
Delft University of Technology
Faculty Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

The second eigenvector of the Google matrix and
its relation to link spamming.

Report for the
Delft Institute of Applied Mathematics

as part of

the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

ALEX SANGERS

Delft, the Netherlands
July 2012

Copyright c© 2012 by Alex Sangers. All rights reserved.

BSc report APPLIED MATHEMATICS

“The second eigenvector of the Google matrix and its relation to link spamming.”

ALEX SANGERS

Delft University of Technology

Thesis advisor

Dr.ir. M.B. van Gijzen

Other members of the graduation committee

Prof.dr.ir. C. Vuik Dr. J.L.A. Dubbeldam

Dr. J.G. Spandaw

July, 2012 Delft

Contents

1 Introduction 6

2 The Google Matrix 7
2.1 Example . 9
2.2 Solving the eigenvalue problem . 9
2.3 The second eigenvalue . 11

3 Test problems 12
3.1 Small test problem . 12
3.2 Large test problems . 13

4 Introduction to link spamming 14
4.1 Introduction to energy . 15
4.2 Method 1 . 16
4.3 Method 2 . 17
4.4 Testing method 2 on test problems . 18

5 Detecting link spamming 18
5.1 The second eigenvector . 19

5.1.1 The Cesàro sum . 20
5.1.2 Example . 21
5.1.3 Calculation of the eigenvector from the canonical form 23

5.2 Structure of irreducible closed subsets . 24
5.3 Other structures . 25

6 Algorithms for computing the second eigenvector 25
6.1 The block power method . 25
6.2 Direct solution . 27
6.3 Adjusting the power method . 28

6.3.1 Simple power method on matrix P . 28
6.3.2 Adaptation to Moler’s power method . 28
6.3.3 Choosing a starting vector with sum equal to zero 29

6.4 Tarjan’s algorithm . 30
6.4.1 Tarjan’s algorithm and detection . 31

6.5 Cesàro sum . 32
6.6 Numerical results . 32
6.7 Some observations . 35

7 Conclusion 35

A MATLAB 37
A.1 Spam detection algorithms . 37

A.1.1 blockpower.m . 37
A.1.2 direct.m . 38
A.1.3 simpleP.m . 38
A.1.4 powerP.m . 39
A.1.5 startvector.m . 40
A.1.6 tarjan.m . 40

4

A.1.7 cesvec.m . 41
A.2 Other algorithms . 41

A.2.1 addpromo.m . 41
A.2.2 Cesaro.m . 42
A.2.3 detecttarjan.m . 42
A.2.4 Ptwithoutdangling.m . 43

5

1 Introduction

As the web expands every year, so does the demand for efficient search engines. The last decade
millions of websites have been launched with various subjects and of varying quality. Different
search engines try to bring order to the web and help people to find for what they are looking
for.
We will have a closer look at the algorithm proposed by Larry Page and Sergey Brin, better
known as Google PageRank, or short: Google. For more background information about the
founding of Google we refer to [3].

This report studies Google’s search algorithm in mathematical context and in partical the
problems of link spamming on the web. Link spamming (or short: spamming) is defined by
deliberately abusing the structure of a search algorithm to gain an unfairly high ranking.

Google PageRank attempts to return the best ranking of websites when searching on the web.
Intuitively, PageRank models a random web surfer. First, the web surfer starts at a random
website. The web surfer will randomly follow one of the outgoing hyperlinks at the website with
a chance p and switch to a totally random website with chance 1− p. This jump behaviour can
be seen as the chance that the web surfer gets tired of following links and will choose another
website. The web surfer does not mind visiting websites more than once and will never stop
visiting websites. The PageRank is the distribution of the visiting frequency of each website.
The PageRank of a website is the probability that the random web surfer chooses to view that
website at a random time.
The description above is an intuitive explanation of a mathematical model known as a Markov
chain. The PageRank is the first eigenvector of this transition matrix.

The question that we will try to answer is the following one:
How is the second eigenvector of the Google matrix related to link spamming?

To be more specific, we cite Haveliwala [4]: “The eigenvectors corresponding to the second
eigenvalue are an artifact of certain structures in the web graph. (. . .) Analysis of the nonprin-
cipal eigenvectors of A may lead to strategies for combating link spam.” We will try to find the
structure of the second eigenvectors and find a method to calculate them.

This report contains an explanation of the Google Matrix and different methods for solving
Google’s eigenvalue problem in Section 2. Furthermore, the second eigenvalue and its corre-
sponding eigenvector are described in relation to link spamming in Sections 4 and 5. Different
algorithms for finding the second eigenvectors are described in Section 6.

An important remark is that the terms ‘websites’, ‘web pages’ and ‘nodes’ as well as the
terms ‘hyperlinks’ and ‘web links’ are used interchangeably.

One last remark about notation: in this report the i-th eigenvector is written as x(i) and the
j-th element of vector x is written as xj . We will be noting a submatrix of matrix A with Aij

and an element with aij .

6

2 The Google Matrix

We introduce W , a set of the web pages, that are connected to each other with hyperlinks,
i.e., incoming and outgoing web links. Another mathematical representation of W is a directed
graph, with a (directed) connection if there is a (directed) hyperlink between the nodes of the
graph.

Let n be the number of websites. Further, let G be the n-by-n connectivity matrix with
gij = 1 if there is a hyperlink from page j to i and gij = 0 otherwise. One could say that G is
the matrix representation of W . In general, when looking at the current web, G is a very large,
sparse matrix, because W is huge and relatively few hyperlinks exist between the websites.
When building connectivity matrix G there is a choice to be made. Do we allow self-referencing
nodes (so gii = 1)? This answer is different for every research and we chose to follow [1] and set
this diagonal to zero per definition, i.e., self-referring hyperlinks are removed.

We introduce cj as the column sums of G, that is cj =
∑

i gij . Note that cj is the amount
of outgoing hyperlinks of website j. We will also call this the out-degree of page j.

Surfing the web can be modelled as a Markov process, where one reaches one state from
another state by following a hyperlink. Haveliwala [4] makes use of the row-stochastic matrix P.
Matrix P can be seen as a Markov matrix. We prefer to work with column-stochastic matrices
for now, so let us formulate P (in terms of its elements):

pij =

{
gij/cj if cj 6= 0,

1/n if cj = 0.
(2.1)

Note that PT is column-stochastic. We will call nodes without outgoing hyperlink dangling
nodes. Thus, looking at (2.1), dangling nodes have a uniform chance to go to another node.
From now on, we will call nodes without outgoing hyperlink dangling nodes. This is a very
important observation, because this means that every dangling node is not a dead end, but
actually a ‘distributor’. See Figure 1 for a graphic representation of the change that a simple
graph would make. For our own convenience, we will leave out the striped connections, as seen

Figure 1: Changing the dangling nodes to ‘distributors’ when defining PT.

in Figure 1, in all following figures.

The column-stochastic matrix PT has some shortcomings. Intuitively, a surfer will not
always follow links, but sometimes ‘jump’ to another website by random choice. PT does not
model this jump behaviour and furthermore, PT has some mathematically limitations. Let us
sum up some of these disadvantages of PT:

1. The matrix PT is reducible in general and therefore, its first eigenvectors are not neces-
sarely unique. Thus, we have several ‘PageRank vectors’.

7

2. As a consequence, the computation of any first eigenvector can be difficult (also in terms
of convergence).

3. It is likely that most elements of all first eigenvectors are zero, which is undesirable.

Therefore, we shall discuss a new matrix which is column-stochastic (and irreducible). This
matrix should remedy all shortcomings of PT. Let us say that we will follow an outlink with
chance p and switch to a random page with chance 1 − p. Typically, p is chosen between 0.85
and 0.99 and often equal to 0.85 ([1],[3]). In this report we will use p = 0.85 for all test problems.

Let A be the n-by-n column-stochastic matrix with elements:

aij =

{
pgij/cj + (1− p)/n if cj 6= 0.

1/n if cj = 0.
(2.2)

Recognize that the following important equality holds:

A = pPT +
1− p
n

E, (2.3)

with E the n-by-n matrix of all ones. Also, recognize that if page j is a dead end (dangling
node) then each page has a chance 1/n (= p/n + (1 − p)/n) to be chosen. Thus, if column
aj = e/n, with e the n-vector of ones, then page j is a dangling node.

Furthermore, A is the transition probability matrix of the Markov chain. All elements are
greater than zero and equal or smaller than one and the sum of its columns are equal to one.
We will explain this more extensively later this section.

The PageRank is determined as the eigenvector of the dominant eigenvalue of the following
system:

Ax(1) = λ1x
(1). (2.4)

Intuitively, when recalling the random web surfer from Section 1, the eigenvector x(1) is the
distribution of the visiting frequency for each node. The more often the surfer passes node j,
the higher its PageRank will be.

We say that x(1) is the unique dominant eigenvector corresponding to the dominant eigen-
value λ1 = 1. To show that λ1 = 1 exists and is unique, we use the Perron-Frobenius theorem
([13]) for the Markov matrix A.

Theorem 2.1. (Perron-Frobenius) For any real square matrix A with positive entries, its unique
Perron-Frobenius eigenvalue λ1 satisfies the following inequalities:

min
j

∑
i

Aij ≤ λ1 ≤ max
j

∑
i

Aij . (2.5)

The proof is given as an exercise in [13] (Exercise 8.2.7). As we know, all column sums of A
are equal to one, so we can draw the conclusion that

x(1) = Ax(1) (2.6)

has a unique solution within a scaling factor. If this scaling factor is chosen such that
∑

i x
(1)
i = 1

(or: ||x(1)||1 = 1), then x(1) is the stationary stochastic vector of the Markov chain and also,
x(1) is the Google PageRank.

8

2.1 Example

To illustrate the theory, we present a simple example. To find the stationary vector x(1) of the
Markov chain, we introduce a small representation W of the web in Figure 2. We use p = 0.85,
as we will do in all test problems. First, we construct connectivity matrix G:

Figure 2: Directed graph with n = 4 and W = {1, 2, 3, 4}.

G =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0

 , (2.7)

and then calculate column-stochastic PT with (2.1)

PT =


0 0 1

2
1
4

1 0 0 1
4

0 1 0 1
4

0 0 1
2

1
4

 . (2.8)

We can now calculate A = pPT + 1−p
n E (or directly with (2.2)):

A =


3
80

3
80

37
80

1
4

71
80

3
80

3
80

1
4

3
80

71
80

3
80

1
4

3
80

3
80

37
80

1
4

 . (2.9)

Note that all columns of matrices PT and A sum up to one and all elements of the last column
are equal to 0.25 since this is a dangling node. Then, calculating the first eigenvector of A (in
MATLAB for example) will return the following PageRank vector

x(1) =


0.214
0.265
0.318
0.214

, and its corresponding so-called ranking is


3
2
1
3

 . Note that node 1 and 4

have equal ranking.

2.2 Solving the eigenvalue problem

The most common way to solve a large system in (2.6) is the power method. The power method
starts with a guess u0 and then we iteratively compute uk+1 = Auk. After each iteration we

9

scale uk with ||uk||1 = 1 to make sure uk sums up to 1 and thus is stochastic. For now this
scaling is ignored because we are only interested in the direction of uk. We will iterate until
um satisfies the convergence criterion for some large enough m and then the stationary vector
of the Markov chain is given by x(1) = u∞ ≈ um.

Every iteration consists of a matrix-vector multiplication and after k iterations the algorithm
returns uk = Aku0. We suppose that A is diagonalizable.

Theorem 2.2. Suppose that A has eigenvalues λ1, . . . , λn with a full set of associated eigenvec-
tors x(1), . . . ,x(n) and that u0 can be expressed as a linear combination of eigenvectors. Then
the following equation holds:

Aku0 = uk = c1λ
k
1x

(1) + . . .+ cnλ
k
nx

(n). (2.10)

Furthermore, we suppose that we have a unique largest eigenvalue. Thus |λ1| > |λ2| ≥
. . . ≥ |λn|. Then the component c1λ

k
1x

(1) will gradually become dominant, as one can see when
rewriting (2.10).

uk

λk1
= c1x

(1) + c2

(
λ2
λ1

)k
x(2) + . . .+ cn

(
λn
λ1

)k
x(n). (2.11)

The convergence factor is determined by the second most dominant term, which is c2

(
λ2
λ1

)k
x(2)

and the rate of convergence is equal to |λ2|/|λ1|.

To be more specific, we know that λ1 = 1 and thus that λ2, · · · , λn < 1, so we can write
(2.11) as

uk = c1x
(1) + c2λ

k
2x

(2) + . . .+ cnλ
k
nx

(n)

= c1x
(1)(as k →∞),

(2.12)

with corresponding rate of convergence equal to |λ2|.

We can compute the PageRank by writing the matrix A (see (2.2)) as

A = pGD + ezT (2.13)

with

djj =

{
1/cj if cj 6= 0

0 if cj = 0,
(2.14)

zj =

{
(1− p)/n if cj 6= 0

1/n if cj = 0,
(2.15)

and e the n-vector of all ones. The matrix ezT accounts for the random jumps to websites.

In practice the matrix A will never be formed explicitly, as only forming such a matrix will
take too much time and storage. Moler [1] described this variant of the power method without
forming the Markov matrix A and preserving sparsity of G, by directly repeating the statement
x = pGDx + ezTx. We refer to [1] or [11] for more information.

A variant of the power method is the inverse power method, which calculates A = pGD +
1−p
n ezT and then x(1) = (I−A)−1e. Theoretically, I−A is singular, but in practice (due

to roundoff errors) this matrix is not exactly singular. Solving x(1) = (I−A)\e will blow up

10

x(1), but in the right direction and scaling x(1) back to a stochastic vector gives good results ([1]).

An alternative way to compute the PageRank is by rewriting (2.6) as a linear system

(I− pGD)x(1) = βe (2.16)

with β = zTx(1). This is the direct solution of the inverse power method. Note that we do not
know the value of scalar β, but we take β = 1 so the equation can be solved explicitely. Then

x(1) can be rescaled so that
∑

i x
(1)
i = 1. Though, this method is costly and only applicable on

small test problems.

2.3 The second eigenvalue

Until now only the dominant eigenvalue has been taken into account. The power method solely
reveals the dominant eigenvalue with its dominant eigenvector and only these results show us
the PageRank in the basic algorithm.
Before we discuss the second eigenvalue, let us give some definitions.

Definition 2.3. A set of states S is a closed subset of the Markov chain corresponding to PT

if and only if i ∈ S and j /∈ S implies that pji = 0.

Intuitively, Definition 2.3 tells us that a Markov chain is closed if it is not possible to get
out of subset S as soon as you are in it. We call such a subset a rank sink, or short sink. It is
important to remember that each dangling node is redefined as a ‘distributor’ in PT. This means
that any subset containing a dangling node cannot be a sink and in particular, any dangling
node cannot be a sink.
Now we can define irreducible closed subsets ([4]).

Definition 2.4. A set of states S is an irreducible closed subset of the Markov chain corre-
sponding to PT if and only if S is a closed subset, and no proper subset of S is a closed subset.

We assume that the web contains many irreducible closed subsets, so this theorem holds for
our matrix PT when big enough ([4]).

Having discussed the definitions above, let us have a look at the second eigenvalue. Haveli-
wala [4] has done research on the second eigenvalue, i.e., the second-largest eigenvalue λ2. As
mentioned before, the dominant eigenvalue is λ1 = 1 and its corresponding eigenvector is the
PageRank-vector x(1). The results of Haveliwala make use of the matrix P, recalling Equation
2.1, the elements of the column-stochastic matrix P are defined by:

pij =

{
gij/cj if cj 6= 0.

1/n if cj = 0.
(2.17)

We present the following theorem, found in [4]:

Theorem 2.5. The second eigenvector x(2) of A is orthogonal to e: eTx(2) = 0.

Here, e is the vector of all ones. Theorem 2.5 can be found in [4] as Lemma 2 and with the
corresponding proof.

As a consequence of Theorem 2.5, eeTx(2) = 0 and thus, the second eigenvector of A is only
dependent of PT, recalling that A = pPT + 1−p

n E. This results in the following theorem that
can be found in [4] and [7]:

11

Theorem 2.6. If PT has at least two irreducible closed subsets, then the second eigenvalue of
A is λ2 = p, with 1− p the jump chance as introduced in Section 1.

The prove is given in [4] and [7]. This result has some implications for the PageRank
algorithm according to [4]. A few are listed below:

• The rate of convergence of the power method is equal to |λ2||λ1| = p.

• The greater the so called eigengap |λ1| − |λ2|, the more stable the stationary distribution
of the Markov chain.

• The eigenvectors corresponding to λ2 are an artifact of certain structures in the web. Link
spamming (deliberately abusing the structure of Google to gain a higher ranking) could
be detected through these eigenvectors.1

Note that λ1 = 1 > λ2 = p ≥ . . . ≥ |λn| ≥ 0. We mentioned before that often p = 0.85 is
chosen. A higher p would give more accurate results (a fair PageRank). However, lowering p
would provide faster convergence and a more stable distribution. Basically, there is a certain
trade-off in the value of p and some balanced value has to be chosen. Emperically, this value
p = 0.85 performs well, although the current value used by Google is unknown and research has
been done to find a better-performing value ([8]).

We examined the influence of irreducible closed subsets in the web. It is stated that the
second eigenvalue is equal to p if we have at least two irreducible closed subsets in W . To
illustrate this, we introduce graph G1. Constructing the corresponding matrix A and calculating

Figure 3: Simple graph G1 with two irreducible closed subsets.

its eigenvalues (using for example MATLAB) gives us λ2 = 0.85, as we expected.

3 Test problems

3.1 Small test problem

We created our own small test problem. We introduce connectivity matrix Gtest. We will use
Figure 4 in later sections to investigate link spamming. Note that Wtest has one irreducible
closed subset ({1, 2}) and two dangling nodes ({6},{7}).

A variant of Gtest is Gm2, which will be introduced in Section 4.3.

1This, of course, is very interesting for our research and gives us a motivation to look at the second eigenvector.

12

Figure 4: Directed graph Wtest corresponding to the connectivity matrix Gtest.

3.2 Large test problems

Besides the small test problem we will use G9914 and G2759, publicly available at [16]. We
should note that the source provides us (for both n = 9914 and n = 2759) with a matrix A
and P. Before we use these test problems, we should further investigate the structure of A and P.

If we look at the upper left corner of both matrices A and P, we note that the same elements
of the matrices are filled. However, all elements of A are equal to one or zero, where P has el-
ements between zero and one. Thus, A is the connectivity matrix and P is its stochastic matrix.

Now, a small test tells us that P is row-stochastic and thus, (because the same elements are
filled), A is defined as aij = 1 if there is a hyperlink from page i to j and aij = 0 otherwise. We
defined our connectivity matrix G with i and j switched. Furthermore, another small test tells
us that A has self-referring hyperlinks (i.e., its diagonal contains ones). Therefore, we define
G9914 (and similarly G2759) as follows:

G9914 = A’ - diag(diag(A));

See Figure 5 for the spy-plot of G9914 and G2759. Note that both G9914 and G2759 are
very sparse in general and have some sort of dense ‘diagonal’, although its actual diagonal is
defined zero per definition.

Furthermore, note that G9914 has quite some dangling nodes between 6000 and 7000, visible
through the empty columns. Also, G2759 has a dense block in upper left corner.

Note that P from [16] is not defined as in this report, because the self-referring hyperlinks
should have been removed from the corresponding A (or in this report: G). Therefore, only
G2759 and G9914 are used and other corresponding matrices are calculated by using for example
Ptwithoutdangling.m as described in Appendix A.2.4.

A last note on test problems G9914 and G2759: with the MATLAB algorithm tarjan.m (see
Appendix A.1.6) we tested to see whether there are irreducible closed subsets. We found one
such subset in G2759, that is {1578, 1579, 1580, 1581} and 175 subsets in G9914. However, these
results can be unreliable. Adding an extra irreducible closed subset to G9914 (which should

13

(a) G9914. (b) G2759.

Figure 5: Two spy-plots using spy(.)

make a total of 176) gave only one irreducible closed subset.
Thus, unfortunately, we cannot be sure of the structure of these two test problems.

4 Introduction to link spamming

There are companies (such as SearchKing), also called link farms, which solely aim to increase
the PageRank of its customers. Those customers pay to achieve a higher PageRank in order to
reach more customers. One way to achieve a higher PageRank is to use other websites which
refer with hyperlinks to one (group of) website(s). This is called link spamming.

It is Google’s goal to filter out as much spam as possible, since the quality of a search algo-
rithm mainly depends on a fair search result. This battle between link farms and Google will last
forever and this is one of the reasons why Google made its current PageRank closed for public.
Most recent literature limited itself to the basic (or slightly extended) PageRank algorithm. The
only thing we know is that Google still does use the PageRank algorithm, but we do not exactly
know how it influences the PageRank score or how it adapted to recent developments. Google
needs to be one step ahead.

As mentioned before, the most significant way to achieve higher PageRank is to increase
the number of important inlinks. Furthermore, Bianchini ([5],[6]) found more tools to boost
PageRank. Let us first introduce some terminology:
The target website or target page is the website whose PageRank we want to increase.
A target group is a group of websites which we include to get a higher PageRank for our target
website and allow to get a higher PageRank itself.

We cite from [5] (pages 2-3):

• The same content divided into many small pages yields a higher score than if it is concen-
trated into a single large page.

• Sinks should be avoided or carefully limited.

14

• External hyperlinks2 must be limited and must belong to pages with many internal hy-
perlinks and/or with small PageRank.

• Pages that point to sinks should have a small score and/or many internal hyperlinks.

Before going in-depth on link spamming techniques, let us give some information about the
concept of energy.

4.1 Introduction to energy

To give an alternative point of view when looking at the PageRank, we follow Bianchini [6]
and introduce energy. Energy is a measure for the PageRank: the more energy a website has,
the higher its PageRank. This point of view allows us to provide additional motivations and
explanation. The energy of a set WI of websites can be calculated in the following way:

EI = |I|+ EinI − EoutI − EdnI (4.1)

where
|I|: amount of pages in WI ,
EinI : energy from outside WI going inside WI ,
EoutI : energy from inside WI going outside WI ,
EdnI : energy going to dangling nodes inside WI .

When finding an efficient method for increasing the PageRank of a node, we neglect having
influence on EinI (i.e. we assume we cannot find significant websites that will refer to our web-
site). However, we do have influence on |I|, EoutI and EdnI .

A typical structure to collect as much energy as possible is to have many websites, which all
link to one website, whose PageRank increases. We introduce the following definition:

Definition 4.1. Within the n-by-n connectivity matrix G, node j is called a promotion node
for node k (6= j) if for all i = 1, . . . , n the following equation holds:

gij = gji =

{
1 if i = k,
0 else.

Deriving from Definition 4.1, we conclude that a node is a promotion node for node k if it
has one incoming and one outgoing hyperlink, only to and from node k. Recalling Figure 4, we
recognize that node 1 is a promotion node for node 2 and this is the only promotion node within
Wtest.

See Figure 6 (similar to figure 7 in [6]). Intuitively, random surfers spend most time in node
1 having a large number of internal paths. In practice, node 1 could also have some external
links or links to dangling nodes, but this structure ensures that the chance is small that the
random surfer selects one of these links. Therefore, little energy is lost (and only) through node
1. Moreover, lots of energy is stored in this structure containing many websites, see (4.1).

To illustrate different methods how one can increase the PageRank of a website, we recall
Gtest, graphically recalled in Figure 7. Our target website is node 4 (i.e. our goal is to increase

2External hyperlinks can be descripted as hyperlinks that refer outside the target group. Internal hyperlinks
are hyperlinks referring within the target group.

15

Figure 6: Collecting energy to node 1.

Figure 7: Test problem Gtest.

the PageRank of node 4). The current PageRank of Gtest is given by

x(1) =



0.318
0.332
0.087
0.078
0.061
0.054
0.070


.

From now on, we will focus on the PageRank for node 4. In this ‘focused’ PageRank we
include the score for node 4 and the two highest nodes (excluding node 4), so in this case

x
(1)
{4,2,1} =

(
0.078 0.332 0.318

)T
.

We will now introduce two link spamming methods to increase the PageRank for node 4 of
the test problem in Figure 7. For now, the target group is solely our target website 4.

4.2 Method 1

An effective way to increase your PageRank is to add promotion nodes. Speaking in terms of
energy, as we add more promotion nodes, we have a higher amount of energy. It will increase the
factor |I|, see (4.1). Also, removing dangling nodes is beneficial, for it reduces EdnI . Remember
that a dangling node actually is a ‘distributor’, recalling Figure 1. In practice, we would (if
possible) replace the dangling node with a promotion node, but with the same content.

16

Now, to increase the PageRank of node 4, we removed the dangling node and included three
promotion nodes, see Figure 8. The (focused) PageRank for node 4 is

Figure 8: Method 1: Changes to be made to improve the PageRank for node 4.

x
(1)
{4,2,1} =

(
0.228 0.213 0.201

)T
. Note that the target group is set to {4, 7, 8, 9} and that

only node 4 managed to reach the top 3.

4.3 Method 2

Summarizing all conclusions of Section 4.1, the best way to increase your website is to create an
irreducible closed subset. To do this, first remove all dangling nodes and external hyperlinks and
then add sufficient promotion nodes. We refer to Figure 9, where we removed the dangling node
and external hyperlink to node 3 and included one promotion node. The (focused) PageRank

Figure 9: Method 2: Changes to be made to optimally improve the PageRank for node 4.

for node 4 is x
(1)
{4,7,2} =

(
0.246 0.235 0.209

)T
. Note that the target group is set to {4, 7}

and that the target group is top-ranked. We will call the corresponding connectivity matrix of
Figure 9 from now on Gm2. This matrix will become important, as it is a small test problem
with two irreducible closed subsets.

The difference between method 1 and method 2 is that all outgoing hyperlinks are removed
with method 2. Intuitively, when using method 2 we see that all outgoing energy is minimized

17

to zero. Formally, we recognize that only method 2 creates an irreducible closed subset. Note
that removing the dangling nodes is crucial for creating an irreducible closed subset, because we
defined the dangling nodes in PT as so-called ‘distributors’ (see Figure 1).
Note that method 2 is far more efficient, because only one extra promotion node is required
to sufficiently increase the PageRank of node 4 and furthermore, the target group gained more
PageRank.

We will focus on detecting method 2, or in general the detection of: ‘link spamming using
irreducible closed subsets’.

4.4 Testing method 2 on test problems

We have already tested method 2 on Gtest with target node 1 and we obtained Gm2.

Let us try to promote the first website in G2759. We shall use the focused PageRank includ-
ing the target website 1 and the two highest PageRanks (excluding the target website). The

current score for G2759 is x
(1)
{1,54,786} = 10−1

(
0.018 0.195 0.132

)T
.

We will use method 2 to increase the PageRank of node 1 with the MATLAB algorithm
addpromo.m (see appendix A.2.1). Therefore, we introduce 80 promotion nodes for node 1. The

PageRank score is now given by x
(1)
{1,54,786} = 10−1

(
0.191 0.189 0.127

)T
. Note that we

need to add 2.9% of the initial amount of nodes to obtain the highest PageRank for node 1. We
will call G2759 with the 80 promotion nodes from now on G2759+80.

Now, we will do the same for the fourth website3 in G9914. The current focused PageRank is

x
(1)
{4,2264,8059} = 10−2

(
0.055 0.799 0.594

)T
. Adding 80 promotion nodes give x

(1)
{4,2264,8059} =

10−1
(

0.079 0.078 0.059
)T

. This time we needed only 0.8% promotion nodes. We will call
G9914 with the 80 promotion nodes from now on G9914+80.

5 Detecting link spamming

First, we list measures or typical structures that can be used to limit the influence of spam. One
should see this short list as a motivation and expectation for later sections.

1. The second eigenvectors have a certain structure and spam could be detectable through
this structure ([4], page 6).

2. A stochastic personalization vector v could be helpful to control spamming ([8], page 16).
This vector v is a variant of the n-vector e of all ones. Instead, v would describe a certain
class of surfers. It is important to note that [8] uses row-stochastic vectors and matrices.
Introducing v would replace the jump part 1−p

n eeT with (1− p)veT, with v a stochastic
vector.

As mentioned in Section 1 we have indications that the second eigenvectors are an artifact for
detecting link spamming ([4]). Generally, we will consider the second eigenvectors and mostly

3Trying node 1 gave bad results when using pagerankpow.m of Moler [1]. The initial PageRank of node 1 is
(relatively) very low and a lot of promotion nodes are needed. Maybe the large irreducible closed subset causes
a failure.

18

ignore the personalization vector for this report. Furthermore, we will limit ourselves to link
spamming method 2 in Section 4.3, which is an efficient technique and creates an irreducible
closed subset.

5.1 The second eigenvector

We will look at the second eigenvector of A to retrieve some information about G. If G has
nodes within an irreducible closed subset, than these nodes will absorb a lot of energy. Recalling
Figure 1, it is good to remember that a node is not in an irreducible closed subset as soon as
there is a hyperlink to a dangling node.
First, we give a result of [4]:

Lemma 5.1. The second eigenvector x(2) of A must be an eigenvector y(i) of PT, and the
corresponding eigenvalue is γi = λi/p.

The proof is given in [4] (Lemma 4).
We assume that the second eigenvalue of A is λ2 = p and thus x(2) is an eigenvector of PT

corresponding to the eigenvalue γ1 = 1 of PT. We know that γ1 = 1 exists, because of the
following lemma from [12] on page 126:

Lemma 5.2. The multiplicity of the eigenvalue 1 for PT is equal to the number of irreducible
closed subsets of PT.

The lemma’s above provide us the information that looking at the second right eigenvector
of the column-stochastic matrix A is equivalent to looking at the first left eigenvector of the
row-stochastic matrix P. Therefore, we shall take a closer look at P, its so-called canonical form
for reducible matrices and its first left eigenvector corresponding to γ = 1.

Let l be the number of irreducible closed subsets of P. We know that the row-stochastic
matrix P is reducible in general and we can rewrite P in canonical form ([13]) by renumbering
the nodes. In general, each reducible matrix can be written in the following form:

P ∼
(

T11 T12

0 T22

)
=



P11 P12 · · · P1r P1,r+1 P1,r+2 · · · P1m

0 P22 · · · P2r P2,r+1 P2,r+2 · · · P2m
...

. . .
...

...
... · · ·

...
0 0 · · · Prr Pr,r+1 Pr,r+2 · · · Prm

0 0 · · · 0 Pr+1,r+1 0 · · · 0
0 0 · · · 0 0 Pr+2,r+2 · · · 0
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · Pmm


, (5.1)

where l = m − r and each P11, . . . ,Prr is either irreducible or [0]1×1, and Pr+1,r+1, . . . ,Pmm

are irreducible. First, note that each Pij is a submatrix of the n-by-n matrix P. Let us call the
dimension of the block T11 r̃-by-r̃ and thus, the dimension of the block T22 is (n− r̃)-by-(n− r̃).

The subset of states P11, . . . ,Prr are called transient and once left, a transient class cannot
be re-entered. The subset of states Pr+1,r+1, . . . ,Pmm are called ergodic (irreducible closed
subsets) and once entered, an ergodic class cannot be left. The subset T12 describes the prob-
ability of transitioning from some transient state to some ergodic state. Note that within an
ergodic class the state vector could oscillate, but the chain will be trapped in this ergodic class

19

forever([13], pages 695-700).

We are interested in the first left eigenvector(s) of P and using its canonical form provides
us more insight in the structure of P. There are several ways to determine these eigenvectors
and the different approaches are a matter of taste. We shall discuss two of them.
In Section 5.1.1 we will discuss the Cesàro sum and its application to P. We shall also provide
an example in the section thereafter. Next, we will discuss the calculation of the eigenvector of
P in canonical form using linear algebra in Section 5.1.3.

5.1.1 The Cesàro sum

In this section we will discuss the Cesàro sum, which can intuitively be explained as the average
distribution matrix. Because we do not necessarily have a unique first eigenvector for P as
explained later in this report, we will search for the matrix C that send any random vector to
some eigenvector of P. The matrix C is the Cesàro sum, defined as

C = lim
k→∞

I + P + · · ·+ Pk−1

k
. (5.2)

Let ỹT
r+j be the left eigenvector for Pr+j,r+j (1 ≤ j ≤ l) corresponding to γ = 1. All elements

of ỹT
r+j within block Pr+j,r+j are strictly positive and all other elements are ‘padded’ with zeros

to appropriate size.

Furthermore, we know that the uniform vector er+j is the right eigenvector for each Pr+j,r+j

(1 ≤ j ≤ l), because P is row-stochastic and 1 is an eigenvalue of each irreducible Pr+j,r+j.

We will use the Cesàro sum instead of limk→∞Pk to determine the eigenvector yT, because
we are not sure whether the ergodic class is periodic. In other words, the distribution in an
irreducible closed subset can alterate and furthermore, an eigenvector of P corresponding to
γi = 1 is a linear combination of the eigenvectors of Pr+j,r+j padded with zeros to appropriate

size. The Cesàro sum will ensure us convergence. For example, Pjj =

(
0 1
1 0

)
could be an

irreducible closed subset, but its distribution would alterate between its two states. If we use
the power method yT

k+1 = yT
k Pjj for any random stochastic starting vector uT, then every even

(respectively odd) iteration will be the same, but no convergence would occur. However, the
long-run fraction of time that the chain spends in each state will have an average distribution:

yT = uTC = uT

(
0.5 0.5
0.5 0.5

)
=
(

0.5 0.5
)
.

Note that the Cesàro sum is a unique matrix with an average distribution, but that in general
the randomly chosen vector uT does still have influence on the result (although is does not have
influence in this example).

The limit of the Cesàro sum exists for all stochastic matrices ([13], page 698) and, again
citing [13], the long-run fraction of time that the chain spends in state Sj is yj , which is the jth

component of the Cesàro limit or, equivalently, the jth component of the left Perron vector for
P. We will now calculate the limit of the Cesàro sum for matrix P:

lim
k→∞

I + P + · · ·+ Pk−1

k
=

(
0 (I−T11)−1T12E
0 E

)
= C, (5.3)

20

where

E =

 er+1ỹT
r+1

. . .

emỹT
m

 . (5.4)

Here, C is the projector onto Null(I−P) along Range(I−P) ([13], page 698).

Now, for the Cesàro sum we know that for any initial vector uT the following equation holds

yT = lim
k→∞

uT I + P + · · ·+ Pk−1

k
= uTC =

(
uT
1 , uT

2

)(0 (I−T11)−1T12E
0 E

)
=
(

0, uT
1 (I−T11)−1T12E + uT

2 E
)
.

(5.5)

Here, the components of yT provide the expected proportion of time the chain spent in each
state. Note that the left eigenvectors ỹT

r+j of each Pr+j,r+j are strictly positive4. Thus, each

block er+jỹ
T
r+j is non-zero in each column. Moreover, all columns have at least one non-zero

element, because all elements of T22 are part of an irreducible closed subset (if there was a zero
column, then that state would not be in T22).5

Now assume that all elements of uT have a component along the eigenvector ỹT
r+j (corre-

sponding to γ = 1) of each block Pr+1,r+1, . . . ,Pnn, i.e., uT is not in the left null space of E,
then we have: 6

yT =
(

0[1×r̃], yr̃+1, · · · , yn
)
, (5.6)

with yr̃+1, · · · , yn 6= 0. Remember that yT is not unique and everything is in canonical form.

5.1.2 Example

In this example we will illustrate how a second eigenvector of A can be determined in the
analytical way described above, using Gm2 in Figure 9. First, we will renumber the nodes to
get the canonical form as in (5.1). For a graphical representation of the renumbering, we refer
to Figure 10.

Figure 10: Renumbering the nodes of Figure 9 to canonical form.

4All elements which are in the block Pr+j,r+j are strictly positive, other elements are zero
5Note that E can be written as I (for another purpose), so certainly every column has a non-zero element

([13], page 699).
6Choosing uT randomly should satisfy this assumption, because the chance that a random vector will not

satisfy is practically zero.

21

Thus, rewriting P to Pcanon:

P =



0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1

3 0 1
3

1
3 0 0

0 0 0 0 0 0 1
0 0 1

3
1
3 0 1

3 0
1
7

1
7

1
7

1
7

1
7

1
7

1
7

0 0 0 1 0 0 0



∼



1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
3 0 1

3
1
3 0 0 0

0 1
3 0 1

3 0 0 1
3

0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


= Pcanon.

(5.7)

Let us take a closer look at Pcanon in (5.7). First, we recognize the block on the lower left
side of all zeros. Also, it is clear that we have two irreducible closed subsets (P22 and P33),
which can be reached by T12. However, T12 includes all other nodes that are not in T22 and
thus, P11 is the only block in the upper left side of Pcanon (i.e., there are no nodes that do not
refer to one of the irreducible closed subsets). Note that P11 is irreducible, but not closed and
therefore represents the transient class. P22 and P33 represent the ergodic classes.

Let us calculate the Cesàro sum for Pcanon in (5.7). Using the MATLAB function described
in Appendix A.2.2, we find for k = 50 and k = 500 the following Cesàro sums:

C50 =



0.026 0.006 0.006 0.263 0.262 0.219 0.220
0.010 0.025 0.010 0.343 0.224 0.140 0.140
0.003 0.008 0.023 0.278 0.270 0.205 0.213

0 0 0 0.500 0.500 0 0
0 0 0 0.500 0.500 0 0
0 0 0 0 0 0.500 0.500
0 0 0 0 0 0.500 0.500


,

C500 =



0.003 0.001 0.001 0.272 0.272 0.227 0.227
0.001 0.003 0.001 0.351 0.350 0.147 0.147
0.000 0.001 0.002 0.283 0.283 0.215 0.216

0 0 0 0.500 0.500 0 0
0 0 0 0.500 0.500 0 0
0 0 0 0 0 0.500 0.500
0 0 0 0 0 0.500 0.500


.

(5.8)

We find (for increasing k) that C →
(

0 Z
0 E

)
. Note that the convergence is relatively slow,

since we take an average distribution each iteration. Now, let us choose the stochastic vector
uT randomly:
u = rand(1,7);

u = u/sum(u);

22

For our example, we find the ‘averaged eigenvectors’ yT
50 and yT

500:

yT
50 = uT ·C50 =



0.008
0.007
0.004
0.354
0.351
0.138
0.138



T

,yT
500 = uT ·C500 =



0.001
0.001
0.000
0.358
0.358
0.141
0.141



T

. (5.9)

As k increases we recognize for yT that all nodes in P11 (the transient class) go to zero and all
nodes in P22 and P33 (the ergodic classes) are unequal to zero.

5.1.3 Calculation of the eigenvector from the canonical form

In this section we will discuss the calculation of the first eigenvector of P in canonical form. Let
us recall P in canonical form:

P ∼
(

T11 T12

0 T22

)
=



P11 P12 · · · P1r P1,r+1 P1,r+2 · · · P1m

0 P22 · · · P2r P2,r+1 P2,r+2 · · · P2m
...

. . .
...

...
... · · ·

...
0 0 · · · Prr Pr,r+1 Pr,r+2 · · · Prm

0 0 · · · 0 Pr+1,r+1 0 · · · 0
0 0 · · · 0 0 Pr+2,r+2 · · · 0
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · Pmm


. (5.10)

We are looking for the eigenvectors corresponding to eigenvalues γi = 1. These eigenvalues
(or: this eigenvalue) exist, because we were able to write P in canonical form with T22 non-
empty. Remember that each block Pr+j,r+j (1 ≤ j ≤ l) in T22 has eigenvalue 1 (see Section
5.1.1).

Now, let us directly calculate the eigenvector(s) corresponding to eigenvalue γi = 1 for P in
canonical form:

yTP = γiy
T(

yT
1 , yT

2

)(T11 T12

0 T22

)
=
(

yT
1 , yT

2

)
⇒
{

yT
1 T11 = yT

1

yT
1 T12 + yT

2 T22 = yT
2

(5.11)

We know that (T11−I) is not singular, since |γi| < 1 for T11 (refer to [13], page 698). Thus,
Equation (5.11) implies yT

1 = 0. It follows that yT
2 T22 = yT

2 .

We get yT
2 (T22 − I) = 0, where (T22 − I) is singular and thus, yT

2 is an eigenvector of T22

corresponding to γi = 1. Moreover, this eigenvector is a linear combination of the eigenvectors
of Pr+j,r+j (1 ≤ j ≤ l) corresponding to γi = 1, where each eigenvector of of Pr+j,r+j is padded
with zeros to get the appropriate size.

Furthermore, no element of yT
2 is equal to zero, because yT

2 is an eigenvector of each block
Pr+j,r+j (1 ≤ j ≤ l) and all blocks Pr+j,r+j are row-stochastic (and thus no zero-row exists in

23

T22).

Putting everything together, we calculated the (non-unique) left eigenvector yT of P in
canonical form:

yT =
(

yT
1 yT

2

)
=
(

0[1×r̃] yr̃+1, · · · , yn
)
, (5.12)

with yr̃+1, · · · , yn 6= 0.

5.2 Structure of irreducible closed subsets

We will now try to detect link spamming by recalling Gm2 in Figure 9. We explicitly calculate
matrix A as in Equation (2.2) and find the (unscaled) second eigenvector x(2) corresponding to
λ2 = 0.85:

x(2) =



0.5000
0.5000
0.0000
−0.5000
0.0000
0.0000
−0.5000


. (5.13)

This eigenvector x(2) is not unique, but a linear combination of the eigenvectors corresponding to
the irreducible closed subsets. Equation (5.13) shows us a certain hypothesis. Before we express
that hypothesis, we consider G2759+80. Again calculating the eigenvalues gives us λ2 = 0.85

with corresponding eigenvector x(2) =



0.926
0
...
0

−0.179
...

−0.179
0
...
0

0.012
...

0.012



.

We found for both test problems that x
(2)
j = 0 if j is not in an irreducible closed subset and

x
(2)
j 6= 0 if j is in an irreducible closed subset.

We will now introduce the following theorem:

Theorem 5.3. Each eigenvalue λi = p of A has a corresponding right eigenvector x(i) =
(x1, · · · , xn), which has the following properties:{
xj 6= 0 if node j ∈ irreducible closed subset,
xj = 0 if node j /∈ irreducible closed subset.

Proof. Write P in canonical form (5.1). Note that renumbering the columns and rows of P has
no influence on the eigenvalues and the eigenvectors are permuted in analogy to the renumber-
ing.

24

Calculate the Cesàro sum (refer to (5.3)) or directly calculate the eigenvector corresponding to
γi = 1 (refer to (5.11)).
The non-unique left eigenvector yT (in canonical form) corresponding to γ1 = 1 is equal to
yT = (0[1×r], yr̃+1, · · · , yn) with yr̃+1, · · · , yn 6= 0 (refer to Equation (5.6)). Putting P back in

original form will renumber the elements of yT likewise. The non-zero elements yr̃+1, · · · , yn
still correspond to the irreducible closed subsets and the zero elements do not.

We will now use Lemma 5.1 reversed. This is allowed as can be easily seen by reversing
the proof of Lemma 4 in [4]. Thus, any left eigenvector yT of P corresponding to γ1 = 1 is a
right eigenvector x(i) of A corresponding to λi = p. Thus, x(i) = (x1, · · · , xn) has the following
properties:{
xj 6= 0 if node j ∈ irreducible closed subset,
xj = 0 if node j /∈ irreducible closed subset.

5.3 Other structures

There are ways to camouflage promotion structures. For our specific detection method, it is
sufficient to add any outgoing link (i.e. creating a promotion set which is not an irreducible
closed subset). We recognize such a structure as link spamming method 1 in Section 4.2, which
is not detectable in the same way as method 2. It would also be sufficient to add a dangling
node, as this would act as a distributor.

Moreover, let us introduce a promoting set WP , which solely aim to increase the PageRank
of another set websites WI . This promoting set has no qualitative content, but all nodes refer
to the set WI (which wants to get a higher PageRank). Further, WP is an irregular (various
PageRanks and a variety of interconnections) and interconnected set with the property that all
nodes in WP refer to all nodes in set WI . This set WI will also have interconnected nodes,
outgoing links and dangling nodes and will behave just like any other set websites. On the other
hand, WI get buffed by its promoting set WP and receive an unfair higher PageRank.

As one might notice, it is hard to detect link spamming in this form. However, this form
of link spamming requires an enormous amount of effort (and probably money) and thus is less
attractive for businesses.

6 Algorithms for computing the second eigenvector

In the previous section we gave insight in the structure of the second eigenvector of A. This
section we will discuss some algorithms about how to compute this eigenvector. The algorithms
can be found in Appendix A.1, written in MATLAB.

6.1 The block power method

The block power method differs from the ‘normal’ power method as it uses several vectors, in-
stead of a vector uk. We start with r orthonormal vectors, multiplying them all with A and
orthogonalize them again. This way we will find r different eigenvalues and their associated
eigenvectors at the same time.

First, we define a random n-by-r matrix Z0 and then we iterate as follows:

25

for k = 0, 1, 2, . . .
Qk = orth(Zk);
Zk+1 = AQk;

end

Now, determine the eigenvalues and associated eigenvectors for the system

[Y,D] = eig(QT
k AQk);

X = QY;

and scale x(1) such that ||x(1)||1 = 1. See Appendix A.1.1 for more information.

We would expect that the convergence ratio for the first eigenvector is now given by |λr+1|/|λ1|.
Knowing that |λ1| ≥ . . . ≥ |λn|, we would conclude that the block power method converges at
least as fast as the basic power method. However, one should take into account that the second
eigenvector is not necessarily unique and above all, several eigenvalues of A could be near p.
Furthermore, when r increases, we can expect increasing calculation time for each iteration.

We tested this method for Gm2 using [x,y,iter] = blockpower(Gmethod2,4) and we
found:

x =



0.203 0.500 −0.316 −0.682
0.209 0.500 0.316 0.682
0.036 −0.000 −0.000 0.000
0.246 −0.500 0.632 0.186
0.036 −0.000 −0.000 −0.000
0.036 −0.000 −0.000 0.000
0.235 −0.500 −0.632 −0.186


, y =


1.000
0.850
−0.850
−0.850

 , iter = 22. (6.1)

Note that the second eigenvalue is 0.85. The second eigenvector shows us clearly that node
1 and 2 as well as node 4 and 7 form two irreducible closed subsets. This second eigenvector is
not unique, of course.
We checked the first eigenvector and it is correct.

Furthermore, we set the maximum amount of iterations to 3000 and we stop iterating if the
eigenvalues converge within a small tolerance or if the maximum amount of iterations is reached.

A limitition of this method, as already mentioned, is that the second eigenvector is not
unique in general. Furthermore, another limition of the algorithm is that the performance of the
algorithm is likely to decrease when trying larger matrices. This is due to input parameter r (the
amount of columns of the block matrix Q). The following test problem should be enlightening.

Running the algorithm for G2759+80 returns:
[x,y,iter] = blockpower(G2759 80,4);

y =


−0.849
1.000
0.849
0.850

 , iter = 1346. (6.2)

with the eigenvector corresponding to 0.850 equal to x1,1578,1580 =
(
−0.926 0.179 0.179

)T
.

Here we used r = 4, but some other tests gave that r = 3 or r = 5 work as well. Anyway, in the

26

successful attempt above we see that the link spamming on node 1 is detected.

In general, the results above are not unique as a result of the input parameter r. As a
consequence, the block power method as implemented in blockpower.m gives various results for
different r. For example, for test problem G9914+80 it was hard to find a working r. Eventually,
we found that r = 25 gave an eigenvalue 0.832, close to p. The corresponding eigenvector had a
relative high value in the link spamming node 4, but it was not the largest element in the vector.
We think this failure is due to the large amount of irreducible closed subsets in G9914+80 and
therefore, r should be increased significantly. More research should be done in investigating
these failings. For more insight in the algorithm, we refer to Appendix A.1.1.

6.2 Direct solution

Suppose we have a set W of websites with at least two irreducible closed subsets, so we know
λ2 = p. We define A the usual way and rewrite A = pGD + ezT as in (2.13).
We are interested in x(2) (the eigenvector(s) corresponding to λ2) and we know that for this
vector the following equations holds:

λx = Ax

px = (pGD + ezT)x

px = pGDx + ezTx

(6.3)

⇒ (pI− pGD)x = βe

⇒ (I−GD)x = β′e
(6.4)

with β′ = β
p . Similar as when solving (2.16), β′ = zT x

p is set to 1 temporary.

In general, the matrix (I−GD) (also: (I−PT)) is singular, because we assume that GD
has irreducible closed subsets, so that γ1 = 1. Therefore, the system (I−GD) has no unique
solution. However, in practice the following calculation will blow up x in the right direction:

x = (0.99999 ∗ I−PT)\e (6.5)

This way, all elements in an irreducible closed subset will blow up compared to the one that
are not in an irreducible closed subset.
For example, when testing the MATLAB function direct.m (A.1.2) on our test problem Gm2,

then we get: x =



0.227
0.227
−0.000
0.273
−0.000
−0.000
0.273


. Note that direct.m also scales the returned vector to a stochas-

tic vector and thus, this vector does not sum up to zero. This algorithm does not return a second
eigenvector of A, but blows up the link spamming elements.
When testing this algorithm on G2759+80 and G9914+80 we do get good results, but the calcula-
tion time increases significantly for larger matrices. The limitation of this algorithm is obvious:
direct calculation is not possible for really large matrices.

27

6.3 Adjusting the power method

In this section we will discuss three variants of the power method to determine the second
eigenvector of A.

6.3.1 Simple power method on matrix P

Instead of looking at the second eigenvector of A, another option is to look directly at the
first eigenvector of PT using the power method. Thus, we find the irreducible closed subsets
of PT directly. The most obvious algorithm is just iterating uk+1 = PTuk with u0 a random
stochastic vector.

A disadvantage of this method is that we cannot assure a proper convergence. Note that
we can assume that (an arbitrarily) PT has more than one irreducible closed subsets and thus,
that γ = 1 has multiplicity greater than one. The situation we discussed in Section 2.2, where
λ1 = 1 is unique, is not applicable. We now have a set of eigenvalues which will dominate and
no unique eigenvector exists (i.e., in general the eigenvector will not converge to a unique vector,
but will oscillate to a linear combination of eigenvectors of PT corresponding to γ = 1).

Nevertheless, we will follow the same approach as in Section 2.2 to show this method’s limi-
tation.
Suppose that PT has eigenvalues γ1, . . . , γn with a full set of associated eigenvectors y(1), . . . ,y(n)

and that u0 can be expressed as a linear combination of eigenvectors. Then the following equa-
tion holds, due to Theorem 2.2:

PTku0 = uk = c1γ1y
(1) + . . .+ cnγ

k
ny

(n).

Furthermore, suppose that 1 = γ1 = . . . = γi > γi+1 ≥ . . . ≥ γn (i.e., PT has i irreducible
closed subsets). Then the components c1γ

k
1y(1), . . . , ciγ

k
i y

(i) will gradually become dominant
(likewise as in (2.11)):

uk =
uk

γk1
= c1y

(1) + . . .+ ciy
(i) + ci+1

(
γi+1

γ1

)k
y(i+1) + . . .+ cn

(
γn
γ1

)k
y(n)

= c1y
(1) + . . .+ ciy

(i) + ci+1γ
k
i+1y

(i+1) + . . .+ cnγ
k
ny

(n).

(6.6)

The convergence factor is determined by the second most dominant term, which is ci+1γ
k
i+1y

(i+1)

and the rate of convergence is equal to |γi+1|. Here, we use that γ1, . . . , γi = 1. However, we do
not know the value of the largest eigenvalue unequal to one and thus, the rate of convergence is
unknown.

See Section 6.6 for results and Appendix A.1.3 for simpleP.m.

6.3.2 Adaptation to Moler’s power method

We slightly adjusted the algorithm pagerankpow.m of [1] by ignoring the ‘jumping’ part. We
refer to A.1.4.

Let us illustrate what this algorithm shows by recalling Gtest (see also Figure 4). After

17 iterations in powerP.m we find x =
(

0.480 0.498 0.006 0.005 0.004 0.003 0.005
)T

.
Note that only node 1 and 2 have relative high value and the remaining (non-spamming) website
have value almost equal to zero.

28

If we test powerP.m on G2759+80 we can only detect the link spamming on node 1 (and not
the corresponding promotion nodes).

Testing on G9914+80 gives us the following result:

x4,8059,8057 =
(

0.024 0.017 0.015
)T

with 600 iterations. Thus, the detection should be
possible, which can be recognized in the returned vector.

It is important that this algorithm also tries to recognize link spamming nodes by determin-
ing which terms are non-zero (in an irreducible closed subset) and which are zero (not in an
irreducible closed subset). This is the only implemented algorithm with this functionality and
it is hard to find a suitable stopping criterium.
The test problem G9914+80 reached the maximum tolerated amount of iteration and the re-
turned vector x shows us some link spamming nodes, but the vector spam (refer to Appendix
A.1.4) returned no spam.

6.3.3 Choosing a starting vector with sum equal to zero

Let us perform a standard power method with uk+1 = Auk and let us choose u0 as follows:

u0 = −1 + 2 · rand(n, 1);

u0 = u0 − sum(u0)/n;
(6.7)

Hence, we choose the elements of u0 uniformly in [−1, 1], but with the property that ||u0||1 = 0.

Let us explain why we would choose such a starting vector. Recall that A = pPT + 1−p
n E

and u0 sums up to zero, thus we find the next iteration by computing:

u1 = Au0

= pPTu0 +
1− p
n

Eu0

= pPTu0.

(6.8)

Knowing that u0 sums up to zero, it should be easy to recognize that u0 and any matrix E with
uniform rows are orthogonal and thus that Eu0 = 0, similar as in Theorem 2.5.
Furthermore, u1 in Equation (6.8) also sums up to zero, because PT is column-stochastic
(||u1||1 = 1 · (u0)1 + · · ·+ 1 · (u0)n = 0).
In general, we find that each uk sums up to zero and the uniform matrix E is of no influence
on the vector uk+1. Therefore, we chose the starting vector u0 so that the model with jumping
chance changed to a model without jumping chance.
Thus, in the end uk will give a second eigenvector x(2) of A.

When testing startvector.m (see Appendix A.1.5) on G2759+80 and G9914+80 we can
detect the link spamming and got the following two vectors:

x
(2)
{1,2422,1117} = 10−5

 0.389
0.035
0.021

 , x
(2)
{4,2264,8059} = 10−16

 −0.105
−0.103
−0.078

 . (6.9)

Note that also elements that are not in an irreducible closed subset can get value, and thus
caution is required when determining the spamming nodes (determining which elements are
non-zero and in an irreducible closed subset).

29

6.4 Tarjan’s algorithm

A visual supportive algorithm is described in Appendix A.1.6. This algorithm uses the function
graphconncomp(.), which makes use of Tarjan’s algorithm. The algorithm finds the strongly
connected components of the graph, i.e., it finds the groups of nodes that are mutually reachable
through following the hyperlinks. It returns a graph as well as a vector showing the groups of
strongly connected nodes.

First, the algorithm adds outgoing links from dangling nodes, just as in the row-stochastic
matrix P. Each dangling node refers to all other nodes (except to itself). Self-referring nodes
give a warning in MATLAB and are therefore removed. This has no consequences for ordering
the nodes, because a self-referring node is already reached before it makes itself reachable (i.e.,
the strongly connected components do not change when deleting the self-referring hyperlinks).

Let us illustrate the algorithm with an example using Gm2. Figure 11 is the graphic repre-
sentation returned by the algorithm, comparable to Figure 9. The corresponding vector returned
by the algorithm is c =

(
1 1 3 2 3 3 2

)
.

Figure 11: Using tarjan.m on G corresponding to Figure 9.

Note that the dangling node 6 in the middle of Figure 11 is replaced by a node which refers to
all nodes (except itself). Furthermore, we recognize three groups which are mutually reachable.
The two groups below ({4,7} in light blue and {1,2} in green) represent link spamming websites,
the group above ({3,5,6} in yellow) represent the remaining web.

The MATLAB function graphconncomp(.) does not always work proper for large matrices.
Applying the function to G9914 gave some contradicting results. Still though, in G2759+80 and
G9914+80 the link spamming nodes clearly appeared in a seperate group.
For more information about Tarjan’s algorithm, we refer to [15].

30

6.4.1 Tarjan’s algorithm and detection

Tarjan’s algorithm can have some interesting applications when we investigate the structure of
link spamming nodes. Therefore, we combined a detection method with Tarjan’s algorithm. We
refer to Appendix A.2.3.

This algorithm uses powerP.m, which first computes the second eigenvector and thereafter,
it determines the spamming nodes. Hence, powerP.m determines the second eigenvector of A
and which elements of the second eigenvector are non-zero (in an irreducible closed subset) and
which elements are ‘zero-enough’ (not in an irreducible closed subset). Thus, detecttarjan.m
uses powerP.m to find the spamming nodes and then try to find nodes that belong to the same
irreducible closed subset using Tarjan’s algorithm.

Let us give us the following example (Gm2):

Y = detecttarjan(Gm2);

The algoritm returns Y =

(
1 2
4 7

)
. Thus, node 1 and 2 correspond to an irreducible closed

subset as well as node 4 and 7. If desirable, we can make a graphic representation by using the
command [Y,h] = detecttarjan(G), which returns matrix Y and a graphic representation as
can be seen in Figure 12. Note that the nodes have been renumbered in the figure.

Figure 12: Graphic representation of combining detection with Tarjan’s algorithm for Gm2.

Testing this algorithm on G2759+80 returns

Y =


1 0 0 0

1578 1579 1580 1581
1670 0 0 0
2422 0 0 0
2423 0 0 0

 . (6.10)

31

Here, link spamming node 1 is detected, but as well some other nodes (which may or may not be
link spamming). Note that the 80 promotion nodes of node 1 remained undetected, i.e., these
nodes are not found as spamming nodes. That is why we find node 1 as a single link spamming
node using this algorithm. A nice detail is that nodes 1578 till 1581 are recognized as a group
of link spamming nodes (althought we do not know for sure whether this is the case).

A last important remark is that this algorithm uses the information obtained by another
detection algorithm, such as powerP.m discussed in Section 6.3.2 and it is not capable of finding
link spamming nodes itself. As a consequence, the algorithm detecttarjan.m is only useful if
the supportive detection algorithm was successful.

6.5 Cesàro sum

Another way to find a link spamming vector is to determine the Cesàro sum. This is, to be
precise, no second eigenvector, because its 1-norm is equal to 1. Thus, we refer to this vector
with c. We refer to Section 2.3 and especially to (5.5) for the mathematical background.

An important note is that we know that the Cesàro sum converges very slowly. Recall that
the Cesàro sum is given by:

C = lim
k→∞

I + P + · · ·+ Pk−1

k
. (6.11)

Comparing with the power method, which computes uk = Pku0, we recognize that the Cesàro
sum also computes all previous terms and then calculates the average.

Thus many iterations are required, but on the other hand, we find for all test problems good
results. For example, when applying cesvec.m (refer to Appendix A.1.7) to G2759+80 using
10000 iterations returns:
c{1,1578,1579} =

(
0.451 0.007 0.007

)T
.

We should note that the promotion nodes get a value (c2760−2839 = 0.006) and thus a total
value of 0.451+80·0.006 = 2·0.451 = 0.902 out of 1.000 is catched in these link spamming nodes.
Although we cannot detect link spamming for the promotion nodes within 10000 iterations, the
detection of link spamming node 1 is excellent.

Now applying cesvec.m to G9914+80 using 10000 iteration returns:

c{4,8059,8057} =
(

0.026 0.016 0.014
)T
.

We clearly recognize link spamming in node 4, as that node absorbs more energy with an
increasing amount of iterations.

6.6 Numerical results

This section contains the numerical results of the discussed algorithms in previous sections.
These results were obtained with a Windows 7 64-bit computer with an Intel Core Quad CPU
Q8400 2.67GHz processor.

The elapsed time was determined by the function tic, toc in MATLAB and was put in the
beginning respectively at the end of each algorithm.

32

We refer to table 1 on page 34 for an overview of all discussed algorithms. The column
“matrix-vector per iteration” is short for the amount of matrix-vector multiplications per itera-
tion. The time refers to the elapsed time in seconds. An algorithm is defined as successful if the
known link spamming nodes have significantly the largest absolute value in the returned (second
eigen)vector. That means that for Gm2 that the nodes 1,2,4 and 7 are detected, for G2759+80

node 1 and for G9914+80 node 4. This does not exclude some results with other large absolute
values and thus, additional found link spamming nodes. Yet, for all results these additional
found nodes are limited.

In table 1, the amount of iterations is an input parameter for the following algorithms:
simpleP.m, startvector.m and cesvec.m. These amount of iterations are only an indication
for the required amount of iterations.

As we mentioned in Section 6.1, the success of blockpower.m depends on the right parameter
r. The results for this algorithm in table 1 are the first successful r. This means that this
algorithm sometimes needed some trial and error. For G9914+80 we see that the block power
algorithm fails, which could be due to (probably) 176 irreducible closed subsets and we only
tried r ≤ 30.

33

Algorithm Matrix-vector Gm2 G2759+80 G9914+80

per iteration Success Iterations Time Success Iterations Time Success Iterations Time

blockpower.m r yes 23 3.1 · 10−3 yes 1346 1.1 no 3000 140
direct.m N/A yes N/A 1.5 · 10−3 yes N/A 0.21 yes N/A 83
simpleP.m 1 yes 10 2.0·10−3 yes 50 0.13 yes 500 0.52
powerP.m 0 yes 22 1.6 · 10−2 yes 256 2.8 yes7 600 34

startvector.m 1 yes 10 3.0 · 10−3 yes 150 0.22 yes 1250 3.5
tarjan.m N/A yes N/A 2.2 · 10−4 yes N/A 9.5 · 10−3 yes N/A 153
cesvec.m 1 yes 500 1.2·10−2 yes 10000 1.0 yes 10000 3.2

Table 1: Numerical results for different algorithms on three test problems.

7powerP.m did return a proper vector x, but an empty vector spam (see Appendix A.1.4).

34

6.7 Some observations

Page and Brin introduced the jump chance 1 − p for a few reasons. One reason was to make
sure that most rankings do not converge to zero. Another reason was to ensure convergence to
a unique dominant eigenvector. Moreover, adding a jump chance gave a convergence rate for
the power method equal to one minus this jump chance.

The last two reasons for Page and Brin also hold for our detection problem. Whatever al-
gorithm we take, in general we will have to deal with a non-unique second eigenvector of A.
Furthermore, the ‘convergence’ is not very good. For example, if we want to force convergence,
we could work with a Cesàro sum, but such an algorithm will have a slow convergence rate,
because of the averaging aspect (see (5.8)). On the other hand, this is a convincing algorithm in
terms of absolute convergence and certainty about link spamming nodes. Other algorithms are
dependent on the ratio of eigenvalues, but a lot of the eigenvalues of A can be close to p, which
would cause a poor convergence (to zero) of elements that are not in an irreducible closed subset.

Another limitation is the performance of the algorithms when no irreducible closed subset
exists. It can be difficult to recognize the difference between a lot of spamming nodes and no
spamming nodes at all, i.e., determining which terms are zero and which terms are non-zero.
We assume we have at least one irreducible closed subset, but this will not always be the case.
However, we expect that this will not be a problem for a ‘real’ (large) web sample ([4]).

7 Conclusion

In this report we examined the second eigenvector of the Google matrix and its relation to
link spamming. Furthermore, we discussed different methods to perform link spamming and we
proposed different algorithms for detecting link spamming using knowledge about the second
eigenvector of the Google matrix.

We found that creating an irreducible closed subset with as much promotion nodes as pos-
sible is the most efficient way of link spamming. This structure absorbs a lot of energy and
receives a high PageRank. We refer to Section 4.1 for more information about promotion nodes
and to Section 4.3 for more information about the most efficient link spamming method.

Furthermore, we discovered that irreducible closed subsets can be found with the second
eigenvector of the Google matrix. A second eigenvector of A is a first eigenvector of PT. The
elements of this eigenvector have (energy) value in the irreducible closed subset and no value in
other nodes, because all energy ultimately gets absorbed into the ergodic states. We refer to
Section 5.2 for more information.

Thereafter, we proposed several algorithms to find the second eigenvector of the Google ma-
trix. Some of these algorithms are slow when applied to large matrices, other algorithms are
more effective. Either way, we found some limitations.
First, the second eigenvector of A is not unique in general and thus, convergence is not guaran-
teed. This means that the states in the irreducible closed subsets can alternate.
Furthermore, the rate at which other components (not within an irreducible closed subset) go
to zero is unknown. We know that the rate of convergence for the power method is equal to
the ratio of the two largest unequal eigenvalues. For Google matrix A this is |λ2|/|λ1| = p ([4]),

35

but the ratio of the two largest unequal eigenvalues of PT can be very close to 1. Therefore,
the convergence factor of many algorithms which look for the second eigenvector of A can be
poor, especially when the matrix is huge. For more information about the rate of convergence,
we refer to Section 2.2 and 6.3.1.

We conclude that the second eigenvector of the Google matrix can be used to detect the most
efficient way of link spamming (speaking in terms of energy [6]), namely creating an irreducible
closed subset. The elements of second eigenvector that are unequal to zero are using this method
of link spamming. All other elements are equal to zero.

However, detection of other link spamming techniques using the second eigenvector is limited.
This vector only detects nodes in an irreducible closed subset, which is one, but certainly not the
only method to perform link spamming. Moreover, in practice, finding the second eigenvector
can be hard due to poor convergence and non-uniqueness. Another point of interest is that
some websites could be within an irreducible closed subset without performing link spamming
on purpose.

In Section 5 we mentioned the stochastic personalization vector v. Let us consider the
consequences of using the personalization vector instead of the uniform vector. Recall Theorem
2.5, which tells us that eTx(2) = 0. Using the personalization vector gives:

A = pPT + (1− p)veT. (7.1)

As a consequence, the following equality holds:

veTx(2) = v · 0 = 0. (7.2)

Thus still, the second eigenvector of A is only dependent of PT. Therefore, we expect that the
resulting Theorem 5.3 does still hold when using the personalization vector.
Future research should be done to test this hypothesis.

References

[1] Cleve Moler, Experiments with MATLAB, Chapter 7: Google PageRank, MathWorks, Inc., 2011.

[2] L. Page, S. Brin and R. Motwani, The PageRank Citation Ranking: Bringing Order to the Web,
Technical report, Stanford University, 1998.

[3] Rebecca S. Wills, Google’s PageRank. The Math Behind the Search Engine, Springer Science +
Business Media 28 (2006), no. 4.

[4] Taher H. Haveliwala and Sepandar D. Kamvar, The Second Eigenvalue of the Google Matrix, Tech-
nical report, Stanford University, 2003.

[5] Monica Bianchini, Marco Gori and Franco Scarselli, PageRank, A Circuital Analysis, In Proceedings
of the Eleventh International WWW Conference, 2002.

[6] Monica Bianchini, Marco Gori and Franco Scarselli, Inside PageRank, ACM transactions on Internet
technology 5 (2005), no. 1.

[7] Lars Eldén, A Note on the Eigenvalues of the Google Matrix, Report, Linköping University, 2003.

[8] Amy N. Langville and Carl D. Meyer, Deeper Inside PageRank, Internet Mathematics 1 (2004), no.
3, 335-380.

36

[9] Gilbert Strang, Linear Algebra and its Applications, 3rd ed., Brooks Cole, 1988.

[10] Jim Lambers, The Eigenvalue Problem: Power Iterations, Lecture notes 14, University of Southern
Mississippi, 2010.

[11] Maysum Panju, Iterative Methods for Computing Eigenvalues and Eigenvectors, The Waterloo
Mathematics Review 1 (2011), 9-18.

[12] D. L. Isaacson and R. W. Madsen. Markov Chains: Theory and Applications, chapter IV, pages
126− 127. John Wiley and Sons, Inc., New York, 1976.

[13] Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, Chapter 7 and 8, Society for Industrial
and Applied Mathematics, 2000.

[14] Darald J. Hartfiel, Markov Set-Chains, Lecture notes in Mathematics, Springer-Verlag Berlin Hei-
delberg, 1991.

[15] http://www.mathworks.nl/help/toolbox/bioinfo/ref/graphconncomp.html, The MathWorks, Inc.,
R2012a Documentation, 2012.

[16] David F. Gleich, http://www.cs.purdue.edu/homes/dgleich/nmcomp/matlab/, wb-cs.stanford.mat,
Last modified: 15-Nov-2011.

A MATLAB

A.1 Spam detection algorithms

A.1.1 blockpower.m

function [x,y,iter] = blockpower(G,r)

%Google’s PageRank with block power method

% G: connectivity matrix

% r: the size of the block, creates a n by r block

% returns x: the eigenvectors corresponding to the r largest eigenvalues

p = 0.85;

maxiter = 3000;

[n,n] = size(G);

delta = (1-p)/n;

e = ones(n,1);

% Constructing Pt without dangling

[Pt,k] = Ptwithoutdangling(G);

% Choose Q(n,r) such that Q∧T * Q = I r

Z = rand(n,r);

iter = 0;

y2 = rand(r,1);

y = rand(r,1);

%QR decomposition

while max(abs(sort(y2) - sort(y))) > 10∧(-6) && iter < maxiter

Q = orth(Z);

37

Z = p*Pt*Q + delta*e*(e’*Q) + p/n*e*(k’*Q);

if size(Q,2) ∼= r

warning(’Found at least one eigenvalue equal to zero. Try smaller r.’);

return;

end

y = eig(Q’*Z);

iter = iter + 1;

end

[s,D] = eig(Q’*Z);

%Determining and scaling x

x = Q*s;

% k = find(abs(y)>0.95);

% x(:,k) = x(:,k)/sum(x(:,k));

%Checking iteration amount

if iter == maxiter

warning(’Maximum iterations (%d) reached: solution probably inaccurate!’,maxiter);

end

end

A.1.2 direct.m

function x = direct(G)

%Blowing up the spamming nodes

[n,n] = size(G);

I = speye(n);

[Pt,k] = Ptwithoutdangling(G);

e = ones(n,1);

% Making P∧T
Pt = Pt + sparse(1/n*e*k’);

% Direct solution

x = (0.99999*I-Pt)\ e;

x = x/sum(x);

end

A.1.3 simpleP.m

function x = simpleP(G,iter)

[n,n] = size(G);

[Pt,k] = Ptwithoutdangling(G);

38

e = ones(n,1);

x = rand(n,1);

cnt = 0;

while cnt<iter

x = Pt*x + 1/n*e*(k’*x);

cnt = cnt+1;

end

x = x/sum(x);

end

A.1.4 powerP.m

function [x,iter,spam] = powerP(G)

%Efficient algorithm for blowing up spam

[n,n] = size(G);

n2 = n∧(-2.5);

for j = 1:n

L{j} = find(G(:,j));

c(j) = length(L{j});
end

x = ones(n,1)/n;

z = zeros(n,1);

y1 = 0;

y2 = 0;

iter = 0;

maxiter = max(round(6*sqrt(n)),250);

stop =0;

spam = 0;

while iter < maxiter && stop ==0

z = x;

x = zeros(n,1);

for j = 1:n

if c(j) == 0

x = x + z(j)/n;

else

x(L{j}) = x(L{j}) + z(j)/c(j);

end

end

iter = iter+1;

%stopping criterium

y1 = x.∧6;
y1 = y1/sum(y1);

y2 = z.∧6;

39

y2 = y2/sum(y2);

t1 = length(find(y1 > n2));

t2 = length(find(y2 > n2);

if t1 - t2 == 0

stoparray(iter) = 1;

end

if iter>20 && sum(stoparray(iter-20:iter)) == 21

stop = 1;

spam = find(y1>n2);

end

end

if iter == maxiter

warning(’Max iter reached’);

end

end

A.1.5 startvector.m

function x = startvector(G,iter)

[Pt,k] = Ptwithoutdangling(G);

[n,n] = size(G);

x = -1 + 2*rand(n,1);

x = x -sum(x)/n;

p = 0.85;

delta = (1-p)/n;

cnt = 0;

e = ones(n,1);

while cnt < iter

x = p*Pt*x + delta*e*(e’*x) + p/n*e*(k’*x);

cnt = cnt+1;

end

end

A.1.6 tarjan.m

function c = tarjan(G)

%input: connectivity matrix G with g(i,j)=1 if j -> i.

%deleting selfreferring nodes (to avoid warning)

G = G - diag(diag(G));

%dangling nodes artificially refer to all nodes

c = sum(G,1);

40

for j = 1:size(G,1)

if c(j) == 0

G(:,j) = 1;

end

end

%making G sparse with g(i,j)=1 if i -> j

G = sparse(G’);

[s,c] = graphconncomp(G);

% h = view(biograph(G));

%%coloring h

%colors = jet(s);

%for i = 1:numel(h.nodes)

% h.Nodes(i).Color = colors(c(i),:);

%end

end

A.1.7 cesvec.m

function ces = cesvec(G,k)

%input:G

%output: column cesaro sum as vector

[n,n] = size(G);

[Pt,k2] = Ptwithoutdangling(G);

y = rand(n,1);

y = y/sum(y);

x = y;

e = ones(n,1);

for i = 1:k-1

x = Pt*x + 1/n*e*(k2’*x) + y;

end

ces = x/k;

end

A.2 Other algorithms

A.2.1 addpromo.m

function G = addpromo(G,g,p)

%G: square connectivity matrix

%g: natural number within size of G

41

%p: natural number >0

%adds p nodes to G with promoting websites for node ’g’

%also: clears all outgoing links from node ’g’, except to the added promotions.

[n,n] = size(G);

%clear all outgoing links from g.

G(:,g) = 0;

%add promoting nodes to ’g’

G(:,n+1:n+p) = 0;

G(g,n+1:n+p) = 1;

%add ’g’ to promoting nodes

G(n+1:n+p,:) = 0;

G(n+1:n+p,g) = 1;

end

A.2.2 Cesaro.m

function ces = Cesaro(P,k)

%input: row-stochastic P, k iterations

%output: row-stochastic Cesaro matrix

I = eye(size(P,1));

Psum = I;

for i = 1:k-1

Psum = Psum*P + I;

end

ces = Psum/k;

end

A.2.3 detecttarjan.m

function [Y,h] = detecttarjan(G)

%Find spam vector

[∼,∼,spm] = powerP(G);

if spm’*spm == 0

Y = 0;

warning(’Detection failed’);

return

end

42

Gnew = G(spm,spm);

%dangling nodes should not be included and therefore artifical hyperlinks

%should not be added

Gnew = sparse(Gnew);

[s,c] = graphconncomp(Gnew);

%Y = zeros(length(c));

for i = 1:s

k = (c == i);

Y(i,1:sum(k)) = spm(k)’;

end

if any(Y(:,2) == 0)

warning(’Single-node spamming found: possible error in detect.m’);

end

if nargout > 1

h = view(biograph(Gnew));

end

end

A.2.4 Ptwithoutdangling.m

function P = Ptwithoutdangling(G)

%returns the (dense-defined) row-stochastic matrix P

%possibility of returning column-stochastic matrix A

[n,n] = size(G);

c = sum(G,1);

k = zeros(n,1);

Pt = sparse(n,n);

for j = 1:n

L{j} = find(G(:,j));

c(j) = length(L{j});
end

for j=1:n

if c(j) ∼= 0

Pt(L{j},j) = 1/c(j);

else

k(j) = 1;

end

end

end

43

	Introduction
	The Google Matrix
	Example
	Solving the eigenvalue problem
	The second eigenvalue

	Test problems
	Small test problem
	Large test problems

	Introduction to link spamming
	Introduction to energy
	Method 1
	Method 2
	Testing method 2 on test problems

	Detecting link spamming
	The second eigenvector
	The Cesàro sum
	Example
	Calculation of the eigenvector from the canonical form

	Structure of irreducible closed subsets
	Other structures

	Algorithms for computing the second eigenvector
	The block power method
	Direct solution
	Adjusting the power method
	Simple power method on matrix P
	Adaptation to Moler's power method
	Choosing a starting vector with sum equal to zero

	Tarjan's algorithm
	Tarjan's algorithm and detection

	Cesàro sum
	Numerical results
	Some observations

	Conclusion
	MATLAB
	Spam detection algorithms
	blockpower.m
	direct.m
	simpleP.m
	powerP.m
	startvector.m
	tarjan.m
	cesvec.m

	Other algorithms
	addpromo.m
	Cesaro.m
	detecttarjan.m
	Ptwithoutdangling.m

