
MSc thesis in Geomatics

Using deep learning to simulate wind in
building area

Na Liu

June 2025

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Na Liu: Using deep learning to simulate wind in building area (2025)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Delft University of Technology

Supervisors: Dr. Azarakhsh Rafiee
Dr. Frits de Prenter

Co-reader: Shenglan Du

http://creativecommons.org/licenses/by/4.0/

Abstract

Urban wind simulations are essential for assessing pedestrian comfort, pollutant dispersion,
and microclimate design, yet high-fidelity CFD remains computationally expensive. This
thesis investigates the potential of a Swin-Transformer-based surrogate model to approxi-
mate steady-state 2D results for 100 m × 100 m tiles under a single inflow direction. A dataset
of 690 urban tiles was extracted from the 3DBAG and simulated in Ansys Fluent at 0.5 m
resolution across five inflow speeds (5–15 m/s) and five types of building layouts. Velocity
fields were rasterized to 1 m grids. The surrogate architecture preserves the original Swin
backbone, evaluated with three loss variants: original RMSE, buffer weighting, and a diver-
gence penalty. Encoding wind as xy-component consistently outperformed magnitude-only
training. Errors scaled linearly with inflow speed and were highest in Mixed and Attached
urban forms. Architectural resolution was the dominant factor influencing accuracy since it
introduced visible artifacts, while the buffer and divergence losses offered only marginal im-
provements. Limitations remain near building facades, where sharp gradients are smoothed
by the patch-based architecture. Nonetheless, the surrogate offers potential for rapid wind
flow estimation suitable for early-stage design or preliminary analysis.

v

Acknowledgments

Looking back at the end of studying at TU Delft, I would like to express my sincere appreci-
ation to all the people who have contributed not only to this thesis but also to my personal
growth.

I would like to express my deepest thanks to my supervisor, Dr. Azarakhsh Rafiee, for her
patient guidance, insightful feedback, and invaluable advice throughout this thesis. Her
mentorship has significantly enhanced the quality of my work and deepened my under-
standing of the subject. I am also grateful to my other supervisor, Dr. Frits de Prenter, for
his constructive suggestions, continuous support, and expertise. His insights have greatly
contributed to the clarity and robustness of this thesis.

I would also like to express my heartfelt appreciation to my family and friends, whose
understanding, encouragement, and unwavering support have sustained me throughout
this journey. Their generosity far exceeds what I feel I deserve, and I often find myself at a
loss for words to express the depth of my gratitude. I hope I can repay this kindness one
day. Thank you.

vii

Contents

1 Introduction 1
1.1 Background and research motivation . 1
1.2 Scope . 2
1.3 Research question . 2
1.4 Outline . 3

2 Theoretical framework and related work 5
2.1 CFD and wind dynamics . 5

2.1.1 CFD . 5
2.1.2 Wind dynamics in urban area . 9

2.2 Deep learning . 9
2.2.1 Deep learning-based techniques for computer vision 10
2.2.2 Dense prediction . 13

2.3 Swin Transformer . 13
2.3.1 Shifted window . 14
2.3.2 Patch merging . 15

2.4 Related work . 16

3 Methodology 19
3.1 Wind simulation . 19

3.1.1 Urban geometry and boundary design 19
3.1.2 Meshing: resolution, quality, convergence 20

3.2 Data . 22
3.2.1 Data normalization . 22
3.2.2 Training and validation set . 23
3.2.3 Test set . 23

3.3 Swin Transformer . 24
3.3.1 Dense prediction head . 24
3.3.2 Evaluation . 24

4 Implementation 27
4.1 Dataset generation . 27

4.1.1 Building fingerprints generation . 27
4.1.2 Operational workflow for Ansys batch runs 30
4.1.3 Point-to-Raster conversion . 31

4.2 Hyper-parameter tuning . 32
4.2.1 Window size and patch size . 32
4.2.2 Buffering . 33
4.2.3 Divergence . 33

5 Results and analysis 35
5.1 Target format . 35

ix

Contents

5.2 Inflow speed . 37
5.3 Layout . 37
5.4 Buffer loss . 39
5.5 Divergence . 40
5.6 Buffer and divergence . 42
5.7 Patch size . 44

6 Discussion, conclusion and future work 45
6.1 Discussion . 45
6.2 Conclusion . 48
6.3 Future work . 49

Scripts 55
1 Clipping geometry in QGIS . 55
2 Ansys DesignModeler . 57
3 Ansys Mesh . 59
4 Ansys PyFluent . 62
5 Converting point data to raster in ArcMap . 62

x

List of Figures

2.1 Overview of the fundamental concepts in fluid dynamics [Anderson, 1995] . . 6
2.2 Neural network . 10
2.3 An architecture of CNN from LeCun et al. [1998] 10
2.4 The architecture of the Transformer from Vaswani et al. [2017] 11
2.5 [left] Scaled Dot-Product Attention. [right] Multi-Head Attention consists of

several attention layers running in parallel from Vaswani et al. [2017] 12
2.6 The architecture of Vision Transformer from Dosovitskiy et al. [2021] 13
2.7 The architecture of a Swin Transformer (Swin-T) from Liu et al. [2021] 14
2.8 An illustration of the shifted window from Liu et al. [2021] 14
2.9 Illustration of an efficient batch computation approach from Liu et al. [2021] . 15
2.10 Hierarchical feature map from Liu et al. [2021] 15
2.11 Schematic of a physics-informed neural network (PINN) in Cai et al. [2021] . . 16
2.12 3D convolution kernel in Huang et al. [2023] . 17

3.1 Example of a wind flow domain in DesignModeler. 20
3.2 Wind simulation results using different mesh element sizes, where the red

pixels represent no-data regions. 21
3.3 Comparison of wind simulation results for element sizes of 0.5 m and 0.3 m

under a wind inflow of 10 m/s. Purple pixels indicate velocity differences
greater than 2 m/s. 21

3.4 Illustration of the buffered area, where the blue pixels represent the high-
weighted parts. 25

3.5 Visualizations of divergence magnitude under different wind inflow speeds.
Red pixels indicate regions where the absolute divergence is higher than 1. . . 26

4.1 Flowchart for dataset generation . 27
4.2 Original buildings in the shapefile. 28
4.3 Example of invalid building polygons detected during pre-processing. 28
4.4 Grid structure used to partition the study area into 100m × 100m tiles. 29
4.5 Example of tiles excluded due to improper wind flow zone. 30
4.6 Example of simulation output stored in TXT format. 31
4.7 Example of building masks and corresponding wind velocity rasters. 31
4.8 Validation loss across different window size and patch size configurations. . . 32
4.9 Optimization results for buffer size and weight using Optuna. 33
4.10 Optimization results for divergence weight using Optuna. 34

5.1 Prediction errors (MAE and RMSE) at different inflow speeds for models
trained with magnitude and XY velocity inputs. 36

5.2 Comparison of predicted magnitude fields at an inflow speed of 10.0 m/s. . . 36
5.3 Comparison of ground truth (top) and predicted magnitude fields (bottom) at

five inflow speeds. 37

xi

List of Figures

5.4 RMSE distribution for different layout types. The error is highest for Mixed
and Attached layouts. 38

5.5 Predicted wind magnitude fields and directions (bottom row) and correspond-
ing ground truth (top row) for each layout type. All cases use the XY-based
model at 10.0 m/s. 39

5.6 Predicted velocity fields from the buffer-loss model (bottom row) and corre-
sponding ground truth (top row). 40

5.7 Predicted velocity fields from the divergence-loss model (bottom row) and
corresponding ground truth (top row). 41

5.8 Divergence comparisons across ground truth (top row), baseline model with-
out divergence loss (middle row), and model with divergence loss (bottom
row). Red pixels indicate locations where the absolute divergence exceeds 1. . 41

5.9 Predicted velocity fields from buffer-loss model (top row), divergence-loss
model (middle row), and combined-loss model (bottom row). 43

5.10 Divergence comparisons across divergence-only (top row) and combined-loss
(bottom row) models. Red pixels indicate locations where the absolute diver-
gence exceeds 1. 43

5.11 Predicted magnitude fields from models with patch size 2 (left) and patch size
5 (right). 44

6.1 Proportion of target pixels adjacent to buildings (based on Chebyshev distance). 46

xii

List of Tables

3.1 Mesh element size impact on computational metrics 20
3.2 Statistical data for wind speed. 22
3.3 Number of samples in training and test sets . 24

5.1 Errors between prediction values and target values using magnitude-based
and XY-based training. 35

5.2 Prediction error across five urban layout types under fixed inflow speed (10.0
m/s). All results are from the XY-based model. 38

5.3 Prediction error of XY-based model with and without buffer loss. 39
5.4 Prediction error of XY-based model with and without divergence loss. 40
5.5 Prediction error of the baseline model, buffer-loss model, divergence-loss model,

and combined-loss model. 42
5.6 Prediction error under different patch sizes. Window size is fixed at 10. All

results are evaluated with inflow speed of 10.0 m/s. 44

6.1 Per–sample time cost of the conventional CFD run vs. the trained ML surrogate. 48

xiii

Acronyms

CFD Computational Fluid Dynamics
ANN Artificial Neural Network
CNN Convolutional Neural Network
ViT Vision Transformer
GAN Generative Adversarial Network
PINN Physics-informed Neural Network
RANS Reynolds-averaged Navier–Stokes
LES Large Eddy Simulation
DNS Direct Numerical Simulation
ILES Implicit Large Eddy Simulation
UBL Urban Boundary Layer
FDM Finite Difference Method
FVM Finite Volume Method
FEM Finite Element Method
SIMPLE Semi-implicit Method for Pressure-linked Equations
RMSE Root Mean Squared Error
CAD Computer-aided Design

xv

1 Introduction

1.1 Background and research motivation

Urban wind flow significantly affects a range of domains including building aerodynam-
ics, pedestrian comfort, pollutant dispersion, and energy efficiency. These flow patterns are
highly sensitive to physical characteristics of the built environment such as building geom-
etry and spacing. These patterns can exhibit distinct behaviors, including creating eddies in
streets perpendicular to the wind flow, accelerating along streets aligned with the wind, and
diverging at street junctions which is discussed by BenMoshe et al. [2023]. Such patterns are
intricately linked to the physical configuration of the urban settings, presenting a complex
interplay between built structures and environmental forces.

Traditionally, Computational Fluid Dynamics simulations and wind tunnel experiments
have been the standard tools for analyzing such flow behaviors. They are very accurate and
widely adapted in various applications. However, under some circumstances challenges can
still arise when these methods are applied. When simulating wind in urban environments,
the main difficulty here is in two ways: firstly, the simulation domain for urban landscapes
is typically larger, and secondly, it encompasses complex details of buildings and structures.
To accurately capture these details, for CFD simulation, a finer mesh is required around
buildings, which in turn leads to simulations that are both computationally demanding and
time-intensive; for on-site measurements, the difficulties are similar. The installation of sen-
sors requires a lot of effort, and it is also difficult to transfer the results between different
cities. This complexity presents a significant bottleneck in terms of resource and time effi-
ciency.

Beyond these challenges, the evolving landscape of technology has brought forth innova-
tive solutions. The recent advancements in machine learning have open a new era in this
field. These developments have paved the way for a variety of machine learning approaches
aimed at streamlining the simulation process. Utilizing machine learning has the potential
to expedite the process and to tackle the computational and time constraints inherent in
traditional methods under certain circumstances. Kutz [2017] highlights the promising po-
tential of deploying deep learning techniques in fluid dynamics.

Deep learning, a subset of machine learning, has shown impressive performance in areas
such as natural language processing, computer vision, and time series prediction. For exam-
ple, Convolutional Neural Networks (CNNs) have proven their excellent applications across
various fields in GIS. In recent years, the rise of the Transformer model, a novel neural ar-
chitecture, has garnered considerable interest, particularly in Natural Language Processing
as mentioned by Vaswani et al. [2017]. Due to its ability to handle long-range dependencies,
Zhao et al. [2021] has applied it to effectively capture spatial relationships in point cloud
data. When simulating wind, a large number of non-uniform cells need to be calculated.
This kind of vast, interrelated data is precisely where the strength of the Transformer model

1

1 Introduction

lies. Yet, the application of such models in urban wind simulation is an area that remains
underexplored. Considering the complex nature of the wind flow in urban area, some of the
classic architectures used for image processing like convolutional neural network (CNN),
though done excellent jobs in numerous areas like image classification, face recognition and
image segmentation, has difficulties in handling dependencies between distant pixels due to
limited receptive field. So in the most previous studies of using machine learning as surro-
gate models for fluid dynamics simulation, the focuses are usually to introduce the physical
constraints into the loss function like PINN [Cai et al., 2021], or treating wind flow data as
point-based data in time series to perform prediction. With the emergence of Transformer
based architectures like ViT, TransGAN and Swin Transformer [Khan et al., 2021], it became
possible to see wind flow as patterns in the space.

1.2 Scope

The central focus of this thesis is to explore the possibilities to apply the Swin Transformer
architecture in urban wind flow simulation on micro-scale areas of 100m × 100m.

The research is specifically constrained to:

• Urban areas of 100m × 100m micro-scale domains

• Steady-state wind flow conditions

• Wind flow patterns represent as 2D raster image

All the building footprints are obtained through real-world data, and processed through
Ansys for wind simulations to generate training samples. The wind direction is maintained
at a fixed orientation. Beyond evaluating the Swin Transformer’s capability in wind flow
simulation, this thesis aims to conduct detailed investigations into how wind speed varia-
tions and diverse building footprint configurations influence model performance, thereby
systematically exploring the underlying factors affecting accuracy.

Given that the input data of model is 2D image, thus the height of the building is not
considered. The influences of terrain and vegetation and the thermal interactions are also
excluded. Though detailed turbulence modeling is not the main focus of this thesis, but
turbulence are usually linked with building footprints, so the research aims to develop a
foundational understanding of how geometric layouts influence wind flow patterns within
the constraints of a 2D representation.

1.3 Research question

The research questions for which the thesis is oriented are stated in this section. There are
two parts of the research questions including one main research question and several sub-
questions.

To what extent can a Swin-Transformer-based surrogate accurately simulate wind fields in urban
environments under specific initial conditions?

2

1.4 Outline

The goal of this study is to evaluate whether a Swin-Transformer-based surrogate can accu-
rately reproduce steady-state urban wind fields. Based on the main research question, the
sub-questions relevant to the thesis are:

• How do different urban building layouts affect the accuracy of the surrogate in simu-
lating wind fields?

• How do varying inflow speeds affect the accuracy of the surrogate in urban wind field
simulation?

• How does introducing a flow-aware loss function influences the surrogate’s accuracy?

1.4 Outline

This thesis is organized as follows:

• Chapter 2 provides the theoretical framework of the study, covering the fundamentals
of CFD, particularly wind simulation in urban areas, and the principles of deep learn-
ing models, with a focus on the Swin Transformer architecture as well as reviewing
related works relevant to this thesis.

• Chapter 3 explains the conceptual choices: urban domain definition, mesh-resolution
strategy, data processing, Swin-Transformer architecture and the evaluation methods.

• Chapter 4 details the practical pipeline used to generate the dataset and run the exper-
iments, including geometry generation, Ansys batch wind simulation, training hyper-
parameters.

• Chapter 5 presents the results for different urban morphologies, inflow-speed varia-
tion, and the effect of the hybrid loss function design, followed by analysis.

• Chapter 6 summarizes the main findings, states the key conclusions, discusses study
limitations, and proposes future directions, including transient simulations, finer meshes,
and alternative deep-learning frameworks.

3

2 Theoretical framework and related work

This chapter comprises two theoretical components of the thesis: computational fluid dy-
namics (CFD) and machine learning. The following diagram illustrates these concepts and
shows their roles in the thesis.

2.1 CFD and wind dynamics

2.1.1 CFD

Computational fluid dynamics (CFD) is the science that uses numerical algorithms to sim-
ulate fluid flow, heat transfer and associated phenomena through computers [Versteeg and
Malalasekera, 2007]. Together with pure theory and pure experiment, it helps people better
understand fluid dynamics [Anderson, 1995]. There are three physical principles that deter-
mine the behaviors of fluid flow, which are: 1. Mass is conserved; 2. Newton’s second law;
3. Energy is conserved.

From these conservation laws, comes the equations that govern all of fluid flows, they are
continuity equation, momentum equation and energy equation [Anderson, 1995; Versteeg
and Malalasekera, 2007].

5

2 Theoretical framework and related work

Figure 2.1: Overview of the fundamental concepts in fluid dynamics [Anderson, 1995]

Basic concepts

Fluid dynamics problems can be divided into categories based on how fluids behave when
they flow, such as: ideal or viscous, steady or unsteady, compressible or incompressible, and
laminar or turbulent. In CFD simulation, the type of fluid flow need first be determined
to select the appropriate methods and equations. Often when studying a problem, only
certain aspects of fluid flow require attention, while other minor factors are ignored. These
classifications of fluid flow help highlight the problem and simplify the process.

6

2.1 CFD and wind dynamics

The Reynolds number is a dimensionless quantities that used to describe the relationship
between the inertia forces and viscous forces [LaNasa and Upp, 2014], which is defined as:

Re =
Inertial Force
Viscous Force

=
ρVD

µ
(2.1)

where ρ is fluid density, V is velocity, D is diameter of the passage way and µ represents
viscosity of the fluid. The Reynolds number gives the relative importance between inertial
and viscous forces. When the Reynolds number is small, the flow is smooth and steady
and is called laminar flow. On the other hand, if the Reynolds number is large, the flow
would moves extremely irregularly, which is called turbulent flow[Versteeg and Malalasek-
era, 2007]. The critical point at which flow transitions from laminar flow to turbulent flow is
called the critical Reynolds number.

Another nondimensional number that represents the effect of compressibility is called the
Mach number. It is the ratio of the local fluid velocity to the local speed of sound [Sforza,
2012].

M =
V
c

(2.2)

where V is the speed of the flow at any point and c is the sound speed at the same point.
When M < 0.3, flow can be considered incompressible. Otherwise, the flow is compressible
[Ferziger and Perić, 2002].

Numerical method

Previously, the conservation laws of mass, momentum and energy was mentioned. By in-
tegrating them into the same system, we can come up with a system of equations for an
incompressible Newtonian fluid, called the Navier-Stokes equations [Blazek, 2001].

The Navier-Stokes equations take the fluid’s viscosity into account. When the viscosity of the
fluid is very small and can be ignored, the Navier-Stokes equations can be further simplified
to Euler equations [Ferziger and Perić, 2002]. However, such equations are rarely solvable.
Thus, engineers use numerical methods to simulate the fluid flow on computer, which is
CFD. Numerical methods contains several key components including mathematical model,
discretization method, grid, finite approximation, solution method and convergence criteria
[Ferziger and Perić, 2002].

To find a numerical approximation to the solution, we replace differential equations into
algebraic equations, which can be calculated, using a discretization method [Ferziger and
Perić, 2002]. Time and space are discretized into small intervals, so that numerical solutions
are given only on discrete points [Hirsch, 2007]. Commonly used discretization methods in-
clude finite difference method (FDM), finite volume method (FVM) and finite element method
(FEM).

Turbulence models

Due to the random and chaotic nature of turbulent flow, it is very hard or even impossible
to predict the irregular details of turbulence[Munson et al., 2013]. While Direct Numerical

7

2 Theoretical framework and related work

Simulation (DNS) offers the most straightforward approach by directly solving the Navier-
Stokes equations without additional modeling assumptions, it is not the most efficient ap-
proach. On most occasions, it is the effect of turbulence, rather than the specific details of
turbulent fluctuations, that raises interest [Versteeg and Malalasekera, 2007]. This has led
to the development of alternative approaches that employ various averaging techniques to
make turbulent flow calculations more tractable. These methods can be categorized into
Reynolds-Averaged Navier-Stokes (RANS), which averages the flow equations in time; Large
Eddy Simulation (LES), which applies spatial filtering to resolve larger turbulent scales while
modeling smaller ones; and Implicit Large Eddy Simulation (ILES), which relies on numerical
dissipation to model subgrid-scale effects [Ferziger and Perić, 2002; Blazek, 2001].

Transient and steady flow

In a fluid system, the flow simulation can be characterized as either transient/unsteady or
steady problem [Tu et al., 2018]. Transient flow occurs when the fluid properties at any point
vary with time, making time a crucial parameter in the modeling process. Conversely, steady
flow describes conditions where flow properties remain constant with time at each point in
space. While transient flow is predominant in real-world applications, the additional time-
dependent variables often increase computational complexity and make numerical solutions
more challenging to converge [Munson et al., 2013]. In cases where the mean flow character-
istics are of greater interest than instantaneous behavior, steady-state approximations can be
employed to focus on the overall flow patterns. This approach simplifies the analysis while
still providing valuable insights into the system’s general behavior.

Grid

After developing the physical model, the computational domain must be discretized into
elements where the governing equations will be solved. This discretization process creates a
mesh or grid system that forms the foundation for numerical solutions. There are three rules
applied to the mesh generated: complete coverage of the domain; no space in-between grids;
no overlapping [Blazek, 2001]. The grid can take forms of various shapes, characterized by
their features like structure, shape and arrangement [Moukalled et al., 2016]. These grids
are generally classified into three main categories: structured grids, which follow a regular
pattern with consistent connectivity; body-fitted grids, which conform to complex geome-
tries while maintaining some structured characteristics; and unstructured grids, which offer
maximum flexibility in element arrangement and shape [Tu et al., 2018].

Boundary conditions

The behavior of fluid flows can vary significantly under identical governing equations due
to different boundary conditions [Anderson, 1995]. The specification of correct and appro-
priate boundary conditions is crucial for achieving accurate and robust numerical solutions
in computational fluid dynamics [Blazek, 2001]. Common boundary condition types include
solid walls, farfield boundaries for external flows, inlet/outlet conditions for internal flows,
symmetry planes, coordinate cuts, periodic boundaries, and block interfaces [Blazek, 2001].
A similar but slightly different classification by Versteeg and Malalasekera [2007] identi-
fies six primary categories: inlet, outlet, wall, prescribed pressure, symmetry, and periodic

8

2.2 Deep learning

boundary conditions. For urban wind flow simulations in two dimensions, the most criti-
cal boundary conditions are the wall conditions, which define building surfaces and their
roughness characteristics, and the inlet/outlet conditions that specify the flow entry and exit
locations.

2.1.2 Wind dynamics in urban area

Previously in this chapter, some of the basic concepts of CFD are covered, which are gener-
ally applicable for all kinds of fluid dynamic problems. For wind dynamics in urban area,
these properties can be more specific. Wind flow in simulation is usually considered as vis-
cous, incompressible flow. The interactions between atmosphere and the urban structures
create complex patterns and turbulence. Aside from the turbulence created by the rough
surfaces of ground and buildings, the shape of the air flow areas also has great impact on
the velocity of the wind. For example, wind would accelerate when going though a narrow
alley, and slows down when air way gets wider. Wind would also change directions when
hitting the wall, reflected on the change of velocity magnitude on orthogonal directions.

Turbulence in urban environments

In urban boundary layer (UBL), the flow can be characterized on horizontal scales into street
(10-100 m), neighborhood (100-1000 m) and city (10-20 km) based on urban morphology
[Barlow, 2014]. There are two main types of approaches for urban environments: RANS
approach; LES and DNS approach [Li et al., 2006]. When modeling on 2D level where the
heights of the buildings are not considered, RANS, especially the k-ϵ and its variants are
widely accepted for their computational efficiency and ability to provide reliable results in
urban flow simulations [Blocken, 2018].

Aspects to be evaluated

Thermal comfort, wind comfort, building loads, and extreme wind event safety are key con-
siderations when evaluating wind effects in urban areas. This evaluation typically involves
two main aspects: the impact on pedestrian comfort and the pressure exerted on build-
ings. For pedestrian comfort, factors such as thermal conditions, humidity, solar radiation,
precipitation, and wind speed play crucial roles. However, wind speed is often the main
focus when assessing wind comfort [Blocken et al., 2016]. Various criteria exist to evalu-
ate wind comfort, often based on mean wind speeds or gust wind speeds [Holger Koss,
2006]. In the Netherlands, time-mean wind speeds are commonly used to define wind com-
fort. Specifically, a pedestrian-level wind speed exceeding V > 5 m/s is used as a threshold
for discomfort, while V > 15 m/s is considered dangerous for pedestrians [Willemsen and
Wisse, 2007].

2.2 Deep learning

Machine Learning Models, especially deep learning models, have been proven excellent
at pattern recognition and handling large datasets. Deep learning models utilize different

9

2 Theoretical framework and related work

structured neural networks to learn local and global features of data, enable their ability to
tackle complex tasks like natural language processing, image classification, object detection.
Neural network is a kind of network that simulate how brain cells in human brain works.
Figure 2.2 shows a classic fully Artificial neural network (ANN). Through backpropagation
algorithm and gradient descent, models are able to find relatively optimal parameters, which
is also how model ”learns”.

Figure 2.2: Neural network

2.2.1 Deep learning-based techniques for computer vision

Computer vision is a field that includes both traditional and deep learning-based techniques
for extracting meaningful information from digitally represented visual inputs. One of the
dominant architectures for computer vision tasks is convolutional neural networks (CNN).

Figure 2.3: An architecture of CNN from LeCun et al. [1998]

10

2.2 Deep learning

CNNs perform convolution using kernels, to abstract the feature of the input, making them
highly effective for computer vision tasks. When CNN processes high-dimensional data,
such as images, it can significantly reduce the number of parameters compared to traditional
ANN, which makes training easier [O’Shea and Nash, 2015]. At the same time, the existence
of convolutional layers and pooling layers helps reduce the risk of overfitting. These ad-
vantages allow CNNs to thrive in computer vision fields such as target detection, image
classification, image segmentation, and other fields. However, CNNs also have limitations
in capturing long-range dependencies and understanding global context.

In 2017, a new model called Transformer Vaswani et al. [2017] based on a self-attention
mechanism was proposed.

Figure 2.4: The architecture of the Transformer from Vaswani et al. [2017]

Transformer was originally designed for natural language processing (NLP), containing two
key components, self-attention and positional encoding.

The query, key and value of the self-attention mechanism all come from the input sequence.
Calculations are implemented through matrix operations. As shown in the left picture of

11

2 Theoretical framework and related work

Figure 2.4, the self-attention score in Transformer is calculated through dot product. Its main
function is to learn the dependencies within the sequence and obtain the attention weight of
each position and other positions.

Figure 2.5: [left] Scaled Dot-Product Attention. [right] Multi-Head Attention consists of several
attention layers running in parallel from Vaswani et al. [2017]

Transformer quickly gained widespread application in the field of natural language process-
ing, demonstrating its superior performance over existing models. Considering positional
encoding, which is, in fact, encoding the spatial relationship of content, it is easy to think of
the potential application of the Transformer model in computer vision. However, given that
images typically contain far more pixels than a sentence contains words, applying Trans-
formers to image processing is not as straightforward. The volume of data in images poses
significant challenges for direct implementation.

It wasn’t until 2020 that Dosovitskiy et al. [2021] proposed a model that directly applies the
standard Transformer to images, known as the Vision Transformer (ViT). ViT divides images
into patches of equal size and incorporates position embedding into the patch embedding
to preserve the positional information of pixels.

12

2.3 Swin Transformer

Figure 2.6: The architecture of Vision Transformer from Dosovitskiy et al. [2021]

The advantage of ViT, compared with traditional convolution, is that it can integrate the in-
formation of the entire image by using self-attention. With relatively cheap pre-training cost,
its performance is not inferior to or even exceeds the best models at the time [Dosovitskiy
et al., 2021]. But since ViT looks for relevant context by calculating the attention score be-
tween each patch and all other patches in the image, its computational complexity increases
exponentially. Meanwhile, it lacks the ability to extract features at different scales, making
it difficult to apply it to high-resolution images and tasks on pixel level.

2.2.2 Dense prediction

Dense prediction is a type of computer vision task. Common dense prediction tasks include
image segmentation, edge detection, and depth prediction. Unlike image classification, it
requires specifying a label or value for each pixel of the image. This brings two challenges,
one is the cost of labeling the training set, and the other is the capability and efficiency of
the model itself at the pixel level.

2.3 Swin Transformer

Swin Transformer is a cutting-edge model proposed by Liu et al. [2021] in 2021 based on
ViT. The use of shifted window in their new model, allows Swin Transformer to perform
very well on computer vision tasks such as target detection and image segmentation while
having linear computational complexity relative to image size.

13

2 Theoretical framework and related work

Figure 2.7: The architecture of a Swin Transformer (Swin-T) from Liu et al. [2021]

2.3.1 Shifted window

Figure 2.7 shows the local window in Swin Transformer and the window shifting process.
The red boxes represent the range of self-attention calculation, called local windows. After
the calculation is completed, the windows on the next layer (right in Figure 2.7) is shifted.
The new windows encompasses the boundaries of the original windows, thus providing
connections between them.

Figure 2.8: An illustration of the shifted window from Liu et al. [2021]

The shift of the window introduces a challenge: the change of the window size. As can be
seen from Figure 2.7, the original window size is uniform, but after shifting, some windows
of different sizes are produced. To address this, Liu et al. [2021] proposed a more efficient
batch computation approach by cyclic-shifting toward the top-left direction. They pad the
smaller windows so that the size and number of windows remain uniform. After cyclic
shifting, masking is applied to restrict self-attention calculations within the shifted windows
to only the originally adjacent patches in the image.

14

2.3 Swin Transformer

Figure 2.9: Illustration of an efficient batch computation approach from Liu et al. [2021]

2.3.2 Patch merging

In the patch merging layer, the features of adjacent 2 × 2 windows are merged, so the res-
olution becomes half of the original. In the Swin-T architecture (Figure 2.6), three patch
merging layers are employed. As shown in Figure 2.9, each patch merging expands the
image area covered by a single window. Patch merging enables Swin Transformer to extract
features hierarchically, ranging from local details to global context.

Figure 2.10: Hierarchical feature map from Liu et al. [2021]

15

2 Theoretical framework and related work

2.4 Related work

Numerous studies have examined wind interactions within urban building areas, primarily
focusing on two aspects: the geometry patterns of urban areas and their corresponding flow
patterns. The application of deep learning in computational fluid dynamics (CFD) within
urban contexts has become increasingly prevalent. Approaches involving deep learning al-
gorithms diverge in two main directions. The first approach involves utilizing deep learning
models to generate 3D building structures from varied data sources, such as point clouds,
which are then suitable for traditional CFD simulations as the work done in Sun et al. [2021].
The second approach, and the one this thesis aligns with, seeks to expedite the simulation
process without directly solving the Navier-Stokes equations’ numerical solution but rather
using deep learning algorithms like GAN in Kastner and Dogan [2023] and White et al. [2019].

Various models have been applied to simulate wind flow in urban environments. Among
these, Physics-Informed Neural Networks (PINNs) are closely tied to the original Navier-
Stokes equations. What sets PINNs apart is their incorporation of these equations directly
into the loss function, a concept crucial in deep learning for measuring the discrepancy be-
tween model predictions and actual data during training. The model then adjusts its param-
eters based on this loss function through back-propagation. By integrating the Navier-Stokes
equations into the loss function, PINNs lend physical significance to the optimization pro-
cess, ensuring that the learned models adhere to fundamental fluid dynamics principles.

Figure 2.11: Schematic of a physics-informed neural network (PINN) in Cai et al. [2021]

However, PINNs face certain challenges, as noted by Cai et al. [2021], these challenges in-
clude the high-dimensional, non-convex nature of the loss function, which is a common
hurdle in neural network optimization, and the potential for generalization and optimiza-
tion errors depending on training data and optimizer choices. Despite these challenges,
PINNs offer a novel and promising approach to fluid dynamics simulations, particularly for
complex scenarios where traditional methods may fall short. They are especially adept at
integrating scattered, partial spatio-temporal data, making them suitable for a range of fluid

16

2.4 Related work

mechanics problems, including urban wind simulation.

Convolutional Neural Networks (CNNs) are also broadly used for CFD in wind simulation.
Typically associated with computer vision, CNNs utilize kernels to extract hidden patterns
from images. Over the years, CNNs have evolved, with variants like 3D CNNs extending
their application to three-dimensional spaces. Miyanawala and Jaiman [2018] demonstrate
an efficient deep learning technique for the Navier-Stokes Equations, applying CNNs to
predict unsteady wake flow dynamics with notable computational efficiency. Similarly, Guo
et al. [2016] explore CNNs for steady flow approximation, highlighting their capability to
process complex fluid dynamics data. These developments underscore the versatility of
CNNs in handling spatial data, making them particularly suitable for the multifaceted chal-
lenges in urban wind simulation.

Figure 2.12: 3D convolution kernel in Huang et al. [2023]

K-Nearest Neighbors (kNN) is another notable method employed for simulating wind in
urban environments. Differing from models that require the entire building area scheme,
kNN operates on a database of cells encoded with their geometrical surroundings. When
tasked with predicting wind speed and pressure on a new cell, the model identifies the
’k’ most similar cells from this database and calculates the value based on these known
outcomes. BenMoshe et al. [2023] illustrate that this approach, despite its straightforward
nature and ease of understanding, hinges critically on the quality and abundance of the
pre-existing data. If the database lacks analogous data, the prediction accuracy may suffer.
Additionally, the selection of the ’k’ value is subjective and depends on the user, introducing
a layer of variability in the model’s application.

17

3 Methodology

This chapter outlines the methodological framework adopted in this research. It details
the selection of turbulence models, numerical schemes, and boundary conditions used in
the simulations. Additionally, it presents the early-stage parameter testing conducted to
evaluate the sensitivity of key variables, ensuring the accuracy and reliability of the final
simulation setup.

3.1 Wind simulation

3.1.1 Urban geometry and boundary design

The methodology begins with dataset creation, a crucial prerequisite for model training due
to the absence of suitable existing datasets. The first step is to obtain the urban building
characteristics of The Hague. 3DBAG by 3D geoinformation research group (TU Delft) and
3DGI [Peters et al., 2022] is the most detailed, open dataset on buildings in the Netherlands.
The 3DBAG dataset provides 3D models of buildings along with 2D projections of rooftop
surfaces. It excludes underground structures and overlapping buildings, making it perfect
as the base data for wind simulation in 2D.

Once the 2D building footprints are obtained, the software used for meshing and urban
wind simulation is Ansys Fluent. This is a well-established commercial software for fluid
simulation, widely applied in academia and industry. Ansys offers the advantage of a full
workflow from initial geometry setup to final simulation, with scripting capabilities for
automation. Given the computational demands of model training, particularly for data-
intensive architectures such as the Swin Transformer, the automation of sample generation
becomes critically important. While OpenFOAM is also an excellent open-source CFD soft-
ware, it does require more manual setup for batch processing. Ansys Fluent was selected not
only for its extensive credits in urban wind simulation, but also because its built-in meshing
tools and scripting capabilities, enables the possibilities of automating the simulation to the
largest extent.

For turbulence modeling, the k-ϵ and SIMPLE algorithm were chosen, as they are widely
used for their balance between computational efficiency and accuracy in steady-state flow
simulations. To maintain consistency across all simulations, the wind inlet is set at the lower
boundary of the domain for each simulation, while the outlet is set at the upper boundary. A
50 m margin is applied at both the upper and lower boundaries when defining the wind flow
domain, helping minimize the boundary effects. This setup ensures a uniform approach to
boundary conditions, which is critical for obtaining comparable results in urban wind flow
studies.

19

3 Methodology

Figure 3.1: Example of a wind flow domain in DesignModeler.

3.1.2 Meshing: resolution, quality, convergence

When setting the mesh resolution, there are two elements that need to be considered: time
cost and the accuracy of the result. A finer mesh generally improves accuracy but increases
computational cost. Conversely, if the mesh resolution is too coarse, the simulation could
fail to capture flow details accurately, potentially leading to divergence or erroneous results.
The size of the grid in mesh is usually determined based on the specific research question.
And the general practice of setting the resolution is to first set a coarser mesh based on
empirical guess, then gradually refine the mesh and compare the results of the simulation
to see if there are any significant differences that cannot be ignored. Additionally, mesh
quality metrics, such as orthogonality and skewness are also commonly used as criteria for
mesh quality evaluation. The following table presents the impact of mesh resolution on
computational cost and quality metrics, using one of the geometries from the dataset.

Element Size (m) Time Cost (s) Min Orthogonal Quality Max Skewness

1.0 12 0.5111 0.74521
0.7 25 0.5111 0.64122
0.5 55 0.2681 0.79022
0.3 201 0.5111 0.73375

Table 3.1: Mesh element size impact on computational metrics

According to Ansys Fluent User Guide [ANSYS, Inc., 2009], the maximum skewness should be
kept below 0.95 in most cases, while the minimum orthogonal quality should be greater than

20

3.1 Wind simulation

0.15. Based on the results presented in Table 3.1, all tested meshes meet these criteria, indi-
cating that mesh quality is acceptable. The primary concerns, therefore, are computational
efficiency and suitability for rasterization sampling.

1.0 m 0.7 m 0.5 m 0.3 m

Figure 3.2: Wind simulation results using different mesh element sizes, where the red pixels represent
no-data regions.

To convert point data into raster images with a resolution of 1 m × 1 m, the mesh element
size must be smaller than 1 m to ensure that sufficient data points are available for sampling
within each grid cell. As shown in Figure 3.2, when the element size is exactly 1 m, many
NoData pixels appear in the image due to insufficient sampling points. Even with an element
size of 0.7 m, some NoData pixels persist, indicating the need for a finer mesh resolution to
improve data coverage and accuracy.

Figure 3.3: Comparison of wind simulation results for element sizes of 0.5 m and 0.3 m under a wind
inflow of 10 m/s. Purple pixels indicate velocity differences greater than 2 m/s.

Figure 3.3 illustrates the difference in simulation results when the element size is set to 0.5 m
and 0.3 m under a wind inflow speed of 10 m/s. The purple pixels highlight regions where
the velocity difference exceeds 2 m/s, which primarily occur adjacent to building structures.
Despite these localized deviations, the overall variation remains within an acceptable range.

Considering these factors, an element size of 0.5 m is chosen as the optimal balance between
accuracy and computational efficiency.

21

3 Methodology

3.2 Data

3.2.1 Data normalization

When it comes to wind speed data, the values can spread to a wide range and the vast
majority of the pixel values are concentrate near the mean value.

Different inflow velocities can also have an impact on the distribution. As can been seen in
the table below, with the initial wind speed growing, the standard deviation of the data also
increases, indicating greater variability and dispersion. This increased complexity presents
a greater challenge for the machine learning model to learn the pattern. A thorough ex-
periment is required to review how these variations affect the model’s predictive accuracy
and generalization capability. Understanding this impact is crucial for ensuring the model’s
robustness across different wind conditions.

Inflow (m/s) Direction Min Max Mean Std

5.0

x -39.97 33.99 -0.15 2.81

y -20.32 68.66 5.98 3.22

mag 0.00 75.25 6.55 3.36

7.5

x -59.95 50.94 -0.23 4.22

y -30.49 102.97 8.97 4.84

mag 0.00 112.90 9.82 5.03

10.0

x -79.94 67.97 -0.31 5.63

y -40.64 137.33 11.96 6.45

mag 0.00 150.48 13.09 6.45

12.5

x -99.89 84.93 -0.38 7.03

y -50.79 171.64 14.95 8.06

mag 0.00 188.20 16.36 8.39

15.0

x -119.90 101.89 -0.46 8.44

y -60.98 205.93 17.94 9.67

mag 0.00 225.79 19.63 10.07

Table 3.2: Statistical data for wind speed.

In order to better combine x-direction wind and y-direction wind data, and also better
compare the results across the datasets, it is necessary to normalize the data. The datasets
for different wind speeds are normalized by the following equation:

Xnormalized =
X − min(X)

max(X)− min(X)
(3.1)

22

3.2 Data

Where min(X) and max(X) are minimum and maximum value of x. After the normaliza-
tion, both x-direction data and y-direction data are in the range of [0, 1].

3.2.2 Training and validation set

The training and validation samples are from the same dataset, which is randomly split
into training and validation subsets. To ensure consistency across training sessions, a fixed
random seed of 42 is employed during the dataset partitioning process.

3.2.3 Test set

To test how different building layouts influence the performance of the deep learning model,
tests were designed to examine two aspects: building shapes and building spacing.

• Building Shape: The geometry of individual buildings primarily affects turbulence
near the structures.

• Building Spacing: The distance between buildings influences both the velocity of the
wind and the characteristics of the turbulence.

Given that urban environments are often non-uniform building clusters, it is hard to find
areas with consistent layouts. However, building features are also linked to their functions.
For example, apartment buildings in the Netherlands often appear as long, narrow rectan-
gles with multiple units attached together on 2D maps, while industrial buildings typically
appear as independent large polygons. To systematically evaluate the influence of urban
building morphology on wind flows, test samples were grouped into five categories based
on their geometric and functional features:

• Attached: Continuous residential structures.

• Detached: Standalone buildings.

• High-rise: Skyscrapers and tall commercial buildings.

• Industrial: Large warehouse-style buildings.

• Mixed: Areas containing a combination of different building forms.

In addition to the five categorized groups mentioned above, a larger test dataset contains
uncategorized samples is included to evaluate the model’s performance on a broader range
of urban layouts.

23

3 Methodology

Dataset Category Number of Samples

Training and Validation Set 690

Test Set
Uncategorized 60
Attached 22
Detached 30
High-Rise 17
Industrial 30
Mixed 26

Table 3.3: Number of samples in training and test sets

3.3 Swin Transformer

The Swin Transformer model used in this study is adapted based on the architecture pro-
posed by Liu et al. [2021]. While the backbone of the model is remains the same with
the original model, some modifications are introduced in order to fit the model with the
data and wind flow simulation, including dense prediction head and a customized loss
function to optimize pixel-wise predictions. Though Swin Transformer primarily serves for
conventional computer vision tasks like classification or object detection, this study applies
the model to dense prediction that requires pixel-level numerical outputs instead of labels.
Therefore, the model is modified to support per-pixel regression.

3.3.1 Dense prediction head

The dense prediction head used Conv2d layers to reduce the number of channels from the
feature maps followed by LeakyReLU activation function to introduce non-linearity and
prevent dead neurons. ConvTransposed2d layers for upsampling. An AdaptiveAvgPool2d
layer to ensure the size of the outputs and a Conv2d layer in the end to generate the required
number of output channels such as magnitude or x-velocity and y-velocity.

3.3.2 Evaluation

RMSE

The primary loss of the model is evaluated by Root Mean Squared Error (RMSE) for its ability
to penalize large errors more heavily without sacrificing too much on overall accuracy. When
calculating losses, all the pixels that represent buildings are excluded so that only the wind
flow zones can contribute to the optimization. The RMSE is calculated as:

24

3.3 Swin Transformer

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (3.2)

where ŷi is the predicted wind velocity, yi is the ground truth, and N represents the total
number of non-building pixels.

Buffering

In urban wind simulation, the main factor that influence the wind and introducing chaotic
turbulence is the building. And the hardest parts to predict is also where are closest to the
buildings. In some preliminary tests, the model showed high accuracy in the areas far from
buildings, but struggled to capture details in the areas adjacent to the buildings.

Figure 3.4: Illustration of the buffered area, where the blue pixels represent the high-weighted parts.

To emphasize the importance of near-building area, a buffered mask was apply to give
these areas more weights while training. Buffering was done by expanding the pixels that
represent buildings and walls. By applying a weight on the areas that near the architectures,
the loss is calculated by:

L = Outer RMSE + w · Inner RMSE (3.3)

Where w is a scaling factor that amplifies near-building errors.

Divergence

A fundamental constraint in steady flow simulation is mass conservation, which means that
the result should be fully converged and the total air entering a region equals the total
air exiting it. Since divergence requires the directions of the wind to be calculated, this

25

3 Methodology

constraint would only be applied when model is trained with both x-velocity and y-velocity.
Divergence is added in the loss function as an additional loss term, and is computed as:

Divergence =
∂u
∂x

+
∂v
∂y

=
ui+1,j − ui,j

h
+

vi,j+1 − vi,j

h

where u and v are the velocity components in the x and y directions, respectively. And h is
the size of the grid, which in this study is set to 1.

5.0 m/s 7.5 m/s 10.0 m/s 12.5 m/s 15.0 m/s

Figure 3.5: Visualizations of divergence magnitude under different wind inflow speeds. Red pixels
indicate regions where the absolute divergence is higher than 1.

Although convergence is usually monitored by residuals during the CFD simulation, in or-
der to visualize the convergence more and validate the divergence calculation procedure,
figure 3.5 presents examples of divergence maps calculated from CFD results under differ-
ent inflow speeds. Due to the process of resampling from point-based CFD results to raster
images, divergence may appear to be higher. Notably, there are some pixels around build-
ings show a very high divergence, This phenomenon arises not only because the turbulence
near buildings, but also from when calculating divergence, the values of building pixels
would considered to be 0, causing the results around buildings to be discontinuities and
inaccurate.

26

4 Implementation

This chapter lists practical steps for dataset generation for model training and fine-tuning
preparations.

4.1 Dataset generation

Figure 4.1: Flowchart for dataset generation

4.1.1 Building fingerprints generation

The dataset on buildings in the Hague is obtained from 3DBAG.nl in shapefile format. The
shapes of buildings are represented by The shape of the building is represented by 2D vector
polygons, defining its footprint.

27

https://docs.3dbag.nl/en/copyright/

4 Implementation

Figure 4.2: Original buildings in the shapefile.

After obtaining the shapefile, a validation check is performed using QGIS to ensure that all
building polygons do not contain invalid geometries.

Figure 4.3: Example of invalid building polygons detected during pre-processing.

In order to keep the sample size uniform for wind simulation, the shapefile is split into tiles

28

4.1 Dataset generation

of size 100m × 100m using a Python script.

Figure 4.4: Grid structure used to partition the study area into 100m × 100m tiles.

For simplicity, adjacent polygons are merged. Additionally, since buildings smaller than 100
m2 are excluded in this step as they are too small in size and not representative enough.
With 100m × 100m tiles, further manual visual inspection is performed to filter out the tiles
where proper air circulation is not possible. These tiles are excluded before exporting the
dataset to CAD format for CFD simulation. The script for this step is listed in Appendix 1.

29

4 Implementation

Figure 4.5: Example of tiles excluded due to improper wind flow zone.

4.1.2 Operational workflow for Ansys batch runs

The wind simulation is conducted using Ansys and consists of three key steps:

1. Wind zone definition:

• The wind zone that needs to be simulated is created in Ansys DesignModeler.

• The domain is extended by 50 m in both sides in the vertical direction, so that
uniform airflow can be ensured.

• In the vertical direction, the lower boundary is set as inlet, while the upper bound-
ary is set as the outlet.

2. Mesh generation

• The mesh is created by Ansys Meshing.

• The grid size is set to 0.5 m.

3. Wind flow simulation

• The wind simulation is done with Ansys Fluent accessed through Ansys PyFlu-
ent.

• The k-epsilon turbulence model and the SIMPLE solver are applied.

• The simulation is run for 2000 iterations.

• The simulation outputs velocity magnitude as well as its components in the x-
direction and y-direction at each sampled point, stored in TXT format as shown
in the Figure 4.6.

30

4.1 Dataset generation

Figure 4.6: Example of simulation output stored in TXT format.

4.1.3 Point-to-Raster conversion

After the CFD simulation, the velocity field data stored in TXT format is converted into a
raster grid representation using ArcMap. The velocity magnitude, x-velocity and y-velocity
are saved as three separate TIFF files. The building masks, which are later used as input
images, are generated by identifying pixels with a value equal to 0 in any of the previously
mentioned TIFF files. Building pixels are assigned a value of 0, whereas non-building pixels
are assigned a value of 1, indicating areas where model is required to make predictions.

Mask Magnitude x-Velocity y-Velocity

Figure 4.7: Example of building masks and corresponding wind velocity rasters.

31

4 Implementation

4.2 Hyper-parameter tuning

In this study, no pretrained weights are employed and all the models are trained from
random initialization. To approximate the best performance of the Swin Transformer model,
a series of tuning experiments for hyperparameters have been done, aiming to find the
best settings for window size, patch size, buffer range and weights. Due to computational
constraints and efficiency consideration, the fine-tuning process was conducted on a small
dataset consisting of 100 wind simulation images with an inflow speed of 10 m/s. The
dataset was split into 85 training images and 15 validation images.

4.2.1 Window size and patch size

Considering how and where attention is calculated in Swin Transformer, the window size
and patch size significantly impact the performance of the Swin Transformer model espe-
cially when for dense prediction tasks. Given the size of the images used in this study is
different from those in the original Swin Transformer paper or most of the studies using
Swin Transformer, it is necessary to do some experiments to determine the optimal setting
of patch size and window size. The possible configurations are brought under the idea
that the size of the image can be divisible by the combination of window size and patch
size. Configurations with a patch size of 1 were excluded due to excessive GPU memory
requirements.

Figure 4.8: Validation loss across different window size and patch size configurations.

From the results shown in the picture above, the window size of 10 and the patch size of 2
yielded the lowest validation loss of 0.030. This result aligns with expectations, as a larger

32

4.2 Hyper-parameter tuning

window size and a smaller patch size allow the model to compute attention across larger
receptive fields while preserving details.

4.2.2 Buffering

The buffer size (where the weight would be applied) and the weighting factor were opti-
mized using Optuna, a hyperparameter optimization framework. The test range for buffer-
ing area was set at [1, 20] and the test range for weight was set at [1, 10]. 49 trials are
completed. The best configuration is the buffer size of 8 and the weight of 4, resulting in a
validation loss of 0.0223.

Figure 4.9: Optimization results for buffer size and weight using Optuna.

4.2.3 Divergence

In order to enforce the mass constraint to predictions, a divergence penalty was added into
the loss function. To find the optimal divergence weight, an Optuna search of [1, 1000] was
conducted with 40 trials in total. The best result is with divergence weight of 15, the best
validation loss is 0.0222. It is worth noticing that this experiment was done without the
setting of the buffering mentioned previously, therefore the influences of each modification
can be examined separately.

33

4 Implementation

Figure 4.10: Optimization results for divergence weight using Optuna.

34

5 Results and analysis

This chapter presents the experimental results following the order of model configurations
tested. Each section reports prediction performance under a specific condition or design
choice. To avoid redundancy, results are presented using representative wind speeds and
layout conditions. Detailed results for all experiments are included in the appendices.

5.1 Target format

To evaluate the impact of different target representations on prediction accuracy, two train-
ing targets were considered: wind speed magnitude (Mag) and decomposed x-velocity and
y-velocity components (XY). Each model was trained separately using the same inflow set-
tings, ranging from 5.0 m/s to 15.0 m/s.

Inflow (m/s) Mag MAE XY MAE Mag RMSE XY RMSE
5.0 1.1168 1.0434 2.1923 2.0568
7.5 1.6913 1.5772 3.3054 3.0724

10.0 2.2663 2.1085 4.3963 4.1628
12.5 2.8184 2.6378 5.4884 5.2062
15.0 3.4003 3.0828 6.5728 6.2352

Table 5.1: Errors between prediction values and target values using magnitude-based and XY-based
training.

The XY-based model consistently achieves lower MAE and RMSE across all inflow speed
settings. As shown in Figure 5.1, the performance gap between the two models widens as
inflow speed increases.

35

5 Results and analysis

Figure 5.1: Prediction errors (MAE and RMSE) at different inflow speeds for models trained with
magnitude and XY velocity inputs.

CFD simulation Mag model prediction XY model prediction

Figure 5.2: Comparison of predicted magnitude fields at an inflow speed of 10.0 m/s.

Figure 5.2 compares the predicted magnitude fields from both models against the CFD ref-
erence at 10.0 m/s. The XY-based prediction more closely resembles the CFD simulation,
especially in the narrow passage between the two buildings, where it preserves sharper
gradients and avoids blurry predictions shown in the magnitude-based result. Addition-
ally, in the upper region of the domain, the XY-based output exhibits a more continuous
gradient pattern, aligning more closely with the simulated wind speed transition. Despite
the improved overall performance of the XY-based model, both models exhibited significant
underestimation of wind speed in regions adjacent to building surfaces.

This change from magnitude-based input to XY-based input not only improves numerical
accuracy, but also enables the model to incorporate directional information, making it capa-
ble of reconstructing vector gradients and flow patterns. Notably, prediction errors are most
pronounced near building surfaces, where flow direction and magnitude change abruptly.

36

5.2 Inflow speed

However, open-flow regions away from buildings often yield near-exact predictions, some-
times with maximum absolute errors below 1. The disproportionate error near boundaries
contributes significantly to the overall RMSE, and also reveals the model’s limitations in
capturing fine-scale flow behavior in high-gradient areas.

5.2 Inflow speed

To evaluate the effect of inflow speed on prediction accuracy, both models were tested under
five inflow settings ranging from 5.0 m/s to 15.0 m/s.

5.0 m/s 7.5 m/s 10.0 m/s 12.5 m/s 15.0 m/s

Figure 5.3: Comparison of ground truth (top) and predicted magnitude fields (bottom) at five inflow
speeds.

Figure 5.3 shows that as inflow speed increases, spatial gradients become more pronounced,
particularly along near-wall regions. This corresponds to a gradual increase in prediction
error, especially under higher inflow conditions.

At 5.0 m/s, the prediction retains the global structure and local details well. At 15.0 m/s,
however, error increases sharply, with both models underestimating velocity near wind-
facing surfaces. This suggests that higher flow intensity introduces sharper transitions that
the model struggles to resolve, revealing a gradient-related limitation in both formats. Pre-
diction quality degrades almost linearly with inflow speed. RMSE rises from 2.0568 m s−1

at 5 m s−1 to 6.2352 m s−1 at 15 m s−1, reflecting the larger gradients introduced at higher
Reynolds numbers.

5.3 Layout

This section presents the model’s performance across five urban layout types, using the XY-
based model. The inflow speed is fixed at 10.0 m/s, and all other training parameters remain
unchanged.

37

5 Results and analysis

Layout Type Prediction MAE Prediction RMSE
Attached 2.8163 5.1063
Detached 1.5176 2.6771
High-rise 1.8168 3.2231
Industrial 2.1914 4.5721

Mixed 2.5982 5.2886

Table 5.2: Prediction error across five urban layout types under fixed inflow speed (10.0 m/s). All
results are from the XY-based model.

Figure 5.4: RMSE distribution for different layout types. The error is highest for Mixed and Attached
layouts.

Table 5.2 and Figure 5.4 show that the ”Attached”, ”Mixed”, and ”Industrial” layouts result
in higher prediction errors, whereas the ”Detached” and ”High-rise” layouts yield lower
RMSE values. The RMSE of the ”Mixed” layout is nearly twice that of the ”Detached”
layout.

38

5.4 Buffer loss

Attached Detached High-rise Industrial Mixed

Figure 5.5: Predicted wind magnitude fields and directions (bottom row) and corresponding ground
truth (top row) for each layout type. All cases use the XY-based model at 10.0 m/s.

In Figure 5.5, across all five layouts, errors tend to appear in regions near buildings, which
is consistent with the findings in Section 5.2. In the Attached and Mixed cases, the predicted
wind directions differ significantly from the ground truth, especially on the concave leeward
side of buildings. The model incorrectly predicted wind reversal in these areas, treating
the flow as bouncing off the building edges, whereas in the ground truth it follows the
concave surfaces. This underestimation is particularly noticeable in the Mixed layout, where
the model strongly underpredicts wind magnitude in the passage between buildings. In
contrast, for tunnel-shaped spaces near the image edges, the model successfully captures the
wind acceleration behavior. These results highlight that most prediction errors occur near
building surfaces, where the flow interacts with complex geometry. Urban morphology is a
primary driver of model error. Detached layouts record the lowest RMSE of 2.6771 m s−1,
whereas the mixed configuration peaks at 5.2886 m s−1, underscoring the challenge posed
by irregular street canyons, as well as the shape and orientation of buildings.

5.4 Buffer loss

After analyzing the effect of urban morphology, the next experiment introduces a spatial
weighting strategy during training, motivated by the observation that near-building areas
are the main source of error. Buffer loss is introduced to help the model focus more on
regions adjacent to buildings and improve prediction accuracy in those areas. The buffer
size is set to 8 and the weight to 4, based on the experiment results in Chapter 4. All
evaluations in this section are conducted under 10.0 m/s inflow speed.

Model Prediction MAE Prediction RMSE
Baseline 2.1085 4.1628

With Buffer 2.0860 4.1315

Table 5.3: Prediction error of XY-based model with and without buffer loss.

39

5 Results and analysis

Table 5.3 shows that, compared to the original XY-based model, the model with buffer loss
achieves slightly lower error, reducing RMSE by only 0.03.

Figure 5.6: Predicted velocity fields from the buffer-loss model (bottom row) and corresponding
ground truth (top row).

When comparing the results in Figure 5.6 to those in Figure 5.5, the same issues can still be
observed. Wind direction errors persist, and wind magnitude in narrow passages continues
to be underestimated. In the middle example, misjudgment of direction appears more severe
than in the original model, with the predicted flow in some of the new areas changing further
from the reference pattern. The example on the right shows improved prediction magnitude
in certain passage areas, with higher values closer to the ground truth. In the preliminary
tuning, an 8-pixel buffer with a weighting factor of 4 was singled out as the most effective
choice. Across the 49 buffer–weight pairs explored with Optuna, this configuration yielded
the lowest validation error: in the normalized early-test subset the RMSE dropped from
0.003 to 0.0223. Applied to the full test set, RMSE decreases from 4.1628 to 4.1315 m s−1

(–0.0313 m s−1).

5.5 Divergence

In addition to spatial prioritization, a physical constraint is also tested. This section intro-
duces a physical consistency constraint into the loss function, namely the divergence loss,
which encourages the output velocity field to reach a steady-state condition. The weight for
divergence loss is set at 15 based on validation results in Chapter 4 and conducted under
10.0 m/s inflow speed.

Model Prediction MAE Prediction RMSE
Baseline 2.1085 4.1628

With Divergence 2.0559 4.1195

Table 5.4: Prediction error of XY-based model with and without divergence loss.

40

5.5 Divergence

Table 5.4 shows that the divergence-loss model achieves slightly better performance than the
buffer-loss model, with RMSE reduced by approximately 0.04.

Figure 5.7: Predicted velocity fields from the divergence-loss model (bottom row) and corresponding
ground truth (top row).

Figure 5.8: Divergence comparisons across ground truth (top row), baseline model without divergence
loss (middle row), and model with divergence loss (bottom row). Red pixels indicate locations where
the absolute divergence exceeds 1.

Given the small numerical gain on RMSE, no fundamental improvement is observed in the

41

5 Results and analysis

predicted velocity fields. However, Figure 5.7 suggests that the outputs appear slightly
more spatially continuous when divergence is included as a constraint. Figure 5.8 highlights
regions where the absolute divergence exceeds 1. Compared to the baseline, the divergence-
loss model reduces the occurrence of such regions, particularly in open areas away from
buildings. Overall, the improvement remains small and localized. Introducing a divergence
penalty offers only marginal global gains, the overall RMSE decreases only by 0.0433 m
s−1.

5.6 Buffer and divergence

In this section, buffer loss and divergence loss are jointly applied during training. Evalua-
tions are conducted under 10.0 m/s inflow speed.

Model Prediction MAE Prediction RMSE
Baseline 2.1085 4.1628

With Buffer 2.0860 4.1315
With Divergence 2.0559 4.1195

With Buffer & Divergence 2.0939 4.1199

Table 5.5: Prediction error of the baseline model, buffer-loss model, divergence-loss model, and
combined-loss model.

As shown in Table 5.5, the combined-loss model achieves an RMSE of 4.1199, which is
comparable to the model with divergence loss alone and slightly better than the buffer-only
model. However, the differences between these variants are small, all within 0.05 RMSE.

42

5.6 Buffer and divergence

Figure 5.9: Predicted velocity fields from buffer-loss model (top row), divergence-loss model (middle
row), and combined-loss model (bottom row).

Figure 5.9 compares the predicted velocity fields under all three configurations. Despite the
additional loss terms, the previously identified issues still exist, including the underestima-
tion of wind magnitude in passages and directional inconsistencies near building surfaces.
Some improvement is visible in the upper central areas of the rightmost examples, where
higher magnitudes are more accurately captured. However, these changes are subtle, and
the overall predictive quality remains largely unchanged across configurations.

Figure 5.10: Divergence comparisons across divergence-only (top row) and combined-loss (bottom
row) models. Red pixels indicate locations where the absolute divergence exceeds 1.

43

5 Results and analysis

Figure 5.10 shows that both the divergence-loss model and the combined-loss model reduce
high-divergence regions compared to the baseline, particularly in open areas. However, the
divergence map of the combined-loss model is nearly indistinguishable from that of the
divergence-only model,reaching only an RMSE of 4.1199 m s−1.

5.7 Patch size

The only variable in this section is the patch size. All other settings remain the same as in
the basic XY-based model. The primary goal is to analyze how the structural resolution of
the Swin Transformer affects prediction performance.

Patch Size Window Size Prediction MAE Prediction RMSE
2 10 2.1085 4.1628
5 10 2.6494 4.9148

Table 5.6: Prediction error under different patch sizes. Window size is fixed at 10. All results are
evaluated with inflow speed of 10.0 m/s.

Increasing the patch size from 2 to 5 results in an immediate RMSE increase from 4.16
to 4.91. This effect is more significant than any change observed from non-architectural
modifications.

Figure 5.11: Predicted magnitude fields from models with patch size 2 (left) and patch size 5 (right).

Figure 5.11 shows that the patch size directly influences the visual granularity of the pre-
diction. Compared to the result with patch size 2, the output from the model with patch
size 5 appears significantly more blocky and less detailed. The results indicate that archi-
tectural resolution has a substantial impact on prediction performance. This suggests that
the model’s structural capacity, particularly its ability to capture finer spatial features, plays
a more dominant role. Spatial resolution set by patch size dominates every other design
choice. Increasing the patch from 2 to 5 pixels enlarges RMSE from 4.1628 m s−1 to 4.9148
m s−1, confirming the need for fine-grain tokens in dense-prediction settings.

44

6 Discussion, conclusion and future work

This chapter interprets the experimental results presented in Chapter 5 and reflects on the
model’s capacity to simulate wind behavior in urban settings. The discussion is structured
around the main hypotheses and derived insights. Based on these findings, the chapter
concludes with an overall assessment of the model’s performance and applicability, followed
by a reflection on its limitations and possible directions for future work.

6.1 Discussion

Based on the research question in Chapter 1, the following hypotheses were formulated:

• Using decomposed XY-velocity components improves wind flow prediction compared
to basing only on magnitude.

• Higher inflow speed increases prediction error due to stronger flow gradients.

• Denser and more irregular urban layouts lead to higher errors, especially near building
boundaries.

• Incorporating buffer and divergence into loss function enhances prediction accuracy
near structures and improves flow consistency.

To address the question and evaluate these hypotheses, a series of experiments was con-
ducted to evaluate the effects of inflow speed, building layouts, training format, loss func-
tion and patch size on prediction accuracy. Among all tested configurations, the patch size
had the strongest impact on prediction error. The second most influential factor was the
input format, where using XY-velocity components instead of magnitude reduced RMSE by
approximately 0.23. Other loss-related modifications, such as buffer and divergence terms,
led to minor improvements but had no substantial impact on overall accuracy. Inflow inten-
sity and urban morphology were further analyzed to identify conditions under which the
model tends to fail, particularly near buildings and high-gradient regions.

Consistent with the first hypothesis, using XY-velocity as input led to the second-largest im-
provement across all configurations tested. Switching from magnitude to XY format reduces
RMSE by approximately 0.23, and this improvement is consistent across inflow speeds. In
addition to lowering error, this choice introduces directional information, enabling the model
to represent vector gradients and directional flow patterns more effectively. These benefits
are particularly valuable in near-building regions. Open areas are typically predicted with
high accuracy by both models. The use of XY-velocity partially mitigates directional mispre-
dictions near buildings, though significant underestimation still persists in high-complexity
areas. This improvement is also illustrated in Figure 5.2, where the XY-based model cap-
tures finer details in the passage between buildings. Overall, using XY-velocity enhances the
model’s representation capacity by encoding directional information. Additionally, since x-

45

6 Discussion, conclusion and future work

and y-components tend to exhibit lower individual variation than the combined magnitude,
their gradients are generally smoother and thus easier to learn.

Prediction error increases with inflow speed, as shown in Section 5.2. This trend is consistent
with the hypothesis that higher flow intensity introduces greater prediction difficulty. In all
five cases, the maximum pixel value is approximately 15 times the inflow speed, and the
average slightly exceeds the inflow speed. As inflow increases from 5.0 m/s to 15.0 m/s, the
absolute range between inflow speed and maximum values grows from around 70 m/s to
over 210 m/s. The CFD simulations show that as inflow speed increases, near-wall velocity
gradients become steeper, especially along building edges, which increases the complexity
of the flow field the model must learn to approximate. This is also reflected in Table 3.2,
where the rasterized input shows wider value distributions, as indicated by the increasing
standard deviation. The error pattern under increasing inflow is both global and localized.
Globally, the RMSE increases linearly with the inflow speed as also illustrated in Figure 5.1.
Locally, significant underestimation occurs along building surfaces that are partially aligned
with the incoming wind. This may indicate that the model misinterprets these surfaces as
impermeable boundaries, similar to fully orthogonal walls, thereby suppressing the pre-
dicted wind speed. In real urban flows, wind tends to accelerate around aligned structures
and decelerate behind obstacles. The model may either lack sufficient training examples
to learn this behavior, or be structurally limited in capturing directional variation. Overall,
increasing inflow speed amplifies spatial gradients, exposing the model’s limitations in re-
solving near-wall dynamics.

The third hypothesis predicted that denser and more irregular urban layouts would lead to
higher RMSE, which is generally supported by the results, though with notable exceptions.
Mixed layout produced the highest RMSE of 5.29, followed by Attached layout RMSE of 5.11.
This is consistent with the fact that Mixed layout contains a wide variety of building shapes
and spatial arrangements. However, Industrial layout yielded higher RMSE than High-rise
layout, despite its more regular building arrangement. This contradicts the assumption that
regular shapes would be easier to predict. This observation, when considered alongside
the inflow analysis, suggests that the primary source of error may lie in the near-building
regions.

Figure 6.1: Proportion of target pixels adjacent to buildings (based on Chebyshev distance).

46

6.1 Discussion

Figure 6.1 provides supporting evidence for this interpretation. As all five layout test sets
share the same inflow speed, this comparison isolates how differences in urban morphology
influence prediction error. Each input image consists of two pixel types: building pixels
and target pixels, the latter being the prediction domain. Figure 6.1 shows the proportion
of target pixels that are adjacent to buildings. The pattern closely mirrors the RMSE distri-
bution across layouts shown in Figure 5.4. However, the Detached layout deviates from this
trend. It has a higher proportion of near-building pixels than High-rise layout, yet yields a
lower RMSE. This could be because, unlike High-rise layout, which contains large buildings
and often leaves only narrow passages for wind to flow, Detached layout consists of small,
dispersed buildings, which results in smoother gradients around structures and thus lower
local prediction difficulty.

The findings in the previous two hypotheses suggest that increased input complexity, whether
due to inflow intensity or urban geometry, makes it more difficult for the model to achieve
accurate predictions in near-building regions, and correlates strongly with higher overall
error.

The results do not provide strong evidence of a notable improvement, thus only partially
supporting the fourth hypothesis. Buffer loss improves prediction accuracy near building
surfaces by weighting error in boundary regions. Divergence loss, on the other hand, en-
forces global physical consistency by penalizing divergence in the velocity field. The buffer-
loss model shows localized improvements in wall-adjacent passages, while divergence loss
yields smoother transitions in open-flow zones. These two mechanisms appear to target
complementary aspects of the prediction task. However, when combined, they do not pro-
duce cumulative improvement. This suggests potential interference in optimization, or a
limitation in the model’s capacity to respond to added constraints. While minor improve-
ments are visible in specific regions, the overall enhancement remains very limited. One
explanation is that these loss terms are soft constraints, which means they only encourage,
but do not enforce, certain behaviors. Unlike physics-informed neural networks (PINNs),
where physical laws are explicitly integrated into the loss formulation, the Swin Transformer
still optimizes primarily for pixel-wise prediction accuracy. As a result, the model may not
fully internalize global consistency or near-wall behavior. It continues to prioritize mini-
mizing average error rather than enforcing flow-like behavior in its outputs. These findings
suggest that while flow-aware modifications on loss function can influence output behav-
ior, they are insufficient to overcome the architectural limitations that constrain the model’s
overall predictive capacity.

Although not part of the original hypotheses, the previous experimental results naturally
led to another hypothesis: the Swin Transformer’s capacity to simulate urban wind flow is
largely governed by its architectural setting.

As mentioned previously, patch size stands out as the dominant factor affecting model per-
formance. Smaller patch sizes allow the model to capture finer spatial details and localized
flow features. This effect is based on the fact that patches serve as the smallest spatial
unit of representation in Swin Transformer. The Swin Transformer operates on these non-
overlapping patches and computes attention within windows. Therefore, spatial resolution
is coarsened through patch merging layers, which progressively reduces feature map size
and leads to information loss. As shown in Figure 5.11, larger patch sizes result in markedly
coarser and more blurred predictions, with low-resolution results throughout the whole im-
age rather than just near-building regions. Furthermore, since the upsampling is performed

47

6 Discussion, conclusion and future work

mainly by convolutional layers, the pixel-level differences inside patches are not fully re-
covered during decoding, which amplifies the importance of patch size on result quality.
Due to the limitation of the computational resource, patch size = 1 could not be tested, and
patch size = 2 was the smallest feasible setting. But the RMSE increase of over 0.7 when
patch size changes from 2 to 5, far exceeding the impact of all other configurations, strongly
suggests that the architectural ability of the model itself plays a pivotal role in using Swin
Transformer to simulate wind flow in urban environments.

The most pronounced advantage of the surrogate over the conventional CFD simulation
is runtime. Table 6.1 list the time needed per sample both approaches. A complete CFD
simulation run takes approximately 260 per sample, whereas the surrogate can returns a
prediction in 4 seconds on the same hardware.

Step CFD ML surrogate

Ansys DesignModeler 3 min –
Ansys Mesh 1 min 10 s –
Ansys Fluent 10 s –

Total per sample 4 min 20 s 4 s

Table 6.1: Per–sample time cost of the conventional CFD run vs. the trained ML surrogate.

The experiments demonstrate that the Swin Transformer has potential in approximating
urban wind patterns, but remains limited in resolving highly complex zones. For wind
simulation in urban areas, the model’s architectural capacity is the decisive factor. Regard-
less of inflow speed, building layout, or input format, the results consistently point to one
limitation: the model struggles to handle sharp local gradients between adjacent pixels. Ac-
cordingly, the model performs better when the target field is smoother and exhibits fewer
localized extremes. Despite this shortcoming, the surrogate’s ability of rapid producing
predictions makes batch producing flow predictions on a much larger scale and real-time
interactive design feasible. At its current configuration, the model, in its current form, re-
mains unsuitable for use in pixel-level simulation.

6.2 Conclusion

This thesis investigates to what extent the Swin Transformer can simulate wind fields in
urban area. The goal was to explore how factors related to geometry and flow dynamics
affect the model’s predictive ability.

Beyond applying the Swin Transformer as a surrogate for urban wind prediction, this work
also contributes by constructing a 2D urban wind field dataset and developing a workflow
for batch wind field data generation.

The results reveal that architectural resolution defined by patch size and input encoding play
more decisive roles than building geometry, inflow speed or loss function design. While the
current setup uses 2D data, the insights may inform future surrogate modeling for urban
fluid dynamics.

48

6.3 Future work

The research question brought in Section 1.3 can be answered as following, begins with the
sub-research questions:

• How do different urban building layouts affect the accuracy of the surrogate in sim-
ulating wind fields?

Across five tested morphologies, densely packed and irregular urban layouts, such
as Mixed and Attached types, lead to higher prediction error. However, the error is
not solely determined by building density or size. Alignment and spacing also play
critical roles, as demonstrated by the Detached layout type, which yielded the lowest
RMSE.

• How do varying inflow speeds affect the accuracy of the surrogate in urban wind
field simulation?

Prediction error increases consistently with inflow speed, both globally and locally.
A near-linear relationship is observed between inflow intensity and RMSE, reflecting
the model’s limited capacity to resolve sharp gradients at higher flow speeds.

• How does introducing a flow-aware loss function influences the surrogate’s accu-
racy?

Loss function modifications that incorporate flow-awareness, such as buffer and di-
vergence terms, lead to subtle improvements in localized flow behavior. However, in
terms of overall RMSE, their impact is negligible. The key finding is that even with
explicit loss emphasis on near-wall accuracy, these techniques cannot overcome the
architectural limitations of the model itself.

To conclude on the main research question:

• To what extent can a Swin-Transformer-based surrogate accurately simulate wind
fields in urban environments under specific initial conditions?

Overall, the model is capable of capturing the main structure of the wind field, but
exhibits consistent limitations in high-gradient zones near buildings. The results also
show that soft constraints have limited impact on accuracy compared to architectural
factors when emulating physical systems. In practical terms, the model may be suited
for quick estimation of overall flow patterns in regular urban geometries, but should
not be relied on for detailed and accurate near-wall analysis or safety-critical airflow
prediction. Its performance degrades substantially in regions of high velocity gradient,
which are often the areas of most practical concern.

6.3 Future work

As this study demonstrates some of the potential and limitations of Swin Transformer mod-
els for 2D urban wind prediction, there are several directions arise from the present find-
ings.

49

6 Discussion, conclusion and future work

Geometric scale The current raster covers only 100 × 100 m and therefore captures differ-
ences in individual building shapes rather than city-scale planning. A larger coverage would
allow neighborhood-scale planning questions to be addressed, while a 3D voxel input would
allow better modeling of vertical wind dynamics and building height effects.

Transient inflow All experiments in this study assume steady boundary conditions. How-
ever, many practical assessments like pollutant dispersion, depend on transient inflow to
capture time-varying wind behavior.

Physics-informed loss Neither buffer nor divergence settings enforces strict mass conser-
vation. the incorporation of physics-informed loss functions such as PINN-based residual
constraints may help improve near-wall accuracy and enhance physical interpretability of
model outputs.

50

Bibliography

Anderson, J. D. (1995). Computational Fluid Dynamics: The Basics with Applications. McGraw-
Hill, Inc., New York.

ANSYS, Inc. (2009). ANSYS Fluent 12.0 User Guide. ANSYS, Inc., Canonsburg, PA, USA.

Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban
Climate, 10:216–240. ICUC8: The 8th International Conference on Urban Climate and the
10th Symposium on the Urban Environment.

BenMoshe, N., Fattal, E., Leitl, B., and Arav, Y. (2023). Using machine learning to predict
wind flow in urban areas. Atmosphere, 14:990.

Blazek, J. (2001). Computational Fluid Dynamics: Principles and Applications. Elsevier, Oxford,
UK, 3rd edition.

Blocken, B. (2018). Computational fluid dynamics for urban physics: Importance, scales,
possibilities, limitations and ten tips and tricks towards accurate and reliable simulations.
Building and Environment, 91:219–245.

Blocken, B., Stathopoulos, T., and van Beeck, J. (2016). Pedestrian-level wind conditions
around buildings: Review of wind-tunnel and cfd techniques and their accuracy for wind
comfort assessment. Building and Environment, 100:50–81.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E. (2021). Physics-informed neural
networks (PINNs) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):1727–1738.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Ferziger, J. H. and Perić, M. (2002). Computational Methods for Fluid Dynamics. Springer,
Berlin, Germany, 3rd edition.

Guo, X., Li, W., and Iorio, F. (2016). Convolutional Neural Networks for Steady Flow Ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 481–490, New York, NY, USA. Association for
Computing Machinery.

Hirsch, C. (2007). Numerical Computation of Internal and External Flows. Butterworth-
Heinemann, Oxford, UK, 2nd edition.

Holger Koss, H. (2006). On differences and similarities of applied wind comfort criteria.
Journal of Wind Engineering and Industrial Aerodynamics, 94(11):781–797. Urban Civil Engi-
neering (UCE), Impact of wind and storms on city life and built environment.

51

Bibliography

Huang, X., Zhang, Y., Liu, J., Zhang, X., and Liu, S. (2023). A Short-Term Wind Power
Forecasting Model Based on 3D Convolutional Neural Network–Gated Recurrent Unit.
Sustainability, 15(19):14171.

Kastner, P. and Dogan, T. (2023). A GAN-Based Surrogate Model for Instantaneous Urban
Wind Flow Prediction. Building and Environment, 242:110384.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. (2021). Transformers
in vision: A survey. arXiv preprint arXiv:2101.01169.

Kutz, J. N. (2017). Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4.

LaNasa, P. J. and Upp, E. L. (2014). 2 - basic flow measurement laws. In LaNasa, P. J.
and Upp, E. L., editors, Fluid Flow Measurement (Third Edition), pages 19–29. Butterworth-
Heinemann, Oxford, third edition edition.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, X.-X., Liu, C.-H., Leung, D. Y., and Lam, K. (2006). Recent progress in cfd modelling of
wind field and pollutant transport in street canyons. Atmospheric Environment, 40(29):5640–
5658.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 10012–10022.

Miyanawala, T. P. and Jaiman, R. K. (2018). An Efficient Deep Learning Technique for the
Navier-Stokes Equations: Application to Unsteady Wake Flow Dynamics.

Moukalled, F., Mangani, L., and Darwish, M. (2016). The Finite Volume Method in Computa-
tional Fluid Dynamics: An Advanced Introduction with OpenFOAM and MATLAB. Springer,
Cham, Switzerland.

Munson, B. R., Young, D. F., Okiishi, T. H., and Huebsch, W. W. (2013). Fundamentals of Fluid
Mechanics. Wiley, Hoboken, NJ, USA, 7th edition.

O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458.

Peters, R., Dukai, B., Vitalis, S., van Liempt, J., and Stoter, J. (2022). Automated 3d recon-
struction of lod2 and lod1 models for all 10 million buildings of the netherlands.

Sforza, P. M. (2012). Chapter 2 - quasi-one-dimensional flow equations. In Sforza, P. M.,
editor, Theory of Aerospace Propulsion, Aerospace Engineering, pages 35–53. Butterworth-
Heinemann, Boston.

Sun, C., Zhang, F., Zhao, P., Zhao, X., Huang, Y., and Lu, X. (2021). Automated Simula-
tion Framework for Urban Wind Environments Based on Aerial Point Clouds and Deep
Learning. Remote Sensing, 13(12):2383.

Tu, J., Yeoh, G. H., and Liu, C. (2018). Computational Fluid Dynamics: A Practical Approach.
Butterworth-Heinemann, Oxford, UK, 3rd edition.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention Is All You Need.

52

Bibliography

Versteeg, H. K. and Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics:
The Finite Volume Method. Pearson Education Limited, Harlow, England, 2nd edition.

White, C., Ushizima, D., and Farhat, C. (2019). Fast Neural Network Predictions from Con-
strained Aerodynamics Datasets.

Willemsen, E. and Wisse, J. A. (2007). Design for wind comfort in the netherlands: Proce-
dures, criteria and open research issues. Journal of Wind Engineering and Industrial Aerody-
namics, 95(9):1541–1550.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. (2021). Point transformer. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 16259–16268.

53

Scripts

1 Clipping geometry in QGIS

from qgis.core import QgsProject, QgsVectorLayer, QgsGeometry, QgsFeature,

QgsVectorFileWriter, QgsCoordinateReferenceSystem

from qgis.core import QgsProcessingException

import processing

import os

Input and output paths

large_vector_layer_path = ".../tiles/tile.shp"

Load the large vector layer

large_vector_layer = QgsVectorLayer(large_vector_layer_path, "Mother Layer", "ogr")

rotate_large_vector = processing.run("native:rotatefeatures", {

'INPUT':large_vector_layer,
'ANGLE':0,
'ANCHOR':None,
'OUTPUT':'memory:'

})['OUTPUT']

if not rotate_large_vector.isValid():

print("Layer failed to load!")

else:

Generate grid covering the extent of the large vector layer

extent = large_vector_layer.extent()

extent_string = f"{extent.xMinimum()},{extent.yMinimum()},

{extent.xMaximum()},{extent.yMaximum()}" # Format extent as string

print(extent_string)

grid_layer = processing.run("qgis:creategrid", {

'TYPE': 2, # Rectangle (Polygon)

'EXTENT': extent,

'HSPACING': 100,

'VSPACING': 100,

'HOVERLAY':0,
'VOVERLAY':0,
'CRS': large_vector_layer.crs(),

'OUTPUT':'memory:'
})['OUTPUT']

QgsProject.instance().addMapLayer(grid_layer)

QgsProject.instance().addMapLayer(large_vector_layer)

55

Scripts

Process each grid cell

cells = [ft for ft in grid_layer.getFeatures()]

i = 1

for cell in cells:

try:

grid_geometry = cell.geometry() # Get the geometry of the feature

grid_bbox = grid_geometry.boundingBox() # Get the bounding box of the

geometry

xmin = grid_bbox.xMinimum()

ymin = grid_bbox.yMinimum()

clipped_layer = processing.run("native:extractbyextent", {

'INPUT': rotate_large_vector,

'EXTENT':grid_bbox,
'CLIP':True,
'OUTPUT':'memory:'})['OUTPUT']

Filter out small polygons

ids_to_delete = [f.id() for f in clipped_layer.getFeatures() if

f.geometry().area() < 100]

clipped_layer.dataProvider().deleteFeatures(ids_to_delete)

total_area = sum(f.geometry().area() for f in clipped_layer.getFeatures())

if total_area < 1000:

continue

QgsProject.instance().addMapLayer(clipped_layer)

print("Total Area: ", total_area)

Dissolve remaining polygons

dissolved_layer = processing.run("native:dissolve", {

'INPUT': clipped_layer,

'OUTPUT': 'memory:'
})['OUTPUT']

Filter out small polygons

ids_to_delete = [f.id() for f in dissolved_layer.getFeatures() if

f.geometry().area() < 100]

dissolved_layer.dataProvider().deleteFeatures(ids_to_delete)

total_area = sum(f.geometry().area() for f in

dissolved_layer.getFeatures())

if total_area < 1000:

continue

Translate geometry to set the left bottom corner to (0, 0)

center = dissolved_layer.extent().center()

translated_layer = processing.run("native:translategeometry", {

'INPUT': dissolved_layer,

'DELTA_X': -xmin,

'DELTA_Y': -ymin,

'OUTPUT': 'memory:'
})['OUTPUT']

QgsProject.instance().addMapLayer(translated_layer)

56

2 Ansys DesignModeler

except QgsProcessingException as err:

print(f"QgsProcessingException occurred for grid cell {i}: {err}")

except Exception as err:

print(f"An unexpected error occurred for grid cell {i}: {err}")

Export to DXF

dxf_path = os.path.join(output_folder, f"industrial_{i}.dxf")

QgsVectorFileWriter.writeAsVectorFormat(translated_layer, dxf_path, "utf-8",

dissolved_layer.crs(), "DXF", skipAttributeCreation=True)

dxfFile.close()

print(f"Exported DXF {i} successfully.")

i = i + 1

print("Process completed.")

2 Ansys DesignModeler

function CreateWindZone (p)

{

p.Plane = agb.GetActivePlane();

p.Origin = p.Plane.GetOrigin();

p.XAxis = p.Plane.GetXAxis();

p.YAxis = p.Plane.GetYAxis();

p.Sk1 = p.Plane.NewSketch();

p.Sk1.Name = "Sketch1";

with (p.Sk1)

{

p.Ln7 = Line(100.00000000, 150.00000000, 0.00000000, 150.00000000);

p.Ln8 = Line(0.00000000, 150.00000000, 0.00000000, -50.00000000);

p.Ln9 = Line(0.00000000, -50.00000000, 100.00000000, -50.00000000);

p.Ln10 = Line(100.00000000, -50.00000000, 100.00000000, 150.00000000);

}

//Dimensions and/or constraints

with (p.Plane)

{

//Constraints

HorizontalCon(p.Ln7);

HorizontalCon(p.Ln9);

VerticalCon(p.Ln8);

VerticalCon(p.Ln10);

CoincidentCon(p.Ln7.End, 0.00000000, 150.00000000,

p.Ln8.Base, 0.00000000, 150.00000000);

CoincidentCon(p.Ln8.End, 0.00000000, -50.00000000,

p.Ln9.Base, 0.00000000, -50.00000000);

57

Scripts

CoincidentCon(p.Ln9.End, 100.00000000, -50.00000000,

p.Ln10.Base, 100.00000000, -50.00000000);

CoincidentCon(p.Ln10.End, 100.00000000, 150.00000000,

p.Ln7.Base, 100.00000000, 150.00000000);

}

p.Plane.EvalDimCons(); //Final evaluate of all dimensions and constraints in plane

// Create surface

ag.selectedFeature = ag.gui.TreeviewFeature(p.Sk1.Name, 0);

var Surf1 = ag.gui.CreateSurfSk();

Surf1.Name = "Zone";

Surf1.Operation = ag.c.Frozen;

return Surf1;

} //End Plane JScript function: planeSketchesOnly

function ImportCAD (path)

{

// Import CAD file

var imp=ag.b.Import(path);

imp.Name="CAD_geom";

imp.LineBodies = ag.c.Yes;

imp.Operation = ag.c.Frozen;

imp.PutBasePlane(ag.b.GetXYPlane());

agb.Regen();

var medges = ag.m.ModelEdges();

for (var i = 1; i <= medges.Count; i++)

{

var edge = medges.Item(i);

agb.AddSelect(agc.TypeEdge3d, edge);

}

var Surf2 = agb.SurfFromLines();

Surf2.Name = "Building";

agb.regen();

return Surf2;

} //End CAD import JScript function: importCAD

ag.gui.NewFile();

ag.m.ClearAllErrors();

ag.m.NewSession (true);

ag.gui.setUnits(ag.c.UnitMeter, ag.c.UnitDegree, ag.c.No);

var Sf2 = ImportCAD(path_CAD);

var Sf1 = CreateWindZone (new Object());

ag.m.SuppressLineBodies();

ag.b.Regen();

var numBody = ag.fm.BodyCount;

var fBoolean = ag.gui.CreateBoolean();

fBoolean.Name="windZone";

fBoolean.Operation = 2;

58

3 Ansys Mesh

fBoolean.Preserve=ag.c.No;

ag.listview.ActivateItem("Target Bodies");

ag.gui.SelectAll();

ag.listview.ItemValue = "Apply";

ag.listview.ActivateItem("Tool Bodies");

for (var j = 1; j < numBody-1; j++){

body = ag.fm.Body(j);

agb.AddSelect(agc.TypeBody, body);}

ag.listview.ItemValue = "Apply";

ag.b.Regen();

var fedges = ag.m.ModelEdges();

var egCount = fedges.Count;

var inletIdx = egCount/2 + 1;

var outletIdx = egCount/2 - 1;

var inletEdge = fedges.Item(inletIdx);

var outletEdge = fedges.Item(outletIdx);

agb.AddSelect(agc.TypeEdge3d, inletEdge);

ns1 = ag.gui.CreateSelectionSet();

ns1.Name = "inlet";

agb.AddSelect(agc.TypeEdge3d, outletEdge);

ns2 = ag.gui.CreateSelectionSet();

ns2.Name = "outlet";

//Finish

agb.Regen(); //To insure model validity

//End DM JScript

3 Ansys Mesh

encoding: utf-8

2023 R2

SetScriptVersion(Version="23.2.142")

Define a list of geometry file paths

import os

system1 = GetSystem(Name="SYS")

CAD_files = "\".../cad";

geometry_files = ".../msh"

list = [69, 152, 161, 210, 319, 376, 397]

for i in range(1013, 1028):

try:

geometry1 = system1.GetContainer(ComponentName="Geometry")

geometryProperties1 = geometry1.GetGeometryProperties()

59

Scripts

geometryProperties1.GeometryImportAnalysisType = "AnalysisType_2D"

Set the file path for the current iteration

path_CAD = CAD_files + str(i) + ".dxf\";\n"

new_line = "var path_CAD = " + path_CAD

js_path = ".../create_windzone.js"

with open(js_path, 'r') as file:

existing_content = file.read()

modified_content = new_line + existing_content

temp_js_path = ".../create_windzone_temp.js"

with open(temp_js_path, 'w') as file_temp:

file_temp.write(modified_content)

geometry1.Edit()

command = """

var scriptPath=".../create_windzone_temp.js";

runIt(scriptPath);

function runIt(path) {

ag.m.BeginUserScript();

try {

ag.runningScriptPath = path;

ag.wb.ScriptEngine.AddNamedItem("ag", ag);

ag.wb.ScriptEngine.RunScript(path);

} catch(e) {

ag.m.DisplayMessage("Error in JScript-> " + path, 2);

}

ag.m.EndUserScript();

}

"""

geometry1.SendCommand(Command=command)

geometry1.Exit()

os.remove(temp_js_path)

geometry_file_path = geometry_files + str(i) + ".agdb"

mesh1 = system1.GetContainer(ComponentName="Mesh")

meshProperties1 = mesh1.GetMeshProperties()

meshProperties1.saveMeshFileInSeparateFile = True

meshComponent1 = system1.GetComponent(Name="Mesh")

meshComponent1.Refresh()

mesh1.Edit()

mesh1.SendCommand(Command="""WB.AppletList.Applet

("DSApplet").App.Script.doToolsRunMacro('.../mesh.py');""")

mesh_filename = geometry_file_path.split('.')[0] + ".msh"

command_to_export_mesh = """var DS = WB.AppletList.Applet("DSApplet").App; SC =

DS.Script; SC.doFileExport(FilePath="{}");""".format(mesh_filename)

mesh1.SendCommand(Command=command_to_export_mesh)

mesh1.Exit()

meshComponent1.Update()

except:

pass

encoding: utf-8

2023 R2

60

3 Ansys Mesh

SetScriptVersion(Version="23.2.142")

Define a list of geometry file paths

geometry_files = ".../agdbs/"

system1 = GetSystem(Name="SYS")

for i in range(1,4):

try:

geometry_file_path = geometry_files + str(i) + ".agdb"

geometry1 = system1.GetContainer(ComponentName="Geometry")

geometryProperties1 = geometry1.GetGeometryProperties()

geometryProperties1.GeometryImportAnalysisType = "AnalysisType_2D"

Set the file path for the current iteration

geometry1.Edit()

geometry1.SendCommand(Command = """

ag.gui.NewFile();

ag.m.ClearAllErrors();

ag.m.NewSession (true);

ag.gui.setUnits(ag.c.UnitMillimeter, ag.c.UnitDegree, ag.c.No);

var CAD_files = ".../cads/";

var path_CAD = CAD_files + "cad" + i + ".dxf";

""")

export_path = CAD_files + "dm" + i + ".agdb";

geometry1.Export(export_path)

mesh1 = system1.GetContainer(ComponentName="Mesh")

meshProperties1 = mesh1.GetMeshProperties()

meshProperties1.saveMeshFileInSeparateFile = True

meshComponent1 = system1.GetComponent(Name="Mesh")

meshComponent1.Refresh()

mesh1.Edit()

mesh1.SendCommand(Command="""WB.AppletList.Applet

("DSApplet").App.Script.doToolsRunMacro('.../mesh.py');""")

mesh_filename = geometry_file_path.split('.')[0] + ".msh"

command_to_export_mesh = """var DS = WB.AppletList.Applet("DSApplet").App; SC =

DS.Script; SC.doFileExport(FilePath="{}");""".format(mesh_filename)

mesh1.SendCommand(Command=command_to_export_mesh)

mesh1.Exit()

meshComponent1.Update()

except:

pass

61

Scripts

4 Ansys PyFluent

%matplotlib inline

import ansys.fluent.core as pyfluent

solver = pyfluent.launch_fluent(product_version="23.2", mode='solver', version='2d',
precision='single', processor_count=1, show_gui = False)

for i in range(1, 1028):

try:

mesh_path = f".../mshs/msh{i}.msh"

solver.file.read_mesh(file_name = mesh_path)

setting the velocity magnitude as 10 m/s

solver.setup.boundary_conditions.velocity_inlet['inlet'].vmag = 5

Set the turbulence model

solver.setup.models.viscous = {"model": "k-epsilon"}

Set the solver settings

solver.solution.methods.p_v_coupling.flow_scheme = 'SIMPLE'
solver.solution.initialization.hybrid_initialize()

solver.solution.run_calculation.iter_count = 2000

solver.solution.run_calculation.reporting_interval = 2000

Run the simulation

solver.solution.run_calculation()

solution_path = f".../winds/wind{i}.txt"

Export rake data to csv

solver.file.export.ascii(name = solution_path,

surface_name_list = [],

delimiter = "comma",

cell_func_domain = ["x-velocity", "y-velocity",

"velocity-magnitude",],

location = "node")

print(f"Mesh {i} is done")

except:

print(f"Error in mesh {i}")

continue

5 Converting point data to raster in ArcMap

import arcpy

from arcpy.sa import *

arcpy.CheckOutExtension("Spatial")

arcpy.env.overwriteOutput = True

arcpy.env.addOutputsToMap = False

arcpy.env.workspace = ".../PointToRaster"

arcpy.env.extent = arcpy.Extent(0, 0, 100, 100)

start = 801

end = 900

for i in range(start, end+1):

try:

input_txt = ".../winds/wind" + str(i) + ".txt"

62

5 Converting point data to raster in ArcMap

arcpy.MakeXYEventLayer_management(input_txt, "x-coordinate", "y-coordinate",

"XYLayer_temp")

print("XYLayer_temp created successfully")

point_name = "point" + str(i)+ ".shp"

arcpy.CopyFeatures_management("XYLayer_temp", point_name)

x_wind_output_raster = ".../x_winds/x_wind" + str(i) + ".tif"

x_wind_name = "x_wind" + str(i) + ".tif"

x_wind = arcpy.PointToRaster_conversion(point_name, "x_velocity", x_wind_name,

cell_assignment="MINIMUM",priority_field = "", cellsize = 1)

arcpy.CopyRaster_management(x_wind, x_wind_output_raster)

print("x_wind" + str(i) + ".tif created successfully")

y_wind_output_raster = ".../y_winds/y_wind" + str(i) + ".tif"

y_wind_name = "y_wind" + str(i) + ".tif"

y_wind = arcpy.PointToRaster_conversion(point_name, "y_velocity", y_wind_name,

cell_assignment="MINIMUM",priority_field = "", cellsize = 1)

arcpy.CopyRaster_management(y_wind, y_wind_output_raster)

print("y_wind" + str(i) + ".tif created successfully")

except:

print("Error on wind" + str(i) + ".tif")

63

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Background and research motivation
	Scope
	Research question
	Outline

	Theoretical framework and related work
	CFD and wind dynamics
	CFD
	Wind dynamics in urban area

	Deep learning
	Deep learning-based techniques for computer vision
	Dense prediction

	Swin Transformer
	Shifted window
	Patch merging

	Related work

	Methodology
	Wind simulation
	Urban geometry and boundary design
	Meshing: resolution, quality, convergence

	Data
	Data normalization
	Training and validation set
	Test set

	Swin Transformer
	Dense prediction head
	Evaluation

	Implementation
	Dataset generation
	Building fingerprints generation
	Operational workflow for Ansys batch runs
	Point-to-Raster conversion

	Hyper-parameter tuning
	Window size and patch size
	Buffering
	Divergence

	Results and analysis
	Target format
	Inflow speed
	Layout
	Buffer loss
	Divergence
	Buffer and divergence
	Patch size

	Discussion, conclusion and future work
	Discussion
	Conclusion
	Future work

	Scripts
	Clipping geometry in QGIS
	Ansys DesignModeler
	Ansys Mesh
	Ansys PyFluent
	Converting point data to raster in ArcMap

