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Abstract

The drainage time of liquid-filled PET bottles can be greatly reduced by pre-rotating the bottle with a
certain angular velocity. Depending on the magnitude of the angular velocity, up to four different flow
regimes can be distinguished during the emptying of a bottle: bubble regime, transition regime, vortex
regime and the swirl regime. At zero or low pre-rotation, the flow is in the so-called bubble regime in
which the intermittent downward liquid flow is accompanied by an upward motion of irregularly shaped
air bubbles into the bottle. At sufficiently high pre-rotation, the picture is completely different. After
initial transient behaviour in which the flow is first in the bubble regime, the flow undergoes transition
towards a so-called vortex regime. This is characterized by regular downward motion of liquid along
the bottle wall in a free-surface vortex and accompanying upward motion of air through the nozzle core.
Finally, close to the end of the drainage process another transition towards a so-called swirl regime takes
place, in which the last bit of liquid swirls around in the bottle before being slowed down sufficiently
to exit the bottle through the nozzle opening. Dimensional analysis indicates that for a specific bottle
geometry the non-dimensional total drainage time td/td,0, where td,0 is a characteristic drainage time
scale for stationary low-viscosity fluids in the bubble regime, depends primarily on 3 non-dimensional
numbers: (1) the rotation number, Π (2) the Morton number, Mo, and (3) the Eötvos number, Eo. The
former represents the characteristic ratio of centrifugal to hydrostatic forces inside the liquid phase. The
objective of this study is to determine the relationship between the non-dimensional drainage time and
Π and gain insight in the influence of Eötvos and Morton onto this. To this purpose, a parametric CFD
study of a model PET bottle has been conducted and the results have been compared with previous
preliminary experiments performed in our group.

The numerical study is divided into three categories, each discussing the influence of one of the dimen-
sionless parameters. The influence of the Π-number was studied by altering the initial rotational velocity
of the bottle. It was found that at some critical Π-number, the drainage time was minimal. A further
increase beyond the critical Π-number resulted in a longer drainage time, due to the stronger centrifugal
force acting on the liquid layer. It was found through an analytical solution and verified with the nu-
merical results that the rate at which the Π-number grows in relation to the dimensionless drainage time
is to the power 3 for the laminar case and to the power 3/2 for the turbulent case. Below the critical
value, the flow is expected to remain in the so-called bubble regime, also increasing the drainage time.
Furthermore, the onset of the vortex regime was expected to occur at a constant value of Π. This was
also verified with the numerical results and a strong correlation was found between the onset and the
corresponding local Π-number. The influence of the Morton number is also discussed, where an increase
in the Morton number was realized with an increase in viscosity. It was found that the drainage time
got substantially reduced with an increase in viscosity. The effects of viscous dissipation resulted in a
bigger effective area and higher axial downward flow velocity. However, increasing the Morton number
excessively would result in the flow regime remaining in the bubble regime. Therefore, the critical Π-
number shifts depending on the different fluid compositions. When varying the Eötvos number, by both
changing the viscosity and the surface tension, it was found that the latter had negligible effect on the
generation of the air-core or the drainage time.

Keywords: air-core vortex, bubble regime, multi-phase numerical study, PET bottle, Computational
Fluid Dynamics, swirling flow
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1 Introduction

Vortex flows are not uncommon in nature and technology. A good example of this vortex flow is when
emptying a kitchen sink or a bathtub full of water. These so-called bathtub vortices may look innocent
on the outside, however the swirling flow of these vortices can cause a number of problems at hydraulic
intakes of mechanical or industrial equipment. For example, the vortex can decrease the pump or turbine
efficiency. The bathtub vortex generates a dimple in the free surface and sometimes this results in a
fully developed air core that grows into the hydraulic intake. This leads to a decrease in the maximum
flow rate into the intake resulting in a decrease in efficiency. Also due to the presence of the air core in
the vortex, floating matter, trash and dirty air may increase the risk of damage due to the extra moving
parts being dragged into the hydraulic devices. Typical examples where the bathtub vortices decrease
the efficiency are rocket fuel tanks [1] and power plant cooling systems [2]. Due to the complexity of this
phenomenon and the several issues stated above, it is important to study and analyze the formation and
evolution mechanism of the free surface vortex theoretically.

However, the air-core vortex can also be used to increase efficiencies in certain other industries. A good
example is a gravitational water vortex power plant, where due to the generated air-core vortex, energy
can be gained and turned into electricity. [3] Another example can be found in the soda industry where
numerous soda PET bottles have to be filled and emptied during the production process. Since the PET
bottles only have one opening, the pressure in the air-layer exhibits a transient behaviour, where the
downward liquid flow has to be accompanied by a simultaneous upward air flow into the bottle due to the
rising under-pressure at the top of the bottle. However, due to the hydrostatic force overpowering the
surface tension force at the interface near the bottle opening, the hydrostatic force divides the air stream
into multiple air bubbles. Therefore, this regime is defined as the bubble regime. A visualization of how
the bubble regime develops from the moment the bottle is opened is shown in figure 1. It is believed
that the pulsating behaviour of the bubble regime increases the drainage time significantly, resulting in
a decrease of the efficiency of the bottle emptying process.

(a) (b) (c) (d) (e) (f)

Figure 1: CFD results of the interface from the bubble regime where a time step of ∆t = 0.05 s is taken
between each picture. The starting time value in figure (a) is t = 0.05 s. The initial angular velocity of
the bottle is 50 rad/s. The fluid consists of 40% glycerol and 60% water.

One way to increase the emptying efficiency is by pre-rotating the bottle with a certain angular velocity.
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At sufficiently high pre-rotation, the flow undergoes transient behaviour, where the bubble regime tran-
sitions into a so-called vortex regime. This regime is characterized by a continuous downward liquid flow
along the wall in the form of an air-core vortex, while air entrains through the air-core into the bottle.
Due to the continuous liquid flow. an increase in the liquid flow rate is obtained, resulting in a shorter
drainage time. An example of the transition period can be seen in figure 2 a-c, and a visualization of a
fully developed vortex is depicted in 2 d.

(a) (b) (c) (d)

Figure 2: CFD results of the interface with an initial angular velocity of 50 rad/s. The fluid consists of
40% glycerol and 60% water. a)-c) liquid transitioning behaviour with ∆t = 0.05 s d) vortex regime at
t = 3 s.

To enhance the efficiency of the soda industry and study the flow behaviour of this vortex flow, a group
of bachelor students from the Delft University of Technology have performed experimental studies on
the draining time of a model PET bottle. A short summary of their findings can be found in appendix
A. By studying the effects of initial angular velocities and different viscosities, the minimal drainage
time was tried to be obtained. They found that for a water filled bottle, the drainage time for the
stationary bottle was around 20 seconds, whereas for the pre-rotated bottle, the minimized drainage
time was 7 seconds. Their conclusion was that the minimal outflow time was obtained when the initial
angular velocity would create a somewhat stammering vortex by keeping the angular velocity as low
as possible, but high enough to avoid the bubble regime. They also found that the viscosity of the
fluid had a significant influence on the generation of the vortex. This study will elaborate on their
results by performing a numerical investigation on this topic. A major advantage of CFD is that it
provides detailed information on the 3D and instantaneous flow. Furthermore, it is an excellent tool
for a parametric study of the influence of relevant flow parameters, recast in terms of non-dimensional
numbers, on the drainage time. From Buckingham-Pi theorem, three dimensionless parameters were
selected to study their influence on the non-dimensional drainage time, namely the (1) rotation number,
Π (2) Morton number, Mo (3) Eötvos number, Eo. The rotation number represents the characteristic
ratio between the centrifugal to the hydrostatic force on the liquid layer. The Morton number represents
the ratio between the viscous and surface tension forces and the Eötvos number is the ratio between the
buoyancy and surface tension forces. The non-dimensional drainage time is defined as the ratio between
the drainage time of the tested case and the emptying time of a stationary bottle. It is believed that the
non-dimensional drainage time depends primarily on the three non-dimensional numbers. By changing
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the initial angular velocity, viscosity and surface tension re-casted in these non-dimensional parameters,
it is believed that the minimal non-dimensional drainage time can be obtained.

This study is divided into six parts, where in chapter 2, a literature review is performed on existing
studies. Chapter 3 will focus on the numerical analysis and elaborate on certain simulation strategies
and computational methods. The results will be shown and discussed in chapter 4. In the fifth chapter,
the final conclusion will be drawn on how to minimize the overall drainage time of the bottle. In the
sixth chapter, recommendations will be given on how to continue on this study. The last chapter is the
appendix containing relevant elaborations on certain topics in this study.

Thesis scope: Aims and objectives

The aim of this study is to determine for which initial angular velocity the total drainage time of a
liquid-filled PET bottle is minimized. It is expected that the initial rotational velocity, fluid properties
such as surface tension and viscosity all have a big influence on the drainage time of the bottle. The
primary hypothesis of this study is that an optimal initial rotational velocity should exist, where
the velocity should be just high enough to create a fully developed air-core vortex. Initial
angular velocities beyond this magnitude will decrease the volumetric flow rate due to the lower available
through-flow area for the downward liquid flow in the nozzle accompanied by the increase of the rotational
velocity. Also, it is expected that for a bigger liquid through-flow area, less fluid will be effected by the
friction due to wall effects. The drainage time can also be reduced by altering the fluid properties. It is
believed that by increasing viscosity, the drainage time can be heavily decreased. This is due to viscous
dissipation reducing the centrifugal force and therefore enhancing the downward liquid velocity. Thus,
for this thesis, the main objective is to study the effects of the three different parameters through the
use of three dimensionless numbers.

The following are a list of the general thesis objectives:

1. Finding the optimal initial angular velocity to minimize the total drainage time.

2. Obtaining the relationship between the non-dimensional drainage time and Π.

3. Determining the influence of the Morton number on the drainage time.

4. Determining the influence of the Eötvos number on the drainage time.

By studying these four main objectives, it is believed that the minimal drainage time can be acquired-.
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2 Literature study

2.1 Drainage from a closed reservoir in absence of rotation

Since the PET bottle only has one opening, due to the closed end-wall at the top, the downward liquid
flow has to be accompanied by a simultaneous upward air flow into the bottle. This regime, called the
bubble regime, is characterized where large air bubbles with diameters of the order of the bottle neck
are generated periodically and rise into the bottle until it burst at the free surface at the top. Numerous
researchers have studied the motion of these bubbles in vertical pipes and free space analytically and
experimentally. Their findings will be discussed in this subsection of the literature study.

2.1.1 Dimensionless parameters

When looking at air bubbles, different dimensionless parameters can give good insight on for example
the shape and size of the bubble or on the terminal velocity for one single air bubble. The various
dimensionless groups are given as

Fr =
uT√
gDe

(1)

the Froude number, which is given as the ratio between the inertial and gravitational forces, where uT
is the terminal velocity and De the equivalent diameter of the bubble;

Mo =
| ρd − ρc | gµ4

c

ρ2
cγ

3
(2)

the Morton number, which represents the ratio between the viscous and surface tension forces where ρd
and ρc are the densities of the dispersed (bubbles) and the continuous (liquid) phase respectively, µc the
dynamic viscosity of the continuous phase and γ is the surface tension;

Eo =
| ρd − ρc | gD2

e

γ
(3)

the Eötvos number, which is the ratio between the buoyancy and surface tension forces;

ReT =
uTDe

νc
(4)

the terminal Reynolds number which displays the ratio between the inertial and viscous forces through
the terminal velocity of the bubble, where νc is the kinematic viscosity of the continuous phase.

Nf =

(
Eo3

Mo

)1/4

(5)

the ’dimensionless inverse viscosity’.[4] When surface tension is negligible (for Eo > 40) [5], then the
characteristics of the bubble are determined by the inertial and viscous forces. By combining the Eötvos
and Morton number to eliminate the surface tension force, the new dimensionless parameter depicted in
equation 5 can be derived. This dimensionless parameter is also present as the Galileo number (Ga = N2

f )
in literature.[6]

2.1.2 Rayleigh-Taylor instability

During the pre-rotating of the bottle, the lid at the bottle opening is still closed, resulting in a flat
interface at both sides of the lid. However, this changes when the lid is opened. Since the heavier fluid is
on top, the initial flat interface undergoes a number of deformations before the bubbles are formed. The
instability that occurs at the interface between a dense fluid on top supported by a lighter fluid under
gravity is called the Rayleigh-Taylor instability. A visual representation of the instability is depicted in
figure 24a.

There is a complex evolution associated with the initial flat unstable interface. The growth of the
instability consists of four different stages:

16 Minimization of drainage time of filled PET bottle with initial rotation



2.1 Drainage from a closed reservoir in absence of rotation

1. In the first stage, the perturbation amplitudes of the interface are small compared to the wavelength
of the interface. The equations of motion can be analyzed using the linearized form of the equations
of motion, resulting in the amplitude perturbations of the wavelength to grow exponentially with
time. The perturbation retains its sinusoidal shape. How the linearized form of the equations of
motion is obtained can be found through the works of Sharp, who provides a clear and detailed
description of how he acquired the linearized form. [7]

2. During the second stage, non-linear effects start to appear and the beginning of the formation of
the bubbles can be observed. The development is strongly influenced by the density ratio, namely
the Atwood number A = ρH−ρL

ρH+ρL
, where the subscripts H stands for the heavy and L for the lighter

fluid. If A ≤ 1, the light fluid moves into the heavy fluid layer in the form of bubbles. If A ≤ 0, the
heavy fluid starts to grow into the light fluid in the form of mushroom-shaped spikes. An overview
of the different attempts to model the nonlinear growth of spikes and bubbles is also provided and
discussed by Sharp. [7]

3. The nonlinear terms can not longer be ignored in the third stage. The bubbles starts to interact
and merge with each other, resulting in large bubbles that move faster into the heavier fluid.

4. In the final stage, a region of turbulent mixing of the two fluids has been developed.

Numerous factors influence the development of the Rayleigh-Taylor instability. Examples include surface
tension, viscosity and the prior discussed Atwood number.

2.1.3 Bubble shape

After the initial interface is deformed into the first shaped bubble, the terminal rise velocity of the
bubble, the bubble shape and the trajectory of the bubble in free space are all dependent on the fluid
properties. Clift made a shape regime map based on the characteristics for bubbles and drops in un-
hindered gravitational liquids. [8] This shape regime map is displayed in figure 3 and is only applicable
when the density and viscosity ratios are small, such as air bubbles in water. The map is dependent on
three dimensionless parameters, the Morton, Eötvos and terminal Reynolds number, where these three
dimensionless parameters each describe a bubble characteristic. The Morton number is used to describe
the liquid phase properties, the Eötvos number measures the importance of deformation of the bubble
due to the gravitational force on the surface tension and the terminal Reynolds number characterizes
the terminal rise velocity of the bubble. Since the Reynolds number is the only number that contains
the terminal rise velocity, figure 3 can also be used to estimate the terminal rise velocity in free space.
However, more accurate correlations are usually available and will be discussed later in this literature
review. The figure from Clift is mainly used to distinguish the different bubble shapes into their own
regimes. Since liquid is flowing out of the bottle, while air is entraining into the bottle, it was found by
Martin et al. that the bubble shape will become asymmetrical.[9]
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2.1 Drainage from a closed reservoir in absence of rotation

Figure 3: Behaviour of the bubble shape as a function of Eo, Mo and ReT when ρd/ρc and µd/µc are
small.[8]

2.1.4 Terminal rise velocity of Taylor bubbles

Figure 3 describes the air bubble in an unhindered liquid environment. However, in this study it is
expected that the geometry of the PET bottle opening does influence the initial shape of the bubble and
also the rise velocity. Thus, looking at bubble entrainment, where wall effects are considered, should give
a better insight on the behaviour of the bubbles in the bubble regime than the figure designed by Clift.

When assuming the case for a Taylor bubble, that rises in a stagnant ideal fluid in a vertical tube, the
terminal rise velocity of the bubble can be determined with the dimensionless Froude number shown
equation 1. Theoretical and experimental results have shown that the dimensionless Froude number has
a constant value when determining the terminal velocity of the bubble. Dumitrescu theoretically derived
that this constant value was equal to Fr = 0.351 and experimental data provided for cylindrical air
bubbles that the constant value was Fr = 0.346. [10] Davies and Taylor estimated that the value of the
dimensionless parameter to be Fr = 0.328 and proved it with their experimental data. [11] White and
Beardmore validated the results of Dumitrescu. However, they found in general that the Froude number
is a function of the dimensionless inverse viscosity Nf and the Eötvos number. [12] Viana found that
when surface tension is negligible, thus for Eo > 40, the Froude number is only dependent on the inverse
viscosity. The Froude number is then related to the inverse viscosity number as: [5]

Fr = 0.34

[
1 +

(
31.08

Nf

)1.45]−0.71

(6)

The fluid behaves as an ideal fluid when Eo > 70 [12] , which results that the dimensionless Froude
number is equal to Fr = 0.345. This can also be observed in figure 4. For a value of above 70, the
Froude number does not change. From figure 4, it can also be seen that the zero velocity criteria for the
bubble has been reached when Eo ≤ 4.
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2.1 Drainage from a closed reservoir in absence of rotation

Figure 4: Results for cylindrical air bubbles rising in water and dilute solutions contained in vertical
pipes, depending on the Froude and Eötvos number[12]

The critical value of 4 can be theoretically explained with a simple pressure balance analysis. When
the terminal rise velocity of the bubble goes to zero, it can be assumed that the bubble will get in
contact with the wall. When considering the wall to be hydrophylic, the top bubble interface will act as
a meniscus with a maximum curvature of 2

d/2 , where d is the diameter of the glass pipe, and the bottom

bubble interface act as a flat cylinder with a minimum curvature of 1
d/2 . This means that the difference

in Laplace pressure has to be balanced by the hydrostatic pressure over a height of d
2 :

ρg
d

2
∼ 2γ

d

From this simple analysis, it can be concluded that the zero velocity criteria is satisfied when it is in the
order of magnitude Eo ≤ 4.

When the viscous, inertial and surface tension forces all are significant, it takes three different independent
dimensionless groups to obtain a correlation to determine the rise velocity. A general correlation for the
terminal rise velocity for the bubble was found by White and Beardmore[12] and is given in figure 5,
where the figure depends on the Froude, Eötvos and Morton number. Since only the Froude number
contains the terminal rise velocity term, whereas the other two dimensionless parameters only contain
fluid properties, it is straightforward on how to determine the terminal rise velocity through figure 5.
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Figure 5: General correlation for the rise velocity of cylindrical air bubbles in liquids in vertical tubes[12]

White and Beardmore also specified different regimes for the different values of the three dimensionless
parameters. These are depicted in figure 6, where the seven regimes are based off on the conditions
under which the various retarding forces may be neglected. For example, the rising velocity of the Taylor
bubble is independent of the viscous forces in region 2, whereas in region 3 the velocity is independent
of the surface tension forces.

Figure 6: Crossplot of data, showing regions in which the effect of certain parameters becomes unimpor-
tant [12]

The graphs and equations described above are valid in stagnant fluids. However, in the case of a draining
bottle, the fluid is not stagnant, due to the fluid flowing out of the bottle. Thus, an extra term should
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be added to account for the difference in terminal rise velocity. The terminal rise velocity in stagnant
fluid uT,0 can be rewritten through the Froude number as

uT,0 = k
√
gDe (7)

where k is the critical value of the Froude number. For a Taylor bubble rising in a moving liquid, the
rising bubble velocity uT can be determined as a function of its rise velocity in a stagnant fluid and the
contribution due to the mean liquid velocity Ul: [13]

uT = Cul + uT,0 (8)

The value of constant C displayed in equation 8 depends on the velocity profile of the liquid and the
bubble and can be seen as the ratio between the mean and maximum velocity of the profile. For turbulent
flows is C ∼= 1.2, whereas for laminar flows C ∼= 2 is valid. [14]

2.1.5 Flooding, slugging and air-entrainment into bottle

Since research on the drainage time for the specific case of a filled bottle was very scarce, this section
will elaborate on most of the research that was found on this particular topic.

A specific experimental study has been performed to analyze the fluidics during the emptying of a bottle.
This was done by Rohilla and Das [15], where they tried to visualize the fluid dynamics of bubbles entering
the bottle and liquid flowing out of the bottle. They also tried to find the optimal drainage time with
absence of rotation by altering the viscosity and the inclination of the bottle.

They found that the bottle emptying dynamics could be sorted into five stages on the basis of their
distinct flow features, which are discussed below.
Stage 1, Air entry into the bottle: When the bottle is suddenly opened, the liquid inside the bottle starts
to flow out, while simultaneously the air wants to penetrate into the bottle in the form of a gaseous
finger. This results in the formation of an annular falling liquid film around the rising air bubble. When
the bottle is straight-up, the bubble is symmetric, whereas the gaseous finger is asymmetric when the
bottle is inclined. The complete establishment of the bubble marks the end of stage 1.
Stage 2, Bubble growth in the conical section: The bubble starts to expand radially as well as axially
when entering the conical section of the bottle due to the continuously feed of the air outside. The
annular film starts to collapse, which causes the air bubble to pinch off from the outside air.
Stage 3, Post pinch-off bubble: The exact location of the pinch-off is different for different viscosities of
fluids. For water this is outside of the bottle, however for more viscous fluids such as glycerol, the pinch
off occurs in the bottle opening. The collapse of the air bubble is driven by the hydrostatic pressure.
Wrapping up of the air bubble in the bottle marks the end of stage 3.
Stage 4, Journey of the bottom end of the bubble: Wrapping the bubble up results in a streamlined
discharge of the liquid. During this stage, only liquid is present at the bottle opening. Towards the end
of this stage, the discharge of the liquid gets interrupted again by the rushing of outside air into the
bottle. This results in the thinning of the liquid at the bottle mouth.
Final stage, Bubble evolution in the conical section: The last stage involves the formation, growth and
disintegration of the ejector jet inside the pinched-off bottle. The ejector jet gets produced due to the
collision of capillary waves in the collapsing bubble rear end. This ejector jet collides with the top of the
bubbles, accelerating the free rising bubble inside the bottle. The leading bubble also effects the growth
of the trailing bubble due to the oscillation triggered by the collision of the ejector jet.

The phenonema described above where the gas phase is flowing upwards and the liquid phase downwards
is often described in the literature as flooding [16]. Slugging is for the specific case characterized by the
presence of large bullet-shaped bubbles. Davies and Taylor [17] derived an equation for tubes which are
of diameter ≥ 10 mm to determine the rising velocity of these gas slugs Up:

Up = 0.35

(
gd(ρl − ρg)

ρl

)1/2

(9)
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Also different experiments were tested by Whalley [18] to see which parameters had influence on the
drainage time. He found that using hot water had a significant effect on the emptying time: the hotter
the water, the lower the emptying would be. Extending the bottle neck also resulted in a decrease of
the emptying time. By inclining the bottle, Whalley found that the emptying time could be shortened,
where the minimum emptying time occured at an angle of about 30◦-45◦to the vertical axis, whereas
Rohilla and Das [15] found that the minimum emptying time had an asymptote at around 20◦ from
the vertical axis. Whalley also observed that if he initialized the fluid with a certain swirl velocity, the
emptying times were greatly affected. However no attempt was made by him to scientifically test the
effect of swirl and publish the results.

Also, a general scaling law for the emptying time td,0 of cylindrical bottles with initial liquid level h and
diameter of the bottle db was found and derived by Clanet and Searby [19]:

td,0 ' 3.0
h√
gdb

d∗−5/2 (10)

where d∗ = dh/db is the normalized neck diameter, with dh the bottle opening diameter. With this law,
Clanet and Searby emphasized the fact that the geometrical ratio of the bottle neck diameter to the
bottle diameter d∗ played an essential role in the emptying dynamics of the bubble regime. How the
emptying time in equation 10 is derived, can be explained with the volumetric flow rate Q in the bottle
opening and the terminal rise velocity:

Qliquid = Qair =
1

4
πuT d

2
h (11)

where uT is the terminal rise velocity of a Taylor bubble, defined in equation 7, and dh the bottle opening
diameter. In the limit of the bubble diameter d = dh, it is found by White and Beardmore [12] that
k = 0.34, resulting in uT = 0.34

√
gdh. Since the volume of the liquid in the top bottle is defined as

Vbottle = Qliquidtd,0, where td,0 is the emptying time of the bottle without rotation, the derivation of the
emptying time is straightforward:

td,0 =
Vbottle
Qliquid

td,0 =
1
4πd

2
bh

1
4πuT d

2
h

=
h

uT

(
db
dh

)2

=
1

0.34

h√
gdh

(
db
dh

)2

' 3.0
h√
gdb

(
dh
db

)−5/2

(12)

Equation 10 is a key result for this study, since the non-dimensional total drainage time t∗ is the ratio
between the drainage time and the drainage time for a stationary case (equation 10). In equation 10,
the value of k is specifically for an air-water system. By testing the Morton and Eötvos numbers, the
fluid properties will be altered, so the value of k and thus the value of the stationary drainage time will
also change.

2.2 Drainage from an open reservoir in presence of rotation

After the review on the bubble regime, this subsection will discuss the effects of rotation on the fluid for
an open reservoir. Many research efforts have been done in the literature to understand and describe
the free-surface vortex in a rotating open reservoir. As a result of a lack of under-pressure generation in
open containers, bathtub vortices will appear at relatively small angular velocities compared to closed
containers.

2.2.1 Pressure behaviour in the air-layer

In the introduction of this subsection, it was stated that an under-pressure in the bottle prevents the
liquid feed to flow continuously out of the bottle. Instead, a pulsating behaviour is noticed consisting of
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2.2 Drainage from an open reservoir in presence of rotation

air bubbles that are entrained into the bottle. Before the free-surface vortex will be elaborated in this
section, first the importance and the difference between an open reservoir and closed reservoir has to be
discussed.

An open reservoir is defined as a geometry where a drain port is realized at the bottom and no end wall
is present at the top. Therefore the pressure at the top and at the bottom is equal to the atmospheric
pressure. This is illustrated in figure 7a, where at position 1 and 4, the pressure is equal the atmospheric
pressure. Therefore, no pressure difference is present to entrain air into the geometry, resulting in an
undisturbed liquid flow out of the geometry. However, for an closed reservoir, only a drain port is present
at the bottom of the geometry. From a simple pressure analysis, the pressure difference can already be
obtained. For the case with a closed geometry, the pressure difference between point 1 and 4 depicted
in figure 7b is defined as:

p1 = p2 = patm (zero curvature of the interface)

p2 = p3 + ρgh

p3 = p4 (zero curvature of the interface)

patm = ρgh+ p4

(13)

From the calculation in 13, it can be observed that the pressure in the air layer at the top of the bottle
is lower than atmospheric pressure. This results in the under-pressure sucking the air-bubbles into the
bottle, preventing the continuous liquid feed and the formation of the air-core vortex for low angular
velocities.

(a) (b)

Figure 7: Simplified view of the top bottle a) open reservoir b) closed reservoir

2.2.2 Anatomy of the free-surface vortex

Most of the previous studies investigating the free-surface vortex have had the same experimental setup
where a fluid flow is initialized by a rotating container.[20] The drain hole at the bottom of the container
will be opened after a certain time period, where the free-surface vortex will be generated and the outflow
is driven by gravity. In literature, the free-surface vortex for low angular velocities is also sometimes
defined as bathtub vortex. The evolution of the bathtub vortex is dependent on the rotational velocity.
A small dimple on the free surface will appear with small rotation rate. By increasing the rotational
velocity will the surface depression increase and a needle-like shaped dimple will appear growing into the
drain hole. By further increasing the angular velocity, the dimple (air-core) will fully stretch into the
drain hole. This is then defined as an air-core vortex.

Experimental studies have shown that the flow structure of the bathtub vortex is surprisingly complex.
However, the flow can still be divided into three general regions. In the interior of the fluid, far away from
the boundaries, the flow has no variation in the direction of the rotation vector. In the case of the bathtub
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vortex, the vertical direction. This is explained through the Taylor-Proudman theorem, that states that
in a steady, inviscid, homogeneous rotating flow, the rotating flow is purely two-dimensional and thus
behaves like a solid body rotation. This region, called the bulk flow, is balanced between the centrifugal
force and pressure gradient, which is called the geophysical balance. More about the centrifugal force
and the Taylor-Proudman theorem will be discussed in chapter 2.2.2.1 and chapter 2.2.2.2, respectively.
Near the wall regions where the centrifugal and pressure gradient can not be balanced by each other,
different shear layers are being formed on the bottom and on the sides of the container. In these layers, a
balance between the centrifugal and viscous forces is noticed. In the bottom boundary layer it is noticed
through experimental visualization that the fluid spirals inwards. Close to the drain hole, a large part
of the fluid is directed upwards and goes down with the rest of the core, while the rest of the fluid goes
directly down the drain. This phenomenon is called Ekman pumping. [21]

2.2.2.1 Centrifugal and Coriolis force

When looking in the theory of the bathtub vortex, the force balance inside the fluid is one of the important
aspects in understanding the vortex phenomena. It is important to know when working with rotation
and vorticity, in what kind of frame of reference the fluid flow is described in. Newton’s laws of motion
describe the motion of an particle or object in an inertial frame of reference. However, a proper analysis
of rotating fluid flows is more convenient when it is carried out in a co-rotating frame of reference.
although additional terms are needed to fully describe the Navier-Stokes equations. These forces are
the centrifugal and the Coriolis force and are called pseudo or fictitious forces [22], as they do not arise
from any physical interaction between two objects but rather from the acceleration of the non-inertial
frame itself. The Coriolis force acts perpendicular to the axis of rotation, while the centrifugal force acts
outwards in the radial direction.

The relation between the inertial and rotating frame of reference (denoted as subscript I and R respec-
tively) is denoted below (

dr

dt

)
I

=

(
dr

dt

)
R

+ ΩΩΩ× r (14)

where the vector notations are displayed as bold symbols, the rotating frame of reference is rotating with
an angular velocity of ΩΩΩ and the position vector is defined as r. Equation 14 can also be described as

uI = uR + ΩΩΩ× r (15)

The full Navier-Stokes equation in the rotating frame of reference is described as

∂u

∂t
+ (u · ∇∇∇)u + 2ΩΩΩ× u = −1

ρ
∇∇∇P + ν∇∇∇2u (16)

where P = p− 1
2ρΩ2r2 is the reduced pressure at a certain distance r from the rotating axis and 2ΩΩΩ×u

is the Coriolis acceleration.

It is commonly believed that the direction of the bathtub vortex is influenced by the Coriolis force due
to the rotation of the earth. This may be indeed true for large-scale geophysical flows. However, in the
case of small-scale phenomena such as the bathtub vortex, this is not always valid. Shapiro conducted
experiments to investigate the Coriolis effect on the bathtub vortex and found indeed that only in
extremely controlled conditions the counter-clockwise rotation during water draining was noticed.[23] He
stated that the Coriolis effect was negligible due to the other effects simply being larger, such as initial
fluid motion and non-uniformity of temperature inside the fluid. Tyvand and Haugen also found that
the rotation of the earth cannot have a significant influence on the bathtub vortex.[24] They stated that
the time scale of the generation of the bathtub vortex is much shorter than the time scale of the earth’s
rotation. The smallest net motion should already determine the direction of the vortex. In contrast to
the Coriolis force does the centrifugal force play a key role in the generation of the bathtub vortex. It is
expect that the centrifugal force should balance the radial pressure gradient in the liquid layer.
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2.2.2.2 Taylor-Proudman theorem

At the beginning of this section, the Taylor-Proudman already got introduced. The Taylor-Proudman
theorem states that for a steady, rotating, inviscid, homogeneous flow, the fluid velocity will be uniform
along the axis of the rotation vector. To make the Taylor-Proudman theorem valid, the Coriolis term has
to be larger than the non-linear and viscous terms (far from the wall) for rapidly rotating flows, which
means that the Rossby number has to be sufficiently small (U � ΩL).[25] Under these conditions, the
momentum equation reads

2Ω× u = −∇p
ρ

(17)

By taking the curl on both sides,the following is obtained

∇× (Ω× u) = 0 (18)

and by simple mathematical manipulation, assuming that the rotational velocity Ω is constant and by
using the continuity equation (∇ · u = 0), the following is obtained:

Ω · ∇u = 0 (19)

Ωx
∂u

∂x
+ Ωy

∂u

∂y
+ Ωz

∂u

∂z
(20)

Now choose a coordinate system where the rotation of axis of the vortex is only around one single axis,
for example the z-axis. Thus, where Ωx = Ωy = 0, we obtain that

Ωz
∂u

∂z
= 0 (21)

which means that the velocity field does not vary in the z-direction, if Ωz 6= 0. Thus, the Taylor-
Proudman theorem states that for the geostrophical bulk velocity in the bathtub vortex, the fluid flow
will be independent of the vertical axis and that the fluid flow will behave as a solid body rotation.

2.2.3 Shear layers

In the Taylor-Proudman theorem, it was assumed that the fluid flow was inviscid and that solid body
rotation should be realized everywhere in the rotating container. However, this changes in the case when
the viscosity can not be neglected. When a fluid passes over a solid boundary, a shear layer will develop
due to the no-slip condition. However, the relation for the shear layers are different for a rotating flow
and will be discussed in this subsection.

2.2.3.1 Ekman layer

The Ekman layer has been a familiar concept in geostrophysics and the theories by Ekman can be applied
on geostrophical currents, where the viscous forces start to play an important role. The Ekman layer is
known to play an important role in circular vortices such as the bathtub vortex, where the Ekman layer
is one of the boundary layers in the rotating systems. These layers will start to develop on the bottom
and sometimes on the top of the cylinder if the cylinder is fully filled.

To determine how high the thickness of the Ekman boundary layer is, an order of estimate is done where
the friction force is assumed to be in the same order as the inertial force in the Ekman layer:

ν

Ωδ2
∼ 1 (22)

which leads to the boundary layer thickness δ:

δ ∼
√
ν

Ω
(23)
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In a typical rotating tank experiment with water as the rotating fluid, where ν = 10−6 m2s−1, Ω = 1 s−1,
the Ekman layer thickness is in the order of 1 mm. As can be seen from equation 23, the depth scale
of the Ekman layer in rotating fluids can be characterized by a fixed thickness. For equation 23 to be
valid to estimate the boundary Ekman layer, a few conditions have to be satisfied.[26] First of all, the
fluid is assumed to be bounded below by a solid surface. Also, the Rossby number has to be assumed
relatively small, so that the motion will behave as a solid body rotation. Another condition that has to
be applied, is that the initial height of the fluid is sufficiently large. This means that the Ekman number
is also relatively small. The Rossby and Ekman number can be found in equation 32. Also, no excessive
perturbations or oscillations should be present in the vortex flow. If all these conditions are applicable,
equation 23 is valid to describe the Ekman boundary layer.

Next to the boundary thickness of the Ekman layer is the behaviour of the fluid velocity in the Ekman
layer also important to mention. It is considered that the fluid velocity in the Ekman layer is only a
function of the z-coordinate in the Cartesian coordinate system.[27] When considering a uniform flow
in one direction above the Ekman layer, such that uG = (u, 0, 0), then as z increases from zero to the
top of the Ekman layer δ, the velocity profile in the Ekman layer will behave as a spiral, as depicted in
figure 8.

Figure 8: Ekman layers (Ω > 0). (a) The velocity profile u(z). (b) The Ekman spiral projection on the
(x, y)-plane. [27]

To understand why this Ekman spiral exists, the following simple model is used, where the velocity
vector is described in cylindrical coordinates (r, θ, z). Consider a viscous fluid in a rotating cylinder with
kinematic viscosity ν and with a uniform velocity uG = (0, vG, 0) above the Ekman layer (z > δ). The
fluid velocity in the Ekman layer is independent of θ and is defined as u = (u(r, z), v(r, z), 0). By solving
the Navier-Stokes equations and applying the linear Ekman theory in the Ekman layer, the following is
obtained

− 2Ωv =
∂

∂r

(
p

ρ

)
+ ν

d2u

dz2
(24)

− 2Ωu = ν
d2v

dz2
(25)

0 =
∂

∂z

(
p

ρ

)
(26)

The linear Ekman theory is only applicable in the region adjacent to the central core region. In the
central core region, the non-linear terms must be included to model the bottom boundary layer close
to the drain hole.[28] Since it is assumed that the vertical velocities are negligible, it follows from the
axial Navier-Stokes equation 26 that the pressure is independent in the z-direction and thus the pressure
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gradient in the radial direction is equal in the bulk flow as in the Ekman layer. In the geostrophic
bulk flow will the centrifugal force be balanced by the radial pressure gradient. However, in the Ekman
layer can the centrifugal force not be balanced by the pressure gradient due to the extra viscous term
in equations (24) and (25). Thus, radial inflow will happen in the Ekman layer due to the inbalance of
the weaker centrifugal acceleration. With the boundary conditions u(r, z) = v(r, z) = 0 at z = 0 and for
z →∞ u(r, z)→ 0 and v(r, z)→ vG the velocity profile in the Ekman layer can be described as [28]:

u(r, z) = −vGe−z/δsin(z/δ) (27)

v(r, z) = vG(1− e−z/δcos(z/δ)) (28)

where δ is the height of the Ekman layer depicted in equation 23. For a detailed description on how
these equations were obtained, the works by Andersen et al. is recommended.[28]

Another phenomena that should be mentioned is Ekman pumping. Lewellen found that the fluid flow
right above the Ekman layer spirals upward around the axis of the direction of the vorticity close to the
drain-hole. [29] A visualization with dye was done by Chen et al. and displayed in figure 9. [30] The
mechanism which creates this upflow is called Ekman pumping. To explain the rise of velocity in the
z-direction, the continuity equation in cylindrical coordinates will be used.

1

r

∂(ru)

∂r
+
∂w

∂z
= 0 (29)

By using the boundary condition where w(z) = 0 at z = 0, it follows that [28]

w(r, z) =
δ

2r

d(rvG)

dr

(
1− e−z/d(sin(z/δ) + cos(z/δ))

)
(30)

In the bulk of the fluid above the Ekman layer, thus in the limit of large z, the vertical velocity component
wG is defined as

wG =
δ

2
ωz (31)

Figure 9: A sequence of flow visualizations for different time periods. The Ekman pumping is visualized
with the yellow dye.[30]

This means that in the linear Ekman theory, the vorticity will give a rise to Ekman pumping. In the
bathtub vortex, this will cause a weak upflow close to the central region, whereas the linear Ekman
theory can not be applied in the central region where downflow is observed into the drain hole. The
validity of the linear Ekman theory is only when the non-linear terms in the Navier-Stokes are negligible
and the background rotation is weak, thus when the Rossby and the Ekman numbers are small. The
local Rossby and Ekman numbers [31] are defined as:

Ro =
ω − Ω

Ω
Ek =

ν

2ωr2
(32)
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where ω is the local angular velocity of the fluid and Ω is the vorticity of the rotating cylinder and r the
radius. Thus for non-linear instabilities to occur, the Rossby and Ekman numbers must be sufficiently
large. Looking at equation 32, this is only valid when r is small.

In the final phase, right before the last part of the fluid is getting discharged, all fluid moves through the
Ekman layer at the bottom, and accurate observations have shown that the direction of the flow can be
reversed. [32]

2.2.3.2 Stewartson layer

Besides the horizontal Ekman shear layers, also vertical shear layers appear in rotating fluids. Stewart-
son was the first who could clearly describe the vertical shear layers in rotating fluids for low Rossby
numbers.[33] He showed that shear layers would develop between two coaxial rotating planes where the
center disks would rotate with a slightly different angular velocity than the rotating planes. Experimen-
tal investigation has also been done on a rotating disk with a finite radius placed in a cylindrical tank,
where the cylindrical tank would rotate with a different angular velocity. They also showed the existence
of the Stewartson layer.[34]

Stewartson found that the shear layer near the vertical wall is divided into two different sub layers. The

main part has a thickness of O(R
−1/4
s ) called the 1/4-layer, and the inner boundary layer located between

the wall and the 1/4-layer, called the 1/3-layer whose thickness is O(R
−1/3
s ), where Rs = Ωr2

ν with r the
radius and Ω the angular velocity of the cylinder.

Hide suggested that the shear layer was dependent on the kinematic viscosity ν, the rotational velocity
Ω and the initial height of the fluid H.[35] He derived an exact relation where the thickness of the
Stewartson layer could be calculated as

δ = 3H(1−2q)

(
ν√
2Ω

)q
(33)

with q = 1/3 for the 1/3-layer and q = 1/4 for the 1/4-layer, respectively.

Moore and Saffman [36] had a similar relation for the Stewartson layer. Their relation depended on the
radius of the disk r and the Ekman number Ek:

δ1/3 = r

(
H

r

)1/3

Ek1/3

δ1/4 = r

(
H

r

)1/2

Ek1/4

(34)

When considering a fluid flow with a free surface and thus only one Ekman boundary layer at the bottom,
Andersen et al. found that the fluid flowing radially towards the wall due to the centrifugal force would be
transported through the Stewartson layer downwards to the bottom Ekman layer.[28] The fluid was then
transported radially inwards to the drain hole and discharged out of the rotating container. However,
the vertical transport of the fluid is mainly done through the 1/4-layer, whereas the 1/3-layer is passive
and no fluid enters the Ekman layer through the 1/3-layer.

2.2.4 Transient process of the bathtub vortex

The important flow phenomena and instabilities have been discussed in the previous subsections. Now it
is important to understand how all the different forces and instabilities interact with each other during
the draining process of the bathtub vortex.

In the case of a rotating cylinder with an open reservoir, only a small initial rotational velocity is needed
to develop the bathtub vortex. This means that in this case the Rossby number is small. For very small
Rossby and Ekman numbers, the inertial forces are small, and a geophysical balance in the bulk flow
is maintained where the centrifugal force and pressure gradient force are in balance. Also, the friction
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forces are restricted to the boundary layers along the wall. Thus, Ro � 1 and Ek � 1, the vessel can
be divided into three sub-regions, namely the Ekman layers at the bottom end-wall for a partial filled
container, the Stewartson layer at the side wall, and the geostrophic bulk / interior fluid.

2.2.4.1 Spin-up

When the cylindrical container starts to spin and the valve at the drain port is still closed, a small thin
shear layer of fluid forms around the walls of the cylinder. This shear layer will be influenced after a few
rotations by the walls and the Ekman and Stewartson layers will start to develop. The timescale when
the Ekman layer starts to form on the horizontal surface is when the Ekman spin-up time tEk = O(1).
The definition of the Ekman spin-up time is defined in equation 35. For the Stewartson layer, there
are two basic stages in the transient development. When the time tEk satisfies 1 � tEk � Ek−1/3 an
inviscid geostrophic stage occurs and a viscous stage is noticed until tEk = O(Ek−1/3).[37] When the
viscous forces are no longer negligible, thus when tEk > O(Ek−1/3), the first Stewartson layer starts to
form with a thickness of O(Re−1/3). After some time will more parts of the fluid be influenced by the
boundary layers and the rotating walls. This will in the end result in a solid-body rotation of the fluid.
This transient process is called the spin-up.

However, to determine the exact moment when solid body rotation is achieved, two time-scales are
important, namely the Ekman spin-up time and the radial diffusion time. The Ekman spin-up time
depends upon the geometrical, kinematical and fluid parameters where the Ekman spin-up time is defined
as:

tEk ∼ Ek−1Ω−1 (35)

The radial diffusion time depends on the parameters of the diffusion equation:

tdif ∼
a2

ν
(36)

When defining the dimensionless time parameter as α0 = tEk
tdif

, Watkins and Hussey [38] found that

only for the case of α0 > 1, the diffusive time scale could accurately estimate the spin-up time. For
the other cases, the solid body rotation is established much quicker, in the order of the Ekman spin-
up time.[39] This is also the case for non-linear spin-up, thus for solid body rotations with big angular
velocity differences. An example of non-linear spin-up is the spin-up of a stationary cylinder to a constant
angular velocity, such as our case.

It is expected that during spin-up for a partial filled closed cylinder, the free surface at the top will
deform in the form of a parabolic shape. A good visual representation is done experimentally by Basta
et al. [40] and displayed in figure 10.
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Figure 10: Experiment to visualize the parabolic free surface[40]

The shape of the surface can be explained with the Navier-Stokes equations. Consider a cylinder rotating
around the z-axis, which is partly filled with liquid, the momentum equations are given as:

∂P

∂r
= ρω2r

∂P

∂θ
= 0

∂P

∂z
= −ρg (37)

By solving the equations given above, the following is obtained;

ρω2rdr = −ρgdz

z(r) =
ω2

2g
r2 + h0

(38)

where r = 0 in the center and r = R at the wall, h0 the height of the surface in the center and z(r) is
the height of the surface at a given radius. When looking at equation 37, it can be concluded that the
height increases with a power of two and thus the surface indeed behaves as a parabola.

2.2.4.2 Drainage process (Spin-down)

When removing or opening the valve at the opening of the bottle, the fluid will start to flow out of the
bottle, marking the start of the drainage process. After the draining starts, a dip is generated in the
center of the free surface. The surface dip will be immediately pulled downwards and the depth of the
surface dip is dependent on the rotational velocity of the liquid layer.

During the drainage process, the flow paths can be categorized into five different regions. (1) The first
region is the fluid that flows over the bottom plate directly towards the drain hole through the bottom
Ekman layer. (2) The second region is the fluid above the bottom Ekman layer that is subjected to
the upward Ekman pumping, before it turns downwards to the drain hole. (3) The third region is the
geostrophic bulk that is behaving as a solid body rotation. (4) The fourth region is the center vortex with
the dimple and (5) the last region is the fluid next to the wall of the cylinder, which is the Stewartson
layer. During the draining process will next to the first Stewartson layer also the second Stewartson
boundary layer be formed with the thickness of O(R−1/4).[37] The different regions are depicted in
figure 11 to give a good visualization of the overall drainage process.
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Figure 11: The characteristic flow regions of the bathtub vortex.[28]

2.2.5 Air-core vortex

It was found that for an open container, for a small rotation rate, a small dimple will appear on the free
surface. The surface depression will increase by increasing this rotation rate until a needle-like shaped
vortex will appear. At even higher values of the rotational velocity, air bubbles will detach from the tip
due to vertical oscillations. When the rotation rate is increased further, the downward drag will become
sufficiently large and overcome the buoyancy of the bubbles formed by the capillary instability and drag
the bubbles downward. The air-filled core will then extend all the way down through the drain hole and
a fully developed air-core vortex can be observed.[28]

A good visualization of the draining process with a fully-developed air-core is done by Son et al. depicted
in figure 12.[41] 3D numerical results of the bathtub vortex were obtained, where the cylinder was
initialized with a certain rotational velocity, until a steady-state was reached. At this point, the cylinder
is stopped and the drain port at the bottom is opened.

Figure 12: 3D numerical results of the progression of the free surface draining.[41]

When the air-core is fully developed, the under-pressure at the top of the bottle will disappear and
atmospheric pressure is expected throughout the air-phase in the bottle. A good visualization of the
pressure equality is done by Khoshkalam et al. and depicted in figure 13.[42] This is a key finding for this
study, since the minimization of the drainage time is based on the pressure equality in the gas layer. As
can be seen from figure 13, the pressure will be higher in the fluid at the bottom of the cylinder due to
hydrostatic pressure, whereas the pressure will be uniform throughout the air phase. It is then expected
that no difference will be noticed between the air-core vortices in the same geometry where the only
difference would be the open and closed lid at the top of the geometry. Sohn et al. did experimental and
numerical research for swirl and non-swirl flows with a drain port at the bottom and an open lid at the
top (thus no under-pressure present). They found that in the case of non-swirl motion, the drain flow
rate would decrease linearly. However, by initializing with a certain angular velocity, they obtained that
the drain flow rate would decrease significantly due to the generation of the air-core vortex pushing the
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liquid to the side, preventing the liquid from flowing into the drain port.[43] Other instances of research
have also shown that a fully developed air-core vortex would decrease the total outflow flux due to the
narrowing of the discharging area.[20, 28, 41] Thus, in the case of the closed geometry, the air-core vortex
should be generated to avoid the bubble regime, but the air entrainment should be as low as possible
and the discharging area as big as possible to reach the maximum outflow and minimal drainage time.
Also, it is expected that for a bigger liquid discharging area, the total effective friction due to wall effects
will become smaller.

Figure 13: Pressure contour for a pre-rotated bathtub vortex in a fixed cylinder[42]

Several researchers have examined how to suppress or generate the air-core. Khoshkalam et al. found that
the generation of the air-core vortex was independent of the wall geometry.[42] Sohn et al. investigated
the air-core vortex as a function of the tank geometry and size. They found that the air-core vortex itself
was affected by the tank rotation speed, tank size and the drain port size. Only the exact moment when
the air-core vortex was observed in the simulation was independent of the tank size.[43] Ramamurthi and
Tharakan found that during the liquid draining of the tank, the air-core vortex was strongly dependent
on the size and shape of the drain port. A smaller diameter of the drain port would result in a larger
draw down current, which means a faster generation of the air-core vortex. This was also confirmed by
Sohn et al. where they found that the critical circumferential velocity to generate the air-core vortex
increased exponentially as the drain port increases.[43] However, a smaller drain port diameter would
mean that the effective area of the outflow would be smaller and thus decrease the outflow flux as
well. Yukimoto et al. found through experimental and numerical results that the outflow through the
drain hole is dependent on the rotational velocity. A smaller angular velocity would result in a higher
outflow rate and vice versa.[44] Also, the influence of the temperature on the air-core vortex was studied.
Properties such as the viscosity, surface tension and density change with the temperature. Nazir and
Sohn investigated the influence of temperature and found that the temperature indeed influenced the
drainage time.[45] From figure 14, it can be observed that a lower temperature would result in faster
drainage time. It should be noted that figure 14 is for an open container, and thus the vortex regime is
not a necessity to avoid the bubble regime. From temperatures of 10 ◦C and above, a fully developed
air-core vortex was noticed. Below the 10 ◦C, it is believed that the flow regime would stay in the
bubble regime for an closed container and thus increase the drainage time significantly. Since surface
tension, density and viscosity all change with temperature, Nazir and Sohn both investigated which of
these parameters had influence on the air-core vortex. They found that the appearance of the air-core
vortex was unaffected by surface tension and density, while viscosity did indeed play a significant role.
The viscosity of the fluid resist the motion of the fluid to move to the walls of the cylinder and thus
reduce the flow mobility. The viscosity is low for high temperature cases, making it easier for the fluid
flow to get pushed from the center and thus enhancing the generation of the air-core vortex. Thus, for
the bottle case, the temperature of the fluid should not be too low, otherwise the air-core can not be
generated.
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Figure 14: Experimental and correlation results for the height of the water level over time for different
temperatures[45]

Other studies disagree with the statement that surface tension does not play a role in the generation
of the vortex. Lundgren [46] and Anderson [28] both found that when surface tension is neglected, the
surface depression of the air-core would reach the drain port faster than in the case when surface tension
was included. Also, Khoshkalam et al.[42] found that when surface tension was present, the dip would
become shorter and that the surface tends to prevent air to penetrate into the free surface. Thus, by
decreasing the surface tension, it is believed that a fully developed air-core vortex is generated faster.

2.2.6 Critical submergence of the air-core vortex

When looking at air-core vortices in PET bottles, it is important to know when exactly the air-core
vortex extends all the way down to the opening of the bottle. The flow regime will stay in the bubble
regime, if the air-core vortex is not fully extended. Various studies have found different criteria / relations
to predict the critical submergence of the air-core vortex in cylindrical geometries.

One of the first theoretical attempts to predict the condition when the critical vortex would appear was
done by Odgaard.[47] He found a relation where he could estimate the critical depth of the liquid for
different flow parameters and is depicted below:

h2
c = −0.9

γ

ρg

√
uzHc

ν
+ 0.0043

Γ2uz
gν

(39)

where hc is the critical submergence height, uz the axial velocity near the drain hole and Γ the circulation.
Odgaard based his model on the Rankine vortex model, where the radial velocity profile is linear, the axial
velocity was determined through the continuity equation and the azimuthal velocity profile was expressed
as a function of the radial position. By balancing the surface tension with the pressure gradient, he found
the above relation to describe the free surface. However, equation 39 is only valid for a laminar core.
When the vortex flow becomes turbulent, the eddy viscosity becomes more dominant. By replacing ν in
equation 39 by the turbulent eddy viscosity νt, Odgaard proved that equation 39 can also be used for a
turbulent core. The eddy viscosity is denoted as νt = ν+kΓ, where k is a factor of proportionality. Based
on data provided in [47], the value of k is estimated to be k = 6× 10−5. The relation stated by Odgaard
was based on the assumption that the velocity field in the bathtub vortex was approximated by the
Burgers vortex. However, the Burgers vortex equations can only be used when the free surface is planar,
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thus in the case when the dimple is small relatively to the total height of the fluid.[32] Even though the
results of his criteria were in accordance with experimental results, the criterion is still inconsistent.

Another similar approach as Odgaard to theoretical determine the critical submergence was done by
Hite and Walter. [48] The big difference in approach between Hite and Odgaard is that Hite modified
the azimuthal velocity into:

uθ =
Γ

2πrm

2r̄

1 + 2r̄2
(40)

where uθ is the tangential velocity, Γ is the constant circulation of the fluid, r̄ = r/rm, r is the radius
and rm the radius at the maximum tangential velocity. He determined that for critical submergence, the
highest azimuthal velocities should be at r = 0 and thus r̄ = r/rm →∞ should be valid and determined
that the relation for the critical submergence was equal to

hc =
1

g

(
Γ

2πrm

)2

(41)

Even though equation 41 agreed with their own experiments, the experiments were done in the regime
where viscous terms and surface tension could be neglected.

Another theory of the bathtub vortex in a rotating vessel was done by Lundgren [46] and later further
developed by Anderson [28]. He found that the order of magnitude of the depth of the central surface
depression hc is given by the following expression:

hc =
Q2Ω

2πgνr2
h

(42)

where Q is the total flow rate, Ω the rotation rate of the container and rh the radius of the drain hole.
From the equation it follows that the central surface depression is more sensitive to the total flow rate
than the rotation rate of the container. However, surface tension is neglected in equation 42, which causes
equation 42 to overestimate the critical submergence of the air-core vortex. Baum and Cook carried out
experiments and confirmed that indeed the surface tension plays a crucial role in the critical submergence
of the air-core vortex.[2] To include surface tension, Anderson designed a numerical model, called the
LABSRL-model to calculate the surface depression, where the surface tension and the viscous terms in
the Ekman boundary layers was included. They also compared the LABSRL-model to real experiments
and found that surface tension greatly affects both the whirlpool shape and its critical submergence.

Also, empirical relations have been obtained by studying experimental results of the bathtub vortices.[43,
49] Sohn et al. based it off on five non-dimensional parameters.[43] These non-dimensional parameters
are the dimensionless critical distance and the diameter ratio of the tank to the drain port

L∗ =
Hi − hc
D

D∗ =
D

d
(43)

and the rotational Reynolds, Froude and Weber number

Re =
ρD2Ω

µ
Fr =

D2Ω

g
We =

ρD3Ω2

γ
(44)

where Hi is the initial water height, hc the critical submergence height, D the tank diameter, d the
diameter of the drain port and Ω the initial rotational speed of the tank. With their numerical results,
they obtained the following relation for the critical submergence

L∗ = 83.339
(
D∗−0.361Re−0.00242Fr0.222We−0.346 − 0.0196

)
(45)

Li et al. based it only of one dimensionless parameter, the Froude number.[49] The relation between the
critical submergence Hc and the Froude number Fr is:

hc =
19921.84 + 7.54 · Fr7.06

573.81 + Fr7.06 (46)
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where the Froude number is defined as Fr = u√
gh

. The characteristic velocity u in the Froude number is

the intake velocity, which could be attained by the intake diameter and by the flow rate. h is the total
height of the fluid in the container.

The relation for the critical submergence of the air-core vortex depicted above where described for cases
where nonlinear effects were ignored. However, when the Rossby number becomes larger, the nonlinear
effects become more significant. Whitehead and Porter were one of the few that did research on these
conditions.[50] They analyzed non-linear axisymmetric flow of an inviscid homogeneous fluid in a rotating
cylindrical container. They found a relation where they could describe the free surface height h as a
function of the radius r, ṁ the total known mass flux and the potential head H:

g′h3 − g′Hh2 +
ṁ2

8π2r2
= 0 (47)

where
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)
− f2r2

1

8g
(48)

where h1, u1 and v1 are the height and velocity in radial and azimuthal direction,respectively at the
position of the source of fluid, g′ = ∆ρ, and f = 2Ω the Coriolis parameter.

2.2.7 Instabilities

As stated prior in the literature review, when the Rossby number becomes larger, instabilities can start
to develop in the fluid flow. These instabilities can lead to a transition to weak turbulence. Studies have
been performed to study the origin of these instabilities. These instabilities were explained with a lab
experiment where a fluid was confined in a gap between two rotating cylinders. An example of the setup
of these experiments is the experimental study on the different instabilities by Dherbecourt et al.[51]
and is depicted in figure 15. The two cylinders would rotate with different angular velocities, resulting
in different instability modes being observed. For low angular velocities is the fluid flow between these
concentric cylinders steady, laminar and purely azimuthal. This state is referred as the Taylor-Couette
flow in the literature.

Figure 15: Left: Sketch of the experimental setup with water confined between two rotating cylinders.
Right: Different flow instabilities due to the different rotational differences between the two cylinders.[51]

The criterion for when the flow becomes unstable in the absence of viscosity, was initially studied by
Lord Rayleigh.[52] He found that the flow between two rotating cylinders would become unstable, if the
inner rotating cylinder would spin faster than the outer rotating one. To summarize his criteria:

d

dr
(uθr)

2 < 0 (49)

or
(riUi)

2 > (roUo)
2 (50)
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Thus, the fluid would become unstable if the angular momentum of the particle in the inner circle with
a radius ri and a velocity Ui would be larger than the particle at the outer circle with a radius ro and a
velocity Uo.

However, viscous forces tend to stabilize the fluid flow and damp the perturbations and turbulence. Thus,
obtaining a dimensionless parameter containing the angular velocities and the viscosity might give a good
insight on the development of these instabilities. Taylor found that when the angular velocity of the
inner rotating cylinder was higher than a certain value (the critical Taylor number), an instability would
occur where the flow would become unstable consisting of steady stacked axisymmetric counter-rotating
vortices.[53] The instability grows further to un-axisymmetric perturbations by further increasing the
rotational velocity. Azimuthal waves also start to develop on the vortex rings and eventually the flow
becomes chaotic leading to a fully turbulent regime.[54] The Taylor-Couette flow becomes unstable, when
the flow exceeds a certain value of the Taylor number. The Taylor number is a dimensionless parameter
which characterizes the ratio between the centrifugal forces due to rotating of a fluid and the viscous
forces. This dimensionless number is defined as:

Ta =
4Ω2R4

ν2
(51)

where R the characteristic length scale perpendicular to the rotating axis.

For the specific case when the fluid is between 2 concentric rotating cylinders, the Taylor number is
defined as [55]:

Ta =
Ω2Ri(Ri −Ri)3

ν2
(52)

where Ri,o are the radii of the the inner and the outer cylinder, respectively.

Another dimensionless parameter which combines the centrifugal force and the viscosity is the rotational
Reynolds number. Large numbers of experimental and theoretical studies have been performed to study
the critical transition value for when the fluid flow would become unstable through the Reynolds number.
Andereck et al. determined transitions between different instabilities as functions of the inner and outer
cylinder Reynolds numbers.[56] The Reynolds numbers are defined as:

Rei =
ri(ro − ri)Ωi

ν
(53)

Reo =
ro(ro − ri)Ωo

ν
(54)

where the subscripts i and o stands for the inner and outer, respectively, Rei,o the Reynolds number, ri,o
the radii of the rotating cylinders and Ωi,o the rotating velocities. The results of Andereck et al. about
the different instability regions are depicted in figure 16.
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Figure 16: Regimes observed in flow between two rotating concentric cylinders by Andereck et al.[56]

The big difference between the experimental studies on the Taylor-Couette flow instabilities and this
study, is that instead of an inner rotating cylinder, an air-core vortex is present. Taylor stated that by
assuming the free-surface vortex as a virtual inner cylinder with a certain radius ri and the cylindrical
container with a radius ro as the outer rotating cylinder, the theory stated in equation 50 and 52 is still
applicable. [53] Mulligan found that in the presence of a free-surface vortex in a cylinder, instabilities
such as the Taylor vortices would still appear. [57] He also proved that the instability mechanisms are
indeed the same for two rotating cylinders as the free-surface vortex by considering Rayleigh’s stability
criterion.

2.2.7.1 Instabilities during spin-down

Before the instabilities can be analysed, first the time-frame when the instabilities starts to develop
should be analyzed. In the case of the PET bottle, the spin-up process resembles the spin-up process for
an open reservoir. It is expected that during the spin-up process, the difference in rotational velocity is
not sufficiently large for instabilities to occur. When steady state is reached, which marks the end of the
spin-up process, the bottle will be halted, the valve will be opened and the draining process will start.
This draining process is referred as the spin-down process in the literature.[58]

The spin-down process occurs when the vessel abruptly stops rotating, while the fluid is still behaving as
a solid body rotation. Similar to the drainage process of the open reservoir vortex, the Stewartson and
the Ekman layer are present at the boundaries. However, the big difference between these two cases, is
that during the spin-down process, multiple instabilities may occur.[58] As discussed before in chapter
2.2.7, instabilities will occur when the inner ”cylinder” rotates faster than the outer cylinder. The inner
”cylinder” (the air-core vortex) still rotates with a high rotational velocity, while the outer cylinder (the
PET bottle) is stationary, which will indeed cause instabilities. Thus, when looking back at figure 16,
the expected instabilities that should occur during spin-down should be where the outer rotating velocity
is around zero and thus where the outer Reynolds number is Ro = 0.

Visualization on the spin-down process was done by Khoshkalam et al.[42] This is showed in figure 17. He
tested two cases of the bathtub vortex, where in both cases the fluid was pre-rotated. The difference was
that in one case, the side- and end-walls abruptly stopped rotating (spin-down), while in the other case
the walls kept rotating at the same rotational velocity. As can be seen from the left side of the cylinder
in figure 17, instabilities were noticed in the form of disordered vortices in the case of the stationary
wall, while in the rotating wall (right side of the cylinder) no instabilities were noticed. Also, they found
similarities between both cases. The tangential velocity profiles were very similar for small values of the
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ratio between the drain-port and the tank diameter r/R, thus proving that the sidewall rotation did not
affect the air-core behaviour and the instabilities can only occur next to the central core.

Figure 17: Tangential velocity contours at different times for a stationary wall (left) and rotating wall
(right)[42]

Different instabilities consist of two modes. The first mode is the Taylor motion where waves move
periodically in the axial direction and the second mode is a pattern of travelling periodic waves in the
azimuthal direction. When increasing the angular velocity difference, the instabilities correspond to a
combination of the two different waves in the flow. A good visualization of the different modes on the
instabilities in the flow was numerically done for different Reynolds numbers by Dutta and Ray [59] and
depicted in figure 18. As can be seen from figure 18, the flow for Re = 177 consists mainly out of Taylor
waves in the azimuthal direction (Taylor vortex flow), whereas for Re = 505 that flow consists of both
wave modes (wavy Taylor vortex flow).

Figure 18: The flow configuration of different wave modes. The left picture describes the flow configura-
tion of Taylor vortices. The middle and right pictures are numerical solutions for Re = 177 and Re = 505
by Dutta and Ray.[59]

Takeda also did an experimental and numerical study on the instabilities of the Taylor-Couette flow.
However, the main focus of his study was to investigate the instabilities at higher Reynolds numbers.[54]
The displayed Reynolds values depicted in figure 19 are the reduced Reynolds numbers defined as Re∗ =
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Re/Rec, where Re is the real Reynolds number and Rec is the critical Reynolds number where instabilities
start to occur.

Figure 19: Measured velocity fields for different Reynolds numbers, where the outer Reynolds number is
zero. Red-yellow is for positive and blue-green is for negative velocities.[54]

From figure 19, it can be seen that there is a clear distinction between the different regimes for Reo = 0.
The different regimes are defined in figure 16. The wavy vortex is at Re∗ = 7.1, the modulated wavy
vortex flow are at Re∗ = 13.6 and Re∗ = 17.9, and at Re∗ = 24.7 are the turbulent Taylor waves
displayed.

2.2.7.2 Taylor vortex flow

When increasing the inner angular velocity above the first critical inner Reynolds number Rei = 120 for
a stationary outer wall, the solid body rotation will become unstable. As can be seen from figure 16,
the first instability state is called the Taylor vortex flow. This Taylor vortex flow is a three-dimensional,
time-independent flow structure. It is a secondary steady state characterized by an axisymmetric cellular
pattern stacked in the axial direction in which the fluid travels as a series of counter rotating vortices,
known as Taylor vortices. These vortices can be considered as the effect of the no-slip condition on the
stationary sidewalls to the adjacent fluids. Son et al. also noticed these instabilities in their numerical
simulations. Taylor vortices were present near the wall in the case when the cylinder walls stopped
spinning.[41] Their numerical results are depicted in figure 20.
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Figure 20: Numerical results of the vortex streamlines[41]

Sohn et al. emphasized in a continuation on the research of Son et al. [41] where Sohn et al. stated that
the Taylor vortex is the main reason of the air-core generation. They showed that when the air-core is
being generated, the pushed fluid to the side wall immediately undergoes a strong vortexing flow with
a tangential axis (the Taylor vortex). The streamline distribution in figure 21 showed that during the
early stages of draining, these vortices are being generated and will remain in succession until the end
of draining where they expand their sizes by combining with one another.

Figure 21: Progression of velocity vector and streamlines in a tank during draining[43]

However, Khoshkalam and Najafi also did numerical experiments on the generation of the air-core vortex,
which are displayed in figure 17. They concluded that the Taylor vortices were not the only cause of
air-core vortex generation.[42] Their experiments consisted of a bathtub vortex in a rotating cylinder and
the bathtub vortex in a pre-rotated fluid where the cylinder was stationary during the draining process.
They found that in both experiments, the air-core vortex was present, however only in the case of a
stationary wall, there was presence of Taylor vortices.
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2.2.7.3 Wavy vortex flow

Further increasing the inner angular velocity, an instability sets in that deforms the Taylor vortices
to produce a time-dependent non-axisymmetric flow, which is called the wavy vortex flow. The flow
develops significantly in the axial direction and a new regime is established which has periodic waves
travelling in the azimuthal direction. For different initial conditions different stationary wavy vortex
flows were noticed. [60] For the case of Reo = 0, the wavy vortex flow is periodic over a wide range of
Rei and vortex sizes. Up to 26 different stable states for different Reynolds numbers were being noticed
by Coles for an aspect ratio of A∗ = 27.9, where A∗ = h

ro−ri is a height-radius ratio.[61] He stated that
the frequency with which the waves pass a point of observation was characterized by one single frequency
f1.

Figure 22: Photograph of the conventional wavy vortex flow by Gregeory et al. [62]

2.2.7.4 Modulated waves

By furtherly increasing the inner angular velocity, an additional wave mode appears that modulates the
wavy vortex flow, where the waves oscillate azimuthally with respect to one another and a quasi-periodic
regime is obtained, This is the last pre-turbulent flow regime for a stationary outer cylinder and is
characterized by a second frequency f2.[63] f2 is the frequency of amplitude and frequency modulation
on the azimuthal waves. Coles found that the axial wavelength increased with an increase of the Taylor
number.[61] The wave flattens out at maximum amplitude modulation and fully disappears, which means
that the flow goes into the turbulent state. A good visualization is done by Gorman et al. and depicted
in figure 23, where 6 different waves were observed.[63]

Figure 23: Complete wavy modulated vortex pattern for six azimuthal waves [63]

2.2.7.5 Turbulent Taylor waves

For even higher Reynolds numbers, drastic changes are noticed in the flow. The fluid flow becomes
turbulent, where first the waves modulated by f2 and later at even higher values of the Reynolds numbers
f1 disappears. This means that the observed azimuthal waves disappear as well. The disappearance can
be clearly seen in figure 19, where the coherent oscillatory motions disappear and the vortices become
flat again. However, it was observed with velocity fluctuation power spectra that even though the waves
were not visible, the Taylor vortices would still retain their basic toroidal structure.[60]. Experiments
done by Koschmieder also showed that for a fluid in the gap between a rotating inner and stationary
outer vertical cylinder, at very high Reynolds numbers well organized toroidal turbulent Taylor vortices
with uniform size could be observed.[64]
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2.3 Drainage from a closed reservoir in presence of rotation

In the previous section, the free surface vortex was discussed for open geometries with a drainage port. In
these open reservoirs, an air-core vortex can already be formed for the slightest initial angular velocities.
However, the formation of free-surface vortices at low angular velocities is not possible when considering
the PET bottle or a cylindrical geometry with only one outlet. This is due to the under-pressure that
arises at the top of the bottle. Instead of the small dimple bathtub vortex that is noticed in the open
reservoir for a low angular velocity, a bubble regime emerges, as discussed in chapter 2.1. Taylor bubbles
will rise upwards into the bottle, while fluid will simultaneously flow downwards out of the bottle. The
vortex can only emerge in a closed geometry when the dimple stretches all the way down to the opening
of the bottle and a fully developed air-core is present. As a result, for a fully developed air-core to be
present, the initial rotational speed must be considerably higher than for the case of a small dimple.
This means that the Rossby number, denoted in equation 32 will be higher than in the case of the open
container, in which case the non-linear effects in the fluid flow can not be ignored anymore. Instabilities
will start to develop in the fluid flow [50] and the 1/4-Stewartson layer breaks away from the sidewall
and propagates into the bulk fluid as a detached shear layer. This also enhances the transfer of angular
momentum into the fluid, which will expedite the spin-up process.[65]

2.3.1 Bubble growth suppression due to rotation

It was found in section 2.1.2, that by altering fluid properties, the growth rate of the Rayleigh-Taylor
instability can be influenced significantly. However, it is believed that one other way to hinder the
development and propagation of the bubble from the interface is to apply rotation in the direction
aligned with the axis of rotation. El-Ansary et al. [66] found that for very low rotational velocities, the
growth rate of the instability would increase with decreasing rotational velocities, up to where for the
stationary case the maximum growth rate was achieved. Chandrasekhar concluded that the Coriolis force
acting on the Rayleigh-Taylor instability could stabilise the system, but not indefinitely. [67] Carnevale
et al. [68] obtained numerical results where they showed a comparison between the development of the
bubble for no rotating and rotating system. In the case with no rotation (figure 24a), a mushroom-like
cap has already formed, whereas in the case with rotation (figure 240b) the cap structure has not yet
been formed and the deceleration of the growth of the bubble is clearly seen. Figure 24 a and b are taken
at the same moment. The presence of rotation introduces a restoring force on the fluid layer moving
perpendicular to the axis of rotation, namely the Coriolis force. When absent of rotation, the interface
undergoes a rotation as shown in figure 25 due to gravity. The Coriolis force induces a flow in the
opposite direction of this vortex, which causes the stabilizing effect on the Rayleigh-Taylor instability.
From this, it is expected that the initial bubble growth into the top bottle is faster for the stationary case
in comparison to the rotational cases. However, this conclusion is drawn for cases where the comparison
is made between very low angular velocities and the stationary case. Since in this study the bottle will
be initialized with a broad range of angular velocities, the behaviour of the Rayleigh-Taylor instability
for high angular velocities is still unknown.

Figure 24: The growth of the interface instability a) no rotation b) with rotation around the vertical
axis [68]

42 Minimization of drainage time of filled PET bottle with initial rotation



2.4 Summary literature review

Figure 25: A vertical cross-section illustrating the vorticity effect on the interface due to gravity [68]

2.4 Summary literature review

To finalize the literature review, a short summary will be given on the most important findings that were
obtained in this literature review.

From drainage with absence of rotation, equation 10 is a very relevant finding. It describes the emp-
tying time of the bottle for the stationary case td,0. Since the aim of this study is to minimize the
non-dimensional drainage time t∗, where the drainage time is made dimensionless with the stationary
emptying time, the emptying time for the different Π-numbers can be compared with equation 10 to
obtain the dimensionless drainage time. Also, the parameter k in equation 10 changes in relation to
the fluid properties. Therefore, by altering the Morton and Eötvos numbers, the dimensionless drainage
time will also be influenced by the stationary time td,0.

Tons of research is already obtained on the generation and the flow dynamics of the free surface vortex
in open reservoirs. The drainage process is divided into two stages, the spin-up and spin-down. The
spin-up is defined as the stage, where the lid at the bottle opening is still closed and the whole bottle is
initialized with a certain angular velocity. How the fluid flow behaves during spin-up was ellaborated in
the literature review in the form of the Taylor-Proudman theorem and the interaction of the boundary
layers to the fluid flow. When the bottle is stopped and the lid is opened, the stage is defined as the spin-
down or drainage regime. Different instabilities during drainage are discussed, such as Taylor vortices,
that can occur when the side and end walls are stopped abruptly. Also, different parameters that can
suppress or generate the air-core were discussed. It was found that initial rotation speed, tank size, drain
port size and fluid properties all can have significant influence on the drainage time and generation of
the air-core vortex.

However, during this literature review, no paper or study was obtained that described the drainage
process specific for a closed reservoir. It can be argued that when the air-core is formed in the closed
geometry / bottle, the air-core vortex is identical as in an open geometry. However, the transient process
due to the under-pressure as well as the existence of a minimal critical Π-number, makes this study
different than for the case of an open container.
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In this research, a fully 3D flow simulation of the drainage process from a PET bottle will be performed.
The calculation are done in the commercial CFD package, Ansys Fluent 19.2. To obtain accurate results,
the correct mesh density and simulation strategy had to be come up with. This section will elaborate
on the choices. A short summary of all the CFD-settings are given in appendix B.

3.1 Setup

To ensure that the numerical results obtained in this research could be validated with experimental
results, the setup and the geometry/the dimensions of the bottle were already pre-fixed. The setup
and geometry were based on the research projects conducted by the team of BSc students in the P&E
department of the Delft University of Technology under supervision of dasr.ir. W.-P. Breugem, who
previously investigated the bathtub vortex in an experimental manner. A short summary of their findings
is shown in appendix A. This subsection will first provide a visualization of the experimental setup used
by the students and afterwards the numerical setup will be shown.

To create the closed system, two PET bottles are connected with each other through a ball valve. To
obtain the initial rotational velocity, both bottles are placed in a rotating frame which is driven by a
motor. The motor starts spinning until solid body rotation has been achieved. During the spin-up
regime, the ball valve is closed. Since it was difficult for the experimental setup to visually determine
when solid body rotation had been reached, a pre-fixed spin-up time of 10 minutes was selected to ensure
that solid body had been reached. The valve would then be opened and the drainage time would be
measured. The drainage time was defined from the moment the valve was opened until the last liquid
fraction had disappeared from the upper bottle. A representation of the experimental setup is made by
the previous students and shown in figure 26.

Figure 26: Experimental setup

As explained before, the dimensions of the experimental bottle were also used for this numerical study.
The shape of the bottle was chosen to be relatively simple. The geometry and the dimensions of the
bottle are depicted in figure 27. The diameter of the bottle is 73.5 mm and the height is 217 mm.
The opening of the bottle is centered with a diameter of 21.5 mm. The angle between the wall and
the opening of the bottle is 40 degrees. The initial water level is 200 mm, which is measured from the
opening of the bottle. The bottle connector has the same inner diameter as the bottle opening and the
height of the connector is 40 mm.
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(a) (b)

Figure 27: (a) 3D view of the numerical case (b) intersection and dimensions of the bottle

3.2 Dimensional analysis of relevant flow parameters

To optimize the drainage time, the right parameters should be put in different test cases and be tested on
their influence on the drainage time. This can be done by selecting suitable dimensionless groups based
on these different parameters. However, to distinguish which parameters and dimensionless groups are
useful, first the emptying sequence has to be classified into different stages. By matching the dimension-
less parameters to the several draining sequences, the optimum can be found for every sequence and thus
reduce the drainage time altogether. The bottle dynamics can be classified into four major stages on the
basis of their flow dynamics, which will be discussed below. The four stages are based on observations
from the experimental results. A visualization of the different regimes are depicted in figure 28.

Stage 1, Bubble regime: When the bottle is opened, the liquid inside the bottle starts to flow out, while
simultaneously the air wants to penetrate into the bottle in the form of a symmetric gaseous finger.
The bubble starts to grow at the bottle opening, until the surface tension can not hold the hydrostatic
pressure anymore, which at that moment the bubble detaches from the outside air. Due to the under-
pressure in the bottle, more bubbles will start to form in the same process. A more detailed description
about the bubble regime was described in section 2.1.5 and in the works of Rohilla and Das [15].
Stage 2, Transition regime: More bubbles starts to rise to the top of the bubble. Bigger bubbles start to
form that stretches down to the bottle neck due to the centrifugal force pushing the liquid to the side.
This happens until a fully developed air column is noticed between the surface level and the outside
air-stream in the lower bottle. The characteristics of the transition regime are defined as where the
pressure difference between the atmospheric pressure in the bottom bottle and the under-pressure in the
top bottle has disappeared. However, no fully developed air-core vortex has been noticed yet and the
water layer keeps merging in the center of the bottle.
Stage 3, Vortex regime: The free-surface vortex is noticed in this stage. The vortex look stable and
is fully-developed. A regular downward motion of liquid along the bottle wall is realized, which is
accompanied with an upward motion of air through the core.
Final stage, Swirl regime: When the last fraction of fluid is left in the upper bottle, the fluid swirls
around the vertical axis, until the fluid is slowed down sufficiently to exit the bottle through the opening.
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This regime takes a significant amount of drainage time, whereas the volumetric flow rate of the fluid is
minimal.

(a) (b) (c) (d)

Figure 28: Visualization of the 4 stages a) bubble regime t = 0.25 s b) transition regime t = 1.25 s c)
vortex regime t = 3.5 s d) swirl regime t = 7.8 s. The figure contours are part of the numerical results
obtained for the Pi case of Π = 0.6195, where the initial angular velocity is 30 rad/s.

Since the different stages have been characterized, the multiple parameters can be selected. With these
parameters different dimensionless groups can be formulated to describe the different stages, which
can give an insight in the importance of the different parameters to the drainage time. The following
parameters are considered to be of importance for the different stages:

Nozzle diameter dh [m]
Bottle diameter db [m]
Nozzle angle θ [-]
Initial water level h0 [m]
Angular velocity Ω [s−1]
Gravitational acceleration g [m·s−1]
Density liquid, gas ρl,g [kg·m−3]
Viscosity liquid, gas µl,g [kg·m−1·s−1]
Surface tension γ [kg·s−2]
Drainage time te [s]

Table 1: Parameters

As seen in table 1, there are nine independent parameters with three base units. From Buckingham-Pi,
this means that there are eight different dimensionless groups that can be formed. There are three
numbers concerning the geometry of the bottle and two groups concerning the dynamic viscosity ratio
and the density ratio, which are depicted in 55.

dh
db

h0

db
θ

µg
µl

ρg
ρl

(55)

To keep the scope of this numerical investigation small, the bottle dimensions are kept constant. The
dynamic viscosity ratio and the density ratio are significantly small and thus are left out as well. However,
for the interested, Geiger et al. investigated the effect of bottle geometry ( dD ) and inclination (θ) on
bottle emptying processes with no initial rotation through a CFD approach. [69]
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By keeping the five numbers stated in 55 constant, it means that there are four dimensionless groups
remaining. The remaining dimensionless groups are the non-dimensional total drainage time, and the
Eötvos, Morton and ”Pi” numbers:

t∗ =
te
te,0

Eo =
ρlgd

2

γ

Mo =
µ4
l g

ρlγ3

Π =
Ω2 1

4d
2
b

gh0

(56)

The dimensionless total drainage time is defined as the ratio between the emptying time with rotation
te compared to the stationary emptying time te,0. The stationary emptying time is obtained from the
literature depicted in equation 10. The emptying time is for the case when the Morton number is low
and Eötvos number is high. Since the emptying time will be heavily influenced by the Π number and
the value of k in equation 10 is dependent on the Morton and Eötvos number, it can be stated that the
dimensionless total drainage time is dependent on the other three dimensionless parameters. Therefore,
to study how each dimensionless parameter impact the non-dimensional drainage time, the effect of the
Π, Morton and Eötvos will be separately investigated in this study.

From the literature review, it was already obtained that the bubble characteristics could be described
through the use of the Eötvos and Morton numbers. The increase of the Morton number is paired with an
increase in viscosity. It is believed that by increasing the Morton number, next to the change of bubble
characteristics, also the overall velocity might decrease, causing a later generation of the air-core vortex
and thus effecting the drainage time. The bottle is pre-rotated, thus it is also a necessity to investigate
the role of the angular velocity on the drainage time. By comparing the ratio of the centrifugal force
to the initial hydrostatic pressure (Π-number), characteristics in the vortex regime can be determined,
such as the shape of the vortex and the thickness of the film in the nozzle.

3.3 Mesh

3.3.1 Mesh topology

To generate a 3D mesh that can accurately calculate the numerical solutions, first the different types of
meshes have to be looked into. There are two main types of meshes, unstructured and structured meshes.
Both of these meshes have their advantages and disadvantages. That is why choosing the correct choice
of mesh type can improve the accuracy of the solution but also save computing and setup time. The big
difference between structured and unstructured meshes is that the structured mesh is identified by regular
connectivity, while the unstructured mesh is identified by irregular connectivity. The main motivations to
choose structured over unstructured grids are that structured grids are highly space efficient, convergence
is achieved faster and less numerical false diffusion. However, many numerical problems involve complex
geometries, making it highly time-consuming or sometimes near to impossible to design structured grids
for these complex geometries. In these cases, it is more efficient and convenient to use a unstructured
mesh with triangular or tetrahedral cells. Another downside of building a structured mesh in complex
geometries include over-stretched mesh cells and other mesh quality issues. However, this does not apply
on the numerical model in this research, where the PET bottle consists of only standard geometries.
Thus, a radial structured grid has been chosen as the type of mesh to ensure that less false numerical
diffusion would occur.

Also, different type of cells can be chosen in 3D meshing: tetrahedral, hexahedral, polyhedral, pyramid,
wedge cells or a combination of these. The hexahedral cells are shaped as a cube where the hexahedral
cells are bounded by six other hexahedral cells. For the same amount of cells, the hexahedral meshes
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have the highest accuracy of the numerical solutions. Thus, a radial structured hexahedral mesh was
chosen as the mesh for this case.

For cylindrical pipe geometries, different mesh structures can be applied to build a structured mesh.
Three of those structured cylindrical pipe meshes are shown in figure 29. The first mesh that can be used
is the cylindrical mesh called the O-grid mesh. The O-grid mesh consists of grid lines forming concentric
circles around the centre and radially directed grid lines. The second mesh is based on a rectangular
structure, called the H-grid. This grid adapts the rectangular grid to the cylindrical geometry. The last
mesh is known as the butterfly grid, where a Cartesian mesh is used in the centre of the cylinder and
surrounded by a cylindrical mesh structure.

(a) (b) (c)

Figure 29: Different mesh structures for cylindrical geometry a) cylindrical b) rectangular c) butterfly

Hernandez-Perez [70] investigated the three mesh structures stated above for 3D two-phase flow in pipe
geometries. The results showed that there was a strong dependency between the mesh and the flow
behaviour. The best result was obtained when implementing the butterfly mesh, while a fully cylindrical
mesh gave misleading results. The butterfly mesh allowed for refinement close to the wall and also
prevented singularity at the centre of the pipe. Thus, the structured mesh that was designed in this
study was based on the butterfly model depicted in figure 29c.

3.3.2 Design of the bottle mesh

To design the butterfly mesh, first the bottle was divided into five basic geometries: the cylindrical
section (1,5), the conical section (2,4) and the bottle connector (3). The different segments are labeled
in figure 30.
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As stated in the previous section does the butterfly mesh con-
sist of a Cartesian mesh at the centre of the cylinder, where
it is surrounded by a cylindrical grid. Thus, the mesh of each
segment consists of an inner cuboid (Cartesian mesh), where
the inner cuboid is surrounded by the cylindrical geometry of
the bottle (cylindrical grid). To refine the boundary layer, a
cylindrical ring is established around the cylindrical geometry
of the bottle. A good representation of the three different grids
is depicted in figure 31 b. The inner cuboid is implemented in
the geometry to make sure that everywhere in the mesh hex-
ahedral cells were present. To reduce cross-flow diffusion, it
is desired that the direction of the mesh cells are in the same
direction as the flow direction. Therefore, the inner cuboid is
made as small as possible to maximize the amount of radial
mesh cells, since it is expected that the vortex flow is mainly
dominated in the tangential direction. A visualization of the
different segments and the different parts of the segments are
depicted in figure 31.

Figure 30: Experimental setup

(a) (b) (c)

Figure 31: Representation of the different grids in a) Isometric view b) top view c) side view

Since the geometry consisted of multiple bodies with different geometries, MultiZone meshing was used
to ease the design procedure of the mesh structure. The MultiZone approach automatically decomposes
the geometry, which results in a directly generated structured mesh. The structured blocks can be
meshed with Hexa or Hexa/Prism. As stated in the previous section was a hexahedral structured mesh
desired to reduce false numerical diffusion. Thus, by using the hexa-dominant MultiZone approach,
an almost fully structured hexahedral mesh was already established. To ensure that the mesh cells at
the intersection between the different geometry segments would align with each other, local sizing with
number of divisions was applied. Another advantage of local sizing is the elimination of sudden mesh
density changes between the geometries. A smooth transition between the different bodies results in
more accurate numerical results. Detailed views on the mesh are depicted in figure 32.
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(a)

(b) (c)

(d) (e)

Figure 32: a) Isometric view b) Side view of cylindrical section c) Side view of conical and connector
section d) Top view e) Cut view between connector and conical section

3.3.3 Boundary layer meshing

Next to the overall mesh structure should the boundary layer also be resolved correctly. Failure to resolve
the boundary layer is known to affect the accuracy of the numerical solution. To characterize the effect
of the boundary layer on a wall bounded flow in numerical simulations, the dimensionless wall unit y+

can be used, which is given by:

y+ =
uτ∆y

ν
(57)
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where uτ is the frictional velocity and ∆y is the distance between the first cell height and the nearest
wall. If no turbulence model has been selected, y+ < 1 is required to accurately model the boundary
layer. This is achieved by estimating the first cell height from the wall by rearranging equation 57 to

∆y =
y+ν

uτ
(58)

where the frictional velocity uτ can be written as:

uτ =

√
τw
ρ

(59)

and the wall shear stress τw can be calculated with the bulk velocity ubulk = 0.5ΩD by:

τw = 0.5 Cfρu
2
bulk (60)

and finally the skin friction Cf can be estimated from the Schlichting skin-friction correlation [71] given
as:

Cf =
(
2log10Rebulk − 0.65

)−2.3
(61)

The Reynolds number in the bulk fluid is defined as

Rebulk =
ubulkL

ν
(62)

where the effective length scale L was taken from the circumferential length / perimeter of the bottle
L = πD.

As can be seen from the bulk velocity and the Reynolds number is the value for the first cell distance
estimated for the case of spin-up. Spin-up is characterized where the fluid flow behaves like solid body
rotation, hence u = 0.5ΩD. However, from the literature review, it was already obtained that instabilities
close to the boundary layer can be formed during spin-down. Therefore, also the first cell distance will
be estimated for spin down. Equations 57 to 61 remain the same for spin-up and spin-down, only the
Reynolds number changes. In section 2.2.7, the inner and outer Reynolds number are depicted, where it
was explained that during spin-down, the outer Reynolds number is zero. Therefore, the inner Reynolds
number should be used to estimate the first cell distance. The first cell distance will be calculated for
both Reynolds numbers. The smallest cell height will then be selected to ensure that for spin-up and
spin-down, the boundary layer is resolved correctly.

To provide a smooth transition from the reduced cell size in the boundary layer to the bulk stream cell
size, an inflation layer was used. The size of the cells in the inflation layer would gradually increase until
the bulk stream size was achieved. This was done by specifying the first cell height (y+ = 0.9) from the
wall and applying an inflation growth rate of 1.05 in Ansys meshing. A closer view on the refined mesh
cells in the boundary layer is depicted in figure 33.
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Figure 33: Wall refinement of the mesh

3.3.4 Mesh independence study

To ensure that accurate numerical results can be obtained, a mesh independence study has been per-
formed on the designed mesh explained in the previous section. Details of the mesh used in this mesh
independence study are shown in table 2.

Mesh case Mesh name No. of elements No. of nodes

1 400 375552 383268
2 1mil 1091448 1106895
3 2mil 1934108 2046042
4 3mil 2893042 3016487

Table 2: Mesh sizes used to determine mesh independence

3.4 Simulation strategy and computation

3.4.1 Laminar and Turbulence models

The flow characteristics of the fluid is largely dependent on the rotational velocity of the air-core vortex
and the wall. From the literature review, it was already obtained that figure 16 can be used to distin-
guish the different flow regimes for the Taylor-Couette flow. The distinguishment between the different
flow regimes is dependent on two dimensionless parameters, the inner Reynolds number Rei and outer
Reynolds number Reo, where

Rei =
ri(ro − ri)Ωi

ν

Reo =
ro(ro − ri)Ωo

ν

(63)

However, by assuming that the air-core vortex mimics the same characteristics as an inner cylinder,
figure 16 can also be used to determine the flow regime for the tested cases in this study. This is done by
taking the inner radius as the bottle opening radius and the initial angular velocity as the inner angular
velocity.

The whole process is divided into two distinct flow regimes, the spin-up and spin-down. Since these flow
regimes have their own separate characteristics, both regimes will be evaluated separately to determine
whether turbulence modelling is necessary for each regime. When looking at spin-up, the fluid behaves
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as a solid body rotation, where no air-core vortex is present in the bottle. Since there is no air-core
vortex, the inner radius of the imaginary inner cylinder is zero and thus the inner Reynolds number is
also equal to zero. This means that we are in the Couette flow regime, which is highlighted with the
green box in figure 34. The Couette flow regime is defined as a laminar regime, thus no turbulence
modelling is necessary for the spin-up process. For the spin-down regime, the air-core vortex is present
in the bottle, which means that the inner Reynolds number can not be zero. However, in the spin-down
regime, the wall of the bottle is stationary, which results in the angular velocity of the outer cylinder
Ωo being zero. Therefore, the outer Reynolds number Reo is equal to zero and the corresponding flow
regime is highlighted in the red box in figure 34. The red box is in the Turbulent Taylor vortices regime
indicating that the fluid flow is turbulent and thus, for the spin-down regime, turbulence modelling is
necessary.

Figure 34: Flow regime graph for the different instabilities in the Taylor-Couette flow, where Ro is the
outer Reynolds number and Ri is the inner Reynolds number

Based on previous studies that investigated the free surface air-core vortex in an open reservoir [72, 73],
it was very likely that the standard RANS models would overestimate the turbulent kinetic energy,
turbulent dissipation rate and turbulent viscosity in the core of the vortex. This is due to the weakness
of eddy-viscosity models, which assumes that the turbulence is isotropic. Assuming isotropic turbulence
can lead to overestimated diffusion in strong streamline curvature streams. Mulligan investigated the
free-surface vortex for the case with no turbulence model, RNG κ− ε, SST with and without curvature
correction (SST and SST-CC) and the RSM turbulence models [74]. The RNG κ− ε exhibited extremely
poor performance compared with to other models. SST with curvature correction significantly increased
the computational accuracy in comparison without curvature correction. The solution without the use
of a turbulent model yielded similar results as the SST-CC model when predicting the free-surface, but
the accuracy of predicting the tangential velocity was higher when no turbulence model was selected.
According to Mulligan, [74] the RSM turbulence model gave the most accurate results, whereas the SST-
CC turbulence model and the model with no turbulence model were slightly less accurate. However, the
computational cost were significantly higher for the RSM in comparison with the no turbulence model
and the SST-CC models. Different studies also investigated LES models since LES models capture
vortex characteristics more accurately than the other turbulence models. [75, 76] However, the increase
in accuracy comes with an additional considerably higher computational expense. Sakai et al. and
Muntean [77, 78] found that simulations of swirling flows in pipes, where no turbulence models were
selected captured the characteristics of the vortex just as well as LES simulations with a fraction of the
computational time, even if the flow outside the vortices is known to be turbulent.

In this study, simulations with no turbulence model, κ−ε models and the RSM model were all tried. The
κ − ε models gave very nonphysical results where in some cases, the interface was impenetrable. This
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meant that the water would stay in the top bottle, while air stayed in the bottom bottle. Another error
that was observed with the κ − ε models was the calculation of the turbulent viscosity. The turbulent
viscosity ratio in every calculation would reach above 1e5 at a certain stage, which is very nonphysical
in this test case. Even when initializing with a very low turbulent viscosity or refining the mesh, in
the end the turbulent viscosity would still be unusually high. The RSM model was found to be highly
unstable. Non-physical instabilities at the free surface started to develop, which caused the simulation to
fail within a few time steps. The only solution to resolve these instabilities was to design a very fine mesh
and decrease the time steps significantly. However, this made the model very computational expensive
and not feasible to use in the time period for this study. These kind of instabilities that were obtained
for the RSM model were also found by Mulligan [74] and Suerich [73]. Thus, the only viable model was
the laminar viscous model (no turbulence model was selected) and therefore chosen as the viscous model
for this study.

3.4.2 Multiphase Modelling

Several different methods have been developed in the past to simulate two-phase flow problems. The
most used methods include the front-tracking method [79], the marker particle method [80], the volume
of fluid (VOF) method [81] and the levelset (LS) method. Every method has their own advantages and
disadvantages, this study will only elaborate further on the latter two, since they are mentioned the most
in literature and already produce accurate results.

The VOF method has been widely used to solve the deforming free interfacial flows between immiscible
fluids. A new parameter, the volume fraction α is introduced with this method. The volume fraction of
phase k in every cell is calculated as follows:

αk =
Vk
V

(64)

where Vk is the volume of phase k in one specific cell. When the volume fraction α is between 0 and 1
in a certain cell, a liquid-gas interface should exist. Cells that are not located on the free surface will
either have αw = 1 or αa = 1. Also, the sum of both the volume fractions should always be 1, thus the
following condition should always be satisfied in every cell:

αw + αa = 1 (65)

where αw and αa are the volume fractions of water (liquid) and air (gas) respectively. The density ρ and
dynamic viscosity µ in each cell is calculated as follows:

ρ = αwρw + αaρa

µ = µwρw + µaρa
(66)

The tracking of the interface between the phases is done by solving the transport equation for the volume
fraction α of one of the phases:

∂α

∂t
+∇ · (uα) = 0 (67)

Since for equation 67, the standard finite-difference approximation leads to smearing, a piecewise-linear
approach is used to reconstruct the interface with the VOF method. The piecewise linear interface
calculation (PLIC) technique approximates the interface in the cell by reconstructing the interface in
a cell as a line (in two-dimensional space) or a plane (in three-dimensional space). The reconstruction
of the interface is approximated by the idea that the normal vector plus the volume fraction α can
determine the linear interface cutting from the cell, where the normal vector n can be computed from:

n =
∇C
| ∇C |

(68)

However, the big drawback of the VOF method is that the volume fraction function is a step function,
which makes it highly difficult to accurately predict the curvature of the interface, even with the PLIC
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method. [82] A direct consequence of this inaccuracy of the interface is the curvature of the free surface
and the surface tension force.[83] Thus, another method has to be used to capture the interface accurately.

One method that can accurately compute the free surface is the Level Set method. Level-Set functions
are based on the use of a continuous function φ to describe the interface between two different fluids.
The interface is tracked by solving a transport equation for the signed-distance function to the interface:

∂φ

∂t
+ u · ∇φ = 0 (69)

where φ = 0 corresponds to the interface, φ > 0 and φ < 0 corresponds to the liquid and gas phase
respectively. Geometrical information about the surface such as the normal vector n and the curvature
κ can be obtained with the Level-Set function [82]:

n =
∇φ
| ∇φ |

κ(φ) = −∇ · n
(70)

However, the drawback when using the Level-Set function is that it produces more numerical errors than
the VOF method, especially when the interface undergoes stretching or tearing. A common inaccuracy
of the Level-Set function is that it is not mass conserving, especially on a coarse grid.[84] Since VOF
is mass conserving but has a diffusive interface, while the LS function can produce a sharp interface
but is not mass conserving, a new method can be developed by combining both extensions and us-
ing both advantages. This new method is called the Coupled Level Set and Volume of Fluid method
(CLSVOF).[82] Both the transport equations for the volume fraction α and the level set function φ are
solved in this method and are coupled to the reconstructed interface, which results in a sharp interface
without loss/gain of mass. To accurately track the free-surface without loss of mass conservation, the
VOF method in combination with the Level-Set function was also used in this study.

An important dimensionless parameter that comes to play with multiphase modelling is the Courant
number or CFL condition. This arises when using explicit time integration schemes. The CFL condition
provides an upper bound limit for the timestep, wherein the numerical solution still provides accurate
results [85]. The CFL condition is defined as:

∆t ≤ CCFL
∆x

u
(71)

where ∆t is the time step, ∆x the length interval,u the velocity magnitude and CCFL is the Courant
number. For explicit timestepping, the typical Courant number should be smaller than 1 to ensure
stability and accurate results. The easiest way to ensure that the CFL condition is satisfied, is to enforce
that the maximum Courant number over all cells, should be smaller than 1. The length interval is taken
as the cell length and the velocity magnitude is taken as the flow velocity of the fluid in the cell. The
resulting time represents the time that it would take the fluid to empty out of the cell. In this study, the
upper bound limit for the CFL number was kept at 0.25 to ensure accurate results.

A summary of all the multiphase settings are depicted in table 15.

3.4.3 Solution methods

To accurately solve the free-surface vortex numerically, the following governing equations were applied
for a 3D, transient, incompressible, laminar flow:

Conservation of mass:
∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (72)

Conservation of momentum:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ µ

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ ρgi + Fi (73)
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where ρ is the density, µ the viscosity, p the pressure, t the time, xi the position vector in the coordinate
system, ui the velocity vector, gi the gravitational acceleration and Fi the volumetric surface tension
force.

When enabling multiphase modelling in Ansys Fluent, different options and restrictions apply to the
explicit VOF model. Only the pressure-based solver is available for multiphase modelling. The second-
order implicit time-stepping formulation can only be used with the implicit scheme of VOF. Since explicit
time-stepping is selected, for equations 72 and 73 only the first order time discretization could be used
to solve the equations. The PISO algorithm was used for the pressure-velocity coupling. The central
differencing method was applied for the momentum equation and the spatial discretization gradient was
utilized with the least squares cell based.

To reconstruct the interface, the geometric reconstruction scheme from Ansys Fluent is used. The
geometric reconstruction (Geo-Reconstruct) is based on the PLIC method described in the previous
section, where the interface between two fluids has a linear slope within each cell. The position of the
linear interface is calculated relative to the center of the mesh cell, which is based on the volume fraction
and the normal vector. The level-set function was also selected, to ensure that the interface would be
computed accurately (CLSVOF method). A summary of all the solution methods are depicted in table
14.

3.4.4 Boundary conditions

Since the two spinning bottles were connected with each other and thus formed a closed system, the
boundary conditions in this numerical case were relatively simple. The closed system indicated that no
inlet or outlet boundary conditions were needed, only wall boundary conditions were required. An initial
rotational velocity was given to the wall boundary conditions and if needed, the wall surface roughness
was defined. A wall / valve was placed between the top bottle and the connector so no fluid would drain
to the bottom bottle during spin-up. When solid body rotation was achieved, the valve would then be
opened to mark the start of the drainage time.

Every wall surface and material is characterized by irregularities that can cause the characteristics of
the fluid flow to change. When the flow is considered to be laminar, the flow is independent on the
wall roughness of the PET bottle. However, this does not apply for cases where the fluid flow becomes
turbulent. When the wall is considered to be smooth, it can be assumed that the wall roughness is too
small to affect the flow. However, when the wall surface is rough enough, the flow will be dominated by
separating flow from the roughness elements and detached eddies will be generated. To determine what
roughness height is considered to be smooth or rough, the wall Reynolds number can be used:

Rewall =
huτ
ν

(74)

where the wall Reynolds number can be defined as the ratio between the roughness height and the
thickness of the viscous sub-layer ν/uτ . If Rewall < 1, it can be assumed that the wall surface is smooth
enough to have no significant effect on the fluid flow. When Rewall > 1, the height of the roughness
elements are higher than the viscous sub-layer, resulting in change of the characteristics of the fluid flow
and the viscous sub-layer can no longer be identified.[86] The wall velocity uτ is defined in equation 59.
It is found that in this study, the wall Reynolds number is too low and thus no wall roughness modelling
is necessary.

3.4.5 Spin-up

The last subject that has to be discussed in this section is how the spin-up was realized in the numerical
model. The flow was first initialized with the desired liquid level in the top bottle. After initialization,
both the walls of the bottle and the valve started spinning with a certain angular velocity. The multiphase
simulations were extremely sensitive to instability, especially when applying a sudden speed of rotation
or degree of swirl during spin-up of the bottle. Therefore, to improve the stability of the simulation,
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a fraction of the total rotational speed was initialized and then gradually increased until the desired
magnitude of the velocity was reached. The spin-up procedure was divided in ten steps, where the first
step was initialized with 10% of the total rotational velocity. The simulation was then solved for a
few small timesteps. Then for the second step, the speed of rotation was increased to 20% and again
solved for a few timesteps. Then for the third step, the speed of rotation was increased to 30% until
100% of the desired rotational speed had been reached. The angular velocity and the free surface was
monitored during the spin-up process. Spin-up was achieved when the angular velocity profile became
linear (solid body rotation) and the parabolic free surface was noticed. It was also checked whether the
velocity profile became independent of time. If the velocity profile looked like a steady-state solution,
spin-up was achieved. The spin-up process was only done on the coarse mesh to be time-efficient and
later interpolated on the fine mesh when the spin-up had been achieved.
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In this chapter, the results from the numerical study will be presented and discussed. The chapter is
divided into three parts, where each part discusses the influence of the Π, Morton and Eötvos numbers
on the drainage time, respectively. The numerically obtained results were conducted with mesh 2 (1mil
mesh in table 2). The mesh independence study can be found in appendix C. Also, verification with the
experimental results from the BSc group is done. This is shown in appendix D.

4.1 Case 1: Influence of the Π-number

In the first case, the effects of different rotational velocities are being studied to determine the correlation
between rotational velocity and drainage time. A combination of 40%-glycerol and 60%-water was used
in all the calculations for the Π-case. The fluid properties are shown in table 3. 6 different velocities
were chosen and the corresponding dimensionless Pi-numbers are depicted in table 4.

Glycerol-% 40%

Eötvos [-] 61.5954
Morton [-] 4.5145e-09
Density [kg m−3] 1100
Viscosity [kg m−1s−1] 0.00363
Surface tension [kg s−2] 0.07

Table 3: Fluid properties of 40%-glycerol

Angular velocity [rad/s] Π

0 0
10 0.0688
20 0.2753
30 0.6195
40 1.1014
50 1.7209

Table 4: Different testcases for the Π-case

4.1.1 Draining regimes

This section shows the influence of the Π-number on the duration of the different draining regimes. In
section 3.2, the four different flow regimes and their characteristics were discussed. Table 5 shows the
duration of every specific regime. Thus, for example in the bottom right corner, it means that for an
angular velocity of 50 rad/s, the flow regime stayed for 7.65 seconds in the vortex regime. Figure 35
shows the flow rate of glycerine-water out of the bottle opening. A visual example of the distinction
between the different flow regimes is given in figure 36. The example is given for the glycerine rate graph
with an angular velocity of 40 rad/s, where the different flow regimes are divided into coloured areas.
Figure 37 shows the area fraction of glycerine-water in the top bottle opening. It can be seen that for
the glycerine area, the peaks in the bubble regime are rather random. This is due to the difference in
frequency between the time steps (∆t = 0.05 s) and the bubble generation. It is believed that when the
frequencies align between the time steps and the bubble generation, the line for area fraction would be
more straight. Figure 38 shows how the liquid level grows through the drainage. The volume fraction
is made dimensionless with the initial liquid volume in the top bottle and the drainage time is made
dimensionless with the emptying time of the stationary case, depicted in equation 10. The value of the
stationary emptying time from equation 10 is td,0 = 15.27 seconds, whereas the numerically obtained
stationary emptying time for 40%-glycerol is equal to td = 16.9 seconds.
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Angular velocity [rad/s] 0 10 20 30 40 50

Drainage time [s] 16.9 12.5 6.275 8.075 8.25 9.15
Bubble regime [s] 16.9 12.5 2 1.05 0.7 0.55
Transition regime [s] - - 0.6 0.3 0.15 0.2
Vortex regime [s] - - 3.375 6.25 6.85 7.65
swirl regime [s] - - 0.3 0.475 0.55 0.75

Table 5: The time periods for the different draining regimes

Figure 35: The flow rate out of the bottle for the different angular velocities.

Figure 36: The four different flow regimes for 40 rad/s are divided into four coloured areas for the
glycerine flow rate graph.
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Figure 37: The liquid area in the bottle opening for the different angular velocities.

Figure 38: The dimensionless liquid level over the non-dimensional time in the bottom bottle for different
angular velocities.

4.1.2 Bubble regime

The regime that is first noticed in the bottle is the bubble regime. Figure 39 shows how the bubble grows
into the bottle at t=0.15 seconds after the bottle has been opened. It can be clearly seen that the bubble
stretches more for an increase in angular velocity, with exception of the stationary case. The increase in
angular velocity causes a stronger acting centrifugal force which pushes the fluid towards the wall of the
bottle. From mass conservation and the weaker acting hydrostatic force on the bubble, it makes it easier
for air to entrain, resulting in a further elongated bubble into the bottle. This is depicted in figure 40,
where the bubble nearly reaches the parabolic surface at the top of the bottle for the highest angular
velocity, whereas for the lower angular velocity cases, the bubble pinches off due to the hydrostatic force.
The reason why the bubble grows faster in the bottle for the stationary case in comparison with the 10
rad/s is that rotation can have a stabilising effect on the unstable interface for certain low rotational
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values. [87] From the literature review, it was found that due to the Coriolis force, a vortex would
be generated that would counter-act the vorticity, shown in figure 25, that would be developed due to
gravity and the Rayleigh-Taylor instability. However, from the numerical results, it is obtained that the
stabilizing Coriolis force only has significant effect on the 10 rad/s case. The centrifugal force overpowers
the stabilizing force in higher rotational cases, which causes the increase in growth rate.

(a) (b) (c) (d) (e) (f)

Figure 39: VOF contour (liquid=blue, air=orange) at 0.15 s after opening the bottle for a) 0 rad/s b)
10 rad/s c) 20 rad/s d) 30 rad/s e) 40 rad/s f) 50 rad/s

(a) (b) (c) (d) (e) (f)

Figure 40: VOF contour (liquid=blue, air=orange) at 0.25 s after opening the bottle for a) 0 rad/s b)
10 rad/s c) 20 rad/s d) 30 rad/s e) 40 rad/s f) 50 rad/s
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The height-time graph in figure 38 is enlarged in figure 41 to highlight how the liquid level in the bottom
bottle behaves relative to the Π-number in the bubble regime. From figure 41, it appears that an increase
in the Π-number (except for 10 rad/s) results in a higher liquid flow rate based on the higher liquid level
at the same instant. The increase in liquid flow rate can be explained with the conservation law, which
states that the total volume in a closed system can not change. As stated at the beginning of this
subsection, due to the stronger centrifugal force, it is easier for the air bubble to elongate into the top
bottle. An increase in circumferential velocity induces a stronger centrifugal force and therefore results
in more air entrainment. Due to volume conservation, it can be concluded that the same volume of
liquid should flow out, generating a higher liquid flow rate out of the top bottle. The stabilizing effect
on the growth rate of the Rayleigh-Taylor instability can be clearly seen in figure 41. The first drainage
moment for 10 rad/s is significantly later than for the rest of the cases, indicating that the initial rotation
stabilized the Rayleigh-Taylor deformation, causing the later starting point of drainage.

Figure 41: Amount of volume in the bottom bottle during the bubble regime

4.1.3 Transition regime

The transition regime in this study is characterized as where the pressure difference between the atmo-
spheric pressure in the bottom bottle and the under-pressure in the top bottle has disappeared. However,
no fully developed air-core vortex has been formed yet. The water layer keeps merging in the center of
the bottle. A visual example is shown in figure 42. The hydrostatic force from the liquid layer is stronger
than the centrifugal force, which causes the water layers to collapse on each other at the center-line of
the bottle. Since the two lowest Π-cases (Π = 0 and Π = 0.0688) only stayed in the bubble regime, from
here on only the four higher Π-numbers will be discussed.
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(a) (b)

Figure 42: VOF contour in the transition regime for 30 rad/s a) t=1.05 s b) 1.15 s

What is interesting to notice in this regime, is the volumetric flow rate of glycerine. Since the pressure
difference everywhere in the air-layer is close to zero with respect to the atmospheric pressure, it can
be assumed that the draining process acts the same as for an open container. In the case for an open
container, it is expected that the centrifugal force will only hinder the flow rate and prolong the drainage
time. This is due to the centrifugal force pushing the liquid to the wall, which decreases the downward
axial velocity. Also, by pushing the liquid to the side, the effective area at the bottle opening of the
top bottle will become smaller and thus reducing the liquid flow rate out of the bottle. This was also
perceived in figure 37, where the highest area fraction is achieved for Π = 0.2753 with an initial angular
velocity of 20 rad/s in the transition regime (2 ≤ t ≤ 2.6). Comparing this to the graphs shown in figure
43, the flow rate is indeed the highest in the transition regime for 20 rad/s. Especially, from figure 43b it
can be seen that the water volume in the bottom bottle was the lowest throughout the bubble regime for
20 rad/s. However, this changes when for 20 rad/s, the flow enters the transition regime, which causes
the sudden increase in volumetric flow-rate into the bottom bottle. The slope of the height-time graph
shown in figure 43b determines how fast the liquid flows out of the top bottle. The steepness in the
transition regime are 0.2293, 0.2161, 0.2046 and 0.2037 L/s for the angular velocities of 20, 30, 40 and
50 rad/s, respectively. From this, it can be concluded that the highest volumetric flow rate is achieved
at the beginning of the transition regime, where the centrifugal is relatively weak. During draining,
the hydrostatic force becomes weaker, until the centrifugal force is strong enough to fully establish the
air-core vortex, which in this specific case lowers the liquid flow rate.
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(a) (b)

Figure 43: Enlarged version on the transition regime of the a) glycerine flow rate b) water volume

4.1.4 Vortex regime

The dimensionless parameter Π is a ratio between the centrifugal forces and the hydrostatic forces acting
on the fluid. Since it is believed that in the vortex regime a balance is obtained between these two forces,
the influence of the Π-number on the characteristics of the vortex flow is investigated in this section.

4.1.4.1 Hypothesis of the force balance in the vortex regime

A hypothesis was made for the vortex regime during the opening section, which stated that the optimal
initial rotational velocity should be just high enough to create a small hole at the opening of the bottle,
to ensure that the air-core vortex can fully develop into the top of the bottle and erase the under-pressure
in the bottle. From this hypothesis, it is expected that the drainage times should be the highest for the
cases where no air-core vortex could be generated. This is up until the critical / optimal angular velocity
is found, for this case, the drainage time should be the lowest. From there on, an increase in angular
velocity should result in an increase of drainage time as well. This theory agreed with the numerical
results, as can be seen in table 5, where the lowest drainage time was found for Π = 0.2753 (20 rad/s).

The hypothesis was based on a simple force balance derived from the cylindrical Navier-Stokes depicted
in equations 75-77.
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When looking at equation 75, it is assumed that the radial pressure gradient ∂P
∂r will be balanced mainly

by the centrifugal force term
u2
θ

r , which results in the following force balance:

ρ
u2
θ

r
∼ ∂P

∂r
(78)

Based on previous research on velocity profiles in the Taylor-Couette flow [88], it is taken for this
hypothesis that the circumferential velocity is only a function of the radius and the angular velocity.
The angular velocity of the interface is assumed to be equal to the initial rotational velocity. Therefore,
the circumferential velocity can be rewritten as

uθ(r) = Ω · r (79)

Substituting this in equation 78 and integrating over the radius, the final form of the radial force balance
is obtained:

1

2
ρΩ2(r2 − r2

i ) ∼ P |r − P |ri (80)

where r is the bottle radius and ri is the radius of the air-core vortex, P |r is the pressure at the wall
of the bottle, P |ri pressure at the interface of the air-core vortex and Ω is the angular velocity of the
air-core vortex.

When looking in the axial direction of the cylindrical Navier-Stokes equation (equation 77), the assump-
tion is made that the axial pressure gradient ∂P

∂z will be mainly balanced out by the hydrostatic pressure
term ρgz:

∂P

∂z
∼ ρgz (81)

By integrating equation 81, the pressure balance in the axial direction is obtained:

P |z2 − P |z1 ∼ ρg(z1 − z2) (82)

In this hypothesis, it is also assumed that the pressure in the air-layer is uniform and equal to the
atmospheric pressure, and that the surface tension force due to the curvature of the gas-liquid interface
can be neglected.
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Figure 44 shows a fully developed air-core. The air layer is shown in orange
and the water layer is shown in blue. With the assumption that the LaPlace
pressure can be neglected, it can be taken that the pressure on both sides of
the interface are the same. This results that the pressure at point 1 and 3
in the liquid layer can be taken to be equal to the atmospheric pressure as
well. This is applicable throughout the whole interface, thus P |ri ∼ Patm.
Rewriting these conditions into equations 80 and 81, the following equations
are obtained:

P (x, r) ∼ Patm +
1

2
ρΩ(r2 − r2

i ) (83)

P (x, r) ∼ Patm + ρg∆z (84)

Combining equations 83 and 84, a balance between the centrifugal and hydro-
static pressure is obtained:

1

2
ρΩ2 (r2

i |z+∆z − r2
i |z) ∼ ρg∆z (85)

By dividing the left hand side of equation 85 with the right hand side, the
non-dimensional rotational number Π is obtained:

Π ∼ ρΩ2 (r2
i |z+∆z − r2

i |z)
ρg∆z

∼ Ω2R2

gh

(86)
Figure 44: VOF con-
tour with reference
points

From equation 85, it can be concluded that the angular velocity (centrifugal force) and the height of
the fluid (hydrostatic pressure) are the key parameters for the generation and the shape of the air-core
vortex. Equation 85 is the final analytical result of this hypothesis. From this, it is evident that a certain
minimum angular velocity is necessary to balance out the hydrostatic pressure to maintain the air-core
vortex. After this minimum angular velocity has been reached, an increase in angular velocity results in a
stronger centrifugal force overpowering the hydrostatic pressure due to the same initial liquid level. This
implies that more liquid will be pushed to the sidewall hindering the fluid from flowing down, resulting
in an increase in the drainage time. Thus, after an air-core vortex has been realized in the bottle, it can
be expected that an increase in initial angular velocity will be coupled with an increase in drainage time.

4.1.4.2 Proving hypothesis with numerical results

Basing of on the results shown in table 5, it can be concluded that on first sight, the hypothesis con-
ducted in the previous section between the angular velocity and the drainage time is true. However,
the hypothesis is based on a few assumptions, such as the fact that the centrifugal force is the only
driving force to push the liquid to the sidewall. In this section, the assumptions that were made for the
hypothesis will be analyzed and checked whether they were correct or not. With this, more insight will
be gained behind the physics and fluid dynamics of the air-core vortex in the bottle.

The first assumption that was established, was that the flow could be characterized as a solid body
rotation. The circumferential velocity uθ in solid body rotation is defined as a function of the angular
velocity Ω and the radius r, see equation 79. During the spin-up process, the angular velocity is constant
and thus the radial pressure gradient is only a function of the difference in distance in the radial direction.
This was verified with the numerical results. In figure 45 it can be seen that the calculated pressure
differences based on the assumption, labeled as ”matlab” in the figure, and the pressure difference shown
in Ansys Fluent, labeled as ”ansys”, were nearly identical. Only a small difference was noticed, which
could be blamed on the coarser mesh that was utilized during the spin-up regime.
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(a) (b)

Figure 45: The radial pressure distribution prior to the drainage (spin-up), taken over a line vector in
the x-z plane at a constant height in the middle of the bottle (xmin=-0.03675 xmax=0.03675 y=0 z=0.3).
The reference pressure was taken as 0 at the center point at this height. a) Pressure distribution of
angular velocities 20 and 30 rad/s b) Pressure distribution of angular velocities 40 and 50 rad/s

To examine whether the fluid flow still behaves like a solid body rotation during the spin-down process,
the circumferential velocity and the angular velocity should still relate with each other by equation 79.
The distinction between spin-up and spin-down is that during the spin-down process the angular velocity
exhibits transient behaviour due to the instabilities caused by the no-slip boundary condition at the wall.
The no-slip boundary condition can be clearly seen in the time-averaged circumferential velocity profile
in figure 46b. Hence, it can be concluded that during drainage the fluid flow does not behave as a
solid body rotation. Figure 46a displays the circumferential velocity contour at a horizontal plane in
the middle of the bottle. From the circumferential velocity contour, it appears that the circumferential
velocity is close to being independent of the azimuthal direction and only on the certain height and
radius, thus ∼ uθ(r, z).

(a) (b)

Figure 46: Circumferential velocity profile at z=0.3 m at t=1.5 s a) Circumferential velocity contour b)
Time-averaged circumferential velocity profile

Since it has been established that solid body rotation is not valid, it is interesting to examine how the
angular velocity relates to the circumferential velocity. It is expected that the circumferential profile
should still look like equation 79, however the angular velocity is not constant anymore, resulting in the
following equation:

uθ(r, z) = Ω(r, z) · r (87)
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Since for the Π-number, the interest lies whether the centrifugal force
is strong enough to split the fluid interface into the free-surface vortex,
first equation 87 was examined and checked whether the relation between
the circumferential velocity and the angular velocity at the interface was
correct. The result is shown in figure 48. The blue line in the graph
shows the numerically calculated value of the circumferential velocity at
the corresponding height on the interface. The orange line displays the
value of the circumferential velocity by using equation 87, the numerically
calculated angular velocity and the radius at the interface. To clarify the
values of the height of the bottle displayed on the vertical axis in figure
48, the shape of the interface as well as characteristic points for certain
heights are marked in figure 47. From the graph in figure 48, it is visible
that the numerically obtained velocities correlate well with equation 87.
Therefore, equation 80 is still valid and the centrifugal force can still be
expressed with the angular or circumferential velocity.

Figure 47: Clarification of
the vertical axis of figure
48. All the z-values are in
meters.

Figure 48: The circumferential velocity plotted against the height of the interface for 50 rad/s

The Π-number consists of two driving forces, the centrifugal force and the hydrostatic force. Before the
bottle is opened, everywhere in the bottle, hydrostatic pressure is achieved as shown in figure 50a. Due
to the parabolic shape of the interface and the contraction part in the bottle, the pressure contour might
seem odd. Nonetheless, phydro = ρgh was checked and it was obtained that it was applicable everywhere
in the domain. This is different for the case when the drainage process has started. From figure 50b
it seems that the pressure close to the side-wall is still hydrostatic. Closer to the centreline, near the
bottle opening, this changes into a dynamic pressure gradient, due to no end wall being present. By
plotting the hydrostatic pressure over vertical lines in the computational domain, it was obtained that
phydro = ρgh was applicable everywhere in the fluid except for radii around and smaller than the drain
port radius. This is displayed in figure 49. The dotted line labeled as calculated is referred to how
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phydro = ρgh is calculated, where h is taken as the height difference of the fluid in the computational
domain for the different radii. The straight line displays the pressure values shown in figure 50b for
different vertical lines. It can be stated that hydrostatic pressure was achieved for all radii (r > 0.02
m), except for the radii close to the drain port. Especially for r = 0.01075 m, it can be seen that the
dynamic pressure gradient influences the fluid significantly, resulting in the big difference between the
calculated hydrostatic pressure and the numerically obtained pressure values.

Nonetheless, it can still be established that hydrostatic pressure is valid through most part of the fluid
layer. Only the part in the bottle opening where the thin fluid layer flows into the connector, no
hydrostatic pressure is present. Hence, it can still be presumed that the driving force pushing the fluid
downwards is due to the hydrostatic force, and that the overall force balance between the hydrostatic
force and the centrifugal force is still plausible.

(a) (b)

Figure 49: The pressure distribution over vertical lines over different radii during drainage for Π = 1.7209
at t=1.3 s

(a) (b)

Figure 50: Absolute pressure contour for the liquid layer for Π = 1.7209 a) before draining b) during
draining at t=3.3 s

Even so, the numerical results differed from the hypothesis. The two forces did not balance each other
out. The calculated radial pressure difference using equation 80 and the numerically obtained radial
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pressure difference differed significantly. This is shown in figure 51, where the black line is the pressure
difference calculated with equation 80 and the red line is the pressure difference obtained from Ansys.
The pressure difference is taken between the interface and the side-wall. The gap between the two lines
widens the further it goes down in height, where the largest gap between the two lines was realized right
above the connector (z=0.257 m). From there on, in the connector (0.217 < z < 0.257), the difference
between the two lines became relatively small again. This implies that an extra source or force term that
was not accounted for should be considered to equalize the pressure difference above the bottle opening.

(a) (b)

(c) (d)

Figure 51: The radial pressure difference between the interface and the wall of the bottle. The pressure
reference point was taken at the highest point of the interface. This is done for the angular velocities at
t=2.85 s a) 20 rad/s b) 30 rad/s c) 40 rad/s d) 50 rad/s

When going back to the hypothesis, a few other assumptions were made that have not been verified
yet. The first assumption was that surface tension was negligible. The surface tension of 40%-glycerol
and 60%-water is 0.07 N/m. The biggest LaPlace pressure jump should be located, where the smallest
radius of the interface is, which was around 8 mm. Since at this radius, the curvature in the vertical
direction was almost flat, the vertical curvature can be taken as 0. So a quick estimation gives the
pressure difference due to the interface at:

∆pLaplace ≈ γ
1

R
= 8.75 Pa (88)

It can be directly concluded that surface tension alone could not explain the huge pressure difference
that is noticed in figure 51. The second assumption was that the radial and axial velocity component
had no influence on the force balance and that the fluid flow would remain in solid body rotation.
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However, as can be seen from figure 46, the wall effects influence the fluid flow, resulting in deceleration
of the fluid flow closer to the wall regions. This results that close to the wall regions, the viscous
force term causes the centrifugal and the radial force to be imbalanced, which explains why the overall
pressure distribution is lower compared to the expected pressure distribution. When reflecting back to
the literature review, another effect occurs due to the stationary wall, which is the generation of Taylor
vortices. This is clearly seen in figure 52. Part of the overall velocity will feed the Taylor vortices, resulting
in a reduced circumferential velocity and therefore a weaker centrifugal force, which could explain the
expected pressure distribution to be lower. From figure 53, it can be observed that the Taylor vortices
only influenced the velocity profiles in the mid section of the bottle. No Taylor vortices were observed in
the connector part of the water layer depicted in figure 53c (z < 0.257) and at the top part of the water
layer (figure 53a). This could give a good plausible explanation on why the difference between the black
and red line were the highest in the thickest part of the water layer in the bottle and explain why the
difference between the two lines are barely noticeable in the connector and the top section of the bottle.

(a) (b) (c)

Figure 52: The velocity contour of the liquid layer at t=2 s for Π = 1.7209 a) radial b) axial c)
circumferential

Figure 53: Velocity vector field at t=2 s for Π = 1.7209 a) Top part of the water layer b) Middle part of
the water layer c) Connector part of the water layer
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Another effect due to the Taylor vortices is that the flow regime becomes turbulent, which leads to the
third and fourth assumptions in the hypothesis. These assumptions were based on the fact that the flow
was laminar and viscosity was negligible. To account for the turbulent terms, Reynolds decomposition
was used on the radial Navier-Stokes equation, where the velocity is decomposed as u = u + u′ and
∂uθ
∂θ = 0 is applied.

ρ

(
∂ur
∂t

+
u2
r − u2

θ

r
+
∂u′ru

′
r

∂r
+
∂u′zu

′
r

∂z

)
= −∂P

∂r
+ µ

(
∆ur −

uθ
r2

)
(89)

It is assumed that when the air-core vortex is formed during drainage, the temporal variation in the
mean flow is weak and therefore the unsteady term can be neglected. Also, it is expected that the effect
of viscous diffusion is negligible in the mean flow. Only close to the wall region will the viscous term
influence the flow. This was also compared with the numerical results. The viscosity term in equation
89 consists of two terms. It was found that the first term µ∆ūr was close to zero in the bulk region.
The second viscosity term in equation 89 (µuθr2 ) resembles the centrifugal force term with an additional
viscosity term. It was calculated that due to the value of viscosity (µ=3.63e-03 kg/ms), the second
viscosity term was significantly smaller than the centrifugal force in the bulk region. Therefore, the
viscous term in equation 89 will also be neglected. This reduces equation 89 to:

ρ

(
u2
r − u2

θ

r
+
∂u′ru

′
r

∂r
+
∂u′zu

′
r

∂z

)
= −∂P

∂r
(90)

When we compare this to equation 78, three new terms appears in the force balance. The first term is the
ur

2

r . A comparison between this term and the centrifugal term was made. From the numerical results,
it was found that the mean circumferential velocity was 25 times larger than the mean radial velocity
in the liquid layer, which implied that u2

θ � u2
r and thus the first term was negligible. The second and

third term are the fluctuating velocity terms, which arises when Reynolds decomposition is applied on
the Navier-Stokes equation. A possible reason behind the difference between the calculated pressure
difference and the numerically obtained pressure difference is due to the turbulent nature of the flow
regime. Part of the kinetic energy driven due to the centrifugal force can get lost to generate the Taylor
vortices and feed the turbulent flow. Therefore, more centrifugal force is necessary to push the fluid to
the side. Even though the turbulent nature and the wall region influences the radial pressure gradient,
it can be fair to say that the two driving forces generating the air-core vortex are still the centrifugal
force and the force due to the hydrostatic pressure. Note that when the turbulent fluctuations can be
ignored in equation 90, equation 78 is obtained and ergo the Pi number.

4.1.4.3 Π-criterion

Since it was validated in the previous section that the balance between the centrifugal force and the
hydrostatic force is still crucial for the generation of the air-core vortex, the next logical step is to
determine whether a critical Π-number exists. The critical Π-number is defined as the number where
below the critical Π-number, the fluid flow will stay in the bubble regime, whereas the air-core vortex
should be present in the system for values above the critical Π-number.

A strong correlation was already obtained from the numerical results between the moment when the
air-core vortex was present in the bottle and the angular velocity. The lower the angular velocity, the
later the air-core vortex was realised. The exact moment when the air-core vortex was realised for the
first time is shown in table 6.

Angular velocity [rad/s] Timestamp [s]

20 2.6
30 1.25
40 0.85
50 0.7

Table 6: The earliest time value for when a fully developed air-core vortex is noticed
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The decrease of the necessary time to generate the air-core with an increase in angular velocity can be
explained using the force balance. By initializing the bottle with a lower angular velocity, the centrifugal
force also becomes weaker. If the centrifugal force is weaker than the liquid layer pushing from above
due to the gravitational force, the fluid flow will stay in the bubble regime. The flow will continue to
remain in the bubble regime, until the liquid level has descended sufficiently for the hydrostatic force
and the centrifugal force to be in balance. When the balance is achieved, the first part of the of the
air-core vortex formation should be noticed in the bottle. Thus, initializing with a low angular velocity
means that more liquid has to flow out of the bottle before a balance between the centrifugal force and
the hydrostatic force is obtained. This implies that the generation of the air-core vortex will happen in
a later stage for the lower angular velocity compared to the higher angular velocity cases. This can also
be seen in figure 54, where the circumferential velocity contours for each of the angular velocities are
depicted at the timestamp shown in table 6. The color contour is the same for every sub-figure. As can
be seen from figure 54, the higher the liquid level, the higher the circumferential velocity has to be for
the air-core to appear. This all proves that the Π-number has a significant effect on the generation of the
air-core vortex and a critical value for the Π-number should exist. The study on the critical Π-number
will be continued and discussed in more detail in section 4.1.6 and 4.1.7.

Figure 54: The circumferential velocity contour where the contours match the time values depicted in
table 6 a) 20 rad/s b) 30 rad/s c) 40 rad/s d) 50 rad/s

It is also interesting to study how the value of Π behaves with the onset of the vortex regime. The
onset Π-number is defined as how the centrifugal force relates to the hydrostatic force at the exact
moment when the air-core vortex is generated. Ideally, it is expected that the ratio between these two
forces should remain the same for all the cases, meaning an increase in angular velocity should result
in the same increase of hydrostatic force at the moment the air-core vortex is generated. The onset
Π-number is defined as the averaged circumferential velocity of the liquid layer at the moment the vortex
is formed (Ωmean) times the averaged interface radius (Rmean) divided by the gravity times the liquid
level difference (h(z)− h0) at the moment the air-core is generated:

Πonset =
(ΩmeanRmean)2

g(h(z)− h0)
(91)

where h0 is the height at the bottle opening at z=0.257 m (see figure 47 for a clarification of the height).

It is observed that the onset Π-number fluctuates between the different cases, shown in figure 55. From
figure 55, it can be observed that more data points are taken than previously discussed. Next to the
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Π-numbers shown in table 4, additional Π values of 0.4302, 0.8432 and 1.3939 were studied on the onset
Π-numbers. Even though the results fluctuated, the deviation is relatively small between every case (red
line) and the mean value (blue dotted line) of these cases, where the mean onset Π-number is equal to
0.3845. Therefore, it is believed that when the air-core vortex is created, the onset Π-number should be
around the same value for every case, despite no exact value was obtained for the onset Π-number.

Figure 55: The critical Π-number (red) and the onset Π-number (blue) related to the initial angular
velocity Ω.

4.1.5 Swirl stage

The last stage in the draining process is defined as the swirl stage. The swirl stage is characterized as
the draining period, where the last fraction of the liquid gets stuck in the top bottle due to the fluid
circulating in the contraction part. A part of the swirl stage is visualized in figure 56. Due to the absence
of the hydrostatic force, the centrifugal force has free rein, resulting in the fluid just spinning around its
vertical axis without moving down. To obtain a better understanding on how strong the centrifugal force
is with respect to the hydrostatic force, the onset Π-number in this stage is around 8, whereas the onset
Π-number was not even higher than 0.45 in the beginning phase of the vortex regime. From figure 88, it
can be seen that in the swirl stage, no glycerine is flowing out of the bottle, up until the liquid fluid has
decelerated enough. The remaining fluid then drops down into the bottom bottle, which explains the
peak in the flow rate right before the end. However, prior to the peak, a certain amount of time passes
with no flow rate and thus this stage is characterized as the most inefficient draining period. From table
5, it can be seen that an increase in angular velocity results in a longer drainage time for the swirl stage.
This is due to the fact that an increase in angular velocity results in a longer deceleration time before
the fluid is able to fall down into the connector.

(a) (b) (c) (d)

Figure 56: swirl stage of 50 rad/s with a time-interval of 0.1 s
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4.1.6 Hypothesis: relation between Π and drainage time

An analytical attempt is made to describe how the Π-number is related to the drainage time. The relation
is based on the analytical results obtained in this section. This will be compared with the numerical
results in the next section.

From equation 85, the force balance for the generation of the air-core vortex is obtained. By applying
the force balance for the bottle opening, the following is acquired:

1

2
ρΩ2

h(r2 − r2
i ) ∼ ρgh (92)

where Ωh is the angular velocity of the interface at the bottle opening. The radius difference between
the bottle neck and the interface (r2 − r2

i ) can be rewritten as: ((ri + δ)2 − r2
i ), where ri is the radius

of the interface from the center-line and δ the boundary layer thickness taken between the interface
and the wall. It is assumed for the simplicity of this analytical analysis that the boundary thickness is
significantly smaller than the interface radius, therefore (δ2 ' 0 and ri ' rh). The sizes are displayed in
figure 57a to obtain a better visualization of the different radii and the boundary layer.

(a) (b)

Figure 57: a) Elaboration of important parameters b) Control Volume over the top bottle

Applying the simplicity assumption about the boundary layer (δ2 ' 0 and ri ' rh), the radius difference
can be written as:

(ri + δ)2 − r2
i ∼ 2riδ ∼ 2rhδ (93)

Substituting this into the force balance equation (equation 92), a relation between the boundary layer
and the local Π-number in the bottle opening is found:

ρlΩ
2
h2rhδ ∼ ρlgh

δ ∼ gh

Ω2
hrh

(94)

Applying conservation of momentum, the boundary layer thickness can be expressed with the Π-number:

Ωhr
2
h ∼ Ωbr

2
b

δ ∼ ghr3
h

Ω2
br

4
b

=
1

Π

r3
h

r2
b

(95)
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Note that the boundary layer thickness increases for a decrease in the initial angular velocity. This
still satisfies the underlying physics of the air-core vortex. Since a relation between the boundary layer
thickness and the Π-number is already attained, the next step is to link the drainage time with the
boundary layer. For this, a control volume is taken over the whole top bottle. The control volume is
displayed in figure 57b. With this control volume, the boundary layer can be expressed in the mass
balance. Integrating this over time and a relation between the drainage time and Π is obtained. It is
assumed that the fluid layer moves down with an average bulk velocity of −dhdt and the area where the
fluid flows down through scales in the same order as with the radius of the bottle radius (∼ rb), resulting
in the following mass balance:

− dh

dt
r2
b ∼ uh((ri + δ)2 − ri) (96)

where uh is the velocity out of the bottle opening of the fluid layer. The left side of equation 96 represents
the mass flow at layer 1, shown in figure 57b, whereas the right side represents the mass flow out of the
top bottle at layer 2.

4.1.6.1 Laminar regime

The velocity uh can be expressed by applying the vertical force balance in the bottle opening between
the wall shear force and the hydrostatic force. Note that the relation for the wall shear stress, depicted
in equation 97 is only valid when the flow is laminar in the bottle connector.

ρlgrhδL ∼ τwrhL

τw ∼ µ
uh
δ

(97)

Substituting the wall shear stress and a relation is found between the bottle opening velocity and the
boundary layer:

uh ∼
gδ2

ν
(98)

Substituting equation 98 into equation 96 and integrating over time, the relation between the liquid level
and the drainage time is obtained:

−dh
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r2
b ∼

gδ2

ν
rhδ

h
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∼ 1√

1 + βh2
0
grh
νr2b

(
gr3h

Ω2
br

4
b
)3t

(99)

where β is a coefficient that has to be determined empirically. Rewriting this in a more general form,
the following is obtained:

h

h0
∼ 1√

1 + t
td,lam

(100)

where the typical laminar drainage time td,lam is defined as:

td,lam ∼
1

h2
0
grh
νr2b

(
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Ω2
br

4
b
)3

∼ Π3 ν

g

r8
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r10
h

(101)

Fastest drainage is obtained when the boundary layer in the bottle opening is approximately equal to
the radius of the bottle opening, thus δ ∼ rh. Therefore, by substituting this boundary layer thickness
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into equation 99, the minimal drainage time tmin,lam can be obtained:

−dh
dt
r2
b ∼

gr2
h

ν
r2
h

h0

tmin,lam
∼ g

ν

r4
h

r2
b
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h0νr

2
b

gr4
h

(102)

How the drainage time grows with the minimal drainage time turns out to be a function of the Π-number.
This is displayed below:

td,lam
tmin,lam

∼
Π3 ν

g
r8bh0

r10h
h0νr2b
gr4h

∼ Π3

(
rb
rh

)6

(103)

4.1.6.2 Turbulent regime

In the previous analytical solution, it was taken that the flow in the bottle connector is laminar. However,
the fluid flow can also become turbulent in the bottle connector. Therefore, an analytical solution is
also obtained for the turbulent regime. Up until equation 96, the solution remains the same for both
regimes. The difference between the laminar and turbulent solution is obtained when defining the wall
shear stress. From equation 60, it was already found that the turbulent shear stress relates to the velocity
as:

τw ∼ cfρu2
h (104)

Substituting this in the axial force balance in equation 97, the following relation is acquired:

u2
h ∼

gδ

cf
(105)

When applying the new relation for the bulk velocity in the mass balance, the turbulent relation between
the liquid level and the drainage time is obtained:
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(106)

where γ is an empirical coefficient. The turbulent drainage time td,turb can then be defined as:
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(107)
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It is believed that rh ' δ has to be satisfied to obtain the minimum drainage time. Rewriting equation
106 in terms of the minimal drainage time, the following is obtained:
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How the drainage time grows with the minimal drainage time turns out to be a function of the Π-number.
This is displayed below:
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So, to summarize the findings:

tdrainage ∼ Π3 for laminar regime (110)

tdrainage ∼ Π3/2 for turbulent regime (111)

It can be stated from the analytical results that the drainage time is a function of the Π-number to the
power of 3 if the flow regime in the bottle connector is laminar, if it is turbulent the drainage time is
a function to the power 3/2. Note that the following relation was substantially simplified to obtain the
analytical result. However, from the numerical results, it was already found that the minimum drainage
time is correlated with the critical angular velocity. It is believed that the drainage time scales and
grows with Π3 or Π3/2 beyond the critical Π-number. This hypothesis is displayed in figure 58, where
the minimum of the parabola is related to the minimum drainage time and the critical Π-number. From
there on in the vortex regime (pink area), the line develops in the third power or 3/2, depending on the
flow regime.

Figure 58: Expected relation between Π and drainage time

4.1.7 Conclusion hypothesis Π-drainage time relation

The hypothesis of the curve was tested and will be compared with the numerical results in this section.
The result from the analytical calculation was that the drainage time would grow in the power to the third
or 3/2 of the Π-number, depending on the flow regime. Before the comparison between the analytical
and numerical solutions will be shown, first a few assumptions has to be checked whether they were valid
or not. In particular, equations 94 and 95 will be cross-checked with the obtained numerical results.
The comparison between equations 94 (red line), 95 (blue line) and the numerical results (black line) is
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plotted in figure 59. As can be seen in figure 59, more data points are present than previously discussed
in the Π-case. A full overview of all the data points used for this conclusion is depicted in table 7.

Angular velocity [rad/s] Π

0 0
5 0.0172
10 0.0688
15 0.1549
17 0.1989
20 0.2753
25 0.4302
27 0.5018

Angular velocity [rad/s] Π

28 0.5397
30 0.6195
31 0.6615
35 0.8432
40 1.1014
45 1.3939
50 1.7209

Table 7: Different testcases for the Π-case

The numerically obtained fluid thickness δ is derived from the effective area Aliquid through the following:

Aliquid =
1

4
π(d2

h − (dh − δ)2) (112)

where dh is the diameter of the bottle opening. The effective area Aliquid is numerically obtained by:

Aliquid =

∑
αliquid(i, j, k) ·Acell(i, j, k)∑

αliquid(i, j, k)
(113)

where Acell(i, j, k) is the cell area of that specific cell. For equation 94, the angular velocity in the bottle
opening was needed. This was numerically obtained by calculating the mean angular velocity in the
bottle connector for every time-step and then averaged over all the time-steps. As can be seen in figure
59 does the calculated values for the fluid thickness differ. However, since equations 94 and 95 are order
estimations instead of quantitative results, the course of the line gives a better indication whether the
relations are valid or not. Even though equation 94 and 95 do not align perfectly with the numerical
results, it can still be concluded that the course of the lines correlate well between each other.

Figure 59: Comparison between the estimated relations for the fluid thickness (red and blue lines) and
the numerically obtained fluid thickness (black line).
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Also, the flow regime in the bottle connector should be determined, since the relation between the non-
dimensional drainage time and Π differ, dependent on the flow regime. One way to prove the flow regime
is by plotting both sides of equation 97. This is depicted in figure 60. Since plotting all the results for
equation 97 from the data points in table 7 in figure 60, this would result in a chaotic graph. Therefore,
only the four angular velocities are presented in the graph that were also discussed through the whole
Π case. At every time-step in the vortex regime, the wall shear stress was calculated. Since the wall
shear stress was related to the bulk velocity divided by the liquid layer in the bottle opening, at every
time-step the liquid layer thickness δ was derived from the effective area Aliquid depicted in equation 112
and the bulk velocity ub was derived from the liquid flow rate Qliquid as:

ub =
Qliquid
Aliquid

(114)

At every time-step the shear force was plotted against the spatial gradient du
dy = uh

δ . It is expected that a
linear relation should be obtained in the plot to prove the laminar nature of the flow. As can be observed
from figure 60, the linear relation is indeed realized for 20 and 30 rad/s. However, for 40 and 50 rad/s, it
can be observed that an exponential increase is noticed in the right top corner. It was found that these
are related to the first half of time interval in which the vortex regime is present, where in the bottle
connector, the flow still was turbulent. Therefore, it is concluded Π should grow to the power third for
20 and 30 rad/s, whereas for 40 and 50 rad/s Π should grow to the power 3/2..

Figure 60: Every data point in the plot represents one time-step, where the calculated shear force is
compared to the spatial gradient of uh

δ

The numerical drainage time over Π is depicted in figure 61, where it is made dimensionless with the
stationary drainage time shown in equation 10. Three lines can be seen in the graph, where the black
line shows the numerically calculated drainage times for the corresponding angular velocities. The blue
line shows how Π3 scales with the drainage time starting from the minimal drainage time. The red line
shows how Π1.5 scales with the drainage time starting from the Π-number, where the flow regime in the
bottle connector turns turbulent. It is observed that the critical Π number is equal to Π = 0.1989. Also,
a critical transition Π number is found for a value of Π = 0.5397. Comparing the two lines, it can be
seen that both lines correlate well with the numerical results.
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Figure 61: The numerical results for the relation between the drainage time and Π. The numerical
results are shown as the black line. The grey area represents the bubble regime. The blue dotted line
shows the development of the laminar relation (Π3). The red dotted line shows the development of the
turbulent relation (Π1.5).
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4.2 Case 2: Influence of the Morton number

Case 1 characterized the vortex regime and how the Π-number influenced the vortex regime and the
drainage time. The fluid properties will be altered in the next two cases. The influence of the Morton
number will be tested in this section. To keep the Π-number constant, the initial angular velocity and
height had to remain constant. It was ensured that the selected Π-number was high enough, for the
air-core to be formed. If the centrifugal force is not strong enough for all the cases to form this air-core,
the drainage time will increase significantly and therefore the sole effect of the Morton number can not
be studied correctly. An example is given in section 4.2.6, where the Morton number has been excessively
increased, resulting in the Π-number being lower than the critical Π-number. How the critical Π-number
changes due to an alteration of the Morton number will be discussed in this section.

To keep the Eötvos number constant, the liquid properties except for the viscosity should remain constant.
with their fluid propertiesHowever, by using existing fluids with physical properties, it was difficult to
find a fluid that can change its viscosity without altering the other fluid properties. For glycerol-water,
it was found that by altering the glycerol weight percentage, the viscosity increases significantly relative
to the density and the surface tension. This was based on experimental data by Takamura et al [89].
The properties of the fluid can be seen in table 8, where 3 different weight percentages were used for this
case. The Morton number increased 3 times (45%-glycerol) and 8.6 times (50%-glycerol) with respect
to the 40% glycerol, whereas the Π-number stayed equal due to the same initial angular velocity and
height. The Eötvos number only increased by 0.018 times (45%-glycerol) and 0.037 times (50%-glycerol).
Therefore, it was stated that the effect of the increase on the Eötvos number was negligible and thus the
effect of the Morton number could be investigated with these weight percentages of glycerol.

Glycerol-% 40% 45% 50%

Morton 4.5145e-09 1.3850e-08 3.8696e-08
Density 1100 1114 1128
Viscosity 0.00363 0.0048 0.0062
Surface tension 0.07 0.069625 0.06925

Π 0.5619 0.5619 0.5619
Eötvos 61.5954 62.7161 63.8491

Table 8: Different test cases with their fluid properties for the Morton case

4.2.1 Draining regimes

The different parameters over time are shown in figure 62, 63 and 64. Also, the averaged circumferential
velocity of the liquid layer over time is displayed in figure 65. The drainage time per regime for every
case is depicted in table 9. The graphs and table will be elaborated further in this section.
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Figure 62: Volume over time for the bottom bottle

Figure 63: Glycerine flow rate out of the bottle opening
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Figure 64: Glycerine area in the bottle opening

Figure 65: The averaged circumferential velocity of the liquid layer throughout the draining regime

Glycerol-% 40% 45% 50%

Drainage time [s] 8.075 7 6.6
Bubble regime [s] 1.05 1 0.95
Transition regime [s] 0.3 0.4 0.5
Vortex regime [s] 6.25 4.6 4.15
swirl regime [s] 0.475 0.9 1

Table 9: Duration of draining regimes for the Mo-case

4.2.2 Bubble regime

The Morton number influences the bubble characteristics in the bottle, as can be seen in figure 3. From
the literature review, relations for the terminal rise velocity of Taylor bubbles in vertical tubes and the
terminal velocity of rising bubbles in unhindered liquid environment were found. The emptying process
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starts with Taylor bubbles being formed in the opening of the bottle, where the shape and the rising
velocity of the bubbles are determined due to the geometric restrictions of the connector walls. For the
vertical rising velocity, equation 6 can be used which is valid when surface tension is negligible (Eo > 40).
The rising velocities of the Taylor bubbles calculated by equation 6 are shown in the second column of
table 10 labeled as velocity. From the table, it appears that the rising velocity for Taylor bubbles is
higher for lower viscosities. Since it is more useful to compare the volumetric flow rates, rather than the
rising velocity of the bubbles, the effective area in the bottle opening should be estimated as well. The
film thickness δ around a Taylor bubble in the bottle mouth can be estimated with the following relation
[90]:

δ = dh

(−1 +
√

1 + 2.44N
2/3
f

2.44N
2/3
f

)
(115)

where dh is the inner diameter of the bottle opening and Nf is the inverse viscosity number. By
calculating the film thickness in the bottleneck, the effective area of the air-layer in the bottleneck can
be determined. By multiplying the rise velocity of the bubble with the obtained effective area, the air
volumetric flow rate can be estimated. By applying volume conservation, the liquid flow rate is also
obtained. The liquid volumetric flow rates are depicted in the third column in table 10. It should be
noted that the values calculated in table 10 are values for the case when the bottle is initialized with no
rotational velocity. However, since the Π-number is kept constant, it can be expected that these values
still can give a correct qualitative description on the volumetric flow rates and the bubble behaviour.
From table 10, it appears that the differences in volumetric flow rates between the different glycerol
weight percentages are barely noticeable. This would indicate that the bubble regime is independent in
the range of Morton numbers used in this study. When referring back to the literature review, namely
figure 6, it was shown that the range of Morton numbers used in this study are in region 3, which indicates
that the bubble regime is indeed independent of viscosity. This was also noticed in the numerical results,
where nearly to no difference was obtained in the volumetric flow rate, depicted in figure 63 or the volume
over time graph, depicted in figure 62.

Glycerol weight percentage Velocity [m/s] Flow rate [m3/s]

40% 0.0891 7.9346e-06
45% 0.0859 7.6394-06
50% 0.0827 7.3480e-06

Table 10: Velocity and volumetric flow rate for the Morton case based on the theory stated in equation
115.

Also, from figure 66, it can be seen that the initial bubble growth due to the Rayleigh-Taylor instability
is independent of the Morton number. Bellman and Pennington [91] studied the effect of viscosity on
the growth rate of the Rayleigh-Taylor instability for the initial regime. They concluded that viscosity
is negligible for a wave number of k < 3 cm−1. The maximum wavelength is identical for all the
cases due to the geometrical restrictions. Also, the difference in film thickness between the cases is
negligible. From observation on the numerical results shown in figure 66, it is evident that the shape of
the interface is similar to one half of the wave length. Therefore, the maximum wavelength for all the
cases is approximately equal to twice the inner diameter of the bottle opening (2.15 cm). Thus, it can be
concluded that viscosity effects can be neglected for the initial growth rate of the bubbles in the bottle,
since k = 2π

λ = 2π
2.15 = 2.92 cm−1 is smaller than 3 cm−1.

Even though the difference in flow rates and the effective area in the bubble regime are negligible in
relation with the Morton number, one parameter changes in the bubble regime. From figure 65, it can be
seen that the viscosity influences the overall liquid circumferential velocity. Especially from around 0.5
seconds, the deceleration between the cases starts to show. However, this deceleration has not effected
the drainage time yet, and thus the bubble regime remains unaffected by the alteration of the Morton
number.
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(a) (b) (c)

Figure 66: VOF contour of the bubbling regime at t=0.1 s for a) 40% b) 45% c) 50% glycerol

4.2.3 Transition regime

It was found that the bubble regime was independent in the range of the tested Morton numbers.
However, the circumferential velocity started to differ between the three cases and it is believed that this
caused dissimilarities between the three cases in the transition regime. The dissimilarities can be seen
from table 9. From the table, it can be obtained that an increase in the Morton number results in a
small increase of the drainage time in the transition regime.

In the Π-case, an inverse correlation was found between the time of the transition period and the initial
angular velocity, which stated that the transition regime lasted longer for a decrease of the angular
velocity. From figure 65, it is visible that an increase in Morton number reduces the circumferential
velocity. Combining the inverse correlation from the Π-case and the relation between the Morton number
and the circumferential velocity, it is expected that this inverse correlation is also applicable on the
Morton case. This means that with an increase in viscosity, the transition regime should last longer.
From table 9, it can be seen that indeed an increase in viscosity results in an increase of the drainage
period of the transition regime. A horizontal and vertical circumferential contour was made to visualize
how for the three cases the circumferential velocity behaves in the transition regime. The contours at
t=0.05 seconds in the transition regime was made and depicted in figure 67 and 68. It can be seen from
the contours that the overall circumferential velocity is higher for the least viscous fluid.

The deceleration due to viscosity can be explained with viscous dissipation. Consider the kinetic energy
of the fluid layer

E =
1

2

∫
Vb

ρ|u|2dV (116)

where Vb is the volume of the liquid layer in the top bottle. To obtain the energy dissipation, the time
derivative of equation 116 will be taken and through mathematical manipulation, the following energy
dissipation equation is obtained:

d

dt
E =

∫
A

u · (n · σ)dA− 2µ

∫
Vb

|E|2dV +

∫
Vb

ρb · udV (117)

where A is the surface, σ = −pI + τ , τ is the stress tensor, which contains a pressure and viscosity term,
|E| is the strain rate magnitude and b is the body force. The first term represents the work done by
the hydrodynamic force, the second term is the energy dissipated and thus the viscous dissipation rate,
the last term is the work done by the body force. From equation 116, it is obtained that by increasing
the viscosity of the fluid, more energy will be dissipated. This is done by transforming the motion of
the fluid into internal energy of the fluid. In other words, more of the circumferential velocity will be
turned into heat with increasing viscosity, resulting in the higher deceleration of the circulation, which
is in agreement with figure 65.
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(a) (b) (c)

Figure 67: Horizontal circumferential velocity contour at t=0.05 seconds in the transition regime for a
liquid volume fraction αl > 0.9 at z=0.3 m for a) 40% glycerol b) 45% glycerol c) 50% glycerol

(a) (b) (c)

Figure 68: Vertical cirumferential velocity contour at t=0.05 seconds in the transition regime for a liquid
volume fraction αl > 0.9 for at x=0 m a) 40% glycerol b) 45% glycerol c) 50% glycerol

4.2.4 Vortex regime

It seems that even though the decrease in circumferential velocity is already noticed in the transition
regime, the effect of viscous dissipation on the drainage time is the largest in the vortex regime. From
figure 62, it can be seen that the difference in drainage time between the different Morton case starts to
grow wider in the vortex regime. The height-time gradient is also found to be steeper in the vortex regime
for increasing viscosity, indicating a higher liquid flow rate for the most viscous fluid. The difference is
mainly influenced by the effect of circumferential velocity. The weakened swirl velocity for increasing
viscosity was obtained in the results. The evolution of the mean circumferential velocity of the whole
liquid layer in the vortex regime is plotted in figure 69 and is calculated as follows:

ucircumferential,mean =

∑
αliquid(i, j, k) · ucircumferential(i, j, k)∑

αliquid(i, j, k)
(118)
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where αliquid(i, j, k) is the volume fraction of the liquid in a specific cell, ucircumferential(i, j, k) is the
circumferential velocity of the cell. The slopes in the graph of figure 69 is calculated, where the slope
is -0.0511, -0.0564 and -0.0604 for the lowest, middle and the highest Morton number respectively. A
sharper slope indicates a higher deceleration of the fluid in the bottle, which is a direct result of viscous
dissipation. This was also obtained by Zielinski and Villemonte [92], who showed that as the viscosity
increased, the circulation of the free surface vortex would decrease faster due to the increased viscous
shear.

Combining this with the initial lower angular velocity for increasing viscosity at the start of the vortex
regime, it is expected that the centrifugal force acting on the liquid layer should also be weaker for
increasing viscosity throughout the vortex regime. From figure 64, it can be seen that this is valid.
The radius of the air-core decreases for increasing liquid velocity, which is a direct result of the weaker
centrifugal force. The smaller air-core radius corresponds to a thicker liquid film in the bottle opening.
Also, due to the weaker centrifugal force, it is easier for the fluid to flow down, increasing the axial
downward velocity. Both of these contribute to a higher mass flow rate, resulting the overall drainage
time to be the lowest for the most viscous fluid in the vortex regime .

Figure 69: The averaged velocity profiles of the water layer over time in the vortex regime.

4.2.4.1 Π-criterion for the Morton case

As discussed above does the viscosity influence the magnitude of the velocity. This also means that
the viscosity influences the exact moment when the air-core vortex is being generated. Increasing the
viscosity results in a weaker circumferential velocity and thus a later generation of the free surface vortex.
In section 4.1.4.3, it was already found that the generation of the air-core vortex strongly depends on the
onset Π-number. To prove that the onset Π-criterion is also applicable for different fluid compositions,
the onset Π-number was calculated for the three Morton numbers tested in this section. The calculation
of the Π-number is done equivalently as in chapter 4.1.4.3 and the results are shown in figure 70. The red
line indicates the onset Π number for the three Morton numbers. The range of onset Π-numbers for the
Π-cases is depicted in the grey area. The mean value for the onset Π-number for the Π-case is depicted
in the blue striped line, whereas for the Morton case is shown in the black striped line. From figure
70, it can be seen that the onset Π-number for the Morton numbers is in the range of onset Π numbers
for the Π-case and the mean value (0.3845 for Π and 0.3319 for Morton) is close for both cases. This
indicates that indeed a relation exists between the onset Π-number and when the air-core vortex is being
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generated. However, the onset number between the different cases still fluctuate too much, therefore no
real conclusions can be drawn yet.

Figure 70: The onset Π-number for the different Morton cases compared to the Π case

4.2.5 Swirl stage

How the increased viscous shear has helped to reduce the drainage time in the vortex regime, the increased
viscosity now increases the drainage time in the swirl stage, as can be seen in table 9. In the swirl stage of
the Π-case, it was obtained that the swirl stage was strongly dependent on the disappearing hydrostatic
force and the still present centrifugal force. When we compare the averaged circumferential velocities
of the fluid layer at the beginning of the swirl stage for the different Morton cases, it was found that
these velocities were close to each other. The values are depicted in the second column in table 11. The
hydrostatic force is dependent on the density of the fluid and the remaining amount of fluid. It was
noticed that for the different Morton numbers, the amount of fluid in the top bottle at the beginning of
the swirl stage differed between each other. The values of the volume are shown in the last column in
table 11. Since the volume is higher for higher viscosity, in normal circumstances the higher hydrostatic
force should push the fluid down faster and reduce the drainage time. However, since the amount of
volume is rather low, it can be expected that the effect of hydrostatic force can be neglected. Therefore,
it seems that the swirl stage is independent of the Π-number and is influenced by the viscous property
of the fluid and the Morton number.

Glycerol weight percentage Mean velocity [m/s] Initial volume [mL]

40% 0.18 0.55
45% 0.20 10.1
50% 0.19 15.9

Table 11: The mean circumferential velocity profile and the volume in the top bottle at the start of the
swirl stage
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In the vortex regime, the viscosity and the wall effects decelerate the overall velocity, including the cir-
cumferential and the axial velocity. However, in the vortex regime, only the deceleration effect on the
circumferential velocity was noticed. The wall effects were negligible due to the dominating hydrostatic
effects pushing the fluid down. This is not the case in the swirl regime. The fluid viscosity again decel-
erates the velocity, however in the swirl regime, the hydrostatic effects are negligible and the difference
in circumferential velocity are barely noticeable. This causes the wall effects to start playing a key role
in the swirl regime. The influence of the wall shear is shown in figure 71, where the wall shear stress
is averaged over the perimeter at the same height. It can be seen that the wall shear stress is higher
for an increasing Morton number. This implies that it is harder for the fluid to flow down in the axial
direction, causing the longer ”swirl” of the fluid and increasing the drainage time for increasing Morton
numbers in the swirl regime.

Figure 71: Averaged wall shear stress in the contraction part at the beginning of the swirl stage for the
Morton case

4.2.6 Shift of the critical Π-number due to increasing Morton number

The relation that was found in this section between the drainage time and the Morton number stated that
an increase in the Morton number resulted in a faster drainage time. This was due to viscous dissipation
causing a quicker decay of the circumferential velocity, weakening the centrifugal force. However, by
extensively increasing the viscosity, this can lead to a centrifugal force that is weaker than the hydrostatic
force throughout the whole drainage. This causes the fluid flow to remain in the bubble regime, resulting
in a significant increase in the drainage time. Due to the increased viscosity, more of the centrifugal
force will be dissipated, making it a necessity to initialize with a higher rotational velocity, otherwise
the air-core vortex will not form. Therefore, it is believed that the critical Π-number shifts depending
on the change of the Morton number.
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An example is given where a fluid composition of 78% glycerol and 22% water is initialized. The
associated Morton number is equal to Mo=4.8969e-07. The bottle is initialized with an angular velocity
of 30 rad/s. The volume over time graph is plotted in figure 72 and the result for Mo=4.8969e-07 (78%
glycerol) is shown in blue. It was obtained that for this fluid composition, the fluid was too viscous
for the air-core to be formed. This resulted that the flow regime would remain in the bubble regime,
increasing the drainage time significantly. A comparison is also given in figure 72 shown with the red
line, where the bottle is initialized with the same angular velocity of 30 rad/s, however with a Morton
number of Mo=4.5145e-09 (40% glycerol). For this Morton number, the air-core vortex was formed, and
as can be seen from the graph, the drainage time got significantly reduced. From this, it is believed that
the critical Π-number shifts depending on the change in Morton numbers. This conclusion correlated
well with the experimental findings of the team of BSc students from the TU Delft (Appendix A), where
it was already obtained that the critical angular velocity to form the air-core vortex was not constant
for the different glycerol-water compositions.

Figure 72: Volume over time for the bottom bottle for 40% glycerine (red line) and 78% glycerine (blue
line)
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4.3 Case 3: Eötvos

For the last case of this study, the influence of the Eötvos number on the drainage time will be tested.
Due to the changing Eötvos number, from figure 3 it can be seen that for an Eötvos number of 30.7977 the
bubble shape will change. Since the surface tension term is present in the Morton and Eötvos number,
to keep the Morton number constant, viscosity also has to change accordingly. Once more, the base fluid
is chosen to be the same as the Morton case, where the 40% glycerol fluid is initialized with an angular
velocity of 30 rad/s. However, unlike the previous two cases, no physical fluids were found that matched
the requirements that were necessary to alter the Eötvos, while keeping Morton and Pi constant. Thus,
for this case no physical fluids are used. To alter the Eötvos number and keep the Morton number
constant, the surface tension γ and viscosity µ had to be modified. They are calculated as follows:

γ = C · γ40

µ = C3/4 · µ40

(119)

where γ40 and µ40 are the surface tension and the viscosity of the 40% glycerol fluid and C is the constant
that has a value of 0.5, 1 and 2. This constant is equal to the inverse factor of how much the Eötvos
number changes with respect to the base fluid of 40%-glycerol case. A summary of the fluid properties
and the dimensionless numbers is given in table 8.

Constant C [-] 0.5 1 (40%-glycerol) 2

Eötvos 123.1907 61.5954 30.7977
Density 1100 1100 1100
Viscosity 0.0022 0.00363 0.0061
Surface tension 0.035 0.07 0.14

Π 0.5619 0.5619 0.5619
Morton 4.515-09 4.515-09 4.515-09

Table 12: Different testcases for the Eo-case

4.3.1 Draining regime

The different parameters over time are shown in figure 73, 74 and 75. The drainage time per regime for
every case is depicted in table 13. The graphs and table will be elaborated further in this section.

Figure 73: Volume over time for the bottom bottle
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Figure 74: Glycerine flow rate over time out of the bottle opening

Figure 75: Glycerine area over time in the bottle opening

Constant 0.5 1 2

Drainage time [s] 8.1 8.075 5.25
Bubble regime [s] 1.1 1.05 1.2
Transition regime [s] 0.3 0.3 0.3
Vortex regime [s] 6.3 6.25 3.65
swirl regime [s] 0.4 0.475 0.1

Table 13: Duration of the draining regimes for the Eötvos case

4.3.2 Bubble regime

By increasing the surface tension, physically it means that a higher force is necessary to extend the
air-liquid interface. For the special case where the heavier fluid lies on top (Rayleigh-Taylor instability),
there is a range of short waves for which the surface tension stabilizes the interface, resulting in an
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impenetrable interface. At a certain value does the hydrostatic force surpass the surface tension force
and mixing between the two layers start to occur. This statement was proven by Kohira [93], who
obtained that for an air-water system, fluid flow was only found for a bottle opening diameter bigger
than 4mm. This can be explained with the capillary wave length, which relates gravity to surface

tension as λc =
√

γ
∆ρg . When the wave length of the interface is larger than the capillary wave length,

the interface becomes unstable, which causes the start of the formation of bubbles. The capillary wave
lengths from the highest to the lowest Eötvos numbers are 1.8 mm, 2.5 mm and 3.6 mm respectively.
Since the inner diameter of the bottle opening is 1.075 cm and even though the formation of the interface
is only one half of the wavelength, it can still be concluded that for all the cases the interface becomes
unstable.

From the first two time steps of 0.05 seconds each, depicted in figure 77, the influence of the different
Eötvos numbers on the bubble regime is already noticed. It can be seen that for the lowest Eötvos
number, the deformation of the interface is the smallest. This is due to the surface tension providing
a restoring force to the interface, which explains the later starting point of the lowest Eötvos number
in the graph in figure 73. The rate of deformation can also be expressed with the growth rate of the
interface. The growth rate ω can be solved from the dispersion relation for the Kelvin-Helmholtz and
the Rayleigh-Taylor instability:

ω(k) =

(
ρ1U1 + ρ2U2

ρ1 + ρ2

)
k ± k√

ρ1 + ρ2
·

√
−ρ1ρ2(U2 − U1)2

ρ1 + ρ2
+

(ρ1 − ρ2)g

k
+ γk (120)

where subscript 1 is for the bottom fluid and subscript 2 stands for the top fluid, k is the wave number.
For simplicity, it is assumed that during the beginning stage of the Rayleigh-Taylor instability, no velocity
difference between the two layers has yet been noticed, reducing equation 120 to

ωRT (k) = ± k√
ρ1 + ρ2

·
√

(ρ1 − ρ2)g

k
+ γk (121)

The instability of the interface is triggered when an unstable mode with a positive growth rate (ωi > 0)
exists, where the subscript i stands for the imaginary value. Thus, to trigger the Rayleigh-Taylor
instability, the heavier fluid has to be on top (ρ1 − ρ2 < 0). Note from equation 121 that for the
case when ρ1 − ρ2 < γk, the growth rate becomes a real value and therefore erases the instability.
This satisfies the condition discussed earlier in this subsection, that for high surface tension values, the
surface tension fully stabilizes the interface. From equation 121, it can be concluded that an increase
of the surface tension results in a decrease of the growth rate for a constant wave number. Since the
wavelength is constant due to geometric constraints, it can be expected that the growth rate is the
highest for the highest Eötvos value and vice versa. Ergo, for a higher Eötvos number, bubbles will be
generated easier. The equations stated above are generally used for the Rayleigh-Taylor instability in
stagnant fluid. However, El-Ansary et al.[66] found that the theory is still valid for rotational flow. The
only difference between the stagnant and the rotational case is that the values of the growth rate were
slightly lower for the rotational case in comparison with the stagnant case.

Not only the initial deformation of the interface is dependent on the surface tension, also the deformation
of the bubble can also be found to be in relation with the surface tension. When the bubble is sufficiently
distorted, its top is found to be spherical, whereas the bottom is close to being flat. This deformation
occurs when the effect of gravity is larger than the surface tension. If the effect of surface tension is
large, the bubble is nearly a sphere. The underlying physics is described in the literature review. From
the figure designed by Clift [8] in figure 76, it can be seen that for C=1 and C=2, the bubbles will stay
in the spherical-cap regime, whereas for C=0.5 the bubble will occur in the wobbling regime. This was
also obtained in the numerical results, shown in figure 78 d, e and f.
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Figure 76: Behaviour of the bubble shape by Clift[8] for different glycerol weight percentages. Blue:
C=0.5 Green: C=1 Red: C=2

Surface tension also effects the bubble size. With an increase in surface tension, the bubble size should
increase as well. Due to the geometrical restrictions at the bottle opening does the initial bubble size in
the opening not differ between the three cases. However, when the bubble enters the conical section, the
bubble has no limitations, which results in it expanding radially and axially, where the fluid properties
such as the surface tension determine the bubble size. It was expected that due to the increase in surface
tension, the bubble size should increase, which would result in a slower frequency in the oscillatory flow
pattern. A slower frequency results in a less amplified pulsating behaviour leading to a longer duration of
liquid flowing down through the thin liquid layer around the bubble. Therefore, increasing the liquid flow
rate. However, from figure 74, it can be seen that the glycerine flow rate for the different cases fluctuate
around the same values. Also, the steepness of the slope in the height-time graph in figure 73 barely
differ, where after the first generated bubble, the slopes are 0.2098, 0.2266 and 0.2230 for the lowest,
intermediate and the highest Eötvos numbers respectively. The gas bubble velocity was calculated where
the average bubble velocity for each case was equal to 0.47, 0.51 and 0.5 m/s for the lowest, intermediate
and highest Eötvos number. From the literature review in figure 5, it can be observed that only for
the Eötvos value of 30.7977 (C=2), the Froude number should be slightly lower compared to the other
two tested Eötvos values. However, this difference in velocity is negligible comparing to the total liquid
level. Thus, it was found that an increase in Eötvos number did not alter the flow rate or the bubble
velocity, even though the bubble shape had changed. Therefore, it is believed that the alteration of
the Eötvos number only influenced the flow rate at the initial start of the bubble regime. The effect
of surface tension can be assumed to be negligible for the later stages in the bubble regime. Similar
findings were found by Sohn [94, 95], who showed that surface tension only affected the initial growth
of the Rayleigh-Taylor instability. He also found that an increase in the Eötvos number would decrease
the bubble velocity, however the difference in bubble velocity was too small to take into account.
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(a) (b) (c) (d) (e) (f)

Figure 77: The VOF contour at t=0.05 s for a) C=0.5 b) C=1 c) C=2 and t=0.1 s for d) C=0.5 e) C=1
f) C=2

(a) (b) (c) (d) (e) (f)

Figure 78: The VOF contour at t=0.2 s for a) C=0.5 b) C=1 c) C=2 and t=0.4 s for d) C=0.5 e) C=1
f) C=2
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(a) (b) (c) (d) (e) (f)

Figure 79: The VOF contour at t=0.6 s for a) C=0.5 b) C=1 c) C=2 and t=0.8 s for d) C=0.5 e) C=1
f) C=2

4.3.3 Transition regime

From table 13, it can be seen that the drainage time for the transition regime is identical for the
three different cases. By increasing the Eötvos number, two fluid properties got altered. Both of these
parameters will be investigated separately on their effects first.

How the interface behaves, is effected by the surface tension and the Laplace pressure difference, which
is defined as:

∆pl→g = γ

(
1

R1
+

1

R2

)
(122)

From the Laplace equation, it can be obtained that for a constant pressure, the radius of the interface
will increase for an increase in surface tension. The transition regime is defined as the regime prior to the
fully developed vortex regime where the pressure in the air-core layer is equal to the ambient pressure.
Therefore, it is expected that due to the same jump of Laplace pressure for every case, the interface
would flatten out sooner for the lower Eötvos cases and thus decrease the time of the transition regime.

Since the viscosity increases for a decrease in the Eötvos number, it was expected that the same conclusion
from the transition regime in the Morton case was applicable. The conclusion stated that the increased
viscosity would decelerate the circumferential velocity faster, which was also obtained from figure 80.
This would result in a longer transition for the higher viscous fluid. However, from the Morton case, it
was obtained that the effect of viscous dissipation was small in the transition regime compared to the
vortex regime. Therefore, it is also believed that the effect of viscous dissipation is small for the Eötvos
case. Since the effect of surface tension and viscosity are both small, it is believed that the increase in
surface tension and viscosity will cancel each other out or it can be stated that both effects are negligible
towards the drainage time. From table 13, it can be seen that the transition regime time is indeed the
same for all the three cases.
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(a) (b) (c)

Figure 80: Circumferential velocity contour at t=0.05 s in the transition regime for a) C=0.5 b) C=1 c)
C=2

4.3.4 Vortex regime

From the literature review, it was found that the surface tension had negligible effect on the drainage
period of the vortex regime. However, by altering the Eötvos number and keeping the Morton number
constant, the surface tension as well as the viscosity got adjusted in the right proportions. From the
results, shown in figure 73, it can be seen that the drainage period is significantly shorter for the lowest
Eötvos case compared to the other two cases. To clarify this change, again both fluid properties will first
be discussed separately.

The alteration of the viscosity was extensively discussed in the Morton case. From that section, it was
found that the dissipation rate was higher for the higher viscous fluid, resulting in a quicker decay of
the velocities. This implied that the acting centrifugal force was weaker resulting in the effective fluid
area in the bottle opening and the downward axial velocity to become higher, which would lead to the
increase of the flow rate and thus the shorter drainage time.

The behaviour of the interface due to surface tension can be discussed with the Laplace pressure in
equation 122. By assuming that the axial interface is close to flat and thus 1

R1
→ 0, the Laplace pressure

is only a function of the surface tension and the radial curvature. Since the pressure in the air-core in the
vortex regime is equal to atmospheric pressure, the pressure difference in each case should be the same
provided that the hydrostatic pressure is the same. Thus, by increasing the surface tension, the radius
also has to increase due to the Laplace pressure jump. This results in a smaller effective liquid area in the
bottle opening and thus a smaller liquid flow rate. However, the decrease in area size was not obtained in
the numerical results as can be seen in figure 75. Especially in the early stages of the vortex regime, it can
be seen that the effective area is the biggest for the lowest Eötvos case, whereas the difference between the
intermediate and the highest Eötvos number is barely noticeable. The averaged circumferential velocity
of the liquid layer is shown in figure 81a. From the averaged circumferential velocity, it can be seen
that the alteration of the surface tension and the viscosity from the two highest Eötvos number has no
significant influence on the circumferential velocity. However, the difference between the lowest Eötvos
case and the higher two cases is too big to neglect, where the slope also is steeper for the lowest Eötvos
number compared to the other two. It is believed that the steeper deceleration is probably due to the
effect of increased viscous dissipation, which was also seen in figure 69 in the Morton case, where the
slope is steeper for an increase in viscosity.

It is believed that the surface tension has no effect on the deceleration of the fluid layer and therefore
on the centrifugal force. A comparison case was setup, where both fluids had the same viscosity, but
different surface tensions. Both fluids contained the same composition as the 45%-glycerol fluid, shown
in table 8. However, one fluid had a surface tension of 0.069625 kg/s2 and the other contained a surface
tension of 0.14 kg/s2. As can be seen from figure 81b, does the circumferential velocity correlate well
between the two different values of surface tension. Therefore, it can be assumed that the effect of the
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surface tension on the centrifugal force in the tested range of Eötvos numbers is most likely negligible.
Since the centrifugal force has a significant impact on the downward axial flow velocity and the effective
liquid area, it is believed that the overall drainage time is also unaffected by the surface tension. This
also agrees with what was found in the literature study, where different studies [96, 97] obtained that the
surface tension had negligible effect on the free surface vortex, except for very low circulation rates. Due
to the independent behaviour of the circumferential velocity on the change of viscosity for the two higher
Eötvos cases, it is assumed that there is a certain threshold or critical Eötvos number / Morton number,
where above the critical Eötvos or below the critical Morton number, viscous effects can be neglected.
Unfortunately, not enough data was obtained to prove this assumption, where the lowest tested viscosity
value for the Morton case was only 0.00363 kg/m s. When the fluid is more viscous than the critical
threshold, viscosity effects can not be neglected and the viscous dissipation plays a key role to decelerate
the fluid layer and thus decrease the drainage time of the vortex regime.

(a) (b)

Figure 81: a) Averaged circumferential velocity for the Eötvos cases b) Comparison of the averaged
circumferential velocity for the two test cases with different surface tension but equal viscosity

4.3.4.1 Π-criterion for the Eötvos case

In chapter 4.2.4.1, it was proven that for an increase in viscosity, the relation between the onset Π-number
and the generation of the air-core vortex still remained valid. In this section, again the onset Π-number
is tested to investigate whether the range of critical Π-numbers still remain the same for different Eötvos
numbers.

In figure 82, both onset Π-ranges for the Π (grey) and Morton (pink) numbers are marked. As can be
observed, does the onset Π numbers for the Eötvos case remain in the coloured areas. Also, the mean
value for the Eötvos case (0.3590) is inbetween the two other mean values. It can be argued that the
onset Π-number deviates between the three cases. However, the range where the values deviate correlate
quite strong and also the mean values have the same approximate values. Therefore, it is concluded that
the moment when the air-core is generated can be predicted through the local Π-number.
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4.3 Case 3: Eötvos

Figure 82: The onset Π-number for the different Eötvos cases

4.3.5 Swirl stage

It was concluded that the difference in drainage time between the three cases in the vortex regime was
due to the change in viscosity and the difference in surface tension was negligible. From the Morton
case, where solely the viscosity was altered, it was obtained that the drainage time in the swirl stage
would increase with an increase in viscosity. When looking at table 13, it can be observed that this is
not valid. For the two higher Eötvos cases, it can be seen that for an increase in viscosity, this results
in an increase in the duration of the swirl regime. However, for the lowest Eötvos case, it was observed
that no swirling was found in the bottle.

Once more, the averaged wall shear stress for the three cases is displayed (figure 83). It can be seen that
the wall shear stress is lower for increasing Eötvos numbers, which should result in the fastest downwards
flow rate. This is valid for the two higher Eötvos numbers, where the magnitude of the circumferential
velocity is still substantial. However, from figure 81a, it can be seen that the circumferential velocity
is significantly lower for the lowest Eötvos case, compared to the higher two cases. It was found that
for the lowest Eötvos case (C=2), viscous dissipation had already decelerated the fluid flow sufficiently,
resulting in a negligible circumferential velocity. This caused the fluid to directly fall down into the
bottom bottle, instead of swirling in the bottle.
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4.3 Case 3: Eötvos

Figure 83: Averaged wall shear stress in the contraction part at the initial stage of the swirl regime for
the Eötvos case.
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5 Conclusion

The aim of this numerical study was to minimize the non-dimensional drainage time through alteration
of three dimensionless parameters, namely the Π, Morton and Eötvos number. The influence of the
Π-number was investigated by changing the initial circumferential velocity. The Morton number got
tested by increasing the viscosity. The effect of the Eötvos number was analyzed by changing the surface
tension and altering the viscosity accordingly to keep the Morton number constant.

For the Π-case, it was crucial that the force balance of the free-surface vortex was studied. The force
balance was proven to be correct, where the vortex was balanced between the centrifugal force and
hydrostatic force. A higher initialized angular velocity resulted in an earlier generated free-surface vortex
with a higher liquid level. It was obtained that at a certain value of Π, the drainage time was minimal.
The critical Π-number was found to be Π = 0.1989 (17 rad/s). A further increase beyond the critical
Π-number resulted in a longer drainage time, due to the stronger acting centrifugal force decreasing the
effective liquid area and the axial downward flow velocity. From analytical result, it was obtained that
the drainage time in relation to Π grows to the power 3 for the laminar regime, whereas for the turbulent
regime Π grows to the power 1.5. Comparing this with the numerical results, it was found that the
flow regime in the bottle connector turned turbulent for Π = 0.5397 (28 rad/s). The numerical results
correlated well with both the laminar and turbulent relation between Π and the drainage time. Below
the critical value, it was found that the air-core vortex could not be maintained during drainage, causing
the flow regime to remain in the bubble regime. This resulted in a significant increase in drainage time.
In the bubble regime, it was obtained that an increase in angular velocity resulted in an increase in flow
rate. However, this difference was relatively small compared to the vortex regime.

For the Morton case, the drainage time got heavily influenced by the viscosity. It was found that an
increase in viscosity resulted in a significant decrease in the overall drainage time, where the highest
tested Morton number in this study had the lowest drainage time. Viscous dissipation played a key
role in the reduction of the drainage time. Due to viscous dissipation, the liquid layer would decelerate,
weakening the centrifugal force. This resulted in a bigger effective liquid area in the bottle opening and a
higher downward axial velocity, causing the higher liquid flow rate. It was found that the bubble regime
was independent in the range of the tested Morton numbers. The effects of viscous dissipation started to
get noticed in the transition regime, resulting in a longer transition time between the bubble and vortex
regime. The difference in liquid flow rate and drainage time was best noticed when entering the vortex
regime. The initial circumferential velocity was lower entering the vortex regime for increasing Morton
numbers due to the small effects of viscous dissipation in the transition regime. Moreover, the fluid layer
decelerated faster in the vortex regime, resulting in the big difference in drainage time. However, by
excessive increasing the Morton number, the effect of viscous dissipation is too strong, preventing the
vortex from forming. This causes the drainage regime to remain in the bubble regime, increasing the
drainage time significantly. Therefore, to minimize the drainage time, increasing the Morton number is
also a viable solution, however the Π-number should always be higher than the critical Π-number for the
air-core to be formed.

For the last case, the influence of the Eötvos number got investigated. To vary the Eötvos number
and keep the other two parameters constant, both the viscosity and surface tension had to be altered
accordingly. From the numerical results, it was obtained that increasing the Eötvos number two times
compared to the base fluid (40%-glycerine) had negligible effect on the drainage time. On the contrary,
by decreasing the Eötvos with a factor of two, a significant effect on the reduction of the drainage time
was obtained. It was found that the bubble regime was independent on the Eötvos number. Only the
initial deformation due to the Rayleigh-Taylor instability was found to differ between the Eötvos cases.
It was obtained that the surface tension in the tested range of Eötvos number had negligible effect
on the air-core vortex and the drainage time. Only viscous dissipation due to the change in viscosity
caused the differences in drainage time. It was observed that for the vortex regime the reduction of the
Eötvos number was noticed between the lowest and intermediate Eötvos number. However, the difference
between the highest and intermediate Eötvos number was negligible. It is believed that a certain critical
Eötvos number/ Morton number exists, where the above the critical Eötvos number or below the critical
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Morton number, viscous effects can be neglected. When these effects are neglected, it is believed that
the drainage time would remain relatively the same. To reduce the drainage time, a decrease in Eötvos
number should be realized.

Also, the onset Π-theory was investigated, which stated that the ratio between the centrifugal and
hydrostatic force should remain relatively the same when the air-core vortex is generated. It was found
that the range where the onset Π-numbers deviated in, correlated well between the different cases, where
the maximum range was between Πonset = 0.3261 and Πonset = 0.4230. The mean values were 0.3845,
0.3319 and 0.3590 for Π, Morton and Eötvos, respectively. Even though the critical values and the mean
values did not align perfectly between the cases, the differences were relatively small. Therefore, it is
believed that a certain onset value exists when the air-core is generated.

Concluding this study, it is obtained that the angular velocity should be equal to the critical Π-number
and the viscosity should be increased to minimize the drainage time. However, a maximum limit exists
on the increase of the viscosity, due to viscous dissipation cancelling the formation of the air-core vortex.
Therefore, it is important that for the minimization of the drainage time, the Π-number is always higher
than the critical Π-number. Also, it was obtained that surface tension has negligible effect on the drainage
time.
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6 Recommendations

A big limitation on this study was the available duration to numerically study the air-core vortex in the
PET bottle. During the mesh independency study, it was already found that mesh independency was
not fully reached for the selected mesh in this study. The reason behind this was that the research goals
would not be successfully achieved with the available computational time. In order to prove that the
numerical results provided in this study were accurate enough, one should design a denser mesh. As
such, more accurate results that satisfies mesh independency can be obtained.

For the Π-number, more numerical calculations should be performed around the critical Π-number and
the transition regime between the laminar and turbulent flow regimes. For now, it is obtained that the
critical Π-number is 0.2753 and the transition regime happens around Π = 0.6195. However, it is known
that the critical Π-number should be lower than 0.2753 and therefore in order to find the critical angular
velocity, one should perform calculations below Π = 0.2753.

For the Morton case, it is known that by excessive increasing the Morton number, the air-core will not
be formed and therefore the drainage time will be increased significantly. Therefore, a maximum Morton
number exists for every Π-number, where due to the viscous property of the fluid, the centrifugal force
is not strong enough to push the liquid to the side. To minimize the drainage time, the Morton number
should be close to the critical Morton number, where for a Morton number higher than the critical
Morton number, the fluid flow will remain in the bubble regime. For a Morton number lower than the
critical number, the air-core vortex will be formed. Thus, additional numerical simulations should be
performed to find this critical Morton number.

Also, a strong correlation was found between the onset Π-number and when the air-core vortex was
formed. It is believed from this study that a certain onset value should exist. However, this value was
not found and more research should be conducted to find this onset value. It is believed that when this
onset value is found and the decay of the circumferential is known, the exact moment when the air-core
will be generated can be predicted.
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A Appendix I: BSc findings

In this section, a short summary will be given on the research projects conducted by the team of BSc
students in the P&E department of the Delft University of Technology under supervision of Dr.ir. W.-P.
Breugem, where they experimentally investigated the free-surface vortex.

To test the the free-surface vortex, they designed a closed system with an emptying and a receiving PET
bottle that are connected with a ball valve. A visualization of their experimental setup is depicted in
figure 26. The bottles are 1L Sourcy bottles where the dimensions are the same as the numerical model.
The dimensions can be found in figure 27. To initialize the fluid with a certain initial angular velocity,
both bottles are placed in a setup which is actuated by a motor. For their conducted tests, they rotated
the bottle with rotational velocities between 3.75 and 40.8 radian per second. Besides the initial angular
velocity, viscosity is their other parameter that got studied. The influence of viscosity was studied
by testing water and four different water-glycerol mixtures: 19%, 35%, 63% and 83% glycerol weight
percentage. Fourteen different angular velocities were tested on water. Three tests were conducted per
angular velocity to asses experimental uncertainty. From the data obtained from the water tests, four
different angular velocities were determined to test on the water-glycerol mixtures.

The experimental results for the case where water was used as the tested fluid are depicted in figure 84.
They obtained from figure 84 that a slight increase in volumetric flow rate was obtained at the start
of the drainage for increasing initial angular velocity. However, at the end of the drainage time, they
observed a large decrease in the volumetric flow rate for these higher initial angular velocity. This was
caused by water that kept circulating in the contraction part of the bottle. Therefore, it was concluded
that the highest initial angular velocities did not minimize the outflow time. When they tested the lower
initial angular velocities, a more linear relation was perceived in the graph in figure 84 (tests 4 to 7).
A relation was found where a decrease in the angular velocity resulted in a decrease of the drainage
time, where the minimal drainage time was obtained for test 4-5. At a certain decrease of the initial
angular velocity (test 8 to 10), where the initial angular velocity was lower than the critical angular
velocity, a transition regime was noticed. For the initial part of the drainage, first a bubble regime was
noticed that turns into a vortex regime. However, the air-core will collapse again due to the too weak
centrifugal force, transforming the flow regime back into the bubble regime, which resulted in a longer
drainage time. When the angular velocity was reduced even more, only a bubble regime occurred, which
applies to tests 11 and 12. In this range of angular velocity did the initial angular velocity have no large
influence on the drainage time.

Figure 84: The experimental results obtained by the BSc group where the measured dimensionless height
is plotted against the dimensionless time.

The BSc group also compared the drainage time between the different glycerol weight percentages.
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They obtained that the two lowest viscosities (100% water and 19% glycerol) had the lowest drainage
times. However, to obtain the same drainage time between the 100% water and 19% glycerol, a higher
initial angular velocity for the 19% glycerol was necessary. The dimensionless outflow time

tdrainage√
h0
g

is significantly increased at higher viscosities. They also obtained that the drainage time was highly
dependent on the surface tension.

Summarizing their results, it is concluded that the angular velocity has a substantial effect on the outflow
time. Most importantly because the rotation initiates a vortex which drastically reduces the outflow time.
The higher the angular velocity, the stronger the vortex. However, they found that the optimal initial
angular velocity is not the highest reachable velocity, but lies somewhere between a fast vortex and the
bubble regime. The optimal initial angular velocity is one that creates a vortex that is just strong enough
to provide constant inflow of air. The viscosity of the fluid has a significant influence on the extent to
which a vortex be formed and maintained and therefore also on the outflow time. It is found that higher
viscosities have a lower outflow time for the same initial angular velocity up to the point where it is not
possible to create a vortex and a bubble regime is always present.
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B Summary and additional CFD settings

Solver
Type Pressure-based
Time Transient

Pressure-velocity coupling
Scheme PISO

Spatial discretization
Gradient Least squares cell based
Pressure PRESTO!
Momentum Central differencing
Volume fraction Geo-Reconstruct
Level-Set function Second Order Upwind

Time discretization
Transient formulation First Order Implicit

Table 14: Solution Methods

Viscous Model Laminar

Multiphase modelling
Multiphase model Volume of Fluid
Interface tracking Coupled Level-Set + Volume of Fluid
Volume fraction formulation Explicit
Volume fraction cutoff 1e-06
Global Courant number <0.25
Primary phase Air
Secondary phase Water

Table 15: Models

Gravitational acceleration [m/s2] -9.81 (z-direction)
Operating density [kg/m3] 0
Operating pressure [Pa] 101,325

Table 16: Operating conditions

Water Air

Density [kg/m3] 998.2 1.225
Dynamic viscosity [kg/ms] 1.003e-03 1.7894e-05
Surface tension [kg/s2] 7.3e-02

Table 17: Water and Air properties at 20◦C

Minimization of drainage time of filled PET bottle with initial rotation 107



40% Glycerol & 60% Water Air

Density [kg/m3] 1100 1.225
Dynamic viscosity [kg/ms] 3.63e-03 1.7894e-05
Surface tension [kg/s2] 7e-02

Table 18: Glycerol/water and air properties at 20◦C

All these CFD settings were applied and the numerical solutions in this study were calculated in Fluent
19.2

Some notes on the CFD settings that were found in this study:

• The operating density had to be set to zero, otherwise no hydrostatic pressure was achieved in the
numerical solutions.

• The gas phase had to be set as the primary phase and the liquid phase as the secondary phase.

• By interpolating the solution from a coarse grid to a fine grid, the pressure values in the cell would
sometimes explode. This happened only for the case when the ratio between the two mesh densities were
too big. To avoid this problem, the numerical solution would first get interpolated with a mesh, where the
density was chosen between the coarse mesh and finer meshes. When the numerical calculation stabilized,
again the solution would get interpolated to the finer mesh density.

• All the turbulence models would explode when solving in 2D axisymmetric, where the turbulent viscosity
ratio would be above 1e5. This was also the case when initializing with a very low turbulent viscosity
ratio.

• For every case, the interface should undergo deformation due to the heavier fluid being on top. However, for
very low angular velocities, it was obtained that this deformation did not occur automatically. Therefore,
the Rayleigh-Taylor instability had to be initialized at the interface to start the drainage process for
very low initial angular velocities. Instead of a flat interface, the interface was initialized with a certain
curvature that would look similar to the initial Rayleigh-Taylor instability.
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C Appendix II: Mesh independence study

Before valid results can be produced, a mesh independence study has to be conducted first to determine
the ”correct” mesh size to achieve numerically accurate results. Generally, a denser mesh is desired
to capture all the important flow fluctuations. However, a very fine mesh increases the computational
resources and time significantly. By increasing the mesh density, the accuracy of the numerical result
grows like an asymptote, whereas beyond a certain level of fineness, increase of computational resources
will result in negligible improvement of accuracy. At this point, increasing the mesh density is ineffective
and it can be taken that mesh independency has been reached.

To test the different meshes, a test case had to be selected. Since the bachelor students performed several
tests with water and measured the drainage time for different rotational velocities, the logical following
step would be to mimic the same fluid properties and rotational velocities for the test case. However,
it was quickly found that using water as the fluid medium was not achievable. The computing time to
simulate 1 second on the finest mesh (mesh 4 in table 2) for water was 30 days on 24 cores. Also, mesh
independency was not found while comparing the finest mesh with the second finest mesh, which meant
that further refinements were necessary. This meant that it would take months to fully simulate the
drainage process of the bottle for this specific test case. Considering the time available for this study,
this did not seem efficient, thus a different approach was needed.

The spatial resolution of the mesh, thus the total number of grid cells scale with O(Re9/4). [86] Also, the
integration time-step to resolve the smallest timescales scales with ∼ Re1/2. Thus, the computational
effort to fully resolve all the scales in the computational domain, scales as follows:

O(Re9/4 ·Re1/2) = O(Re11/4) (123)

As can be seen from equation 123, the computational effort grows with around the third power of
Reynolds. Since a minimum rotational velocity is necessary to generate the free-surface vortex, lowering
the velocity to reduce the Reynolds was not feasible. The geometry of the bottle was also kept constant,
thus altering the fluid properties was the only alternative solution. By doubling the viscosity of the fluid,
a power to the third decrease of the computational effort is expected.

Using aqueous glycerol solutions to invest the variety of aspects of two phase flow concerning viscosity
has been done by numerous studies.[98, 99] Glycerol in combination with water provides a wide variety
of viscosity values. All the fluid properties of the glycerol/water solutions used in this study, are based
on the works of Takamura et al.[89] They obtained experimental values for the fluid properties, which
included density, surface tension (against air) and viscosity for different temperatures.

To study the grid sensitivity, a combination of 40% glycerol and 60% water was used. The fluid properties
are depicted in table 18. The bottle was initiated with a rotational speed of 50 radian per second and
again stopped, when solid body rotation had been achieved, which in this case was equal to 74 seconds.
The evolution of the circumferential velocity during spin-up is depicted in figure 85. It was noticed that
the difference in computational time to spin the fluid up between the water case and the glycerol/water
case was significantly large. The computational spin-up time was 2 weeks to simulate 115 seconds for
the water case, whereas only 36 hours was needed to simulate the 74 seconds for the glycerol/water case.
Both the spin-up cases were using the same identical mesh. When looking back at figure 85, a bump
in the velocity profile was noticed at a radius of 0.005m. At first it was thought that the transition
in the mesh between the inner cuboid and the radial profile caused this bump. However, altering the
dimensions of the inner cuboid did not change or remove the bump. Since it was not expected that the
bump would have significant influence on the flow characteristics and the drainage time, the search on
the cause of the bump was halted and no explanation was found.

Minimization of drainage time of filled PET bottle with initial rotation 109



Figure 85: Circumferential velocity profile of the spin-up process for a fluid combination of 40%-glycerol
and 60%-water with an initial rotational velocity of 50 radian per second.

To efficiently use the computing resources, the spin-up process was done on the coarse mesh of 400.000
cells. When solid body rotation had been reached, the solution got interpolated to the finer meshes,
where for all the cases, the simulation would spin for 1 more second in numerical time to smoothen the
peaks out. The interpolated circumferential profile for the different meshes are depicted in figure 86. It
can be observed that the velocity profiles look identical between the four meshes after interpolation. The
air volume fraction contour for the 4 meshes are shown in figure 87. Notice that the parabolic surface is
realized during the spin-up process.

Figure 86: Circumferential velocity profile for the 4 meshes
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C.1 Drainage time

(a) (b) (c) (d)

Figure 87: Air volume fraction for meshes a) 400.000 b) 1 million c) 2 million d) 3 million nodes

To validate the ”correct” size to achieve numerically accurate results, various parameters should be
compared. These parameters should be based on the important flow characteristics and the goal of the
research. The goal of this research is to minimize the drainage time, thus the most important parameter
for mesh independency is to ensure that the drainage time is calculated as accurate as possible. The
drainage time is dependent on the volumetric flow rate out of the top bottle and the effective area in
the bottle opening. Therefore, the volumetric flow rates and the effective area are compared as well. In
addition, these two parameters can give a good insight in the different flow regimes. Next to the transient
behaviour, also the velocity profiles at different moments during the drainage period will be compared.
For example, the Π-number is dependent on the centrifugal force, which on its own is related to the
circumferential velocity. Therefore, obtaining accurate results for the velocity profile is also a necessity.

C.1 Drainage time

In table 19, the drainage time for the different mesh densities are shown. Also, the computational time
to calculate the different meshes are depicted in table 19. The computational time is twice as large
for the 2 million mesh compared to the 1 million mesh, whereas the drainage time between these two
meshes barely differed. The calculation for the 3 million mesh was not finished, which is why the result is
replaced with ”simulation not completed”. The reason why the calculation was not finished, is that the
computational time to fully simulate 2.5 seconds was already 24 days. This meant that it would at least
take twice as long to fully finish the whole calculation. Due to the available time for this master thesis,
it was decided that the computational time for the 3mil was too long to achieve the research goals in
the available time that was given. Thus the calculation was stopped and no result for the 3mil drainage
time was obtained.
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C.2 Flow rate

Mesh Drainage time Computation time

400k 9.25 s 8 days
1mil 9.15 s 11 days
2mil 9.175 s 24 days
3mil simulation not completed simulation not completed

Table 19: Drainage and computation times for the different meshes

C.2 Flow rate

The glycerine flow rate out of the top bottle into the bottom bottle was compared between the meshes.
The glycerine flow rate was calculated as follows:

V̇glycerine =

∑
α(i, j, k)u(i, j, k)

ncell
Aliquid (124)

where α is the liquid volume fraction, u the velocity, ncell the amount of cells in the liquid regime, Aliquid
the liquid area in the bottle opening and i, j, k are the indices of the cell. A clear distinction between the
four flow regimes can be seen in figure 88. The bubble regime is located in the time period between 0
and 0.55 seconds. The transition regime is between 0.55 and 0.75 seconds. The vortex regime is between
0.75 and 8.4 seconds. The swirl stage is after 8.4 seconds. From figure 88, it can be observed that the
flow rate differed quite substantially, especially at the beginning stage of the vortex regime. However,
the exact transition moment between the 4 stages got predicted quite accurately, where the maximum
difference between the meshes was 0.2 seconds.

Figure 88: Glycerine flow rate

C.3 Area fraction

Several parameters are dependent on the calculation of the effective area fraction of the liquid layer, such
as the flow rate as well as the drainage time. Therefore, an accurate representation of the liquid area in
the bottle opening is desired. An example of the glycerol-water area is depicted in figure 89. How the
area fraction develops through the drainage period is shown in figure 90. When looking at the vertical
axis of figure 90, the y-label is depicted as area fraction. This area fraction is defined as the liquid area
divided by the total area in the connector of the bottle. Again, the transition moment between the
different flow regimes correlate well between the meshes. Only the coarsest mesh deviates from the 1mil
and 2mil mesh.

112 Minimization of drainage time of filled PET bottle with initial rotation



C.4 t = 0.05 s

Figure 89: VOF contour of the glycerine area in the connector

Figure 90: Liquid area fraction in the bottle opening

C.4 t = 0.05 s

Instabilities generated at the beginning of the simulations can dominate the whole flow characteristics
throughout the drainage process. Therefore, to avoid the risk of non-physical instabilities due to mesh
inaccuracy, the first time step at t=0.05 s is studied.

Right after the bottle is opened, air will start to penetrate into the top bottle, while simultaneously
water will start to fall out. The deformation of the interface is due to the Rayleigh-Taylor instability.
The exact process and visualization of the first bubble was described in chapter 2.1.5. It is expected that
a gaseous finger will start to form at the bottle opening. This was also seen at the timestamp t = 0.05
s. The VOF contour is compared for the different meshes and depicted in figure 91.
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C.4 t = 0.05 s

Figure 91: VOF contour for the different meshes

The shape of the gaseous finger looks similar for all the meshes. However, it is fairly important that the
development of the free surface is calculated as accurate as possible. Especially for the Eötvos case, where
the alteration of surface tension will be investigated. The Rayleigh-Taylor instability can dominate how
the bubble regime will behave. To determine whether the meshes were accurate enough, the surface of
the bubble was compared by plotting the air volume fraction αair = 0.9999 for the area right above the
bottle opening. The area is marked with the red box shown in figure 91 for the 3mil mesh. The result
is plotted in figure 92. As can be seen in figure 92, a big difference is noticed between the most coarse
mesh and the rest of the meshes, whereas the interface for the two finest meshes looks nearly identical.
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C.4 t = 0.05 s

Figure 92: Interface of the gasesous finger right above the bottle opening for αair = 0.9999

Also, the circumferential profile was compared and plotted for t=0.05 s and depicted in figure 93a. The
exact location of where the circumferential profile is taken is shown as the black dotted line in figure
93b, where the line is a horizontal line in the x-z plane. From the comparison between the 4 meshes,
it is obtained that the three finer meshes are close to identical, whereas the coarsest mesh deviates
significantly.

(a) (b)

Figure 93: a) Circumferential plots for the different meshes b) Location of the plotted profile

To check whether the wall regions were fully resolved, a close-up was made on the circumferential velocity
profile. A smooth transition should be seen in the close-up. The most coarse mesh did not have any wall
refinements, whereas the rest of the meshes were refined in the way described in section 3.3.3. The first
cell height had the requirement y+ = 0.9, resulting in the first cell height as y = 3.4 · 10−2 mm. As can
be seen from figure 94, a smooth transition is noticed in the meshes except for the most coarse mesh.
Moreover, the 3 different meshes correlated extremely well.
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C.5 t = 1.5 s

Figure 94: Circumferential velocity profile in the wall region

C.5 t = 1.5 s

At the time step t = 1.5s, the beginning phase of the vortex regime is noticed. Due to the transient
behaviour of the Taylor vortices, a considerable amount of random peaks were noticed in the velocity
profiles. These peaks made it unclear and imprecise when mesh independency had been reached. By
applying a time-averaging method, a better correlation was obtained between the finer meshes. The
time-averaging method is defined as [86]:

ūT (t) =
1

T

∫ +0.5T

−0.5T

u(t+ τ)dτ (125)

where T represents is the averaging time or the time period where time-averaging is applied. In this
case, the time-period was taken as one revolution of the vortex. Equation 125 can also be written as:

ūT (t) =

∑N−1
i=0 u(ti)

N
(126)

The time period T where time-averaging was applied, was equal to one revolution of the vortex. By
taking N = 20 datasets between −0.5T < t = 1.5s < 0.5T , averaged velocity profiles could be obtained.
The time-averaged circumferential and axial velocity profiles are depicted in figure 95 and 96.The marked
grey area represents the air-core, while the white area indicates the liquid layer. The locations of these
plots are on the same dotted line displayed in figure 93b.
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C.5 t = 1.5 s

Figure 95: Time-averaged circumferential velocity profile at t=1.5 s

Figure 96: Time-averaged axial velocity profile at t=1.5 s

As can be seen in the velocity plots, time-averaging smoothed out the peaks in the liquid layer. where the
velocity profile in the liquid layer already started to indicate mesh independence. However, uncorrelated
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C.6 Taylor vortices

peaks were still found in the air-core. These peaks are being formed due to the chaotic turbulent flow
characteristics. It is expected that by increasing the mesh density, more accurate results will be obtained
for the air layer. However, as discussed before, by refining the grid more, the required computational
resources and time will increase significantly. It is believed that the generation of the vortex and the
drainage time is mainly influenced by the liquid layer and thus a compromise has been made where if
mesh independence was found for the velocity profiles in the liquid layer, overall mesh dependence would
be declared.

C.6 Taylor vortices

The flow regime in the drainage period is characterized by the Taylor vortices. To ensure that the mesh
density was fine enough, an analysis on the flow characteristics also had to be performed. The Rayleigh
instability in the form of Taylor vortices had to be present in the numerical flow regime, otherwise the
mesh was too inaccurate, resulting in non-physical numerical results. This is done by looking at the
vector velocity field depicted in figure 97a. The mesh that is used in figure 97 is the 1 million mesh.
When taking a closer look in the red box in figure 97, it is noticed that these Taylor vortices are present
in the numerical results (in the red circles). This means that the mesh density is fine enough to predict
these vortices and the characteristic turbulent behaviour of the spin-down regime.

(a) (b)

Figure 97: a) Velocity vector field b) Zoomed in on the red box

C.7 Conclusion of the mesh independence study

Comparing the different results obtained in this section, it can be argued that the numerical results
obtained from the coarsest mesh (400k) deviated too much in comparison with the other meshes. Re-
fining the 400k would increase the accuracy significantly, thus mesh independency was by no means
achieved. Slight differences were still found between the 1mil and 2mil mesh, however the difference was
considerably smaller compared to the first refinement. The last refinement was not fully comparable
due to the unfinished 3mil case. However, by comparing the first few seconds of the drainage, prelim-
inary conclusions could be drawn, where it was obtained that they started to look identical for a few
of the studied parameters. Thus, the right decision was to select the 2mil mesh. However, taking into
account the significant increase in computational time, the available time for this study and only the
slight difference in results, it was chosen to select the 1mil mesh as the mesh for the remaining study. It
is believed that the results should still be accurate enough to draw conclusions about the effects of the
three dimensionless parameters on the drainage time and the overall flow structure.
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D Appendix III: Verification with experimental results

To verify the grid, experimental results made by the bachelor students were used for comparison. Their
results are discussed in appendix A. They performed several experiments with glycerol and water com-
binations. A combination of 35%-glycerol and 65%-water was chosen for verification of the numerical
model. They performed their experimental results with an initial angular velocity of 27 radian per second.
They measured the drainage time and filmed the rising liquid level of the bottom bottle through time.
By tracking the interface with the software Tracker [100], the graph with the line labeled ”experimental”
in figure 98 could be obtained. For the numerical case, a more accurate approach was performed, where
the volume in the bottom bottle was calculated and measured over time by using CFD Post. This is
labeled as ”ansys” in figure 98. As can be seen in figure 98, the vertical axis is labeled as ”h*”, which
is defined as the dimensionless height (h∗ = h/h0), where h0 is the initial liquid level. Thus, for the
numerical data, the volume that was calculated by Ansys was divided by the area of the bottle to obtain
the liquid level. The shape of the lines did not fully align correctly with each other in the transition
regime and parts of the vortex regime, however the drainage times were quite similar. The experimental
drainage time that was measured by the bachelor students was 7.34 seconds, whereas Ansys calculated
7.05 seconds. Normally, multiple test cases should be verified with the numerical results to fully proof
that the mesh and numerical settings are chosen correctly. However, looking at the duration of this
study, for now it is satisfactory to say that with this verification, the 1million mesh is fine enough to
provide accurate results.

Figure 98: Comparison of the transient liquid level between experimental and numerical data
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