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Abstract

A three-dimensional mixed-mode cellular automaton model [C. Bos, M. G. Mecozzi, and J.
Sietsma. Computational Materials Science 48.3 (2010): 692-699] for the austenite to ferrite
transformation in low-carbon steel has been analyzed and improved. A comparison between
the new and conventional model has been made and the improvements found are significant.
Interface velocity is based on diffusion of carbon atoms and determined by the local density
of carbon. A higher grain boundary carbon diffusion coefficient is applied. The conventional
model has been revised and stabilized. Real dilatometry tests have been used to mirror the
transformation behaviour of the model with reality. For a one-dimensional model it has been
shown that the space-discretizing cellular automaton model converges to the space-continuous
method of Murray-Landis.
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Chapter 1

Introduction

Steel production plays an important role in the development of our society. Construction,
transport and packaging are three sectors which would not exist in their current state if steel
production had not been continually improving over time. As a result, manufacturers have
some freedom in steel properties. The automotive industry uses different steels for various
car parts in order to make their cars lighter or stronger. Developing and understanding the
steel production process will contribute to the further evolution of our society. Typically,
steel is made by melting iron ore with cokes, resulting in a liquid carbon-rich steel. Then,
oxygen is added which reacts with carbon to reduce the amount of carbon in the molten
steel. Since this process is exotherm, scrap metal is added to control the temperature of the
liquid. At this point, other elements can be added in an attempt to change final mechanical
properties. The next step consists of casting the liquid into solid blocks. These blocks of steel
are hot or cold rolled into metal sheets, which is an end product of the steel producer, see
Figure 1-1. Since solid steel has two different atom lattices, depending on its temperature,
the transformation between these lattices is of interest while researching steel properties at
room temperature. After all, the final properties of steel depend on the whole process during
steel production, starting from the possible impure resources iron ore and coal and ending
with the final cooldown to room temperature. The phase transformation between austenite
and ferrite occurs in the region between 1000 K and 1185 K. This is the result of iron atoms
preferring a different iron atom lattice over the other.

The austenite to ferrite transformation process can be identified as a moving boundary prob-
lem. There exist several methods to deal with this type of problem. Front-capturing methods
are very suited for moving boundary problems where topological changes occur, which is the
case when ferrite starts to nucleate in the austenite structure. Phase field and level set meth-
ods are front-capturing methods and are widely used to research phase transformations[1, 2].
The phase field method introduces a diffusive interface, where the phase transformation oc-
curs, and avoids direct implementation of the interface conditions. The level set method
makes it easy to follow the contours of transforming topological objects and is also highly
suitable for the phase transformation problem. Another widely used method is cellular au-
tomaton [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] which divides the domain into a regular grid of
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2 Introduction

Figure 1-1: The end product of a steel
manufacturer.

Figure 1-2: An example of a dendrite
originated from a model designed for
ferrite grain growth.

cells which transform due to a transformation rule. This report focuses on improving cellular
automaton to model phase transformations. In current cellular automaton implementations
of this problem, dendritic growth patterns have been observed, see Figure 1-2. In solidifica-
tion of steel this behaviour is physically natural, however, during the phase transformation
that happens when steel is cooled down these patterns are not observed. Efforts are made to
reduce and possibly avoid dendritic growth completely.

There exist at least three good reasons to motivate the work on improving this type of
transformation models. Firstly, modeling the austenite to ferrite transformation in a more
accurate way may contribute to the reduction of physical experiments. Secondly, analyzing
the microstructure of a model is more convenient than microscopic research on steel samples.
Thirdly, the amount of experiments can be highly increased, which results in a higher rate of
feedback and therefore a possible faster development of new types of steel or different heat
treatments.

The first Chapter is about the models which are used for the transformation simulations.
First, an outline of test problem for examining the unwanted behaviour of dendritic growth
will be given. Then, a more sophisticated model is explained to cover the transformation
from a structure of austenite grains to a mixed ferrite austenite grain structure. The moving
boundary problem will then be subjected by Cellular Automaton, which results in new sub-
models for interface growth and carbon dynamics. This thesis then proceeds by reporting on
the methods that are used to turn the model into computing algorithms. A carbon smoothing
approach is described with the aim of suppressing dendritic growth behaviour. A complete
overview of an algorithm is given to encourage reproduction. Results of findings of model
behaviour are presented in a visual way for clear understanding. The results and implemen-
tation of the model are discussed, especially the dendritic growth behaviour. As a conclusion
one could say that modeling the austenite to ferrite transformation by Cellular Automaton
has been enhanced and diffusion-based transformation models are now operational.
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Chapter 2

The Model

The austenite to ferrite transformation is a complex process on micro scale of moving iron
atoms inside a solid material. First, the mechanics of this process will be described. Ini-
tially, it is assumed that there is a structure of austenitic grains within a domain of constant
temperature. The orientation of the atom lattices differ from grain to grain, which results
in impurities at the edges of these grains. Furthermore, it is assumed that a certain amount
of carbon is present in the domain. The process starts, when the temperature is quickly
altered to a constant lower temperature everywhere in the domain. The result of this tem-
perature change is that the preferred iron atom lattice changed from austenite to ferrite.
From this moment the transformation starts by the nucleation of ferrite grains within the
austenitic structure. The corners and edges of austenite grains are assumed to be the most
likely nucleation points of ferrite in the domain. Inside the ferrite grains there is less space
for carbon atoms and therefore it is pushed in front of the ferrite interface into the austen-
ite. Due to lower temperatures, ferrite grains are expanding over time. However, the higher
concentration of carbon at its own interface results in a slow-down of transformation. This
means that the ferrite grains need to wait a little until carbon atoms are dissolved into the
austenitic domain. Thus, the velocity of the moving interface depends heavily on the local
carbon concentration[7]. It is assumed that the expansion of ferrite is faster at austenite-
austenite interfaces, because there the iron atom are less structured into lattices. When the
ferrite growth causes the austenitic grains to be saturated with carbon atoms, the process has
reached equilibrium.

The phase transformation from austenite to ferrite will be modeled using cellular automaton,
because CA is advantageous in its simplicity versus phase field[14] or level set methods[2].
The CA recrystallization model from Bos et al.[8] is available and could be improved at
some points. Thus, from a pragmatic point of view it is wise to continue with this type of
model. Further, other transformations, recrystallization and nucleation processes are present
in this model. The submodel for determining the carbon interface concentration based on
an assumed exponential profile will be replaced by solving the carbon concentration using a
finite difference grid on the austenite domain, because it is suspected that the exponential
carbon profile model is not accurate in the multi-grain model.
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4 The Model

2-1 Single-grain Test Model

The fundamental test problem that will be investigated is the austenite to ferrite phase
transformation. This is a concentration-based moving boundary problem. The interface S
between the ferrite domain Ωα and the austenite domain Ωγ is the main interest, see Figure
2-1. For the whole domain Ω = Ωα ∪ Ωγ the n-dimensional cube with edges of length L is
used. For dimension n up to 3, the domain is Ω = [0, L]n. The magnitude of L is of the
order 10−6 m. The test problem will be further specified by initial conditions and boundary
conditions.

Figure 2-1: Domain of the moving boundary problem in R2.

Initial conditions: The initial state is a domain consisting of austenite with a small
grain of ferrite situated within the austenite.

Boundary conditions: The diffusion of carbon in austenite requires boundary con-
ditions. The boundary of Ωγ is ∂Ωγ = ∂Ω ∪ S. The size of the domain for simulating
microstructural changes in steel is restricted due to computation times. Since only a
small part of the steel is simulated, boundary conditions with symmetric behaviour are
chosen. Using Neumann boundary conditions on all sides of the domain, implicitly it is
assumed that the microstructural development in time is mirrored on all sides outside
the domain. The assumption of constant concentration of carbon in ferrite results in a
flux of carbon into the austenite domain, depending on the velocity of the interface vn.
This gives us our boundary condition on S.

The moving boundary problem can be stated as the following system.



vn = M∆G(xγs ) the normal velocity of S,
∂x
∂t = ∇ · (D(x, z)∇x) in Ωγ , t > 0,
∂x
∂n = 0 on ∂Ω,
∂x
∂n = −(xγs − xα)vn on S,
x(t = 0) = x0.

(2-1)

In this system, x is the carbon concentration, M the interface mobility, ∆G the driving
force, D(x) the diffusion coefficient, xγs the carbon concentration at the interface S, xα the
equilibrium carbon concentration in ferrite and finally x0 the initial carbon distribution.
Remark that the diffusion coeffcient D(x, z) may depend on the carbon concentration x or
the location in the domain. Some models assume otherwise to simplify the problem, but
experiments show that D really is carbon dependent, see Ågren[15].
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2-2 Multi-grain Model 5

2-2 Multi-grain Model

The model covered by this work of the austenite to ferrite phase transformation is decribed in
this section. It is similar to the single grain test model, but the austenite and ferrite structure
is added. Based on experiments, it is assumed that the initial structure of austenitic grains
are a Voronoi structure. The austenite grains are written as Ai for i = 1...NA, where NA

is the total number of grains. Ferrite grains Fi with total number of grains NF are defined
analogously. The interface S between the ferrite domain Ωα = ∪NFi=1Fi and the austenite
domain Ωγ = ∪NAi=1Ai is defined as

S =
NF⋃
i=1

NA⋃
j=1

∂Fi ∩ ∂Aj , (2-2)

where ∂Fi and ∂Aj are the boundary of the domain of ferrite and austenite grain i and j,
respectively. For the whole domain Ω = Ωα∪Ωγ the n-dimensional cube with edges of length
L is used. An example of such a domain in two dimensions is given by Figure 2-2. For
dimension n up to 3, the domain is Ω = [0, L]n. The test problem will be further specified by
initial conditions and boundary conditions.

Figure 2-2: Schematic example of an austenitic structure with growing ferrite grains in R2.

Initial conditions: The initial state is a domain consisting of austenite grains in a
Voronoi structure with a number NF of ferrite nuclei that start to grow. This model
for ferrite nucleation is called site saturation.

Boundary conditions: In this model periodic boundary conditions are used, which is
a common technique for this type of problem[8].

The moving boundary problem can be stated as the following system.



vn = M∆G(xγs ) the normal velocity of S,
∂x
∂t = ∇ · (D(x)∇x) in Ωγ , t > 0,
∂x
∂n = 0 on ∂Ω,
∂x
∂n = −(xγs − xα)vn on S,
x(t = 0, z) = x0(z).

(2-3)
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6 The Model

In this system, x is the carbon concentration, M the interface mobility, ∆G the driving
force, D(x) the diffusion coeffcient, xγs the carbon concentration at the interface S, xα the
equilibrium carbon concentration in ferrite and finally x0 the initial carbon distribution. The
diffusion coefficient D(x, z) may depend on the carbon concentration x and the location in
space z. For the model it is assumed that the diffusion coefficient is higher at grain interfaces
and therefore the coefficient is simplified to D(z).

2-3 Cellular Automaton

A popular approach for modeling the austenite to ferrite transformation is Cellular Automa-
ton(CA), which appears in many articles[3, 16, 4, 5, 17, 6, 18]. An introductory review of
using CA for this type of problem can be found in a paper written by K.G.F. Janssens[3].
A Cellular Automaton is a discrete model with a regular grid of cells. Each cell has a set of
properties, most importantly its state, neighbourhood, and transformation rule. The state
represents to which type of grain the cells belong. Given an initial state, each time step
the state of a cell is updated by a rule that is a mathematical function of the states of its
neighbours.

Grids Any regular grid is allowed in CA models. The most common regular grid is built
from squares. But also other grids are used, see Figure 2-3. Hexagonal grids are sometimes
used to reduce grid anisotropies[9, 11].

Figure 2-3: Square grid(l), triangular grid(m), and hexagonal grid(r)

Neighborhoods Two types of neighborhoods will be defined, the Von Neumann neighbor-
hood and the Moore neighborhood. The neighborhood of a cell is usually defined as a set of
cells around it, including itself. Using lexicographic numbering on a square n × n grid, the
Von Neumann neighborhood of cell i is defined as the collection of cells

Ni = {Cells j : j ∈ {i− 1, i, i+ 1, i− n, i+ n}}. (2-4)

The 3× 3 Moore neighborhood of cell i is defined as the collection of cells

Mi = {Cells j : j ∈ {i+n− 1, i+n, i+n+ 1, i− 1, i, i+ 1, i−n− 1, i−n, i−n+ 1}}. (2-5)

Figure 2-4 illustrates these two definitions.

In general, the m×m Moore neighbourhood of a cell i consists of all cells within an m×m
cube of cells around i.

M.M. Mul Master of Science Thesis



2-3 Cellular Automaton 7

Figure 2-4: Two-dimensional Von Neumann neighborhood(l) and 3× 3 Moore neighborhood(r)

2-3-1 The Framework

To model ferrite grain growth, a 3-dimensional Cellular Automaton model with carbon dif-
fusion is constructed. This model is based on existing models from literature, e.g. in Bos et
al. [8]. Consider a cubic domain Ω with n cells of length ∆z on each side. Using periodic
boundaries, all cells have 26 neighbours that can be divided into three different types based
on the Euclidian distances measured from the cell centres. In general a k-nearest neighbour
is defined as a neighbour whose center lies at a distance of d(k) from the reference cell.

Distance Informal notation
d(1) ∆z Nearest Neighbour
d(2)

√
2∆z NextNearest Neighbour

d(3)
√

3∆z NextNextNearest Neighbour

Table 2-1: k-nearest neighbours

For each cell i its binary state is defined as ζi ∈ {0, 1}. The ferrite and austenite domains in
problem (2-3) are defined as collections of cells,

Ωα = {Cells i : ζi = 1}
Ωγ = {Cells i : ζi = 0}

. (2-6)

The most important cell properties are outlined in table 2-2.

Description Symbol Defined for
Average carbon concentration at the interface xs Ferrite interface cells
Growth velocity v Ferrite interface cells
Outward growth length ` Ferrite interface cells
Inward growth length λ Austenite interface cells
Carbon concentration x All cells

Table 2-2: Cell properties

Master of Science Thesis M.M. Mul



8 The Model

Interface Growth Dynamics

For each ferrite interface cell, the growth length `(t) is defined as

`(t) =
∫ t

t0
vn(τ) dτ, (2-7)

where vn(t) is the outward normal growth velocity of the interface S and t0 = inf{t : vn(t) >
0}. This growth length can be interpreted as the radius of a growing ball with radius ` centered
in the cell. This omnidirectional growth model is a simplification making the consideration
for different growth velocites for every direction obsolete. The growth velocity vn is computed
by a model for the interface velocity in the outward normal direction from the ferrite phase
α, which can be formulated as

vn = M0 · e
−Qα,γ
RT ∆G(T, xs), (2-8)

where M0 and Qα,γ are respectively the pre-exponential factor and the activation energy
for the interface mobility. Additionally, R is the gas constant and T the temperature. The
driving force ∆G is assumed to be a function of the temperature T and the carbon interface
concentration xs. Using the software Thermo-Calc R© this function can be extracted for the
desired steel alloy. Using a transformation method based on the growth length `, cells are
transformed from austenite to ferrite. If fast growth on grain boundaries needs to be modeled,
it is possible to multiply Qα,γ by some factor between 0 and 1.

Carbon Dynamics

Contrary to the more simplistic assumption of an exponential profile[19], the carbon concen-
tration will be computed by the diffusion equation. First, the use of atomic fraction as a
concentration in the diffusion equation is justified. Let

fC = aC
aC + aFe

(2-9)

be the fraction of carbon atoms of a cell with volume V = (∆z)2. Since low-carbon steel is
considered, it is assumed that the number of carbon atoms is much smaller than the number
of iron atoms, i.e. aC � aFe. Furthermore, it is assumed that aFe per cell is constant,
i.e. density variations of iron atoms are neglected. In reality, these variations are small[20].
Inserting these two assumptions, the following relationship is obtained

fC
V
≈ aC
aFeV

∝ aC
V

(2-10)

which is a quantity per unit volume and therefore the atomic fraction can be used in the
diffusion equation.

For an accurate value of the interface carbon concentration, carbon diffusion on the austenite
domain has to be implemented. The boundaries of this domain are the interface with ferrite
S and the boundary of the whole domain ∂Ω. The diffusion coefficient is computed by

D(z) = D0 · e−
Q(z)γ
RT , (2-11)

M.M. Mul Master of Science Thesis



2-3 Cellular Automaton 9

where D0 and Qγ respectively are the pre-exponential constant and the activation energy for
carbon diffusion. It is assumed that the activation energy may be different at grain interfaces.
As stated, remind that D does not depend on the carbon concentration x, only on the location
in the domain.

Recall the two boundary conditions on ∂Ωγ , as shown below.{
∂x
∂n = 0 on ∂Ω
∂x
∂n = −(xγs − xα)vn on S

The non-zero Neumann boundary condition is important when cells transform. Whenever
this happens, the excess carbon xe of a newly transformed cell that corresponds with the
term (xγs −xα) is instantaneously distributed over neighbouring austenite cells. Furthermore,
assume that no cells transform between t0 and t0 + ∆t, i.e Ωγ is constant and on [t0, t0 +
∆t]. Using this approach, the boundary conditions for the diffusion equation reduce to zero-
Neumann conditions on the whole boundary ∂Ωγ and the diffusion problem can be stated
as:

Find x(t0 + ∆t) on Ωγ(t) such that

{
∂x
∂t = ∇ · (D(z)∇x) in Ωγ(t), t0 < t ≤ t0 + ∆t
∂x
∂n = 0 on ∂Ωγ(t)

,

given x(t0) on Ωγ and D(z) on Ω.
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Chapter 3

Methods

3-1 Smoothed Carbon Interface Concentration

When computing the growth velocity vn for a ferrite interface cell, a value for the carbon
interface concentration at this cell xs is required. This interface concentration is determined
in two steps. For all neighbouring austenite interface cells a non-trivial value for the carbon
concentration is defined. The carbon interface concentration xis of ferrite interface cell i is
computed as

xis =

∑
j∈Mi

wjixj∑
j∈Mi

wji
, (3-1)

where the weights wj are defined as

wji =



0 cell j is ferrite ,
1 cells i and j are 1-nearest neighbours and cell j is austenite,

1√
2 cells i and j are 2-nearest neighbours and cell j is austenite,

1√
3 cells i and j are 3-nearest neighbours and cell j is austenite.

(3-2)

The definition of the Moore neighborhoodMi of cell i and k-nearest neighbours are defined
in Equation (2-5) and Table 2-1.

An attempt is made to reduce interface instabilities due to numerically introduced errors
by smoothing the interface concentrations. Based on the level s of smoothing, the interface
carbon concentration is averaged over the (2s+ 1)× (2s+ 1)-cells around the reference cell.
The smoothed carbon interface concentration of level s = 1 x̃is at reference cell i is computed
as

x̃is =

∑
j∈Mi

wjix
i
s∑

j∈Mi

wji
, (3-3)
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12 Methods

where the weights wj are defined as

wji =
{

1 cell j is ferrite interface
0 else

. (3-4)

In general, the level s smoothed carbon interface concentration x̃is at reference cell i is defined
as

x̃is =

∑
j∈S

xis1{j is ferrite interface}∑
j∈S

1{j is ferrite interface} , (3-5)

where S are the indices of the (ns × ns) Moore neighbourhood of cell i and 1{statement} is
the indicator function defined as

1{statement} =
{

1 statement is true,
0 statement is false. (3-6)

Remark that for ∆z → 0 this method reduces to smoothing over a point, thus using the
value of carbon concentration in that point. This behaviour is desirable in the sense that the
solution of the discretized problem converges to the exact problem.

Inspiration This method of carbon smoothing at the interface is based on an idea from Y. van
Leeuwen[21]. To garantee interface stability, the idea was to use an infinite carbon diffusion
coefficient at the interface. This results in a constant value for the interface concentration,
i.e. a constant interface velocity across the whole interface.
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3-2 Adaptive time steps

For this model the method of lines is used for time integration. This means that the nodes
on which carbon concentration is computed, are fixed. However, at which points in time
these values are computed may depend on the simulation itself. Schematically the method
is given in Figure 3-1. The thick black vertical lines represent the set of points in time and
space where the solution might be computed. The thin white interruptions in these lines
represent an example of a possible outcome of points where the solution has been computed.
The concept of adaptive time stepping is based on the combination of accuracy and efficiency.
Large changes in the solution result in small time steps and small changes allow larger time
steps. The time step ∆t will be chosen in such a way that the event of 2-nearest and 3-
nearest neighbours simultaneously tranforming due to one growing ferrite interface cell can
not happen. Therefore, the time step is restricted such that the growth length of a cell does
not change more than the difference in distance between a direct and a diagonal neighbor.
The following time step criterion is the result,

∆t < (
√

3−
√

2) · ∆z
vmax

, (3-7)

where vmax is the maximum grain interface velocity.

Figure 3-1: Sketch of an example of the method of lines for time integration.
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3-3 Interface Growth Methods

Outward Growth Method A transformation method using the growth length ` is formulated
Section 2-3. This approach can be interpreted from the perspective of growing cells, based on
the question: Does the ferrite boundary cell expand? Using the Euler forward time integration
method, the growth length ` after a time step of ∆t is computed as

`(t+ ∆t) = `(t) + v∆t, (3-8)

where the growth velocity is computed using the classical equation v = M∆G, as found in
Bos et al.[8]. Whenever a ferrite cell has a growth length ` that exceeds the distance to a
neighbouring cell, its neighbouring cell transforms. As initial growth length ` − ∆z is used
for consistency.

Inward Growth Method A different approach is to change the perspective towards the
austenite interface cells: Does the austenite boundary cell transform? This results in a more
sophisticated strategy that also takes the amount of growing neighbouring ferrite cells into
account. As an intuitive support for this approach, it does make sense that a cell will transform
earlier if there is interface growth coming from multiple directions instead of only one. The
latter approach assigns a percentage of transformation to the austenite interface cells.

The inward growth λ, defined for all austenite interface cells, is introduced here. The inward
growth is defined as

λi =
∑
j∈Mi

wji`j , (3-9)

wji =


1 cells i and j are 1-nearest neighbours,

1√
2 cells i and j are 2-nearest neighbours,

1√
3 cells i and j are 3-nearest neighbours,

(3-10)

Figure 3-2: Derivation of θ.

where wji are weights and `j is the growth length. The definition
of the Moore neighborhoodMi of cell i and k-nearest neighbours
are presented in Equation (2-5) and Table 2-1. Austenite interface
cell i transforms if λi > θ∆z, where ∆z is the grid spacing. The
value of θ can be computed using the condition that a straight
interface with a constant velocity vc should move accordingly.
Consider a straight vertical interface in R2, see Figure 3-2, moving
with a velocity of vc > 0. Let `1 = `2 = `3 = `. Then λ is
computed as

λi = 1√
2`1 + `2 + 1√

2`3

= 2√
2`+ `

= (1 +
√

2)`.

(3-11)

The transformation occurs when ` > ∆z. It follows that λi
1+
√

2 > ∆z ⇔ λi > (1 +
√

2)∆z.
Hence, θ = 1 +

√
2 in the 2-dimensional case. For three dimensions the value of θ can be

M.M. Mul Master of Science Thesis



3-4 Carbon diffusion 15

found analogously,
λ = 4 · 1√

2`+ 4 · 1√
3`+ `

= 2√
2`+ `

= (1 + 2
√

2 + 4
3
√

3)`.

(3-12)

Therefore, in a three dimensional cellular automaton θ = 1 + 2
√

2 + 4
3
√

3. Transformation of
the austenite cell occurs when λ > θ∆z. The initial growth length of the cell is set at λ

θ −∆z
for consistency.

3-4 Carbon diffusion

The introduced method of smoothing interface carbon concentration can be seen as a method
to bypass the use of a higher diffusion coefficient at the ferrite-austenite interface. From an
experimental point of view it is acceptable to say that diffusion of carbon atoms at grain in-
terfaces actually is faster. Therefore, the diffusion coefficient D could be a function depending
on space.

D(z) =



D0 · exp
(
Qγ
d

RT

)
for z ∈ Ωγ ,

D0 · exp
(
Qα,γ
d
RT

)
for z ∈ ∂Ωγ ∩ ∂Ωα,

D0 · exp
(
Qγ,γ
d
RT

)
for z ∈ ∂Ωγ \ ∂Ωα.

(3-13)

Note that the diffusion coefficient is locally a constant. The carbon diffusion problem is stated
in the model section as: Find x(t0 + ∆t) on Ωγ(t) such that

{
∂x
∂t = ∇ · (D(z)∇x) in Ωγ(t), t0 < t ≤ t0 + ∆t,
∂x
∂n = 0 on ∂Ωγ(t).

(3-14)

To solve this time step for the diffusion equation, use implicit Euler time integration in
combination with finite differences. For every cell the carbon concentration is approximated
by xi. The main reason to apply an implicit method is its property of unconditional stability
which allows larger time steps[22]. Implementing this method yields

xk+1
i − xki

∆t = Di

(∆z)2

(
xk+1
i−1 + xk+1

i+1 + xk+1
i−n + xk+1

i+n − 4xk+1
i

)
. (3-15)

This expression is rewritten as the matrix equation

Axk+1 = xk, (3-16)

where A = I−T is a sparse symmetric positive definite matrix. Using the Kronecker product
⊗, the matrix T is constructed in three steps:
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1. Compute
T = D∆t

(∆z)2 (S ⊗ I + I ⊗ S), (3-17)

where I is the identity matrix of dimension nz × nz and S has the structure

S =


−1 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1

 . (3-18)

2. Set all rows and columns corresponding to ferrite cells to zero. (The carbon concen-
tration does not change in ferrite, thus all ferrite rows are set to zero. Also, due to
zero-flux boundary conditions the ferrite columns are set to zero.)

3. Set the diagonal entries equal to minus the row sum that excludes the diagonal value,
due to zero-flux boundary condition between austenite-ferrite, i.e.

Tii = −
∑
j 6=i

Tij . (3-19)

CG method The implicit Euler time integration method includes solving a linear system. In
our case, from numerical analysis it is known that by applying finite differences on the diffu-
sion equation with zero-flux boundary conditions, the resulting matrix is a sparse symmetric
positive definite matrix. An effective way to solve this type of linear system is to apply the
Conjugate Gradient (CG) method. The CG method is an iterative method for solving large
sparse linear systems, first published in 1952 by Hestenes and Stiefel[23].
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3-4 Carbon diffusion 17

3-4-1 The algorithm

For every iteration in time, the algorithm consists of the following steps.

1. Compute the interface carbon concentration for the ferrite interface cells. This is neces-
sary to compute the interface velocity during the next time step. It takes two steps to
compute xs. For ferrite interface cell i, compute xs by the weighted average of carbon
concentration of its austenite neighbours. Then, smoothe xs by taking the average xs
inside the ns × ns cell square around cell i, see the carbon interface smoothing section.

2. Compute v for all relevant cells, using the classical equation v = M∆G. The driving
force ∆G is assumed to be a function of the temperature T and the carbon interface
concentration xs. Using the software Thermo-Calc R© this function can be extracted for
the desired steel alloy.

3. Compute ` for all relevant cells, using Euler forward time integration: `(t + ∆t) =
`(t) + v∆t.

4. Compute λ for all relevant cells, by taking the weighted sum over its direct and diagonal
neighbours.

5. Transform all cells according to outward growth length or inward growth. The outward
growth method can be found in the literature[8], the inward growth method is based on
an implementation on a hexagonal grid[9].

• Outward growth method: Consider the ferrite interface cells. If the growth
length of cell i reaches one of its neighbours, its neighbouring austenite cells will
transform into ferrite. The time stepping will be chosen in such a way that it is
not possible that 1-nearest, 2-nearest and diagonal neighbours of a ferrite interface
cell will transform simultaneously.
• Inward growth method: Consider the austenite interface cells. If the inward
growth of cell i exceeds (1 + 2

√
2 + 4

3
√

3)∆z, then cell i transforms into ferrite.

6. Redistribute the excess carbon from newly transformed cells. If cell i transforms, the
carbon amount will be set at xα. The remaining carbon will be distributed to its
austenite neighbours, optionally weighted or not according to distance.

7. Solve the diffusion equation for the carbon concentration on the austenite part of the
domain, using Neumann boundary conditions on the interface between austenite and
ferrite and on the boundary of our square domain Ω.
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Chapter 4

Results

Discrete or continuous interface? The movement of the interface between austenite and
ferrite depends partly on the carbon concentration at the interface. Since the carbon diffusiv-
ity in ferrite is large in comparison to austenite, it is assumed that the carbon concentration
in ferrite instantaneously attains its equilibrium value. The carbon concentration in austenite
is determined by solving the diffusion equation on the austenite part of the domain. Using a
CA model, the austenite domain does not change continuously, but with jumps every time a
cell is transformed. Consider a cell that transforms during time step iteration k, i.e. at time
step k it belongs to austenite and at time step k + 1 it belongs to ferrite. The excess carbon
xk−xα then flows instantaneously towards its neighbouring cells. After this redistribution of
carbon, a time step for the diffusion equation is applied on the austenite domain. Using this
approach, it is possible to exceed the equilibrium concentration of carbon in austenite. This
is physically impossible. Therefore, it is necessary to investigate if the CA approach where
the interface is restricted to fixed cells can be justified. It would be desirable to observe that
the fixed grid method behaves similar to an adaptive grid method such as the Murray-Landis
method[24].

How can unstable interface growth be controlled? As found in other literature[9], the
interface between ferrite and austenite is not always stable. According to observable physics,
dendritic growth does not happen when ferrite grows in austenite. For the interface mobil-
ity large in comparison with the diffusion coefficient, i.e. M � D, it seems that interface
instabilities[25] are unavoidable. Due to discretization into square cells in combination with
a freedom restriction on the interface position, a perturbation error is easily introduced. A
small perturbation error of carbon concentration will cause perfect spherical growth to evolve
into dendritic growth. If an erroneous carbon accumulation area is formed, the interface
shape will not recover from the error. When observing the steel micro structure after real
experiments, dendritic growth does not seem realistic. The main causes for dendritic growth
behaviour are assumed to be the discretized square grid and the absence of surface tension in
the model. However, incorporating surface tension in a grain growth model would complexify
the model and drastically increase computation times. Also, the influence of surface tension
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on the growth kinetics is small. Is it the right way to go to add physical phenomena to
reduce numerical error issues? Using curvature in a CA model has been done by Janssens[3],
which he summarized by his conclusion: as grains get large relative to the cell size, the grain
boundary curvature decreases relative to the cell size, and consequently the cellular automaton
underestimates the driving pressure. Another model with curvature incorporated can be found
in Raghavan[16]. In a paper of Lan[9] a different grid is used in order to reduce instabilities.
Using a hexagonal grid reduces instabilities, but it did not eliminate the grid anistotropy. It
can be stated that there is no golden rule yet to fully avoid unstable interface growth.

4-1 Comparison: CA to Murray-Landis

The main point of interest in the transformation model is the austenite ferrite interface S(t),
which is equivalent to the fraction ferrite fα(t) for a 1-dimensional model. The cellular
automaton approach is a discrete method in space. Therefore, the transformation process
results in interface jumps from node to node as time passes. The same happens to the carbon
concentration that is pushed forward in front of the interface. The unphysical phenomenon
that occurs in the model is then an over-saturated part of the austenite domain. Another
continuous approach in R1 is the Murray-Landis method for concentration based moving
boundary problems. This method has a dynamic grid that is updated every time step. The
interface is not restricted to a pre-defined grid, but is allowed to lie anywhere in the domain.
The carbon concentration can not exceed the physical upper limit in this case.

Figure 4-1: The ’overshoot’ of carbon
concentration in cellular automaton.

Figure 4-2: The realistic carbon con-
centration profile of the continuous
Murray-Landis method.

It is desired to show that the two methods are equivalent for ∆z → 0. The time step ∆t
is coupled to the space increment dz for stability, ∆t = 0.9 · ∆z

vmax
, where vmax is determined

from a previous simulation using the same parameters. Let us denote the fraction of ferrite
according to the CA method and the Murray-Landis method as f1 and f2 respectively. Then,
the error is defined as e = ||f1 − f2||∞, using the maximum norm of the difference between
the two methods. The infinity norm is used because this norm is independent of the number
of grid points. Hence, the task is to show that e→ 0 as ∆z → 0.

For a decreasing sequence of space increments ∆z and according sequence of time increments
∆t, the error e = ||f1−f2||∞ was computed. Using a fixed grid, the interface S(t) is restricted
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4-1 Comparison: CA to Murray-Landis 21

to values on the grid. Therefore, an error due to grid spacing is tolerated and expected to
occur. Figure 2-4 shows the results of this sequence of simulations, using logarithmic scaling
on both axes.

Figure 4-3: Experimental convergence

Analyzing the slope of the errors, an experimental order of convergence of 1 is obtained. The
conclusion that the fixed grid method converges linearly to the adaptive grid method can be
drawn from this. An error up to the grid spacing is tolerated in the CA method, due to the
restriction that S(t) has to lie on a node. Furthermore, observe that the error is smaller than
the tolerated error due to grid spacing for any ∆z tested. In conclusion, it can be stated that
the fixed grid method is accurate up to an error induced by the grid spacing.

The convergence analysis has been performed using the parameters in Table 4-1. Also, the
excess length `i −∆z should be set as the initial length of a newly transformed cell.

Description Variable Value Unit
Length of interval L 25e-6 m
Simulation time tf 600 s
Temperature T 1000 K
Gas constant R 8.314462 J K-1mol-1

Pre-exponential diffusion factor D0 0.15e-4 m2 s-1

Pre-exponential mobility factor M0 0.035 m J-1 s-1

Activation energy for carbon diffusion Q
γ
D

142e3 J mol-1

Activation energy for ferrite recrystallization Qαγ 140e3 J mol-1

Average carbon concentration x0 4.1580e-3 atomic fraction

Table 4-1: Parameter Values: Convergence Analysis
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4-2 Inward Growth Method

For increasing values of interface mobilityM0, the transformation rules of outward and inward
growth are compared using identical input parameters on a 100×100 grid. No interface carbon
smoothing has been applied in these simulations.

Figure 4-4: Outward growth (l) and inward growth (r): M0 = 0.1, tf = 20

Low Mobility First, the
two methods using a low
value for the interface mo-
bility are compared. The
outward growth method
does not show dendritic
growth. However, the
grain shape did not grow
into a circle, but a poly-
gon. This behaviour is
analyzed in a paper writ-
ter by Marek[11] and is acceptable as an approximation of a circle. When analyzing the
output of the inward growth method, a circular shape is can be observed. The growth be-
haviour is symmetric on the square grid in this case and thus more realistic. After a 20 second
simulation, the grain diameter is around 7µm.

Figure 4-5: Outward growth (l) and inward growth (r): M0 = 0.6, tf = 10

MediumMobility Let us
now consider a higher
interface mobility which
causes interface instabil-
ity. The outward growth
method shows clear ac-
cumulation areas of car-
bon, resulting in dendritic
fingers that grow faster
in the direction of the
least carbon concentra-
tion. When examining the results of the same test using the inward growth method, sig-
nificant decrease of dendritic growth is seen. In fact, the grain shape has a realistic circle
shape. After a 10 second simulation, the grain diameter is around 10µm.

M.M. Mul Master of Science Thesis



4-3 Carbon Interface Smoothing 23

Figure 4-6: Outward growth (l) and inward growth (r): M0 = 1.5, tf = 10

High Mobility The lim-
its of the inward growth
method are investigated.
When increasing the in-
terface mobility even fur-
ther, the point is reached
where also the behaviour
of this method is unsat-
isfactory. Although one
could argue that the grain
shape from the inward
growth method is ’better’, it is not the desired circular shape. Thus, also this method has its
limits. After a 10 second simulation, the grain diameter is around 14µm.

4-3 Carbon Interface Smoothing

For increasing values of interface mobilityM0, the effectiveness of carbon interface smoothing
is tested on a 100 × 100 grid. The inward growth method is used in these simulations. For
the domain a square with length L = 20µm is used.

Low Mobility (Figure 4-7) For a low interface mobility there is not much to improve. Minor
but no significant differences can be found in the isoconcentration lines, but the grain shape
seems identical. After a 20 second simulation, the grain diameter is around 6µm.

Medium Mobility (Figure 4-8) For a higher interface mobility there is more space for im-
provements. The interface behaves less wild when the smoothing area is enlarged. The grain
shape approximates the circle better when applying the carbon interface smoothing method.
It seems that the smoothing has an effect on the interface stability, but is unable to remove
the interface instabilities completely. After a 10 second simulation, the grain diameter is
around 9µm.

High Mobility (Figure 4-9) When simulating a more extreme case, the same improvements
as from less extreme values for interface mobility are observed. The dendritic graing growth
is reduced, but the method by itself is unable to avoid dendritic grain growth. After a 10
second simulation, the grain diameter is around 15µm.
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Figure 4-7: No smoothe(l), 3× 3-smoothe(m) and 5× 5-smoothe(r): M0 = 0.1, tf = 20

Figure 4-8: No smoothe(l), 3× 3-smoothe(m) and 5× 5-smoothe(r): M0 = 0.6, tf = 10

Figure 4-9: No smoothe(l), 3× 3-smoothe(m) and 5× 5-smoothe(r): M0 = 1.5, tf = 10
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4-4 Stabilizing methods combined

Both improvements on literature models reduce interface instabilities and are unable to erad-
icate the problem. Therefore, by combining both methods, it is only expected to further
reduce dendritic grain growth, not eliminate. A large analyisis of different cases can be done,
but this is skipped because results seem obvious when starting at the most extreme test
case. Combining the inward growth method with the carbon smoothing method of level s,
IG&CS(s), the following plots are given as a result. After a 10 second simulation, the grain
diameter is around 12µm.

Figure 4-10: OG&CS(0)(left), IG&CS(1)(middle) and IG&CS(2)(right)

Figure 4-11: The initial ferrite
grain shape.

Parameters and Initial State

For all results the parameter values from Table 4-2 have been
used. The initial grain shape used was a small thick cross,
depicted in Figure 4-11. A grid size of 100× 100 cells has been
used. For low interface mobility values, the simulations have
been extended from 10 to 20 seconds. This has been done to
increase grain size and therefore visibility of the results.

Description Variable Value Unit
Length of interval L 20e-6 m
Simulation time tf 10 or 20 s
Temperature T 1000 K
Gas constant R 8.314462 J K-1mol-1
Pre-exponential diffusion factor D0 0.15e-4 m2 s-1

Pre-exponential mobility factor M0 0.1, 0.6 or 1.5 m J-1 s-1

Activation energy for carbon diffusion QγD 142e3 J mol-1
Activation energy for ferrite recrystallization Qαγ 140e3 J mol-1
Average carbon concentration x0 4.1580e-3 atomic fraction

Table 4-2: Parameter Values: Testing Stability Methods
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4-5 Fast Interface Diffusion

Figure 4-12: Region of higher
diffusion coefficient around the
grain in R2 is coloured grey.

Since the carbon smoothing method relates to higher interface
diffusion, a higher interface diffusion coefficient at the ferrite
interface is used in these tests. From Equation (3-13) in Section
3-4, the diffusion coefficient at the ferrite austenite interface is
assumed to be

D(z) = D0 · exp
(
Qα,γd
RT

)
,

where Qα,γd = ρQγd is the activation energy in austenite multi-
plied by some factor ρ. First, the results of a stable test case
in R3 will be shown. Then, results of an unstable test case are
presented and attempted to improve by lowering ρ. These tests are performed under the exact
same circumstances, except the factor ρ which is varied. For M = 0.1 the resulting grain has
a close to spherical shape, see Fig 4-13.

Figure 4-13: Spherically shaped ferrite grain.

Now, proceeding to an extreme case for M = 0.5, the resulting grain shape is a dendrite,
see Fig 4-14, 4-15 and 4-16. This dendritic growth is attempted to reduce by decreasing the
factor ρ. Without higher interface diffusion ρ = 1 and the grain shape is unsatisfactory. When
lowering the factor to ρ = 0.9, the grain shape is improved but still not acceptable. The last
test shows that for ρ = 0.8 the grain shape is very similar to a sphere which is desired. The
simulations all end when the ferrite fraction exceeds 8.5%.
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Figure 4-14: A wob-
bly shape from the
outside.

Figure 4-15: A look
from the inside reveals
the dendritic struc-
ture.

Figure 4-16: Slices of
the grain.

Figure 4-17: Outer grain view,
ρ = 0.9.

Figure 4-18: Inner grain view,
ρ = 0.9.

Figure 4-19: Outer grain view,
ρ = 0.8.

Figure 4-20: Inner grain view,
ρ = 0.8.
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The parameters used in this simulation can be found in Table 4-3

Description Variable Value Unit
Length of interval L 20e-6 m
Temperature T 1000 K
Gas constant R 8.314462 J K-1mol-1
Pre-exponential diffusion factor D0 0.15e-4 m2 s-1

Pre-exponential mobility factor M0 0.1, 0.5 m J-1 s-1

Activation energy for carbon diffusion QγD 142e3 J mol-1
Activation energy for ferrite recrystallization Qαγ 140e3 J mol-1
Average carbon concentration x0 5.584e-3 atomic fraction

Table 4-3: Parameter Values: Increased interface diffusion
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4-6 Fraction Curves

Dilatometric experiments[20] are able to give information of ferrite fraction curves during
transformation. For a specific type of steel, a fraction curve of austenite cooled at 600 ◦C is
approached by the model in R3. In Figure 4-21 the development of ferrite grains are visible
in slices of the domain. The time intervals between the images are not all the same, just
chronological. Austenite grains are coloured orange and ferrite grains are coloured blue.

Figure 4-21: The growth of ferrite inside austenite.
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The final microstructure is visualized in Figure 4-22 and 4-23. Observe that dendrites are not
present in this structure.

Figure 4-22: Resulting austenite
ferrite structure.

Figure 4-23: Resulting internal
grain structure.

The fraction curve is plotted in Figure 4-24. It can be observed that initially the transforma-
tion follows the experimental data. After 10 seconds of simulation the model predicts a too
fast transformation. At the end, the model seems to overpredict the ferrite fraction by about
8%.

Figure 4-24: The modeled fraction curve and the experimental fraction curve.
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The parameters used in this simulation can be found in Table 4-4

Description Variable Value Unit
Cube dimension L 20e-6 m
Temperature T 873.15 K
Gas constant R 8.314462 J K-1mol-1
Pre-exponential diffusion factor D0 0.15e-4 m2 s-1

Pre-exponential mobility factor M0 0.05 m J-1 s-1

Activation energy for carbon diffusion QγD 142e3 J mol-1
Activation energy for ferrite recrystallization Qαγ 140e3 J mol-1
Average carbon concentration x0 5.584e-3 atomic fraction
Initial austenite grain density 5.0e14 m-3

Number of ferrite nucleations 2.225e15 m-3

Fast grain boundary growth factor 0.85
Fast interface diffusion factor ρ 0.75

Table 4-4: Parameter Values: Ferrite fraction curve
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Chapter 5

Discussion

The comparison of the cellular automaton with the Murray-Landis method supports the use
of cellular automaton for the austenite to ferrite transformation. The unphysical overshoot of
carbon concentration does not create a problem and should not be worried about. However,
one should take the excess growth length into account, also for the inward growth method. As
a result, for smaller grid sizes the grain shape tends to an octagon. The strange phenomenon
of a rather circular grain shape happens when ignoring the excess growth length on a medium
sized grid. It seems perfectly fine, but according to the comparison the excess length should
be implemented. Furthermore, when reducing the time step towards zero ignoring the excess
growth length does not matter.

After a series of tests it became clear that the carbon smoothing method required a high level
of smoothing in certain cases. This method resembles in some way a higher diffusion of carbon
at the ferrite austenite interface. Therefore, applying a locally higher diffusion coefficient and
disabling the smoothing method might be a good idea. On the other hand, discontinuities in
the diffusion coefficient are bad for the condition of the problem. Probably this locally higher
diffusion coefficient cannot be stretched too much.

Attempts have been made to incorporate a higher diffusion at interfaces between austenite
grains themselves. Since essentially there is more opportunity for carbon atoms to jump
around in the lattice, it does make sense. However, the width of the interface should not be
determined by the grid spacing. The cell size is too large to approach interface thickness,
therefore this does not seem to be a good idea to implement in the current structure.

Experiments have been done with a higher mobility on austenite austenite interfaces. How-
ever, determining the rate or factor for this parameter had to be mostly guessed. Also, the
structures that develop during simulations should be realistic. How should this value be
determined? Function fitting using derived data from experiments is perhaps a naive way.

The reduction of dendrites forming is clearly possible, but in specific cases it could still occur.
But are these cases physically relevant? If not, further research should not be done in this
direction anymore. The focus might shift to solving the more ill-conditioned problem of
diffusion with a discontinuous diffusion coefficient on the domain.
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Chapter 6

Conclusion

A 2-dimensional square grid cellular automaton for the austenite ferrite transformation has
been reproduced based on literature. The model allows experimenting with the cellular au-
tomaton framework, making it possible to try different approaches for the subproblems. A
3-dimensional cubic grid cellular automaton for the austenite ferrite transformation has been
made ready to use carbon diffusion without producing unphysical dendritic structures. The
interface restriction that is a consequence of the Cellular Automata model has been ana-
lyzed by comparing the CA model with the Murray-Landis method which allows continuous
interface movement. After carefully constructing the model, it has been shown that the 1-
dimensional CA model does converge to the Murray-Landis solution as the grid spacing goes
to zero. Furthermore, the causes of interface instabilities have been investigated. In the lit-
erature, transformation rules found are based on the outward growth. Even in stable cases,
the grain shape tends to a octagon when applying the outward growth method. Changing
the perspective to inward growth, a new transformation rule was found. This method works
positive in two ways. Firstly, the stable case tends to a circular shape if one ignores overshoot
in growth length. Secondly, dendritic grain growth is reduced and a higher value for interface
mobility is allowed. In order to even further reduce instable interface growth, the carbon
concentration at the interface was smoothed. Averaging the concentration over a couple of
neighbouring cells, the numerically introduced errors in the concentration are spreaded to
reduce impact on interface shape. As a result, this reduces dendritic growth even further.
Instead of carbon smoothing, a higher diffusion coefficient at ferrite austenite interfaces is
applied. For extreme cases of interface mobility, this method is able to tackle the problem
of dendrites by raising the diffusion at the interface at the cost of a worse conditioned linear
problem. Dendritic grain growth in cellular automaton could be history from now on. Us-
ing experimental dilatometry data, parameters of the model were adjusted to fit the fraction
curve. Due to the many parameters, it is not easy to determine which are correct and which
are wrong. Fast grain boundary growth, nucleation density, interface mobility and initial
grain density are the four most important parameters. There are still tests necessary to de-
termine these model parameters. The positive note on this simulation is that it is computed
within a reasonable amount of time without dendritic grains.
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36 Conclusion

Summary A CAmodel for the austenite ferrite transformation has been significantlyimproved,
the use of CA has been justified in some sense and the interface stability has been improved,
eliminating the problem of unrealistic dendritic grains.

Research Questions The major part of this thesis is about reducing interface instabilities
and avoiding dendrites. However, it is known that surface tension also plays a small role
in growth kinetics. Could the implementation of surface tension in a cellular automaton
completely avoid dendritic grain growth? The current development in avoiding dendritic grain
growth seems to be enough for the transformation simulations. Are these new approaches
enough? How much should the interface be smoothed and how much higher should the
interface diffusion really be? Definately these methods rise new questions. Also, with the
higher interface diffusion resulting in a more ill-conditioned problem, the following question
could become important. Is it possible to build a linear solver in parallel for higher efficiency?
And what type of pre-conditioners are suited for this problem without changing the total
amount of carbon in the system?
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