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Abstract
As big data analytics systems are squeezing out the last bits of performance of CPUs and GPUs, the next near-term
and widely available alternative industry is considering for higher performance in the data center and cloud is the FPGA
accelerator. We discuss several challenges a developer has to face when designing and integrating FPGA accelerators for
big data analytics pipelines. On the software side, we observe complex run-time systems, hardware-unfriendly in-memory
layouts of data sets, and (de)serialization overhead. On the hardware side, we observe a relative lack of platform-agnostic
open-source tooling, a high design effort for data structure-specific interfaces, and a high design effort for infrastructure.
The open source Fletcher framework addresses these challenges. It is built on top of Apache Arrow, which provides
a common, hardware-friendly in-memory format to allow zero-copy communication of large tabular data, preventing
(de)serialization overhead. Fletcher adds FPGA accelerators to the list of over eleven supported software languages. To deal
with the hardware challenges, we present Arrow-specific components, providing easy-to-use, high-performance interfaces
to accelerated kernels. The components are combined based on a generic architecture that is specialized according to the
application through an extensive infrastructure generation framework that is presented in this article. All generated hardware
is vendor-agnostic, and software drivers add a platform-agnostic layer, allowing users to create portable implementations.

Keywords FPGA · Accelerator · Big data · Analytics · Fletcher · Apache Arrow

1 Introduction

In terms of both hardware and software, the increasing
heterogeneity in big data analytics systems causes major
challenges [1]. FPGA accelerators are the next near-term
and widely available alternative for higher performance in
the data center. While such accelerators can perform well
under specific circumstances, designing for such systems
still requires a relatively large amount of effort, increasing
the total cost of FPGA accelerated solutions. Within the
context of big data analytics pipelines, this article will give
an overview of some of the challenges from the FPGA
developer point of view.
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The challenges are mainly related to integration, where
there are two sides to the coin. On the one hand, it is time
consuming for developers to set up accelerator designs that
integrate easily with big data analytics pipelines. On the
other hand, big data analytics pipelines know many layers
of abstraction and are built on technologies that are not
designed to work well with heterogeneous components.

In this article, we first contribute a high-level overview
and software language analysis of contemporary big data
analytics frameworks. We then stipulate the challenges
associated with such software components that a hardware
developer faces when integrating FPGA accelerators into
big data analytics pipelines. To deal with the challenges
described, we contribute a thorough description of the
internals of an open-source project called Fletcher [2]
[3]; an FPGA accelerator framework designed to deal
with these challenges. Fletcher is built on Apache Arrow,
which provides a common in-memory format for tabular
data sets found in big data analytics applications, to
be used by any sort of (mainly software) technology.
By providing a common format, moving data between
heterogeneous processes such as Python or Java can be done
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without serialization overhead, something that also FPGA
accelerator implementations can benefit from through the
use of Fletcher.

To this end, we furthermore contribute in this article:

– A set of open-source domain-specific hardware compo-
nents for streaming dataflow design; vhlib [4].

– An open-source hardware construction library; Cer-
ata [5],

– An open-source tool based on Cerata and Apache
Arrow, used to generate easy-to-use high-throughput
hardware interfaces to Apache Arrow formatted data
sets in memory; Fletchgen [6]

– An open-source tool to generate AXI4-lite MMIO
infrastructure for register files; vhdMMIO [7].

Together, these components form a tool chain named
Fletcher that decreases the development time of FPGA
accelerator implementations that are to be integrated with
big data analytics frameworks using Apache Arrow. The
user only defines an Apache Arrow description of the
(potentially nontrivial, e.g. variable-length and nested) col-
umn types in the tabular data structure. The user then passes
this description to Fletchgen, which generates a platform-
agnostic FPGA accelerator infrastructure, completely tai-
lored and optimized for the supplied schema, and fully
integrated with the host system software, where the only
thing that remains is the implementation of the application-
specific hardware kernel. To this end, we contribute also the
run-time software stack associated with this mechanism [8].
The kernel is supplied with easy-to-use interfaces, where
rather than a memory bus with raw bytes, the user can
request access to data based on tabular row indices, and is
supplied with streams corresponding to the Apache Arrow
types. We finally give an example of how the tools are used
to decrease the development effort of FPGA accelerated
solutions in big data analytics pipelines.

The remainder of this article is structured as follows. In
Section 2, we discuss the background of this article, discuss
the challenges for FPGA accelerators to become feasible
alternatives to general-purpose or GPGPU computing in big
data analytics systems, and provide some lessons learned
throughout the development of the Fletcher framework.
In Section 3, we discuss some of the basic hardware
components that lie at the foundation of the Fletcher
framework. These are used in an automated infrastructure
generation step to create custom, easy-to-use interfaces,
based on high level descriptions of potentially relatively
complex tabular data structures that the FPGA accelerator
must operate on. This infrastructure generation step will be
explained in detail in Section 4, where we also describe the
underlying toolchain with three novel implementations of
the tools required to generate designs of such a dynamic

nature. We will proceed to explain the toolchain by
examples in Section 5. Section 6 will discuss the lessons
learned and provide an outlook on the future of Fletcher.
Section 7 concludes this paper.

2 Background

Big data systems are reaching maturity in terms of
squeezing out the last bits of performance of CPUs or even
GPUs. The next near-term and widely available alternative
for higher performance in the data center and cloud may be
the FPGA accelerator.

Coming from the embedded systems and prototyping-
oriented market, FPGA vendors have broadened their focus
towards the data center by releasing accelerator cards
with similar form factors and interfaces as GPGPUs.
Various commercial parties offer cloud infrastructure nodes
with FPGA accelerator cards attached. FPGA accelerators
have also been successfully deployed at a large scale in
commercial clusters of large companies (e.g. [9]).

Whether the FPGA accelerator in the data center will
become an implementation platform as common as other
accelerators, such as GPGPUs, is still an open question. The
answer will depend on the economic advantages that these
systems will offer; will they provide a lower cost per query?
Will they provide more performance per dollar?

In an attempt to answer these questions, valid reasons to
be skeptical about embracing FPGA accelerators in the data
center exist. We stipulate three disadvantages within this
context:

1. Technological disadvantage: FPGAs run at relatively
low clock frequencies and require more silicon to
implement the same operation compared to a CPU
or GPGPU, requiring the specialized circuits they
implement to be orders of magnitude more efficient at
whatever computation they perform before they provide
an economically viable alternative.

2. Hard to program: A notorious property of FPGAs is that
they are hard to program, incurring high nonrecurring
engineering costs; a higher cost per query or more
dollars to achieve decent performance.

3. Vendor-specific: Relative to the software ecosystem in
the field of big data analytics, one could observe a lack
of reusable, vendor-agnostic, open-source tooling and
standardization. The big data analytics community has
shown to thrive and rely specifically on open-source
frameworks, as this provides more control over their
systems and prevents vendor lock-in.

On the other hand, valid reasons to be optimistic exist as
well, because of the following advantages.
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1. Specialization: FPGAs are able to implement special-
ized data flow architectures that, contrary to load-store
architecture-based machines, do not always require
the intermediate results of fine-grained computations
to spill to memory, but rather pass them to the next
computational stage immediately. This often leads to
either increased performance or to increased energy
efficiency, both of which may provide an economic
advantage.

2. Hardware integration: FPGAs have excellent I/O
capabilities that help to integrate them in places the
GPGPU cannot (yet) go, for example, between the host
CPU and network and storage resources. This can help
to build solutions with very low latency compared to
CPUs and GPGPUs.

2.1 Hardware Design Challenges

The two mentioned advantages have the potential to
mitigate the first disadvantage in specific cases, which leads
us to mainly worry about the problem of productivity.
One branch of approaches that the research and industrial
community takes to increase productivity is to say: hardware
is hard to design while software is easy to program,
therefore we should be able to write software resulting in
a hardware design. While the term has become ambiguous,
this approach is called High-Level Synthesis (HLS), which
we interpret here as; using a description of a software
program to generate a hardware circuit performing the same
function, hopefully with better performance. A thorough
overview of HLS tools can be found in [10].

The HLS approach can (arguably) lead to disappointment
on the side of the developer, since it is easy to enter
a state of cognitive dissonance during programming. A
user with a software design background may find many
constructs and libraries not applicable or synthesizable
in a language that s(he) thinks to understand. Hardware-
specific knowledge must be acquired, and often vendor-
specific pragmatism must be applied to end up with a
working implementation. A user with a hardware design
background may experience a lack of control that may
result in a suboptimal design, hampering the intended
performance that they know could be achieved using a HDL.
Software languages are designed with the intent to abstract
CPU instructions, memory, and I/O, but not the gates,
connections, and registers that hardware-oriented users
desire to express more explicitly than what is allowed by
most software-oriented languages. A recent meta-analysis
of academic literature [11] shows that designs created with
HLS techniques at a reduced design effort of about 3× still
show only half the performance compared to HDL designs,
although the meta-study includes designs in frameworks
that would classify as an HDL approach (e.g. Chisel) more

than HLS, according to our definition. Since the direct
competitor is the server-grade CPU and the GPGPU, it is
in many cases unlikely that losing half the performance is
acceptable.

For the reasons mentioned above, we argue (together
with [12, 13]) for a different approach to attack the ”hard-
to-program” problem; hardware is hard to design, therefore
we need to provide hardware developers with abstractions
that make it easier to design hardware. Such abstractions
are easier to provide when the context of the problem is
narrow, leading to domain-specific approaches. We must
increasingly take care that these abstractions incur zero
overhead, since technologically, we are getting close to an
era where the added cost of abstraction cannot be mitigated
by more transistors, due to the slowdown of Moore’s law.

We stipulate three FPGA-specific challenges from the
hardware development point of view when designing
FPGA-based hardware accelerators for big data systems that
cause a substantial amount of development effort.

H1 Portability: Highly vendor-specific styles of design-
ing hardware accelerators prevent widespread reuse
of existing solutions, often leading hardware develop-
ers to ‘roll their own’ implementations. It also makes
it hard to switch implementations to different FPGA
accelerator platforms of different vendors.

H2 Interface design: Developers spend a lot of time
on designing interfaces appropriate for their data
structure, since they are typically provided with just a
byte-addressable memory interface. This involves the
tedious work of designing appropriate state machines
to perform all pointer arithmetic and handle all bus
requests.

H3 Infrastructure: Hardware developers spend a lot of
time on the infrastructure or sometimes colloquially
called ‘plumbing’ around their kernels, including
buffers, arbiters, etc., while their focus is the kernel
itself.

2.2 Big Data System Integration

Not only FPGA-based designs themselves can be very
complex — the big data analytics frameworks in which they
need to be integrated are very complex as well. For the sake
of the discussion in this article, we are going to assume
that there is a hardware developer wanting to alleviate some
bottlenecks in a big data analytics pipeline implemented in
software through the use of an FPGA accelerator. In such a
context, it is safe to assume that there is a lot of data to be
analyzed. The FPGA accelerator must have access to this
data.

Assuming the analytics pipeline to be implemented in
the C programming language, a programmer may point to
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their efficiently packed, hand-crafted structs, unions,
arrays, pointers to nested dynamically-sized data structures,
and eventually the primitive types of data that makes up
the data structure of interest. Were this data structure to
be somewhat inefficiently laid out in memory in terms
of feeding it to the accelerator, the programmer would
be able to easily modify the exact byte-level layout of
the data structure in memory, typically causing the data
to reside in regions of memory that are as contiguous as
possible, such that they can be loaded into the FPGA using
large bursts, preventing interface latency from becoming a
bottleneck when many pointers need to be traversed. These
assumptions are reasonable and describe a common design
pattern in hardware acceleration of software written in low-
level languages such as C. However, we will show that in
the domain of big data analytics, these assumptions usually
do not hold.

We have analyzed the code bases of many active
and widely used open-source projects related to big data
analytics. The goal is to answer the question: what
languages are mostly used in the big data ecosystem?
While there are hundreds of candidates in the open-source
space alone, we have selected projects that are commonly
found in the middleware of the infrastructure. This is
where accelerators are most likely to be integrated. We
therefore do not include frameworks focused on specific
applications or end-users (e.g., deep learning or business
intelligence), since they are often built on top of the
middleware frameworks that we analyzed.

The overview of the frameworks that were analyzed is as
follows:
– 8 query engines: PrestoDB, Cloudera Hue, Dremio,

and Hive, Drill, Impala, Kylin, Phoenix
– 7 stream processing engines: Heron, Samza, Beam,

Storm, Kafka, Druid, Flink
– 15 (in-memory) data storage engines: MongoDB,

CouchDB, Cassandra, CockRoachDB, CouchDB,
OpenTSDB, Accumulo, Riak, HBase, Kudu, Redis,
Memcached, Hadoop-HDFS, Sqoop, Arrow

– 9 management and security frameworks: Airflow,
ZooKeeper, Helix, Atlas, Prometheus, Knox, Metron,
Ranger

– 6 hybrid general-purpose frameworks: Mesos, Hadoop,
Tez, CDAP, Spark, Dask

– 4 logging frameworks: Flume, Fluent Bit, Fluentd,
Logstash

– 2 search frameworks: ElasticSearch, Lucene-Solr
– 3 messaging / RPC frameworks: RocketMQ, Akka,

Thrift
A pie chart of the analysis is shown in Fig. 1. From the

figure, we may find that the vast majority of the codebase is
written in Java, followed by Python, with C/C++ taking up

Figure 1 Language analysis of 52 open-source projects from the big
data ecosystem.

about 15% of the lines of code. These figures indicate the
most widely used run-time technologies in big data analytics
pipelines.

About 80% of the code found in the ecosystem is
written in languages that typically alleviate the burden of
low-level memory management by various methods that
cause several problems. First, garbage collection (GC) is
applied to prevent memory leaks, sometimes causing data
to move around the memory, invalidating any pointers to
the data, causing the need to halt the software run-time
when FPGA accelerators would be operating on the data.
Second, extensive standard libraries with containers for
many typical data structures (e.g., strings, dynamically sized
arrays, hash maps) are commonly used. This decreases the
development effort and provides a form of standardization
within a language. However, the language-specific in-
memory formats of these containers often do not correspond
well to how it would be preferable for FPGA accelerators to
access the data. Finally, data is often wrapped into objects
(e.g., in Python), although the native architecture supports
a specific data type in hardware. While in C an array
of a thousand integers is relatively simple in memory, in
Python this looks like an array with a thousand pointers
to boxed integer objects, which is not very efficient to
access with high throughput, as it is potentially highly
fragmented. Furthermore, these objects contain language
and run-time specific metadata that are of absolutely no use
to an accelerator, such as pointers to the class of the object
in Java.

Discussing the details of all these techniques is outside
the scope of this article, but we summarize the discussion to
the following challenges for developers wanting to integrate
an FPGA accelerator solution into a software-oriented big
data analytics pipeline:
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S1. Complex run-time systems: it is hard to get to
the data, because it is hidden under many layers of
automated memory management.

S2. Hardware-unfriendly layout: the data is laid out in
a way that is most practical for the language run-time
system, with a lot of additional bytes containing data
that is uninteresting to the FPGA accelerator. A more
FPGA-friendly in-memory format of the data structure
must be designed to make it accessible to the FPGA
accelerator.

S3. (De)serialization: Even if one would handcraft such
a format, one would have to serialize the input
data for the accelerator into that format, and then
deserialize the result back into a format that the
language run-time would understand. The throughput
of (de)serialization is relatively low compared to
modern accelerator interfaces, and can easily lead to
performance bottlenecks [14].

2.3 Apache Arrow

Due to the nature of this article, the challenges S1,
S2, and S3 from the previous section were described
mainly from an FPGA acceleration developer point of
view. However, even within the software ecosystem of
big data analytics pipelines, such challenges exist. When
heterogeneous processes interact (e.g., when there is inter-
process communication between a pure Java program
offloading some computation to a very fast C library), there
needs to be one common (in-memory) format that both
programs agree on. Several projects have provided such a
common format for generic types of data, such as Google’s
Protobuf [15]. The project provides a code generation step
to automatically generate serialization and deserialization
functions that help produce and consume data in the
common format, turning it back into language-native in-
memory objects, such that programmers can continue to
work with them in the fashion of their language.

Later, it was realized that serialization and deserialization
itself can cause bottlenecks, since copies have to be made
twice; first, when serializing the data to the common format
at the producer side, and again, when deserializing it on
the consumer side. In many cases, providing specialized
functions to access the data in its common format turns out
to be faster than applying serialization and deserialization,
since data may be passed between processes without making
any copies to restructure it into a language-specific format.
This has led to what is called a zero-copy approach to
inter-process communication. Through the help of libraries
such as Flatbuffers [16], such functions are provided to
several languages. Producing processes immediately use the
common format for their data structure, and then only share

a pointer to the data with the consuming process. No copies
are made because both processes work with the common
format as much as possible from the same location in
memory. Programmers are provided with language-specific
libraries that make it easy for them to interact with the data
structure according to the fashion of their language.

An approach similar to Flatbuffers, but specifically
tailored to big data analytics, is found in the Apache
Arrow project [17]. Apache Arrow is specifically tailored
to work with large tabular data structures that are stored
in memory in a column-oriented fashion. While iterating
over column entries in tables, the columnar format causes
more efficient use of CPU caches and vector instructions
than a row-oriented format. It also provides a memory
management daemon called Plasma, that allows to place
data structures outside the heaps of garbage collected
run-time systems, providing interfaces for zero-copy inter-
process communication of Arrow data sets.

Thus, Arrow specifically solves the challenges S1, S2,
and S3 by, respectively:

1. Allowing data to be stored off-heap, unburdened by GC.
2. Providing a common in-memory format and language-

specific libraries to access the data, preventing the need
for serialization.

3. Tailoring the format to work well on modern CPUs by
being column-oriented.

2.4 Fletcher

Previous studies have shown that inefficiencies in serial-
ization of data from language run-times with automated
memory management may cause more than an order of
magnitude decrease in throughput compared to modern
accelerator interfaces to host memory, that contemporary
protocols such as PCIe, CXL, CCIX, or OpenCAPI (intend
to) provide [14]. Therefore, the benefits of Apache Arrow
can help alleviate bottlenecks in the context of FPGA
accelerators as well.

Fletcher is an open-source FPGA accelerator framework
specifically built on top of Apache Arrow, with the intent
to not only solve challenges S1, S2, and S3 on the big
data analytics framework integration side, but also to solve
challenges H1, H2, and H3 on the hardware development
side. This is illustrated in Fig. 2.

Previous articles have discussed, at a very high level,
the idea behind the framework, and have shown several
use cases [2]. These use cases have shown that through
the use of Arrow and Fletcher, serialization overhead can
be prevented, since the Arrow format is highly suitable for
hardware accelerators, allowing the accelerators to perform
at the bandwidth of the accelerator interface to host memory.

569J Sign Process Syst (2021) 93:565–586



Figure 2 Advantages of the Fletcher FPGA accelerator framework for big data systems, based on apache arrow.

An brief summary and overview of the framework as used
by the developer during compile time and during run time is
shown in Fig. 3.

When accessing tabular data, one would prefer to do
so through row indices rather than byte addresses. This
has led the Fletcher project to construct specific low-level
hardware components with streamable interfaces, that allow
to provide a range of row indices, returning one or multiple
streams of data corresponding to the types of Arrow tables.
In contrast to a byte-addressable memory interface, this
addresses the challenge H2. We will briefly reiterate the
design of these components in Section 3.

In the remainder of this article, we will describe how
Fletcher deals with the challenges H1, the problem of

portability, and H3, the problem of the infrastructure design
effort.

2.5 Related Work

While many commercial tools exist that automate infras-
tructure design, most of them are geared towards the HLS
approach, but provide little help to users that, for the reasons
mentioned above, prefer to work with HDLs to describe
their solutions. HLS tools are also known to have problems
dealing with dynamic data structures, as described in [18],
that Arrow allows to express. In Section 3, we show a
method specific to Arrow for traversing the dynamic struc-
tures efficiently. Previous research has extensively investi-

Figure 3 Fletcher overview. During compile time (top), the user speci-
fies an Arrow Schema, runs Fletchgen to generate hardware infrastruc-
ture sources and a kernel template, implements the kernel, and finally
places and routes their design. During run-time (bottom), applications
use Apache Arrow to load data from some source (1) into memory in
the form of RecordBatches (2). They can then use the Fletcher run-
time library to make RecordBatches available to the FPGA accelerator

(3) or to obtain new RecordBatches from the FPGA (4). The hardware
kernel sends reads or write requests (5) to send or receive data to/from
host- or on-board memory (6) through the generated infrastructure.
The generated infrastructure deals with the byte-oriented memory
interface, turning the data into hardware streams (and vice versa) (7)
such that the streams match the kernel interfaces with the potentially
complex and nested types of the Arrow schema.
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gated hardware interfaces for more generic C-style dynamic
data structures through specialized DMA engines [19], but
does not focus on integration with modern software frame-
works from the big data analytics ecosystem analysis. To
the best of our knowledge, Fletcher is the only open source
FPGA accelerator framework that deals with challenge H3,
in the context of big data analytics on tabular data sets for
those that prefer an HDL design flow specifically.

A number of frameworks do exist that help deal with
challenge H1. We first give an overview of related work
regarding challenge H1, also shown in Table 1. This helps us
compare Fletcher to existing frameworks and stipulate the
differences. We use the following criteria to include specific
frameworks in our comparison:

– The framework is active and publicly available open-
source.

– The framework targets datacenter-grade accelerator
cards/platforms.

– The framework provides abstractions that provide some
form of portability between such cards/platforms.

As shown in the table, there are currently a small
number of other frameworks that adhere to these criteria.
TaPaSCo [20] allows designers to easily set up systems
that perform several hardware-accelerated tasks in parallel.
It is in some sense complementary to Fletcher, since
(as will be discussed again later) Fletcher provides an
AXI4 top level for memory access, alongside an AXI4-
lite for the control path of the kernel, exactly fitting
the integration style of TaPaSCo’s processing elements.
TaPaSCo furthermore allows design-space exploration to
find optimal macroscopic configurations of the parallel
kernels, a feature that Fletcher does not have. It also allows
to target a wide variety of (mainly embedded-oriented, but
some datacenter-grade) FPGA accelerator cards, although
currently only those that contain Xilinx FPGAs.

Spatial [21] is mainly a domain-specific language
embedded in Scala, tightly connected to the Chisel hardware
description language [23]. The language provides a very
high level of abstraction to design accelerators and targets
not only various FPGA accelerator platforms (of both Intel

and Xilinx), but also CGRA-like and ASIC targets. Aside
from not being a language itself, Fletcher differs from
Spatial in the sense that it is less generic, and focuses only
on abstractions to easily and efficiently access tabular data
structures described in Arrow.

OC-Accel [22], the successor of CAPI SNAP, does
adhere to the criteria described, although it is still somewhat
platform-specific, since it allows to target FPGA accelerator
systems that have an OpenCAPI [24] enabled host system,
typically found only in contemporary POWER systems.
OC-Accel is a target for Fletcher, aside from AWS EC2 F1
and Xilinx Alveo cards. We conclude the comparison by
mentioning that Fletcher is a more domain-specific solution
that only works for the tabular data structures of Apache
Arrow. This prevents Fletcher from being used in other
domains, although the lessons learned are of value when
creating similar frameworks for other domains.

3 Hardware Internals

In this section, we will briefly summarize the core hardware
components of the Fletcher framework as presented in [3].
To understand them, we must first introduce the way Apache
Arrow stores data in memory.

3.1 Arrow Columnar In-memory Format

An example of the Apache Arrow in-memory format and
how it relates to a schema is shown in Fig. 4. Arrow tabular
data is stored in an abstraction called a RecordBatch. A
RecordBatch contains several columns for each field of a
record, that are in Arrow called Arrays (not to be confused
with C-like arrays). These arrays can hold all sorts of data
types, from strings to lists of integers, to lists of lists of
timestamps, and various others.

Arrays consist of several Arrow contiguous buffers, that
are related, to store the data of a specific type. There are
several types of buffers, such as validity buffers, value
buffers and offset buffers. Validity buffers store a single bit
to signify if a record (or deeper nested) element is valid or

Table 1 Overview of open-source FPGA accelerator development frameworks

Framework Focus Targets Ref.

Fletcher HLL software integration, tabular data AWS EC2 F1, OC-Accel, Xilinx Alveo [2]

TaPaSCo Parallel kernels, DSE AWS EC2 F1, Various Xilinx-centric [20]

Spatial HDL (eDSL), DSE AWS EC2 F1, Various Xilinx-centric, Intel Arria 10, other
non-FPGA targets

[21]

OC-Accel OpenPOWER/OpenCAPI systems Alphadata 9V3, 9H3, 9H7 [22]
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Figure 4 An example Arrow schema (a) of an Arrow RecordBatch (b) and resulting Arrow buffers (c).

null (i.e. there is no data). Value buffers store actual values
of fixed-width types, similar to C-like arrays. Offset buffers
store offsets of variable length types, such as strings (which
are lists of characters), where an offset at some index points
to where a variable-length item starts in another buffer.

A RecordBatch contains specific meta-data called a
schema that expresses the types of the fields in the records,
therefore defining the types of the arrays, in turn defining
which buffers are present. When a user wants to obtain
(a subset of) a record from the RecordBatch, through the
schema, we may find out what buffers to load data from to
obtain the records of interest. Normally, an FPGA developer
designs an accelerator that has to interface with a memory
bus to get to the data set. That means the accelerator must
typically request a bus word from a specific byte address.
However, in the case of a tabular data set stored in the Arrow
format, it is more convenient to express access to the data
by supplying a table index, or a range of table indices, and
receiving streams of the data of interest in the form of the
types expressed through the schema, rather than as a bus
word.

3.2 Vendor-Agnostic Streaming Library

To be able to access Arrow Arrays as such, we continue to
describe Fletcher’s hardware internal from the bottom up.
In the design of these hardware components, we apply a
streaming-oriented design methodology (using ready/valid
handshaking mechanism) as much as possible. When these
streams are Arrow data streams, we allow users to scale
the throughput of these streams, by handshaking a user-
specified number of elements per transfer. We call such
streams multiple-element-per-handshake (MEPH) streams.
To support this style of streaming-oriented design, we have
developed a vendor-agnostic streaming library that contains
the following components:

Slice A component to break up any combinatorial
paths in a stream, typically using registers.

FIFO A component to buffer stream contents, typi-
cally using RAM.

Sync A component to synchronize between an
arbitrary number of input and output streams.

Barrel A pipelined component to barrel rotate or shift
MEPH streams at the element level.

Reshaper A component that absorbs an arbitrary number
of valid elements of an MEPH stream and
outputs another arbitrary number of elements.
This component is useful for serializing wide
streams into narrow streams (or vice versa,
parallelizing narrow streams into wide streams).
The component can also be used to reduce
elements per cycle in a single stream handshake
or to increase (e.g. maximize) them. The
implementation of the Reshaper uses the Barrel
component.

Arbiter A component to arbitrate multiple streams onto
a single stream.

Buffer An abstraction over a FIFO and a sync with a
variable depth.

On top of the streaming components, a light-weight bus
infrastructure has been developed to allow multiple masters
to use the same memory interface. This bus infrastructure
is similar to (and includes wrappers for) AXI4, supporting
independent request and data channels, and bursts.

3.3 BufferReaders/Writers

We use the aforementioned streaming library to construct
components matching the concepts of Apache Arrow. The
smallest unit we need to access is an Arrow Buffer, which
is basically a C-like array of primitive data. We therefore
implement a component called a BufferReader (BR). The
BR is a highly configurable component to support turning
host memory bus burst requests and responses into streams
of potentially fixed-width types. Based on an Arrow buffer
address and a range of items to obtain from the buffer,
the component performs the appropriate pointer arithmetic
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to locate the elements of interest in the Arrow buffer. It
then requests the data on the memory interface, and handles
all responses, aligning and reshaping the bus words into
MEPH streams with fixed-width data types corresponding
to the Arrow primitive type contained in the buffer. An
architectural overview of the implementation of two BRs (in
combination providing a setup to read variable-length types)
is shown in Fig. 5a.

The top-level of a buffer reader contains the following
interfaces, that are all pipelined streams:

Command (in) Used to request a range of items to
be obtained from host memory by
the BR. Also contains the Arrow
buffer address and a special tag.

Unlock (out) Used to signal the completion of
a command, handshaking back the
command’s original tag.

Bus read request (out) Used to request data from memory.
Bus read data (in) Used to receive data words from

memory.
Data (out) An MEPH stream of data corre-

sponding to an Arrow data type.

Offset buffers require the consumer of the data stream
to turn an offset into a length. In this way, the consumer
(typically the accelerator core logic) can know the size of
a variable length item in a column. Therefore, for offset
BRs, two consecutive offsets are subtracted to generate
a length. Furthermore, BRs support the generation of an
output command stream for a second BR. To generate this
command stream, rather than generating a command for the
child buffer for each variable length item, the BR requests

both the last offset and the first offset in the range of
the command first, before requesting all offsets in a large
burst. The first and last offset can then be sent as a single
command to the child BR, allowing it to request the data in
the values buffer using large bursts.

Complementary to BRs, we also implemented Buffer
Writers (BWs) that, given some index range can write
to memory in the Arrow format. They have the same
interfaces as BR, except the data flow is inverted, also
shown in Fig. 5b. If the BW writes to an offsets buffer, it
can be configured to generate offsets from a length input
stream. This length input stream can optionally be used to
generate commands for a child buffer. To achieve maximum
throughput, the child command generation may be disabled,
otherwise the child buffer writer will generate padding after
the ending of every list in an Arrow Array containing
variable length types.

3.4 Arrays

To support Arrow Arrays, that combine multiple Buffer
Readers/Writers to deliver any field type that may be
found in an Arrow schema, we implement specialized
components called Array Readers and Array Writers. They
furthermore support, attaching command outputs of offsets
buffers to values or validity bitmap buffers, arbitration of
multiple buffer memory interface masters onto a single
slave, synchronization of unlock streams of all buffers
in use, and finally, recursive instantiation. The recursive
instantiation allows support for nested types, such as
Lists<List<(Type)>>, adding an Arrow validity bit
to the output stream, and support for Arrow structs, such as
Struct<Int16, Float64> as shown in the example.

ba

Figure 5 The Bufferreader/Writer components of Fletcher.
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The Array Readers and Writers are supplied with a
configuration string that conveys the same information as
an Arrow field type. By parsing the configuration string,
the components are recursively instantiated according to the
top level type of the field in a schema. An example for the
schema from Fig. 4 is shown in Fig. 6.

Reading from the example RecordBatch (corresponding
to the schema) will require three Array Readers. The manner
in which they are recursively instantiated is shown in the
figure. Here one can discern four types of Array Reader
configurations:

Default A default Array Reader only instantiates a
specific Array Reader of the top-level type of the
corresponding schema field, but provides a bus
arbiter to share the memory interface amongst
all BRs that are instantiated in all child Array
Readers.

Prim An Array Reader instantiating a BR for fixed-
width (primitive) types.

Null Used to add a validity (non-null) bitmap buffer
and synchronize with the output streams of a child
Array Reader to append the validity bit.

List Used to add an offsets buffer that generates a
length stream and provides a first and last index
for the command stream of a child Array Reader.

Struct Used to instantiate multiple Array Readers,
synchronizing their output streams to couple the
delivery of separate fields inside a struct into a
single stream.

The complement (in terms of data flow) of Array Readers
are also implemented as Array Writer. One additional
challenge to Array Writers is that they require dynamically
resizable Arrow Buffers in host memory, because it cannot
always be assumed that the size of the resulting Arrow
Buffers is known at the start of some input stream. This is
an interesting challenge for future work.

4 Fletcher Toolchain

4.1 Generic Fletcher High-Level Architecture

We have so far described how Array Readers and Array
Writers are generated, still using VHDL only. Although
the components can be rather complex in nature, already,
they allow to merely access a single Arrow Array in a
RecordBatch; one column in the tabular data structure.
However, many applications require access to multiple
columns, as well as multiple RecordBatches. Furthermore,
accelerator kernels require a control path from the host
software as well.

With these requirements, a generic architecture of a
Fletcher-based accelerator design is presented in Fig. 7.
In this figure, the Array Readers/Writers (hereafter
ArrayR/Ws) as described in the previous section are shown.
We continue to explain the new components shown in the
figure.

– RecordBatch Reader/Writer RecordBatch Readers
and Writers (hereafter RecordBatchR/Ws) are com-

Figure 6 Three resulting Array Reader configurations for each field of the Schema in Fig. 4.
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Figure 7 Generic top-level
architecture of Fletcher
accelerator designs.

ponents that wrap around multiple ArrayR/Ws of a
single RecordBatch. It may seem that the level of hier-
archy that the RecordBatchR/Ws introduce does not
necessarily have to exist, since the ArrayR/Ws can
be operated independently of each other. However, a
user may not want to issue a separate command to
each ArrayR/W, but rather a single command to all
ArrayR/Ws in a RecordBatch. The RecordBatchR/W
allows to duplicate a single command stream into mul-
tiple command streams for each ArrayR/W, and allows
to merge command responses into a single response
stream as well. This ultimately adds support to access
multiple columns.

– Read/Write interconnect The Read/Write Intercon-
nect components manage all memory interfaces coming
from the ArrayR/Ws. Since the memory interfaces of
ArrayR/Ws may have various configurations, but the
top-level memory interface typically only supports one
configuration, serializers and parallelizers will auto-
matically be inserted here. Furthermore, round-robin
arbiters and buffers are instantiated in this component.

– Nucleus The Nucleus component directly interfaces
with the Arrow data streams, the command streams to
the RecordBatchR/W, and with an AXI4-lite bus for
memory-mapped I/O. Users may choose to implement
their kernel at this level of abstraction, requiring
them to insert their own MMIO controllers and fully
manage the information on the command streams to the
RecordBatchR/Ws themselves, including the addresses
of the Arrow buffers in the memory. However, the
philosophy of the Fletcher framework is to allow

developers to express access to their data in terms
of row indices, not having to worry about pointers
(and pointer arithmetic). Therefore, by default, the
Nucleus level abstracts the command streams of the
RecordBatchR/Ws in such a way that the Arrow buffer
addresses are hidden. To do so, it instantiates an MMIO
controller that is used to pass information about buffer
addresses from the host to the Nucleus. The MMIO
controller is furthermore used to pass metadata about
the specified RecordBatches and run-time information
about the workload, such as the number of rows that
a RecordBatch has, and a range of row indices for the
kernel to operate on. Users may also pass or return
application-specific information through these registers
from/to the host machine.

– Mantle The Mantle component wraps around all other
components, resulting in a top-level design that always
has the same interface. In this way, supporting Fletcher
on a new FPGA acceleration platforms is a matter of
integrating the Mantle with the existing subsystems.
Any generated Fletcher design can from that point
onward be mapped onto that platform.

4.2 Fletcher Tool Chain

Through specialization of the generic architecture shown in
Fig. 7, based on Arrow schemas, Fletcher faces challenge
H3. However, to automate the specialization itself is a
challenge on its own. Because of the large number of
variations of designs that may be generated to accommodate
multiple Arrow Arrays, multiple RecordBatches and the
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control path thereof, it is infeasible to implement a generic
version of the design shown in Fig. 7 in HDLs that vendor
tools support.

To provide an agile and open-source hardware develop-
ment experience to the users of Fletcher, a tool is required
that is able to generate application-specific flavors of the
generic architecture. It must furthermore be able to gener-
ate a platform-agnostic simulation environment, such that
kernel implementations can be functionally verified inde-
pendent of the target platform.

We therefore develop three new tools:

– Cerata; a generic hardware construction library pro-
viding high-level abstractions for structural hardware
design.

– Vhdmmio: a generic MMIO controller generation tool
taking a simple description of a register map, outputting
VHDL sources with MMIO controller components that
can be connected to an AXI4-lite bus.

– Fletchgen: an Arrow-specific tool built on top of
Cerata, using the abstractions provided to describe
the generic architecture as shown in Fig. 7, including
the RecordBatchR/Ws, the Nucleus, the interconnect
infrastructure and the Mantle. It furthermore uses
Vhdmmio for the control path from the host system
through memory-mapped I/O.

These tools are part of the Fletcher hardware generation
toolchain, which we will continue to explain in more detail.
A high-level overview of the toolchain is shown in Fig. 8.

4.2.1 Cerata

Cerata is an open source hardware construction library
written in modern C++17. It is intended to be used only
for structural hardware design, providing many abstractions
for structural hardware generation. Structural designs can
be described as a graph by connecting nodes representing
ports, signals, parameters, literals and expressions. The
graphs are hierarchical, such that they represent either
components or instances. Cerata allows the expression of
advanced interface types, supporting in particular nested
streams that often emerge when converting nested Arrow
data types into a form suitable for hardware. These can be
connected with single lines of code, similar to how Chisel
and SystemVerilog allow bulk connections.

Like Chisel that is hosted in Scala, Cerata allows
already generated designs to be inspected programmatically
through its host language C++, resulting in what could
be viewed as introspection. For example, it is possible to
describe a component X, and during generation of another
component Y that uses X, to inspect what ports X has
in order to generate some structure that properly supports

Figure 8 Overview of hardware generation components in the Fletcher
tool-chain. The goal of these components is to automatically generate
hardware interfaces to Arrow RecordBatches (tabular data structures).
The user prepares the schemas (descriptions of the column types in
tabular data structures) and RecordBatches (schema plus actual data
for simulation) (in red). In the center, the general flow of the automatic

hardware interface generator tool Fletchgen is shown. It produces
graph-like descriptions of the hardware structure, and passes it to the
Cerata library that generates structural VHDL from the graphs. All
outputs on the right are automatically generated by the tool. The user
only needs to implement the kernel template.
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the instantiation of X. Note that this allows for a bottom-
up generation approach, which is very impractical in any
traditional hardware description languages like VHDL1.
There, all information has to be known at the top-level,
trickling down to the lower levels of the hierarchy. It also
allows for specific transformations to be implemented for
graphs, one of which is to insert stream profilers, as we
will discuss later. Since the rest of the Fletcher tool-chain is
written in VHDL and C++, we have not used Chisel for this
capability, since it outputs Verilog and is hosted in Scala.

After constructing and transforming graphs according to
the needs of the user, Cerata can target two back-ends, a
DOT [25] back-end to visualize the constructed graphs, and
a VHDL back-end to generate structural VHDL.

4.2.2 Fletchgen

The input of Fletchgen are Arrow schemas and Record-
Batches (that contain their schema plus data). All schemas
are first checked for required metadata that is Fletcher-
specific, and optional metadata. An overview of all schema-
level metadata that Fletchgen understands is as follows:

– A schema name (required), used in the generation of
HDL sources.

– A schema access mode (required), specifying whether a
user would like to read from a RecordBatch, or write to
a RecordBatch.

– Memory interface specification (optional). This defines
the properties of the bus infrastructure at the memory
side of the interface. Properties include (amongst
others) data width, address width, and maximum burst
length.

Additionally, schema fields can be annotated with the
following metadata attributes:

– Ignore (true/false); a user not interested in a specific
column of the RecordBatch can choose to ignore it.
No hardware support or interface will be generated
for this column. Note that this is an advantage of
a columnar data storage system. Columns can be
accessed completely independently of other columns.

– Elements per cycle; the maximum number of elements
that can be handshaked in a single cycle on the output
stream of this field.

– Length elements per cycle; the maximum number of list
lengths that can be handshaked in a single cycle on the
length stream of this field.

– Profile (true/false); a user may choose to insert
stream profilers - units that gather statistics about the

1Or is arguably incredibly esoteric in slightly more modern languages
like SystemVerilog by writing low-level C support functions against
the Verilog Procedural Interface.

handshaking mechanism of (multi-element-per-cycle)
streams that can be translated into throughput. This
helps users make performance/area trade-offs.

– Tag width; the number of bits used to identify
commands and command responses.

After analysis of the metadata and after verification that
specific properties (such as schema names) do not cause
any conflicts, the hardware may be structurally described.
Fletchgen generates the design from the bottom-up, starting
with the instantiation of all required ArrayR/Ws inside
their corresponding RecordBatchR/Ws. In this step, the
configuration string for the ArrayR/Ws is derived from the
Arrow schema, using API calls provided by the Arrow
library itself to traverse the tree of potentially nested field
types.

The ArrayR/Ws are considered to be ‘primitive’ com-
ponents as far as Fletchgen is concerned, i.e. they do not
consist of other components that have to be generated
(although their implementation is described with a very
generative style of VHDL). ArrayR/Ws are described with
VHDL, but this language does not allow port names to be
generated. The data and control streaming interfaces there-
fore have nondescript names that are not easy to recognize
for kernel developers.

The ports would preferably be named after the Arrow
schema fields such that they are easy to recognize for kernel
developers. Furthermore, because ArrowR/Ws can cause a
variable number of streams to appear, these streams are
concatenated with port vectors for each type of stream,
while it is more pleasing to get separate interface ports for
every stream related to a specific Arrow field. We have
therefore equipped Cerata with abstractions to concatenate
multiple streams onto single ports and vice versa. These
abstractions are used to eventually generate streaming
RecordBatchR/W interfaces that have names corresponding
to what Arrow field they were derived from, such that they
become easily recognizable by users.

Additionally derived from the schema and its metadata is
the memory-mapped I/O register map. Furthermore, users
may supply additional arguments to reserve more custom
registers in the register map through the command-line
interface of the Fletchgen tool. All registers are 32-bits,
controlled over an AXI4-lite interface from the host side.
Four categories of registers are mapped; default registers,
schema-derived registers, custom registers, and profiling
registers, as follows:

– Default registers; control, status, and two return value
registers for results up to 64-bits wide. Since most of
the target platforms have 64-bit addresses, this allows
to pass a pointer to some resulting data structure, or
a primitive return value. Resulting data structures laid
out in the Arrow format would typically be passed to
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Fletchgen as a separate schema with access mode set to
write.

– Schema-derived registers; the range of operation on
each RecordBatch (first and last row index), followed
by all Arrow buffer addresses, which we will call
RecordBatch metadata. Because these registers are
automatically set by the Fletcher run-time library, it is
imperative that there is a unique order to the metadata,
that is consistent between the hardware implementation
and the software run-time. This is done by first sorting
all schemas by name, and then stable sorting them by
access mode. Since schema names must be unique for
each access mode, the resulting unique ordering will
make sure the hardware implementation corresponds to
how the run-time library will set all metadata.

– Custom registers; the set of registers supplied by the
user, for whatever purpose.

– Profiling registers; the registers that contain the results
of profiling Arrow data streams. These include a
control register to start and stop profiling, as well
as six measurement results; the number of elements
transferred on the stream, the number of cycles the
stream valid signal was asserted, the number of cycles
the stream ready signal was asserted, the number of
cycles both were asserted, the number of ’last’ signals
handshaked (to count the number of stream packets
transferred on variable-length types such as strings),
and the number of cycles the profiler was enabled.

After the whole register map is known, Fletchgen
generates a human-readable YAML-file that is passed to the
Vhdmmio tool. This tool then generates an implementation
of an MMIO controller according to the register map
described above, and outputs user-friendly documentation
about the register map. Since the implementation of the
MMIO controller is generated by this external tool, inside
Fletchgen, it is considered to be a primitive component.

Only a model of its interface is constructed, which is passed
onto the next generation step.

The generated RecordBatchR/Ws and the MMIO con-
troller now contain all the information necessary to generate
three more components. First, the memory bus infrastruc-
ture that has to connect to the memory interface side of the
RecordBatchR/Ws. Second, the Nucleus, that forwards the
Arrow data and control streams to the third component; the
Kernel. Note that the Kernel component is not implemented
by Fletchgen, but must be implemented by the user.

The Nucleus is at first constructed without taking the
stream profiler components into account, since inserting
stream profilers is one of the transformation functions
available in Cerata. As illustrated in Fig. 9, after tagging
streams with the profiling option, the profiling transforma-
tion function may be called by supplying the component
implementation to transform. Optionally, references to sig-
nals where the stream profiler measurement outputs need to
be connected can be given. When they are not given, the
transformation will extend the component interface to con-
tain the profiler measurement output signals. In the case of
Fletchgen, we tag the streams between the Nucleus external
interface and the Kernel corresponding to the field meta-
data supplied through the Arrow schema, and we supply the
MMIO controller’s profiling registers as output signals.

Now, a Nucleus instantiating the MMIO controller
and the Kernel component with profiling registers is
constructed. Together with the bus infrastructure that was
generated, everything is tied together to form the Mantle —
the Fletcher generic top-level.

Through the use of the Cerata hardware construction
library, we have now implemented everything as shown in
Fig. 7, apart from the Kernel, which is left to the user.
The design achieves the goal of the Fletcher framework;
providing the user with hardware interfaces that correspond
to the abstractions of Apache Arrow. They may now
access RecordBatches through a command stream by only

Figure 9 Profiling
transformation applied to the
Nucleus.
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supplying row indices, and will read or write data over
streams that correspond with Arrow’s types.

4.2.3 Run-Time Integration

We continue to describe how Fletcher is integrated during
run-time, where challenge H1 related to portability must
also be solved. An overview of the approach is seen
in Fig. 10, where two of the supported platforms, AWS
EC2 F1 and OC-Accel are shown. Because the top-level
component, the Mantle, has the same interface for any
Fletcher design, supporting multiple FPGA accelerator
platforms is done creating platform-specific wrappers
for the Mantle that are maintained in a separate open-
source repository to prevent platform-specific code from
contaminating the Fletcher code base. The platform-specific
low-level drivers to interact with the accelerator framework
are abstracted, first through a low-level library in C,
providing a common API for all platforms to the higher-
level Fletcher platform-agnostic run-time libraries that are
intended for users. Fletcher run-time library dynamically
searches and loads platform-specific versions of its low-
level drivers, depending on what platform is available.

The currently supported languages include C++ and
Python. The language-specific Fletcher libraries contain an
API leaning heavily on Apache Arrow’s abstractions. An

example of how the accelerator is operated from Python is
found in Fig. 11.

During run-time, users only have to provide references
to the RecordBatches of interest. The users only need to
manually start the kernel and write and read values to
their custom registers. These are placed into a queue, and
automatically made available to the FPGA accelerator.

4.2.4 Simulation

To support users of Fletchgen with functional verification
through simulation, note that in Fig. 8, users may also
supply Arrow RecordBatches. The Arrow schema that is
contained within the RecordBatch will be handled like
any other schema, except the data in the RecordBatch
will be used to produce a simulation top-level, wrapping
the Mantle, and instantiating simulation-only memories
that contain the RecordBatch data. The simulation top-
level sets the buffer addresses and RecordBatch metadata
automatically through the MMIO interface. It continues
to send the start signal to the kernel, such that when
the user is ready to debug the kernel, all data and
control signals flowing in from the upper layers of the
hierarchy are already handled. Only the custom registers
are to be set appropriately by the user in the simulation
top-level.

Figure 10 Platform-agnostic
run-time stack.

579J Sign Process Syst (2021) 93:565–586



Figure 11 Example of using the
Python run-time library to
control the accelerator.

5 Examples

To provide an example of the functionality described
in the previous section, consider the following example
application. Suppose we have two tables, where one table
called people contains a unique key, names, ages and
favorite food. The last item refers to a second table named
foods, containing a unique key and food names. Suppose
dinner must be cooked for all children based on their
favorite food, we may query the tables for the names of all
people under 12, and look up their favorite food.

We stipulate that in the upcoming example, we intend
to reduce the design time of the FPGA accelerator
infrastructure required to load and store the resulting
RecordBatches, since this all we can do based on Arrow
schemas. The actual implementation of the function of the
computational kernel cannot be derived from a schema. As
such, this is still left to the users to implement however

they see fit, e.g. by using traditional HDL or by using high-
level synthesis techniques to perhaps reduce that part of the
design time.

When using the Fletcher framework to set up an
accelerator implementation to solve this problem, we first
have to define the Arrow schemas that describe the types
of data each table will hold. An example of how this is
done in Python is shown in Fig. 12a. Note that one could
use any language supported by Apache Arrow libraries to
produce the schema, but for this article we choose Python
because it is relatively succinct. The 30 lines of Python code
hold enough information to produce Arrow schemas for our
example. They can be passed to Fletchgen to generate a
customized, application-specific version of the architecture
presented in Fig. 7.

On lines 3-15, the developer does not only define a
Schema for the ’foods’ table, but also specifies some data it
contains, and places the data inside an Arrow RecordBatch.

ba

Figure 12 Examples of input and output of Fletchgen.
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As explained in the previous section, the data can be
used to generate simulation models. The developer also
supplies metadata on the names field, effectively tagging
the resulting hardware streams to be profiled. Finally, the
mandatory metadata are added; the access mode of the
schema, in this case set to read from it, and the name of
the schema to generate appropriate component and interface
names.

On lines 16-24, the developer defines a schema, but since
the question does not involve returning the unique key of
the people, merely their name, we have no use for this field.
By supplying Fletcher-specific metadata, we may ignore
this field, and no hardware will be generated to access this
column.

Finally, on lines 25-30, the output schema is defined, with
the access mode set to be able to write to the RecordBatch.
For brevity, we have omitted 5 more lines involving saving
the schema and RecordBatch to a file.

After providing Fletchgen with these schemas, we obtain
many files that encompass the whole design as described in
the previous section, corresponding to Fig. 7, but specialized
for the supplied schema. The only thing that the hardware
developer has to do now is implement the kernel, for which
a template was generated. For our example, the template
is shown in Fig. 12b. Note that we have compacted the
template for reasons of brevity, leaving out several rather
detailed signals, and only show the code related to the
foods table’s id field. The interfaces provided by the
template allow the hardware developer to reason about the
tabular data structures they are working with in terms of row
indices, easing the development process.

In Fig. 13a and b, we find the graphical representation of
the design that was generated from the schemas in Fig. 12a.
This is the specialized version of the generic architecture
presented in Fig. 7.

To demonstrate the method of operation, suppose the
kernel implementation requires all food names from the
table. The user would first start the host-side application,
which could be written in any of the software languages
that Apache Arrow and Fletcher support. If we assume
the language is Python, the host-side application for
this example will look like Fig. 11, although line 9
would be replaced with the variable names of the
RecordBatches of this example. Following Fig. 11, the
platform is first initialized on line 5 (note that Fletcher
auto-detects the vendor-specific platform, hence host-side
software is portable across supported platforms). Then,
on line 7, a context is created on this platform for
this specific application. We add RecordBatches to the
context by queuing them on line 9. We then enable the
context, meaning the FPGA accelerator will be able to
access the supplied RecordBatches. For some platforms
(e.g. the supported AWS EC2 platform), this means

any RecordBatches that are read will be transferred to
accelerator on-board memory. For other platforms, the
accelerator can read directly from the host memory (e.g.,
the supported OC-Accel platform). We then continue to
construct the kernel abstraction with the enabled context
on line 15. On line 17, the kernel is started, and on
line 19, we wait for it to finish. Metadata, e.g. Arrow
buffer addresses and RecordBatch dimensions, as well as
control, e.g. starting the kernel and polling for completion,
is abstracted and made vendor-agnostic by the Fletcher run-
time system depicted in Fig. 10. In hardware, metadata
and control information travels over the AXI4 lite MMIO
interface as shown in Fig. 7.

Focusing on the example of obtaining all food names
from the table, after all metadata and control information is
passed, the kernel can use this information to start operating
and issue a command to obtain all data from the relevant
column. Fletchgen has generated a streaming interface
appropriate for string data found in this column, using two
streams; one for lengths, and another for the characters.

We show the simulation waveforms of the access
mechanism in Fig. 14. Note that for brevity we have left
out signals of the kernel component that are unrelated
to the discussion, and have highlighted the main points
of interest in the figures. The RecordBatch metadata is
automatically supplied through the MMIO controller before
the kernel is given the start signal (A). The kernel can
use the foods lasttidx input to know the total size
of the RecordBatch, to prevent reading out of bounds.
However, if the developer wishes to parallelize the kernel,
it is possible to also supply a foods firstidx, such
that each instance of this kernel can operate on its own
part of the input tables and output tables. The kernel
may send a command over the foods name cmd stream
(B) to request the Arrow data, in this case all entries
from the name column. Arrow data will start flowing
into the kernel through the foods name stream, that
supplies string lengths (C), followed by the characters on
foods name chars (D). Note that the first two food
names appear on the character stream.

Starting off with interfaces that make sense w.r.t.
the data structures the developer has to access contrasts
heavily with the normal HDL-flow experience, where
a developer typically starts off with a byte-addressable
memory interface and a memory-mapped I/O interface. This
demonstrates the Fletcher’s ability to face challenge H2 as
described in Section 2.

We demonstrate the ability to fine-tune the generated
interface by making simple modifications to the Arrow
schema. As we can see from Fig. 14, the throughput
of the character stream is relatively low, since only one
character can be handshaked per cycle. Fortunately, the
developer has annotated the field, as shown in Fig. 12a,
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Figure 13 Graphical representation of the generated design resulting from the example schema in Cerata. This is a specialization of Fig. 7, tailored
to implement the interface required for the Arrow Schema as defined in Fig. 12a.

with the stream profiling option. After running simulation
or the real implementation of this kernel, the developer may
study the stream profile to find that the character stream
provides a bottleneck to the whole system. In that case, the
developer may simply annotate the Arrow field with the
previously described option to provide multiple elements

per handshake. Regenerating the design and making slight
modifications to only the kernel will cause a count field
to appear on the stream, as shown in Fig. 15. The stream
now allows to handshake four elements per transfer, with
the count field indicating how many are valid. Note that
the same amount of food names are handshaked as in
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Figure 14 Streaming interface example, accessing the foods name field.

Fig. 14, although rather than taking ten cycles, they are now
handshaked over three cycles, increasing the throughput of
the stream at the cost of additional wires and control logic
to support the wider interface.

Related to development effort, it is hard to properly
quantify the reduction in development effort because of a
large human dimension to such a measurement. To give
a slight indication of the development effort saved, we
could still look at the lines of code that were generated.
From the 30 lines of Python seen in Fig. 12a, Fletchgen
and Vhdmmio generate 6304 lines of VHDL (not counting
blank or comment lines), that are arguably human-readable
and modifiable. This excludes the components that, as
far as Cerata is concerned, are ‘primitive’. The support
library of hardware primitives and ArrayR/W’s amounts to

approximately 30K lines of code. To test a more extensive
design, we have also captured all table schemas of the
TPC-H benchmark suite in 120 lines of Python, resulting
in Fletchgen to generate 33K lines of code necessary to
provide access to all its tables.

Finally, for throughput and area measurements, we refer
the reader to prior work [3]. In this paper, it was shown
that as the number of requested rows from a RecordBatch
grows (as is typical in big data applications), a simulated
ideal memory interface would be utilized between 95-100%
for the read paths (from memory to FPGA) and close to
95% for the write paths (from FPGA to memory). In real
applications presented in [2], designs are shown that are
able to saturate the available system bandwidth through
Fletcher generated interfaces. More applications of Fletcher

Figure 15 Accessing the
foods name field with
MEPH.
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are found in [26, 27], where the focus is on the end-to-end
application performance rather than the generated interfaces
themselves.

6 Discussion

Now that we have discussed the methods used in the
Fletcher framework, and given examples of how users
interact with it, we finally discuss the lessons learned during
the development of the framework and give an outlook on
future work.

6.1 Lessons Learned

We have learned that the interfaces to dynamically sized
and deeply nested data structures can become relatively
complex. An interesting direction of research would be
to investigate methods to standardize streaming hardware
interfaces for complex data structures. Although Fletcher
specifies a streaming interface for tabular data sets, it only
touches the tip of an iceberg, since it only deals with
Arrow data sets, but not other sorts of structures, such
as graphs (on which studies have already started in [19]).
Developers still have to spend a lot of time designing
interfaces between hardware components, not necessarily
communicating through a byte-addressable memory, for
specific data structures as no standardized ‘container’ types
with associated access behavior as known from software
standard libraries exist.

We hypothesize that the level of abstraction of modern
software languages evolves faster than high-level synthesis
tools can catch up with. This causes an increasing gap in the
skill set between at least a part of the target audience of the
tool and the tool itself, especially in the domain of big data
analytics. Focus should be given to the development of new
hardware description languages and techniques that provide
high-level, meaningful abstractions for decades of digital
circuit design and computer architecture knowledge, such
that the hardware development experience can be made as
agile as that of the software development experience without
the loss of expressiveness and performance. Embedded
domain-specific languages provide promising alternatives,
e.g. [21, 23] on the near-term, while valiant efforts to
support designing new HDLs without being embedded in
another language have very recently been presented, e.g. in
[28].

Finally, researchers working on FPGA accelerators in big
data analytics should take care to not only measure kernel
or accelerator on-board computational performance, but
should consider the implications of end-to-end integration
into the intended big data analytics pipeline as well. If the
overhead associated with the data path to the accelerator is

too large (e.g. because of serialization), it can turn out to not
be worthwhile to use the accelerator at all. In economically
successful systems, the data will be following the path of
least resistance.

6.2 Future Work

The following points are of interest in future work on
Fletcher.

– Optimization for large numbers of columns When
designs use a large number of columns, the current
generic architecture is relatively inefficient on the
infrastructure side, since it instantiates an equal amount
of ArrayR/Ws as there are columns. In the future, it is
interesting to investigate how access to data of multiple
Arrow columns could be served by the same ArrayR/W
to decrease the area overhead of the system.

– Dynamically resizable buffers Filter transformations
on columns and tables produce a data-dependent
amount of output data. This means that the size
of the resulting Arrow buffers is unknown at com-
pile/synthesis time. The ability to automatically resize
buffers for Array Writers would therefore be a valuable
addition to the tool chain. This research direction could
lean heavily on reallocation techniques used in soft-
ware systems oriented towards big data analytics, such
as in [29], which can be used in Apache Arrow itself.

– Automated profile-driven architectural optimiza-
tion Since Fletchgen does not have information about
the kernel implementation during infrastructure genera-
tion, static optimization of the generated infrastructure
is limited. As demonstrated in the example of Fig. 12a,
the user has to tag a stream to enable profiling, gener-
ate and run the design, obtain the profile, and manually
modify the Arrow field metadata for the stream to allow
for increased throughput. Note that in the case of the
example, when strings are very small, we have a rela-
tively high number of lengths to handshake, compared
to a low number of characters, and vice versa when
strings are very large. If we want to iterate over all
entries in that column with high throughput, we should
make the length stream wider in the first case, but the
character stream in the second. The characteristics of
the data may therefore dictate what the best hardware
configuration is, hence it is required to profile the sys-
tem during run-time to obtain statistical information
about the characteristics.

While designing the kernel, a developer may not
exactly know in what context the accelerator will be
used, and thus, these statistics will be unknown as well.
Tailoring the design to perform well in one case may
cause lower performance when the accelerator is used
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in another. We envision a system where a developer
designs the kernel not only based on the resulting
streaming interface, but also on the outcome of profiling
the streaming interfaces, allowing them to generate
more optimal designs based on the profile. When an
accelerator is in operation and the profile changes above
a certain threshold, the system can then automatically
re-synthesize the design to achieve higher performance
without a human in the loop. This can be seen as a fine-
grained form of automated design-space exploration
and optimization.

7 Conclusion

In this article, we have discussed challenges for FPGA
accelerators to become widespread alternatives to existing
computational solutions in the domain of big data analytics.
We have stipulated three challenges from the software
integration side: complex run-time system, in-memory
layouts of data sets unfriendly to hardware implementations,
and (de)serialization overhead. On the side of designing
FPGA accelerators, we discussed three challenges as
well: a relative lack of accelerator platform-agnostic
open-source tooling geared towards an HDL style flow,
a high design effort because of a lack of interfaces
tailored towards the data structure needing to be accessed,
and a high design effort because the need to design
a large amount of infrastructure. We have discussed
the Fletcher framework that aims to deal with these
challenges. Fletcher is built on top of Apache Arrow,
providing a common, hardware-friendly in-memory format,
allowing developers to communicate large tabular data sets
between over eleven software languages without the need
for copies, preventing (de)serialization overhead. Fletcher
adds hardware accelerators to the list. Several low-level
hardware components were designed to deal with the
mentioned challenges for table columns, providing easy-to-
use, high-performance interfaces to hardware-accelerated
kernels. The lower-level components are combined into
a larger design, based on a generic architecture for
FPGA accelerators that have tabular inputs and outputs.
Through an extensive infrastructure generation framework,
specialized, data type-driven specializations of the generic
architecture are generated, automating the tedious work
of infrastructural design. The infrastructure generation tool
made specifically for Arrow is built on top of a generic
C++17 structural hardware construction library called
Cerata, and on an MMIO controller generator framework
called Vhdmmio. Developers can focus on the design of
their kernels that are supplied with easy-to-use and high-
performance hardware interfaces. The Fletcher toolchain
and run-time libraries drastically reduce the design and

integration effort of FPGA accelerators into big data
analytics pipelines while allowing the tabular data structures
to be accessed at interface bandwidth.
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Jääskeläinen, P., Kadlec, J., de Alejandro, M.M., Palumbo, F.,
Peeren, G., et al. (2019). The FitOptiVis ECSEL Project: Highly
efficient distributed embedded image/video processing in cyber-
physical systems. In Proceedings of the 16th ACM international
conference on computing frontiers, ser. CF ’19 (pp. 333–338).
New York: Association for Computing Machinery. [Online].
Available: https://doi.org/10.1145/3310273.3323437.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

586 J Sign Process Syst (2021) 93:565–586

https://doi-org.tudelft.idm.oclc.org/10.1145/3282307
https://doi-org.tudelft.idm.oclc.org/10.1145/3282307
http://drops.dagstuhl.de/opus/volltexte/2019/10550
http://drops.dagstuhl.de/opus/volltexte/2019/10550
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/google/flatbuffers
https://arrow.apache.org/
https://doi-org.tudelft.idm.oclc.org/10.1145/3316279.3316284
https://doi.org/10.1145/3310273.3323437

	Generating High-Performance FPGA Accelerator Designs for Big Data Analytics with Fletcher and Apache Arrow
	Abstract
	Introduction
	Background
	Hardware Design Challenges
	Big Data System Integration
	Apache Arrow
	Fletcher
	Related Work

	Hardware Internals
	Arrow Columnar In-memory Format
	Vendor-Agnostic Streaming Library
	BufferReaders/Writers
	Arrays

	Fletcher Toolchain
	Generic Fletcher High-Level Architecture
	Fletcher Tool Chain
	Cerata
	Fletchgen
	Run-Time Integration
	Simulation


	Examples
	Discussion
	Lessons Learned
	Future Work

	Conclusion
	References


