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Laplacian Trajectory Editing for Robotic Ultrasound Systems:
Adapting Scan Trajectories to Patient Motion

Toine Koelmans1

Abstract— Robotic Ultrasound Systems (RUSS) provide a
promising solution to reduce operator dependency, alleviate
physical strain, and meet the growing demand for ultrasound
procedures. However, their clinical applicability remains limited
by their inability to adapt to dynamic patient movements
and tissue deformations during scans. This work introduces
a novel RUSS framework that leverages Laplacian Trajectory
Editing (LTE) for real-time adaptation of scan trajectories in
response to both rigid and non-rigid patient movements. The
system integrates an RGB-D camera to capture surface point
clouds, which are processed to estimate displacements between
consecutive frames. These displacements define anchor points
for LTE-based trajectory adaptations, ensuring smooth motion
while preserving local trajectory properties. The framework
is validated through experiments spanning rigid phantom
movements, generalization across differently shaped phantoms,
and non-rigid human arm motion. Adaptation accuracy is
quantified by comparing adapted trajectories to a ground-
truth reference, with root mean squared errors averaging 0.026
± 0.012 m in non-rigid scenarios. The system adapts scan
trajectories in real-time, with LTE adaptation averaging 373
ms per trial. Furthermore, this RUSS achieved low tracking
errors across all conditions while maintaining a high success
rate in diverse movement scenarios. These results demonstrate
the feasibility of LTE for real-time trajectory adaptation in
ultrasound scanning, offering a pathway to more autonomous
and clinically viable RUSS implementations.

I. INTRODUCTION

MEDICAL imaging has become integral to modern health-
care, with ultrasound being the second most widely

used modality [1]. Ultrasound is non-invasive, affordable,
portable, and radiation-free. It is a powerful tool for analyz-
ing internal organs and tissues, enabling early diagnosis and
treatment selection. Still, its effectiveness depends heavily on
the sonographer’s skill making image quality and repeata-
bility highly operator-dependent [2], [3]. This dependence
becomes particularly evident in musculoskeletal ultrasound
(MSK-US), where imaging often requires patients to move
their joints during scanning, forcing sonographers to contin-
uously adjust the probe to maintain diagnostic accuracy [4],
[5]. Moreover, in recent years, the demand for ultrasound
scans in general and those used to evaluate musculoskeletal
disorders has outpaced the growth in the number of trained
sonographers [6], [7]. In addition to these variations and
shortages, performing an ultrasound procedure exerts a phys-
ical and cognitive burden on the sonographer, leading to pain
and musculoskeletal disorders [8], [9]. Robotic Ultrasound
Systems (RUSS) have gained attention over the last decades
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1The author is with the Cognitive Robotics Departments, Delft
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Fig. 1: Example of a Robotic Ultrasound System (RUSS)
performing musculoskeletal ultrasound (MSK-US), where
continuous patient movement is required for proper imaging.
The patient bends their arm while the robot performs the
scan, adapting its trajectory in real-time to maintain probe
alignment.

as a promising solution to address inter-operator variations,
intra-operator discomfort and sonographer shortages [10].
Additionally, a RUSS’s ability to reduce physical operator-
patient contact became of even greater interest during the
Covid-19 pandemic [11].

To mitigate operator dependency, physical strain, and the
rising demand for ultrasound, RUSS can be teleoperated,
shared-controlled, or fully autonomous. While teleoperated
and shared-control systems still rely on an operator, au-
tonomous RUSS can function independently, reducing work-
load and ensuring consistent imaging. In the autonomous
case, the system must determine a scan path, control probe
orientation, and regulate contact force. In addition, it must
address patient movement, tissue deformation, and other
dynamic changes to the scan environment (Fig. 1). While
patient movement affects all ultrasound applications, it is
especially critical in MSK-US, where scanning inherently
involves joint articulation. As patients flex and extend their
limbs, underlying musculoskeletal abnormalities become vis-
ible. Achieving consistent imaging in these procedures re-
quires real-time trajectory adaptation to maintain probe align-
ment. Regardless of the application, keeping the ultrasound
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probe perpendicular to the surface ensures optimal ultrasound
wave propagation, resulting in higher-quality images [12].
As a result, most RUSS aim to follow this principle, albeit
through different means [13]–[15]. Maintaining appropriate
contact force, typically between 1.2 N and 20 N depending
on the application, is critical for effective imaging [10], [16],
[17]. Several studies have proposed force control methods to
stay within these acceptable force ranges for ultrasound tasks
[18]–[20].

Moving beyond pure force or orientation control methods,
previous work on autonomous RUSS can be broadly cate-
gorized into three main directions: Reinforcement Learning
(RL), Learning from Demonstrations (LfD), and geometry-
based or feedback-driven methods. RL-based approaches
[21]–[30] optimize scan policies by interacting with the envi-
ronment using predefined reward functions. LfD techniques
[31]–[38] infer optimal policies from expert demonstrations
through behavioral cloning or inverse reinforcement learning.
Although these learning-based methods enable adaptation to
new tasks, they often require large datasets and may lack
interpretability. In contrast, geometry-based and feedback-
driven methods [39]–[49] follow a rule-based approach using
marker tracking, depth cameras, geometric modeling, and
visual servoing to define and refine scan paths. These rule-
based designs facilitate the implementation of safety mea-
sures and offer more predictable behavior. Previous methods
have successfully used point cloud data to reconstruct patient
anatomy, define scan trajectories preoperatively, and follow
them for specific anatomical regions. Examples include
straight-line scanning over a lumbar phantom [39], zig-zag
coverage patterns for breast imaging [42], [44], and YOLO-
Pose-based key point extraction to define Regions of Interest
(RoIs) [46], [49].

Although effective in generating initial scan trajecto-
ries, these methods fail to adapt dynamically to patient
movement or tissue deformations (Fig. 1). Several works
have addressed these challenges, exploring different ways
to account for deformation in RUSS. One approach is to
correct the obtained ultrasound images for deformations [50],
[51]. Another approach is to estimate tissue deformation and
feedforward this offset to correct the planned scan path [45].
To address patient motion and specifically articulated arm
movement, Jiang et al. previously used a non-rigid registra-
tion method to align arm surface point clouds with an atlas
MRI scan [41]. This approach mapped predefined trajectories
based on annotated vascular structures to different patients
and joint configurations. Although well-suited for preopera-
tive trajectory transfer, it lacked online adaptability. Jiang et
al. did demonstrate a RUSS capable of online adaptation to
rigid arm phantom motion using registration between RGB-D
and preoperative CT point clouds [47]. Although this system
compensated for movement and handled partial point clouds,
it struggled with non-rigid deformations. More recently, Sun
et al. proposed an Automated Robotic Ultrasound Scanning
(ARUS) system that integrates force control, deep-learning-
based segmentation, and 3D reconstruction for musculoskele-
tal ultrasound [52]. However, while ARUS enhances 3D

imaging accuracy, it does not provide real-time trajectory
adaptation for non-rigid motion or tissue deformations. Real-
time adaptation to non-rigid patient movements remains a
significant challenge for the clinical adoption of RUSS,
especially as a means to perform MSK-US [4], [5].

A common approach to trajectory adaptation in other fields
of robotics is the previously mentioned LfD. It enables robots
to encode expert demonstrations by either directly repro-
ducing observed movements or inferring underlying task
objectives. This allows robots to generalize demonstrated tra-
jectories to new conditions while preserving essential motion
characteristics. Several LfD methods have been proposed in
the literature. Dynamic Movement Primitives (DMPs) en-
code movements as dynamical systems with attractor states,
allowing adaptation to varying start and goal positions [53].
Extensions like Probabilistic Movement Primitives (ProMPs)
and Kernelized Movement Primitives (KMPs) improve flexi-
bility by capturing variability and using kernel-based regres-
sion [54], [55]. Gaussian Mixture Models (GMMs) generate
smooth trajectories via Gaussian Mixture Regression (GMR)
[56], while Inverse Reinforcement Learning (IRL) estimates
reward functions from expert demonstrations to infer task
objectives [57]. A potential drawback of many of these
representations is that they require multiple demonstrations.
Although DMPs can work with a single demonstration,
they are primarily suited for adapting trajectories to rigid
movements. In other fields of robotics, trajectory adaptation
to non-rigid deformations has been successfully achieved
using (a form of) Laplacian Trajectory Editing (LTE) [58],
[59]. LTE is a framework that utilizes the Laplace-Beltrami
operator, originally developed in the computer graphics
community to deform triangular surface meshes [60]. LTE
provides a smooth and flexible framework for modifying
a single demonstration while preserving its local properties
[61]. Its ability to require only a single demonstration and
handle non-rigid deformations with low computational cost
makes LTE a promising method for adapting ultrasound
scan trajectories in real time to accommodate changes in
the scanning environment.

This work aims to develop a RUSS (Fig. 2) capable of
real-time adaptation to patient movement during MSK-US
procedures while preserving the smoothness and character-
istics of the original scan path. In addition, the proposed
method allows for generalization of preoperatively planned
trajectories and adaptation to patient movement in various
ultrasound applications. More broadly, the framework could
also be used in other areas where continuous adaptation to
changing, deformable, or unpredictable surfaces is essen-
tial. To achieve this, the system leverages LTE, using an
RGB-D camera to capture real-time surface point clouds of
the scanned region. Point cloud registration estimates dis-
placement between frames, defining anchor points for LTE-
based trajectory adaptation. This ensures the probe maintains
consistent surface contact while preserving smoothness and
local trajectory properties. The initial trajectory can be
demonstrated by an expert or generated from camera-based
ROI extraction or user input [46], [49], [52]. The versatility
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Fig. 2: Overview of the proposed Robotic Ultrasound System (RUSS). An initial kinesthetic demonstration of the scan
trajectory is obtained (a), the scanned region’s surface is extracted using an RGB-D camera (b), surface displacements are
estimated via point cloud registration (c), and the trajectory is adapted to these displacements using Laplacian Trajectory
Editing (LTE) (d). This framework enables real-time trajectory adaptation to accommodate rigid and non-rigid surface
changes.

of the LTE technique to dynamically adapt preoperatively
planned scan trajectories makes this technique widely ap-
plicable. With this work, we aim to achieve the following
contributions:

1) The development of a point cloud registration pipeline
for rigid and non-rigid transformations, including gen-
eralization between differently shaped lower abdomen
phantoms and non-rigid human arm movements.

2) A method for dynamically defining new waypoints
from registration results, enabling LTE-based trajectory
transfer for smooth preoperative generalization and
real-time adaptation to patient movement.

The proposed system (Fig. 2) is validated through three
proof-of-concept experiments of increasing complexity, de-
fined by the growing challenge of estimating surface dis-
placement and adapting the trajectory. First, we test trajectory
adaptation to rigid transformations on a lower abdomen
phantom. Next, we evaluate generalization by transferring a
trajectory between differently shaped abdominal phantoms.
These two experiments demonstrate the system’s broader
applicability to ultrasound scanning. Finally, we apply the
system to an MSK-US use case by demonstrating real-
time adaptation to non-rigid arm movement, simulating the
dynamic conditions encountered in clinical procedures.

II. METHODS
The proposed system (Fig. 2) consists of four main

components: an initial demonstration of the ultrasound scan
trajectory by a human user (Fig. 2a), the extraction of the
surface of the scanned region (Fig. 2b), estimation of the
displacement of the corresponding points on the surface due
to movement or deformation (Fig. 2c), and the application
of Laplacian Trajectory Editing (LTE) to adapt the trajectory

to these changes (Fig. 2d). This section details each of
these components and their implementation. II-A describes
how initial scan trajectories are obtained through kinesthetic
demonstrations following predefined ultrasound scanning
protocols. Next, II-B explains how the surface of the scanned
region is extracted and how all data is transformed into the
robot’s base frame. II-C then presents the surface registration
algorithms used to estimate displacements between consecu-
tive frames. Finally, II-D details the steps taken to transport
the trajectory to the new surface using Laplacian Trajectory
Editing.

A. Initial Trajectory Demonstration

To ensure clinical relevance, initial trajectories were based
on existing ultrasound protocols rather than arbitrary scan
paths. These trajectories were obtained through kinesthetic
demonstrations, where an operator physically guided the
ultrasound probe along a predefined scanning path. For
lower abdomen phantom experiments, we used the Obstetric
Volume Sweep Imaging (VSI) protocol [62], while an MSK-
US-based scanning trajectory was used for non-rigid arm
movement. These protocols reflected the nature of each
experiment: VSI ensured a structured, repeatable scan for
phantom-based experiments, whereas the MSK-US-based
trajectory reflected the dynamic adjustments required for
non-rigid arm motion tracking.

The VSI Protocol is a standardized ultrasound acquisition
method designed for operators with minimal training, utiliz-
ing predefined sweeps over the abdomen to ensure consistent
and repeatable image acquisition. In this study, we used the
leftmost VSI sweep, which begins near the pelvic area and
moves upward toward the upper abdomen. VSI has been
applied in various clinical settings, including the automatic
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detection of gestational age, fetal presentation, and twin
pregnancies [62].

For the non-rigid arm motion tracking scenarios, the
initial demonstration followed an MSK-US-based scanning
trajectory. The kinesthetic demonstration consisted of a con-
tinuous scan along the entire arm, starting at the shoulder and
moving toward the wrist, performed on a static, non-moving
arm. This ensured a well-defined baseline trajectory that
could later be adapted to simulate real MSK-US conditions,
where sonographers must continuously adjust for patient
movement [5].

During both the VSI and MSK-US kinesthetic demonstra-
tions, pose data of the probe end-effector was recorded at
200 Hz to obtain the trajectory:

T = {Ti}ni=1, (1)

where each pose Ti consists of:

Ti =

[
pi

qi

]
(2)

with pi = (xi, yi, zi)
⊤ ∈ R3 representing the position of the

US probe, and qi = (qw,i, qx,i, qy,i, qz,i)
⊤ ∈ H as the ori-

entation given as a unit quaternion. For trajectory adaptation
using LTE, we define the set of Cartesian waypoints as:

Tp = {pi}ni=1, pi ∈ R3, (3)

and the set of orientation waypoints as:

To = {qi}ni=1, qi ∈ H, (4)

where Tp represents the positional data and To the orienta-
tional data of the trajectory.

B. Surface Extraction

To adapt the initial demonstration obtained through the
LTE framework, an estimate of displacement for correspond-
ing points on the surface was needed. As a first step, the
(depth) images that captured changes in the scene were
processed. This began with extracting the region of interest
(ROI) from the camera’s RGB images, which was achieved
through either color-based segmentation or keypoint detec-
tion, depending on the experimental setting.

For rigid and generalization phantom-based adapta-
tion, the ROI was extracted using HSV-based segmentation.
A predefined range of HSV values corresponding to the
phantom’s specific color was used to generate a bounding
box that isolated the region of interest. The 2D points within
this bounding box were then projected into the depth image
to obtain their 3D coordinates, forming a dense point cloud
representation of the phantom surface. Afterward, a filtering
step was applied to remove the table plane from the point
cloud.

Non-rigid arm motion tracking, required a more robust
approach, as color-based segmentation was unsuitable for the
dynamic nature of the non-rigid movements. Instead, land-
mark detection was performed using Google’s Mediapipe1,

1https://github.com/google-ai-edge/mediapipe

a deep learning-based framework that extracts anatomical
landmarks from images [63]. The four detected landmarks
corresponding to the shoulder, elbow, wrist, and thumb were
projected into the depth image to obtain their 3D coordinates.
These four 3D points formed the point cloud representation
of the arm, which served as the basis for estimating surface
displacement and subsequently trajectory adaptation.

Regardless of the extraction method, all information was
transformed into the robot’s base frame, providing an intu-
itive global reference frame (Fig. 3). Determining the robot
end-effector’s pose in the robot base frame was necessary to
track the trajectory, T . This was accomplished by performing
forward kinematics using the Eigen C++ library and the
iiwa ros URDF2. To find the transformation between the
camera frame, {C}, and the robot’s base frame, {B}, the
OpenCV Python library was used to obtain the pose of the
ArUco marker’s center in the camera frame, resulting in
the transformation matrix TC

A . The transform between the
ArUco marker, {A}, and robot base frame, {B}, was a pure
known translation: TB

A = [0.0,−0.425, 0.017]T m. The total
transform from C to B was given by:

TB
C = TB

A · TC
A

−1
(5)

This transformation ensured that all detected points were
consistently represented in the robot’s base frame for further
processing.

Fig. 3: Experimental setup including one lower abdomen
phantom. {A}, {B}, {C}, and {D} represent the ArUco
marker, robot base, camera, and end-effector frames, respec-
tively. The phantom’s dense point cloud was obtained from
RGB-D images and transformed into the robot base frame
using TB

A , TC
A , and TB

C . The robot end-effector’s frame, D,
was determined relative to the base frame using forward
kinematics.

C. Displacement Estimation
To determine whether registration and trajectory adapta-

tion were necessary, consecutive point cloud representations

2https://github.com/epfl-lasa/iiwa_ros
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of the surface were compared against a predefined threshold.
Since surface changes varied between application scenarios,
different measures were used. In phantom-based scenarios,
registration was triggered when the Chamfer distance be-
tween consecutive point clouds exceeded 0.05 m. Non-rigid
arm motion tracking relied on the sum of pairwise Euclidean
distances between corresponding keypoints, skipping regis-
tration if this sum was below 0.05 m.

Once registration was initiated, the source and target point
clouds were defined to estimate the displacement between
them. For the registration of the surface point clouds, let us
define the source point cloud as:

Ps = {ps
i}Mi=1, ps

i = (xs
i , y

s
i , z

s
i )

⊤ ∈ R3 (6)

where Ps consists of M 3D points ps
i , each represented by

its spatial coordinates (xs
i , y

s
i , z

s
i ). Similarly, we define the

target point cloud as:

Pt = {pt
j}Nj=1, pt

j = (xt
j , y

t
j , z

t
j)

⊤ ∈ R3 (7)

where Pt consists of N 3D points pt
j with corresponding

spatial coordinates (xt
j , y

t
j , z

t
j). For the registration of Ps

and Pt, different approaches were applied depending on the
experimental setting. In all cases, the goal was to establish
correspondences and estimate the displacements between
consecutive surface representations required for trajectory
adaptation (Fig. 4).

Fig. 4: Top-view of correspondences after registration of
phantom source and target point clouds translated by 0.1m.
Corresponding points are connected through a green line.
Left: every 30th correspondence is shown for visibility.
Right: all correspondences are shown.

For both rigid and generalization phantom-based adap-
tation, a four-step registration process was applied. First,
statistical outliers were removed, and voxel-grid downsam-
pling was performed to reduce computational complexity.
Secondly, the centers of the point clouds were aligned. The
key difference between the two cases lies in the initial corre-
spondence estimation. For rigid transformations, Open3D’s
RANSAC registration method, based on feature matching,

was performed. Fast Point Feature Histograms (FPFH) were
used as features [64]. FPFH is a local geometric descriptor
that encodes shape characteristics around each point, which
helps to find correspondences. In contrast, for generalization
requiring non-rigid transformations, Coherent Point Drift
(CPD) was used [65]. By modeling one point cloud as a
probability distribution, CPD iteratively aligns it to another,
allowing deformations while preserving the overall structure.
In both cases, Iterative Closest Point (ICP) was applied as
a final step to find the correspondences [66]. For the non-
rigid arm motion tracking, explicit point cloud registration
was unnecessary, as the four tracked anatomical landmarks
inherently defined surface correspondences. These landmarks
provided a direct measure of surface displacement, eliminat-
ing the need for additional registration steps.

D. LTE Trajectory Transportation

To adapt the initial trajectory, T , LTE was used to mod-
ify the positional waypoints, Tp, based on the correspon-
dences and the displacements found through the registration
pipeline. For this work, the LTE implementation of [67]
was used as a basis3. LTE solves an optimization problem
that ensures modified waypoints preserve smoothness while
respecting imposed positional constraints [61]. In LTE, we
represent Tp as an undirected graph G, with vertices V and
edges E defining the connectivity between the vertices. Each
point pi in Tp corresponds to the vertex vi in V . The set of
neighboring points of a vertex vi, is given by

N (vi) = {vj ∈ V | (vi, vj) ∈ E} (8)

To capture the local properties of the trajectory, we convert
the waypoints in Cartesian space pi into Laplacian coordi-
nates ∆. ∆ is the concatenation of all δi which, for the vertex
vi, is given as:

δi =
∑

vj∈N (vi)

wij

(
pi − pj∑

vj∈N (vi)
wij

)
, (9)

where wij is the edge weight between vertices vi and vj ,
set to 1 in our approach. To obtain ∆, the Laplacian matrix
L ∈ Rn×n is used:

Lij =


1, if i = j,

− wij∑
vk∈N(vi)

wik
, if vj ∈ N (vi),

0, otherwise.

(10)

All Laplacian coordinates are then given by ∆ = LTp,
where Tp represents the matrix form of the waypoint set Tp.
Once the Laplacian coordinates were computed, LTE found
the adapted trajectory by solving a least-squares problem.
The adapted trajectory, T ∗

p , was found by solving:

T∗
p = argmin

T∗
p

∥LT∗
p −∆∥2 + λ∥P̄T∗

p − C̄∥2 (11)

3https://github.com/franzesegiovanni/gaussian_
process_transportation
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where P̄ is a diagonal binary matrix where each entry P̄kk is
set to 1 if waypoint p∗

k in T ∗
p is constrained, and 0 otherwise.

C̄ contains the target positions for the constrained waypoints
in T ∗

p . λ is a regularization weight, controlling the trade-off
between preserving local shape properties and adhering to
the new displacement constraints.

In this work, for all use cases, the displacement con-
straints, C̄, in LTE were determined based on the displace-
ment between corresponding points in the source point cloud,
Ps, and the target point cloud, Pt. The selection of which
waypoints from the original trajectory, pk ∈ Tp, influence
the adaptation process is given by:

K = {k | pk ∈ Tp}. (12)

For rigid and generalization phantom-based adaptation,
where point clouds were dense, a nearest-neighbor search
using a KDTree was used to identify waypoints in Tp that
were within a predefined distance threshold of 0.03 m from
Ps, indicating physical contact with the surface. Not all
contact points were used as constraints, as this would overly
restrict the adaptation and leave little room to preserve
local properties during LTE optimization. Instead, every zth

contact point was selected, where z was a tunable parameter.
A smaller z enforced stricter positional tracking by adding
more constraints, while a larger z provided greater flexibility
in preserving the original trajectory’s shape. For non-rigid
arm motion tracking, where the representation consisted
of sparse keypoints, the Hungarian algorithm was applied
to optimally assign four waypoints from Tp to the four
keypoints in Ps [68]. The adaptation was then constrained
such that the corresponding waypoints in T ∗

p aligned with
these key anatomical locations.

Each selected waypoint pk ∈ Tp defined a corresponding
constraint in the adapted trajectory T ∗

p . These constraints
were indexed in the set K and for each k ∈ K, the
corresponding entry in P̄ was set to 1:

P̄kk = 1, ∀k ∈ K. (13)

The displacement for each constraint was computed based
on the difference between corresponding points in Ps and
Pt:

dk = pt
m − ps

ℓ , ∀k ∈ K, (14)

where ps
ℓ ∈ Ps and pt

m ∈ Pt denote corresponding points in
the source and target point clouds, respectively. The selected
constraints were then applied to the adapted trajectory T ∗

p ,
modifying the corresponding waypoints as

C̄k = pk + dk, ∀k ∈ K. (15)

Additionally, to maintain trajectory continuity and ensure
smooth motion transitions, the robot’s current position was
added as a constraint. This ensured that the current robot po-
sition was always a part of T ∗

p . Fig. 5 shows a transportation
following from the registration procedure from Fig. 4.

As previously described, orienting the ultrasound probe
perpendicular to the scanning surface allows for optimal

Fig. 5: Laplacian Trajectory Editing (LTE) adaptation based
on point cloud registration. The original (green) and adapted
(yellow) trajectories, derived from the registration between
the source and target point clouds (Fig. 4), are shown with
axes indicating the robot’s base frame {B}. The callout shows
a visualization of P̄ and C̄. Magenta points indicate selected
waypoints (P̄ ), while blue lines represent the displacement
constraints (C̄).

propagation of ultrasound waves [12]. To compute the ori-
entational component of the adapted trajectory T ∗, surface
normals of the target point cloud, Pt, were first estimated
using the Open3D Python library. For each positional way-
point in the adapted trajectory, T ∗

p , the closest corresponding
point in Pt within a distance threshold of 0.03 m was
identified, using the same KDTree method as in LTE. The
surface normal of all these points in Pt defined the probe’s
orientation. Specifically, the orientational component qi of
each waypoint was aligned with the surface normal of
the closest point but oriented towards the surface. For all
points not within the distance threshold, the orientation was
kept equal to the original orientation in T . Combining the
positional waypoints obtained through LTE and the surface
normal-based orientations, resulted in the adapted trajectory
T ∗.

III. EXPERIMENTAL VALIDATION
A. Experimental Design and Procedures

1) Experimental Setup: To validate the proposed system,
a series of experiments were conducted using a robotic
manipulator, a depth camera, and a silicone phantom or a
human arm (Fig. 3). A Kuka LBR iiwa 14 R820 (KUKA AG,
Augsburg, Germany) [69] robotic manipulator was equipped
with a 3D-printed mock ultrasound probe and controlled via
the KUKA Fast Robot Interface (FRI). An Intel RealSense
D455 (Intel Corporation, Santa Clara, CA, USA) depth
camera was mounted above the workspace at an incline
to capture real-time RGB-D data. Computations were dis-
tributed across two machines. The first was a laptop equipped
with an Intel Core i7-8750H processor, 16GB of RAM, a
NVIDIA Quadro P1000 GPU and operating under Ubuntu
20.04 with ROS Noetic. This machine processed camera data
in real time and executed the Laplacian Trajectory Editing
(LTE) pipeline. The second machine was a dedicated desktop
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responsible for running the robotic manipulator’s controller.
It featured a 12th Gen Intel Core i7-12700K processor, 32GB
of RAM, integrated Intel UHD Graphics 770 and operated
under Ubuntu 20.04.6 LTS with ROS Noetic.

2) Robot Control: To demonstrate real-time adaptability
in ultrasound scanning, the robotic manipulator maintained
contact with the scan surface while following the adapted
trajectory. A certain contact force is needed to allow the
propagation of ultrasound waves through human tissue.
However, safety must be guaranteed in any clinical setting.
That is why a compliant Cartesian impedance controller was
implemented to ensure safe interaction. The controller is
defined as follows:

τ = J⊤(K(pref − p) +D(Jq̇) + Fext) (16)

where τ ∈ R7×1 represents the joint torques sent to the
robot. The matrix J ∈ R6×7 is the robot Jacobian matrix. The
term K ∈ R6×6 is the Cartesian stiffness matrix, regulating
the compliance of the manipulator. The vectors pref,p ∈ R3

represent the reference and current Cartesian positions of the
tip of the ultrasound probe end-effector, respectively. The
damping matrix D ∈ R6×6 introduces velocity-dependent
damping forces to improve stability, where q̇ ∈ R7 is the
joint velocity vector. The resulting control law ensured that
the end-effector followed the desired Cartesian trajectory
while maintaining compliance. The final term, the external
force, is given by Fext ∈ R6. Translational stiffness was set
to 300.0 N/m with a damping ratio of 0.7, yielding damping
values in N·s/m. Similarly, rotational stiffness was 10.0
Nm/rad with the same damping ratio, resulting in damping
values in Nm·s/rad. The external force was set equal to
2.0 N balancing proper surface contact and patient safety
[16], [17]. Furthermore, this force was only active when the
controller was within a 0.1 m bound of the surface’s z-height,
where the height was obtained from the depth images. This
method ensured the force control term was only enabled
when making contact.

3) Experimental Scenarios: The validation consisted of
three experiments increasing in complexity, with a static
demonstration replay without a scanning surface to serve
as a baseline for trajectory execution. In the first experi-
ment, a single phantom was translated, rotated, and tilted
to assess the system’s ability to adapt to rigid movements.
While a direct transformation found through the point cloud
registration could suffice for this case, LTE was applied as
an initial proof-of-concept and to serve as a control before
testing more complex adaptations. The second experiment
adapted a demonstration from one abdominal phantom to
another with a different shape (male and one female) to
evaluate generalization to anatomical variations. Finally, in
the third experiment, non-rigid arm movement was intro-
duced to simulate dynamic patient movement and assess
the system’s adaptation capabilities, reflecting the probe
adjustments required in MSK-US procedures. Each scenario
included five trials, yielding five replay trials, 15 rigid
adaptation trials (five each for translation, rotation, and tilt),
five generalization trials, and five non-rigid adaptation trials.

4) Evaluation Metrics: Performance was evaluated both
quantitatively and qualitatively, with video material avail-
able4. This work aimed to develop a RUSS capable of
adapting to patient movements in real-time during ultrasound
procedures while preserving smoothness. To this end, the
baseline performance of replaying the initial demonstration
was first evaluated in III-B.1. Subsequently, the system’s
ability to handle dynamic patient motion was evaluated
using success rates and trajectory adaptation accuracy in
III-B.2. This evaluation was conducted specifically for the
non-rigid case, as it introduced the most complex and de-
formed transformations. Since non-rigid adaptation was the
most challenging, its accuracy was a strong performance
indicator in less complex scenarios. To ensure that adaptation
occurred while preserving smoothness, positional tracking
error and jerk were analyzed, reflecting the deviation be-
tween the robot’s actual and reference trajectory and the
smoothness of motion, respectively, detailed in III-B.3. The
real-time feasibility of adaptations was evaluated through
the computation times, examining image processing, point
cloud registration, and trajectory adaptation speed in III-B.4.
Additionally, registration accuracy, measured by the mean
point-to-surface distance and overlap ratio, was analyzed in
III-B.5 to assess the quality of point cloud alignment during
surface displacements.

B. Results

1) Baseline Performance: When replaying a recorded
demonstration from the VSI protocol five times (Fig. 6), the
trajectory tracking mean and maximum errors were 0.018 ±
0.001 m and 0.079 ± 0.002 m, respectively. The total mean
jerk recorded in the motion was 4.03 ± 0.1 m/s3, and the
maximum jerk was 19.8 ± 1.4 m/s3.

Fig. 6: The red-dotted line represents a VSI protocol demon-
stration, while the colored lines show recorded poses during
replay. Due to close alignment, individual trajectories are
difficult to distinguish.

4https://youtu.be/XwbCbb_WA7Q
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2) Adaptation Success and Accuracy: For all experimen-
tal conditions, the success and failure outcomes are presented
(Table I). A failure case here was defined as the robotic
manipulator not being able to complete the motion and
disconnecting. The system successfully adapted in most
trials, with occasional failures occurring in the rigid and non-
rigid adaptation scenarios.

TABLE I: Success/Failure Results Across All Experiments

Trial # Rigid Movements Generalization Non-Rigid
T 20 cm R 45° Tilt 30°

1 S S F S S
2 S F S S S
3 S F S S S
4 S S F S F
5 S S S S S

Next to adaptation success, we report its accuracy. Adap-
tation accuracy was quantified in the non-rigid arm motion
tracking scenario by comparing the adapted trajectory to a
predefined reference line drawn with blue physiotherapy tape
on the human arm (Fig. 7). This reference, a blue line visible
in the camera view, represented the ideal scanning path
that the adapted trajectory should follow after accounting
for surface movement. The initial MSK-US demonstrated
trajectory was obtained by asking an operator to manually
follow this blue line on a static arm, ensuring that the
intended scan path aligned with the reference. The position of
the blue line was extracted in the robot’s base frame, enabling
a direct comparison with the transported trajectory. Accuracy
was measured as the deviation between corresponding points
on the adapted trajectory and the reference line.

To evaluate adaptation accuracy, we report the root mean
squared error (RMSE), which quantifies the average devia-
tion between corresponding points on the adapted trajectory
and the reference line. The initial error between the opera-
tor’s demonstration and the blue line was averaged over 30
frames, resulting in a mean deviation of 0.021 ± 0.002 m.
Over 54 LTE adaptations, the RMSE between the blue line
and the adapted trajectory was computed (Fig. 8). The mean
RMSE across all adaptations was 0.026 ± 0.012 m.

Fig. 8: RMSE between the adapted trajectory and the moving
blue line reference over 54 adaptation steps. The mean
RMSE across all adaptations is 0.026 ± 0.012 m.

3) Trajectory Tracking and Smoothness Analysis: We
evaluated tracking performance using the positional tracking
error, measuring deviations between the executed trajectory
and the adapted reference trajectory. Furthermore, jerk anal-
ysis quantified motion smoothness, where lower jerk values
indicated smoother movements.

Fig. 9: Tracking errors across the X, Y, and Z dimensions.
Each plot shows the deviation between the executed trajec-
tory and the adapted reference trajectory over time. These
results correspond to a ‘Translation 20 cm’ trial.

For each individual trial, the tracking error at every
timestep was recorded (Fig. 9). Across scenarios, both mean
and maximum positional tracking errors remained low com-
pared to the static demonstration replay (Fig. 10). However,
errors increased in the translational rigid scenario, general-
ization, and non-rigid adaptation, with non-rigid adaptations
showing the highest spread. Notably, the maximum posi-
tional tracking errors were highest in the non-rigid case.
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Fig. 7: Illustration of trajectory adaptation accuracy evaluation. The blue line represents the ground truth reference drawn
on the arm, while the red line corresponds to the adapted trajectory transported using Laplacian Trajectory Editing (LTE).
The deviation between the two lines quantifies adaptation accuracy.

Fig. 10: Mean and maximum positional tracking errors across
experimental conditions, with five trials per scenario. Errors
were low in static replay but increased in translational rigid,
generalization, and non-rigid adaptations. Non-rigid cases
exhibited the highest spread and maximum errors.

Mean jerk remained low and consistent in the static,
generalization, and tilt scenarios (Fig. 11). Higher variability
was observed in translational and rotational rigid adaptations,
with occasional spikes. Non-rigid adaptations showed the

highest mean jerk values, with some trials exceeding 20
m/s³. Maximum jerk varied across conditions, with the
highest values appearing in translational rigid and non-rigid
adaptations, exceeding 500 m/s³ in some cases.

Fig. 11: Mean and maximum jerk values across experimental
conditions, with five trials per scenario. Non-rigid adapta-
tions exhibited the highest mean jerk, often exceeding 20
m/s³. Translational and rotational rigid and non-rigid cases
showed the highest maximum jerk.
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4) Computational Performance: To assess computational
feasibility, we measured the execution times for three key
processing steps: image processing, displacement estimation,
and LTE-based trajectory adaptation. These steps correspond
directly to components (b), (c), and (d) of the proposed
framework (Fig. 2). Each step consists of several sub-
components, and the reported times represent the aggregated,
averaged computation time across these components (Table
II).

Image processing times remained similar in the rigid and
generalization scenarios, at 942 ms and 1090 ms, respec-
tively, while the non-rigid scenario had a lower processing
time of 55.2 ms. The displacement estimation time showed
significant variation across scenarios, with the generalization
case taking considerably longer than rigid and non-rigid
adaptations. Lastly, LTE-based trajectory adaptation required
240 ms in the rigid scenario, 463 ms in the generalization
scenario, and 415 ms in the non-rigid scenario.

TABLE II: Computation Times (ms) Across Scenarios

Component Rigid
(ms)

Generalization
(ms)

Non-Rigid
(ms)

Image Processing 942 1,090 55.2
Displacement Estimation 1,090 40,500 0.380
LTE Trajectory Adaptation 240 463 415

5) Point Cloud Registration Accuracy: Since most sce-
narios relied on point cloud registration for estimating
surface displacements, registration accuracy directly influ-
enced system performance. To assess registration quality,
we measured the mean point-to-surface distance and overlap
ratio between the registered point clouds (Table III). Only
scenarios where registration took place and successful trials
were included. Across all tested scenarios, the mean point-
to-surface distance ranged from 10.0 ± 0.5 mm to 14.7 ±
0.3 mm. Maximum distances varied more significantly, with
the highest deviations occurring in the Tilt 30° scenario
(97.3 ± 27.2 mm). Overlap ratios remained consistently high,
exceeding 90% across all conditions, with the generalization
scenario achieving full overlap (100%).

TABLE III: Point Cloud Registration Accuracy Metrics
Across Scenarios

Metric T20
cm

R 45° Tilt
30°

Generalization

Point-to-Surface Mean
Distance (mm ± SD)

10.0±
0.5

12.9±
0.3

14.7±
0.3

11.2± 0.1

Point-to-Surface Max Dis-
tance (mm ± SD)

51.0±
8.1

52.7±
3.2

97.3±
27.2

69.0± 9.8

Overlap Ratio (% ± SD) 98.1±
2.5

90.7±
2.9

97.6±
0.1

100.0± 0.0

IV. DISCUSSION

The following discussion evaluates the performance of the
proposed framework in IV-A, discusses its limitations in IV-
B, and concludes with recommendations for future work in
IV-C.

A. Static, Rigid and Non-rigid Performance Comparison

Most trials were successful in that the trajectory could be
adapted and followed by the robot, but in some cases, jerky
motion led to velocity or torque limit violations, triggering
the robot’s safety stop and causing a disconnect. This was not
due to adaptation, but rather to kinematic singularities, which
LTE does not account for. Since LTE modifies the trajectory
only in Cartesian space, it does not consider workspace
constraints, joint limits, or singularity avoidance. As a result,
when the adapted trajectory approached a singularity, the
robot’s joint velocities increased unpredictably, leading to
unstable motion. These jerky motions were localized to small
trajectory sections but significantly increased the overall
mean and maximum jerk values (Fig. 11). However, when
excluding these short high-jerk segments, the mean jerk
closely aligns with the baseline value of 4.03 ± 0.1 m/s3,
suggesting that most of the trajectory remained smooth
across trials.

For successful non-rigid trials, the error between the blue
reference line and the adapted trajectory remained stable,
within 0.035 and 0.015 m for most adaptations (Fig. 8).
The mean RMSE after adaptation (0.026 ± 0.012 m) was
slightly higher than the initial deviation in the operator-
drawn line (0.021 ± 0.002 m), indicating effective adapta-
tions with minor deviations. However, some trials showed
errors exceeding 0.06 m, while others had lower RMSE
than the initial demonstration, highlighting variability in
adaptation accuracy influenced by arm movement (Fig. 8).
This variability can be attributed to LTE optimization’s
properties: when the arm is fully extended, the constrained
keypoints align in a straight line, causing the local Laplacian
coordinates to become zero. This configuration minimizes
the LTE optimization objective, making a straight trajectory
the optimal solution. However, when the arm bends near
45°, the new keypoint configuration deviates from a straight
path. LTE, which minimizes changes in local Laplacian
coordinates rather than enforcing global linearity, distributes
adjustments across all the unconstrained points. As a result,
the trajectory curves inward from the shoulder to the elbow
and outward from the elbow to the wrist instead of forming
distinct straight-line segments (Fig. 7, leftmost plot). This
effect is amplified by the sparse use of MediaPipe keypoint
constraints relative to the trajectory length.

Once the trajectory was adapted, the system demonstrated
consistent and low tracking errors, with a mean and maxi-
mum tracking error of 0.018 ± 0.001 m and 0.079 ± 0.002
m during static replay (Fig. 6). Across adaptation scenar-
ios, mean tracking errors remained low but were slightly
higher in trials where the probe made contact with the
surface, likely due to force interactions (Fig. 10). In the
non-rigid case, mean tracking errors were further influenced
by high maximum errors, which resulted from parts of the
reference trajectory extending beyond the robot’s reachable
workspace. At these points, the robot fully stretched in
the target direction without being able to reach the pose,
inflating both maximum and mean tracking errors. Even with
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these inflations, mean tracking errors remained below 0.05
m, indicating reliable tracking. However, further analysis is
needed to determine whether these errors indeed stem from
the trajectory extending beyond the robot’s workspace or
result from, for example, differences between human tissue
and rigid phantoms.

Computation times varied significantly across scenarios.
Image processing was nearly 20 times faster in the non-
rigid case, completing in 55.2 ms, as MediaPipe landmark
detection required less computation than the HSV-based
segmentation used for phantoms. Displacement estimation
in the generalization scenario was substantially slower due
to CPD registration, taking 40.5 seconds compared to 1090
ms in the rigid case and just 0.380 ms in the non-rigid
case. While this makes it unsuitable for real-time applications
with dense point clouds, it remains viable for generalizing
preoperatively planned scan paths. In contrast, the keypoint-
based displacement estimation used in the non-rigid scenario
proved highly efficient. Regardless of the scenario, LTE
adaptation was consistently fast, executing within 500 ms
once displacements were obtained, ensuring real-time trajec-
tory adaptation.

Point cloud registration was effective overall, confirming
the suitability of the selected methods for estimating sur-
face displacements. Across all tested scenarios, registration
achieved high accuracy, with mean point-to-surface distances
ranging from 10.0 ± 0.5 mm to 14.7 ± 0.3 mm and
overlap ratios exceeding 90%. Notably, the generalization
scenario, which employed CPD for registration, consistently
achieved full overlap (100%). This could be attributed to
the probabilistic nature of CPD, which inherently distributes
correspondences throughout the set of points, leading to
complete overlap. However, overlap alone may not be the
best metric to assess the success of CPD, as it does not
account for possible local misalignments. Since the primary
focus of this work was on trajectory adaptation rather than
registration accuracy, further refinements in registration were
not extensively explored.

B. System Limitations

This proof-of-concept RUSS and the proposed framework
demonstrate the potential of integrating LTE for ultrasound
scan trajectory adaptation, but several limitations remain.

A key limitation is the need for manually defined con-
straints in LTE. While this also brings flexibility to ac-
count for non-rigid deformations, inaccuracies in surface
displacement estimation directly propagate into the adapted
trajectory. Even though reported registration accuracies in
III-B.5 were high, this does not capture the entire story
of displacement estimation. In particular, large differences
in perspective between frames posed challenges, leading
to errors that affected adaptation quality. More advanced
techniques such as deep-learning-based registration could
improve accuracy and possibly reduce computational times
by replacing CPD for the non-rigid dense point cloud regis-
tration.

Additionally, selecting constraints that balance local flex-
ibility with global trajectory preservation is nontrivial. LTE
preserves local Laplacian relationships but does not explic-
itly enforce trajectory shape, meaning adaptations may not
retain, for example, the straight-line nature of the original
demonstration in this work’s non-rigid experiments. Defining
constraints based on surface geometry, such as normals,
curvature, or anatomical landmarks, could improve consis-
tency. Additionally, adaptive constraint placement based on
trajectory deviation may better balance local flexibility with
global trajectory preservation.

Next to constraint selection, the accuracy of adaptation
begins with robust surface extraction. The HSV-based seg-
mentation for phantoms and keypoint tracking for the arm
are sensitive to lighting, occlusions, and anatomical variabil-
ity. Errors in segmentation or keypoint localization quickly
degrade adaptation quality. Future work could benefit from
leveraging multi-view point cloud data.

Another limitation is the primary focus on positional adap-
tations rather than force and orientation control. While these
were implemented, they were not extensively optimized.
Both factors are critical for ultrasound image quality, and
integrating force- and orientation-aware control strategies
could enhance probe stability and imaging consistency [13],
[15], [20], [59], [70].

Furthermore, LTE operates purely in Cartesian space,
disregarding kinematic constraints such as joint limits and
singularity avoidance. This occasionally led to the earlier re-
ported unstable robot motion causing system disconnections.
Incorporating workspace-aware constraints could mitigate
these issues.

Finally, even with perfectly segmented and registered point
clouds and reliable force and orientation control, evaluating
the quality of the adapted trajectories remains challenging
due to the absence of an actual ultrasound machine. With-
out imaging feedback, it is difficult to assess whether the
system achieves clinically relevant outcomes. Integrating a
functioning ultrasound device into the setup would allow
for validation of the quality of the trajectory based on the
ultrasound images obtained. For example, by computing the
ultrasound confidence map [71], [72].

C. Future Work

Future efforts could focus on integrating a functional
ultrasound device to assess clinical relevance, improving
displacement estimation through surface registration robust-
ness, and refining force and orientation control strategies to
enhance probe stability. Additionally, optimizing constraint
selection and adaptive constraint placement could improve
LTE’s balance between local flexibility and global trajectory
preservation. Addressing kinematic feasibility, singularity
avoidance, and real-time processing will further enhance
system performance and practical deployment.

Beyond ultrasound applications, combining LTE with a
real-time registration pipeline may extend to other robotic
domains. Many tasks require continuous adaptation to chang-
ing, deformable, or unpredictable surfaces, where trajectory
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consistency and smoothness are essential. The ability to
adjust motion dynamically without repeated demonstrations
makes this approach applicable to various fields, such as
robotic surface cleaning, agricultural automation, and space
exploration, where robots must interact with varying terrains,
soft tissues, or biological surfaces. Future work could explore
LTE’s adaptability to these domains, particularly in real-
time, closed-loop control scenarios where deformation-aware
trajectory updates are required.

V. CONCLUSION

This work introduced a novel Robotic Ultrasound Sys-
tem (RUSS) that adapts scan trajectories in real time to
both rigid and non-rigid patient movements using Laplacian
Trajectory Editing (LTE). In addition to adapting to real-
time movement, the system demonstrated the ability to
generalize preoperatively planned trajectories across different
anatomical shapes. While LTE has been applied in other
areas of robotics, this study is the first to integrate it into
robotic ultrasound, enabling trajectory adaptation without
requiring multiple demonstrations. The system successfully
adapted trajectories with a mean adaptation accuracy of 0.026
± 0.012 m in non-rigid cases and completed LTE-based
adaptations within 373 ms, ensuring real-time feasibility.
Tracking performance remained stable, with mean errors
below 0.05 m, even in dynamic scenarios.

Beyond ultrasound, the proposed framework provides a
generalizable approach for real-time trajectory adjustments,
with applications in medical imaging, surface interaction
tasks, and autonomous systems requiring continuous adapta-
tion. By enabling real-time adaptation to patient movement,
this work represents a step toward more autonomous and
intelligent robotic ultrasound systems, reducing operator
dependency and paving the way for more consistent and
accessible ultrasound imaging in clinical practice.
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2
APPENDIX

2.0.1. Phantoms Used In Experimental Setup
Figure 2.1 shows the two anatomical phantoms used in this study, representing different anatomical
variations. The male and female phantoms differ in size and geometry, introducing variability in surface
shape and curvature. This variation was used to evaluate the system’s ability to generalize trajectory
adaptation across different subjects. Both phantoms consist of a layer of silicone placed over a rigid
surface, spanning a hole in the abdomen where intestines are located. They are typically used for
laparoscopic experiments or training.

Figure 2.1: The two phantoms used in this study, illustrating differences in size and geometry that challenge the system’s
ability to generalize across anatomical variations.
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2.0.2. Experimental Results
Figure 2.2 presents 3D plots of all trials across the T20, Generalization, and Non-Rigid experiments.
Each plot visualizes the demonstrated trajectory alongside its adapted versions, highlighting how the
system responded to different surface variations and movement types. In the T20 case, the green
and purple lines, corresponding to adaptations 3 and 4, showed oscillatory motions similar to those
discussed in Figure 2.3.

(a) T20 Experiment (b) Generalization Experiment

(c) Non-Rigid Experiment

Figure 2.2: 3D visualizations of all trials across the T20, Generalization, and Non-Rigid experiments, showing the
demonstrated and adapted trajectories in each scenario.
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2.0.3. Singularities and Kinematic Limitations in Trajectory Execution
Since LTEmodifies the trajectory only in Cartesian space, it does not account for workspace constraints,
joint limits, or singularity avoidance. As a result, in some cases, the adapted trajectory brought the robot
close to singularities, where small Cartesian displacements required large joint movements. This led
to sudden spikes in joint velocity and acceleration, which, when exceeding the robot’s limits, triggered
safety stops and caused disconnections. These unstable motions were localized to specific trajectory
segments but significantly affected acceleration profiles, as seen in Figure 2.3, where large oscillations
are present.

Figure 2.3: Acceleration profile of a trial where the adapted trajectory exhibited oscillatory acceleration. While this trajectory
did not lead to a singularity, the repeated fluctuations in acceleration indicate unstable motion, which in some cases exceeded

system tolerances and triggered a safety stop

2.0.4. Adaptation Accuracy/Blue Line Extraction
To evaluate adaptation accuracy, the blue reference line drawn with physiotherapy tape on the arm was
extracted from RealSense camera images and transformed into the robot’s base frame for comparison
with the adapted trajectory. This process involved isolating the blue line in the image, refining its shape,
and mapping it to 3D space.

The extraction pipeline applied HSV thresholding, morphological processing, and skeletonization
to detect and refine the reference line. The input image was first contrast-enhanced using CLAHE [1]
before being converted to HSV color space and thresholded to isolate the blue region. Morphological
closing filled small gaps, and contours were filtered based on area to remove noise.

Once the blue region was segmented, a binary mask of the detected area was skeletonized to
extract the centerline, which was further smoothed using cubic spline interpolation. The corresponding
3D coordinates were then obtained via depth deprojection and transformed into the robot’s coordinate
frame. A visual example is shown in Figure 2.4.

(a) Camera image of the detected blue reference line (b) Corresponding mask of the detected blue line

Figure 2.4: Camera image and corresponding mask of the detected blue reference line, illustrating the segmentation process
used for trajectory adaptation.
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2.0.5. Computation Times Full Tables
Table 2.1 presents the computation times for each processing component across the three scenarios.
Coherent Point Drift (CPD) registration in the generalization scenario is the most time-consuming step,
requiring over 34 seconds. This is due to CPD’s iterative optimization, which estimates point correspon-
dences probabilistically, making it significantly slower than the rigid alignment method using RANSAC
with FPFH. In contrast, Laplacian Trajectory Editing (LTE) demonstrates consistent performance across
all scenarios, with fitting times ranging from 206.98 ms to 421.87 ms and trajectory updates remaining
stable around 30–40 ms.

Table 2.1: Computation Times (ms) Across Scenarios

Component Rigid (ms) Generalization
(ms)

Non-Rigid
(ms)

RS_phantom/2D Object Detection 3.78 5.62 X
RS_phantom/Bounding Box-based
Point Cloud Filtering

590.13 683.15 X

RS_phantom/Frame Extraction 14.50 10.91 X
RS_phantom/Point Cloud Transfor-
mation/Alignment

333.24 385.49 X

RS_mediapipe/Frame Extraction X X 8.52
RS_mediapipe/Keypoint Extraction X X 46.10
RS_mediapipe/PCD Publishing X X 0.26
RS_mediapipe/Point Cloud Genera-
tion

X X 0.26

RS_mediapipe/Point Cloud Trans-
formation/Alignment

X X 0.08

PCD_rigid/FPFH Matching 797.25 X X
PCD_rigid/Downsampling & Cham-
fer Distance

10.11 X X

PCD_rigid/ICP Fine Alignment 6.55 X X
PCD_rigid/PCD Message Handling
& Preprocessing

269.82 X X

PCD_rigid/Reordering Point Clouds 7.23 X X
PCD_dynamic/CPD Registration X 34004.28 X
PCD_dynamic/Downsampling &
Chamfer Distance

X 6435.06 X

PCD_dynamic/ICP Fine Alignment X 13.87 X
PCD_dynamic/PCD Message Han-
dling & Preprocessing

X 0.0013 0.0019

PCD_dynamic/Reordering Point
Clouds

X 11.12 X

PCD_keypoints/Keypoints entire
pipeline

X X 0.37

LTE/Fitting 206.98 421.87 383.49
LTE/Trajectory Update 33.06 40.85 31.42
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