figures 2 and 3. The dataset
was divided into training, validation, and test segments to ensure a
robust and general model, in line with best practices established in
the field.

In parallel to the obstacle detection procedure, the depth feed is
processed through the application of filters to improve the usability
of the data. A breakdown of the filter process can be seen in Figure
4, where the steps are encompassed by the dashed blue box. As the
depth frames generated by the stereovision setup are not inherently
aligned with the images from colour sensor, this must be achieved
pragmatically. The frames are aligned by translating the depth pix-
els to a synthetic viewport which matches the field of view of the
colour sensor. This allows for depth to be directly extracted from
a ROI identified in a colour frame. This aligned depth frame then
requires some further processing, starting with a decimation filter.
Decimating the depth is a sub-sampling technique to smooth the
data, improving later point-cloud visualisation. Spatial and temporal
filters are applied thereafter to improve edge sharpness and remove
noise. Finally any dead-pixels that remain in the depth frame after

decimation are accounted for by a hole-filling operation. This opera-
tion replaces each instance of a dead pixel by the largest depth value
from its surrounding neighbours, assigning it an estimated value.

In order to generate a 2Dbirds-eye-view (BEV) plot as an input for
the second neural network, the obstacle detection data and the depth
data need to first be fused andprocessed. Figure 4 shows a breakdown
of the fusion procedure in the dashed red box. The obstacle bounds
supplied by the VesselNet are utilised to extract the region of inter-
est (ROI) from the processed depth data creating a cropped depth
matrix. A point-cloud is then generated by projecting each pixel to
a point within 3D space with the known device intrinsics. Median
clustering is applied to the raw point-cloud to remove any outliers.
This is specifically achieved through the exclusion of points outside
a depth radius of half the vessel beam from the median point. This
vessel beam is estimated from a look up table based upon the vessel
classification from the VesselNet. Finally, the fusion stage generates a
BEV plot of the processed point-cloud data (Beltran et al. 2018). This
BEV plot is created in the form of a 3-channel image, encoding the
verticalmeasurement that was lost when reducing to two dimensions
as a colour-map.

The second Convolutional Neural Network, ‘BearingNet’ is
tasked with extracting an estimate of yaw angle from the generated
BEV plot. This network is built upon the RetinaNet framework (Lin
et al. 2017, 2020) with the ResNet50 feature extractor, which on top
of conducting traditional 2D object detection, is also endowed with
the capacity to infer object orientation. This capacity is achieved by
generating anchor boxes at various angles whilst still applying the
usual factors of scale and aspect ratio. This addition not only adds
computational load to the object detector, but also alters the method
for calculating intersection over union (IoU). The problem of IoU
calculation is solved by applying a sequential cutting method which
recursively assesses the intersection of edges between two boxes. The
former issue of computational load is rectified through the parallel
processing using the CUDA integration available within theNVIDIA
object detection toolkit with which this network was trained. As with
the first object detection neural network, this ’BearingNet’ provides
bounding box coordinates and a classification aswell as the new angle
attribute. The bounding box angle (θ) produced is measured anti-
clockwise from the x-axis of the BEV plot and constrained between
−π and π . At this stage of research, the BearingNet is trained on a
dataset of 750 BEV plot images specific to the offshore model-scale
vessel only.

The final procedure in the perception approach is to post-process
the output of the BearingNet and the point-cloud from the fusion
stage. This is processing involves a simple translation from the BEV
plot pixel frame to the real-world coordinate frame and transform-
ing the angle to align with that of the autonomous vessel. The final
outputs of the multi-modal network are the coordinates of the obsta-
cle bounds, the bearing of the obstacle and the vessel classification.
All three attributes of particular use to a guidance system conducting
collision avoidance.

2.3. Control design

In this section, we outline the Control Design methodology for our
Guidance, Navigation, and Control (GNC) scheme. We leverage a
Model-Based design approach, exploiting analytical solutions for the
control problemwhile examining the dynamics of a ship system. Our
focus will be on two distinct control methods.

The first method stems from classical control theory, wherein
we’ll scrutinise the fundamental characteristics of a vessel’s mathe-
matical model and its interaction with the derived control law. The
second method is rooted in the field of optimal control, specifically
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Figure 4. Multimodal neural network architecture for perception tasks.

Model Predictive Control (MPC). Here, the presence of a cost func-
tion and constraints allows the designer to better balance between
performance and control effort.

The dynamics of a vessel navigating on water, subjected to envi-
ronmental disturbances like wind, waves, and currents, involves six
degrees of freedom. The equations of motion can be obtained using
either the Newton-Euler or the Lagrange equations.

A vessel hull of constant mass m and centre of gravity (xg , yg , zg)
can be described by the following set of coupled differential equa-
tions (Fossen 2011):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m[u̇− vr + wq− xg(q2 + r2)+ yg(pq− ṙ)+ zg(pr + q̇)] = X
m[v̇− wp+ ur − yg(r2 + p2)+ zg(qr − ṗ)+ xg(qp+ ṙ)] = Y
m[ẇ− uq+ vp− zg(p2 + q2)+ xg(rp− q̇)+ yg(rq+ ṗ)] = Z
Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)
Ixy +m[yg(ẇ− uq+ vp)− zg(v̇− wp+ ur)] = K

Iyq̇+ (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Izx + (qp− ṙ)
Iyz +m[zg(u̇− vr + wq)− xg(ẇ− uq+ vp)] = M

Izṙ + (Iy − Ix)pq− (q̇+ rp)Iyz + (q2 − p2)Ixy + (rq− ṗ)
Izx +m[xg(v̇− wp+ ur)− yg(u̇− vr + wq)] = N

(13)
In these equations, X, Y, Z, K, M, N denote the external forces
and moments, u, v, r, p, q,w represent the linear and angular body
velocities, and m, I∗∗ symbolise the mass and inertia tensor of the
vessel. This model is one of the most comprehensive to describe the
time-domain dynamic evolution of a marine craft.

However, a vectorial representation of the equations of motion
could be adopted to better exploit the physical properties of the
model. This representation offers distinct advantages, such as reveal-
ing specificmathematical systemproperties and allowing for a reduc-
tion in the number of coefficients required for control by rearranging
the equation to yield semi-definite positive and skew-symmetric
matrices (Fossen 2011; Sciavicco et al. 1998).

The compact vessel model can then be expressed as:

Mν̇ + C(ν)ν + Dν = τ . (14)

In this equation, ν represents the generalised velocities vector ν =
[u, v, r,w, p, q, r]′, τ = [X,Y ,Z,K,M,N] stands for the generalised
force vector acting on the craft, andM, C, and D are respectively the

rigid-body inertia matrix, the Coriolis and centripetal forces matrix,
and the Damping matrix.

An alternative to the 6DoF vector formalism, shown in
Equation (14), is to apply manoeuvring theory for a three degrees
of freedom (3DoF) representation of a marine vessel’s motion. This
3DoF model focuses on the horizontal motion of a ship in surge,
sway, and yaw, so the state vector becomes ν = [u, v, r]′. There-
fore, the motion associated with heave, roll, and pitch is ignored,
i.e. w = p = q = 0. This simplified model garners our attention in
this paper, since our primary control design goal is enabling a vessel
to autonomously navigate a predetermined path on an xy Cartesian
plane.

The section that follows delves into a more comprehensive analy-
sis of ship dynamic manoeuvring based on the 3DoF model. We aim
to demonstrate how a system of equation of different mathematical
models, each with its uniquemathematical properties, can be used to
formulate an appropriate control law. We can categorise the different
sailing scenarios of a surface vessel as follows:

(1) Unmooring: This is the initial stage where a ship begins its
departure. Here, surge, sway, and yaw velocities areminimal and
approximately equal: u = v = r ≈ 0.

(2) Low-velocity manoeuvrings: This stage precedes actual navi-
gation towards the destination, typically taking place in a har-
bour environment. The ship executes slow maneuvers to orient
towards its destination: u = v = r < ε.

(3) Sailing at cruise speed: At this stage, the vessel is aligned towards
the destination and navigates at cruise speed. The surge velocity
dominates, and the heading change is relatively small compared
to it: u = u0; v ≈ 0; r < ε.

To accurately represent these different navigation scenariosmath-
ematically, we propose the following model:

Mν̇ + C(ν)ν + Dν = τ u ≈ v ≈ r (15){
u = √u2 + v2
Tψ̈ + ψ̇ = Kδ

u� v� r (16)

Equation (16), also known as the Nomoto Model (Nomoto
1967), represents a yaw subsystem derived from the manoeuvring
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Figure 5. Feedback loop generalised block-scheme.

model (14) by selecting the yaw rate r as the output. This model illus-
trates the relationship between a vessel’s heading and the propeller
angle when the vessel sails at a constant surge speed u0. Given that
it’s a linear single-input-single-output (SISO) model, it lends itself
to a frequency response analytical PID implementation (Aström and
Murray 2004).

Figure 5 portrays a standard negative feedback control architec-
ture. The transfer function of the controller is represented by C,
while P denotes the vessel dynamic model. The open-loop transfer
function is expressed as L = C × P, and the closed-loop correlation
between the reference input r and the output y is W = L

1+L . The
approach in this paper aims to define C such that:

W = L
1+ L

= Kdcω
2
n

s2 + 2ξωns+ ω2
n

(17)

where the system’s settling time Ts, rise time Tr and control damping
ξ can be controlled using the following formula (Doyle et al. 1990):

Ts ≈ 4.6ξ
ωn

; Tr ≈ 1.8
ωn

; ξ = −ln(Mp)√
π2 + ln2(Mp)

(18)

The primary objective of the control design is to achieve:

• Zero steady-state error between r and y, implying that the ship
successfully reaches the destination coordinates as specified by the
Guidance strategy.

• Zero overshootMp when following the heading reference.
• Settling time Ts and Rise time Tr within the limits of what’s feasi-

ble, considering the propeller power capabilities. In the particular
case of this study, the control law is designed to satisfy:Ts < 3 sec;
Tr < 4 sec, achievable by the propulsion of the Tito Neri model
scale vessel.

We also explore Model Predictive Control (MPC) in this paper.
Here, MPC is grounded on the iterative optimisation of a mathemat-
ical model of a vessel over a finite time horizon. The present state of
the plant is sampled at time t, and a cost-minimising control strat-
egy is computed using a numerical minimisation technique. This is
assessed over a fixed future time horizon, [t, t + T]. The predictive
nature of MPC enables the control algorithm to find an analytical
solution, introducing a beneficial feature to the overall Control archi-
tecture: the ability to define a trade-off between plant output and the
required control effort.

The model in Equation (14) needs to be modified, and the overall
MPC problem can be formulated as follows:

⎧⎨
⎩
ν̇ =

(
C(ν)
M
+ D

M

)
ν + Bτ

y = Cν
(19)

J = min (Rs − Y)T(Rs − Y)+�τTR̄�τ
s.t. τmin ≤ τ ≤ τmax

τ̇min ≤ τ̇ ≤ τ̇max

(20)

In the above equations, Rs is the data vector comprising the system
set-point values, i.e. the state values the ship system aims to achieve.
R̄ is a diagonal matrix represented as R̄ = rwINc×Nc (rw ≥ 0), where
rw serves as a tuning parameter for the desired closed-loop perfor-
mance. Furthermore, Y is the vector containing the predicted output
variables over the prediction horizon, and�τ is the vector contain-
ing the future control trajectory as computed by the MPC solver
algorithm.

Y = [y(ki + 1 | ki), y(ki + 2 | ki), . . . , y(ki + Np | ki)]T (21)

�τ = [�τ(ki),�τ(ki + 1), . . . ,�τ(ki + Nc− 1)] (22)

The optimisation problem in Equation (20), which minimises the
error between the vessel’s current state and the reference provided
by the Guidance strategy, will be solved using commercially avail-
able software. The structure of the algorithm is outlined in the
pseudo-code Algorithm 1.

While the solution is derived using commercial software, the
pseudo code presented is used for illustrating the approach in the
paper. It specifically highlights when certain operations should be
carried out in the algorithm’s sequence. Crucially, it details the spe-
cific types of inputs required by theMPC control strategy at different
stages.

3. Results

3.1. Guidance strategy

The goal of the guidance strategy is to provide a reference route to
an autonomous surface vessel in order to reach the destination coor-
dinates avoiding all the obstacles in the environment. The starting
point is at location (7,4) and destination at (22,175) in a Cartesian x,
y plane. Without loss of generality, all the coordinates are expressed
in decimetres in this section, due to the size of the model scale
vessel. Three obstacles are present in the environment and the guid-
ance strategy calculates the path between the initial and the final
way-points as illustrated in Figure 6. The safety distance factor M
to formulate constraints (9) is chosen as two times the ship length
(2Lship) and it is represented as a black area around the obstacles.

As shown in the plot, the algorithm provides a pathway whilst
minimising the deviation from the obstacle free areas. In this test
the obstacles are visible within the prediction horizon between the
initial and final position, demonstrating how the MILP algorithm
approaches a case of static obstacle avoidance. This is an example of
a global trajectory planner, where the optimisation is done over the
entire path.

The computational time of the global path planner was measured
and equal to Tcomputation ≈ 12.3 s.

3.2. Navigation system

The performance of the perception system is evaluated through feed-
ing a validation dataset into the multi-modal network and reviewing
the resultant output, as well as subjecting some focus on individ-
ual tasks to identify sub-task weaknesses. The validation dataset is
comprised of 100 data points gathered within the indoor tank envi-
ronment, with each data point providing a colour frame and a depth
frame to be inputted to the network for inference.



JOURNAL OF MARINE ENGINEERING & TECHNOLOGY 7

Algorithm 1MPC Controller
1: function SendMPCControlInput
2: Tito Neri Model← Define Tito Neri model parameters (e.g. . . . )
3: Np ← Define prediction Horizon (e.g. . . . )
4: Nc ← Define Control Horizon (e.g. . . . )
5: J ← Define Cost Function based on Tito Neri Model (e.g. . . . )
6: Define control input constraints (e.g. constraint type, constraint limits)
7: Mainloop:
8: if i > Np then return Prediction Horizon achieved
9: if i > Nc then
10: Solve optimisation problem using (e.g. optimisation algorithm)
11: u← Calculate optimal control input using (e.g. control algorithm)
12: x← Update vessel model with the predicted states
13: y← Update and store the plant output
14: Send Control input to the ship
15: gotoMainloop.

Figure 6. Global MILP trajectory planning.

The sub-figures presented in Figure 7 present an example of the
visual results from themajor stages throughout themulti-modal net-
work. Each sub-figure is referenced to in the labels within Figure
4. An output from inference on the VesselNet CNN can be seen in
Figure 7(a) where the inputted colour frame has been annotated with
the detected object bounds and classification. The processed depth
data can be visualised in Figure 7(b) as a colour-mapped image, with
the pixels aligned to the colour frame and the colour-map range
encoding the depth range. The fusion of the first stages creates a
birds-eye-view plot such as that presented in Figure 7(c). The resul-
tant obstacle bounds and angle from BearingNet CNN are then used
to create a scaled occupancy map, as presented in Figure 7(d).

The VesselNet CNN demonstrated strong performance in detect-
ing the vessel and distinguishing its class. Quantitative evaluation
using the recall performance indicator defined in Equation (23)
yields a result of 0.98, meaning that the VesselNet CNN correctly
detected and classified the vessels 98% of the time within the vali-
dation dataset. As the bounding box from this network is only used
to attain a ROI for ongoing tasks, the bounding box precision is not
of critical importance and is therefore not quantitatively evaluated
in this work however it is observed to be more than satisfactory
to fulfil its role. Furthermore in a collision avoidance application,
vigilance leans in favour of heightened recall at the sacrifice of
precision.

The extraction and processing of depth data to create the point-
cloud BEV plot also proved itself to be robust. The hardware limita-
tion of the stereovision device does however become clear beyond
approximately eight metres with the resultant point cloud being
of low resolution, producing a sparse BEV plot. The multimodal

architecture inherently leads to overall system performance being
dictated by the weakest link in the chain, which in this case proved to
be the BearingNet.With a recall of 0.59 at an angular resolution of π8 ,
the BearingNet does not maintain the performance level of its pre-
decessors yet does still demonstrate promise in this proof-of-concept
application.

Recall = correct detections
all ground truths

= 98% (23)

This method allows to determine both the position and the head-
ing of obstacles relative to the controlled vessel frame of reference.
For the guidance algorithm, once known the position of the con-
trolled vessel, it’s straightforward to calculate the global position of
any obstacles nearby using basic geometry and a rotation matrix.

3.3. Control Design

Results are obtained using one of the model scale vessel available
at ResearchLab Autonomous Shipping (RAS) of the Delft Univer-
sity of Technology, a Tugboat vessel with a scale factor 1:30 called
Tito Neri (Figure 8). A Tito Neri has three propeller, two stern 360◦
azimuth thrusters and a tunnel bow thruster. It is a fully actuated ship
system with respect to the Cartesian plane since, based on its thrust
allocation, it is possible to provide thrust in all of the 3DoF. The ship
is equipped with the hardware and sensors summarised in Table 1.

The first step is to identify the NomotoModel parameters in (16).
This is achieved with experimental measurement campaigns using
the High Precision Positioning Feedback Camera system in the Tow-
ing tank lab facility of the Maritime and Transport Technology
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Figure 7. Perception system results. (a) Output from VesselNet neural network, (b) Colour-map visualisation of processed depth data, (c) Birds-eye-view plot of fused data
and (d) Planar occupancy map – Grid size: 1m, coordinate origin marked by white dot..

Table 1. Tiro Neri’s hardware ad sensor.

Hardware and sensor list

Positioning measurement sensor IR reflective passive markers
Inertial Measurement Unit Bosch BNO055
Motor Encoder Absolute rotary IR encoder
Propeller Control Board Arduino – ATmega328P
Position Control board Raspberry PI, Nvidia Jetson TX2, Intel NUC

Department at Delft University of Technology. The tests were per-
formed reaching steady surge velocity on the Tito Neri model scale
ship and injecting at time t0 a deviation of 45◦ angle on the stern
propellers. The experiments were repeated 10 times and the separate
results were compared and averaged in order to reduce the amount
of uncertainties during the test phase .

Figure 9 show the evolution over time of the heading rotational
velocity r measured by the camera system and the simulated output
of the mathematical Nomoto model response were extracted using
nonlinear least-squares fit method.

The parameters where then calculated from the plots: K = 3.55,
T = 1.67 leading to the formulation of the Nomoto model

P = ψ

δ
(s) = 3.55

s(1+ 1.67s)
(24)

Figure 8. Tito Neri’s thrust allocation.

Based on the transfer function obtained and recalling (17), the con-
trol law C is calculated as
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Figure 9. Estimated nomoto model using nonlinear least-square fit.

C = Kc

s+ a
(25)

As depicted in Figure 10, the controlled Tito Neri vessel follows the
reference path stipulated by the Guidance algorithm. The dynam-
ics remain stable as the ship avoids environmental obstacles, despite
noticeable path deviations, particularly around curves. Such tran-
sient deviations can be attributed to the control law’s focus on
heading dynamics, while not considering the physical correlations
between sway and yawmotion. The model predictive control (MPC)
design formulation, a comprehensive model-based control strategy,
accounts for multi-input-multi-output dynamics by incorporating a
full 3DoF ship model. Recalling the expression (14), in the following
the expanded matrices:

MRB =
⎡
⎣m 0 0
0 m mxg
0 mxg Iz

⎤
⎦ , MA =

⎡
⎣−Xu̇ 0 0

0 −Yv̇ −Yṙ
0 −Yṙ −Nṙ

⎤
⎦ ,

(26)

CRB =
⎡
⎣ 0 0 −m(xgr + v)

0 0 mu
m(xgr + v) −mu 0

⎤
⎦ , (27)

CRB =
⎡
⎣ 0 0 Yv̇ + (Yṙ + Nv̇)r

0 0 −Xu̇
−Yv̇v− (Yṙ+Nv̇)r −Xu̇u 0

⎤
⎦ , (28)

D =
⎡
⎣−Xu 0 0

0 −Yv −Yr
0 −Nv −Nr

⎤
⎦ , (29)

The values of the ship model parameter are summarised in Table 2.
As illustrated in Figure 11, this consideration of the correlated

dynamics between lateral and angular motion enables the control

Table 2. Tito Neri 3DoF model parameters.

m 16.9
xg 0
Iz 0.51
Xu̇ −1.2
Yv̇ −49.2
Yṙ 0
Nv̇ 0
Nṙ −1.8
Xu 1.98
Yv 7.8
Yr 0
Nv 0
Nr 3.87

algorithm to guide the ship along the reference route with zero
path deviation. However, it is worth noting that the control effort
demanded by the MPC controller is considerable, especially for the
actuators. Figure 12 elucidates how the control law requires a force
that continually changes at a frequency of approximately 0.2Hz,
resulting in a substantial load on the actuators. This is primarily to
compensate for the sway drift during navigation, which, however,
might induce aggressive actuator dynamics, potentially leading to
mechanical failure. Key performance indicators (KPIs) of the con-
trol strategies analysed in this study are concisely summarised in
Tables 3 and 4. Figures 13– 15 document the results of the PID-based
control approach. Figure 14 specifically displays the ship’s heading
control performance, demonstrating no overshoot and a rise time
of 2.1 seconds. This performance, along with a steady-state settling
time of 3 seconds, reveals the adaptability of the system across diverse
avoidance maneuvers. Figure 15 presents the control inputs directed
towards the ship’s azimuth propeller system, demonstrating how the
frequency response-based control law can generate feasible control
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Figure 10. xy Cartesian plot using PID controller.

Table 3. KPIs control strategies.

KPI MPC PID

Steady-State position error 0 0
Heading Overshoot 0% 0%
Max Path Deviation 0.02m 0.23m
Obstacles avoided � �

Table 4. KPIs GNC scheme adopted in the experimental setup.

KPIs

Steady-State ship’s heading error 0
Controlled Heading Rise time 2.1 sec
Controlled Heading Settling time 3 sec
Controlled propulsion – Rise time 1.6 sec
Controlled propulsion – Settling time 3.4 sec
Controlled propulsion – error ±5%

inputs for the motors driving the azimuth rotation mechanics. Fig-
ures 16 and 17 elaborate on the finer aspects of the low-level control
on the ship’s propulsion system. The propellers maintain a constant
speed on both the port and starboard sides throughout the navi-
gation. With a rise time of 1.6 seconds and a settling time of 3.4
seconds, the performance of the propeller speed control reempha-
sizes the compatibility of the control law with the ship’s hardware.
In conclusion, the PID-based approach coupled with the frequency
response-based control law produces an efficient navigation con-
trol system. Its robustness, exhibited in both heading control and
actuator-level operations, suggests potential suitability for real-world
maritime navigation applications, thereby aiding the enhancement of
a vessel’s autonomous capabilities.

4. Conclusions and further research

A complete GNC framework has been presented in this paper,
enhancing the importance of how these threemodules are dependent
upon one another to achieve autonomous navigation for a surface
vessel.

In this work the sub-systems have only been evaluated inde-
pendently however the authors intend to evaluate the complete
GNC framework under experimental collision avoidance scenarios
in future work. The MILP guidance algorithm as presented serves as
a proof on concept for a global trajectory planning algorithm. It gen-
erates an alternative, minimally deviated, evasive path for the vessel
whilst respecting kinematic constraints. In the context of real ship
dynamics, especially for large vessels, 12 seconds planning time may
be adequate given the slower responses time and longer distances
required for maneuvers. However, it is important to emphasise that
the primary focus was on establishing a proof of concept, and the

presented complete GNC scheme was chosen to balance computa-
tional efficiency with realistic and feasible model-scale operational
scenarios. Faster hardware can theoretically minimise the computa-
tional load even further, for application where fast moving objects
are in the environment as well. Comparatively, existing maritime
navigation systems, which often rely on a combination of radar
and manual inputs, operate on a similar timescale for trajectory
planning.

Additionally, the guidance approach focuses on immediate spa-
tial positioning rather than a predictive, kinematic based, modelling
using the obstacle vessels headings. Incorporating future obsta-
cle position prediction could, however, represent an interesting
direction for future work, where the dynamics of moving obsta-
cles could be integrated into the guidance system for more com-
plex navigational scenario taking into account their heading and
the possibility to estimate the velocity of the surrounding objects
as well.

The perception approach investigated in this work demonstrates
the promise of a multi-modal network architecture in achieving sit-
uational awareness for obstacle avoidance activities. In the research
the camera sensor was primarily chosen for its accessibility and com-
patibility with the model scale used, to provide a proof of concept.
The D435i, with its active IR projections, is not merely a stereo
camera and is less suited for large-scale sea applications due to its
range and sensitivity to environmental conditions. In future work
alternative for true development can be considered, for example a
mix of specialised marine-grade LiDAR system with more sophis-
ticated camera technology. Nonetheless, the underlying principles
of the Computer Vision algorithm demonstrated here would largely
remain applicable. The Faster R-CNNbasedVesselNet proves itself to
be a suitable candidate for detecting vessels and distinguishing their
classification from colour image frames. Depth-data from a stereo-
vision sensor can provide sufficient point-cloud resolution to detect
both vessel orientation and distance, albeit within the range capac-
ity of the device’s hardware. Although the overall performance of the
BearingNet limited the performance of the network, this sub-optimal
performance could be improved in future work through additional
training data and fine tuning of the network model. Even with a lim-
ited overall system performance, the slow-moving nature of vessels
and the capacity for multiple frames to be processed each second
could still permit application to autonomous vessels. Additionally,
it is also noteworthy to mention that in our approach, setting miss-
ing depth values to the maximum of their surroundings represents
an optimistic scenario. For applications in real-world environments,
a more robust method for filling these gaps could be explored. This
could include statistical techniques or machine learning-based inter-
polation strategies, which potentially offer a more precise estimation
of missing data points in a sparse depth field. Moreover, consid-
ering the notably high recall rate of 98% achieved by VesselNet,
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Figure 11. xy Cartesian plot using MPC controller.

Figure 12. MPC – control forces requested.

Figure 13. PID – control forces requested.
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Figure 14. Ship’s heading evolution.

Figure 15. Azimuth propeller control inputs.

primarily attributed to the training on model-scale ships similar to
those used in our test scenarios, it becomes important to address
the potential limitations of our current dataset. The application of
VesselNet in real-world, densely trafficked maritime environments
may reveal performance degradation if the training dataset lacks
diversity and fails to integrate a comprehensive array of ship types
and conditions comparable with those encountered in actual naviga-
tion settings. This underlines the necessity of expanding the dataset
used in this work to include a broader spectrum of real-world mar-
itime images, enhancing the neural network capability to accurately
detect and classify vessels under a wide range of scenarios. Further-
more, the impact of potentially noisier detected object positions,

as well as the occurrence of false negatives and positives, demands
in-depth analysis because of their substantial influence on the path
planning executed by the Guidance system. While the inherent con-
trol stability of ship system in a path following context may mitigate
the risks associated with path inconsistencies, the increased control
effort demanded fromactuators in response to detection inaccuracies
could potentially compromise vessel integrity. Therefore, the pursuit
of further research to enhance VesselNet by training with real ship
navigation data becomes essential. This effort is crucial for guaran-
teeing the robustness and dependability of our proposed guidance
and control strategy among the diverse and challenging dynamics of
marine environments.
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Figure 16. Controlled rpms, portside propeller.

Figure 17. Controlled rpms, starboard propeller.

In conclusion, this paper has discussed two model-based control
design strategies – a second-order frequency response correlation-
based controller and a Model Predictive Control (MPC). Each
of these controllers demonstrated the potential to contribute
to autonomous navigation when integrated with the previously
described Guidance and Navigation systems. Although the MPC
offered a higher precision in path following, the second-order fre-
quency response correlation-based controller emerged as the prefer-
able choice for practical implementation. This decision is justified by
its robustness, superior computational efficiency, and lesser demand
on the actuator side, hence ensuring the preservation of the ship’s
mechanical integrity. In this study, it was found that the impulses

sent to the actuator by the Model Predictive Control algorithm were
primarily due to uncertainties in the maneuvering model parame-
ters Table 2. Essentially, if the ship anticipates that a certain force
will move it to a predicted position, but subsequently finds itself
in a different position in the next time frame, the MPC algorithm
attempts to correct this discrepancy by counteracting the previous
effort.

However, this conclusion does not undermine the potential ben-
efits of the MPC and methods to mitigate the illustrated control
spikes should be further investigates in future research also to explore
ways of reducing the computational demands of more advanced and
theoretically superior control strategies like the Non-linear Model
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Predictive Control and back-stepping. Such advancements are cru-
cial, especially considering that these control systems must work
in tandem with computationally intensive guidance and navigation
methods.

Moreover, as our study was primarily based on the Tito Neri
model vessel, future research can also investigate the applicability
and performance of these control strategies on different vessel types.
Furthermore, the exploration of control design methodologies that
take into account other dynamics, beyond the heading dynamics
considered in this study, could offer a more comprehensive approach
to autonomous navigation.

Lastly, further consideration of the potential effects of environ-
mental conditions on the performance of these control systems,
and how they can be effectively accounted for in the control design
process, is also warranted. While the core of this research primar-
ily focussed on the implementation aspects of a full GNC system,
further simulations can play an important role in refining the pro-
posed methods and validating conclusions. Going forward, the plan
is to expand simulation scenarios to include diverse maritime envi-
ronments and dynamic obstacle behaviours, integrating real-world
data to bridge the gap between simulation and practical application.
This will not only test the robustness and adaptability of our system
under varied conditions but also help us understand its scalabil-
ity and actual efficiency in crowd maritime environments. This will
also ensure the adaptability and reliability of autonomous maritime
navigation systems in real-world maritime conditions.
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