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Abstract. The magnetohydrodynamic equations present two challenging algorithmic require-
ments: that both fields be solenoidal and that the magnetic field match an unknown external
field. The poloidal-toroidal decomposition represents a three-dimensional solenoidal vector
field via two scalar potentials. Widely used in Cartesian and spherical geometries with pe-
riodic boundary conditions, complications appear in finite geometries which can, however, be
circumvented. An implementation of the poloidal-toroidal decomposition for the magnetohydro-
dynamic equations in a finite cylinder is described, which uses a spectral spatial discretisation.
A Green’s function method is proposed for matching the magnetic field in a spectral represen-
tation to an external field in a vacuum.

1 Poloidal-toroidal decomposition

The requirement that velocity and magnetic fields be solenoidal, i.e. divergence-free, repre-
sents one of the most challenging difficulties in hydrodynamics and in magnetohydrodynamics.
This condition is the approximation used in incompressible fluid dynamics, and is the statement
of the non-existence of magnetic monopoles in electromagnetism.

Two main approaches exist for satisfying this requirement. The first method is to conserve
three field components and to project three-dimensional fields onto divergence-free fields. In-
deed, in an incompressible fluid, the pressure serves only to counterbalance the nonlinear term
which is the source of the divergence in the Navier-Stokes equations. The pressure also plays
this role numerically. The divergence of the Navier-Stokes equations is taken, leading to a Pois-
son problem for the pressure. However, the boundary conditions on the equations for (u, p)
involve only the velocity, leading to coupling between the equations to be solved for u and p. In
projection-diffusion schemes, approximate boundary conditions are imposed for the pressure.
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Otherwise, the coupled equations are solved in several stages by a Green’s function or influence
matrix method [1].

In contrast, for magnetic fields, the exact evolution of the equations conserves divergence
and there exists no analog to the pressure. Thus if the numerical algorithm creates divergence,
there is no mechanism for eliminating it and it may accumulate [2]. For this reason, magneto-
hydrodynamic codes sometimes include a fictitious magnetic pressure, which must be treated
numerically.

The other possibility is to express fields in such a way that they are divergence-free by con-
struction. More specifically, in a simply connected domain, a solenoidal F can be written as

F = ∇× (ψê) + ∇×∇× (φê) (1)

where ê denotes a unit vector. Figure 1 shows the vector field resulting from poloidal (φ) and
toroidal (ψ) potentials in our case of a cylindrical geometry and ê = êz, for an axisymmetric
field.

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω

+Ω+Ω+Ω+Ω

−Ω−Ω−Ω−Ω
Figure 1: The topological flow structures in the case of counter-rotating disks: red (dark) – poloidal (φ) flow lines,
yellow (light) – toroidal (ψ) flow lines.

The advantage of (1) is that F is divergence-free by construction and involves only two scalar
fields. The poloidal-toroidal decomposition lends itself particularly well to geometries in which
ê (which we will call vertical) can be taken to be normal to the physical boundaries and the
horizontal directions (those perpendicular to ê) are periodic. Standard examples are a spherical
geometry with ê = êρ [3, 4] or a three-dimensional Cartesian geometry with one bounded
direction along ê and two periodic directions, such as channel flow [5].
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2 Governing equations

Evolution operators for the potentials ψ and φ are derived by taking successive normal com-
ponents and curls, since these operations extract the potentials. For ê = êz (or ê = êρ in
spherical coordinates),

ê · F = −∆hφ, (2a)
ê · ∇ × F = −∆hψ, (2b)

ê · ∇ × ∇× F = ∆∆hφ. (2c)

where ∆h is the two-dimensional horizontal Laplacian.
Our application to a finite cylinder is based on the treatment by Marques [6, 7], Equations

(2) hold for ê = êz (but not for ê = êr). The horizontal direction θ is periodic, but r is not.
The increase in order of the equations in r must be compensated for by additional boundary
conditions. One of these is a gauge condition lifting the non-uniqueness of the representation
(1). The other is a compatibility condition analogous to a constant of integration and arises from
the differentiation used in (2). Marques [6] proved that, for g defined over a simply connected
domain Ω, the equation:

g = 0 in Ω (3)

is equivalent to:

ê · g = 0 in Ω (4a)
ê · ∇ × g = 0 in Ω (4b)

∇ · g = 0 in Ω (4c)
n̂ · g = 0 on ∂Ωh (4d)

where n̂ is the vector normal to the boundary ∂Ωh of slices perpendicular to ê. (In our case
with ê = êz, the slices Ωh are disks, their boundaries ∂Ωh are circles, and n̂ = êr is the radial
unit vector.) Equation (4c) requires that g be solenoidal and equation (4d) is the compatibility
condition.

We now wish to apply (4) to the magnetohydrodynamic equations:
(

∂t −
1

Re
∆

)

u + (u · ∇)u − (B · ∇)B = −∇(p +
B2

2
) (5a)

∇ · u = 0 (5b)

(

∂t −
1

Rem

)

B −∇× (u × B) = 0 (6a)

∇ · B = 0 (6b)
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where Re is the usual hydrodynamic Reynolds number and Rm the magnetic Reynolds number.
To allow us to use (4) for both equations, we write (5a)-(6a) in the form:

fu ≡

(

∂t −
1

Re
∆

)

u + su = −∇
(
p+B2/2

)
(7a)

gu ≡ ∇× fu = 0 (7b)

gB ≡

(

∂t −
1

Rem
∆

)

B + sB = 0 (7c)

thus defining gu and gB which are both solenoidal. The decoupled evolution equations for the
velocity potentials are derived by taking ê· and ê · ∇× of gu, i.e. ê · ∇× and ê · ∇ × ∇× of
u Those for the magnetic potentials are derived by taking ê· and ê · ∇× of (6a). The evolution
equations for the scalar potentials become:

(∂t −
1

Re
∆)∆hψu = ê · ∇ × su (8a)

(∂t −
1

Re
∆)∆∆hφu = −ê · ∇ × ∇× su (8b)

and

(∂t −
1

Rem
∆)∆hφB = ê · sB (9a)

(∂t −
1

Rem
∆)∆hψB = ê · ∇ × sB (9b)

where

su ≡ (u · ∇)u − (B · ∇)B (10a)
sB ≡ −∇× (u × B) (10b)

3 Conditions on velocity field

The velocity field is driven by the counter-rotation of the bounding disks. We have non-
dimensionalized length by the radius and time by the inverse angular velocity. This leads to the
boundary conditions:

u|r=1 = 0, (11a)
u|z=±h

2

= ± rΩêθ (11b)

Although formally Ω = 1 by our choice of units, we retain the possibility of a function Ω(r) ≈ 1
whose purpose is to regularize the boundary conditions which are otherwise discontinuous at
r = 1, z = ±h/2.
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We now consider the number of boundary conditions required by equations (8) Equation
(8a) is 2nd order in the vertical directions and 4th order in the horizontal directions. while
equation (8b) is 4th order in the vertical directions and 6th order in the horizontal directions.
A corresponding number of boundary conditions are required, a total of (2+4)/2=3 at each
vertical boundary and (4+6)/2=5 at each horizontal boundary. These are provided by the 3
physical boundary conditions (11) for the velocity at the no-slip vertical and horizontal bound-
aries, which are to be supplemented by the gauge and compatibility conditions at the horizontal
boundaries.

3.1 Hydrodynamic gauge condition

We begin by focusing on the hydrodynamic conditions and abbreviate φ ≡ φu, ψ ≡ ψu. In
(1), φ is determined up to a solution of

∆hφ = 0 (12)

while ψ is determined up to an arbitrary function of z. The gauge for the hydrodynamic poten-
tials is chosen by fixing

φ(r = 1) = 0 (13a)
ψ(r = 0) = 0 (13b)

3.2 Hydrodynamic boundary conditions

On the cylindrical surface r = 1 we impose boundary conditions (11) on ur, uθ, uz:

ur =
1

r
∂θψ + ∂z∂rφ = 0, (14a)

uθ = −∂rψ +
1

r
∂z∂θφ = 0, (14b)

uz = −∆hφ = 0. (14c)

The gauge choice (13a) can be used to simplify (14b):

∂θφ = ∂zφ = 0 =⇒ ∂rψ = 0 (15)

On the simply-connected bounding disks z = ±h/2, we can use the two-dimensional version
of (4), which states that u ∓ rΩêθ = 0 is equivalent to:

0 = êz · u = uz = −∆hφ (16a)
1

r
∂r(r

2Ω±) = êz · ∇ × u =
1

r
(∂r(ruθ) − ∂θur) = −∆hψ (16b)

0 = −∇h · uh = ∂zuz = −∂z∆hφ (16c)

The remaining condition (4d) required at the two circular edges is insured by the imposition of
(14a) on ur. Equations (16) have the advantage of not coupling the potentials.
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3.3 Hydrodynamic compatibility condition

The compatibility condition (4d) at r = 1 is

0 = êr · g = êr · ∇ × f = êr · ∇ ×

((

∂t −
1

Re
∆

)

u + s

)

=

(
1

r
∂θêz − ∂zêθ

)

·

((

∂t −
1

Re
∆

)

u + s

)

(17)

Because derivatives ∂θ and ∂z act in directions parallel to the boundary r = 1, they vanish for all
terms in f which are zero or constant at this boundary. For homogeneous boundary conditions
(14) on the outer cylinder, this is true for ∂tu and for s in the absence of a magnetic field. Then
condition (17) takes the form:

0 =
1

r
∂θ∆uz − ∂z

((

∆ −
1

r2

)

uθ +
2

r2
∂θur

)

(18)

Substituting the gauge condition (13a) and the relations between u and ψ, φ written in (14), we
obtain:

0 = ∂2
rz∆hψ −

1

r
∂θ∆∆hφ = 0 (19)

4 Influence Matrix for Nested Elliptic Problems

The complete statement of the hydrodynamic problem is then:

(∂t −
1

Re
∆)∆hψ = êz · ∇ × s ≡ sψ (20a)

(∂t −
1

Re
∆)∆∆hφ = −êz · ∇ × ∇× s ≡ sφ (20b)

together with, at r = 1:

1

r
∂θψ + ∂z∂rφ = 0 (ur) (21a)

∂rψ = 0 (uθ) (21b)
∆hφ = 0 (uz) (21c)

φ = 0 (gauge) (21d)

∂2
rz∆hψ −

1

r
∂θ∆∆hφ = 0 (compatibility) (21e)

and, at z = ±h/2:

∆hψ = −
1

r
∂r(r

2Ω±) (êz · ∇ × uh) (22a)
∂z∆hφ = 0 (∇h · uh) (22b)

∆hφ = 0 (êz · u) (22c)
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These high-order partial differential equations can be solved as nested Helmholtz and Pois-
son problems for:

ψ, fψ ≡ ∆hψ, (23)

and
φ, fφ ≡ ∆hφ, gφ ≡ ∆fφ (24)

Ideally, each of the functions in (23), (24) would be subject to Dirichlet or Neumann boundary
conditions, leading to a sequential solution procedure. This is close to, but not precisely, the
case. Equation (21b) provides the necessary Neumann condition for ψ, (21d) the Dirichlet
condition for φ, and (21c)-(22c) the Dirichlet conditions for fφ. However (22a) provides a
Dirichlet condition for fψ only at z = ±h/2 and no simple boundary condition exists for gφ.
Conversely, conditions (21a), (21e) and (22b) must all be imposed. The influence matrix method
– equivalent to Green’s functions methods or decomposition into particular and homogeneous
solutions – allows us to substitute the desired Dirichlet conditions for the exact conditions, and
then to correct the resulting solution so that the exact conditions are satisfied.

We rewrite the complete problem (20)-(22) as follows:

(∂t −
1

Re
∆)fψ = sψ (25a)

fψ = −
1

r
∂r(r

2Ω±) at z = ±h/2 (25b)
1

r
∂θψ + ∂z∂rφ = 0 ⇐⇒ fψ = σfψ(z) at r = 1 (25c)

∆hψ = fψ (26a)
∂rψ = 0 at r = 1 (26b)

(∂t −
1

Re
∆)gφ = sφ (27a)

∂2
rzfψ −

1

r
∂θgφ = 0 ⇐⇒ gφ = σgφ(z) at r = 1 (27b)

∂zfφ = 0 ⇐⇒ gφ = σgφ(r) at z = ±h/2 (27c)

∆fφ = gφ (28a)
fφ = 0 at r = 1 (28b)
fφ = 0 at z = ±h/2 (28c)
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∆hφ = fφ (29a)
φ = 0 at r = 1 (29b)

The equations above require some explanation. The conditions shown on the left of the arrows
in equations (25c), (27b) and (27c) cannot serve as Dirichlet or Neumann boundary conditions
for a Helmholtz or Poisson problem. (Although the condition on the left in (27c) is a Neumann
condition for fφ, equations (28) already determine fφ and a boundary condition for gφ is lacking
in problem (27).)

The influence matrix method calls for calculating σfψ and σgφ such that the conditions on
the left are satisfied. This is accomplished in the following way. In a preprocessing step,
homogeneous versions (sψ = sφ = 0) of (25)-(29) are solved with all possible values σfψ and
σgφ for the inhomogeneous Dirichlet conditions. The resulting non-zero values of the operators
to the left of the arrows are calculated. This yields the influence matrix, relating the conditions
on the left- and right-hand-sides of the arrows. Note that the correspondence given in (25c),
(27b) and (27c) serves only for counting purposes. In fact, the values of σfψ and σgφ affect all
of the values of the operators on the left-hand-sides of (25c), (27b) and (27c). Details can be
found in [8, 1].

5 Temporal and spatial discretization; solution of Helmholtz and Poisson problems

We integrate the nonlinear terms by the explicit Adams-Bashforth formula and the Laplacian
terms by the implicit backwards Euler formula. Thus, for example, (25a) is replaced by:

(

I −
∆t

Re
∆

)

fψ =
∆t

2

(
3snψ − sn−1

ψ

)
(30)

We use the pseudospectral method [9] to discretize our fields. In the θ and z directions we use
Fourier modes and Chebyshev polynomials. In the radial direction, we use a polynomial basis
developed by Matsushima and Marcus [10] which is regular at the axis. Thus

f(r, θ, z) ≈

bM2 c∑

m=−bM2 c

K−1∑

k=0

N̂∑

n=|m|
n+m even

f̂mkne
imθQm

n (r)Tk

(
2z

h

)

(31)

where f̂mkn are complex coefficients, Tk are Chebyshev polynomials and Qm
n are the Matsushima-

Marcus radial functions. We have run the hydrodynamic code for h = 2 (height = diameter)
and Reynolds numbers up to 5000, for which the resolution requirements are ∆t = 0.001 and
M ×K×N = 96×128×80. In order to solve the Helmholtz and Poisson problems (25)–(29),
we diagonalize in the θ and z directions to reduce the equations to a set of one-dimensional
problems in the radial direction, which we then solve by the use of recursion relations [10, 11].
Details can be found in [8, 10].
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6 Conditions on magnetic field

We now turn to the formulation of the magnetic problem, abbreviating its scalar potentials
as φ and ψ. We consider the cylinder to be surrounded by an external vacuum, in which the
magnetic field obeys:

Bvac = ∇φvac (32a)
∆φvac = 0 (32b)

Bvac|(r,z)→∞ = 0 (32c)

but is otherwise not fixed. The magnetic field is required to be continuous at the cylinder
boundary:

[B]∂ ≡ B|∂Ω − Bvac|∂Ω = 0 (33)

Equations (39) constitute three conditions at the boundary for the three potentials ψB , φB and
φvac. In section , we will discuss a method for imposing these conditions.

Equations (9a) and (9b) are both 2nd order in the vertical directions and 4th order in the hor-
izontal directions and require (2+2)/2=2 conditions at each vertical boundary and (4+4)/2=4 at
each horizontal boundary. Since the physical boundary conditions are matching conditions with
the external magnetic field, the number of unknown scalar fields increases from 2 to 3, as does
the number of conditions (33) at the interface. As in the hydrodynamic case, these conditions
are to be supplemented by gauge and compatibility conditions at the horizontal boundaries.

6.1 Magnetic compatibility condition

The magnetic compatibility condition (4d) can be derived in an analogous way to that of the
velocity:

êr · gB = êr ·

((

∂t −
1

Rm
∆

)

B + sB

)

= 0 (34)

Here, several differences appear. Contrary to the velocity, the magnetic field does not vanish on
the boundary so ∂tB 6= 0. The nonlinear term

sB = êr · ∇ × (u × B)|r=1 (35)

vanishes at the boundary when u|r=1 = 0 is imposed. (Note that normal derivatives of u, which
are generally not zero at r = 1, do not appear in (35).)

êr ·

(

∂t −
1

Rm
∆B

)

= 0 (36)

In polar coordinates the radial component of the vector Laplace operator has the following form

êr · ∆B =

(

∆ −
1

r2

)

Br −
2

r2
∂θBθ (37)
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Using (37) and substituting the potential form of Br and Bθ we obtain the potential form of the
magnetic compatibility condition at r = 1:

(

∂t −
1

Rm

(

∆ −
1

r2

)) (
1

r
∂θψ + ∂r∂zφ

)

︸ ︷︷ ︸

Br

+
1

Rm

2

r2
∂θ

(

−∂rψ +
1

r
∂z∂θφ

)

︸ ︷︷ ︸

Bθ

= 0 (38)

6.2 Magnetic gauge conditions and statement of matching conditions

In terms of cylindrical coordinates and potentials, the matching conditions are written as:

0 = Br − Bvac
r =

1

r
∂θψ + ∂r (∂zφ− φvac) (39a)

0 = Bθ − Bvac
θ = −∂rψ +

1

r
∂θ (∂zφ− φvac) (39b)

0 = Bz − Bvac
z = −∆φ + ∂z (∂zφ− φvac) (39c)

The matching conditions (39) suggest the choice of

(∂zφ− φvac) |r=1 = 0 (40)

as a gauge for φ. Equation (40) can be differentiated along the bounding cylinder, i.e. in z and
θ. Using (40), the matching conditions at r = 1 (but not at z = ±h/2) are then simplified to:

0 =
1

r
∂θψ + ∂r (∂zφ− φvac) (41a)

0 = ∂rψ (41b)
0 = ∆φ (41c)

At z = ±h/2, we may impose the matching conditions in the same form as in (16)

0 = êz · [B − Bvac] = −∆φ + ∂z (∂zφ− φvac) (42a)
0 = êz · ∇ × [B − Bvac] = êz · ∇ × B = ∆hψ (42b)
0 = ∇h · [B − Bvac] = ∂z[Bz −Bvac

z ] = ∂z[−∆hφ− ∂zφ
vac] (42c)

The coupling with the external field φvac has been reduced relative to (39) but not eliminated.
The remainder of the paper is devoted to exploring a method for imposing boundary conditions
(41)–(42) without the necessity for solving the external Laplace equation (32b).

7 Magnetic boundary conditions

7.1 Matching to an external harmonic solution: Green’s functions

We are interested in solving the following scalar potential problem:

∆Φ(x) = ρ(x) ; B = ∇Φ and B(|x| → ∞) → 0 (43)
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where Φ is a scalar potential of a vector potential field B which we require to vanish at an
infinite distance from the field sources ρ located inside a bounded region Ω so that:

ρ(x) =

{
ρ(x′) x′ ≡ x ∈ Ω
0 x /∈ Ω or x ∈ Ω∗ ≡ D − Ω

(44)

where D is a global domain and Ω is a bounded sub-domain with boundary ∂Ω. A physi-
cal interpretation of (43) can be an electrostatic potential Φ of a field F generated by charges
distributed in space with the density ρ.

A possible way of solving (43)–(44) is to build the solution from the fundamental solutions of
the Laplace equation. This construction protocol corresponds to a well-known Green function
method. It follows from the linearity of the Laplace equation that any harmonic function can be
constructed using a fundamental solutions (or Green function) satisfying

∆G(x;x′) = δ(|x − x′|) (45)

In three dimensions the Green function for the Laplace equation is G(x;x′) = − 1
4π
|x − x′|−1

and in the electrostatic context corresponds to the potential of an isolated point charge. In two
dimensions we have G(x;x′) = − 1

4π
ln |x − x′|. Using Green’s second identity one can show

[12] that solutions to (43) can be written as:

Φ(x) =
1

4πε0

∫

Ω

ρ(x′)G(x;x′) d3x′ +
1

4π

∮

∂Ω

(

G(x;x′)
∂Φ(x′)

∂n′
− Φ(x′)

∂G(x;x′)

∂n′

)

da′

(46)
where the volume integral ensures satisfaction of the equation while the surface integral, corre-
sponding to a harmonic part of the solution, can be used to impose the boundary conditions for
the problem.

Equation (46) is in fact already a recipe for how to impose the boundary conditions for the
solution in the internal domain Ω. so that it is harmonic on the boundary. If one incorporates the
integral boundary condition (46) into a solver, then the internal solution is guaranteed to match
the external harmonic part of the solution. Equation (46) with ρ(x) = 0 is an integral equation
of the second kind with a singular (but integrable) kernel and can be solved numerically by spe-
cialized methods (see [13]). This approach has been implemented by Isakov et al. [14] using a
integro-differential formulation in which the finite volume method is used in the internal region
and the boundary element method is used to discretize the solution at the boundary. The authors
show that the integral equation on the boundary can be solved efficiently at a cost of O(N 2)
operations (for a finite boundary element method), where N 2 is the total number of bound-
ary points. We wish to formulate an analogous method for our spatial spectral discretisation,
described in section 5.

7.2 Influence matrix method

Instead of ensuring that the internal solution be harmonic on the boundary by implementing
condition (46) directly, we shall use the influence matrix methodology to make sure that the

11
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internal solution smoothly matches a harmonic function satisfying appropriate asymptotic con-
ditions at infinity. This is equivalent to imposing (46). We shall denote the external harmonic
solution by φ(x) while Φ(x) will stand for the internal solution. The two-domain problem is
described by the following system of equations:

∆Φ = ρ ∆φ = 0 (47)

with boundary conditions

Φ(x) − φ(x) = 0 x ∈ ∂Ω (48a)
∂nΦ(x) − ∂nφ(x) = 0 x ∈ ∂Ω (48b)

φ(x) → 0 |x| → ∞ (48c)

To implement the continuity conditions (48a)–(48b) one does not need to know the external
solution. It is enough to know a harmonic basis {Hn(x)} in which φ(x) can be represented:

φ(x) =
∑

n

βnHn(x) (49)

In order to separate the problem of satisfaction of the internal equation from that of imposing
the boundary conditions (48a)–(48b), we decompose the internal solution Φ into particular and
homogeneous parts so that Φ = Φp + Φh and

∆Φp = ρ ∆Φh = 0 (50)
Φp|∂Ω = 0 Φh|∂Ω 6= 0

In writing (50), we assume that we dispose of a solver able to solve Poisson’s equation with any
specified boundary values. The role of Φp is to satisfy the Poisson equation, while that of Φh

is to ensure the satisfaction of (48a)–(48b). We can compute a set of linearly independent ho-
mogeneous solutions {Φh

n} so that Φh can be written as Φh(x) =
∑

n αnΦ
h
n(x). The matching

conditions for can now be written as:

Φ(x) − φ(x) = Φp(x) +
∑

m

[
αmΦh

m(x) − βmH
h
m(x)

]
= 0 (51a)

∂Φ

∂n
(x) −

∂φ

∂n
(x) =

∂Φp

∂n
(x) +

∑

m

[

αm
∂Φh

m

∂n
(x) − βm

∂Hh
m

∂n
(x)

]

= 0 (51b)

where Φp, Φh
m, Hm are known, so (51) defines a linear system of equations for the unknown

coefficients {αm, βm}. These equations must be satisfied at each boundary point x ≡ xk. This
can be written in matrix form as follows:

[
A B

C D

]

︸ ︷︷ ︸

M

[
α
β

]

=

[
0
P

]

(52)

12
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where A ≡ Φh
m(xk), B ≡ −Hm(xk), C ≡ ∂nΦ

h
m(xk), D ≡ −∂nH

h
m(xk), α ≡ αn, β ≡ βn

and P ≡ −∂nΦ
p(xk). The matrix M is called the influence matrix. The cost of creating and

inverting of the influence matrix can be significant. It is therefore not economical to use this
method if the solution must be found only once. This is not the case, however, if one needs
to solve (43-44) repeatedly, as is the case when the Poisson problem is solved at each time
step of a time-dependent simulation, because the influence matrix can be computed once in a
preprocessing step. The cost can be further decreased by performing a Schur decomposition of
the influence matrix:

Cα + Dβ = P =⇒ β = D−1(P− Cα) (53a)
Aα + Bβ = 0 =⇒ (A− BD−1C)α = −BD−1P (53b)

reducing its dimension by a factor of two and effectively eliminating completely the external
solution from the problem.

7.3 Construction of a harmonic basis

Matching the internal solution with the external one requires the knowledge of a harmonic
basis Hm. The spherical harmonics, while a valid basis, are usable in practice only if the domain
boundary is spherical, since they converge badly near a non-spherical boundary. One needs a
basis of harmonic functions constructed in accordance to the boundary shape which represents
uniformly the field on the boundary. In the following we present a method for constructing a
well-behaved harmonic basis Hm.

From now on we will limit ourselves to a two-dimensional problem, motivated by the idea
that this is a necessary first step toward deriving a three-dimensional algorithm. All the key
problems which we have described in the case of a non-spherical boundary in three dimensions
are also present in two dimensions for a non-circular domain. For simplicity and in view of
future application to a spectral solver we will consider Ω to be a rectangular region.

We wish to construct a basis set of harmonic functions, each of which takes on specified
values f(x) along one side of the rectangle. We can use the Green function G(x;x′) to do this.
Since each side of the rectangle is a finite interval a ≤ x ≤ b = a + H , we can write the
following one-dimensional problem:

∫ b

a

G(x; x′) σ(x′) dx′ = f(x) (54)

where σ(x) is a source distribution on the line which generates potential equal to f(x) for
x ∈ [a, b]. Equation (54) is a Fredholm integral equation of the first kind for σ(x), a class of
inverse problems which is in general ill-posed or ill-conditioned. However, it can be solved
for kernels which are Green functions of the Laplace equation. In two dimensions, we have
G ∼ ln |x − x′| so that (54) becomes

∫ b

a

ln |x− x′| σ(x′) dx′ = f(x) (55)
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This equation is known as Carleman’s equation and has the following solution [15]:

σ(x) =
1

π2
√

(x− a)(b− x)

[
∫ b

a

√

(t− a)(b− t)f ′(t) dt

t− x
+

1

ln(H/4)

∫ b

a

f(t) dt
√

(t− a)(b− t)

]

(56)
if H 6= 4.

We use Chebyshev polynomials to represent the internal solutions, and therefore take as
boundary values f(x) each of the functions Tn(2x/H) ≡ cos(n arccos(2x/H)). The corre-
sponding solutions σn(x) are:

σn(x) = An
Tn(2x/H)

π
√

(
H2

4
− x2

)
; An =

{
−n n > 0

[ln(H/4)]−1 n = 0
(57)

Because the different Tn’s form an orthogonal basis for all possible boundary value distributions
on the segment of length H , then through (46) they also define a basis for all two-dimensional
harmonic solutions having this segment as a boundary.

Let us consider a rectangular domain [−H/2, H/2] × [−1, 1]. Assuming that our segment
lies along the x direction, then a two-dimensional potential φxn(x) has the following form:

φxn(x) =

∫ H/2

−H/2

ln |x − x′êx| σn(x
′) dx′ (58)

Some of these harmonic functions are illustrated in figure 2. For a harmonic function with
specified values along a segment in the y direction, we have:

φym(x) =

∫ 1

−1

ln |x − y′êy| σm(y′) dy′ (59)

Any external harmonic function can then be approximated by the following truncated series:

φN,M(x) =
N−1∑

n=0

[

cx,−n φxn

(

x +
H

2
êx

)

+ cx,+n φxn

(

x −
H

2
êx

)]

+

M−1∑

m=0

[
cy,−m φym (x + 1êy) + cy,+m φm (x − 1êy)

]
(60)

The potential φ(x) of (60) is defined by the 2(N + M) coefficients {cx,−n , cx,+n , cy,−m , cy,+m }. If
the solution Φ(x) in the internal domain Ω is represented with spectral resolution N ×M via

ΦN,M (x) =

N−1∑

n=0

M−1∑

m=0

Tn(2x/H)Tm (y) (61)
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Figure 2: Potentials φx
n(x) generated by line source distributions σn(x) with H = 2. Values of the potentials on

the line segment x ∈ [−1, 1] correspond to the Chebyshev polynomials Tn(x). Figures present (from left to right):
σ0(x), σ1(x), σ4(x).

then the total number of linearly independent boundary value distributions of the internal so-
lution ΦN,M equals the number of basis functions forming the external solution φN,M and the
matching can be accomplished by solving a linear system of equations, applying the influence
matrix protocol described in the previous section. The basis functions {φxn, φ

y
m} of (58)–(59)

(unlike the spherical harmonic basis) lead to a well-conditioned linear system, so the method
can be applied to high spectral resolutions.

The harmonic functions φxn(x) and φym(x) can be evaluated by performing integrations (58)–
(59) numerically. Special attention must be paid during this process since both the kernel
G(x; x′) and the density σ(x′) have integrable singularities within the domain of integration.
The singular points are x′êx = x and x′ = ±H/2 for φxn and y′êy = x and y′ = ±1 for
φym. Dedicated adaptive quadratures (see [16]) can be used to compute these integrals accu-
rately. When the normal derivatives of φn(x) need to be evaluated, only the integral kernel is
differentiated. For G(x; x′) ≡ ln |x− x′êx| one obtains

∂φxn
∂n

(x, y) =
∂

∂y

∫ H/2

−H/2

1

2
ln

[
(x− x′)2 + y2

]
σn(x

′) dx′ =

∫ H/2

−H/2

y

(x− x′)2 + y2
σn(x

′) dx′

(62)

8 Validation of matching method: electrostatic example

We apply our method to a simple problem from electrostatics. For a given distribution of
electric charges ρm:

ρm(r, θ) = rme−r
2/δ2 cos(mθ) r ≡ |x| =

√

x2 + y2, θ ≡ arg(x+ iy) (63)

confined in a rectangular domain but localized around the coordinate origin x = y = 0, we seek
the corresponding electric potential. The rm factor in (63) ensures regularity of ρm at r = 0.
The parameter δ is chosen to make ρm very small near the boundaries. We expect that the
solution should be almost unaffected by the presence of boundaries and, for ρm=0(r, θ), should
lead to an axisymmetric solution. Figure 3 shows the numerical result obtained using δ2 = 0.15
for the spectral resolution N = 8 in both directions. The domain boundary is represented by a
bold square. One can see that the presence of the boundaries has minimal effect on the contours,
which are almost perfectly circular as should be the case for δ small.
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Figure 3: Potential ΦN=8

m=0 generated by sources (63)
for δ = 0.15. The maximal relative error for this
numerical solution is Em=0(N = 8) ≈ 0.03. An
analytic solution is given by (64a).
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Figure 4: Convergence test: log10 Em=0(N) (eq.
(65)) is plotted for N = [6, . . . , 16], δ2 = 0.1.

The potential due to unbounded sources (not restricted to the internal domain) defined by
(63) can be found analytically. For m = {0, 1, 2} we have:

Φm=0(r, θ) =
δ2

4

[

Ei

(

1,
r2

δ2

)

+ 2 log(r)

]

(64a)

Φm=1(r, θ) =
δ4

4r

[

e−
r2

δ2 − 1

]

cos θ (64b)

Φm=2(r, θ) =
δ4

4r2

[
(
δ2 + r2

)
e−

r2

δ2 − δ2

]

cos 2θ (64c)

where Ei(a, z) =
∫ ∞

1
e−tzt−a dt is the error function and we selected Φ0, Φ1 having finite

values at r = 0. To evaluate the error convergence of the method we computed the relative error
Em(N) defined as

Em(N) = sup
r,θ

|Φm(r, θ) − ΦN
m(r, θ)|

|Φm(r, θ)|
(65)

where ΦN
m(r, θ) is the solution computed numerically with spectral resolution N in both spatial

directions. Figure 4 proves the exponential convergence of the method. We tested our method
for different source distributions and in each case we observed exponential convergence to-
ward the analytic solution (64c). Figures 5–6 show the electric potentials ΦN=16

m=1 and ΦN=16
m=2 .

Convergence can only be confirmed up to a limited precision since the analytic solution (64c)
corresponds to an unbounded source distribution, and not to the problem we are solving nu-
merically in which sources are confined to the internal rectangle. The best agreement can be
achieved for small values of δ. If the numerical solution with highest spectral resolution (here
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Figure 5: Potential ΦN=16
m=1 generated by sources

(63) for δ = 0.1. The analytic solution is given
by (64b).
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Figure 6: Potential ΦN=16

m=2
generated by sources

(63) for δ = 0.1. The analytic solution is given
by (64c).

N = 64) is instead taken as a reference, then the method converges to this solution spectrally
up to machine precision. Finally, one can see on figure 7 the effect of sources situated near the
boundary.
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Figure 7: Potential ΦN=16

m=1
generated by sources (63) for δ = 2. In the figure on the right, the dipole source

distribution has been rotated by 45◦ about the origin. For this large value of δ, charges are located near the
boundary.

9 Conclusions and perspectives

We have formulated a method for solving the hydrodynamic equations in a finite cylinder
in which the velocity field is represented by two scalar fields and are divergence-free by con-
struction. Although the poloidal-toroidal decomposition leads to an increase in the order of
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the governing equations and in the number and complexity of conditions that must be imposed
at the boundary, we have shown that these obstacles can be overcome by use of the influence
matrix method.

The poloidal-toroidal decomposition can also be applied to the magnetic field and to the cou-
pled magnetohydrodynamic equations. Because the induction equation conserves divergence,
the order of the equations is lower. However, the compensating complication is that the values
of the magnetic field on the boundary are unknown; instead, the field must be matched to an
external field. In order to formulate a method for imposing these conditions, we have investi-
gated a simpler problem which shares many of the same features: a two-dimensional Poisson
equation in a bounded rectangular domain. The solution and its normal derivative are required
to match those of a harmonic function which decays at infinity in an external domain.

We have developed a method using Green functions which solves only the internal prob-
lem and determines the boundary conditions ensuring smooth matching with the external solu-
tion. The new and essential element of this approach is the construction of a basis of harmonic
functions which represent the near-boundary external solutions uniformly and is adapted to a
spectral discretisation of the internal domain. This basis is used for constructing the influence
matrix, which serves to impose the coupled boundary conditions between the internal and ex-
ternal solutions. The method is numerically well conditioned and can be used for high spatial
resolutions. For a spectral solver, this method guarantees exponential convergence. This method
might seem computationally expensive, but the most costly process – construction of a basis of
external harmonic functions – is performed only once, and so its cost is a negligible component
of a long-time integration.

Future work will focus on adapting the method to the three-dimensional magnetohydrody-
namic equations in a finite cylinder where the poloidal-toroidal decomposition can be used.
Since the cylindrical coordinates have one periodic direction it should be possible to apply this
method separately to each of the Fourier modes treated individually as two-dimensional prob-
lems.
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