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Abstract

For a long time, scientists believed that it is not possible to achieve a better microscopic resolution
than half the wavelength of light (∼ 200 nm). During the last decades, various super-resolution flu-
orescence microscopy techniques have been developed, offering high-resolution imaging beyond the
diffraction limit. It has been established as one of the major tools currently available for the study
and analysis of biological tissues. The observation of, previously limited and unclear, cellular struc-
tures has demonstrated the great promise of super-resolution fluorescence microscopy in exemplifying
biological processes at the cellular level. Inherently, single-molecule localization microscopy (SMLM)
is based upon acquiring a sequence of diffraction-limited images, consisting of localizations of sparsely
distributed emitting fluorophores. Next, precise and accurate estimates of the spatial coordinates of
the fluorophores, placed on the structures of interest, are made. Subsequently, all recovered emitter
positions from each frame are combined, and a super-resolution image is generated. One of the most
crucial questions in SMLM concerns the precision with which the location of a single molecule can be
determined. The Cramér–Rao lower bound (CRLB) is used to quantify the estimation performance
in terms of localization precision. Recently, several modulation enhanced methods have shown reso-
lution improvement by combining structured patterned illumination with SMLM techniques, such as
MINFLUX [18] and SIMFLUX [9]. However, the analysis of images by SMLM and these modulation
enhanced methods requires sparse activation regions to prevent overlap between active emitters. Re-
cently, several methods have been developed with the ability to analyze higher density data, allowing
partial overlap between emitters.

In this work, we propose a maximum likelihood-based, modulation enhanced SMLM method able
to localize multiple active emitters within a single region of interest (ROI), which we refer to as Multi-
SIMFLUX. The mathematical framework of the algorithm is comprehensively built up throughout
this work. The performance of the algorithm has been evaluated, and validated under a wide range
of realistic imaging conditions. This involves various active-emitter densities, different emitter- and
background intensities, numerous emitter configurations, a multitude of ROI-sizes and point spread
function widths. As theoretically expected, our approach significantly outperforms conventional 2D-
Gaussian SMLM with a twofold improvement factor in terms of localization precision for various
emitter densities and intensities. At higher active emitter imaging densities, the extension from a
single to a multi-emitter approach showed a clear improvement in recall fraction.
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Chapter 1

Introduction

“If you accept my thesis that the universe and this earth are the most
outrageous miracles by an infinite margin, then you will understand that

simply for us to exist requires a miracle.”
- Eric Metaxas

This chapter serves as a general introduction of this work. First, some background information and
the motivation for studying single-molecule localization microscopy is given. Then, the state-of-the-art
applications and limitations are briefly discussed. Finally, the scope and main focus of this thesis is
stated.

1-1 Background & Motivation

Cells are considered to be the basic units of life. They have complex configurations and come in
different types and forms. Proteins are the molecular building blocks and functional machines of cells
and are one of the key components controlling biological processes. There are thousands of different
types of proteins within the human body, each with a specific task, location and three-dimensional
structure. We humans are interested in visualizing protein molecules in order to aid us in understand-
ing and explaining complex inner structures and mechanisms in organic cells. Scientists are able to
create modified proteins, which are used for the study of cellular processes on a molecular level. As a
consequence, it is possible to extract useful information about the natural physiology and anomalous
deviations that lead to diseases and disorders.

The Dutch scientist Antony van Leeuwenhoek has made a great contribution to the invention and
development of microscopy in the 17th century, due to his pioneering work in the study and analysis
of living micro-organisms [20]. From that point onwards, optical microscopy has played a central role
in our understanding of biology and chemistry. The types and shapes of microscopes over the last
decades have been continuously altered and optimized, with the aim of improving both the image
resolution and acquisition speed. Nonetheless, the basic principle has somewhat stayed the same.
Microscopic applications are based on the interaction (scattering, reflection, attenuation, absorption,
etc.) of an electromagnetic wave with some material, where based on its response, some knowledge
can be gained about its characteristics and structural dimensions.
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2 Introduction

The analysis of molecule’s emission patterns is critical for obtaining structural and physiological in-
formation regarding the targeted molecules. There are several types of microscopy fields, based on
their variance in energy, such as: light, electron, infrared, magnetic resonance, atomic force and x-ray
microscopes. In this study, we focus on light microscopes due to their inherently minimal invasive
approach, which provides powerful insights into the observation of living organisms for biological and
medical research, without damaging the tissues. Light microscopes operate by making use of the
visible light, with a wavelength λ of 400 − 700 nm. This is the primary reason for them being the
firmly established optical tool for biological studies, especially living cells. Other microscopes which
make use of much higher energies, such as infrared or electron microscopes, are capable of achieving
higher resolution. However, their energy levels are so high that even a minimal electron dose can result
in heating up issues that are destructive to the sample, which makes them unsuitable for biological
studies.

Figure 1-1: An overview of some microscopy techniques with their respective lateral resolution.
Conventional light microscopy is limited by the diffraction barrier known as the Abbe-diffraction limit,
λ/2NA in the lateral direction. This limitation causes the images of objects with separation distances
smaller than ∼ 200 nm in the lateral direction to be indistinguishable. Super-resolution microscopy
methods break the diffraction barrier; some pioneer methods are shown with their average lateral
resolution. In the next sections, each method is briefly discussed.

The challenging part is that proteins are typically in the range of a billionth of a meter (nm) in size,
while conventional light microscopes can not observe objects this small. Conventional (fluorescence)
light microscopy is limited by the physical barrier known as the Abbe-diffraction limit, quantified as
λ/2NA (see Section 2-2). This limitation prevents the images of objects with separation distances
smaller than 200 nm in the lateral (x, y) direction and 500 nm in the axial (z) direction to be distin-
guished from each other.

The widespread advancements of microscopy have been driven by the coherent engagement of physi-
cists and mathematicians in optimizing the optical hard- and software instruments, alongside biologists
and chemists facilitating and extending the use of fluorescent proteins. This is where super-resolution
imaging techniques have revolutionized (fluorescence) light microscopy. The tremendous increase in
the amount of data available, should permit the development of image analysis tools that are able
to extract more valuable information, making the image analysis procedure significantly more quan-
titative. The availability of advanced and sensitive optical instrumentation has further permitted the
acquisition of super-resolution images of densely packed regions and complex cellular structures. It
has enabled the study of cell structure details and dynamics of cellular events. For instance, it gives us
the ability to visualize and study the process of synapse creation between nerve cells within the brain,
the ability to track and trace proteins involved in certain diseases such as AIDS, Cancer or Alzheimer,
the applications are numerous and boundless. Perhaps more applicable these days, is the role that
microscopes can play in the study of the ongoing pandemic due to the emergence of the new Corona
(SARS-CoV-2) virus in December 2019, in a market in Wuhan, China. This virus is currently being
witnessed by more than 150 countries, has infected more than 60 million people around the world,
and has resulted in the death of more than 1.4 million people [4].

Ahmed Zahran MSc Systems & Control Master of Science Thesis



1-2 Problem Formulation
State-of-the-art techniques 3

1-2 Problem Formulation
State-of-the-art techniques

Single-molecule localization microscopy (SMLM), with its variations, is currently one of the broadly
used super-resolution imaging techniques. The probe-based super-resolution techniques, such as
Photo-activated localization microscopy (PALM) [46] and Stochastic optical reconstruction microscopy
(STORM) [26;45;17], achieve lateral spatial resolution in the range of ∼ 20 nm instead of 200−300 nm.
Regardless of their extraordinarily lateral spatial resolution and their ease of implementation, there are
still some factors limiting the resolution. The majority of the leading methods in the field of SMLM,
face three fundamental issues: achieving sub-optimal localization precision, lengthy acquisition/data-
processing time and sample-dependent parameter tuning. Localization microscopy inherently requires
a large number of imaging cycles ( ∼ 103 − 105) [32] in order to generate one single super-resolution
image. Due to the fact that they make use of sparse emitter activation, the chance of emitters over-
lapping each other is minimized. At the same time, this is one of the main causes of the enduring
acquisition/data-processing times, hindering the throughput and live-cell imaging applications. On
top of that, some of the applications of these techniques require an estimate of the Point spread
function (PSF). Meaning that uncertainties in the PSF estimation affect the confidence in the recov-
ered signals directly. Therefore, most single-molecule localization based techniques are restricted to
the analysis of a small number of cells. Also, unavoidable or unnoticeable acts during sample prepa-
ration could lead to alteration or damages to the cellular structure, leading again to inaccurate results.

The number of photons collected from a fluorophore is a major decisive factor for the localization
precision in SMLM, and so for the resolution of the generated super-resolution images. The labeling
density is another main factor which affects the resolution. When the targeted structure is not suffi-
ciently labelled, inaccurate observations can be obtained, e.g. causing in-reality continuous structures
to appear discontinuous. However, too high spatial densities of activated molecules can result in a
crowded field of activations, thus providing inaccurate or unsatisfying results. When there are too
many photo-activated molecules in a single camera frame, their PSFs start to overlap, resulting in
a number of non adequately resolved fluorophores. This increases the active density and hence de-
creases the spatial resolving power. In other words, the overlapping of PSF’s reduces the ability to
distinguish single emitters from each other, by which the whole benefit of SMLM is hardly utilized.
The effect of labeling density on the effective spatial resolution can be quantified by the Nyquist cri-
terion [26]. This consideration has to be made in nearly all super-resolution fluorescence microscopy
methods, including STED [25;54], (S)SIM [52;21;1], (F)PALM [17;46] and STORM [26;45;17]. Likewise, the
choice between organic dyes and fluorescent proteins (FPs) is an issue to deal with. Organic dyes
are inherently brighter and have more ideal photophysical properties, applicable for super-resolution
imaging, in comparison to FPs. However, the size of FPs is much smaller, making them more con-
venient for viewing the structures and dynamics of molecular regions of interest, yet also causing the
labelling and localization procedure to be more time consuming. Several methods on combing benefits
of both sides are conducted and are still ongoing [39;30]. Regardless of the fact that this topic is outside
of the scope of this thesis, we foresee that the further development and investigation of efficient and
specific labeling methods will be of great benefit for super-resolution fluorescence microscopy [26].

Obtaining accurate and precise information regarding the dynamics of biological processes, depends
on both temporal and spatial resolutions. Due to the trade-off between the temporal and spatial
resolutions, involved in basically all super-resolution imaging techniques, super-resolution fluorescence
microscopy is intrinsically slower than conventional fluorescence microscopy under the same condi-
tions [26]. Different kinds of approaches have been developed and utilized to approach these issues. For
example: the usage of brighter dyes with faster switching kinetics, higher power lasers and faster cam-
era’s (e.g. sCMOS’s and EMCCD’s) which allows minimization of exposure time while maintaining
a high S/N ratio [45;26]. For increasing the acquisition speed, typically the total area coverage is re-
duced or larger pixel sizes are used [27]. Faster switching rates are able to improve temporal resolution;
however, such wavelengths and high excitation intensities have shown to increase phototoxicity [11].
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4 Introduction

Further, it is possible to achieve higher spatial resolution in the lateral direction, by considering a
smaller pixel size. However, this is inherently associated with a longer acquisition time. The number
of active fluorophores per frame can be increased, which improves the image acquisition, yet causing
a degrading effect on the spatial resolution. In general super-resolution imaging techniques tend to
achieve the necessary resolution, but lack the acquisition speed. In contrast, widefield imaging pro-
vides more or less the desired speed, but lacks the desired resolution.

Recently, a couple of modulation-enhanced localization microscopy (meLM) techniques have been
developed, such as MINFLUX [18] and SIMFLUX [9]. These techniques are based on combining the
structured illumination patterns of SIM (or doughnut illumination shapes of STED) and the emitter
sparsity characteristic of SMLM, with the aim of taking benefit of the advantages of both techniques.
The controlled construction and displacement of the illumination pattern, instead of uniform illumi-
nation, provides extra information; since it allows for the measurement of modulation fluorescence
intensities coming from isolated emitters. Collecting thousands of frames allows the reconstruction
of super-resolution images with a spatial resolution beyond the diffraction limit [32]. However, for
obtaining optimal spatial resolution of cellular structures and dynamic processes, densely labelled
structures can be unavoidable. As the amount of information available per area is related to the
density of active emitters and their localization precision in this certain area. Current localization
techniques are requiring fluorescence emissions of individual fluorophores not to overlap, which lim-
its the number of fluorophores to be localized in a given frame, and hence affects the acquisition
time negatively. Using the same optical setup, as in conventional light microscopy, for the genera-
tion of super-resolution images requires longer acquisition time to obtain more spatial information,
which leads to a trade-off between spatial and temporal resolution. Initially, only imaging frames with
well-isolated non-overlapping emitters were considered in the analysis. It is suggested that by allowing
multiple emitters within a region of interest (ROI), instead of a single emitter, the overall performance
of SMLM can be significantly improved, in terms of acquisition speed and a higher active single-frame
density. Since SMLM is dependent on the localization of sparsely activated emitters, which cannot
be guaranteed in all cases, a lot of data is being rejected. Several multi-emitter fitting techniques
have been developed, aiming for exploiting all available fluorescence data, consequently leading to
a resolution improvement at high molecular densities and the ability of resolving overlapping emit-
ters, while minimizing the computational effort, e.g. FALCON [36], 3B [11], SPIDER [29], BAMF [19] and
MFA [28]. They are computationally demanding, hence inherently dependent on high quality hardware
and efficient and accurate algorithms for the reconstructions of super-resolution images.

Parallel to this, is the ongoing revolution of deep learning applications, which has demonstrated the
capability of deep learning techniques in the handling of enormous amounts of data within a decent
amount of time and impressive results in diverse image processing and computer-vision applications
have been achieved. Deep learning is a branch of machine learning, which is a subset of the field of
Artificial Intelligence (AI). AI traditionally refers to the theory and development of systems able to
mimic human-like intelligence, in its ability of visual perception, speech recognition, learning, reason-
ing, planning and decision-making. Machine learning, by using statistical methods and algorithms,
has the capability to learn and adapt to new events and improve by experience. The deep learning
technology is a rapidly growing data-driving technique, which popped up in the 1940s [35]. It structures
algorithms in layers to create artificial neural networks (ANNs), which can "learn and gain experience"
and based on that addressing diverse types of problems and making intelligent decisions. Moreover, it
can achieve unprecedented acquisition speeds, due to leverage Graphics processing unit (GPU) com-
putation and parameter-free procedures. Inherently, this requires minimal expertise from the user.
Several methods and techniques have already been demonstrated employing deep neural networks for
super-resolution imaging enhancement, learning meaningful features, segmentation, particle tracking
and many other purposes [13;50;40;42]. The state-of-the-art of deep neural networks architectures and
algorithms, applied for localization microscopy show much potential. For example, a method called
"Artificial Neural Network Accelerated PALM ", i.e. ANNA-PALM [42], is a neural network able to
accelerate the PALM technique.
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The principle of ANNA-PALM is as follows: it is an artificial neural network, which is trained on
localizations from a sparse number of frames (so not all available frames) matched with dense lo-
calization data, obtained from long-duration acquisition of the same frames. Afterwhich the neural
network is able to generate accurate super-resolution images from a smaller number of frames. Ba-
sically, the neural network is being trained to reconstruct high-quality super-resolution images from
small numbers of frames. However, ANNAPALM requires long data post-processing procedures, and
its performance is highly dependent on the availability and amount of training data, which in some
cellular imaging applications not easy attainable or available at all. For new samples with prior un-
known structures, so no training data available yet, the traditional techniques would be more reliable
due to the lower risk of introducing image artifacts. Another deep learning based super-resolution
method, called Deep-STORM [40], applies a fully convolutional neural network for the reconstruction
of super-resolution images from dense fields of overlapping emitters. So it is not based on localizing
single emitter, instead it creates a super-resolved image from the raw data directly, which makes it
capable of achieving superior speed to conventional localization techniques. Some of the drawbacks of
Deep-STORM method is that it is restricted to 2D localization, extending it to 3D is currently com-
putationally inefficient. It is also unable to make use of the large number of post-processing methods
available due to the fact that its output is not the usual format of a list of localizations.

All in all, there is still much space for improvement of the spatio-temporal resolution of SMLM appli-
cations. We foresee a bright future for deep learning and its contribution to super-resolution imaging
techniques. However, to the best of our knowledge they have not shown groundbreaking results yet.
Taking the above mentioned notations and discussions into consideration, we assume that exploring a
new multi-emitter localization algorithm for enhancing the recall fraction at high active emitter den-
sity with a minimal loss in localization accuracy and precision, will directly benefit the SMLM-field
in positive sense. In this thesis, we propose a method, which is based on combining and extending
the modulation-enhanced localization microscopy technique SIMFLUX [9] and the multi-emitter fitting
technique MFA [28]. This method will allow imaging frames to contain a higher active emitter density,
which will benefit the acquisition speed positively. We foresee that after developing and optimizing
this approach, it will be useful in particular for very highly densed regions and for high-speed live
imaging. From now on, we will refer to the novel method as Multi-SIMFLUX (and just SIMFLUX
interchangeably). Ideally, it will achieve a localization precision comparable with single-emitter local-
ization methods, but provide an increased recall fraction at high active emitter densities. The method
will be certified on simulations first, then put to the test on experimental data.
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6 Introduction

1-3 Outline of Thesis

This section provides an outline of the remainder of this study to provide guidance during the reading
process. It is tried to make this work as self-contained and smooth to read as possible. Although it
might not necessarily be complete, hopefully the relevant topics are adequately covered. The remainder
of this study can be listed as follows:

• Chapter 2,
Provides an overview of the relevant related background theoretical information to understand
the state-of-the-art methods in the literature on super-resolution microscopy.

• Chapter 3,
Discusses the mathematical concepts of imaging forming models, statistical properties of photon
collection, parameter estimation, to provide the underlying theories, mathematical foundations
and theoretical limitations.

• Chapter 4,
In this chapter, the main findings of my thesis are presented and discussed in the form of a paper-
draft manuscript. It starts by a short introduction followed by the mathematical framework
which describes the problem formulation, the expected theoretical localization improvement and
an outline of the algorithm setup. The theoretical results are numerically simulated in order to
verify the expectations. Furthermore, there are some references for supplementary notes and
figures for more in-depth clarifications and additional observations.

• Chapter 5,
Serves as a summary of the main findings and insights gained during this study. It provides
the reader with some concluding remarks and future recommendations for potential prospective
studies on the discussed topics, to constantly work towards a more reliable and robust single-
molecule localization microscopy algorithms.

• Appendices,
In Appendix A, several preliminary mathematical notations and derivations considered during
the work are provided.
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Chapter 2

Theory and Literature

“Facts can not be observed without the guidance of some theory.”
- Auguste Comte

In this chapter, the theory behind optical microscopy is briefly introduced and the relevant topics are
elucidated. In order to make theoretical descriptions easily understandable, some general concepts,
such as the fluorescence phenomenon, the point spread function, the diffraction limit and super-
resolution are briefly discussed. Further, several essential discoveries and developments of microscopic
techniques are stated. Subsequently, a concise overview is given of the main findings and insights gained
during the literature study, while shortly mentioning the state-of-the-art super-resolution techniques.

2-1 Introduction

Microscopy makes use of an instrument, unsurprisingly called a microscope, which allows us to observe
objects that are too small for the naked eye to be seen. Optical microscopes (regularly referred to as
light microscopes) make use of the visible light, with a wavelength λ of 400 − 700 nm. This is the
major reason for them being the firmly established optical tool for biological explorations, especially
living cells. Since visible light is minimally invasive and is minimally absorbed by the specimen, which
mostly consists of water, it does not result in heating up issues of the sample. Conventional light
microscopy is based on the principle of transmission and reflection of visible light transmitted through
a series of lenses, where the image is captured by a digital camera or observed by the observer’s eye
directly. Essentially, biological samples are transparent, which hinders the image from obtaining all
the details and structures of the molecules of interest. Thus just by transmission or reflection, the
regions of interest are hard to distinguish from other objects and/or the background. This is a clear
indication for the necessity of image contrast enhancement techniques. Fluorescence microscopy is the
ultimate technique due to its specificity, as it is able to show the regions of interest, while all other
objects and the background are set black. This feature gives fluorescence microscopy its intrinsic
selectivity characteristics, which is the reason that it has become one of the main tools in current
biological studies [33].
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2-2 The Diffraction Limit

In the last few centuries, a huge number of technological developments led to significant advancements
in the field of microscopy. However, there are still some limitations imposed by the diffraction limit
of light. This physical phenomenon is referred to as the diffraction limit/barrier, known as the Abbe-
diffraction limit [16]. Abbe made the statement that the resolution of an imaging instrument is not only
constrained by the quality of the optical instrument, but also by the wavelength of light used [23;34].
The Abbe-diffraction limit, in the lateral and axial direction, is defined as follows:

Resolutionx,y : σx,y = λ

2NA Resolutionz : σz = 2λ
NA2 (2-1)

It is basically the disability of optical instruments to distinguish between two objects separated by a
distance less than σx,y and σz in the lateral and axial direction, respectively. Therefore, it describes
the smallest level of detail (resolution), which the optical instrument is able to image. It can be
considered as a low-pass filter, as the information coming from any structures with higher spatial
frequencies (shorter wavelengths) will not be involved in the captured image. In microscopy, objective
lenses with a numerical aperture NA of 1.2 or higher, are often used for the imaging of single fluorescent
molecules in order to collect as many emitted photons as possible. The objective’s NA is defined as
NA= n sinα, where n is the refractive index and α is the maximum half-angle of acceptance by the
objective. It should be noted that high-NA objectives can collect a broader range of angles. The
collection efficiency of the emitted photons is proportional to α as follows; (1−cosα) [48]. Even in case
of using optical instruments equipped with the highest quality lenses, highest NA and incompatible
immersion oil the resolution is still limited by the diffraction barrier.

2-3 Point Spread Function

An important characteristic of a microscope is the so-called point spread function (PSF). The spot
created due to light diffraction is called the PSF. The PSF describes the impulse response of a mi-
croscope to a point source of light. The emission patterns of tiny light sources, i.e. PSFs, encode
information about the molecule’s location and orientation. The diffraction of light determines the
resolution limit of microscopes, what blurs out any point-like object to a certain size and shape. For
a proper calculation of the PSFs of objectives with these high NAs; vectorial effects, aberrations in-
troduced by the specimen or by inevitable imperfections in the optical system, must be taken into
consideration. The degree of spreading (blurring) of the point object is a measure for the quality and
sharpness of an image. The PSF is usually taller than it is wide, since optical microscopes have worse
resolution in the axial direction than in the lateral direction [22]. The PSF of the optical system is
characterized by its width σ, which is related to the NA and the fluorescence emission wavelength λ.
The shape of the PSF remains the same everywhere in the imaging space. The obtained image of an
object is the convolution of the object and the PSF. Mathematically speaking, the blurring effect is
described by the following convolution:

Specimen~ PSF = Image

where ~ is the 2D convolution operator (see Supplementary Notes in Section 4 for more details). This
means that actually the output of the microscope is a convolution of the PSF with the specimen.
So in reality, we do not know what the actual specimen looks like, since we get a blurred image.
Considering the fact that we can record both the observed image and the PSF, with an operation
called deconvolution, it is possible to reverse the blurring effect of the PSF on the specimen and get
an unblurred image.
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Figure 2-1: An illustration of the convolution between specimen and point spread function (PSF)
resulting in the obtained image. The PSF carries information about the effect of the imaging system
on the specimen i.e., the 2D spatial impulse response of the imaging setup.

The relation between the observed image and the raw true image can be described as follows: Y =
Cx + υ. The observed camera image is stored in a vector Y , a matrix C describes the convolution
matrix defined by the PSF, the signal vector x contains the discretized intensities of the fluorophores
of the raw image and υ is introduced to represent the measurement noise. Another characteristic of
an optical system is its optical transfer function (OTF). The OTF of an optical system is basically
the Fourier transform of the PSF, which describes the response of an imaging system as a function of
spatial frequency. Any imaged object can thus be thought as a linear combination (superposition) of
spatial frequencies. The OTF of the lens is bandlimited. The lens acts as a low-pass filter with cutoff
frequency ωc, defined as:

ωc = 4πNA
λ

(2-2)

The higher the cutoff frequency, the more high frequency details can be captured by the lens, the
higher the image quality will be. A variant of the OTF is the MTF, which neglects phase effects, and
is equivalent to the OTF in many cases.

2-4 Fluorescence Microscopy

The introduction of fluorescence microscopy in the 20th century has revolutionised the use of optical
microscopy in the fields of medicine and biology [23;31;33]. Fluorescence microscopy is much the same as
conventional light microscopy, with additional features to enhance its contrast enhancing capabilities.
Fluorescent imaging has provided an invaluable insight into many cellular structures and functions
within biology. It gives the ability to visualize, out of the total sample, the desired organelles or specific
features of interest. A specimen is illuminated with a specific wavelength (energy), which is absorbed
by fluorescent molecules, called fluorophores. Fluorophores are fluorescent chemical compounds that
can re-emit light upon light excitation, whose detection and tracking, based on their emission patterns,
has laid the foundation for modern imaging methods [33;7]. The incoming light excites the orbital
electron to a higher orbit. Subsequently, when relaxing to its so-called "ground state" (the initial
orbit), it emits a photon of lower energy (longer wavelength) typically a few nanoseconds later. Thus,
the excitation wavelength is always higher than the emission wavelength (∼ 10 − 100 nm), which is
also known as the Stokes shift (see Figure 2-2-I) [33]. This transition, to an excited state, happens very
rapidly (in femtoseconds) [33]. Not always is all energy released in the form of light, also in the form of
heat by vibrations or later (seconds to hours) via phosphorescence or transferring it to a neighbouring
molecule [14].
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Figure 2-2: (I) The fluorescence principle. (a) A simplified Jablonski diagram. The incoming
laser, excites an electron from its ground state to a higher nuclear vibrational level. After some fast
vibrational relaxation (i.e. energy dissipation), the electron reaches the bottom of the excited level
band, subsequently it decays back to its ground level while emitting a photon of lower energy, longer
wavelength. (b) The Stokes shift - the difference between the excitation and emission spectrum due to
energy losses. (II) Schematic representation of a simple fluorescence microscope setup. The specimen
is illuminated with light that passes through the excitation filter, which dismisses the wavelengths that
do not match the excitation spectrum of the used fluorophores. Then, the excitation light is reflected
by the dichroic mirror and focused by the objective lens on the specimen. Fluorophores labels in the
specimen absorb excitation light and emit fluorescence. The illumination (excitation) path is shown in
blue and the image-forming (emission) path in green. The emitted light is then collected by the same
objective and passes back through the dichroic mirror to the detector.

The 2008 Nobel Prize winners for chemistry, O. Shimomura, M.Chalfie and R. Tsien, had a major
impact on the field of fluorescence microscopy, with their discovery and development of the green
fluorescent protein (GFP) [44]. Fluorescence microscopy is able to contribute, by precisely labelling
one or multiple parts of cells with different (non-overlapping excitation/emission spectra) fluorophores,
whereby particular cell parts can be distinguished. A simple schematic representation of a fluorescence
light microscope is shown in Figure 2-2-II. Typically lasers, light emitting diodes (LEDs) or even lamps
are used as light source, followed by an excitation filter, which allows certain illumination wavelengths
(depending on the application) to pass through. The light source coming through the excitation
filter reaches a dichroic mirror, which acts as a beams splitter. It reflects shorter wavelengths that
typically excite fluorophores, and transmits longer wavelengths that are emitted through. The shorter
wavelengths reach the specimen, where a portion of the light is absorbed, a portion passes through
and the rest is reflected back. The emitted light is then collected by the objective and passes back
through the dichroic mirror to the detector. Since fluorescence signals are often weak, one of the main
requirements for the camera is a high sensitivity and low readout noise, typically Electron-Multiplying
Charge-Coupled Device (EMCCD) or scientific Complementary Metal-Oxide Semiconductor (sCMOS)
cameras are used. One of the most widely used types of fluorescence microscopes is the widefield
fluorescence microscope. The primary advantages of widefield fluorescence microscopy is that it allows
for fast image acquisition, since it captures the whole field of view in one shot, makes use of low and
uniform illumination doses and its relative ease of use.
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2-5 Beyond the Diffraction Limit

In the past few years, a couple of so-called "super-resolution" microscopy techniques have been intro-
duced, which are able to surpass the diffraction barrier. These techniques have resulted in a significant
improvement in spatial resolution in three-dimensional sense. Super-resolution fluorescence microscopy
has been established as one of the major tools currently available for the study and analysis of biolog-
ical tissues. For a long time, scientists believed that it is not possible to achieve a better microscopic
resolution than half the wavelength of light (∼ 200 nm). The observation of, previously limited and
unclear, cellular structures has demonstrated the great promise of super-resolution fluorescence mi-
croscopy in exemplifying biological processes at the cellular level [26].

Recently, combining several different principles together is being applied, able to reinforce each
other by trying to benefit from each individual strengths and minimize their weaknesses. One of
the ground-breaking discoveries was e.g. in 2014, by Eric Betzig, Stefan W. Hell and William E.
Moerner, which was awarded the Nobel Prize in Chemistry [2], for their astonishing work in achieving
resolution better than the limit imposed by Abbe’s diffraction barrier. They worked on two separate
principles, namely Stimulated emission depletion (STED) microscopy and Single-molecule localization
microscopy (SMLM). The main idea of STED is modifying the excitation light pattern, through some
controlled engineering to produce a much smaller focal spot size of the PSF. There is a diverse variety
of super-resolution SMLM techniques, which are all more or less based on the same principle; bringing
fluorophores in a controlled fashion in an ON or OFF state. In the coming sections we list and review
some of the most applied principles in the current state of development, discussing their individual
strengths and weaknesses.

Figure 2-3: An example of the resolution improvement achieved by super-resolution imaging tech-
niques in comparison with conventional microscopy techniques. All images are 10 × 10 µm in size.
(a-c) Super-resolution images acquired with STORM and conventional images obtained using TIRF
microscopy. (d-f) Super-resolution images acquired with STED and conventional images obtained
using confocal microscopy [53].
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2-6 Structured Illumination Microscopy

In structured illumination microscopy strategies, instead of illuminating the sample with an uniform
field of light, a pattern has been put into the illumination. STED is first proposed and demonstrated
in the 1990’s [25]. In STED fluorescence microscopy, two synchronized and center-aligned intense laser
beams are used. Intense radiation from the first laser beam, excites fluorescent molecules to glow pro-
ducing a "standard" diffraction-limited PSF; then stimulated to return to its ground state, while the
other pulse is a centered zero intensity doughnut-shaped laser beam (see Figure 2-4a). This results
in a cancellation of fluorescence, except in a small (nano-sized) region located in the center of the
STED beam [25], resulting in a substantially smaller effective PSF. The synchronization between the
first and second pulse lasers are within hundreds of picoseconds [15]. Currently, the state-of-the-art
achieved lateral resolution is typically in the range of ∼ 20 nm [24]. However, whether such results can
be achieved in living cells without causing phototoxicity is an ongoing debate. A drawback of this
method is that, it requires a complicated alignment of the optical setup and the usage of high power
lasers, which can result in photo-bleaching (the photochemical alteration of a fluorophore molecule
such that it is permanently unable to fluoresce) or damaging the sample in some cases. Regardless of
these issues, it has been demonstrated that its usage is applicable for the study of dynamic processes
in living cells [5].

Structured illumination microscopy (SIM) makes use of the so-called Moiré effect, making it able
to achieve higher resolution in comparison with the conventional diffraction-limited microscopes. The
Moiré effect is a phenomenon that occurs, when two high-frequency patterns are similar in structure
but slightly shifted or displaced with respect to each other (see Figure 2-4b). Resulting in the creation
of a third pattern with a lower frequency, which changes as the relative position of the two patterns
change. SIM makes use of this principle to extend the microscope’s region of spatial frequency support.
The image is then reconstructed with the aim of extracting all the present information.

As previously mentioned, an essential characteristic of an optical system is its OTF. The OTF of
an optical system is in essence the Fourier transform of the PSF, which describes the response of an
imaging system as a function of spatial frequency. In the control theory realm, we call it the impulse
response of the system. SIM basically increases the accessible Fourier space and therefore increases
the number of accessible spatial frequencies. Thus, SIM uses a patterned illumination, where the
spatial frequencies of the illumination pattern interfere with those of the sample features, resulting in
new shifted frequencies. The shifted frequencies are lower than the cutoff frequency of the system,
thus are detectable by the microscope (see Section 3-6). However, SIM is limited by the high risk
of reconstruction artifacts, and is only capable of doubling the spatial resolution by combining two
diffraction-limited sources of information, since the illumination pattern itself is also limited by the
diffraction of light [23;26;45].

Saturated structured illumination microscopy (SSIM) is an extension of SIM, which utilizes the satu-
ration of fluorescence emission that typically happens when the fluorophore is illuminated with very
high intensity light [1;23]. The saturated excitation illumination produces narrow lines, between the
high intensity levels of fluorescence, which are then used to generate a negative imprint of the imaged
sample. The super-resolution image is then retrieved by some mathematical post-processing tech-
niques. The SIM is able to achieve a resolution of ∼ 100 nm and ∼ 300 nm in the lateral and axial
direction respectively [23;45], whereas SSIM is able to achieve 50 nm resolution in both directions [1].
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Figure 2-4: STED and SIM imaging techniques - (a) STED makes use of the two illumination laser
beams (excitation and doughnut-shape depletion modulation), the first to excite fluorophores and the
latter to deplete fluorescence, except for a small-sized region in the center. The resulting effective
PSF, much smaller than the initial, is used in the process of scanning across the sample to create
an improved super-resolution image. (b) Visualisation of the Moiré effect used in SIM. Fine object
details and structures, which previously could not be resolved, become visible and distinguishable due
to the interference with the structured illumination pattern.

2-7 Single Molecule Localization Microscopy

Super-resolution fluorescence imaging by single-molecule localization microscopy (SMLM) techniques,
has fundamentally revolutionized the understanding of diverse cellular structures, functions and dy-
namics occurring at the molecular level [9]. Inherently, SMLM is based on acquiring a sequence of
diffraction-limited images, consisting of localizations of sparsely distributed emitting fluorophores.
Next, precise and accurate estimates of the spatial coordinates of the fluorophores, placed on the
structures of interest, are made. Subsequently, all recovered emitter positions from each frame, are
combined and a super-resolution image is generated. An advantage of this technique over other men-
tioned super-resolution techniques such as STED [25] and (S)SIM [1], is that it can be implemented using
relatively simple and conventional microscopes [9]. A crucial remark is that, although the fluorescence
signal coming from an active fluorophore is diffraction-limited, the precision of determining the fluo-
rophore’s position is not. Thus, the number of detected photons N will be decisive to the enhancement
of localization precision. The image of a single fluorophore is obtained in the form of a PSF. The
unbounded limiting value of localization precision of SMLM methods is proportional to ∼ σx,y√

N
. Hence,

increasing the NA of the objective lens, shortening the emission wavelength (without damaging the
specimen), increasing the photon emission rate (since the localization precision is inversely related by
(the square root of) the number of photons captured) or improving the optical efficiency, will result
in localization precision improvement. Typically, thousands or even millions of fluorophores are used
in labelling cellular structures, which makes the spatial resolving approach troublesome at high active
labelling densities. Photoswitchable fluorophores are able to reversibly or irreversibly switch between
two or more spectrally distinct states. Several recent techniques, using different fluorescent probes,
have been demonstrated with the capability of switching between a fluorescent (on) and a dark (off)
state. Molecules within a diffraction-limited region can be activated at different time instances, so
that they can be individually imaged and localized, thus enabling spatial distinction.
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The same area is imaged multiple times, while individual fluorescence molecules are turned on and
off. Parallel to each other, multiple fluorophores are being activated, and localized, subsequently com-
bined to reconstruct a super-resolution image. This principle has been independently conceived and
implemented by (F)PALM and STORM [26;46;17;3].

Figure 2-5: A schematic representation of the principle of SMLM - (a) The structure to be observed.
(b) The structure labeled with fluorophores. (c) Simultaneous emission of all fluorophores. (d) The
obtained image by simultaneously putting all fluorophores in their on-state. (e) SMLM principle -
Capturing multiple frames containing a sparsely activated set of fluorophores. (f) The super-resolution
image obtained after the acquisition and processing of the localized sparse emitters from all frames.

The (F)PALM and STORM Imaging Methods

Single-molecule based localization microscopy methods such as Photo-activated localization microscopy
(PALM) [46], Fluorescence photo-activated localization microscopy (FPALM) [17] and Stochastic optical
reconstruction microscopy (STORM) [3] are nowadays the widely used fluorescence microscopic imag-
ing techniques [53]. These techniques are able to obtain super-resolution images beyond the diffraction
limit. They all are more or less based on the same principle, but were initially published using differ-
ent photoswitchable probes. They all make use of photoswitchable fluorescent dyes or proteins, which
are being activated by a certain wavelength of light. The approach relies on the randomly switching
between activation of individual photoactivable molecules into a fluorescent state (on-state) and a
dark state (off-state), which then are being individually imaged resulting in an optically solvable set
of activated fluorophores. Due to this stochastic activation characteristic, it provides the ability to
distinguish and precisely localize closely packed molecules. Individual fluorescent molecules (in their
on-state) are localized then a PSF model is fitted on the estimated location. All the obtained positions
of single-molecules are then merged together after a certain amount of photoactivation cycles, resulting
in a super-resolution image. It is clear that the resolution improvement is dependent on the degree
of precision, by which individual fluorescent molecules can be localized. This is dependent on the
number of photons collected, thus single-molecule detection with high accuracy requires a sufficiently
high signal-to-noise ratio (S/N).
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2-8 Modulation-enhanced Localization Microscopy

Recently, a couple of so-called modulation-enhanced localization microscopy (meLM) techniques have
been developed, such as MINFLUX [18] and SIMFLUX [9]. These techniques are based on combing the
structured illumination patterns of SIM (or doughnut illumination shapes of STED) and the emitter
sparsity characteristic of SMLM with the aim of taking benefit of the advantages of both techniques.
The controlled construction and displacement an illumination pattern, instead of uniform illumination,
provides extra information since it allows for the measurement of modulation fluorescence intensities
coming from isolated emitters. The illumination pattern shifts are typically equidistant in the propa-
gation direction. For 2D localization of single emitters, using two orthogonal illumination patterns is
found to be sufficient.

MINFLUX
MINFLUX is considered to be a pioneer in this field of super-resolution microscopy [18]. MINFLUX
is able to localize molecules and attain nanoscale precision with minimal emission fluxes, i.e. from
the same photon count more information can be extracted. It uses a doughnut-shaped illumination,
which is a circular illumination pattern with low or zero intensity in the center, while higher intensities
on the boundaries of the beam, as illustrated in Figure 2-4a. The information content of captured
photons is increased, since the emission signal carries additional information on the position of the
emitter relative to the doughnut-shaped beam, resulting in the localization of the emitters with an
increased precision. For instance: when an emitter is close to the center of the doughnut-shaped beam
(which is low or zero intensity), it will emit a low photon count. However, if it is further away from the
center of the beam, it will emit higher photon counts. For MINFLUX each detected emitter has an
uncertainty independent of the wavelength, but given by the probing size L. So by adjusting L below
the diffraction limit, the emitted photon becomes more informative. The precision achieved is close to
the Cramer-Rao Lower bound (CRLB), indicating the optimal use of photon information. The CRLB
for quadratic approximation, at the center of the probe, is given by σCRLB(0) = L

4
√
N
. Which means

that with a probe size of L = 50 nm and just merely 100 detected photons a precision of ≈ 2.5 nm is
achievable [18]. MINFLUX offers a breakthrough in the field of SMLM, but suffers from a tiny field of
view, low throughput and a lack of practical parallelism [9].

SIMFLUX
A practical way to extend the MINFLUX concept to sinusoidal illuminations patterns was suggested
by Balzarotti et al. [18], where J. Cnossen, C. Smith et al. acted upon this suggestion and developed
SIMFLUX [9]. It is based on the extraction of the molecule’s position in a combined estimation from
both the relative position with respect to the shifting sinusoidal illumination pattern during all camera
frames within the molecule’s on-state and from estimated centers of the detected spots on the camera.
This makes it able to overcome the limited field-of-view issue of MINFLUX and is compatible with
standard widefield imaging on a camera. The isotropic localization precision is given by the CRLB
as [9]:

σx,y = σ√
N

1√
1 + 2π2σ2/p

where σ ≈ λ/4NA is the width of the PSF, N the total number of photons collected and p is the
pitch of the standing wave illumination pattern, where p ≈ λ/2NA is the smallest value. SIMFLUX
achieves an improvement over SMLM, in terms of localization precision, with a factor of around 2,
depending on the amount of captures photons N and the pattern pitch p in relation to the spot width
σ. They also predict that this technique can be used to achieve similar precision to SMLM with up to
four times less light needed, which enables faster imaging and the ability of imaging with less bright
fluorophores. Also, further advances are envisioned in data processing by precisely modelling the on-off
state transitions by the application of for instance hidden Markov-models. Another improvement for
SIMFLUX could be achieved by the extension to 3D interference pattern, resulting in an improvement
in both lateral and axial localization precision [9].
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2-9 The Image Processing Pipeline

In this section, a brief outline of the image processing pipeline is given. A schematic representation is
illustrated in Figure 2-6.

Figure 2-6: Schematic representation of the image-processing pipeline used in single-molecule local-
ization microscopy (SMLM) from raw data to a super-resolution image. 1) A sequence of diffraction-
limited image frames constituted of sparsely distributed emitting fluorophores is acquired. The ac-
quired raw image frames are pre-processed, where among other things the measured intensity values
are converted into photon counts. 2) Regions of interest which contain emitters are detected from
each image frame. 3) The position of the emitter(s) is estimated within each region of interest. 4)
The estimation outcome is checked, corrected and in some cases dismissed. 5) The reconstructed
super-resolution image can be visualized.

1) Data Acquisition and Pre-processing
In the data aquisition step, a sequence of diffraction-limited image frames is acquired, constituted
of sparsely distributed emitting fluorophores placed on the structures of interest [32;49]. Selecting the
most suitable camera for data collection is of key importance. The two most common types of cameras
are: the sCMOS and EMCCD [49]. The key specifications looked at when selecting a camera type for a
specific application are: photon sensitivity, readout noise, frame rate and field of view [10]. All acquired
images will contain some noise contamination, such as shot noise, readout noise and thermal noise.
Shot noise is a result of the random nature of photon emission, even if 100% quantum efficiency is
achieved, meaning that every photon is successfully registered as an electronic signal, the number of
photons in a given time interval will inherently follow a Poisson distribution [47]. The readout noise
emerges during the process of sensor reading. Readout noise is dependent on the readout rate, thus
mainly for high readout rates does it really form a limiting factor.
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For image pre-processing typically the raw images are offset and gain corrected. An offset is added
to avoid negative signals and the signal is usually multiplied by a gain factor in order to convert the
electrical signal to photon counts. A major limitation of any photon detector has to do with the
randomness of the photon emission. Throughout this work, we assume Poisson distributed data and
therefore neglect the read-out noise of the sensor and assume only the shot noise to be present in the
recorded images.

2) Detection
In the detection step, the detection of the regions of interests (ROIs) which contain emitters is usu-
ally done by thresholding based on a certain pixel intensity relative to the background noise [6]. A
maximum filter can be applied, to isolate small regions containing local intensity maxima. to the
already pre-processed uniformly filtered images [28]. Another approach for ROIs identification is based
on performing a generalized likelihood ratio test (GLRT) in each pixel, whereby the ratio is com-
puted between the likelihoods of the null hypothesis, H0: the pixel contains only Gaussian noise,
and the hypothesis H1: the pixel also contains a Gaussian peak coming from the emission of a single
fluorophore [6;49;32].

3) Localization
Once the regions of interest has been detected, the identified candidates are analyzed to extract the
desired physical parameters of the emitters. For the estimation of the position coordinates (θx, θy)
of the fluorophores, the most common approaches are based on CoM computations and algorithms
which fit a PSF model to the data with a (weighted) Least-squares (LS) or a Maximum likelihood
estimation (MLE) approach [6;28]. Algorithms based on CoM computations, usually require no to low
prior information about the shape or size of the PSF, which makes them more robust to any invariances.
A drawback of such algorithms is that the underlying imaging model does not take the background
fluorescence into consideration, thus in the presence of non-negligible background intensities, they
output biased results [49]. MLE algorithms provide optimal results, when accurate noise and imaging
models are applied [12]. The main goal is to localize the emitters with a precision higher than the
diffraction limit. The localization precision is fundamentally limited by the Cramér-Rao lower bound
(CRLB), theoretically the lowest variance possible [37;41] (more details in section 3-3). For a Poisson
model, a reasonable analytical approximation for the CRLB is given by [49;6;43]:

σ2
x = (σ2 +A2/12)

N

(
1 + 4τ +

√
2τ

1 + 4τ
)

where N is the number of signal photons, A is the pixel area and τ = 2πσ2θbg
Na2 is the normalized

background parameter.

4) Data Post-processing
After the ROI detection and emitter localization, three post-processing operations are commonly
performed, typically localization filtering, drift correction and combining multiple localizations [6;49].
At the filtering, non-representative localizations are being dismissed. Non-representative localizations
can be caused due to overlapping emissions of multiple fluorophores, or stucking in local minima in the
optimization landscape, which we will later talk about in more detail. Combing multiple localiations
in cases where fluorophores are visible in multiple consecutive frames (before transitioning into its
off-state) their localizations are combined to prevent fluorophore miscounting, avoid false positive
localizations and improve recall fraction.

5) Visualisation
Finally at the visualisation step, unlike the conventional fluorescence microscopy techniques, localiza-
tion microscopy does not sample an image at pixel locations, instead it outputs a set of localized and
post-processed emitter coordinates, that represent the estimated fluorophore positions. The obtained
super-resolution image can then be visualised.
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Chapter 3

Mathematical Concepts and Theoretical
Limits

“There are no limitations to the mind except those we acknowledge.”
- Napoleon Hill

3-1 Parameter Estimation

In this section, the search for estimators of the true value of the unknown parameters is discussed.
The main goal is finding an estimator whose expected value yields to the true value of the unknown
parameters, such an estimator is called an unbiased estimator. Suppose that θ̂(x) is an unbiased
estimator of the unknown parameter θ, where X is an independent random variable with a probability
density function (PDF) p(X = x|θ). Unbiased estimators tend to have symmetric PDFs centered at
the true value of θ, although symmetry is not a necessity. Mathematically, an estimator is unbiased if
and only if:

E[θ̂] =
∫
θ̂(x)p(x|θ)dx = θ

An unbiased estimator does not necessarily mean that it is a good estimator. Preferably, the aim is
finding such an unbiased estimator, which exhibits the least variability around the true value, by being
as close as possible to the true value most of the time. Such an unbiased estimator, which minimizes
the variance for all θ, is referred to as a minimum variance unbiased (MVU) estimator. The mean
squared error (MSE), variance and bias of an estimator are defined as:

V ar(θ̂) = E[(θ̂ − E[θ̂])2]
Bias(θ̂) = E[θ̂ − θ]
MSE(θ̂) = V ar(θ̂) +Bias2(θ̂) = E[(θ̂ − θ)2]

so when the bias is zero, we get E[θ̂] = θ and the MSE and variance become equivalent.

The CRLB (see section 3-3) allows us to determine for any unbiased estimator the smallest vari-
ance theoretically achievable. If an estimator exists of which the variance is equal to the CRLB, for
each value of θ, then this is an MVU estimator. If no estimator exists, whose variance is equal to the
bound, then the MVU estimator is the one with variance closest to the CRLB.
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3-2 The Poisson Distribution

Since counting photons is inherently a discrete operation, that can only produce positive integer
outcomes, the Poisson distribution function is considered. By the consideration that the intensity
(number of photons) n in each pixel follows a Poisson distribution, the probability of observing n
photons in the kth pixel is:

P (nk|µk(θ)) = µnkk
nk!

e−µk (3-1)

where nk is the observed intensity in the kth pixel. Another fundamental characteristic of the Poisson
distribution is that both the expected value and the variance of nk are equal to µk, such that:

E[nk] = E[(nk − µk)2] = V arθ(nk) = µk

3-3 Fisher information and Cramér-Rao Lower Bound

By performing measurements, data samples are obtained, which contain information about the pa-
rameters and their underlying probability distributions. How do we know the amount of information a
certain sample of data provides about a certain unknown parameter? Such a measure for information
is introduced in this section.

We consider an independent random variable X, whose PDF is described by p(X = x|θ). Generally,
if an event has a small probability of occurring, then the occurrence of that specific event does bring
much information. The aim is to maximize the amount of information, which can be extracted from
X about the estimation of the parameter θ. This can be achieved by maximizing the log-likelihood
function of the obtained data |l′(x|θ)| (or preferably [l′(x|θ)]2). We define the log-likelihood function
as follows:

l(x|θ) = ln p(x|θ), l′(x|θ) = ∂

∂θ
ln
(
p(x|θ)

)
= p′(x|θ)
p(x|θ)

Thus the expected value of [l′(x|θ)]2, can be taken as a measure of the amount of information provided
by the data about the parameter θ. The information in the data x regarding the estimation of the
parameter θ is defined as the Fisher information matrix I(θ) [37;48;41] (see Appendix A-1):

I(θ) = E
[(

∂l(x|θ)
∂θ

)2]
= −E

[
∂2l(x|θ)
∂θ2

]
(3-2)

The likelihood function, defined as the likelihood of the data n, given the model parameterized by θ,
for an image with K pixels, for parameter θ is defined as:

L(n|µ(θ)) =
K∏
k=1

P (nk|µk(θ)) (3-3)

where n = {n1, n2, . . . , nK} and µ = {µ1, µ2, . . . , µK} are the observed and expected intensities,
respectively. The log-likelihood is:

l(x|θ) =
K∑
k=1

(
xk ln(µk)− ln(xk!)− µk

)
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The first and second partial derivatives of the log-likelihood:

l′(x|θ) = ∂ l(x|θ)
∂θi

=
K∑
k=1

xk
µk

∂µk
∂θi
− ∂µk
∂θi

l′′(x|θ) = ∂2 l(x|θ)
∂θiθj

=
K∑
k=1

(−xk
µ2
k

∂µk
∂θi

∂µk
∂θj

+ xk
µk

∂2µk
∂θi∂θj

− ∂2µk
∂θi∂θj

)
The Fisher Information matrix can then be computed by calculating the following expectation:

Ii,j(θ) = −Eθ
[
l′′(x|θ)

]
=

K∑
k=1

(
E[xk]︸ ︷︷ ︸
=µk

1
µ2
k

∂µk
∂θi

∂µk
∂θj
− E[xk]︸ ︷︷ ︸

=µk

1
µk

∂2µk
∂θi∂θj

+ ∂2µk
∂θi∂θj

)

Hence, the Fisher Information matrix for Poisson distributed measurements is denoted a follows:

Ii,j(θ) =
K∑
k=1

1
µk

∂µk
∂θi

∂µk
∂θj

(3-4)

while the Fisher Information matrix for Poisson distributed measurements with a sequence of
p = 1, 2, . . . ,P illuminations is denoted a follows:

Ii,j(θ) =
K∑
k=1

P∑
p=1

1
µk,p

∂µk,p
∂θi

∂µk,p
∂θj

(3-5)

By looking at the covariance around the expected estimate:

V arθ[l′(X|θ)] = Eθ
[
[l′(X|θ)− 0][l′(X|θ)− 0]

]
= Eθ

[
[l′(X|θ)]2

]
Therefore the definition of the Fisher information matrix can be written as:

I(θ) = V arθ[l′(X|θ)] (3-6)

Theoretically, the best-possible solution for an unbiased parameter estimation problem is by bounded
the Cramér-Rao lower bound (CRLB), which is basically the limiting lower bound of the variance for
any unbiased parameter estimator. Being able to place such a lower bound on the variance has proven
to be extremely useful in practice. It shows us the theoretical impossibility of finding an unbiased
estimator, whose variance is less than this bound. Besides, it provides a benchmark against which the
performance achieved from any unbiased estimator can be compared.

V ar(θ̂) ≥ I(θ)−1

σθ̂ ≥
√
I(θ)−1

The general expression for the CRLB is given by the inverse of the Fisher information matrix. In
case of single emitter, where the parameter vector θ = [θx, θy, θI , θbg] the Fisher information matrix is
defined as:

I(θ) =
K∑
k=1

P∑
p=1

1
µk,p



∂2µk,p
∂θ2
x

∂µk,p
∂θx

∂µk,p
∂θy

∂µk,p
∂θx

∂µk,p
∂θI

∂µk,p
∂θx

∂µk,p
∂θIbg

∂µk,p
∂θy

∂µk,p
∂θx

∂2µk,p
∂θ2
y

∂µk,p
∂θy

∂µk,p
∂θI

∂µk,p
∂θy

∂µk,p
∂θIbg

∂µk,p
∂θI

∂µk,p
∂θx

∂µk,p
∂θI

∂µk,p
∂θy

∂2µk,p
∂θ2
I

∂µk,p
∂θI

∂µk,p
∂θIbg

∂µk,p
∂θIbg

∂µk,p
∂θx

∂µk,p
∂θIbg

∂µk,p
∂θy

∂µk,p
∂θIbg

∂µk,p
∂θI

∂2µk,p
∂θ2
bg


∈ R4×4 (3-7)
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Whereby the estimation precision of each parameter is given by the diagonal terms as follows:

σθ̂ =


σθx
σθy
σθI
σθbg

 =



√
V arθx(θ̂)√
V arθy(θ̂)√
V arθI (θ̂)√
V arθbg(θ̂)

 =


√

(I(θ)−1)1,1√
(I(θ)−1)2,2√
(I(θ)−1)3,3√
(I(θ)−1)4,4



For the multi-emitter case (i.e. E > 1), the following set of parameters per ROI is estimated:

θ = [θbg, θx1 , θy1 , θI1 , θx2 , θy2 , θI2 , . . . , θxE , θyE , θIE ], ∈ RT

I(θ) =
K∑
k=1

P∑
p=1

1
µk,p



∂2µk,p
∂θbg

∂µk,p
∂θbg

∂µk,p
∂θx1

. . . . . . . . .
∂µk,p
∂θbg

∂µk,p
∂θxE

∂µk,p
∂θx1

∂µk,p
∂θbg

∂2µk,p
∂θx1

. . . ...
...

... ∂2µk,p
∂θy1

. . . ...
... . . . ∂2µk,p

∂θI1

...
... . . . . . . ...
... . . .

∂µk,p
∂2θxE

. . .
...

... . . .
∂µk,p
∂2θyE

∂µk,p
∂θyE

∂µk,p
∂θIE

∂µk,p
∂θIE

∂µk,p
∂θbg

. . . . . . . . .
∂µk,p
∂θIE

∂µk,p
∂θyE

∂2µk,p
∂θIE



∈ RT×T

(3-8)

Whereby T = 3E + 1, for E being the number of emitters. However, for the multi-emitter case the
Fisher information matrix can become singular due the occurrence of {θxi , θxi} = {θxj , θyj}. Near this
singular point, the Fisher Information matrix can not be used to correctly determine the theoretical
estimator precision, CRLB. For this reason we used the pseudo-inverse of the Fisher matrix to
determine the CRLB [51]:

V ar(θ̂) ≥ I†(θ)

whereby † denoted the psuedo-inverse, which is defines as:

I†(θ) = (I>I)−1I>

hence the precision becomes:

σθ̂ ≥
√

(I>I)−1I> (3-9)
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3-4 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) method is considered to be one of the most powerful sta-
tistically based methods for parameter estimation. Perhaps to some, the Least-squares (LS) approach
may sound more familiar, however several comparison studies have shown that the maximum like-
lihood method generally provides more accurate estimation results [8], compared to other parameter
estimation methods like the LS approach. The outcome of MLE, is defined to be the value of param-
eter vector θ that maximizes the probability of observing data n, i.e. the value that maximizes the
likelihood function. The parameter values θ̂ are found such that they maximize the likelihood of the
process described by the model, produced the data that were actually observed. The MLE is known
to be asymptotically unbiased and efficient. When the PDF of the data p(n|θ) satisfies some regu-
larity conditions (Appendix 7B of [37]), then the MLE of the unknown parameter θ is asymptotically
normally distributed according to:

θ̂MLE ∼ N
(
θ∗, I−1(θ)

)
with the mean being the true parameter value θ∗ and it attains the CRLB as covariance matrix
(I−1(θ)). The likelihood function, for an image with K pixels, for parameter θ is defined as:

L(n|µ(θ)) =
K∏
k=1

P (nk|µk(θ)) (3-10)

where n = {n1, n2, . . . , nK} and µ = {µ1, µ2, . . . , µK} are the observed and expected intensities,
respectively. The above expression can get quite complex when differentiating, therefore usually it
is simplified by taking the (natural) logarithm of the expression, since the logarithm of a product is
equal to the sum of the individual logarithms (log(a · b) = log(a) + log(b)). Due to the fact that,
logarithms are monotonically increasing functions, meaning that if the value on the x-axis increases
the corresponding value on the y-axis also increases, this manipulation can be performed. After
maximization, the obtained θ̂ that maximizes the manipulated function, is the same θ̂ that maximizes
the original function [38]. Therefore we prefer working with the simpler log-likelihood function. To
ease the computations further, it is common to normalize the likelihood function by dividing by the
maximum possible likelihood L(n|n) (i.e. when µk = nk) and minimize twice the negative logarithm of
this ratio in order to change the repeated products into sums. The obtained function to be minimized
is then defined as:

F(θ) = −2 ln
[L(n|µ(θ))
L(n|n)

]
= −2 ln

[∏K
k=1 P (nk|µk(θ))∏K
k=1 P (nk|nk)

]
= −2

( K∑
k=1

ln
(
P (nk|µk(θ))

)
−

K∑
k=1

ln
(
P (nk|nk(θ))

))

= −2
K∑
k=1

(
nk ln(µk(θ))− ln(nk!)︸ ︷︷ ︸

= c

−µk(θ)− (nk ln(nk)− ln(nk!)︸ ︷︷ ︸
= c

−nk)
)

F(θ) = 2
K∑
k=1

(
µk(θ)− nk

)
− 2

K∑
k=1
nk 6=0

nk ln
(µk(θ)
nk

)
(3-11)

Minimizing F(θ), which is equivalent to the maximization of the likelihood, gives the best estimate
for the parameters θ.

θ̂MLE = argmax
θ∈Θ
L(n|µ(θ)) = arg min

θ∈Θ
2

K∑
k=1

(
µk(θ)− nk

)
− 2

K∑
k=1
nk 6=0

nk ln
(µk(θ)
nk

)
(3-12)
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3-5 The Chi-Squared X 2-Test

After finding the most suitable algorithm for parameter estimation, we still have to decide at what
point the estimate is good enough. The Chi-squared test (X 2-test) is used to determine whether
there is a statistically significant difference between the expected and the observed model. This is
can happen for instance when the optimization algorithm stucks in a local minimum, which does not
satisfy the X 2-test. The X 2-test is defined as:

X 2 =
K∑
k=1

(nk − µk)2

µk
(3-13)

where nk and µk represent the observed and expected photon count in a given pixel, respectively.
For the ROIs where there is a significant difference between the observed image and the theoretical
model, different procedures are taken. If the measured values are produced by a Poisson process, the
expected value and standard deviation for the X 2 value are given by:

E
[
X 2] = K

σ
[
X 2] =

√√√√2K +
K∑
k=1

1
µk

The critical value set to express the level of confidence (95%) we have in the observed with respect to
the expected value is:

X 2
threshold = K + 2

√√√√2K +
K∑
k=1

1
µk

(3-14)

3-6 Image Formation Model

SIMFLUX

As mentioned in section 2-8, SIMFLUX makes use of three phase shifts and two orientations, which
makes it a total of six illumination patterns captured by six frames. However for generalizing purposes
the total number of shifted illumination patterns is denoted as P (i.e. P = 6).

The sequence p = {1, 2, . . . ,P} illumination patterns, with the intensity profile P (φ) as a function of
pattern phase φ, which is displaced according to phase offsets ψp such that:

P∑
p=1

Pp(φp(r̄)) = 1

whereby,

Coordination vector: r̄ := (x, y) x, y ∈ [b,K − b]

With K being the number of pixels, b border size in pixels (typically 2)

Phase: φp(r̄) = 2πq̄p · r̄ − ψp
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Phase offset:

ψp = 1
1
2

2π(p− 1)
P

= [0, 2π
3 ,

4π
3 , 2π, 8π

3 ,
10π
3 ], for p = {1, 2, . . . , 6}

= [0, 2π
3 ,

4π
3︸ ︷︷ ︸

x offset

, 0, 2π
3 ,

4π
3︸ ︷︷ ︸

y offset

]

whereby the first- and last three elements of ψp represent the sequential phase offset in the x- and y
orientation, respectively.

Spatial frequency vector:

q̄ = (qp,x, qp,y) = 1
p(cosβp, sin βp)

where p is the pitch and βx = π + β0, βy = π
2 + β0, with β0 being the global angular offset.

For conceptual simplicity and computational efficiency, the PSF can be approximated sufficiently well
by a simplified form with a 2D Gaussian:

PSF (x, y) = 1
2πσ2 e

− (x−θx)2+(y−θy)2

2σ2 ⇒ h(r̄) = 1
2πσ2 e

− (r̄−r◦)2)
2σ2 (3-15)

with r◦ = [x◦, y◦] being the emitter position vector and for simplicity we denote: r̃ = r̄ − r◦.
The integration of the PSF over the pixel area Ak results:

E(r̃) =
∫∫

x,y∈Ak
h(r̃)dxdy

The expected photon count in the kth pixel is denoted as:

µk,p =
E∑
e=1

θIePp(φp(r◦))Ek,e(r̃) + θbg
P
, (3-16)

the background intensity θbg is assumed to be uniformly distributed over the ROI and temporally
independent, so approximately constant from frame-to-frame.

Ek,e(r̃) = Exk,e(u)Eyk,e(v)

Exk,e(u) = 1
2
(
erf(

u+ ∆x
2√

2σ
)− erf(

u− ∆x
2√

2σ
)
)
, Eyk,e(v) = 1

2
(
erf(

v + ∆y

2√
2σ

)− erf(
v − ∆y

2√
2σ

)
)

For SIMFLUX a sinusoidal illumination pattern is considered [9]:

P (φ) = 1
P

(1 +m cosφ) (3-17)

with m being the modulation depth. In case of achieving perfect modulation (m = 1), we find:

P (φ) = 1
P

(1 + cosφ) = 2
P

cos(φ2 )2

The different illumination patterns are divided into equidistant phases. By taking into account that
the modulation depth and the intensity of the illumination patterns can vary with direction of the
illumination patterns:

Pp(φ) = 1
P

(1 +mp cosφ)

Hence, the expected photon count on the kth pixel is denoted as:

µk,p =
E∑
e=1

θIePp(φp(r◦))Ek,e(r̃) + ηpθbg, (3-18)

where ηp represents the normalized relative intensity factor, such that
∑P
p=1 ηp = 1, nominally ηp = 1

P
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Structured Illumination Microscopy - SIM

In this section, the image formation procedure in SIM is shortly clarified, subsequently in Chapter 4
expanded further for SMLM applications. Making use of structured illumination results in modulation
of the spatial frequencies of sample details, making normally unobservable frequencies accessible by
down-modulation into conventionally observable space. Displaced information can be computationally
identified and restored to the proper place in the image space. By applying the Fourier transform
to the microscope’s PSF the characteric OTF of the optical system is obtained. To refresh it briefly,
the Fourier transform inherently performs a mapping operation from the real space to the frequency
space, such that a signal is described by a series of frequencies with respective amplitudes and phases.
The Forward- and Inverse Fourier transform are depicted below as FFT and IFT respectively:

FFT: F (k) =
∫ ∞
−∞

f(x)e−2πkxidx, IFT: f(x) =
∫ ∞
−∞

F (k)e2πkxidk

With increasing spatial frequencies, the amplitude of the OTF decreases, until it reaches zero, which is
typically referred to as the cut-off frequency. Finer structures, thus higher spatial frequencies, become
unobservable. This can be compared with the case of two emitters with a separation distance smaller
than the diffraction limit, where the fact whether the observed intensity is coming from one or two
emitters can not be decided. The Moiré effect occurs when two relatively high frequency patterns
are similar in structure but slightly shifted or displaced with respect to each other (see Figure 2-
4b). Resulting in the creation of a third pattern with lower frequency, which changes as the relative
position of the two patterns change. A typically used illumination pattern is a sinusoidal structured
illumination pattern, Pp = 1

2
(
1 + cos(2πksr + φp)

)
. Suppose that the structured illumination pattern

has a frequency of ks, then when it passes over the specimen structures with frequency k, Moiré
patterns are created at k ± ks. By constructing the illumination patterns such that, k ± ks < k0,
where k0 is the magnitude of the maximum observable spatial frequency, spatial frequencies beyond
the cut-off frequency become accessible. To maximize the performance of SIM, the frequency of the
illumination patterns should be made as close as possible to k0 in order to achieve the theoretical limit
of 2k0. The OTF in the lateral direction is typically depicted as a circle as illustrated in Figure 3-1 (a),
whereby low-frequency information lies closer to the center and towards the periphery of the circle the
frequency increases. Under appropriate assumptions, the system can be assumed to be shift-invariant,
such that the convolution, Image = Specimen ~ PSF , which describes the blurring effect, can be
described by:

g(x, y) = f(x, y) ~ PSF (x, y), whereby f(x, y) = P (x, y)O(x, y)

with f(x, y) being the captured fluorescence signal (the modulated object), and where O(x, y) denotes
the imaged object and P (x, y) the illumination pattern. By applying the Fourier transform:

g(x, y) = f(x, y) ~ PSF (x, y) = P (x, y)O(x, y) ~ PSF (x, y) F−→ G̃(k) = P̃ (k) ~ Õ(k)OTF (k)

Figure 3-1: The principle of the resolution improvement obtained by SIM. (a) The OTF support
region. The magnitude of the finest observable frequency, along the edge of the support region, is
denoted by k0 ≈ 2NA

λ . (b) Structured illumination of frequency k0 results in the creation of harmonics
at ±k0, denoted by the three red points. (c) Extended OTF support regions are created centered
at these points. (d) The illumination is rotated in different orientations to expand the OTF support
region with approximately twice the diameter, resulting in an improvement factor of two.
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Chapter 4

Manuscript

In this chapter, the main findings of my thesis are presented and discussed in the form of a paper-
draft. Furthermore, there are some references for supplementary notes and figures for more in-depth
clarifications and observations.

“At the end of the day, you can’t control the results;
you can only control your effort level and your focus.”

- Ben Zobrist
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Abstract: Single-molecule localization microscopy (SMLM) methods achieve spatial resolution
beyond the diffraction limit through sequential activation and localization of individual active
fluorophores. However, the analysis of conventional SMLMmethods requires sparse activation to
minimize overlap between active fluorophores. Recently, several multi-emitter methods have been
developed which are able to analyze higher density data, while allowing partial overlap between
emitters. Here, we propose a, maximum likelihood-based, modulation enhanced SMLM method
able to localize multiple active emitters within a single region of interest (ROI). The algorithm is
designed to provide high recall rates for high active imaging density, while minimizing localization
precision deterioration. The performance of the algorithm has been evaluated and validated under
a wide range of realistic imaging conditions. As theoretically expected, our approach significantly
outperforms conventional 2�-Gaussian SMLM with a twofold improvement factor in terms of
localization precision for various acive emitter densities and intensities. At higher active emitter
imaging densities, the extension from single to multi-emitter showed a clear improvement in
recall fraction.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Super-resolution imaging techniques, such as stimulated emission depletion (STED) [1;2], (satu-
rated) structured illumination microscopy ((S)SIM) [3;4;5], (fluorescence) photo-activated localiza-
tionmicroscopy ((F)PALM) [6;7], and stochastic optical reconstructionmicroscopy (STORM) [6;8;9]
have revolutionized fluorescence light microscopy. The observation of, previously limited and
unclear, cellular structures has demonstrated the great promise of super-resolution fluorescence
microscopy in the perception of biological processes at the cellular level. It has enabled the
study of cellular structure details and dynamics. The methods STED and SIM make use of
patterned illumination to increase the localization precision. The PALM and STORM techniques,
often referred to as single-molecule localization microscopy (SMLM) methods, are currently
one of the broadly used super-resolution imaging techniques. Inherently, SMLM is based
on acquiring a large number of diffraction-limited images consisting of sparsely distributed
emitting fluorophores, whereby just a small fraction of emitters are put into their active state
to prevent fluorescence emissions of individual fluorophores to overlap. This limitation on
the number of active fluorophores in a given frame, surely does affect the acquisition time
negatively. Next, precise and accurate estimates of the spatial coordinates of the fluorophores,
placed on the structures of interest, are made with a precision exceeding the diffraction limit. A
super-resolution image is then reconstructed from these localizations. Since only imaging frames
with well-isolated non-overlapping emitters are considered in the analysis, a lot of data is being
rejected.



One of the most crucial questions in SMLM applications concerns the precision with which
the position of a single molecule can be determined. The Cramér–Rao lower bound (CRLB) is
used to quantify the estimation performance in terms of localization precision. Recently, several
modulation enhanced localization microscopy (meLM) methods have shown resolution improve-
ment by combining patterned illumination with SMLM techniques, such as MINFLUX [10] and
SIMFLUX [11]. The challenging part is that the analysis of images by these methods requires
sparse activation regions to prevent overlap between active emitters. During spot identification,
the conventional and the extended (with illumination patterns) SMLM algorithms quickly lose
both their precision and accuracy, when too many emitters are concurrently active in the imaging
frame. Several, localization fitting techniques have been developed aiming for exploiting all
available fluorescence data, consequently leading to resolution improvement at high molecular
densities and the ability of resolving overlapping emitters, while minimizing the computational
effort, e.g. 3B [12], FALCON [13], BAMF [14] and MFA [15].

Here, we propose a modulation enhanced single-molecule localization microscopy maximum
likelihood-based method, which is an extension of the current SIMFLUX [11] approach, able to
localize multiple emitters simultaneously within a single region of interest (ROI). The mathe-
matical framework of the algorithm is comprehensively built up throughout this work and the
expected theoretical improvement is elucidated and validated with realistic simulations. We refer
to the novel multi-emitter modulation enhanced method as Multi-SIMFLUX (and just SIMFLUX
interchangeably).

The remainder of this manuscript is structured as follows. In Section 2, the considered
image formation model is presented, the theoretical limit is described and the algorithm setup
is explicated. Then in Section 3, the expected theoretical improvement factor of SIMFLUX
over SMLM is derived and the numerical performance evaluation results are shown and briefly
commented. We evaluate the theoretical and numerical performance of the Multi-SIMFLUX al-
gorithm against single-SIMFLUX and standard 2D-Gaussian SMLM (single and multi approach)
on simulated data. To asses the performance of SIMFLUX, several simulations were performed
under a wide range ofrealistic imaging conditions. This involves various active-emitter densities,
different emitter- and background intensities, numerous emitter configurations, a multitude of
ROI-sizes and point spread function widths. for different active emitter densities and various
emitter and background intensities. Lastly in Section 4, the main obtained results from the
manuscript are emphasized and discussed.



2. Methods

2.1. Image Formation Model

The point spread function (PSF) describes the impulse response of a microscope to a point source
of light. In the absence of aberrations, for conceptual simplicity and computational efficiency,
the PSF can be approximated sufficiently well by a 2� Gaussian [16;17] centered at the emitter’s
position:

%(� (G, H) = 1
2cf2 4

− (G−\G )
2+(H−\H )2
2f2 (1)

where f denotes the standard deviation of the 2D Gaussian PSF and (\G , \H) the emitter position
in the G and H direction, respectively. As in SIMFLUX [11], we consider standing wave intensity
patterns with three controllable spatial phase shifts in two orthogonal orientations, which makes
it a total of six illumination patterns captured by six frames. For generalizing purposes, the total
number of illumination patterns is denoted as P. The sequence ? = 1, 2, . . . ,P illumination
patterns, with the intensity profile %(q) as a function of pattern phase q, displaced according to
phase offsets k? such that:

P∑
?=1

%? (q? (G, H)) = 1, 0 ≤ %? (G, H) ≤ 1, ∀? ∈ {1, 2, . . . ,P} (2)

The different illumination per orientation patterns are divided into equidistant phases. By taking
into account that the modulation depth (<) and the intensity of the illumination patterns can vary
with direction of the illumination patterns, we obtain the following:

%? (q? (G, H)) = 1
P (1 + <? cos q?)

%? (q? (G, H)) =
{

1
P (1 + <? cos(@?,G − k?)) for ? ≤ P2
1
P (1 + <? cos(@?,H − k?)) for ? > P

2

Spatial frequency vector: (@?,G , @?,H) = 1
p
(cos VG , sin VH)

where VG = c + V0, VH = c
2 + V0, with V0 being the global angular offset and p is the pitch.

The phase offset in both directions: k? = [0, 2c
3
,

4c
3︸      ︷︷      ︸

G-offset

, 0,
2c
3
,

4c
3︸      ︷︷      ︸

H-offset

], 5 >A ? = 1, 2, . . . ,P

Figure 1. Standing wave illumination is used in two orthogonal orientations (x,y) with
three equidistant phase shifts between 0 and 2c, captured by a total of six frames.



Throughout this work, we neglect sensor read-out noise and assume only shot noise to be present
in the recorded images, i.e. Poisson distributed data. The expected photon count, in the :Cℎ pixel
for the ?Cℎ frame from all existing emitters � , can hence be written in the following compact
notation (a detailed derivation of this model is included in Supplementary Note B):

`:, ? (D, E) = %? (\G , \H , q?)
�∑
4=1

\�4�G:,4 (D)�H:,4 (E) + [?\16 (3)

with the parameter \�4 being the total photon count expected from the 4Cℎ emitter, \16 is the
background intensity in ?ℎ>C>=B/?8G4; and where D = G − \G and E = H − \H . Further, [?
represents the normalized relative intensity factor, such that

∑P
?=1 [? = 1, nominally [? = 1

P .
The explicit expressions for �G:,4 (D) and �H:,4 (E) are denoted as:

�G:,4 (D) =
1
2

(
4A 5 ( D +

ΔG
2√

2f
)−4A 5 ( D −

ΔG
2√

2f
)
)
, �H:,4 (E) =

1
2

(
4A 5 ( E +

ΔH
2√

2f
)−4A 5 ( E −

ΔH
2√

2f
)
)

where ΔG and ΔH are the pixel sizes in the x and y direction, respectively. Furthermore, the
detector grid is assumed to have no dead space between the pixels.

2.2. Theoretical Precision Limit

In order to give an representative photon count model description, the parameters \G4 , \H4 , \�4
per emitter and \16 for the total considered pixel area have to be accurately estimated. The
aim is to maximize the amount of information that can be extracted from the data G about the
estimation of the parameter \. This can be achieved by maximizing the log-likelihood function
of the obtained data |; ′(G |\) | (or equivalently ; ′(G |\)2). The likelihood function, for an image
with  pixels and parameter vector \ is defined as:

L(=|`(\)) =
 ∏
:=1

%(=: |`: (\)) (4)

and the log-likelihood:

; (G |\) =
 ∑
:=1

(
G: ln(`: ) − ln(G: !) − `:

)

where = = {=1, =2, . . . , = } and ` = {`1, `2, . . . , ` } are the observed and expected intensities,
respectively. The information in the data regarding the estimation of the parameter vector \ can
be quantified by the Fisher information matrix I(\) [16;18;19]:

I(\) = E
[(
m; (G |\)
m\

)2
]
= −E

[
m2; (G |\)
m\2

]
(5)

Theoretically, the best-possible solution for an unbiased parameter estimation problem is bounded
by the Cramér-Rao lower bound (CRLB), which is basically the limiting lower bound of the
variance for any unbiased parameter estimator. Being able to place such a lower bound on the
variance has proven to be extremely useful, since it shows us the theoretical impossibility of
finding an unbiased estimator, whose variance is less than this bound. Besides, it provides a
benchmark against which the performance achieved by unbiased estimator can be compared.



The Fisher information per element is denoted as (for more details see Supplementary Note B.2):

I8, 9 (\) =
 ∑
:=1

P∑
?=1

1
`:, ?

m`:, ?

m\8

m`:, ?

m\ 9
, ∀ 8, 9 ∈ {1, . . . , )} (6)

whereby ) = 3� + 1, for � being the number of emitters. However, for the multi-emitter
case (� > 1) the Fisher information matrix can become singular due the occurrence of
{\G8 , \H8 } = {\G 9 , \H 9 } [15]. Near this singular point, the Fisher Information matrix can not be
used to correctly determine the theoretical estimator precision, CRLB [20]. For this reason we
consider the pseudo-inverse [21]:

+0A (\̂) ≥ I† (\)

whereby † denoted the pseudo-inverse, which is defines as:

I† (\) = (I>I)−1I>

hence the theoretical precision limit becomes:

f\̂ ≥
√
(I>I)−1I> (7)

2.3. Algorithm Setup

Performing the 2D localization (G, H), emitter- and background intensity estimation can be for-
mulated as a numerical optimization problem. Whereby we explore the multi-emitter parameter
space, i.e. \ ∈ R) , for the optimal parameters which minimize the objective function. There
are many algorithms available for solving numerical optimization problems. In this work, for
the numerical implementation of the Maximum likelihood estimation (MLE) problem for the
estimation of the parameter vector \, the Levenberg-Marquardt (LM) algorithm is considered.
The LM algorithm is a commonly used algorithm in localization microscopy [22], which is based
on varying between two minimization methods: the gradient descent and the Gauss-Newton
method [23]. In the gradient descent method, the sum of the squared errors is reduced by updating
the parameter vector \ in the steepest-descent direction. The Gauss-Newton method is based
on a local quadratic approximation of the objective function. The LM method acts more like
a gradient-descent method when the parameters are far from their optimal value, and acts
more like the Gauss-Newton method when the parameters are close to their optimal value. A
schematic representation of the steps performed during the multi-emitter algorithm is displayed
in Supplementary Figure A.3.

Generally, for nonlinear non-convex minimization problems, as it is the case for our algo-
rithm, there are many local minima and not every local minimum will be the global minimum.
A local minimum is also the global minimum, if it is the only minimum in the optimization
landscape or there are many local minima all having the same depth. Therefore, in practice
we cannot be sure that the obtained solution is indeed the global minimum, i.e. provides the
best localization. It is generally known that the problem of finding the global minimum is a
computationally hard problem, in the sense that trying to obtain the exact global optimum may
require an excessive amount of computational effort. Therefore, in practice methods are used that,
although convergence to the global optimum cannot be guaranteed, will yield “good” satisfying
results.



• Pre-Processing and Detection - ROI extraction
This pre-processing and detection procedure is adopted from the MFA approach [15].

1) �1 = D=8 5 >A< [�, (�1 ] − D=8 5 >A< [�, 2 × (�1 ]
First, the images are offset and gain corrected to convert pixel intensity values to photon
counts. Then, to reduce Poisson shot noise and minimize the influence of background on
the identification of potential emitter locations, some filters are applied. The first filtering
step is calculated from the original image � as follows: where D=8 5 >A< [�, (� ] represents
a uniform filtering process with a square kernel size (� × (� performed on the image �.
This filter acts as a smoothing filter, by reassigning the value of each pixel with the average
kernel pixel value. The analysis is not strongly dependent on the smoothing filter, the
uniform filter is mainly chosen for speed [15]. The second filtering step, performed on the
first filtered image �1, is a maximum filtering process used to obtain local maximum values
in order to make a distinction between random background noises and real fluorophore
emissions as follows:

2) �2 = <0G [�1, (�2 ]
wereby the size of the square kernels are chosen to be:

(�1 = 2f%(� + 1, (�2 = 5f%(�

Next, a pixel-wise comparison is performed to identify the center pixels of regions of
interest:

3) �3 =

{
0 8 5 �1 ≠ �2

1 8 5 �1 = �2

The ROIs (size = 20 × 20 ?8G4;B , pixel size: ΔG = ΔH = Δ = 0.1 `<) centered at pixels
where �3 = 1 are selected for further analysis.

• Localization and emitter counting
The fundamental idea behind the algorithm is to fit a 2D Gaussian at the estimated locations,
then subtract the fit image from the original image to obtain a residual image. Then,
the residual image is examined to check whether the maximum intensity is above the
user-specified threshold �0 and that the maximum number of emitters in the ROI is not
reached yet, i.e. 4 < �"�- . If this is the case, a new emitter is added, and then fit
simultaneously with the emitters identified in previous cycles.

◦ For 4 = 1
The CoM of the ROI is used as the initial position estimate for the 2� Gaussian fits,
as denoted in Equation 13.
◦ For 1 < 4 < �<0G
The found position estimates in the previous cycle(s) are used as initial position
estimates for these specific emitters. The remaining initial position estimate of
the added emitter is found by calculating the CoM of the residual image, which is
obtained by the subtraction of the fit model from previous residual (original image
for the first cycle). The ROI is padded with a border size 1 = 2, to make sure that
the captured photons are most likely to be coming from an emitter within the ROI.
This process is repeated until there is no further indication of undetected emitters in
the residual image, which in essence means that the maximum intensity is below the
user-specified threshold �0 or that the maximum number of emitters in the ROI is
reached 4 = �"�- .



• Parameter estimation - MLE
The MLE method is considered to be one of the most powerful statistically based methods
used for parameter estimation, since it generally provides accurate estimation results [24]. Its
outcome is defined to be the value of the parameter vector \ that maximizes the probability
of observing data =, i.e. the value that maximizes the likelihood function of \ given =. The
parameter values \̂ are found such that they maximize the likelihood such that, the process
described by the model, produced the data that were actually observed. The MLE is known
to be asymptotically unbiased and efficient. When the PDF of the data ?(=|\) satisfies
some regularity conditions (Appendix 7B [18]), the MLE of the unknown parameter \ is
asymptotically normally distributed according to:

\̂"!� ∼ N
(
\∗,I−1 (\))

with the mean being the true parameter value \∗ and it attains the CRLB (I−1 (\)) as the
variance. The likelihood function, for an image with  pixels, for parameter \ is defined
as:

L(=|`(\)) =
 ∏
:=1

%(=: |`: (\)) (8)

We continue with the simpler log-likelihood instead of the original likelihood. Due to
the fact that, logarithms are monotonically increasing functions, this manipulation can be
performed. After maximization, the obtained \̂ that maximizes the manipulated function,
is the same \̂ that maximizes the original function . To ease the computations further, it
is common to normalize the likelihood function by dividing by the maximum possible
likelihood L(=|=) (i.e. when `: = =: ) and minimize twice the negative logarithm of this
ratio in order to change the repeated products into sums [25]. The obtained function to be
minimized is then defined as:

F (\) = −2 ln
[L(=|`(\))
L(=|=)

]
(9)

The following set of parameters per ROI is estimated with the Levenberg-Marquard
algorithm:

\ = [\16, \G1 , \H1 , \�1 , \G2 , \H2 , \�2 , . . . , \G� , \H� , \ �� ], ∈ R) (10)

In some cases, the inversion of the Hessian matrix may become numerically ill-conditioned
if the Hessian matrix is almost singular. For this reason, the diagonal elements of the
matrix U are augmented by an adaptive parameter _ such that: Û = U(� + �_), whereby the
identity matrix � ∈ R) ×) . The iteration step is defined as (see Supplementary Note B.4):

\C+1 = \C + Û−1V (11)

whereby matrix U ∈ R) ×) and vector V ∈ R) are defined as:

U8, 9 =
 ∑
:=1

m`:
m\8

m`:
m\ 9

=:

`2
:

, V8 = −
 ∑
:=1

(
1 − =:

`:

)
m`:
m\8

(12)



• Parameter Initialisation
Having a good initial estimate for the parameters is important to get fast and reliable fits.
A good initial estimate will require less iterations to converge. An initial estimate that is
too far from the real parameters can cause the optimization algorithm to get stuck in a
local minimum since the optimization problem is a highly non-convex one. Therefore, a
method to get reliable initial estimates for position, intensity and background is required.
First, the background is calculated as the modus intensity, i.e. the intensity that is most
frequent through out the image (the mean intensity provided roughly the same results).
For the initial estimate of the position {G0, H0} the CoM of the ROI is considered, then
processed using the conventional SMLM pipeline:

Ĝ = �$"G =

∑ 
:=1 =:G:∑ 
:=1 =:

, Ĥ = �$"H =

∑ 
:=1 =: H:∑ 
:=1 =:

(13)

• Constraints
For any real world problem, the parameters are bounded based on the physical characteristics
and limitations of the system. The parameter vector is constraint such that \ ∈ Θ:

◦ Lower bound of \: \; =


\16<8= \G<8= \H<8= \�<8=︸                    ︷︷                    ︸

\∗<8=



T

=
[
\16<8= \∗<8=

]T
∈ R4

◦ Upper bound of \ \D =


\16<0G \G<0G \H<0G \�<0G︸                      ︷︷                      ︸

\∗<0G


T

=
[
\16<0G \∗<0G

]T
∈ R4

\̃; =
[
\16<8= 4� ⊗ \∗<8=

]T
∈ R) , \̃D =

[
\16<0G 4� ⊗ \∗<0G

]T
∈ R)

with
4� =

[
1 . . . 1

]T
∈ R�

Typically we set:

\G<8= = \H<8= = 1 ∗ Δ, \G<0G = \H<0G = Δ ∗ ( − 1),
\16<8= = 0, \16<0G = [100 − 250]
\�<8= = \16<0G , \�<0G = 104

for 1 being the border size in pixels (typically 2).



• General problem formulation

\̂"!� = 0A6max
\ ∈Θ
L(=|`(\)) = 0A6min

\ ∈Θ
2
 ∑
:=1

(
`: (\) − =:

) − 2
 ∑
:=1
=:≠0

=: ln
( `: (\)
=:

)
(14)

BD1 942C C> \̃; ≤ \ ≤ \̃D

• Chi-squaredX2X2X2-test
After parameter estimation, we still have to decide at what point the estimate is good
enough. The Chi-squared test, X2-test, is used to determine whether there is a statistically
significant difference between the expected and the observed model. This is the case when
the LM algorithm is stuck in a local minimum, which does not satisfy the X2-test. The
X2-test is defined as:

X2
"!� =

 ∑
:=1

(=: − `: (\̂"!� ))2
`: (\̂"!� )

(15)

Since the measured values are produced by a Poisson process, the expected value and
standard deviation for the X2 value are given by:

�
[X2] =  , f

[X2] =
√√√

2 +
 ∑
:=1

1
`:

(16)

The critical value set to express the level of confidence (95%) we have in the observed
with respect to the expected value is:

X2
CℎA4Bℎ>;3 =  + 2

√√√
2 +

 ∑
:=1

1
`:

(17)

• Initialisation and user settings

◦ Set intensity threshold �0: a user-specified minimum peak intensity. If the maximum
intensity in the (residual) image is below this value, then exit the algorithm and
execute the X2-test.
◦ Set the number of max emitters within a ROI �<0G
◦ Set error threshold n (see Figure 2)
◦ Set the number of initial estimates (
◦ Set the LM optimization algorithm parameters: _ and max number of iterations

• Running parameters

◦ Current number of emitter 4
◦ Current initial estimate \8=8C ,B ∈ Θ 5 >A B = {1, 2, . . . , (}
◦ Fraction of accepted ROIs:

[X2 =
Accepted ROIs
Total ROIs



• Filtering and Model Selection
We select ( starting points in the feasible set (\8=8C ,B ∈ Θ 5 >A B = {1, 2, . . . , (}), and
for each starting point, we run the optimization algorithm, where it will probably get
stuck in a close local minimum. From the set of returned solutions, we select the one that
yields the lowest value for the objective function, and thus with the highest likelihood.
Although this method is widely used in practice, it is not always very efficient. However,
if based on physical insights or on additional (prior) information about the problem, it is
possible to select our initial points in a specific region or in a specific way, causing the
process to be much more efficient. In our case, we center the ( starting points around
the CoM of the ROI. To add an extra layer of control, we perform the X2-test to check
whether there is a statistical significant difference between the expected and the observed
measurements. If all the ( starting points do not pass the X2-test, the respective ROI is
dismissed. A presumable explanation for this could be that the cross-sectional area of
the global minimum, at which the ground true parameters are located, is relatively small
compared to its surrounding local minima, causing the optimization approach to get stuck
in neighbouring minima before it could reach the global minimum, see Supplementary
Note A.1. To investigate whether an increase of the number of initial estimates (, would
improve the amount of used data, i.e. increase the fraction of acceptable ROIs ([X2 ) with
an acceptable X2-test, the estimation procedure was repeated ( times (( ≥ 1) for each
ROI. The position with the highest likelihood was selected as the final estimate for that
ROI. However, this was found to be computationally demanding; for this reason a small
adjustment is made. Upon the total set of detected ROIs, the estimator is executed with the
�>" as the initial estimate. The set of rejected ROIs undergoes the whole procedure again
but with the next initial estimate in the set. The stopping criteria is set to be if [X2 >= 90%
or all the ( initial points do not pass the X2-test.

• Performance Evaluation
The performance evaluation is performed based on both quantitative and qualitative metrics.
The aim is to obtain a refined understanding of the resolution and quantification capability
of the algorithm and how it performs in comparison to state-of-the-art SMLM algorithms.

◦ Qualitative metrics:
The foremost consideration for the localization algorithm is how accurately it finds
the position of labelled molecules. This was quantified as the root-mean-square
error (RMSE) between the estimated molecule position and the ground truth, in
the lateral position, also referred to as the localization accuracy. Hence, accuracy
is a measure of the systematic error or bias in measurements, not to confuse with
precision, which is a measure of the error spread of an estimator. The evaluation of
localization accuracy was based on calculating the distances between the algorithm’s
localizations of each recognized emitter and the nearest true position of an emitter
(within n). The RMSE and the precision are defined as:

'"(� =

√∑"
<=1 (\̂G< − \G< )2 + (\̂H< − \H< )2

"
, %A428B8>= f =

√
f2
G + f2

H

(18)

whereby, fG =

√∑"
<=1 (\̂G< − \̄G)2

" − 1
, fH =

√∑"
<=1 (\̂H< − \̄H)2

" − 1

for " number of measurements.



◦ Quantitative metrics:
Besides localization accuracy and precision, the algorithm performance also depends
on the ability to successfully detect fluorescent emitters. It is crucial to accurately
detect a large fraction of molecules in a dataset, and minimize false localizations.
For every detected ROI, we identified the localizations that are close enough to
a ground-truth position as true-positives (TP), error < n . The localizations were
the error > n are indicated as false-positives (FP) and the undetected positions are
referred to as false-negatives (FN). The threshold n , is the Euclidian distance between
the fitted and ground-truth positions, unless mentioned otherwise we set n = 0.2 `<.
A visualization is provided in Figure 2.

– Recall Fraction: A = ) %
�#+) % , describes the overlap between the true fluorophores

positions and the detected positionsi.e it provides the fraction of positions that are
correctly identified of the total number of emitters.

– Jaccard Index: ��� = ) %
�%+) %+�# , same as recall fraction but takes the FNs in

consideration.

◦ If X2
"!� <= X2

CℎA4Bℎ>;3 → ACCEPTED→ �0;2D;0C4 4AA>A
Determine the number of TPs, FPs and FNs.

◦ Else if X2
"!� > X2

CℎA4Bℎ>;3 → REJECTED → Reset emitter count 4 = 0,
grap the next initial estimate in \8=8C ,B and repeat procedure.

◦ Results
Return list of localizations.

A schematic representation of this procedure is included in Supplementary Figure A.3.

Figure 2. Localization classification - Ground true (GT): the true emitter location;
True positive (TP): the successfully localized positions (difference between estimated
location and ground true position ≤ n); False positives (FP): difference between
estimated location and ground true position > n ; False negatives (FN): non-localized
ground true positions.

It is commonly known that the quantitative and qualitative metrics are reversely related. If we
only permit well isolated bright emitters and set a small successful detection distance threshold
n , this will result in good localization precision and accuracy but in a bad recall fraction.
Conversely, allowing poorly fitted emitter localizations (increasing n), results in precision and
accuracy deterioration but improves the recall fraction. The optimal value for n is therefore
application-specific.



3. Results

In this section, we present the theoretical and numerical performance evaluation results of the
Multi-SIMFLUX algorithm against standard 2D-Gaussian SMLM on simulated data. To asses
the performance of SIMFLUX, several simulations were done for different active emitter densities
and various emitter and background intensities. The localization performance of multi-SIMFLUX
for various active emitter densities is compared against single-SIMFLUX, single-SMLM and
multi-SMLM (� = 5). These simulations explore the effect of different realistic imaging
conditions on the recall fraction, Jaccard index, localization precision and accuracy achieved
by the algorithm. The use of simulated data has the advantage of the imaging conditions being
known and more in control, e.g. the true emitter positions and intensities are known a priori,
and no assumptions for variables like background intensities and PSF shapes have to be made.
However, experimental measurements like for cell imaging, can contain a non-negligible amount
of background noise; therefore, it is also of great importance to asses the performance of the
localization algorithm if used on noisy image data.

We assume Poisson distributed data and neglect the read-out noise of the sensor, i.e. we
assume only the shot noise to be present in the images. For all simulations the considered
ROI-size is 20 × 20 ?8G4;B, the pixel size was set to ΔG = ΔH = Δ = 0.1 `< and PSF width
f%(� = 1.3Δ (unless mentioned otherwise). We matched detected emitters to the ground truth
emitters with a lateral threshold of 2Δ, i.e successful detection distance n = 2Δ = 200 =<. The
matching procedure went as follows; the Euclidean distance between the ground true and the
estimated positions is determined. Then, if the minimal distance is ≤ n , it is considered as an TP
localization, and both coordinates (from the true- and the estimated list) are pulled out. However,
if the minimal distance > n , the localization is considered as a FP localization, and it is not
considered in the recall fraction. Finally, if the list of estimations is empty, while they still are
unmatched ground true positions, they are considered as FNs. See figure 2 for clarification.



3.1. Localization Performance

In this section, we investigate the expected theoretical improvement for SIMFLUX over SMLM
and investigate whether our MLE implementation approaches it. Furthermore, we evaluate
the effect of emitter photon count and background intensity on the localization precision and
accuracy, for visualization see Supplementary Figure A.1.
The Fisher information in the x-direction of the 8Cℎ emitter for 8 ∈ [1, . . . , �] is denoted as:

IG8 ,G8 (\) =
 ∑
:=1

P∑
?=1

�∑
4=1

\�4%? (\G , \H , q?)�G:,4 (D)�H:,4 (E)
( m ln `:, ?

m\G8

)2
(19)

For the single emitter case, � = 1:

IG1 ,G1 (\) =
 ∑
:=1

P∑
?=1

\�1%? (\G , \H , q?)�G:,4 (D)�H:,4 (E)
( G − \G

f
+ 2c@?,G<? sin(q?)

1 + <? cos(q?)
)2

Since
∑ 
:=1

∑P
?=1 \�1%? (\G , \H , q?)�G:,1 (D)�H:,1 (E) ≈
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For the multi emitter case, � > 1:
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for # being the total number of photons captured from � emitters i.e. # =
∑�
4=1 \�4 . The

obtained improvement factor, for the two considered orthogonal orientations (G, H), and for
perfect modulation < = 1, can then be expressed as (Supplementary Note B.3):

IG,G (\) = IH,H (\) = #p2 + 2c2#f2

f2p2 → fG,G (\) = fH,H (\) = f√
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Therefore, the improvement factor (� 5 ) for N emitters is equal to:
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Which shows that for SIMFLUX with respect to SMLM the theoretical improvement factor
� 5 ≥ 1 ∀ p, f. However, the assumption of perfect modulation contrast (< = 1) cannot be
guaranteed in practise. For < < 1, the localization precision will become worse and dependent
on the illumination pattern phase, whereby a lower improvement factor can be expected. This
results in the localization precision being non-uniform and anisotropic to some extend.
This means that there are small variations in localization precision depending on the position of
the molecule with respect to the minima of the illumination patterns (see Figure A.7 to A.9).



In the simulations, we used a pitch to spot-width ratio f
p ≈ 0.5 − 0.6 and a modulation

depth < ≈ 0.95, whereby SIMFLUX should theoretically achieve an improvement factor in the
range of ∼ 2.3 with respect to conventional SMLM. To validate this, a data stack consisting
of 3.2 · 104 identically sized ROIs is generated, in which the emitters are placed as shown in
Figure A.2 and the results are shown in Figure 3. Note that a deviation of ± 1.5 ?8G4; for each
emitter location is allowed. The considered emitter intensities during the simulations, ranged
from 102 − 105 ?ℎ>C>=B and the background intensity from 5 − 50 ?ℎ>C>=B/?8G4;B. For each
considered emitter- and background intensity, 1000 five-emitter images were generated. After the
generation of the data stack, Poisson noise is applied to the images. This data stack is analyzed
by both algorithms, which return the estimated positions, emitter intensities and background.
The CRLB is calculated for each emitter and compared with the obtained results in Figure 3.

(a) (b)

Figure 3. A data stack consisting of 3.2 ∗ 104 identically sized ROIs is generated in
which five emitters are placed at the constant locations shown in Supplementary Figure
A.2. (a) Impact of signal photon count on the localization precision of SIMFLUX in
comparison to standard SMLM for different background intensities. (b) Improvement
factor of SIMFLUX over SMLM in terms of localization precision. A precision
improvement factor > 1.6 is realized over the whole considered emitter intensity range,
and at intensities higher than 250 ?ℎ>C>=B an improvement factor of ∼ 2.2 is achieved.

In case of placing the emitters at constant locations, both methods achieve the minimal possible
estimation uncertainty, i.e highest localization precision, as given by their respective CRLB over
a wide range of emission and background intensities as can be seen in Figure 3. These findings
are consistent with our theoretical expectations, which was having a loss in localization precision
by increasing levels of background intensities, since the presence of noise leads to an increase in
the uncertainty of the emitter’s location. In Figure 3-b, it can be seen, that at emitter intensities
greater than 250 ?ℎ>C>=B, the theoretical improvement factor of ∼ 2.2 is reached. Also, the fact
that the theoretical improvement factor slightly increased for higher background intensities can
be noticed, which indicates the superiority of SIMFLUX in handling noisy images.



Next, the algorithms are tested on a simulated data set, where emitters were placed at random
positions such that \G , \H ∈ [1,  − 1], with  being the number of pixels and 1 border size in
pixels (typically 2). The expected photon count per emitter is selected from a normal distribution
with \� ∼ N(1000, 250) and the background intensity \16 is set to 10 ?ℎ>C>=B/?8G4;. The
obtained results, in terms of measured localization precision in G and H direction, of SIMFLUX
and SMLM in comparison with their respective average CRLB are depicted in Figure 4. A
precision improvement factor of approximately ∼ 2.0 is achieved for both the single and multi
emitter case. For a visualisation of the effect of the active emitter density and background
intensity on the two-dimensional localization accuracy of both algorithms, see Figure A.5.

Figure 4. Comparison of localization precision and CRLB for multi-emitter fitting. A
data stack is generated where four emitters are placed at random locations. The expected
photon count per emitter is selected from a normal distribution with \� ∼ N(1000, 250),
and the background intensity of the image \16 is set to 10 ?ℎ>C>=B/?8G4;. Themeasured
localization precision in G and H direction, of SIMFLUX and SMLM in comparison
with their respective average CRLB. A precision improvement factor of ∼ 2 is achieved.

To examine the effect of emitter and background intensity on the estimator’s localization accuracy,
we considered histograms of the error of the total set of localizations and their cumulative
distribution functions. Histograms give a good visualisation of the localised points relative to
the true molecular positions, whereby the negative and positive localization errors indicate an
estimation to the left or to the right of the ground-true position, respectively. The cumulative
distribution function of the localization error provides insightful characteristics, since it gives the
possibility to extract the probability of finding a localization error less or greater than a certain
value. Also, the steepness of the slope gives an indication of the spread of the localization error.
In Figure 5, the cumulative distribution function is given for various emitter- and background
intensities. It demonstrates the effect of emitter- and background intensity on the estimator
accuracy. As expected, the steepness increases with higher emitter intensity and decreases with
higher background intensities. The slopes for SIMFLUX are steeper than SMLM, which gives
an inidication that the spread of localizations for SIMFLUX is narrower than SMLM, which is in
line with the results obtained in Figure A.4.



(a) Emitter Intensity \� ∼ N(1000, 250) Constant background intensity (b) \16 = 5

Figure 5. Cumulative distribution of the obtained localization error (RMSE) by SMLM
and SIMFLUX for random emitter positions. SIMFLUX outperforms SMLM for
various emitter- and background intensities, for single- and multi-emitter case. (a)
Impact of background intensity on the localization accuracy of SMLM and SIMFLUX,
for single (� = 1) and multi emitters (� = 5). (b) Impact of emitter intensity on the
localization accuracy, of SMLM and SIMFLUX, for single and multi emitters.

3.2. Probability Error

In some detection problems, it is reasonable to express a prior belief in the likelihood, by
assigning probabilities to the various possible hypotheses. We consider the case where we wish
to distinguish between " hypotheses {�0, �1, . . . , �"−1}. Such a problem arises in case of
the classification of the number of emitters, i.e. deciding how many active emitters there are
within a certain ROI. The hypothesis �0, suggests that there are no active emitters in a given ROI
(just background noise), �1 suggests that there is one active emitter, and so on. For decision
optimization, commonly the minimum probability error %4 criterion or its generalization, the
Bayes risk, is employed [18]. The expected cost or Bayes risk is denoted as:

R =
"−1∑
8=0

"−1∑
9=0

�8, 9%
(
�8

��� 9 ) % (
� 9

)
(20)

The cost (loss in performance) assigned to the decision to choose �8 when � 9 is true, is denoted
by �8, 9 . We aim to choose the hypothesis (number of emitters) that minimizes the cost, hence
optimizes performance. Let '8 be the set of values in '" which map into the decision �8 . So in
essence '8 = {G : 342834 �8}, where 8 = 0, 1, . . ., " − 1, partitions the decision space such that:

R =
"−1∑
8=0

∫
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The goal is to decide �8 for which the expected cost is minimum. Since %(G) is common to all
terms and it is reasonable to assign equal probabilities to prior probabilities of the respective
hypotheses, i.e. %(�8) = 1

" ∀ 8 = {0, 1, . . . , " − 1}, we get:

�̂ = 0A6min
8

1
"
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We define the probability of error %4 as:
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The probability of a correct decision is then defined as %2 = 1−%4. We consider the log-likelihood
ratio between two hypotheses �8 , � 9 , whereby the true parameters are considered to be known:
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The log-likelihood ratio tends to be normally distributed, as the number of data points goes to
infinity (G →∞). The expected value ` and variance f2 are computed under the conditional �8 ,
i.e. the one assumed to be true:
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To evaluate this, the algorithms are tested on a simulated data consisting of 7.5 ∗ 103 ROIs
per emitter configuration and emitter- and background intensity combination. For the emitter
configurations with � > 1, the emitters are equidistantly separated with a radius A with respect to
the center of ROI. The emitter intensity \� per emitter is selected from a normal distribution with
∼ N(\� , 0.2 ∗ \� ), after which a background intensity of \16 is added. For ROIs visualisation,
see Supplementary Figures A.11 to A.14.

The overlap, between the true-likelihood function and between the other likelihood functions, is
considered as an indication for the probability of making an emitter quantification error. We
noticed that the normal distribution did underestimate the log-likelihood distribution (specially
for lower emitter number, see Figure A.15), causing a small overestimation of the %4. Therefore,
we estimated the distribution and resorted to numerical integration to approximate the value of
overlapping area (Simpson’s rule). The effect of separation distance, emitter- and background
intensity on the probability error is shown in Figure 7, A.11 and A.12 respectively.



\� = 250 ?ℎ>C>=B

\� = 1000 ?ℎ>C>=B

Figure 6. Multi-emitter log-likelihood results for different number of emitters, constant
normalized distance w.r.t. ROI-center A

f%(�
= 2.5 and background intensity \16 =

5 ?ℎ>C>=B/?8G4;. For instance, in the second column of the top row, with emitter
intensity \� = 250 ?ℎ>C>=B, there is an overlap between the true-likelihood function of
� = 2 and between other likelihood functions, indicating the probability of making
an emitter quantification error. In the bottom row, with emitter intensity \� =
1000 ?ℎ>C>=B, the overlap is almost zero, which corresponds to a low probability error.

(a) (b)

Figure 7. (a) The effect of separation distance between emitters on the probability
error, under constant emitter and background intensity, \� = 750 ?ℎ>C>=B and
\16 = 5 ?ℎ>C>=B/?8G4;, respectively. Note that at constant ( A

f%(�
) the probability

error %4 increases with the number of emitters � within a ROI. A visualisation of the
separation distance is shown for � = 2, see Supplementary Figure A.14 for further
visualisation. (b) The ratio between the probability of making the correct decision of
SIMFLUX and SMLM

( %2,(�"�!*-
%2,("!"

)
at different normalized separation distances.

At small normalized separation distances ( A
f%(�

≤ 2), the improvement factor w.r.t.
SMLM alternates between between ∼ [−2, 3]% , while at greater separation distances
the performance in terms of correct decision is roughly the same. SIMFLUX does not
provide significant improvement over SMLM in terms of %2 for the different simulated
separation distances.



3.3. Separation Distance

In this section, we evaluate the ability of the algorithm to distinguish two nearby emitters with
different separation distances. The expected photon count for two emitters, equivalent in intensity
\�1 = \�2 = \� , separated by a separation distance 3 in x-direction (�H:,1 = �H:,2 = �H: ) is:
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For the Fisher information, with separation distance 3 = \G1 − \G2 , we get:
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We know that the localization precision is bounded by:

+0A (\̂) ≥ I(\)−1

f\̂ ≥
√
I(\)−1

As the overlap between the two sources increases, i.e. for 3 → 0, we get:

lim
3→0
I3 (\) = 0 → f\̂ →∞

In case of 3 →∞, i.e. totally no overlap between the two sources so that the cross-terms become
zero, we get the following:
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This, in fact, is equivalent to the individual Fisher information sum for the two emitters sources.



To demonstrate how the separation distance 3 affects the Fisher information, a series of simulated
images of two emitters, with increasing separation distances between their centers, were generated
for different values of f%(� . The emitter and background intensities were held constant at
\� = 1000 ?ℎ>C>=B and \16 = 5 ?ℎ>C>=B/?8G4;, respectively. The results are shown in Figure
8, where it can be seen that at a separation distance of approximately 3 ≈ 7f%(� the amount of
Fisher information does not increase anymore for the different PSF widths. Note that the Fisher
information is normalized.

Figure 8. The impact of the separation distance between two emitters on the Fisher
information for different values of f%(� . At a separation distance of approximately
3 ≈ 7f%(� the amount of Fisher information does not increase anymore for the
different PSF widths.

Again, a series of images of two emitters with increasing separations between their centers were
generated. The separation distance ranged from 0.025 `< C> 1.0 `< (≈ 7f%(� ), for visualisation
see Supplementary Figure A.17. For each separation distance, for different background intensities
\16 = {5, 25, 50} and different emitter photon counts \� = {250, 500, 1000}, 5000 ROIs were
generated. Poisson noise is applied to the images, then fitted by the SMLM and SIMFLUX
algorithm. This was performed to analyse the ability of both algorithms in distinguishing between
two nearby emitters at different separation distances.



(a) (b)

Figure 9. The successful detection distance threshold is set to n = 2.5. (a) Impact of sep-
aration distance on the recall fraction of SIMFLUX in comparison to SMLM for different
signal photon counts with a constant background intensity \16 = 5 ?ℎ>C>=B/?8G4;.
(b) Impact of separation distance on the recall fraction of SIMFLUX in comparison to
SMLM for different background intensities with a constant emitter intensity of \� = 750
photons.

From the simulations performed, for varying emitter and background intensities, it is clearly
visible that SIMFLUX outperforms SMLM. The impact of separation distance on the localization
precision for emitter and background intensities is displayed in Supplementary Figure A.7 and
A.8, respectively. Furthermore, they show that the introduction of illumination pattern results in
a spatially varying CRLB. The deterioration of localization precision, for lower emitter photon
counts and/or higher background intensities, for SIMFLUX is less compared to SMLM. For
the evaluated emitter- and background intensities, SIMFLUX is able to maintain an average
localization precision improvement factor of ∼ 2.

Figure 9 shows that the detection rate is also affected by the emitter intensity and background
noise, since single molecules with lower emission rates and/or deeper axial positions are harder
to detect. As theoretically expected, the recall fraction for both algorithms increases with larger
separation distances, higher emitter intensities and lower background intensities. For instance in
Figure 9a, at a separation distance of 0.1 `< for emitter intensity \� = 500 SIMFLUX identified
∼ 65 ± 4.3% of the emitters correctly, while SMLM found ∼ 52 ± 6.5%. For the same emitter
intensity, at the same separation distance, the CRLB is ∼ 5 =< for SIMFLUX and 10.5 =< for
SMLM (Figure A.7). At very small separation distances (∼≤ 1.5 ?8G4; = 0.15 `<), for both
algorithms the recall fraction is in the range of ∼ 40 − 60%, which has to do with the fact that
the algorithms "see" the two emitters as just one emitter with double the intensity. In cases,
where the optimization landscape displays distinct two minima (instead of merging them into one
minimum), the algorithm is able to distinguish between the two emitter at such low separation
distances, an example is illustrated in Supplementary Figure A.17. For separation distances
greater than 0.5 `<, both algorithms achieve recall fraction ≥ 80%, SMLM even slightly higher
due to its smoother optimization landscape, see Figure A.27.



3.4. Active Emitter Density

In this section, we demonstrate the superiority of multi-emitter approaches at high active emitter
densities. The active emitter densities were controlled by placing a certain number of active
emitters within the imaging frame area of 0 × 150 `<2. Note that each active emitter density
is simulated 100 times with different random configurations. The expected photon count per
emitter was selected from a normal distribution with \� ∼ N(1000, 250) and a background
intensity \16 of 5 ?ℎ>C>=B/?8G4; was added, then the image was corrupted with Poisson noise.
Various ROI-sizes, ranging from 5f%(� to 8f%(� for single-emitters and 8f%(� to 20f%(� for
multi-emitter, were evaluated in the terms of recall fraction, Jaccard Index, localization precision
and accuracy (RMSE).

Figure 10. (a) Visualisation of various active emitter densities ranging from
0.1 C> 5 4<8CC4AB/`<2. (b) Eamples of results with the obtained results for � = 5 at
different active emitter densities (0.5, 1, 2 and 5 emitters/`<2). The true positions are
indicated with black circles and the positions identified by the SIMFLUX estimator
with blue circles.

Figure 11. The impact of active emitter density on the recall fraction for single and
multi emitters for different ROI sizes.



Figure 12. The impact of active emitter density on the localization precision for single
and multi emitters for different ROI sizes.

Figure 13. The relation between localization accuracy and recall fraction for each
tested algorithm at different active emitter densities. The significant improvement of
recall fraction compared with a slight improvement in localization accuracy, achieved
by the multi-emitter over single emitter cases is cleary visible.

Some of the detected and localized ROIs can be seen in Supplementary Figure A.24. From
Figures 11 and A.18, we see that the multi-emitter case, for both algorithms, at high active emitter
densities (5 4<8CC4AB/`<2) is able to approximately double the recall fraction and Jaccard Index.
The obtained recall fractions for the single emitter case at high active emitter densities are in the
range of ∼ 10− 35%, while the obtained recall fractions for the multi-emitter case are in the range
of ∼ 60 − 80%. At the same active emitter density, the localization precision for single-emitter
was determined to be ∼ 40 − 50 =< vs. ∼ 50 − 60 =< for multi-emitter, as can be seen in Figure
12. Also, in terms of localization accuracy at higher densities, the multi-emitter is case able to
outperform the single-emitter approach. Again, at an active emitter density of 5 4<8CC4AB/`<2

the RMSE for single-emitter was determined to be ∼ 95 − 120 =< vs. ∼ 85 − 105 =< for
multi-emitter, see figure A.19. Hence, with the multi-emitter approach we are able to averagely
double the recall fraction, with only a slight deterioration in precision, approximately ∼ 20%.



3.5. Pattern Fitting

Ring Fitting

In this section, the performance of SMLM and SIMFLUX on the reconstruction of the three-ring
structure, shown in Supplementary Figure A.21, is investigated . The aim is to benchmark the
performance of both algorithms in their accuracy and the continuity of the obtained structures
for varying ring radi and increasing active emitter frame density. The following frame and ring
dimensions has been chosen F = ℎ = 10 `<, '1 = 3 `<, '2 = 1.5 `<, '3 = 0.5 `<, as can
be seen in Figure A.21 a. The same procedure is applied under three different activate emitter
densities, referred to as low, mid and high density. Examples of the simulated frames for SMLM
and SIMFLUX are shown in Figure A.22 and A.23, respectively.

• Low-density: with an average density of is ∼ 20 active 4<8CC4AB/ 5 A0<4.
• Mid-density: with an average density of is ∼ 50 active 4<8CC4AB/ 5 A0<4.
• High-density: with an average density of is ∼ 100 active 4<8CC4AB/ 5 A0<4.

For the following simulations, the considered ROI-size for � = 1 is 10 × 10 ?8G4;B and for
� = 5 is 20 × 20 ?8G4;B. The expected photon count per emitter is selected from a normal
distribution with \� ∼ N(1000, 250) and the background intensity of the image \16 is set to
5 ?ℎ>C>=B/?8G4;. Furthermore, we set a successful detection distance of n = 100 =<,

Recall Fraction

Low Mid High

SMLM E = 1 69.7 ± 5.13% 45.4 ± 4.63% 17.4 ± 4.52%

SIMFLUX E = 1 64.3 ± 2.71% 39.7 ± 4.89% 19.6 ± 5.56%

SMLM E = 5 92.3 ± 1.56% 82.2 ± 2.43% 65.6 ± 3.13%

SIMFLUX E = 5 89.2 ± 1.93% 80.4 ± 4.82% 66.3 ± 3.25%

Table 1. Recall fraction three-ring structure.

Localization Precision

Low Mid High

SMLM E = 1 24.9 ± 2.56 =< 26.8 ± 3.43 =< 28.1 ± 4.14 =<

SIMFLUX E = 1 12.3 ± 2.24 =< 16.5 ± 3.67 =< 24.7 ± 3.32 =<

SMLM E = 5 26.4 ± 3.77 =< 27.6 ± 4.11 =< 29.2 ± 4.82 =<

SIMFLUX E = 5 13.8 ± 2.86 =< 18.7 ± 2.46 =< 25.3 ± 5.58 =<

Table 2. Localization precision three-ring structure.



(a) SMLM

(b) SIMFLUX

Figure 14. Three-ring structure fitting results for SMLM (a) and SIMFLUX (b), for
single and multi emitter, at the following active emitter densities = 20, 50 and 100
emitters/frame. The increase in emitter recall rate and structure continuity, due to
the extension form single to multi emitter approach is clearly visible. The achieved
localization precision improvement factor of SIMLFLUX over SMLM decreases with
increasing active emitter density. Throughout the considered frame densities the
localization improvement factor stays in the range of ∼ 1.1 − 2.0.



Siemens Star Fitting

In this section, we evaluate the resolving capability of SIMFLUX method against SMLM using
simulated images with the Siemens star pattern. The synthetic Siemens star image series has 50
non-empty regions, a radius of 5 `< and a total number of 1.255 4<8CC4AB. The active emitter
densities were controlled by placing different number of emitters within the active area in the
image. For the following simulations we set n = 100 =<

Figure 15. (a) The Siemens star ground true pattern. Siemens star object has been
simulated for different active emitter densities under constant emitter and background
intensity, \� = 750 ?ℎ>C>=B and \16 = 5 ?ℎ>C>=B/?8G4; respectively. (b) Active
emitter density of 0.1 4<8CC4AB/`<2, (c) 1 4<8CC4AB/`<2, and (d) 5 4<8CC4AB/`<2.

Recall Fraction

d = 0.1 d = 1 d = 5

SMLM E = 1 79.4 ± 2.16% 18.4 ± 2.35% 5.10 ± 0.81%

SIMFLUX E = 1 73.6 ± 3.19% 16.6 ± 3.69% 4.89 ± 1.25%

SMLM E = 5 89.2 ± 6.64% 68.3 ± 4.43% 31.4 ± 1.72%

SIMFLUX E = 5 91.0 ± 5.49% 65.2 ± 5.25% 34.1 ± 1.65%

Table 3. Recall fraction Siemens star



(a)

(b)

Figure 16. Siemens stars fits for SMLM (a) and SIMFLUX (b), for single and multi
emitter, at the following active emitter densities = 0.1, 1 and 5 emitters/`<2. The
increase in emitter recall rate and structure continuity, due to the extension form single
to multi emitter approach is evidently visible.

By visual inspection and analysis of the obtained results of Siemens star and three-ring fitting,
it clearly shows that at high active emitter densities, the features of the structure can be better
resolved with the multi-emitter methods. The achieved recall fractions are approximately the
same.



4. Discussion

We presented Multi-SIMFLUX, a novel multi-emitter maximum likelihood based structured
illumination localization microscopy algorithm. Multi-SIMFLUX performs exceptionally well
for the various simulated imaging conditions for sparse as well as for dense active emitter data.

In section 3.1, analytical expressions for the expected theoretical improvement factor are defined
and validated by numerical simulations. The effect of emitter photon count and background
intensity on localization performance in terms of precision, accuracy and recall fraction is evalu-
ated. The considered emitter intensities during the simulations, ranged from 102 − 105 ?ℎ>C>=B
and the background intensity from 5 − 50 ?ℎ>C>=B/?8G4;B. The obtained findings are consistent
with our theoretical expectations, which was having a loss in localization precision by increasing
background intensities, since the presence of noise leads to an increase in the uncertainty of
the emitter’s location. As theoretically expected, a significant improvement of SIMFLUX
over SMLM is observed. SIMFLUX outperforms normal SMLM, in terms of localization
precision and accuracy, for various emitter densities and intensities, with an improvement fac-
tor of approximately∼ 2, as can be seen from Figures 3 to 5 and Supplementary Figures A.4 to A.6.

In section 3.2, we considered multi-hypothesis testing, to evaluate the theoretical probability of
making an emitter quantification error. We considered the case where we wish to distinguish
between six hypotheses {�0, �1, . . . , �5}. Such a problem arises in case of the classification
of the number of emitters, i.e. deciding how many active emitters there are within a certain
ROI. The hypothesis �0, suggests that there are no active emitters in a given ROI (i.e. only
background noise), �1 suggests that there is one active emitter, and so on. It is noticed that the
probability error %4 increases with the number of emitters � within a ROI for the three different
imaging cases: increasing separation distances, different emitter- and background intensities.
As theoretically expected and confirmed by simulations, increasing the emitter intensity and/or
separation distance decreased the %4, while increasing background intensity increased the %4.
The obtained results for the three cases are shown in the Figures 7, A.11 and A.12, respec-
tively. We found that based on overlap between log-likelihood density functions, SIMFLUX
did not provide significant improvement over SMLM in terms of probability of correct decision %2 .

In section 3.3, we demonstrated how the separation distance 3 affects the Fisher informa-
tion. A series of simulated images of two emitters, with increasing separation distances between
their centers, were generated for different values of f%(� . The results are shown in Figure 8,
where it can be seen that at a separation distance of approximately 3 ≈ 7f%(� , the amount of
Fisher information does not increase anymore for the different PSF widths. Then, we evaluated
the ability of the algorithms to distinguish two nearby emitters, equivalent in intensity, with
increasing separations between their centers. The impact of separation distance on the theoretical
localization precision (CRLB) for different signal photon counts and background intensities
are displayed in Supplementary Figures A.8 to A.9. Note that due to imperfect modulation the
localization precision of SIMFLUX is position dependent. The obtained recall fraction results
are shown in Figure 9. As theoretically expected, the recall fraction for both algorithms increases
with larger separation distances, higher emitter intensities and lower background intensities. At
very small separation distances (≤ 0.15 `< ≈ f%(� ), for both algorithms the recall fraction
is in the range of ∼ 40 − 60%. This has to do with the fact that the algorithms "see" the two
emitters as just one emitter with double the intensity. For these small separation distances
(≤ f%(� ), SIMFLUX achieves a slightly higher recall fraction for the different evaluated emitter-
and background intensities, compared to SMLM. However, at larger separation distances the
performance is equal or even slightly more in favor of SMLM.



In section 3.4, we evaluated the localization performance of multi-SIMFLUX on simulated
data for various active emitter densities and compared its performance against SMLM. Var-
ious ROI-sizes, ranging from 5f%(� to 8f%(� for single-emitters and 8f%(� to 20f%(�
for multi-emitter, were evaluated in the terms of recall fraction, Jaccard Index, localization
precision and accuracy (RMSE). By evaluating the algorithms for different ROI-sizes, slight
differences were noticed. Smaller ROI-sizes perform better on the quantitative metrics (recall
fraction and Jaccard Index) for single-emitter cases, while larger ROI-sizes tend to give more
accurate and precise results, i.e. better qualitative results. For the multi-emitter case, smaller
ROI-sizes showed a loss in quantitative and qualitative. After taking both qualitative and
quantitative metrics into consideration, we found that for the single-emitter case a ROI-size of
6f%(� shows the best performance, while for the multi-emitter case a ROI-size of 15f%(�
resulted in the best compromise between both metrics (Figure 13). With the multi-emitter
SIMFLUX approach, we certainly outperformed both single-emitter approaches at higher active
emitter densities. We were able to averagely double the recall fraction, increase the localization
accuracywith∼ 10%while suffering from a slight degradation in precision, approximately∼ 20%.

In section 3.5, the performance of SMLM and SIMFLUX on the reconstruction of the three-ring
structure (Figure A.21) and Siemens star (Figure 15) is investigated. The aim is to benchmark
the performance of both algorithms against each other in terms of recall fraction, accuracy and
the continuity of the obtained structures for varying active emitter frame densities. From tables 1
to 3 and Figures 14 and 16, we can conclude that with the multi-emitter approach we are able to
averagely double the recall fraction for mid densities and triple it (or even more) for high densities,
with only a slight deterioration in localization precision, compared to single emitter approaches.
In terms of localization precision SIMFLUX outperforms SMLM for all the considered frame
densities, for the single- and multi-emitter case. The achieved localization precision improvement
factor of SIMLFLUX over SMLM decreases with increasing active emitter density. Throughout
the considered frame densities the localization improvement factor stays in the range of∼ 1.1−2.0.
In terms of recall fraction SMLM slightly outperforms SIMFLUX for low and mid densities;
however, for high densities SIMFLUX shows a slight advantage.

Author Contributions

C. Smith, J. Cnossen and A. Zahran developed the SIMFLUX multi-emitter method. J. Cnossen
wrote the largest chunk of the processing pipeline code for SIMFLUX and the 2�-Gaussian
approach, A. Zahran extended it to the multi-emitter approach and wrote some code for the
performed simulations and data analysis. C. Smith and J. Cnossen directed and supervised the
research. A. Zahran wrote the paper with support and comments received from all authors.

5. Conclusion

The Multi-SIMFLUX method we have developed, enhances super-resolution reconstructions by
improving the detection rate while averagely maintaining the localization precision compared
to single molecule localization techniques. It is able to double the localization precision in
comparison with conventional 2� Gaussian multi-emitter SMLM algorithms at low active emitter
densities and maintains a slight localization precision improvement at higher densities. Our
approach has shown to perform well in theory and on simulations. We foresee a bright future for
its implementation on real experimental data. Higher density imaging permits shorter acquisition
times, however it results in more computational complexity in analysis and a huge dependence
on hard- and software tools.
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Figure A.1. Examples of simulated single-molecule ROIs as used in simulations with
varying background intensity on the horizontal axis and varying emitter intensity on
the vertical axis.

Figure A.2. Example of a ROI with 5 emitters at constant posi-
tions [\G1 , \H1 , \G2 , \H2 , \G3 , \H3 , \G4 , \H4 , \G5 , \H5 ]

T = [ '$�B8I42 ,
'$�B8I4

2 ,
'$�B8I4

2 + 3, '$�B8I42 +
3,
'$�B8I4

2 − 3, '$�B8I42 − 3, '$�B8I42 + 3, '$�B8I42 − 3, '$�B8I42 − 3, '$�B8I42 + 3]T, for 3 being
equal to 3 pixels. Note that an deviation of ± 1.5 ?8G4; for each emitter location is
allowed.



Figure A.3. Multi-emitter optimization schematic representation of the multi initial
estimate approach described in Section 2.3, from the imaging frames as input and
results as output.



In some cases, the localization precision is expressed by the full-width at half maximum (FWHM)
of the distribution of measured position coordinates, which is defined as follows [26]:

�,�"G = 2fG
√

2;=(2)

The same expression holds for the position coordinates of the y-direction. Only the localization
error in the x-direction is included here, since the localization precision in both directions was
roughly the same.

Figure A.4. Histograms of the obtained localization errors in the x-direction for
SMLM and SIMFLUX for emitter and background intensity \� = 1000 ?ℎ>C>=B and
\16 = 5 ?ℎ>C>=B/?8G4;, respectively. (a) For single emitters (E=1) SMLM achieved
an �,�"G of 14.7 ± 0.9 =<, while SIMFLUX achieved 7.3 ± 0.2 =<, indicating an
improvement factor of ∼ 2. (b) For multi emitters (E=4) SMLM achieved an �,�"G
of 25.4± 1.6 =<, while SIMFLUX achieved 13.9± 0.6 =<, indicating an improvement
factor of ∼ 1.8.



(a)

(b)

Figure A.5. The effect of the active emitter density and background intensity on the
two-dimensional localization accuracy of the SMLM algorithm (a) and SIMFLUX (b).
The emitter density per ROI increases from left to right, while the background intensity
increases from top to bottom. The active emitter density and background intensity, do
clearly affect the localization accuracy. Higher emitter density affects the accuracy
more negatively than increasing background intensity does. For instance keeping the
background intensity at \16 = 25 ?ℎ>C>=B/?8G4;, while increasing the number of
emitters (second row), results in a greater performance loss compared to the scenario
of keeping the number of emitters constant at � = 1 and increasing the background
intensity (first column). It can also be notated that the performance deterioration, due to
higher background intensity and/or higher active emitter density, is less for SIMFLUX.



(a) � = 1, \� ∼ N(1000, 250) (b) � = 5, \� ∼ N(1000, 250)

(c) � = 1, \16 = 5 ?ℎ>C>=B/?8G4; (d) � = 5, \16 = 5 ?ℎ>C>=B/?8G4;

Figure A.6. Cumulative distribution of the obtained localization error (x-direction) by
SMLM and SIMFLUX for random emitter positions. SIMFLUX outperforms SMLM
for various emitter- and background intensities, for both single and multi emitters. (a-b)
Impact of background intensity on the localization error , of SMLM and SIMFLUX,
for single (� = 1) and multi emitters (� = 5). (c-d) Impact of emitter intensity on the
localization error, of SMLM and SIMFLUX, for single and multi emitters.



(a) (a)

Figure A.7. (a) Impact of separation distance on the theoretical localization precision
(CRLB) for different signal photon counts. Note that due to imperfect modulation the
localization precision of SIMFLUX is position dependent. SIMFLUX achieves slightly
better localization precision at the center of the illumination pattern maximum. (b)
Improvement factor of SIMFLUX over SMLM as a function of separation distance
for different emitter intensities, indicating an improvement factor in the range of
∼ 1.9 − 2.25. Note that the average improvement factor slightly increases for lower
signal photon counts.

(a) (b)

Figure A.8. (a) Impact of separation distance on the localization precision for different
background intensities. (b) Improvement factor of SIMFLUX over SMLM as a function
of separation distance for different background intensities, indicating an improvement
factor in the range of ∼ 1.95 − 2.25. Note that the average improvement factor slightly
increases for increasing background intensities.



(a) SMLM

(b) SIMFLUX

Figure A.9. A map of the position dependence of SIMFLUX and SMLM in terms
of Recall fraction, precision (FWHM) and accuracy (RMSE). The ROI-size is held
constant at 8f%(� × 8f%(� . The expected photon count per emitter is selected from
a normal distribution with \� ∼ N(1000, 250) and the background intensity of the
image \16 is set to 5 ?ℎ>C>=B/?8G4;. Note that the recall fraction is higher in the
center of the ROI, with some non-uniformity for SIMFLUX due tot multiple local
minima. Furthermore, SMLM achieves high localization precision n the center, while
for SIMFLUX the precision is dependent on the position w.r.t. the illumination patterns.



(a) (b)

Figure A.10. (a) The effect of emitter intensity on probability error of SIMFLUX, for
single and multi emitters, under constant background intensity \16 = 5 ?ℎ>C>=B/?8G4;
and a constant normalized separation distance A

f%(�
= 2.5. Note that at constant

\� the probability error %4 increases with the number of emitters � within a ROI. A
visualisation is shown for � = 5, see Figure A.11 for further visualisation. (b) The
ratio between SIMFLUX and SMLM in the probability of making the correct decision( %2,(�"�!*-

%2,("!"

)
at different emitter intensities. At low photon counts (≤ 500 ?ℎ>C>=B),

the improvement factor compared to SMLM alternates between ∼ [−2, 4]% , while at
higher photon counts the performance in terms of correct decision is roughly the same.
SIMFLUX does not provide significant improvement over SMLM in terms of %2 for
the evaluated range of emitter intensities.

Figure A.11. Examples of ROIs for different numbers of emitters � , different emitter
intensities \� , constant background intensity \16 = 5 ?ℎ>C>=B/?8G4; and a constant
distance w.r.t. ROI-center normalized by f%(� A

f%(�
= 2.5.



(a) (b)

Figure A.12. (a) Impact of background intensity on probability error under constant
emitter intensity \� = 750 ?ℎ>C>=B and constant normalized separation distance
3

f%(�
= 3. Note that at constant \16\� the probability error %4 increases with the

number of emitters � within a ROI. A visualisation of the effect of background intensity
on the ROI is shown for � = 3, see Supplementary Figure A.13 for further visualisation.
(b) The ratio between the probability of making the correct decision of SIMFLUX and
SMLM %2,(�"�!*-

%2,("!"
at different background intensities. The obtained improvement

factor is ∼ 1 ± 1%. SIMFLUX does not provide significant improvement over SMLM
in terms of %2 for the different evaluated background intensities.

Figure A.13. Examples of ROIs for different numbers of emitters � , different
background intensities \16, constant emitter intensity \� = 750 ?ℎ>C>=B/?8G4; and a
constant distance w.r.t. ROI-center normalized by f%(� A

f%(�
= 3.



Figure A.14. Examples of ROIs for different numbers of emitters � , for different
distances w.r.t. ROI-center normalized by f%(� ( A

f%(�
), a constant emitter and

background intensity \� = 750 ?ℎ>C>=B/?8G4;, \16 = 5 ?ℎ>C>=B/?8G4;, respectively.

(a) (b)

Figure A.15. Multi-emitter log-likelihood fit results for different number of emitters.
The Gaussian fit resulted in a small underestimation of the PDF, resulting in a relatively
larger overlap area (i.e. higher probability error %4). (a) Constant normalized
distance w.r.t. ROI-center A

f%(�
= 1.5, a constant emitter and background intensity

\� = 500 ?ℎ>C>=B/?8G4;, \16 = 5 ?ℎ>C>=B/?8G4;, respectively. (b) Constant
normalized distance w.r.t. ROI-center A

f%(�
= 2.5, and a constant emitter and

background intensity \� = 750 ?ℎ>C>=B/?8G4;, \16 = 5 ?ℎ>C>=B/?8G4;, respectively.



(a)

(b)

Figure A.16. ROI fitting visualisation for 2 to 4 emitters. (a) Examples of bad fitted
ROIs - X2-test rejected ROIs. (b) Examples of good fitted ROIs - X2-test accepted
ROIs.



Figure A.17. A series of a total of 104 emitters is simulated with increasing separation
distances w.r.t. the ROI-center ranging from { f%(�2 C> 3f%(� }. The expected photon
count per emitter is selected from a normal distribution with \� ∼ N(1000, 250), the
background intensity of the image \16 is set to 5 ?ℎ>C>=B/?8G4;. Note the obtained
results are shown, then filtered where for fitting results with a localization error ≤ 0.1 `<
are regarded as good fits. (a) Fitting results for � = 2. (b) Fitting results for � = 5. The
achieved localization precision improvement factor for SIMFLUX over SMLM is ∼ 2.



Figure A.18. The impact of active emitter density on the Jaccard Index for single and
multi-emitters for different ROI sizes.

Figure A.19. The impact of active emitter density on the RMSE for single and
multi-emitters for different ROI sizes.



Figure A.20. The improvement factor of SIMFLUX over 2� Gaussian SMLM, for
localization precision and accuracy (RMSE), as a function of active emitter density.
Top row: at low active emitter densities SIMFLUX algorithm is able to double the
localization precision compared to conventional SMLM algorithm. The localization
improvement factor decreases with higher densities. For the single emitter case,
SIMFLUX is still able to preserve an improvement factor of ∼ 20%, while for the
multi-emitter case the localization precision is approximately the same.
Bottom row: for single emitters SMLM is slightly better than SIMFLUX in terms of
accuracy, i.e. the bias between the estimated and true position is smaller( ∼ 10%).



Figure A.21. Rings fitting frame. (a) Ring frame configuration. (b) Frame width =
heigthF = ℎ = 10 `<, '1 = 3 `<, '2 = 1.5 `<, '3 = 0.5 `<.

Figure A.22. Examples of simulated ring frames for normal SMLM - Left: ∼ 20 active
emitters/frame. Mid: ∼ 50 active emitters/frame. Right: ∼ 100 active emitters/frame

Figure A.23. Examples of simulated ring frames for SIMFLUX - Top: ∼ 20 active
emitters/frame. Mid: ∼ 50 active emitters/frame. Bottom: ∼ 100 active emitters/frame.



Figure A.24. Examples of detected and fitted ROIs for different active emitter
densities with the respective obtained localizations marked with green dots. ROI-size
is 15 × 15 ?8G4;B.



A.1. Selection Procedure of LM-parameter _

Here, there is looked at the effect of _ on the localization precision for both SMLM and SIMFLUX,
while holding the emitter and background intensity constant (\� = 1000 ?ℎ>C>=B, \16 =
5 ?ℎ>C>=B/?8G4;).

(a) (b)

Figure A.25. (a) Impact of the LM parameter _ on the localization precision for
SMLM and SIMFLUX. (b) Improvement factor of SIMFLUX over SMLM in terms of
localization precision. Improvement factor of SIMFLUX over SMLM in independent
of the LM parameter _.

(a) (b)

FigureA.26. Impact of the LMparameter_ on theX2- test (a) and localization precision
(b) for SMLM and SIMFLUX for single and multiple emitters while holding the emitter
and background intensity constant at \� = 1000 ?ℎ>C>=B and \16 = 5 ?ℎ>C>=B/?8G4;B,
respectively.

By looking at the effect of _ on the localization precision, improvement factor of SIMLFUX
over SMLM and X2- test, no clear winner could be obtained. Since the value range _ ∼
[1 ∗ 10−18 − 1 ∗ 10−15] do lead to slightly better results at low intensities ≤ 500 ?ℎ>C>=B, we
kept it in this range.



Optimization Landscape

(a) SMLM (b) SIMFLUX

(c) SMLM (d) SIMFLUX

Figure A.27. (a-b) 3� Visualisation of the maximum likelihood estimation optimiza-
tion landscape � = 1 and (c-d) � = 2. The true emitter and background intensities are
considered to be known, the positions estimates are moved around the true position
values. The optimization landscape of SIMFLUX contains multiple local minima and it
gets worse for higher emitter numbers, while for SMLM has a smooth convex surface.



Figure A.28. The first and second row show the estimator convergence results for
SMLM and SIMFLUX, respectively. Note: only estimator results which satisfy a
final localization error ≤ 2 are displayed. The SMLM estimator shows "nice" smooth
convergence, while the highly non-convex optimization landscape of SIMFLUX can
strongly be seen in the estimator behaviour. SIMFLUX has multiple local minima,
causing the estimator to get stuck in there (two local minima can be seen here in each
direction). For the correctly converged results, SIMFLUX does show the expected
localization precision factor of two.



B. Supplementary Notes

In this section, the image formation model will be derived for SMLM applications.

B.1. Image Formation Model - SMLM

We consider each flourophore as a point emitter with a specific 2� location (\G , \H) and intensity
\� . Such an emitter can be described by a Dirac delta function as follows: \� X(G− \G , H− \H). To
obtain the object image we consider the following convolution between the captured fluorescence
signal 5 (G, H) and the point spread function of the optical system %(� (G, H):

5 (G, H) ~ %(� (G, H) = 6(G, H)

with
5 (G, H) = %(G, H) (\� X(G8 − \G , H 9 − \H) + \16)

where ~ is the 2� convolution operator, (G8 , H 9 ) the pixel coordinates ∀ 8, 9 ∈ [1,  ], \16
background intensity in ?ℎ>C>=B/?8G4; and %(G) is the position-dependent unitless illumination
power factor, such that 0 ≤ %(G, H) ≤ 1.

For simplicity (G8 , H 9 ) will be denoted as just (G, H) from now on. By defining D = G − \G and
E = H − \H and under the assumption that the area under %(� (G, H) sums up to 1, the obtained
camera image can then be described as:

6(G, H) = %(� (G, H) ~ 5 (G, H) = %(� (G, H) ~ %? (G, H)
(
\� X(D, E) + \16

)
=

∬ ∞

−∞
%(� (g, W)%? (G − g, H − W)

(
\� X(D − g, E − W) + \16

)
3g3W

= \�

∬ ∞

−∞
%(� (g, W)%? (G − g, H − W)X(D − g, E − W)3g3W + \16

∬ ∞

−∞
%(� (g, W)%? (G − g, H − W)3g3W

6(G) = \�%(� (D, H)%? (\G , \H , q?) + \16
∬ ∞

−∞
%(� (g, W)%? (G − g, H − W)3g3W

By looking at each pixel, we integrate over the finite area �: of the :Cℎ pixel centered at (G8 , H 9 ),
with ? being the index for the illumination pattern position:

`:, ? =
∬
G,H∈�:

6(G, H)3G3H

`:, ? = \�%? (\G , \H , q?)
∬
G,H∈�:

%(� (D, E)3G3H + \16
∬
G,H∈�:

(∬ ∞

−∞
%(� (g, W)%? (G − g, H − W)3g3W

)
3G3H

︸                                                                      ︷︷                                                                      ︸
�:,?

It can be noticed that the term �:, ? does not depend on the emitter position (\G , \H), it only
depends on the considerd PSF-model, the active illumination pattern ? and the pixel area �: .

`:, ? = \�%? (\G , \H , q?)
∬
G,H∈�:

%(� (D, E)3G3H + \16�:, ?



As already mentioned, in literature [16;27;28] typically a two-dimensional Gaussian shape is taken
as a description for the PSF model. The width of the placed Gaussian shape blob f, in the 2D
case is given by f =

√
f2
G + f2

H , the PSF model centered at the position of the emitter is then
defined as:

%(� (D, E) = ℎ(D, E)2 = 1
2cf2 4

−(D2+E2 )
2f2 (22)

`:, ? =
\�

2cf2 %? (\G , \H , q?)
∬
G,H∈�:

4
−(D2+E2 )

2f2 3G3H + \16�:, ?

`:, ? =
\�

2cf2 %? (\G , \H , q?)
∫ H:+ ΔH2

H:− ΔH2

∫ G:+ ΔG2

G:− ΔG2
4
−(D2+E2 )

2f2 3G3H + \16�:, ?

Where ΔG and ΔH are the pixel sizes in the x and y direction, respectively. The integral is
evaluated over the finite area �: of the :Cℎ pixel centered at (G8 , H 9 ):

`:, ? = \�%? (\G , \H , q?) 1
2

(
4A 5 ( D +

ΔG
2√

2f
) − 4A 5 ( D −

ΔG
2√

2f
)
)

︸                                      ︷︷                                      ︸
�G: (D)

1
2

(
4A 5 ( E +

ΔH
2√

2f
) − 4A 5 ( E −

ΔH
2√

2f
)
)

︸                                      ︷︷                                      ︸
�H: (E)

+\16�:, ?

(23)

Where the 4A 5 (G) function is defined as

4A 5 (G) = 2√
c

∫ G

0
4−C

2
3C

The expected photon count at the :Cℎ pixel can then be written in the following compact notation
as:

`:, ? (D, E) = \�%? (\G , \H , q?)�G: (D)�H: (E) + \16�:, ?
The expected photon count from all existing emitters � , can hence be written in the following
compact notation as:

`:, ? (D, E) = %? (\G , \H , q?)
�∑
4=1

\�4�G:,4 (D)�H:,4 (E) + \16�:, ? (24)

Without making use of the position-dependent unitless illumination power factor %(G), the
expected photon count in the :Cℎ pixel from each emitter is given by:

`: (D, E) =
�∑
4=1

\�4�G:,4 (D)�H:,4 (E) + \16 (25)



B.2. Theoretical localization precision

In case of single emitter, where the parameter vector \ = [\G , \H , \� , \16] the Fisher information
matrix is defined as:

I(\) =
 ∑
:=1

P∑
?=1

1
`:, ?



m2`:,?
m\2
G

m`:,?
m\G

m`:,?
m\H

m`:,?
m\G

m`:,?
m\�

m`:,?
m\G

m`:,?
m\�16

m`:,?
m\H

m`:,?
m\G

m2`:,?
m\2
H

m`:,?
m\H

m`:,?
m\�

m`:,?
m\H

m`:,?
m\�16

m`:,?
m\�

m`:,?
m\G

m`:,?
m\�

m`:,?
m\H

m2`:,?
m\2
�

m`:,?
m\�

m`:,?
m\�16

m`:,?
m\�16

m`:,?
m\G

m`:,?
m\�16

m`:,?
m\H

m`:,?
m\�16

m`:,?
m\�

m2`:,?
m\2
16



∈ R4×4

where the log-likelihood derivatives are given by:

m`:, ?

m\G4
= −\�4c[?@?,G<? sin(q? (A◦)) 12

(
4A 5 ( D +

ΔG
2√

2f
) − 4A 5 ( D −

ΔG
2√

2f
)
) (
4A 5 ( E +

ΔH
2√

2f
) − 4A 5 ( E −

ΔH
2√

2f
)
)

+ \�4
1
P (1 + <? cos q) 1√

2cf
(
4
−(D+ ΔG2 )

2

2f2 − 4
−(D− ΔG2 )

2

2f2
) (
4A 5 ( E +

ΔH
2√

2f
) − 4A 5 ( E −

ΔH
2√

2f
)
)

m`:, ?

m\H4
= −\�4c[?@?,H<? sin(q? (A◦)) 12

(
4A 5 ( D +

ΔG
2√

2f
) − 4A 5 ( D −

ΔG
2√

2f
)
) (
4A 5 ( E +

ΔH
2√

2f
) − 4A 5 ( E −

ΔH
2√

2f
)
)

+ \�4
1
P (1 + <? cos q) 1

2

(
4A 5 ( D +

ΔG
2√

2f
) − 4A 5 ( D −

ΔG
2√

2f
)
) 1√

2cf
(
4
−(E+ ΔH2 )

2

2f2 − 4
−(E− ΔH2 )

2

2f2
)

m`:, ?

m\�4
=

1
P (1 + <? cos q) 1

4

(
4A 5 ( D +

ΔG
2√

2f
) − 4A 5 ( D −

ΔG
2√

2f
)
) (
4A 5 ( E +

ΔH
2√

2f
) − 4A 5 ( E −

ΔH
2√

2f
)
)

m`:, ?

m\16
= [?

Whereby the estimation precision of each parameter is given by the diagonal terms as follows:

f\̂ =



f\G

f\H

f\�

f\16


=



√
+0A\G (\̂)√
+0A\H (\̂)√
+0A\� (\̂)√
+0A\16 (\̂)


=



√
(I(\)−1)1,1√
(I(\)−1)2,2√
(I(\)−1)3,3√
(I(\)−1)4,4





For the multi-emitter case, the following set of parameters per ROI is estimated:

\ = [\16, \G1 , \H1 , \�1 , \G2 , \H2 , \�2 , . . . , \G� , \H� , \ �� ]T, ∈ R)

I(\) =
 ∑
:=1

P∑
?=1

1
`:, ?



m2`:,?
m\16

m`:,?
m\16

m`:,?
m\G1

. . . . . . . . .
m`:,?
m\16

m`:,?
m\��

m`:,?
m\G1

m`:,?
m\16

m2`:,?
m\G1

. . .
...

...
...

m2`:,?
m\H1

. . .
...

...
. . . m2`:,?

m\�1

...

...
. . .

. . .
...

... . . .
m`:,?
m2 \G�

. . .
...

... . . .
m`:,?
m2 \H�

m`:,?
m\H�

m`:,?
m\��

m`:,?
m\��

m`:,?
m\16

. . . . . . . . .
m`:,?
m\��

m`:,?
m\H�

m2`:,?
m\��



∈ R) ×)

(26)

Whereby ) = 3� + 1, for � being the number of emitters

B.3. Localization Improvement

It is well known that the covariance matrix of any unbiased estimator \̂ is lower bounded by the
CRLB matrix [18]. The Fisher information matrix over all pixels  and illumination patterns P
and zero background \16 = 0 :

I8, 9 (\) =
 ∑
:=1

P∑
?=1

1
`:, ?

m`:, ?

m\8

m`:, ?

m\ 9
, Fℎ4A4 `:, ? =

�∑
4=1

\�4%? (q? (A0))�:,4 (Ã)

The fisher information in the x-direction of the 8Cℎ emitter for 8 ∈ [1, . . . , �]:

IG8 ,G8 (\) =
 ∑
:=1

P∑
?=1

1
`:, ?

( m`:, ?
m\G8

)2

=
 ∑
:=1

P∑
?=1

`:, ?

( m ln `:, ?
m\G8

)2

=
 ∑
:=1

P∑
?=1

�∑
4=1

\�4%? (q? (A◦))�:,4 (Ã)
( m ln `:, ?

m\G8

)2



m ln `:, ?
m\G8

=
1

�:,4 (Ã)
m�:,4 (Ã)
m\G8

+ 1
%? (q? (A◦))

m%? (q? (A◦))
m\G8

=
4
−(G−\G+ ΔG2 )

2

2f2 − 4
−(G−\G− ΔG2 )

2

2f2∫ ΔG
2
− ΔG2

4
−(G−\G )2

2f2 3G

+ 1
%? (q? (A◦))

m%? (q? (A◦))
m\G8

=
G − \G
f
+ 2c[?@?,G<? sin(q? (A◦))

1
P (1 + <? cos(q?))

m ln `:, ?
m\G8

=
G − \G
f
+ 2c@?,G<? sin(q?))

1 + <? cos(q?)
m ln `:, ?
m\H8

=
H − \H
f
+ 2c@?,H<? sin(q?))

1 + <? cos(q?)
For � = 1

IG1 ,G1 (\) =
 ∑
:=1

P∑
?=1

\�1%? (q? (A◦))�:,1 (Ã)
( m ln `:, ?

m\G1

)2

=
 ∑
:=1

P∑
?=1

\�1%? (q? (A◦))�:,1 (Ã)
( G − \G

f
+ 2c@?,G<? sin(q? (A◦))

1 + <? cos(q)
)2

Since
∑ 
:=1

∑P
?=1 \�1%? (q? (A◦))�:,1 (Ã) ≈

∑ 
:=1 \�1�:,1 (Ã) ≈ \�1 , approximating the pixel

summation with the integration results in:

IG1 ,G1 (\) ≈
\�1
f2 + \�1

P∑
?=1

4[? (c@?,G<?)2
sin2 (q?)

1 + <? cos(q?)

=
\�1
f2 + 4c2\�1

P∑
?=1

@2
?,G [?<

2
?

sin2 (q?)
1 + <? cos(q?)︸                       ︷︷                       ︸

&?

For � > 1

IG8 ,G8 (\) =
 ∑
:=1

P∑
?=1

�∑
4=1

\�4%? (q? (A◦))�:,4 (Ã)
( m ln `:, ?

m\G8

)2

≈
�∑
4=1

\�4
f2 + 4c2\�4

P∑
?=1

@2
?,G&?

Let the total number of photons be equal to
∑�
4=1 \�4 = #



B IG4 ,G4 (\) ≈
#

f2 + 4c2#
P∑
?=1

@2
?,G&?

B IG4 ,H4 (\) ≈ 4c2#
P∑
?=1

@?,G@?,H&?

B IH4 ,H4 (\) ≈
#

f2 + 4c2#
P∑
?=1

@2
?,H&?

For the two considered orthogonal orientations (G, H), and for perfect modulation < = 1 the
following expression simplifies to:

P∑
?=1

@2
?,G&? =

P∑
?=1

1
p2 cos(V?)2[2

?

sin2 (q?)
(1 + cos(q?))2

=
P∑
?=1

1
p2 cos(V?)2[2

?

sin2 (q?)
2

=
1

2p2

The improvement factor obtained by SIMFLUX:

IG4 ,G4 (\) = IH4 ,H4 (\) =
#

f2 +
2c2#

p2 =
#p2 + 2c2#f2

f2p2

fG4 ,G4 (\) = fH4 ,H4 (\) =
√√

1
# p2+2c2# f2

f2p2

=
fp√

#p2 + 2c2#f2

=
fp√

p2# (1 + 2c2# f2

p2 )
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f√
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1√
1 + 2c2f2
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Improvement factor: � 5 =
f("!"

f(�"�!*-
=

f√
#

f√
#

1√
1+ 2c2f2

p2

=

√
1 + 2c2f2

p2 (27)

Which shows that for SIMFLUX over SMLM the improvement factor � 5 ≥ 1 ∀ ?, f
However, as earlier mentioned, assuming < = 1 is unrealistic. For < < 1, the localization
precision will become worse and dependent on the global phase. This results in the localization
precision being non-uniform and anisotropic to some extend.

fG =
f

√
#
√

1 + 2c2 f2

p2 &
( 2cG

p − j1
)

fH =
f

√
#
√

1 + 2c2 f2

p2 &
( 2cH

p − j2
)



B.4. Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm has the advantage of being relative insensitive to
initial parameters and rapid convergence. In the LM approach the Hessian (second-derivative
terms) is ignored and only the first derivatives are considered. The second order terms are
ignored due to their potential destabilizing effects, e.g. jumping around the minima, and due to
the frequent difficulty in computing them. In the neighborhood of the current set of parameters
\2DAA , the optimization function F (\) may be approximated by its Taylor expansion as follows:

F (\2DAA + Δ\) ≈ F (\2DAA ) + ∇\F (\) · Δ\ + 1
2
Δ\T · ∇\∇\F (\)︸        ︷︷        ︸

� (\)

·Δ\ + O3 (28)

where ∇\F (\) and ∇\∇\F (\) are defined as:

∇\F (\) = mF
m\8

= 2
 ∑
:=1

m`:
m\8
− 2

 ∑
:=1

=:
1
`:

m`:
m\8

= 2
 ∑
:=1

(
1 − =:

`:

)
m`:
m\8

∇\∇\F (\) = � (\) = m2F
m\8m\ 9

= 2
 ∑
:=1

m`:
m\8

m`:
m\ 9

=:

`2
:

+
(
1 − =:

`:

)
m2`:
m\8m\ 9

As already mentioned we ignore the second-derivative terms and thus from now on we continue
with:

∇\F (\) =
 ∑
:=1

(
1 − =:

`:

)
m`:
m\8
+ O2

∇\∇\F (\) =
 ∑
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m`:
m\8
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m\ 9

=:

`2
:

+ O2

Considering the expected photon count on the :Cℎ pixel:

`:, ? =
�∑
4=1

\�4%? (q? (A◦))�:,4 (Ã) + [?\16,

In the numerical, Levenberg-Marquard based, implementation of the maximum likelihood
estimation problem, the following set of parameters per ROI is estimated:

\ = [\16, \G1 , \H1 , \�1 , \G2 , \H2 , \�2 , . . . , \G� , \H� , \ �� ]T, ∈ R)

whereby in 2D the dimension of the parameter vector is equal to ) = 3� + 1 and with partial
derivatives (for the completely written out terms see B.2) :

m`:
m\

=
[ m`:
m\16

,
m`:
m\G1

,
m`:
m\H1

,
m`:
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The following matrix U ∈ R) ×) and vector V ∈ R) are defined:

U8, 9 =
 ∑
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 ∑
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U =
 ∑
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(30)

V = −
 ∑
:=1

(
1 − =:

`:

) [
m`:
m\16

m`:
m\G1

m`:
m\H1

m`:
m\�1

. . . m`:
m\H�

m`:
m\��

]
(31)

B.4.1. Iteration Step

If the current parameter set \2DAA is sufficiently near a local or the global minimum, by differen-
tiating eq. 28 and equalizing it to zero, the optimal parameter set \∗<8=, which minimizes the
objective function, hence maximizes the likelihood function can be obtained.

∇\F (\2DAA + Δ\) = 0
∇\F (\2DAA ) + ∇\∇\F (\) · Δ\ = 0

∇\∇\F (\)︸        ︷︷        ︸
U

·Δ\ = −∇\F (\2DAA )︸           ︷︷           ︸
V

We then have the iteration step:
\C+1 = \C + U−1V

In same cases the Taylor expansion can give a poor approximation, which leads to increasing
in F (\), or the inversion of the Hessian matrix may become numerically ill-conditioned if the
Hessian matrix is almost singular. For this reason the diagonal elements of the matrix U are
augmented by an adaptive parameter _

Û = U(� + �_)
whereby the identity matrix � ∈ R) ×) . For relative low values of _ it approaches the Gaus-Newton
algorithm, however for high values of _, the algorithm will take a step mainly in the direction of
the negative gradient, i.e. it approaches the steepest descent algorithm. The iteration step can
thus be defined as:

\C+1 = \C + Û−1V (32)
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Chapter 5

Conclusion

“The more I study science, the more I believe in GOD.”
- Albert Einstein

This chapter serves as a brief summary and a concise discussion of the main findings and insights
gained during the whole process. An effort has been made to make this work as self-contained and
smooth to read as possible. Although this work might not necessarily be complete, hopefully the
relevant topics are adequately covered, and an indication is provided for the reader of the precious
role that fluorescence- and single-molecule localization microscopy plays in modern biology and the
expected bright future of super-resolution localization microscopy.

5-1 Summary

For a long time, scientists were convinced of the impossibility of achieving a microscopic resolution
beyond the diffraction limit of light, known as the Abbe-diffraction limit. This limitation prevents
objects with a separation distance smaller than ∼ 200 nm in the lateral direction and ∼ 500 nm in the
axial direction to be visualized and distinguished from each other. This resolution is not enough to
differentiate between proteins, since proteins are typically in the range of a billionth of a meter (nm) in
size. Over the last decades, a couple of so-called "super-resolution" fluorescence microscopy techniques
have been developed, which are able to surpass the diffraction barrier. They offer high resolution
imaging of various cellular structures and dynamics with a resolution far beyond the diffraction limit.
The observation of, previously limited and unclear, cellular structures has demonstrated the great
promise of super-resolution fluorescence microscopy in exemplifying biological processes at the cellular
level. The pivotal and essential role that microscopes play these days in the study of the ongoing
pandemic due to the emergence of the new Corona (SARS-CoV-2) virus in December 2019, in a
market in Wuhan, China. This virus is currently being witnessed by more than 150 countries, has
infected more than 60 million people around the world, and has resulted in the death of more than
1.4 million people.
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5-1 Summary 87

Single-molecule localization microscopy (SMLM), with its variations, is currently one of the broadly
used super-resolution imaging techniques. Inherently, SMLM is based on acquiring a sequence of
diffraction-limited images, consisting of sparsely distributed emitting fluorophores. The total image
processing procedure can be described as follows: data acquisition and pre-processing of the raw cam-
era images; regions of interest (ROIs) detection and fluorophores localization; data post-processing
and finally the visualization of the super-resolution image.

One of the most crucial questions in SMLM applications concerns the precision with which the lo-
cation of a single molecule can be determined. The Cramér–Rao lower bound (CRLB), defined as
the theoretical precision limit, is used to quantify the estimation performance in terms of localiza-
tion precision. Recently, a couple of modulation enhanced single-molecule localization microscopy
methods have shown resolution improvement by combining patterned illumination with SMLM tech-
niques, such as MINFLUX [18] and SIMFLUX [9]. The challenging part is that the analysis of images by
these methods requires sparse activation regions to prevent overlap between active emitters. During
spot identification, the conventional and the extended (with illumination patterns) SMLM algorithms
quickly lose both their precision and accuracy, when too many emitters are concurrently active in
the imaging frame. From the various simulations performed, we noticed that this occurred for active
emitter densities ≥ 0.5 emitters/µm2. Several multi-emitter fitting techniques have been developed
aiming for exploiting all available fluorescence data, consequently leading to resolution improvement
at high molecular densities and the ability of resolving overlapping emitters, while minimizing the
computational effort, e.g. 3B [11], SPIDER [29], BAMF [19] and MFA [28].

Here, we proposed a modulation enhanced SMLM maximum likelihood-based method, which is an ex-
tension of the current SIMFLUX [9] approach, able to localize multiple emitters simultaneously within
a single ROI. The mathematical framework of the algorithm is comprehensively built up throughout
this work; the expected theoretical improvement is elucidated and validated with realistic simulations.
We presented the theoretical and numerical performance evaluation results of the Multi-SIMFLUX
algorithm against standard 2D-Gaussian SMLM on simulated data. The localization performance
of multi-SIMFLUX for various active emitter densities is compared against single-SIMFLUX, single-
SMLM and multi-SMLM (E = 5). These simulations explore the effect of different realistic imaging
conditions on the quantitative and qualitative achieved by the algorithm. The main findings are
presented and discussed in Chapter 4.

To summarize, we can say that the developed Multi-SIMFLUX method enhances super-resolution re-
constructions by improving the detection rate, while averagely maintaining the localization precision
compared to conventional single molecule localization techniques. It is able to double the localization
precision in comparison with conventional 2D Gaussian multi-emitter SMLM algorithms at low active
emitter densities and maintains a slight localization precision improvement at higher densities. Our
approach has shown to perform well in theory and on simulations. We foresee a bright future for its
implementation on real experimental data. Higher density imaging permits shorter acquisition times;
however, it results in more computational complexity in analysis and a huge dependence on hard- and
software tools.

To the best of our knowledge, the MULTI-SIMFLUX approach is a pioneer in combining structured
illumination patterns and multi-emitter fitting.
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5-2 Future Outlook

Using the knowledge acquired in this study, a potential direction for future work is proposed.

• Multi-emitter localization has, due to its parallelizable characteristic, great potential for im-
proving the imaging speed of super-resolution localization microscopy. Our obtained results
are based on numerical simulations, since the use of simulated data has the advantage of the
imaging conditions being known and more in control. However, we foresee that after developing
and optimizing this approach, it will be useful for very highly densed active regions and for
high-speed live imaging. Moreover, experimental measurements like for live cell imaging can
contain a non-negligible amount of background noise, therefore it is also of great paramount to
have accurate noise models and high-efficiency hard- and software tools to apply this approach
on real experimental data. Also, the emitters’ blinking and bleaching behaviour has to be taken
into consideration by for instance Hidden Markov models.

• The ongoing revolution of deep learning applications has demonstrated its capability in the
handling of enormous amounts of data within a decent amount of time, and impressive results in
diverse image processing and computer-vision applications have been achieved. Hence, making
it quite applicable for the implementation of decreasing acquisition and/or processing time and
the extraction of more information from the input imaging frames. By combining multi-emitter
SIMFLUX with deep learning to allow high-throughput data analysis, one can anticipate further
improvements in quality and applicability of meLM for future life-science research. Of course, it
would be interesting to investigate how to combine localization algorithms with deep learning to
further improve the imaging speed and/or imaging throughput of SMLM, without compromising
other requirements from high-throughput localization microscopy.
To make efficient use of the available (simulated and/or experimental) data, the focus must be
on capturing as many rich features as possible. This can be achieved by auto-encoder and U-net
neural structures. The aim of the auto-encoder is to learn and represent (encode) the input data
according to its most meaningful features that accurately describe and abstract away all of the
details of that input. They are typically applied for the purpose of dimensionality reduction
and data compression, hence improving computational efficiency. When only making use of an
encode/decode architecture, the estimations tend to lack the sharpness and fine details. To help
address this, cross or skip connections can be added between blocks of the network, resulting in
a U-net like structure. The skip connections cross from same sized part in downsampling path
to the upsampling path. These feature maps from the encoder layers are concatenated with the
corresponding layers of the decoder. This will allow the network to combine local- and larger
context information and maintaining fast propagation of data through the network.
Furthermore, taking temporal dynamics (with Recurrent Neural Networks (RNNs) for instance)
into consideration also minimizes the chance of missing useful information in the sequence of
images, regarding localization in high density.

• Our study has shown that a simple Gaussian PSF model is sufficiently accurate for low-density
data, whereas the quality of high-density imaging depends strongly on the model of the PSF. We
believe that the PSF model will have an even more significant role in 3D multi-emitter SMLM
applications.
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Appendix A

Appendices

This appendix contains mathmatical notations and derivations which were referred to in the main
work.

A-1 Fisher Information and Cramér Rao Lower Bound

We consider an independent random variable x, whose probability distribution function admits a
Probability density function (PDF) p(x|θ). As already mentioned, if an event has a small probability
of occurring, then the occurrence of that specific event does bring much information. The aim is
to maximize the amount of information, which can be extracted from x about the estimation of the
parameter θ. This can be achieved by maximizing the log-likelihood function of the obtained data
|l′(x|θ)| (or preferably [l′(x|θ)]2). We define the following for the log-likelihood function:

l(x|θ) = log p(x|θ), l′(x|θ) = ∂

∂θ
log p(x|θ) = p′(x|θ)

p(x|θ)

Thus the expected value of [l′(x|θ)]2, can be taken as a measure of the amount of information provided
by the data about the parameter θ. The information in the random variable x regarding the estimation
of the parameter θ is defined as the Fisher information matrix I(θ) [48;41]:

I(θ) = Eθ
[
[l′(x|θ)]2

]
=
∫

[l′(x|θ)]2p(x|θ)dx (A-1)

The expected value of the gradient of the log-likelihood function

Eθ[l′(x|θ)] =
∫
l′(x|θ)p(x|θ)dx

=
∫
p′(x|θ)
p(x|θ) p(x|θ)dx

=
∫
p′(x|θ)dx

By assuming that integration and derivation may be exchanged, then

= ∂

∂θ

∫
p(x|θ)dx = 0
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Another notation is the following:

l′′(x|θ) = p′′(x|θ)
p(x|θ) − [l′(x|θ)]2

Eθ
[
l′′(x|θ)

]
=
∫ [

p′′(x|θ)
p(x|θ) − [l′(x|θ)]2

]
p(x|θ)dx

Eθ
[
l′′(x|θ)

]
=
∫
p′′(x|θ)dx︸ ︷︷ ︸

=0

−Eθ
[
[l′(x|θ)]2

]
= −I(θ)

So, we obtain another formulation for the Fisher information matrix:

I(θ) = −Eθ
[
l′′(x|θ)

]
(A-2)

Fisher Information from a Poisson Distribution

Since counting photons is inherently an discrete operation, that can only produce positive integer
outcomes, the Poisson distribution function is considered. By the consideration that the intensity
(number of photons) n in each pixel follows a Poisson distribution, the probability of observing n
photons in the kth pixel is:

P (nk|µk(θ)) = µnkk
nk!

e−µk (A-3)

where nk is the observed intensity in the kth pixel. Another fundamental characteristic of the Poisson
distribution is that both the expected value and the variance of nk are equal to µk, such that:

E[nk] = E[(nk − µk)2] = V arθ(nk) = µk

The likelihood function, for an image with K pixels, for parameter θ is defined as:

L(n|µ(θ)) =
K∏
k=1

P (nk|µk(θ)) (A-4)

where n = {n1, n2, . . . , nK} and µ = {µ1, µ2, . . . , µK} are the observed and expected intensities,
respectively. The log-likelihood is:

l(x|θ) =
K∑
k=1

(
xk ln(µk)− ln(xk!)− µk

)
The first and second partial derivatives of the log-likelihood:

l′(x|θ) = ∂ l(x|θ)
∂θi

=
K∑
k=1

xk
µk

∂µk
∂θi
− ∂µk
∂θi

l′′(x|θ) = ∂2 l(x|θ)
∂θiθj

=
K∑
k=1

(−xk
µ2
k

∂µk
∂θi

∂µk
∂θj

+ xk
µk

∂2µk
∂θi∂θj

− ∂2µk
∂θi∂θj

)
The Fisher Information matrix can then be computed by calculating the following expectation:

Ii,j(θ) = −Eθ
[
l′′(x|θ)

]
=

K∑
k=1

(
E[xk]︸ ︷︷ ︸
=µk

1
µ2
k

∂µk
∂θi

∂µk
∂θj
− E[xk]︸ ︷︷ ︸

=µk

1
µk

∂2µk
∂θi∂θj

+ ∂2µk
∂θi∂θj

)
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Hence, the Fisher Information matrix for Poisson distributed measurements is denoted a follows:

Ii,j(θ) =
K∑
k=1

1
µk

∂µk
∂θi

∂µk
∂θj

(A-5)

while the Fisher Information matrix for Poisson distributed measurements with a sequence of p =
1, 2, . . . ,P illuminations, is denoted a follows

Ii,j(θ) =
K∑
k=1

P∑
p=1

1
µk,p

∂µk,p
∂θi

∂µk,p
∂θj

(A-6)

By looking at the covariance around the expected estimate:

V arθ[l′(x|θ)] = Eθ
[
[l′(x|θ)− 0][l′(x|θ)− 0]

]
= Eθ

[
[l′(x|θ)]2

]
Therefore the definition of the Fisher information matrix can be written as:

I(θ) = V arθ[l′(x|θ)] (A-7)

Theoretically, the best-possible solution for an unbiased parameter estimation problem is derived by
using the Cramer-Rau lower bound (CRLB), which is basically the limiting lower bound of the variance
for any unbiased parameter estimator. Being able to place such a lower bound on the variance has
proven to be extremely useful in practice. It provides a benchmark against, which the performance
achieved from any unbiased estimator can be compared. Besides, it shows us the physical impossibility
of finding an unbiased estimator, whose variance is less than this bound. The general expression for
the Cramer-Rao Lower bound (CRLB) is given by the inverse of the Fisher information matrix I(θ),
which is defined as:

I(θ) =
∫ [∂ log p(x|θ)

∂θ

]2
p(x|θ)dx (A-8)

Where p(x|θ) is the probability density function (PDF) of the continuous parameter θ. Suppose that
θ̂(x) is an unbiased estimator of θ, where x is an independent random variable whose cumulative
distribution function admits a density p(x|θ). Since θ̂(x) is an unbiased estimator of θ, the expected
value is defined as the following:

E
[
θ̂(x)− θ

]
= 0∫ (

θ̂(x)− θ
)
p(x|θ)dx = 0

This expression must hold for any value of θ, so the partial derivative with respect to θ must also
equal zero.
Differentiating with respect to θ gives:

∂

∂θ

∫ (
θ̂(x)− θ

)
p(x|θ)dx =

∫ (
θ̂(x)− θ

) ∂
∂θ
p(x|θ)dx+

∫
∂

∂θ

(
θ̂(x)− θ

)
p(x|θ)dx = 0

=
∫ (

θ̂(x)− θ
) ∂
∂θ
p(x|θ)dx−

∫
p(x|θ)dx︸ ︷︷ ︸

=1

= 0

∫ (
θ̂(x)− θ

) ∂
∂θ
p(x|θ)dx = 1

Since we know that ∂p(x|θ)
∂θ = p(x|θ)∂logp(x|θ)∂θ , we get∫ (

θ̂(x)− θ
)
p(x|θ)∂logp(x|θ)

∂θ
dx = 1∫ ((

θ̂(x)− θ
)√

p(x|θ)
)

︸ ︷︷ ︸
g

(√
p(x|θ)∂logp(x|θ)

∂θ

)
︸ ︷︷ ︸

f

dx = 1
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Recall the Cauchy-Schwartz inequality: ∫
gf ≤

( ∫
f2
∫
g2
) 1

2

Implementing it yields to:

1 ≤
∫ (√

p(x|θ)∂logp(x|θ)
∂θ

)2
dx

∫ ((
θ̂(x)− θ

)√
p(x|θ)

)2
dx

1 ≤
∫ (∂logp(x|θ)

∂θ

)2
p(x|θ)dx︸ ︷︷ ︸

I(θ)

∫ (
θ̂(x)− θ

)2
p(x|θ)dx︸ ︷︷ ︸

V ar(θ̂)

Rearranging the inequality gives us the final result:

V ar(θ̂) ≥ I(θ)−1 (A-9)

In case of single emitter, where the parameter vector θ = [θx, θy, θI , θbg] the Fisher information matrix
is defined as:

I(θ) =
K∑
k=1

P∑
p=1

1
µk,p



∂2µk,p
∂θ2
x

∂µk,p
∂θx

∂µk,p
∂θy

∂µk,p
∂θx

∂µk,p
∂θI

∂µk,p
∂θx

∂µk,p
∂θIbg

∂µk,p
∂θy

∂µk,p
∂θx

∂2µk,p
∂θ2
y

∂µk,p
∂θy

∂µk,p
∂θI

∂µk,p
∂θy

∂µk,p
∂θIbg

∂µk,p
∂θI

∂µk,p
∂θx

∂µk,p
∂θI

∂µk,p
∂θy

∂2µk,p
∂θ2
I

∂µk,p
∂θI

∂µk,p
∂θIbg

∂µk,p
∂θIbg

∂µk,p
∂θx

∂µk,p
∂θIbg

∂µk,p
∂θy

∂µk,p
∂θIbg

∂µk,p
∂θI

∂2µk,p
∂θ2
bg


∈ R4×4

Whereby the estimation precision of each parameter is given by the diagonal terms as follows:

σθ̂ =


σθx
σθy
σθI
σθbg

 =



√
V arθx(θ̂)√
V arθy(θ̂)√
V arθI (θ̂)√
V arθbg(θ̂)

 =


√

(I(θ)−1)1,1√
(I(θ)−1)2,2√
(I(θ)−1)3,3√
(I(θ)−1)4,4



For the multi-emitter case, the following set of parameters per ROI is estimated:

θ = [θbg, θx1 , θy1 , θI1 , θx2 , θy2 , θI2 , . . . , θxE , θyE , θIE ], ∈ RT

I(θ) =
K∑
k=1

P∑
p=1

1
µk,p



∂2µk,p
∂θbg

∂µk,p
∂θbg

∂µk,p
∂θx1

. . . . . . . . .
∂µk,p
∂θbg

∂µk,p
∂θIE

∂µk,p
∂θx1

∂µk,p
∂θbg

∂2µk,p
∂θx1

. . . ...
...

... ∂2µk,p
∂θy1

. . . ...
... . . . ∂2µk,p

∂θI1

...
... . . . . . . ...
... . . .

∂µk,p
∂2θxE

. . .
...

... . . .
∂µk,p
∂2θyE

∂µk,p
∂θyE

∂µk,p
∂θIE

∂µk,p
∂θIE

∂µk,p
∂θbg

. . . . . . . . .
∂µk,p
∂θIE

∂µk,p
∂θyE

∂2µk,p
∂θIE



∈ RT×T

Whereby T = 3E + 1, for E being the number of emitters. However, for the multi-emitter case the
Fisher information matrix is singular due the occurrence of xi, yi = xj , yj , and near this singular point,
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can not be used to correctly calculate estimator precision. For this reason we used the pseudo-inverse
of the Fisher matrix to determine the CRLB:

V ar(θ̂) ≥ I†(θ)

whereby † denoted the psuedo-inverse, which is defines as:

I†(θ) = (I>I)−1I>

hence the precision becomes:

σθ̂ ≥
√

(I>I)−1I>

A-2 Likelihood Ratio Test

The likelihood ratio test (LRT) is typically used to compare, the goodness of fit of two competing
statistical models. The comparison is performed based upon the ratio of their (log-) likelihoods. For
both models, maximum likelihood estimation is performed, whereby they maximize over different
parameter spaces. A null hypothesis H0, is usually set such that the parameter θ is in a specified set
θ0 and the alternative hypothesis H1, is set such that the parameter θ is in a specified set θ1. Both
sets can span the entire parameter space Θ or a subset. The log likelihood ratio for H0 is given by:

LLR = −2
[
ln L(θ̂0)− ln L(θ̂1)

]
= −2 ln

[L(θ̂0)
L(θ̂1)

]
(A-10)

Whereby θ̂0 and θ̂1 are the maxima of the parameter spaces, θ0 and θ1 respectively. LRTs have
typically been used to compare nested models, i.e. that complex models can be described by by
simpler models by imposing some constraints on the parameters. By the Neyman-Peason lemma, the
LRT has the highest power compared to the two other classical hypothesis testing approaches; the
Lagrange multiplier- and the Wald test.

Generalized Likelihood Ratio Test - GLRT

The LRT has had a great contribution in the success to parametric inferences. In general LRT may not
exist in nonparametric function estimation or if it exists it is hard to find. Thus, this approach does
not applicable for non parametric inferences based on function estimation.The generalized likelihood
test GLRT is able to overcome these drawbacks. Suppose the data has a PDF p(x|θ0;H0) under H0
and p(x|θ1;H1) under H1, the dimensions of θ0 and θ1 are not necessarily the same. The GRLT
replaces the true parameters with their maximum likelihood estimates. Generally, the GLRT decides
H1 if

GLRT (x) = p(x|θ̂1;H1)
p(x|θ̂0;H0)

> γ

Where θ̂1 is the MLE (the value which maximizes p(x|θ1;H1)) of θ1 assuming H1 is true and θ̂0 is
the MLE of θ0 assuming H0 is true. By determining the MLEs, also information about the unknown
parameters is obtained. Another, sometimes more convenient form of the GLRT since θ̂i is the MLE
under Hi:

GLRT (x) = maxθ1 p(x|θ1;H1)
maxθ0 p(x|θ0;H0) (A-11)
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A-3 Multiple Hypothesis Testing

Consider the case where we wish to distinguish between M {H0, H1, . . . ,HM−1} hypotheses. Such a
problem arises in case of deciding how many emitters there are within a ROI. The hypothesis H0,
suggests that there are no emitters in a given ROI, H1 suggests that there is 1 emitter, and so on. The
optimize the decision, commonly the minimum probability error Pe criterion or its generalization, the
Bayes risk, is employed [37].

The cost (loss in performance) assigned to the decision to choose Hi when Hj is true is denoted by
Ci,j . We aim to choose the hypothesis (number of emitters) that minimizes the cost, hence optimizes
performance. The expected costs or Bayes risk is denoted as:

R =
M−1∑
i=0

M−1∑
j=0

Ci,jP (Hi|Hj)P (Hj)

LetRi be the set of values inRM which map into the decisionHi. So in essence letRi = {x : decide Hi},
where i = 0, 1, . . ., M − 1 partition the decision space so that:

R =
M−1∑
i=0

M−1∑
j=0

Ci,j

∫
Ri

P (x|Hj)P (Hj) dx =
M−1∑
i=0

M−1∑
j=0

Ci,j

∫
Ri

P (Hj |x)P (x) dx

=
M−1∑
i=0

∫
Ri

M−1∑
j=0

Ci,jP (Hj |x)P (x) dx

Let the average cost of deciding Hi if x is observed be Ci =
∑M−1
j=0 Ci,jP (Hj |x)

R =
M−1∑
i=0

∫
Ri

CiP (x) dx

Hence, the goal is to decide Hi for which Ci minimum.

Ĥ = argmin
i

M−1∑
j=0

Ci,jP (Hj |x) = argmin
i
Ci (x)

Considering the Bayes theorem:

P (Hj |x) = P (x|Hj)P (Hj) /P (x)

the minimization can be rewritten as:

Ĥ = argmin
i

M−1∑
j=0

Ci,jP (Hj |x) = argmin
i

M−1∑
j=0

Ci,j
P (x|Hj)P (Hj)

P (x)

Since P (x) is common to all terms and it is reasonable to assign equal probabilities to prior probabilities
of the respective hypotheses, i.e. P (Hi) = 1

M we get:

Ĥ = argmin
i

1
M

M−1∑
j=0

Ci,jP (x|Hj)

We introduce the log-likelihood ratio with respect to H0, which is considered as a normalization:

ln (LRi,0 (x)) = LLRi,0(x) = ln

(
p (x|Hi)
p (x|H0)

)
=
∑
k

xkln

(
µik
µ0
k

)
− µik + µ0

k
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where the decision boundaries between the hypotheses are

ln (LRi,j (x)) = ln (1) = 0 so, LLR0,0 = ln(1) = 0

Hence, this is equivalent to minimizing

Ĥ = argmin
i

1
M

M−1∑
j=0

Ci,jLLRj,0(x)

If the minimizing i is not unique, we choose the largest minimizing i. As already mentioned the Bayes
risk is a generalisation of the Pe, and it reduces to Pe in the case of:

Cij =
{

0 i = j
1 i 6= j

Ĥ = argmin
i

1
M

M−1∑
j=0

LLRj,0(x)− LLRi,0(x)

Ĥ = argmax
i

M−1∑
j=1

LLRj,0(x)

We define the probability of error Pe as:

Pe =
M−1∑
i=0

M−1∑
j=0
j 6=i

P (Hi|Hj)P (Hj) =
M−1∑
i=0

M−1∑
j=0
j 6=i

∫
Ri

P (Hj |x)P (x)dx

The goal is to minimize Pe, i.e. determining the correct number of emitters. Further assuming,
P (X) = c and using the Bayes’ Theorem Pe reduces to,

Pe =
M−1∑
i=0

M−1∑
j=0
j 6=i

P (x|Hj)P (Hj) = 1
M

M−1∑
i=0

M−1∑
j=0
j 6=i

∫
Ri

P (x|Hj)

M−1∑
i=0

∫
Ri

P (x|Hj) dx = 1, for i, j = 0, ..,M − 1

Whereby: ∫
Ri

P (x|Hj) dx ≤ 1, for i, j = 0, ..,M − 1
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An example for clarification, shown in Figure A-1 (M = 3) we obtain:

Pe = 1
3

2∑
i=0

2∑
j=0
j 6=i

P (x | Hj)

= 1
3

(∫
R1
P (x | H0) dx+

∫
R2
P (x | H0) dx+

∫
R0
P (x | H1) dx+

∫
R2
P (x | H1) dx

+
∫
R0
P (x | H2) dx+

∫
R1
P (x | H2) dx

)
= 1

3

(
3−

∫
R0
P (x | H0) dx−

∫
R1
P (x | H1) dx−

∫
R2
P (x | H2) dx

)
= 1− 1

3

(∫
R0
P (x | H0) dx+

∫
R1
P (x | H1) dx+

∫
R2
P (x | H2) dx

)
It’s less of an effort to compute the probability of error from the probability of making the correct
decision, Pe = 1− Pc. The probability of making the correct decision is defined as:

Pc = 1
3(
∫
R0
P (x|H0) dx+

∫
R1
P (x|H1) dx+

∫
R2
P (x|H2) dx)

Pc = 1
3(Pr{x < γ1|H0}+ Pr{γ1 < x < γ2|H1}+ Pr{x > γ2|H1})

To minimize the Pe we should decide:

H0 : if x < γ1

H1 : if γ1 < x < γ2

H2 : if x > γ2

To do so we again consider the (log) likelihood ratio:

ln (LRi,j (x)) = ln

(
p (x|Hi)
p (x|Hj)

)
=
∑
k

xkln

(
µik
µjk

)
− µik + µjk
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Hence:

Pc = 1
3(Pr{x < γ1|H0}+ Pr{γ1 < x < γ2|H1}+ Pr{x > γ2|H1})

= 1
3 (P (LR0,1 > 0|H0) + (P (LR1,2 > 0|H1)− P (LR0,1 > 0|H0)) + P (LR1,2 < 0) |H2))

Figure A-1: Schematic illustration of a decision problem. Here we see three possible hypotheses Hi,
with corresponding decision regions Ri that would result in a minimum probability of error [37].

As already mentioned, the log-likelihood ratio tends to be normally distributed, as the number of data
points goes to infinty (x → ∞), central limit theorem). The expected value µ and variance σ2, are
computed under the conditional Hi, i.e. the one assumed to be true:

µi,j,l =
K∑
k

µlk ln(µ
i
k

µjk
)− µik + µjk

σ2
i,j,l =

K∑
k

µlk ln(µ
i
k

µjk
)

Pc = 1
3(φ

(µ0,1,0
σ0,1,0

)
+ φ

(µ1,2,1
σ1,2,1

)
− φ

(µ0,1,0
σ0,1,0

)
+ φ

(
− µ1,1,2
σ1,1,2

)
)

Pc = 1
3(φ

(µ1,2,1
σ1,2,1

)
+ φ

(
− µ1,1,2
σ1,1,2

)
)
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List of Acronyms

NA Numerical aperture
PSF Point spread function
OTF Optical transfer function
MTF Modulation transfer function
MLE Maximum likelihood estimation
MVU Minimum variance unbiased
MSE Mean squared error
GLRT Generalized likelihood ratio test
LS Least-squares
CoM Center of mass
CRLB Cramer-Rao Lower bound
FP Fluorescent protein
GFP Green fluorescent protein
SMLM Single-molecule localization microscopy
PALM Photo-activated localization microscopy
FPALM Fluorescence photo-activated localization microscopy
STORM Stochastic optical reconstruction microscopy
SIM Structured illumination microscopy
SSIM Saturated structured illumination microscopy
meLM Modulation-enhanced localization microscopy
STED Stimulated emission depletion
TIRF Total internal reflection fluorescence
GPU Graphics processing unit
ROI Region of interest
PDF Probability density function
EMCCD Electron-Multiplying Charge-Coupled Device
sCMOS scientific Complementary Metal-Oxide Semiconductor
ANN Artificial neural network
AI Artificial Intelligence
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