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Original Article

High-performance all-aromatic liquid
crystalline esteramide-based thermosets

Yiheng Dai1, Xiangyu Bi1, Theo J Dingemans2,3

and Qingbao Guan1,2

Abstract
We have synthesized and characterized a new family of nematic all-aromatic polyesteramide thermosets based on
6-hydroxy-2-naphthoic acid (HNA), terephthalic acid (TA), and 4-acetamidophenol (AAP). In order to incorporate a high
concentration of the amide-based monomer (AAP), the melt transition (TK-N) and melt viscosity had to be lowered in
order to maintain melt processable intermediates. Precursor thermoplastic reactive oligomers, end-capped with
phenylethynyl functionalities, were prepared using standard melt condensation techniques with a target Mn of 1000–9000
g mol�1. The reactive oligomers with 20–30 mol% AAP could easily be processed into films, and the films exhibit good
tensile properties in terms of tensile strength (70–80 MPa) and elongation at break (7–10%). A glass transition of 191�C
could be obtained when a 1000 g mol�1 oligomer (HNA/TA/AAP(20)–1 K) was thermally cross-linked. When the AAP
concentration reaches 35 mol%, the rigidity of the backbone and the hydrogen bonding interactions are enhanced, which
make HNA/TA/AAP(35) polymers difficult to process.
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Introduction

All-aromatic thermotropic liquid crystalline polymers

(TLCPs) offer superior barrier properties, solvent resis-

tance, and low coefficient of thermal expansions (CTEs).1,2

However, they display low glass transition temperatures

(Tgs approximately 120�C), which have limited their use

in demanding high-end applications such as composites,

electronics, surface coatings, and barrier films. Another

challenge has always been their high melting temperature

(TK-N) and high melt viscosity, which is a direct conse-

quence of the all-aromatic, mostly para-substituted back-

bone.3–5 Controlling the melting temperature, and thus

improving the melt processability of all-aromatic TLCPs,

has very important significance.

Various backbone modifications have been implemen-

ted over the years, which were aimed at increasing the Tg,

reducing TK-N, and improving the melt processability of the

all-aromatic TLCPs. For instance, the introduction of non-

aromatic bulky side-chain substitutions increases the Tg,

while the thermal stability is compromised. Introducing

nonlinear aromatic monomers, such as substituted naphtha-

lenes; 2,5-thiophenes; 1,3-substituted benzenes; and

ketone-, ether-, amide-, and imide-based monomers, lowers

the backbone symmetry, disrupts crystallization, and

suppresses the TK-N, whereas the liquid crystalline (LC)

phase might be lost.6–14 Another approach is to lower the

molecular weight of the polymer backbone, that is, prepare

oligomers and introduce reactive functionalities such as

phenylethynyl or maleimide end groups at the chain ends
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(typically Mn of reactive oligomers¼ 1000–9000 g�mol�1).

This lowers the TK-N and melt viscosity and makes it pos-

sible to process all-aromatic reactive oligomers, which are

allowed to chain extend and/or cross-link in a successive

high-temperature posttreatment step. This route yields

polymers with good thermomechanical properties includ-

ing high tensile strengths (83 MPa) and elongation at break

(9%) that are otherwise not accessible.15,16

A well-known thermoplastic LC polyesteramide is

composed of 60 mol% 6-hydroxy-2-naphthoic acid (HNA),

20 mol% terephthalic acid (TA), and 20 mol%
4-acetamidophenol (AAP), as shown in Figure 1. This polymer

exhibits good thermal and mechanical properties and chemical

resistance.17,18 Considerable work has been reported on taking

advantage of the thermal and mechanical properties of this

polyesteramide (HNA/TA/AAP), such as blending HNA/

TA/AAP with other thermoplastics or preparing HNA/TA/

AAP-based “in situ” composites with polypropylene by using

ionomers.19–21 East et al. have tried to improve the processa-

bility of HNA/TA/AAP by introducing more nonlinear mono-

mer HNA (up to 85 mol%), but the resulting polymers show an

even higher melting temperature (TK-N¼ 385�C). This can be

explained by the fact that a too high molar percentage of HNA

leads to the formation of intractable homopolymer of HNA

(poly-HNA). Meanwhile, the Tg was lowered to 95�C.18

In principle, the molar proportion of amide units was

deliberately kept low to avoid the formation of intractable

compositions of very high TK-N. However, it is anticipated

that adding more amide units might improve the structure/

property profile of polymers due to the increase of interchain

hydrogen bonding. In the work presented herein, we com-

bined the strategies of adding more amide units (AAP) to

improve the thermomechanical properties and introducing

reactive end groups (phenylethynyl) to control TK-N and

improve (melt) processability. A new series of reactive LC

oligomers based on HNA, TA, and AAP with cross-linkable

phenylethynyl end groups were prepared. We intensively

investigated the effect of the concentration of amide units

and reactive end groups on the processability, thermal and

mechanical properties of the cured LC thermosets.

Experimental

Materials

All chemicals were obtained from the indicated sources and

used as received. TA, AAP, and acetic anhydride were

obtained from Aldrich (Zwijndrecht, The Netherlands),

HNA was obtained from Ueno Fine Chemicals Ltd (Japan),

and potassium acetate was purchased from Acros Organics

(Geel, Belgium). For the end-group synthesis, 4-

phenylethynylphthalic anhydride was obtained from Hang-

zhou Chempro Tech Co., Ltd (China). (98% purity). The

synthesis of the reactive end groups, that is, N-(4-carbox-

yphenyl)-4-phenylethynylphthalimide (PE-COOH) and N-

(4-acetoxyphenyl)-4-phenylethynylphthalimide (PE-OAc),

was reported elsewhere.8

Synthesis of the phenylethynyl end-capped oligomers

All reactive oligomers were synthesized using standard melt

condensation techniques as shown in Figure 2. In the first

series, four reactive oligomers based on HNA/TA/AAP

(molar ratio of 0.6/0.2/0.2) with a target average number

molecular weight Mn of 1000, 5000, and 9000 g mol�1 were

prepared by controlling the concentration of reactive end

groups using the Carothers equation.22 The samples were

labeled, HNA/TA/AAP(20)–1 K, HNA/TA/AAP(20)–5 K,

and HNA/TA/AAP(20)–9 K, respectively, where HNA/TA/

AAP(20) refers to the backbone composition, that is, 0.6 mol

HNA, 0.2 mol TA, and 0.2 mol AAP. The integers refer to

the average number molecular weight, that is, 9 K ¼ 9000 g

mol�1. A reference polymer was synthesized without reac-

tive end groups and was labeled HNA/TA/AAP(20)–Ref.

In successive series, we varied the backbone composi-

tion of a 9000 g mol�1 oligomer, by varying the molar

ratios of HNA/TA/AAP to 0.5/0.25/0.25, 0.4/0.3/0.3, and

0.3/0.35/0.35. The samples terminated with reactive end

groups were labeled HNA/TA/AAP(25)–9 K, HNA/TA/

AAP(30)–9 K, and HNA/TA/AAP(35)–9 K, respectively.

The reference samples for this series without reactive end

groups were labeled HNA/TA/AAP(25)–Ref, HNA/TA/

AAP(30)–Ref, and HNA/TA/AAP(35)–Ref, respectively.

Synthesis of HNA/TA/AAP(20)–9 K

As a representative example, we describe the synthesis of a

9000 g mol�1 reactive oligomer with a HNA/TA/AAP

molar ratio of 0.6/0.2/0.2, labeled as HNA/TA/AAP(20)–

9 K. To synthesize this oligomer, HNA (0.6 mol,

112.908 g), TA (0.2 mol, 33.226 g), AAP (0.2 mol,

30.234 g), p-PE-OAc (0.018 mol, 6.869 g), p-PE-COOH

(0.018 mol, 6.617 g), and potassium acetate (0.1 mmol,

10 mg) were charged in a 250-mL three-neck round-

bottomed flask. The flask was equipped with a nitrogen gas

inlet, an overhead mechanical stirrer, and a reflux conden-

ser. The reactor was purged with nitrogen for 30 min prior

to the start of the reaction, and a slow nitrogen flow was

maintained throughout the duration of the synthetic

Figure 1. Molecular structure of an all-aromatic polyesteramide
based on HNA, TA, and AAP.17,18 HNA: 6-hydroxy-2-naphtoic
acid; TA: terephthalic acid; AAP: 4-acetamidophenol.
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procedure. Acetic anhydride (106 ml, 1.12 mol) was added

for the in situ acetylation of the monomers. The reaction

mixture was slowly stirred under nitrogen atmosphere and

heated to 140�C to allow acetylation to take place. After a

1-h isothermal hold, the temperature of the reaction mix-

ture was slowly increased to 310�C using a heating rate of

1�C min�1. During this process, acetic acid was collected

as a condensation by-product. At 310�C, the nitrogen flow

was stopped, and a vacuum was applied to remove the

residual acetic acid and other small molecules. The reaction

flask was allowed to cool down overnight under nitrogen

flow, and the final product was removed from the flask and

processed into a powder. A solid-state postcondensation

step was performed at 250�C for 48 h under vacuum in

order to remove all volatiles and ensure full polymeriza-

tion. Yields for these syntheses were generally above 95%.

The reference polymers were prepared under identical con-

ditions but without PE-OAc and PE-COOH end groups.

Preparation of thin films

Melt pressed thin films were prepared using standard melt

pressing techniques. The postcondensed polymer powder

was placed between two Kapton™ films and consolidated in

a preheated Joos hot press at 370�C for 45 min with 5 kN

force. During the melt pressing step, no attempts were

made to align the films.

Methods

A PerkinElmer Pyris Diamond TG/DTA (California, US)

was used to study the dynamic thermal stability. The poly-

mers were initially heated to 370�C and isothermally held at

370�C for 1 h under nitrogen to ensure full polymerization.

After cooling to 25�C, the samples were analyzed using a

heating rate of 10�C min�1 under nitrogen atmosphere.

The melt behavior of the polymers was determined by

differential scanning calorimetry (DSC) using a PerkinEl-

mer Sapphire DSC with a heating rate of 20�C min�1. All

measurements were conducted under nitrogen atmosphere.

A Leica DM LM optical microscope (Wetzlar, Ger-

many) equipped with a Linkam hot stage was used to inves-

tigate the melt behavior as a function of time and

temperature. The samples were investigated between glass

slides upon heating using a heating rate of 50�C min�1.

The rheological behavior of the polymers was investi-

gated using a Thermo Scientific HAAKE MARS III rhe-

ometer (Germany) equipped with a force-rebalanced

transducer in a parallel plate geometry. Parallel plates of

8 mm diameter were used, and samples were prepared by

compression molding (8 mm in diameter and 0.2 mm

thick). The samples were investigated under nitrogen atmo-

sphere with temperature ramping (5�C min�1) from 190�C
to 370�C followed by an isothermal hold at that tempera-

ture for 1 h. All experiments were performed at a frequency

of 1.0 Hz and a strain amplitude of 0.1%, which is well

Figure 2. Synthesis and backbone of the all-aromatic LC esteramide-based reactive oligomers with phenylethynyl end groups and the
reference polymers. LC: liquid crystalline.
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within the linear viscoelastic range (frequency of 0.1–10

Hz and a strain amplitude of 0.001–1.0%).

Dynamic mechanical thermal analysis (DMTA) was

performed with a PerkinElmer Diamond DMTA in a ten-

sion mode, using thin films (20 + 0.2)� (5 + 0.2)� (0.25

+ 0.05) mm3 under nitrogen atmosphere and at a heating

rate of 2�C min�1. All experiments were performed at a

frequency of 1.0 Hz, static tension force of 2000 mN, min-

imum tension force of 200 mN, tension gain of 1.5, and

length amplitude of 5 mm. The minimum recordable storage

modulus (E0) was set to 1 � 104 Pa.

A Zwick 1445 tensile tester (Zwick GmbH, Ulm, Ger-

many) with a 10-kN force cell was used to investigate the

stress–strain behavior of the tensile specimens. All experi-

ments were performed at 25�C at a strain rate of 1 mm

min�1. The data are reported as an average of five samples.

The elastic modulus was measured by calculating the slope

of the stress–strain curve between 0.1% and 0.3% strain.

Results and discussion

Synthesis of reactive esteramide oligomers

All oligomers with phenylethynyl end groups could be

synthesized using a simple one-pot melt condensation pro-

cedure. Since the maximum polymerization temperature

was 310�C, the reference polymers and reactive oligomers

containing large concentrations of AAP (�30 mol%) soli-

dified toward the end of the polymerization. The solid-state

postcondensation procedure appeared very useful in this

context since it ensured complete polymerization of all

reactive oligomers. The oligomers were ground into a fine

powder, and this powder was postcondensed at 250�C for

48 h under vacuum prior to further use.

To quantify the molecular weight of the reference polymer

and reactive oligomers, we attempted to find suitable solvents

or solvent mixtures, for example, dimethylacetamide, tri-

fluoroacetic acid, and pentafluorophenol/hexafluoroisopro-

panol (1:1 v/v). However, all oligomers and reference

polymer appeared completely insoluble at 25�C and elevated

temperature, which precludes size exclusion chromatography

and inherent viscosity measurements. Although it is well

known that all-aromatic polyesters and polyamides are not

stable in 100% sulfuric acid, we used this solvent in a final

attempt to prepare polymer solutions suitable for inherent

viscosity measurements. The reference polymer and reactive

oligomers could be dissolved in 100% sulfuric acid; however,

the inherent viscosity dropped too fast, due to backbone

degradation reactions (hydrolysis), making it impossible to

calculate a representative inherent viscosity.

Thermal behavior and LC phase

The thermal behavior of the reference polymers and the

reactive oligomers was investigated using DSC. Figure 3

depicts the first and second heating scans of HNA/TA/

AAP(20)–9 K using a heating rate of 20�C min�1. The first

heating cycle, that is, from 25�C to 370�C, was used to

detect the glass transition temperature (Tg ¼ 124�C), melt

transition (TK-N ¼ 298�C), and possibly a reaction

exotherm due to the high-temperature chain extension/

cross-link chemistry of the terminal phenylethynyl end

groups.23 The samples under investigation were kept at

370�C under nitrogen atmosphere for 1 h to allow the reac-

tive oligomers to fully cure, after which the samples were

quenched to 25�C and heated again. Only a Tg at 138�C is

observed upon the second heat, indicating that the chain

extension and cross-linking are taking place during the 1-h

hold. The thermal properties of the polyesteramides are

summarized in Table 1.

With regard to the reference polymers, no clearly iden-

tifiable Tg, but a broad TK-N is observed upon the first heat.

With an increase in AAP concentration from 20 mol% to 35

mol%, the TK-N of the reference polymers shows a dramatic

increase from 316�C to 396�C (Figure 4) because the ester

segments are replaced by the amide segments, resulting in

an increase in intermolecular hydrogen bonding interac-

tions as expected. The incorporation of phenylethynyl end

groups limits the molecular weight of the polymer and

reduces the TK-N values when compared to the reference

polymer. For example, HNA/TA/AAP(20)–1 K shows TK-N

at 255�C, which is approximately 60�C lower than that of

HNA/TA/AAP(20)–Ref.

In order to understand the phase behavior in more detail,

we investigated the reference polymer and reactive oligo-

mers using hot-stage optical microscopy. All reference

polymers and reactive oligomers display classic nematic

textures over a broad temperature range. No smectic or

50 100 150 200 250 300 350 400
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Figure 3. DSC heating trace of HNA/TA/AAP(20)–9 K after
postcondensation (48 h at 250�C). Heating rate ¼ 20�C min�1/
nitrogen atmosphere. The upper trace represents the first heat,
and the lower trace shows the second heat after curing the
reactive oligomer for 1 h at 370�C. DSC: differential scanning
calorimetry; HNA: 6-hydroxy-2-naphtoic acid; TA: terephthalic
acid; AAP: 4-acetamidophenol.
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higher ordered LC phases could be detected. None of the

reference polymers and oligomers showed a nematic-to-

isotropic transition. As a representative example, the

nematic texture of HNA/TA/AAP(20)–9 K, before and

after cure, is shown in Figure 5. When the oligomers were

heated and polymerized above 340�C, the viscosity of the

melt started to increase rapidly. Figure 5(a) shows a

nematic texture at 370�C. The nematic melt solidified after

a 1-h isothermal hold at 370�C. At this point, a fixed

nematic texture was obtained, which could not be sheared

(Figure 5(b)), and the texture remained stable without any

visible degradation up to 550�C, at which point the polymer

started to decompose.24

Understanding the melt behavior of our polymers is

critical in terms of defining the processing window. The

complex melt viscosity (|�*|) of the reference polymer and

reactive oligomers as function of temperature and time

was measured using a rheometer. Figure 6 shows that

HNA/TA/AAP(20)–Ref has an acceptable processing

window of approximately 15 min at 370�C. Its melt visc-

osity drops rapidly at 300�C and reaches a minimum value

(1.5 � 105 Pa�s) at 350�C. However, the reactive oligo-

mers have an even broader processing window. For

instance, the melt viscosity of HNA/TA/AAP(20)–5 K

starts to decrease at 250�C and reaches a minimum value

(2 � 104 Pa�s) at 310�C.

After reaching the minimum value, the viscosity of

HNA/TA/AAP(20)–Ref starts increasing and leveling off

after a 20-min hold at 370�C, suggesting that transesterifi-

cation and polymerization are taking place during the heat-

ing ramp and isothermal hold (effectively, postcondensing

the polymer).25 In the case of HNA/TA/AAP(20)–5 K,

chain extension and cross-linking are taking place from

320�C resulting in an increase in molecular weight and

hence a rapid increase in |�*|. After a 25-min hold at

370�C, the chain extension and cross-linking chemistry are

mostly complete and the viscosity levels off. Similar results

were reported in the research on the cure reaction of

phenylethynyl-terminated multiblock copolymer.26 From

the rheology experiments, it is clear that our reactive oli-

gomers have a broader and more accessible processing

window than that of the high-molecular weight reference

polymer. An isothermal hold at 370�C for 1 h can cure the

reactive oligomers to form cross-linked thermosets.

Figure 7 shows that all reference polymers and reactive

oligomers have a sharp decrease in complex melt viscosity

at their TK-N, which is a very typical LC polymer melt

Table 1. Thermal properties of the reactive oligomers and their cured thermosets.

Sample TK-N (�C)a Tg (�C)b E0 (GPa) at 24�C T5%
d (�C)c Char yield (wt%)c

HNA/TA/AAP(20)–Ref 316 143 10 474 58.0
HNA/TA/AAP(20)–9 K 298 149 4.5 473 60.2
HNA/TA/AAP(20)–5 K 280 154 5.4 471 61.0
HNA/TA/AAP(20)–1 K 255 191 3.2 479 69.0
HNA/TA/AAP(25)–Ref 331 154 22 464 57.1
HNA/TA/AAP(30)–Ref 371 166 18 466 60.0
HNA/TA/AAP(35)–Ref 396 162 5.7 471 55.7
HNA/TA/AAP(25)–9 K 301 157 12 471 59.8
HNA/TA/AAP(30)–9 K 357 170 5.2 469 58.7
HNA/TA/AAP(35)–9 K 376 172 6.3 471 55.9

HNA: 6-hydroxy-2-naphtoic acid; TA: terephthalic acid; AAP: 4-acetamidophenol; DSC: differential scanning calorimetry; DMTA: dynamic mechanical
thermal analysis; TGA: thermogravimetric analysis.
aTK-N data were obtained from the first heating scan of DSC experiments. Heating rate is 20�C min�1/nitrogen atmosphere.
bTg data were obtained from DMTA experiments using cross-linked films, defined by the maximum of the loss modulus (E00) peak. Heating rate is 2�C
min�1/nitrogen atmosphere and the frequency is 1 Hz.
cThermal stability was evaluated using dynamic TGA. Char yield at 600�C. The sample was cured by isothermal holding at 370�C for 1 h before the
measurement. Heating rate is 10�C min�1/nitrogen atmosphere.
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Figure 4. Melt transitions (TK-N) of the polyesteramides refer-
ence polymers and reactive oligomers as function of the AAP (or
HNA) concentration. Heating rate ¼ 20�C min�1/nitrogen
atmosphere. AAP: 4-acetamidophenol; HNA: 6-hydroxy-2-
naphtoic acid.
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behavior.27 They exhibit a broad processing window of

about 20 min at 370�C and a minimum |�*| (approximately

1.5 � 105 Pa�s) at approximately 370�C. With the largest

concentration of AAP (35 mol%), the rigidity of the back-

bone and the hydrogen bonding interactions are enhanced

significantly; therefore, the viscosity of HNA/TA/

AAP(35)–Ref and HNA/TA/AAP(35)–9 K are much

higher than that of the others. This would be a good expla-

nation for their poor mechanical property, which will be

discussed later.

Thermal properties

In order to explore the thermomechanical properties of

our polymers, the storage modulus (E0) and loss modulus

(E00) as function of temperature were studied using

DMTA. Thin films of the reference polymers and cured

thermosets were used for these DMTA experiments, and

the results are summarized in Table 1 and Figures 8 and 9.

The Tg was defined at maximum of E00 instead of the

Tan �. Reporting the Tg at the maximum of E00 is more

appropriate, since this is the temperature where the poly-

mer transits from a glassy to a rubbery state, whereas the

Tan � represents the E00/E0 ratio.

Figure 8 shows that the E0 (10 GPa at 24�C) of HNA/

TA/AAP(20)–Ref is higher than that of the cured ther-

moset films. Although the reference polymer has strong

hydrogen bonding interactions among the molecules, the

incorporation of cross-links reduces the possibility to

form such interactions. Note that the presence of

cross-linked network indeed leads to a significant

improvement in the thermomechanical properties of the

cured films at elevated temperature. Despite the E0 (3.2

GPa) of HNA/TA/AAP(20)–1 K at 24�C is smaller than

that of HNA/TA/AAP(20)–Ref, HNA/TA/AAP(20)–1 K

exhibits a E0 of 0.8 GPa at 270�C, which is higher than

that of HNA/TA/AAP(20)–Ref by a factor of 27. The

phenylethynyl end groups cross-link during the curing

process and form a densely cross-linked network, which

typically increases the E0 and Tg due to a reduction in

chain mobility. Therefore, HNA/TA/AAP(20)–1 K with

the largest concentration of phenylethynyl end groups

displays a Tg of 191�C. However, the thermoplastic ref-

erence polymer HNA/TA/AAP(20)–Ref only has a Tg of

143�C.

Increasing the concentration of amide segment AAP

from 20 mol% to 30 mol%, the Tgs and E0 of the poly-

esteramides reference polymers and cured thermosets

show a dramatic increase (Figure 9 and Table 1). This

is attributed to the increase in backbone rigidity and the

increased hydrogen bonding interactions, which lead to

larger stiffness and less mobility of the polymer chains.

For instance, the HNA/TA/AAP(30)–Ref exhibits a Tg of

166�C and E0 of 18 GPa. However, the polyesteramides

with 35 mol% of AAP have a slight lower Tg (160�C)

and E0 (approximately 6 GPa) due to the poor quality of

the films.

Figure 5. Microphotographs of the HNA/TA/AAP(20)–9 K melt textures (after postcondensation for 48 h at 250�C), between cross-
polarizers (�100). (a) Low viscous nematic texture at 370�C. (b) Solidified nematic thermoset after a 1-h cure at 370�C. HNA: 6-
hydroxy-2-naphtoic acid; TA: terephthalic acid; AAP: 4-acetamidophenol.
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Figure 6. Complex melt viscosities (|�*|) for the HNA/TA/
AAP(20) reference polymer and reactive oligomers as function of
temperature and a 1-h hold at 370�C. Experiments were per-
formed using a frequency of 1 Hz and a heating rate of 5�C min�1/
nitrogen atmosphere. The test specimens were prepared after the
polymers postcondensed at 250�C for 48 h. HNA: 6-hydroxy-2-
naphtoic acid; TA: terephthalic acid; AAP: 4-acetamidophenol.
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The thermal stability of the reference polymer and cured

thermosets were evaluated using dynamic thermogravimetric

analysis (TGA) at a heating rate of 10�C min�1. There

appeared to be no difference among the polymers with

different AAP concentrations. High decomposition values

(T5%
d ¼ 470�C) and high char yields (60 wt%) were found,

indicating that the dynamic thermal stability of these poly-

esteramides is comparable to that of commercial high-

performance polymers such as bismaleimide and epoxy

resin.28,29 The cured HNA/TA/AAP(20)–1 K thermoset dis-

plays the best thermal stability among these polymers, which

is most likely the result of a high cross-linking density. These

results suggest that the thermal stability of the cured thermo-

sets is related to the phenylethynyl reactive end-group con-

centration and the density of the final cross-linked network.

The thermal properties of the polyesteramides are summar-

ized in Table 1.

Tensile properties

Figure 10 shows the tensile properties of HNA/TA/

AAP(20) reference polymer and cured thermoset films as

function of the molecular weight of their reactive oligo-

mers. The high-molecular weight reference polymer

HNA/TA/AAP(20)–Ref shows excellent tensile properties

in terms of tensile strength (135 MPa) and elongation at

break (9.5%). As the molecular weight of the reactive oli-

gomer decreases from 9000 to 1000 g mol�1, the tensile

properties of HNA/TA/AAP(20) thermoset films show a

gradually decreasing trend. Generally, the incorporation

of cross-linked network improves the stiffness of polymers

but reduces the toughness, resulting in a brittle fracture

behavior. For instance, HNA/TA/AAP(20)–1 K exhibits

the lowest tensile strength (70 MPa) and elongation at

break (6.7%) due to its highest cross-linking density.
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Figure 7. Complex melt viscosities (|�*|) for the polyesteramide reference polymers (a) and reactive oligomers (b) as function of
temperature and a 1-h hold at 370�C. Experiments were performed using a frequency of 1 Hz and a heating rate of 5�C min�1/nitrogen
atmosphere. The test specimens were prepared after the polymers postcondensed at 250�C for 48 h.
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With an increase of AAP concentration, the tensile prop-

erties of the polymers show a decreasing trend. The tensile

strength and elongation at break of HNA/TA/AAP with

AAP concentration less than 30 mol% were acceptable,

which can be observed in Table 2. When the AAP concen-

tration reaches 35 mol%, the rigidity of the backbone and

the hydrogen bonding interactions are enhanced, which

makes HNA/TA/AAP(35) polymers difficult to process.

The quality of the as-pressed HNA/TA/AAP(35)–Ref and

HNA/TA/AAP(35)–9 K films is poor.

Conclusions

We successfully demonstrated the synthesis of a new fam-

ily of all-aromatic esteramide-based LCPs with excellent

thermomechanical properties. The incorporation of pheny-

lethynyl groups suppresses the crystal-to-nematic (TK-N)

transition temperature and melt viscosities of the oligo-

mers. Rheology experiments showed that the phenylethy-

nyl end groups extended the melting processing window

significantly for the reactive oligomers with 20–30 mol%
amide-based monomer (AAP). All reactive oligomers dis-

played nematic mesophases, and in all cases, the nematic

order was maintained after cure. Cured nematic thermoset

of HNA/TA/AAP(20)–1 K exhibited outstanding thermal

stability and a high glass transition temperature (191�C),

which is increased by 48�C over the parent polymer HNA/

TA/AAP(20)–Ref. Preliminary results showed that LCP

films exhibit useful mechanical properties, that is, tensile

strength (77 MPa) and elongation at break (7.2%). The

chemistry presented herein will extend the thermal use

range of esteramide-based LCPs.
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