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Predicting Motion Incongruence Ratings in
Closed- and Open-Loop Urban
Driving Simulation

Maurice Kolff ™, Joost Venrooij, Elena Arcidiacono, Daan M. Pool™, Member, IEEE,
and Max Mulder ™, Senior Member, IEEE

Abstract—This paper presents a three-step validation
approach for subjective rating predictions of driving simulator
motion incongruences based on objective mismatches between
reference vehicle and simulator motion. This approach relies
on using high-resolution rating predictions of open-loop driving
(participants being driven) for ratings of motion in closed-loop
driving (participants driving themselves). A driving simulator
experiment in an urban scenario is described, of which the
rating data of 36 participants was recorded and analyzed. In the
experiment’s first phase, participants actively drove themselves
(i.e., closed-loop). By recording the drives of the participants
and playing these back to themselves (open-loop) in the second
phase, participants experienced the same motion in both phases.
Participants rated the motion after each maneuver and at the
end of each drive. In the third phase they again drove open-loop,
but rated the motion continuously, only possible in open-loop
driving. Results show that a rating model, acquired through a
different experiment, can well predict the measured continuous
ratings. Second, the maximum of the measured continuous
ratings correlates to both the maneuver-based (p = 0.94) and
overall (p = 0.69) ratings, allowing for predictions of both
rating types based on the continuous rating model. Third, using
Bayesian statistics it is then shown that both the maneuver-based
and overall ratings between the closed-loop and open-loop drives
are equivalent. This allows for predictions of maneuver-based
and overall ratings using the high-resolution continuous rating
models. These predictions can be used as an accurate trade-off
method of motion cueing settings of future closed-loop driving
simulator experiments.

Index Terms— Motion cueing, driving simulators, urban driv-
ing, subjective ratings, rating predictions.
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I. INTRODUCTION

RIVING simulators are essential tools in the

development of future driving technologies due to their
ability to create safe and repeatable test conditions. When
equipped with a motion system, their limited workspace often
induces mismatches between vehicle and simulator inertial
motion [1]. While some mismatches are not perceived by the
driver, the motion is incongruent if the driver does notice a
deviation between their expectation of the real vehicle motion
and the simulator motion they actually perceive [2], [3].
Incongruent motion can lead to an impaired perceptual
fidelity of the simulation and induce simulator sickness [4].
Therefore, the development, evaluation, and trade-off of
Motion Cueing Algorithms (MCAs) typically aim at selecting
the option with potentially the least incongruences. Acquiring
and validating this information currently requires performing
subjective evaluations in a driving simulator. Being able
to predict such ratings through objective measures would
be a crucial advancement [5]. They would allow for rapid,
systematic, and cost-efficient assessment of MCAs and
guide developments, e.g., of Model-Predictive Control
(MPC) algorithms [6]. However, making such predictions is
notoriously difficult. For example, it is known that drivers
generally consider scaled motion as more realistic than fully
congruent one-to-one simulator motion [7], of which the
cause is not yet understood.

In most driving simulations, drivers control the simulated
vehicle themselves (“closed-loop”). Due to differences in
driver behavior and driving style, each drive is different,
resulting in different experiences of motion. Existing models to
objectively predict subjective ratings [2], [3], [8] are based on
ratings of “open-loop” driving. Here, human drivers are driven
around as passengers. The fact that they do not need to provide
any steering control inputs has two crucial advantages. First,
open-loop driving allows for performing multiple identical
repetitions of exactly the same drive, e.g., to obtain more
reliable subjective rating data [3]. Second, the absence of a
driving task allows for a more invasive rating task, such as
letting drivers continuously rate the motion cueing through a
rating knob [2], [9], providing unmatched insights into when
and where in the simulation (in)congruent motion occurs. Due
to the high temporal resolution of continuous ratings, their
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relation to objectively calculated mismatches between vehicle
and simulated motion can be captured in mathematical models,
which in turn allow for predicting continuous ratings [2], [3],
[8]. However, as drivers are expected to continuously assess
their perceived motion and operate a rating knob with one
hand, the continuous rating method cannot be used in closed-
loop scenarios, i.e., when drivers need to operate the steering
wheel with both hands. Rating methods that are suitable for
closed-loop driving, such as providing a single rating after
each drive or maneuver, are of such lower resolution that they
are much less suitable to be used in a modelling approach.

Thus, it would be extremely useful if the high-resolution
open-loop prediction models of continuous ratings can be
used in the design, evaluation, and testing of motion cue-
ing for closed-loop driving simulation. However, the central
assumption of the continuous rating method, i.e., that it
is representative of closed-loop simulations, has never been
tested. Differences between the two driving methods might
occur due to perceptual differences [10], [11] or due to changes
to the internal representation of motion [3]. With both the
strengths and limitations of the continuous rating method in
mind, three gaps are identified that would need to be answered
to investigate whether continuous ratings of open-loop driving,
and their predictions models, can be used to predict ratings
of closed-loop driving. First, a rating model must be used
to predict measured continuous ratings. This is challenging
because existing rating models [2], [3], [8] have not yet
been confirmed to hold predictive power between experiments.
Second, explicit rating relationships must be developed, that
can link the continuous rating method to rating methods
that are possible in closed-loop driving, such as after each
maneuver or after the whole drive. Finally, no work so far
has investigated the equivalence of open-loop and closed-loop
driving. The equivalence of these simulation methods would
be a requirement to be able to make predictions of closed-loop
drives based on the open-loop rating models.

This paper presents a comprehensive driving simulator
experiment consisting of three phases, all performed in the
Sapphire Space simulator at BMW Group. Subjective ratings
were obtained from 42 drivers in both closed-loop and open-
loop driving simulations. By recording the closed-loop drives
of the individual drivers (first phase) and playing these back
to themselves in the open-loop phase (second phase) of the
experiment, it is ensured that exactly the same motion is
presented. In both driving methods, the motion is evaluated
through overall and maneuver-based ratings. In the third phase,
drivers again perform the open-loop rating task for the same
recorded drives, but rate using the continuous rating method.

The paper’s main contribution is a complete, three-
step approach that allows for predicting overall and
maneuver-based subjective ratings of closed-loop driving as
a function of objective motion cueing mismatch signals. First,
a model for predicting continuous motion incongruence ratings
from previous work [3] is employed to test whether the
recorded continuous ratings (third phase) can be predicted.
Although the same urban scenario of [3] is simulated, a dif-
ferent simulator, MCA parameters, and participant group were
used. Second, it is investigated whether predictive relations

exist from the continuous rating (third phase) to the overall and
maneuver-based ratings which can be obtained in closed-loop
driving (second phase). Reference [3] showed that the maxi-
mum of the continuous rating highly correlates to the overall
rating. These methods are extended by also considering the
mean and median, as well as providing a similar analysis for
the maneuver-based ratings. The rating model is then used
to make predictions of both rating methods. Third, Bayes’
theorem [12] is used to verify whether maneuver-based and
overall motion incongruence ratings provided in closed-loop
and open-loop driving (first and second phases) are equivalent.

The paper is structured as follows. The driving and rating
tasks are discussed in Section II. The experiment set-up is
explained in Section III. Results are presented in Section IV,
and discussed in Section V. Conclusions are stated in
Section VI.

II. METHODS
A. Driving Task

When driving closed-loop, illustrated in Figure 1 including
the red elements, the driver controls the steering wheel & (7),
the accelerator §,(t) and brake §,(¢) pedals. In a simula-
tion, the vehicle simulation then calculates the corresponding
vehicle motion states S’veh (1), i.e., the specific forces f(z)
and rotational rates w(t). As S’Ueh (t) comes from a vehicle
model, it is an approximation of the real vehicle motion
Sven (1), hence the notation (7). The motion states are sent
to the Motion Control System, consisting of the MCA and
the Motion System (MS). The MCA converts the vehicle
motion states to commanded platform motion. These are sent
to the MS, i.e., the physical simulator, which determines the
actual platform motion S’Sl-m(t) [13]. These can differ from
the commanded platform motion due to a variety of factors,
such as the motion system latency. Differences between the
vehicle reference and simulator motion are then the objective
mismatches, i.e., AS() = Spen () — Ssim (©).

The platform motion is sensed by the driver through their
sensory system. Based on the perceived inertial motion and
all other non-inertial motion cues in the simulation, such as
the visuals [14], the driver chooses their intended control
actions based on a desired state. The motor system of the
body produces the actual control actions [3s(¢), ,(t) and
8»(t)], which are sent to the vehicle simulation, closing the
driving control loop. In an open-loop driving task (Figure 1,
excluding the red elements), the driver does not actively
control the vehicle and the vehicle simulation is represented
by a playback.

B. Rating Task

Next to the driving task, the participants also performed
a rating task. They were tasked with evaluating how well the
inertial motion they perceive in the simulator matched to what
they would expect to feel from the simulated vehicle. This
difference is defined as their Perceived Motion Incongruence
(PMI) [2], see Figure 1. As the driver does not exactly
know what the vehicle motion would feel like in a particular
situation, they must use an internal representation [15] of the
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Fig. 1.
Sapphire Space simulator (Image: BMW Group), the top right image shows the continuous rating interface, adapted from [8].

vehicle motion based on non-motion cues (e.g., visuals) of
the simulation. Individual differences can therefore arise due
to familiarity or experience with the simulated vehicle [3].
Note that thus both the expected and the vehicle model motion
S‘Ueh (1) can differ from the real vehicle motion Sy, ().

Additionally, in closed-loop control, an efference copy [16]
of the intended control actions is used to form the expected
motion. The expected motion is then not only based on what
drivers expect to feel from the non-inertial motion cues, but
also what they expect to feel as a result of their own intended
control actions. In open-loop driving, the lack of driving
control implies that no efference copy can be present. This
means that the internal representation can only be generated
from the non-inertial motion cues. It is therefore possible that
the PMI of open-loop driving is different than in closed-loop
driving, for example, because drivers might know less well
what motion to expect.

As the PMI is not measurable, a Motion Incongruence
Rating (MIR) was asked from the drivers. A typical choice
is a numeric rating scale [2], e.g., ranging between values of
0 (fully congruent) and 10 (highly incongruent), with steps of
1 [3]. Another choice relates to the rating method, i.e., when
and how these ratings are acquired. In the experiment, three
types of rating methods were used:

1) Overall Ratings (ORpg): After each simulation drive,
a single rating value between 0 and 10, representing the overall
impression of the drive, was asked from the drivers. As they
do not interfere with the driving task(s), overall ratings can
be used in closed-loop and open-loop driving. They can be
extracted through various methods, such as verbally or through
a rating interface. While beneficial due to their non-intrusive
nature, the single rating values provide no direct information
on which parts of the drive the overall rating is mostly based
on. It has been shown that overall rating of PMI correlate with
the most incongruent moment in the simulated drive [2], [3].

2) Maneuver-based Ratings (M Bpy): Here, a scenario
is divided into different maneuvers and drivers give a sin-
gle rating after those maneuvers [17]. Like overall ratings,

Block diagram of the driving and rating tasks. The part “Driving Control” (red) is only present in closed-loop driving. The top left image shows the

maneuver-based ratings can be acquired from closed-loop and
open-loop driving, and can be given verbally or through a
rating interface. A benefit compared to overall ratings is that
maneuver-based ratings provided detailed information for each
maneuver separately. A downside is that they require that
drivers give their rating while driving, which may cause a
slight distraction from the driving task.

3) Continuous Ratings (R(t)): Here, drivers rate contin-
uously throughout the drive using a rating interface [2],
reflecting their current PMI at each point in time. The main
benefit of this method is its high temporal resolution, which
allows for modelling approaches [2], [3], [8], [18]. As it
requires operating the rating interface with one hand (see
Figure 1, top right), it is not possible to drive closed-loop
at the same time, which requires both hands on the steering
wheel. Therefore, this task can only be performed in open-loop
driving experiments.

C. Validation of Rating Predictions

As explained in Section I, a main motivation is to predict
how a certain motion cueing setting will be rated subjec-
tively in closed-loop driving, based on objective signals of
platform motion. For this, a three-step approach is used
(Figure 2).

1) Rating Model Validation: First, a rating model is used
to predict continuous ratings based on objective mismatch
signals [ path in Figure 2 ]. The latter are defined
as the differences in inertial motion (specific forces and
rotational rates) between the vehicle nlotion gveh,m(t) and
theNSimulator motion §s,-m,m(t), i.e., AS,(t), with 13,,1(1) =
|AS,,(t)|. Here, m represents the mismatch direction, e.g.,
me [fx, fy, ..., @l

In [3] a linear model was proposed that predicts the contin-
uous rating of the average participant. Its structure consists of
a first-order low-pass filter transfer function H,,(jw) between
the absolute mismatch signal P, (t) and a modeled rating
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signal R(1):

R(jw) = ZKP (](U‘i )P Go) ()

with the low-pass ﬁlter s cut-off frequency w. and the gains
of the several mismatch channels K . The (-)-terms indi-
cate the Fourier transforms. The low-pass filter represents
the participants’ lagged response (Response System (RS) in
Figure 1) to the mismatches P(¢). In [3] it was shown that
the continuous ratings of a Classical Washout Algorithm
(CWA) MCA condition as measured in that study could be
largely explained when considering the longitudinal specific
force mismatches ﬁf,\" as well as the yaw rate mismatch ﬁwz
(i.e., m € [fy,w,]), with the parameters: w, = 0.37rad/s,
K¢ =0.78 and K, =6.71.

To express how well the model is able to predict the
measured ratings, the Variance-Accounted-For (VAF) is used:

VAF — (1 B M) 0% @
var[R(t)]

with R(7) and R(¢) the measured and modeled rating sig-
nal, respectively. The VAF is a measure of how much of
the measured signal’s variance is explained by the modeled
signal [3]. A value of 100% indicates a perfect fit, whereas it
is unbounded on the lower side, i.e., [—oo < VAF < 100%].

2) Rating Relationships: In [3] it was shown that the
maximum of the continuous ratings strongly correlate with

the overall ratings [ path in Figure 2 ], such that a
linear relationship of the form ORpy = for,,[R(1)] =
QoRpy - MaX[R(t)] + Borpy exists. A similar relationship,

between maneuver-based and continuous ratings [ path
in Figure 2 ], does currently not exist. In the present work,
the mean and median of the continuous ratings will also be
considered as possible predictor for the overall ratings and the
maneuver-based ratings.

3) Equivalence Testing: Finally, to investigate whether
ORpy and MBpp ratings of open-loop driving can be
used for closed- 1dr1v1ng, their equivalence is investigated

[ paths @ and in Figure 2, respectively ]. In frequentist
statistics, data are typically tested for significant differences,
i.e., tested for a 95% probability that Hy (null hypothesis; the
data are equivalent) can be rejected in favour of H; (alternate
hypothesis; the data are different). In the present case, the
interest lies not in differences, but in equivalence, requiring
proof of Hyp. This cannot be tested through the same frequentist
statistics procedure, as the lack of significant differences does
not necessarily imply equivalence. Instead, it only shows that
an effect cannot be proven [19], which can also occur in the
case of a lack of statistical power. Thus, using frequentist
statistics, the Hp cannot be accepted. This implies that the
frequentist approach is not a suitable method for investigating
the equivalence of the open-loop and closed-loop ratings.
Specially developed alternative frequentist methods, such as
the Two One-Sided Tests (TOST) [20], require normally
distributed data. Furthermore, the TOST method is considered
to be less reliable for testing equivalence when the sample size
is relatively small [21].

As an alternative, it is possible to use Bayesian statis-
tics [12], which does allow for explicit testing for equivalence
of data. In Bayesian statistics, a degree of belief in a hypothesis
is expressed as a form of conditional probability. An estimation
of the distribution function is made about the data before even
analyzing the data, resulting in a prior belief, which holds the
ratio of the probability estimates of the hypotheses, i.e, ?EZ(I);
The prior belief can stem from existing knowledge on the
process under investigation, e.g., from previous experiments or
from knowledge of underlying physical processes. No explicit
assumptions on the distributions of the data, such as normality,
are necessary [12]. After the data are observed, the degree of
belief is ug)dated [22] to a posterior belief. This is expressed
as ﬁEZI} Dy with D the observed data (in this case, the
maneuver-based ratings of open-loop and closed-loop driving).
The Bayes Factor can then be expressed through:

-1
BFip = P(D|H) _ ( P(H1)) o« P(H1|D) 3)
P(D|Hy) P(Hy) P(Hy|D)
——— ———
Prior Posterior
Belief Belief

The Bayes Factor, denoted B Fjg, represents the ratio in proof
of Hy over Hy. Therefore, the factor BFy; = BF ]_01 equals the
ratio of proof of Hy over Hj. A value of BFjp > 1 indicates
that H; is more probable [12], but only BFjg > 3 is
considered evidence for H;. In contrast, BFjg < 1 means
that Hp is more probable, whereas only BFjp < 0.3 is
considered evidence for Hy (equivalence). Thus, to prove that
the open-loop and closed-loop ratings are equivalent, BFijg
must be calculated and be shown to be below 0.3. For this
analysis, the Bayes factors are calculated using the JASP
software [23], which calculates values of B Fj,. This Bayes
factor indicates the change from prior to posterior inclusion
odds [24]. The same range of degrees of belief holds as
for BF [12].

III. EXPERIMENT SET-UP
A. Experimental Conditions

Using the driving- and rating tasks presented in Section II,
the experiment was performed with the following three
conditions: i) Closed-loop driving, maneuver-based rating
(“CLMB”), ii) Open-loop driving, maneuver-based rat-
ing (“OLMB”), and iii) Open-loop driving, continuous rating
(“OLCT”). To guarantee that drivers experienced exactly the
same motion in the open and closed-loop tasks, the CLMB
condition was performed first, such that in the open-loop con-
ditions drivers could be presented with played-back recordings
of their own drives. The overall rating was the only rating
that was recorded in all three conditions. An overview of the
conditions with the applied rating methods is shown in Table I.

B. Scenario and Data Acquisition

For increased comparability, the driven route is exactly the
same as in [3], see Figure 3. The maneuvers to be rated in
the maneuver-based conditions were indicated on the road
using green bars and consist of several typical urban driving
maneuvers: corners (‘CR’), lane changes (‘LC’), as well
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Fig. 2. Contribution steps, representing (from left to right): Open-loop continuous ratings are predicted from objective mismatches using a rating model @
Second, rating relationships between the continuous ratings to both the open-loop overall (ORppy) and maneuver-based (M Bp ) ratings are
determined. Third, equivalence testing relates overall and maneuver-based ratings of open-loop and closed-loop driving.

TABLE I
OVERVIEW OF THE EXPERIMENTAL CONDITIONS

Driving Overall Maneuver-based Continuous
Condition task rating [ORpH] rating [M Bpul rating [R(t)]
CLMB Closed-loop v v -
OLMB Open-loop v v -
OLCT Open-loop v - v

as decelerations (‘DEC’). A traffic light was present after
‘DECI’, before which drivers had to stop, wait, and accelerate
again. Compared to [3], there are two changes: First, the
roundabout is split-up into the roundabout turn (‘RBT’) and
exit (‘RBE’) to obtain separate maneuver-based ratings for
both, increasing the amount of rating information. Second,
three lane change maneuvers in [3], namely after ‘CR2’,
after ‘DEC1’, and after ‘CR3’ were not used in the current
experiment, as they were not found to result in informative
ratings in [3]. Furthermore, this allowed for more time between
the various ‘CR’ maneuvers for drivers to rate. Note that
in [3] the division of the maneuvers was not visible to the
participants at all, as in that experiment they only rated
the motion continuously. In [3], the maneuvers were only
introduced and shown for clarity to the reader. Therefore, the
changes of the maneuvers compared to [3] is expected to only
minimally impact the results.

C. Drive Matching Approach

Due to differences in driving style, all recorded closed-loop
drives are inherently unique in terms of velocity and lane
position. To visualize the differences in the motion that was
presented in each drive, a “drive matching approach” was
developed. Here, all recorded time signals are related to a
common ‘reference drive’ (see Figure 4). Here, the data points
of each drive of interest (black points) are linearly interpolated
(black lines). For each data point i (red points) in the reference
run, a line is constructed perpendicular to the closest linear line
piece of the drive of interest, representing the shortest distance
between point i and the line piece. The point where these lines
intersect (red cross) is used to calculate the ratio r = ngy1/ng.

B Cr1
,/;fif]
&y RBT FT) CR2
%1 RBE
£ DECI

| DLC 1]
CR4 g T

Fig. 3. Top-down view of the driven route, as in [3]. The green areas were
visible in the CLMB and OLMB simulations (see screenshot) and represent
the maneuvers to be rated: corners (CR), decelerations (DEC), a double lane
change (DLC) and a roundabout turn (RBT) and exit (RBE).

The continuous rating signals are evaluated at these two points
and the weighted average based on the ratio r is calculated.

This leads to a vector of indices of equal length for all
analyzed drives at which the rating signal is evaluated. As it
is arbitrary which trajectory is used as the reference drive,
as long as the same one is used for all drives of all drivers,
the trajectory of drive 1 of driver 1 is used. The method allows
for relating individual drives with different velocities and lane
positions, but inherent differences in driving behaviour can
still be present: for example, the point in time at which drivers
apply the brake can be different.

Note that the drive matching method is useful for comparing
the driving behaviour of various drives. However, as the
method is purely based on the position of the vehicle with
respect to the reference vehicle, the method will likely not
work when a certain point in the scenario is passed more than
once within a single drive. In that case the method might
incorrectly link these instances together. However, this did
not occur in the present experiment. Furthermore, note that
expressing the drives relative to a reference drive also implies
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ns

reference drive

11 Ty

io
T3 drive of interest
no n1 %)

Fig. 4. Drive matching method, in which for each of the points i of the
reference drive (red), the ratio of the linear line segment that connects two
points n yielding the shortest distance is calculated.

that their time signals are expressed relative to the reference
drive. This implies that time-domain operations need to be
considered with caution.

D. Apparatus

The experiment was performed on the “Sapphire Space”
simulator at BMW Group in Munich (see Figure 1, top left),
a custom designed simulator constructed by Van Halteren
Technologies in 2021. Its kinematic structure consists of three
motion subsystems: the base is formed by a 19.14mx 15.70 m
xy-drive that allows for large excursions in the x and y
directions. On top of the xy-drive stands a large 1.15 m stroke
hexapod that can move in all six Degrees of Freedom (DoFs).
Finally, on top of the hexapod, a 360° yaw-drive is installed,
allowing for additional yaw rotations of +180°. The total
motion system thus has nine DoFs. The rating model of [3]
was derived from data collected on the similar, but smaller,
“Ruby Space” simulator at BMW Group (xy-drive: 1.6x 1.5 m,
yaw-drive: £25°, hexapod stroke: 0.34 m).

A one-to-one mock-up of a BMW 3 series (G20) was used,
which was fully enclosed by the simulator dome. Visuals
were rendered on the inner dome wall using 12 Norxe Pl
projectors, resulting in a full 360° projection around the
mock-up. During the open-loop drives, the steering wheel
remained stationary. The iDrive navigation knob on the center
console was used as the rating interface by the drivers to give
the continuous (R(¢#)) and maneuver-based ratings (M Bpp),
see Figure 1. The overall rating was extracted verbally for
consistency with [3]. The 360° projection screen showed the
visuals and the current rating value in the form of a “rating
bar” [2]. The size and color of the rating bar changed (See
screenshot in Figure 3) from rating O (short, white) to rating
10 (long, red), to make the rating method more intuitive for
drivers to use. The velocity of the vehicle was visible on the
tachometer on the dashboard and in the out-of-the-window
visuals, together with the driving direction (arrows). The rating
knob was connected to the central simulation computer using
a CAN bus. This allowed for the accurate and consistent
synchronization between recordings of the simulator motion
and the rating signals of the participants.

E. Motion Cueing Algorithm

A CWA was used as the MCA, as its linear filter-based
structure ensures a deterministic output. As the motion cueing
is calculated in real-time (see Figure 1), this is required to

ensure that identical simulator motion is generated between
the closed and open-loop driving conditions. The median
mismatch signals of the MCA are shown in Figure 5, with the
grey areas the interquartile ranges, and with the green areas
representing the maneuvers. The CWA tuning did not fully
utilize the motion system capabilities, to ensure that the limits
were never reached. Tilt-coordination was used and tuned to
keep the roll and pitch rate mismatches (Figures 5b and 5d)
below the perceptual threshold of 3 deg/s [25] (dashed lines).
In longitudinal direction, drivers drove more aggressive than
expected, resulting in the median pitch rate slightly exceeding
its perceptual threshold mismatch (Figure 5b).

The scaling factors used in the MCA were set to 0.5 for the
specific forces and 0.6 for the rotational rates. These values
lie well within the range of scaling factors considered to be
the most realistic, i.e., 0.4 — 0.8 found by [7]. First-order
filters were used to distribute the low- and high-frequency
motion across the motion subsystems (i.e., the xy-drive, the
hexapod, and the yaw-drive). The break frequencies were
set to 30rad/s for the translational axes, such that motion
below that frequency was reproduced by the xy-drive, whereas
high-frequency accelerations were reproduced by the hexapod.
A higher value of 50rad/s was used for the yaw motion, such
that the majority of yaw motion was reproduced by the yaw-
drive, giving the hexapod more workspace to reproduce the
roll and pitch motion. Finally, the lowest-frequency specific
force motions in x and y directions were reproduced by the
hexapod tilt-coordination, implemented using a low-pass filter
break frequency of 0.5 rad/s.

Because all drivers drove themselves, the MCA output
of each closed-loop drive is different. It is the longitudinal
specific force mismatch (AS’fX, Figure 5a) that shows the
largest spread, larger than AS’fy (lateral specific force mis-
match, Figure 5¢) and AS’wZ (yaw rate mismatch, Figure 5f).
This can be explained by the more varying nature of the
driving behaviour in the longitudinal direction (i.e., braking
and accelerating at different points in time) [26], whereas the
lateral and yaw mismatches are mostly determined by the road
shape [27] and result in more similar experiences across all
drives. Furthermore, although there were only two distinct
braking maneuvers in the maneuver-based conditions (DEC1
and DEC2), this does not mean that there was no longitudinal
maneuvering present in the other maneuvers. In fact, as is
visible in Figure 5a, the longitudinal specific force mismatch
was also present during corner maneuvers, where participants
braked into and accelerated out of the corner. Thus, the ratings
of these corner maneuvers should also partially consist of a
response to the longitudinal specific force mismatch.

Between 10-20s, and 90-110s, a constant average mis-
match is present in all six signals. In the reference drive,
the vehicle is standing still here, such that the drive match-
ing approach selects the same position of the other drives.
In these other drives, however, the vehicle can still be moving.
This leads to constant values for as long as the reference
vehicle is standing still. Therefore, all further time-domain
operations (such as applying the rating model) are calcu-
lated for each drive separately, rather than using the median
mismatch.
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equivalent time in seconds (participant 1, run 1). Green areas are the maneuvers; dashed lines in 5b and 5d are the perceptual thresholds (%3 deg/s, [25]).

F. Participants and Procedures

The experiment was performed by forty-two participants to
ensure a large enough sample size [28] and to account for
possible dropouts due to simulator sickness and/or technical
problems. All participants were BMW employees and had
a European car driver’s license B for at least five years
(M = 14.5years, SD = 9.1years) and an average yearly
driven distance of M = 16,278km (SD = 16,408 km).
The average age was M = 32.9 years (SD = 9.4years).
Thirty drivers had previous experience in driving simulators.
All drivers provided informed consent and the experiment was
approved following BMW’s internal ethics review procedures.
Due to drop-outs (technical issues or simulator sickness),
36 complete data sets were obtained. The incomplete data sets
of the drop-outs are not considered in further analysis.

All experiment sessions were ran by a single experimenter
to ensure consistency in the interaction with the participants.
All participants completed the experiment in a single session.
Before entering the simulator, they all read a written briefing
that explained the three rating methods, as well as the rating
scale. All drivers performed one training drive for each of
the three conditions, to get accustomed to the simulator, the
sensation of motion, and the rating methods. The training drive
of the OLCT condition contained inverted longitudinal (f5)
motion, to create large false cues and anchor the highest value
of the rating scale (10), as in [3]. The OLCT and OLMB
training drives were not based on the participant’s own CLMB
training drive, but used a pre-recorded drive, such that the
anchoring of the rating scale was identical for all participants.

Drivers were instructed to drive as they normally would.
As the closed-loop drive recordings were played back in the
open-loop conditions, the CLMB condition was always tested
first. For half of the drivers this was followed by OLMB and
then by OLCT. For the other half, the order of the open-loop

conditions was switched to average out order effects. Drivers
performed three repetitions of each condition, resulting in a
total of nine runs. The open-loop drives followed a different
order than the closed-loop drives (1)-2-3): For OLMB (2)-3-1)
and for OLCT (3)-1-2), to minimize recognition of the drives.

For the maneuver-based ratings, drivers were asked to give
their impression of the maneuvers (Figure 5) using the rating
knob. Drivers were instructed to rotate towards their intended
rating, leave the rating at this value for at least two seconds,
and then rotate back to zero. The selected maneuvers were
spaced to give drivers enough time to give their rating and
refocus on the driving task.

The recorded continuous, maneuver-based and overall rating
signals are represented by RYP(r), MBYY, and ORJY,
respectively. Here, subscript ¢ represents the experimental
condition, j the condition repetition and p the driver. Note that
if, in further notation, the subscript is missing, this indicates
that the average along this dimension is taken.

IV. RESULTS
A. Modeling of Continuous Ratings

Figure 6 shows the measured median continuous ratings
(blue) over all drives. Given that the rating scale runs from 0
(congruent motion) to 10 (highly incongruent motion), ratings
are generally low (< 2), i.e., the MCA setting was rated
well. The rating peaks generally coincide with the end of
the maneuver (vertical line), showing the lagged response
to the incongruences, as expected from the estimated rating
dynamics represented in the rating model in Eq. 1. The figure
also shows the model of [3] (grey), which predicts the peaks
of the continuous ratings quite well, although the quality
of the fit is low at VAF= 11.0%. This VAF excludes the
initial acceleration (between 0 and 20 s) and final deceleration
‘DEC2’ sections, as these were generally ignored by most
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Fig. 6. Mean continuous motion incongruence rating (blue line) and standard error (blue shaded area) over all OLCT drives as a function of equivalent time
in seconds (participant 1, run 1). The predicted rating based on the model of [3] is displayed by the grey line. Green areas are the maneuvers, although these

were not highlighted to the participants in this OLCT condition.

participants; it might have been unclear to them that these were
also to be rated. A second point of interest lies at the plateau
between 90-110s which is, as explained in Subsection III-E,
caused by the drive matching approach. For further model
calculations, the modeled ratings of the rating model are
calculated for each drive separately, such that this plateau is
not present (but cannot be compared in a single figure).

B. Rating Relationships

1) Relationship Overall/Continuous Ratings: A relation-
ship linking the continuous rating to the overall (ORpy =

forpy [R(®)]) [ path in Figure 2 ] is investigated. For

the overall ratings, these fits are determined for each maneuver
separately. Thus, each maneuver has a regression coefficient
as to how much it correlates to the overall rating. As this
requires a single data point for the continuous ratings in
each maneuver, the continuous ratings are summarized through
three methods: i) the maximum of R(¢) of the maneuver
(CLMB: p = 0.46, OLMB: p = 0.69, ii) the mean (CLMB:
o = 0.46, OLMB: p = 0.65), and iii) the median (CLMB:
o = 0.40, OLMB: p = 0.44). A value closer to 1 indicates
a stronger linear relationship, such that the maximum best
explains the relationship between the rating methods. These
values correspond to the roundabout (‘RBT’), for which the
correlation was always highest. Figure 7a shows how well
the overall rating correlates to the maximum rating of each
maneuver, expressed as the maximum continuous rating of
that maneuver. Here, the grey values show the correlation
values as determined by [3], the dark grey indicates such
data points that correspond to a CWA condition. The red
(CLMB) and orange (OLMB) points indicate the present study.
To obtain an explicit predictive relationship, the regression
fit with the highest Pearson correlation (p = 0.69, indicated
by the arrow in Figure 7a) in the OLMB condition is taken:
ORpy =0.79 - max[R(¢)] + 1.63.
2) Relationship Maneuver-Based/Continuous Ratings:

To investigate the relationship between continuous and

maneuver-based ratings (M Bpy = fyppy [R(1)]), [ path

in Figure 2 ], also the Pearson correlation is calculated. Here,
the applied method differs from the overall rating. As a single
data point exists in each maneuver for both the continuous
and maneuver-based rating methods, a single regression fit
can be made on all data points of the various maneuvers
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Fig. 7. Correlations between the maximum of the continuous ratings and
the overall ratings (a) / maneuver-based ratings (b). The data points represent
each maneuver as defined in Figure 5. In (a), the arrow indicates the maneuver
(‘RBT’) with the highest correlation. In (b), the lines are the regression fits,
the dotted lines represent the 95% confidence bounds.

together. The continuous ratings are again summarized through
three methods: i) the maximum of R(¢) in that maneuver
(CLMB: p = 0.93, OLMB: p = 0.94, ii) the mean (CLMB:
o = 0.80, OLMB: p = 0.76), and iii) the median (CLMB:
o = 0.59, OLMB: p = 0.49). Similar to the overall ratings,
it is the maximum of the continuous rating in the maneuver
with the highest Pearson correlation (Figure 7b) that is the
best predictor for the maneuver-based ratings: M Bpy =
1.32 - max[R(¢)] — 0.29.

C. Equivalence of CL/OL Ratings

1) Overall Ratings: The overall rating distributions are
shown in Figure 8a. The OLCT is also shown for reference,
as the overall ratings were recorded in all three conditions. The
box plots show the median (circles), the box edges indicate
the 25th and 75th percentiles, and the whiskers show the range
of the non-outlier data points. All individual data points are
plotted as dots. The horizontal bars represent the means of the
distributions. The data are normally distributed; the means for
the CLMB, OLMB, and OLCT conditions are 2.78, 2.70, and
2.40, respectively, showing that the OLCT condition was rated
slightly lower. The Bayes factor of the single effect between

the CLMB and OLMB conditions [ path in Figure 2 ]
is BFijpe = 0.263 (Table II under ‘ORpp’), indicating
moderate evidence of equivalence (< 0.3) [12]. Note that when
including the overall ratings obtained in the OLCT condition,
the Bayes factor increases to BFj,q = 0.419, providing no
more evidence of equivalence. However, as the prime focus
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TABLE I

BAYES FACTORS OF THE DRIVING METHOD, MANEUVER, AND THEIR
INTERACTION, FOR THE OVERALL (ORpp) AND MANEUVER-BASED
(M Bp ) RATINGS. BOLD VALUES INDICATE
EQUIVALENCE (< 0.3)

Effect BFincl
OR CLMB/OLMB 0.263
PH  CLMB/OLMB/OLCT 0.419
CLMB/OLMB 0.143
MBpy  Maneuver 1.018 - 1014
CLMB/OLMB xManeuver 0.023

here is on the comparison between CLMB and OLMB, this
does not affect any further conclusions on equivalence between
closed-loop and open-loop driving.

Even though the CLMB and OLMB overall ratings are
equivalent, individual differences can still be present. For
example, two drivers could have rated the two conditions
differently, but in exactly opposite ways. Although this would
lead to equivalent data, it would ignore insights into individual
differences. Figure 8b shows the distributions of AOR}Y,
i.e., the difference in overall ratings per condition pair of
each individual run pair. With the presence of the OCLT
condition, this results in three AOR?Z distributions. As this
only has one distribution per condition pair, no statistical test
is possible. The horizontal bars indicate the means: 0.074 for
CLMB - OLMB (median = 0), showing that individuals rated
the CLMB and OLMB conditions the same. Furthermore, for
OLMB - OLCT the mean is 0.31 (median = 0), and for CLMB
- OLCT: 0.38 (median = 0). These mean values show that
OLCT was also rated slightly lower within individuals.
Equivalence  of

2) Maneuver-based  Ratings: the

maneuver-based ratings is investigated next [ path

in Figure 2 ]. Figure 9a shows the distributions of the
maneuver-based ratings of the CLMB and OLMB conditions
for each maneuver. Differences exist between the maneuvers,
with CR3 the worst rated maneuver (i.e., the highest means).
The corners (involving lateral and yaw motion) are generally
rated the worst (e.g., CR3 and CR4), whereas maneuvers
involving longitudinal motion (DEC1 and DEC2) are rated
best.

To investigate the equivalence of the two conditions,
the Bayes factors are calculated. The results are shown in
Table II under ‘M Bpp’. Three possible effects are ana-
lyzed for the M Bpy data: ‘CLMB/OLMB’, ‘Maneuver’ and
‘CLMB/OLMB xManeuver’, where the latter represents the
interaction effect. For the maneuver effect, the BFj,. is

1.018 - 1014, indicating extremely decisive evidence (> 30)
[12] that the maneuvers were rated differently.

In contrast, when considering CLMB/OLMB, BF;, =
0.143, providing moderate to strong evidence [12] that the
maneuver-based ratings of the two conditions are equivalent,
supporting the earlier findings on equivalence of the overall
ratings. For the combination of the two effects, no interaction
effect exists between the CLMB/OLMB and the maneuvers
(BFjper = 0.023). This indicates that the equivalence within
the driving method does not depend on the (type of) maneuver.
Thus, although the maneuvers are rated differently, these dif-
ferences are equivalent in the CLMB and OLMB conditions.

Similar to the analysis on the overall ratings, Figure 9b
shows the distributions of AMBY?, ie., the difference of
each individual run pair. All medians are 0, and the means
are generally very close to O (highest AMBYY = 0.24, for
‘RBT’). This provides further evidence that the drivers rated
both conditions equivalently.

D. Rating Prediction Framework Evaluation

The three steps defined in Figure 2 have now been evaluated.
First, due to their equivalence, maneuver-based ratings of
open-loop drives can be used to predict ratings of closed-loop
drives (see red and orange data in Figure 10, representing
their means). Second, using the estimated regression fits that
relate the overall and maneuver-based ratings to the (mea-
sured) continuous ratings, both the overall and maneuver-based
ratings can be predicted (blue). This holds for both ratings of
open-loop and closed-loop driving due to their equivalence.
Third, the continuous ratings can be predicted using a rating
model, based on objective mismatch signals (grey). Therefore,
the steps combined allow for predicting maneuver-based and
overall ratings of closed-loop drives using a continuous rat-
ing model. Between the predicted maneuver-based ratings of
the rating model and the measured closed-loop ratings, the
deviations are smaller than half a rating point. Considering
a ten-point rating scale, where only steps of 1 were pos-
sible, these errors can be considered acceptable. Exceptions
are ‘RBE’ and ‘DEC2’, where the differences are 0.65 and
0.79, respectively. For the overall post-hoc ratings, the rating
predictions also work well, with a difference between the
measured closed-loop (red) and the modeled (grey) ratings
of 0.16.

V. DISCUSSION
A. Model Predictions

The model proposed by [3] was used to predict the measured
continuous ratings as a function of the objective mismatch
between vehicle reference and simulation motion. Using the
same model parameters of [3] resulted in a reasonably accurate
prediction of the ratings. Although the VAF was low, the
resulting predictions of the maneuver-based and overall ratings
were accurate. Between the present work and the model of [3],
the scenario, the rating set-up, instructions, and the MCA
were the same. However, the simulator, the MCA parameters,
and the participant group were different, which may have
affected the ratings. Overall, the presented results show that
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the predictive model still provides accurate results across these
variables when the averages of these participant groups are
considered. For these three variables there is thus no combined
effect. This shows that the rating prediction methodology is
effective even across these experiment variables and can thus
be applied for predictions of motion cueing quality of future,
as of yet untested, driving simulator studies.

Especially the difference in simulator is notable. The nine
DoF Sapphire Space simulator used in the present study was
significantly larger than the nine DoF Ruby Space simulator,
on which the model of [3] was developed. The smaller
workspace of the simulator in [3] resulted in larger mis-
matches compared to the present experiment, on which the
rating model was fit. This thus also shows that the model
still works when considering different ranges of incongruent
motion. This is an important quality, as it shows the general
applicability of the model across various simulators, which
is an important property considering the various simulators
to choose from at BMW’s Driving Simulation Center. For
smaller, hexapod-only systems, the rating model, including its
ability to predict ratings of closed-loop driving, can be further
tested by applying it to predict the motion cueing quality of
practical driving experiments. For example, the effectiveness
of the rating model can be confirmed by comparing predictions
and actually obtained overall post-hoc ratings, as the latter can
be obtained with limited interference in the experiment itself.

Predicting ratings for significantly smaller simulators (e.g.,
small hexapods) might in fact prove to be the largest future
difficulty, especially for systems that cannot approximate
the high cueing quality of the Sapphire Space and the Ruby
Space. As the applied rating scale has a fixed lower anchoring
(‘no incongruence = (’), but no upper anchoring (‘large
incongruence 10%), it is possible that the rating that
drivers associate with ‘large incongruence’ can depend on the
intensity of the incongruences presented in the experiment.
[29] showed that in some cases, transferability between exper-
iments can be an issue if the difference in presented motion

the validity of the findings and the rating model prediction in
different driving scenarios. Here, the first step would be to test
a different urban route, as this might alter the balance of the
presented mismatches and therefore require the introduction of
an MTP. Second, extending the results to completely different
scenario types (e.g., highway or rural) is another important
step. As discussed in [3], different scenario’s can, for example,
induce more interaction with surrounding traffic, which may
induce different types of motion (e.g., more lane changes in
highway scenarios). Here, maneuvers may be more difficult to
rate, as anticipating responses to traffic is more difficult than
the road-geometry driven maneuvers of an urban scenario.

B. Relationships Between Rating Signals

To understand how the overall (ORpy) and maneuver-
based (M Bpy) ratings relate to the continuous ratings (R(?)),
it was determined which metrics best correlate. Analyzing the
correlation between the maximum of the continuous ratings
per maneuver and the overall ratings, it can be concluded that
the higher the maximum of the continuous ratings, the more
these ratings correlate with the overall ratings. This repro-
duces findings by [3]. The point with the highest correlation
(p = 0.69) was the roundabout maneuver ‘RBT’. The analysis
between the maneuver-based and continuous ratings shows a
similar result: the maneuver-based ratings are highly correlated
with the maximum of the continuous ratings in that maneuver
(p 0.94). These results show that maneuver-based and
overall ratings can be predicted using continuous ratings.

Two limitations remain, however. The correlation analysis
could only be applied on the average driver level, rather than
for each drive separately. This analysis might therefore be
somewhat confounded due to the inherently different drives
that were present, which can affect the correlation. Second,
the acquired relations could only be evaluated for a limited
part of the rating scale. Although this range of presented
motion in the present experiment corresponded to a realistic
MCA for the considered simulator, further research could
investigate how these relationships hold at better or worse
motion cueing. Similarly, it is suggested to extend the findings
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on correlations towards other scenarios. As the urban driving
scenario generally results in reliable rating data [3], less strong
relationships might be present in scenarios that inherently have
a lower reliability, such as rural [17] or highway scenarios.
The maneuver-based rating method itself, using the rating
knob after each maneuver, worked well and was noted by
participants to be an intuitive task. This might thus be a
suitable alternative to the commonly used overall ratings.

C. Equivalence of Closed- and Open-Loop Ratings

Through the estimation of Bayes factors, the ratings of
closed-loop and open-loop driving of the overall ratings were
shown to be equivalent. For the maneuver-based ratings, the
driving methods (CL/OL) also show equivalence, whereas the
maneuvers are rated differently. No interaction effect exists
between the driving methods and the maneuvers.

The equivalence analysis further shows that the differences
in simulator motion as perceived in the various maneuvers did
have an impact on the provided ratings, as expected based
on the between-maneuver objective cueing error variations.
The lack of a significant interaction effect indicates that these
differences between maneuvers are equivalent for closed-loop
and open-loop driving. Differences in ratings are therefore
caused by the differences in maneuver, and not by whether
closed-loop or open-loop driving is active. The implications
of these results are two-fold. First, it enables using (predic-
tions of) the continuous rating method to identify where and
to which extent incongruences occur with high resolution.
Second, it enables predicting maneuver-based and overall
ratings with high accuracy, which is especially useful for
comparisons of motion cueing (i.e., MCA “A” is better than
MCA “B”).

A main application for these results is to improve methods
to objectively select the best possible motion cueing settings
(simulators, MCAs, parameters) prior to inviting participants
for closed-loop testing. To do this well, a prediction of drivers’
PMIs as a function of a simulator’s (objective) movement (i.e.,
the paper’s main contribution) is crucial. While the application
of our findings is useful for all driving simulators, it is
especially important for experiments at BMW, due to the wide
range of different simulators and MCAs available. Thus, the
presented work can be directly used to improve the decision
making for driving simulation motion cueing selection.

Even though the ratings were equivalent, note that the under-
lying perception does not necessarily have to be equivalent as
well. It has been shown [10], [11] that perceptual thresholds
can in fact change under closed-loop and open-loop single-axis
settings, hinting at differences in perception. However, even if
these perceptual differences would be present in multi-axis
car driving simulations, the equivalent ratings show that these
differences are small enough to not be of practical significance.

A point of attention lies within the fact that the participants
had to rate their own drives, also in the open-loop conditions.
This was a crucial choice, as it allowed for the explicit com-
parison between open-loop and closed-loop driving. Although
participants were not told that they would rate their own drives
in the open-loop conditions, a potential bias could occur when
participants recognize their own drives: then their rating could

be affected by their memory of what the motion felt like in
the closed-loop condition. To mitigate this, the order in which
the three drives were presented in the open-loop conditions
was different than that of the closed-loop drives. Furthermore,
while the vehicle’s trajectory was replicated directly, the traffic
in the simulation was still random every time.

The final point of attention concerns the OLCT condition,
which resulted in consistently lower overall ratings, relative
to both the CLMB and OLMB conditions. It is possible that
the continuous rating method itself affects the rating measure-
ments. For example, continuous ratings require more workload
than maneuver-based ratings, potentially decreasing drivers’
sensitivity to motion incongruences. Furthermore, in the OLCT
condition participants rated the complete driving scenario,
while in the maneuver-based drives (OLMB and CLMB)
participants only focused on the outlined maneuvers. Even
though the overall rating is intended to represent the whole
drive, it is possible that the OLMB and CLMB conditions are
biased towards the maneuvers rated in those conditions, which
are the most incongruent points. Therefore, the overall ratings
in these conditions might be higher than the OLCT results.

VI. CONCLUSION

This paper described a driving simulator experiment of
which the data of 36 participants was used to develop a
method to predict motion incongruence ratings of closed-loop
driving through three key findings. First, a model of continuous
rating signals from literature was validated by showing it can
successfully predict the measured continuous ratings. Second,
the maximum of the continuous ratings (i.e., the worst motion)
was shown to correlate strongly with the drivers’ overall
(p = 0.69) and maneuver-based ratings (p = 0.94).
This allows for predicting such ratings based on measured
and modelled continuous rating signals. Third, performing
a Bayes analysis showed that both maneuver-based and
overall ratings are equivalent between closed-loop and open-
loop driving methods. All findings combined show that the
open-loop continuous rating method is a valid method for
obtaining high-resolution information on incongruences of
closed-loop driving. Moreover, it shows that both overall
and maneuver-based ratings of closed-loop driving can be
predicted through objective mismatch signals between vehicle
and simulator motion. Both allow for improved objective
predictions of subjective ratings to guide the design, testing,
and assessment of future motion cueing algorithms, while
greatly reducing the required on-site simulator testing time.
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