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Abstract

Max-plus-linear (MPL) systems are systems that are linear in max-plus algebra. A general-
ization of these systems are Max-Min-Plus-Scaling (MMPS) systems. Next to maximization
and addition (plus), MMPS systems use the operations minimization and scaling. They are
discrete-event (DE) systems, which means that the changing of the states is triggered by the
occurrence of events and (part of) the states in the state vector represent time instances. One
way to control MMPS systems is by using Model predictive control (MPC). This is a powerful
on-line control strategy that uses a receding horizon. However, an efficient control procedure
that works for all time-invariant DE MMPS systems had not yet been described. The goal
of this master thesis is to fully design such a framework. To achieve this, the state vector is
altered, such that the difference in the states that represent a time instance is included as well.
Next to this, the MPC problem on an MMPS system is altered to a Mixed integer quadratic
programming (MIQP) problem, in order to optimize it more efficiently. That this framework
works is supported by a stability analysis. Next to that, it is tested on a simulation example
of an urban railway line. Based on this example, it is shown that the procedure does indeed
work. The thesis ends with several suggestions for future research.
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Chapter 1

Introduction

1-1 Background

In this research the emphasis is on a relatively new kind on algebra: max-plus algebra. The
system theory where max-plus algebra plays a central role, emerged in the early 1980’s [1].
Here, the conventional plus and times operators are replaced by a maximization and a plus
operator, respectively. The advantage of this translation is that some systems that would be
nonlinear in conventional (plus-times) algebra can be described in a linear way in max-plus
algebra [2]. These systems are called Max-plus-linear (MPL) systems and are used to model
discrete-event systems with synchronization, but no choice. The presence of choice can lead
to the necessity of a minimization operator [3].

A system that consists, next to the operations maximization and addition, of the operation
minimization and scaling, is called an Max-Min-Plus-Scaling (MMPS) system. This notation
opens up possibilities for even more kinds of systems to be described more efficiently or
intuitively. This is why this research focuses on MMPS systems.

In MMPS (and MPL) systems, the evolution parameter that is used is an event counter,
instead of the conventional time increment. This is why these systems are called discrete-
event (DE) systems. So the evolution of these systems depends on the occurrence of an
event. Next to this, (part of) the states in the state vector represent time instances. This
prevents the straightforward translation of plus-times properties and algorithms to the max-
plus environment.

To optimize a DE MMPS system, a sensible choice would be to use Model predictive control
(MPC). This is a powerful on-line control strategy that uses a receding horizon. However,
MPC problems for MMPS systems are in general nonconvex nonlinear optimization problems.
These problems are known to be hard to solve [2]. Previous research has been able to simplify
this control problem in specific situations to problems that can be solved more efficiently.
However, an efficient control procedure that works for all time-invariant DE MMPS system
has not yet been described.
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2 Introduction

1-2 Problem description

Several areas have be identified that are in need of further research, in order to describe the
complete control procedure for a general time-invariant DE MMPS system. These areas are
based on the literature study conducted previously. To guide the investigation, that will be
conducted in this master thesis, multiple research questions are formulated. The content in
this work is constructed in such a way that these questions can be solved in a structured
manner.

1-2-1 Research questions

• How can the process of designing a stabilizing MPC controller for a time-invariant
MMPS system be fully described?

– How should the state vector of a time-invariant MMPS system be defined?
– How can a time-invariant MMPS system be linearized?
– How should the objective function be defined to guarantee stability for a time-

invariant MMPS system?
– What will the terminal set for a time-invariant MMPS system look like?

1-2-2 Approach

To answer the research questions, the master thesis will start off with a chapter that will
introduce max-plus algebra and the MMPS system. After this, Chapter 3 will present the
conventional MPC method applied to a nonlinear discrete-time (DT) system. Furthermore, it
raises several concerns that could prevent a straightforward translation to DE MMPS systems.
Next, Chapter 4 will address these concerns and Chapter 5 will show the entire process
of recasting a general MMPS system as an Mixed integer quadratic programming (MIQP)
problem.

After the entire process for designing a stabilizing MPC controller has been described, the
procedure will be applied to a case study: the model of an urban railway line. In this way
it can be demonstrated that the proposed method does indeed work in practice. The thesis
work will end with the main conclusions and contributions of this master thesis and it will
give recommendations for further research.
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Chapter 2

Max-Min-Plus-Scaling Systems

This chapter starts with an explanation of the basics of discrete-event (DE) systems and
Max-plus algebra. Next to that, Max-plus-linear (MPL) systems will be introduced. After
this, the chapter continues with a generalization of these systems, namely Max-Min-Plus-
Scaling (MMPS) systems and it explains the concept of additive homogeneity, an important
property of such systems. Lastly, several other hybrid system descriptions are stated.

2-1 Discrete-event (DE) systems

discrete-event (DE) systems form a large class of dynamic systems in which the evolution
of the system is specified by the occurrence of certain discrete events [4]. This opposed to
discrete-time (DT) systems where the evolution depends on the clock. Next to this, (part of)
the states in a DE system represent time instances. There are multiple frameworks to describe
DE systems, but these are usually nonlinear. However, a certain class of these systems can
be described by a linear model in max-plus algebra, namely MPL systems. What max-plus
algebra entails is discussed in the next section.

2-2 Max-plus algebra

Max-plus algebra is a relatively new form of algebra, where the main operations are maxi-
mization and addition. This as opposed to plus-times algebra where the main operations are
addition and multiplication.
Define ε = −∞ and Rε =R∪{ε}. The notation in max-plus algebra is the following:

x ⊕ y = max(x, y)
x ⊗ y = x + y

for any x, y ∈ Rε.[5]
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4 Max-Min-Plus-Scaling Systems

The reason why it is useful to rewrite a model into max-plus algebra, is that a lot of the basic
operations that work for plus-times algebra also hold for max-plus algebra. Readers interested
in these operations can take a look at Chapter 1.3 of [6] or Chapter 2.1 of [7]. However, there
are also some major differences that prevent a straightforward translation of all properties,
concepts, and algorithms from conventional linear algebra to max-plus algebra [8].

For matrix operations, max-plus addition and multiplication can be extended in the following
way:

(A ⊕ B)ij = aij ⊕ bij = max(aij , bij)

(A ⊗ C)ij =
n⊕

k=1
aik ⊗ ckj = max

k
(aik + ckj)

for A, B ∈ Rm×n
ε and C ∈ Rn×p

ε .

2-3 Max-plus-linear (MPL) systems

A basic state-space system that can be constructed in max-plus algebra is the MPL system.

Definition 2-3.1 (Max-plus-linear system).

x(k) = A ⊗ x(k − 1) ⊕ B ⊗ u(k)
y(k) = C ⊗ x(k)

(2-1)

with A ∈ Rn×n
ε , B ∈ Rn×m

ε and C ∈ Rl×n
ε . Where n is the number of states, m is the number

of inputs and l is the numbers of outputs.

This system is a subclass of DE systems in which only synchronization and no concurrency
or choice occurs [8]. One can easily see the resemblance to the linear state space model in
plus-times algebra. Thus this means that these systems can be handled in a similar way.

2-4 Max-Min-Plus-Scaling (MMPS) systems

An MMPS system is a generalization of a max-plus linear system. This generalization is
useful, because a large portion of hybrid and DE systems can be described in this way. It can
consist of the operations maximization, minimization, addition and multiplication.

First, define Rε = R ∪ {−∞}, RT = R ∪ {∞} and Rc = R ∪ {−∞} ∪ {∞}. The set R can be
any of these three sets.

Definition 2-4.1 (MMPS function [6]).

f = pi|α|fk ⊕ fl|fk ⊕ ′fl|fk + fl|βḟk (2-2)

where α ∈ R, β ∈ R and fk and fl are again MMPS functions over the set R. The symbol |
means "or". For vector-valued MMPS functions the above statement holds componentwise.

J.C.M. Kroese Master of Science Thesis



2-4 Max-Min-Plus-Scaling (MMPS) systems 5

Definition 2-4.2 (MMPS system [6]). Consider the vector:

p(k) =
[
xT (k) xT (k − 1) . . . xT (k − M) uT (k) wT (k)

]T
∈ P

where P ⊂ Rnp , x ∈ Rn
c is the state, u ∈ Rp is the control input and w ∈ Rz is an external

signal. An MMPS system describes a state-space model of the form

x(k) = fMMPS(p(k)) (2-3)

where fMMPS is a vector-valued MMPS function of the variables p.

This MMPS system describes an implicit state-space model. If the system is not a function
of x(k), the system is explicit.

2-4-1 Homogeneity and time-invariance

If a system’s behaviour does not change over time, a system is said to be time-invariant. So
if it is started a day later with the same initial state, the behaviour is the same [6]. In a
DE system where the state is a time instance, time-invariance will mean that the system is
additive homogeneous.
Definition 2-4.3 (Additive homogeneity [6]). Consider p ∈ Rnt , and the functions ft :
Rm → Rn. The system is said to be additive homogeneous if:

ft(p + λ) = ft(p) + λ

A non-homogeneous system consists of both variables with the dimension time and variables
related to quantities. Then the states can be split up into two substates. xt denotes the time
variables and xq the quantitative variables. In a similar way p(k) in Definition 2-4.2 can be

split into pt(k) and pq(k). So: x(k) =
[

xt(k)
xq(k)

]
and p(k) =

[
pt(k)
pq(k)

]
with

pt(k) =
[
xT

t (k) xT
t (k − 1) . . . xT

t (k − M) uT
t (k) zT

t (k)
]T

∈ Pt

pq(k) =
[
xT

q (k) xT
q (k − 1) . . . xT

q (k − M) uT
q (k) zT

q (k)
]T

∈ Pq

Now the MMPS system can be rewritten as:
xt(k) = fMMPS,t(pt(k), pq(k))
xq(k) = fMMPS,q(pt(k), pq(k))

The quantitative variables prevent the system from being fully additive homogeneous. That
is why the next definition is introduced.
Definition 2-4.4 (Partially additive homogeneity [6]). Consider pt ∈ Rnt , and pq ∈ Rnq and
the functions ft :Rnt × Rnq → Rnt and fq : Rnt × Rnq → Rnq . The system is said to be
partially additive homogeneous if:[

ft(pt + λ, pq)
fq(pt + λ, pq)

]
=

[
ft(pt, pq) + λ

fq(pt, pq)

]

This means that a time-invariant DE MMPS system is equal to a (partially) additive homo-
geneous DE MMPS system.

Master of Science Thesis J.C.M. Kroese



6 Max-Min-Plus-Scaling Systems

2-5 Hybrid systems

In this section multiple hybrid systems are outlined that are equal to MMPS systems (some-
times under mild conditions). Here the event counter k is used, instead of the DT time
increment t.

2-5-1 Conjunctive MMPS system

The conjunctive MMPS formulation is a canonical formulation of the general MMPS system.

Definition 2-5.1 (Conjunctive MMPS system [6]). A conjunctive MMPS system describes
a state-space model of the form

x(k) = min
i=1,...,K

max
j=1,...,ni

(αT
i,jp(k) + βi,j) (2-4)

for some integers K,n1, . . . , nK , vectors αi,j and real numbers βi,j. For vector-valued MMPS
functions the above statements hold componentwise.

This expression is also called the Min-max MMPS formulation.

Theorem 2-5.1 (MMPS to conjunctive MMPS [6]). The classes of MMPS systems (Equation
2-3) and conjunctive MMPS systems (Equation 2-4) coincide.

2-5-2 Extended linear complementarity (ELC) Systems

An Extended linear complementarity (ELC) system is an extension of a linear complemen-
tarity system.

Definition 2-5.2 (Extended linear complementarity system [9]). The ELC system can be
described as:

x(k + 1) = Ax(k) + B1u(k) + B2d(k)
y(k) = Cx(k) + D1u(k) + D2d(k)∏
j∈ϕi

(g4 − E1x(k) − E2u(k) − E3d(k))j = 0 for each i ∈ {1, 2, . . . , p}
(2-5)

where u(k) ∈ Rm, x(k) ∈ Rn and y(k) ∈ Rl. g4 is a constant and d(k) ∈ Rr is an auxiliary
variable.

Theorem 2-5.2 (MMPS to ELC [9]). The classes of MMPS and ELC systems coincide.

2-5-3 Mixed logical dynamical (MLD) Systems

An Mixed logical dynamical (MLD) system is a hybrid system where logic, dynamics and
constraints are integrated. [9]

J.C.M. Kroese Master of Science Thesis



2-5 Hybrid systems 7

Definition 2-5.3 (Mixed logical dynamical system [9]). The MLD system can be described
as:

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ g5

(2-6)

where x(k) =
[
xT

r (k) xT
b (k)

]T
with xr(k) ∈ Rnr and xb(k) ∈ {0, 1}nb (y(k) and u(k) have a

similar structure), and where z(k) ∈ Rrr and δ(k) ∈ {0, 1}rb are auxiliary variables.

Theorem 2-5.3 (ELC to MLD [9]). Every ELC system can be written as an MLD system,
provided that the quantity g4 − E1x(k) − E2u(k) − E3d(k) is (componentwise) bounded.

So combining Theorem 2-5.2 and Theorem 2-5.3, an MMPS system can be written as an MLD
system if the condition in Theorem 2-5.3 and is met. To see what the consequences of this
condition are for the original MMPS model, one has to take a look at how the constraints for
the ELC model are formed from the MMPS model.

According to [9], the constraints for the ELC model are formed when rewriting the maxi-
mizations and minimizations in the MMPS model. f = max(fk, fl) = − min(−fk, −fl) can
be rewritten as:

f − fk ≥ 0, f − fl ≥ 0, (f − fk)(f − fl) = 0

So to be able to recast an (conjunctive) MMPS model as an MLD model, it is necessary that
the quantities f − fk and f − fl are bounded for each maximization and minimization.

2-5-4 Piecewise-affine (PWA) Systems

A Piecewise-affine (PWA) system is a system that consists of a combination of several affine
systems that are valid within a certain part of the domain.

Definition 2-5.4 (PWA System [9]). PWA systems are described by

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi

for
[
x(k)
u(k)

]
∈ Ωi

(2-7)

where Ωi are convex polyhedra (i.e. given by a finite number of linear inequalities) in the
input/state space.

Theorem 2-5.4 (MLD to PWA [9]). A completely well-posed MLD system can be rewritten
as a PWA system.

So combining Theorem 2-5.2, 2-5.3 and 2-5.4, an MMPS system can be written as a PWA
system if the conditions in Theorem 2-5.3 and 2-5.4 are met. So the MMPS problem should
be bounded and well-posed. As a result, a continuous PWA system is equivalent to an MMPS
system. [10]
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2-6 Conclusion

Chapter 2 gives an overview of the basic aspects of max-plus algebra. The first takeaway
in this chapter is that in DE systems, the evolution of a system is specified relative to the
(repeated) occurrence of events. Secondly, several operations in plus-times algebra can be
translated to max-plus algebra, which is why writing a model as an MPL system can be
useful. In that way (simple) systems that consists of maximizations as well as addition can
still be handled in a "linear" way.

Furthermore, the concept of max-plus algebra has been extended to MMPS systems. This
is helpful, because a large amount of DE systems can be described in this way. In non-
homogeneous MMPS systems, the system consists of time and quantitative variables. Here
the difference between additive homogeneity and time-invariance comes into play. It can be
concluded that an MMPS system being time-invariant actually comes down to the system be-
ing (partially) additive homogeneous. In Chapter 4 it will become apparent that the difference
between additive homogeneity and time-invariance will prevent a straightforward translation
of Model predictive control (MPC) from DT to DE systems.

Finally, it can be concluded that several other hybrid systems are (sometimes under mild
conditions) equivalent to MMPS systems. This will prove useful because there are not many
optimization techniques specifically for MMPS systems. Rewriting the MMPS system into
one of the hybrid systems mentioned in this chapter, will pave the way for the use of more
conventional and efficient optimization techniques. The conjunctive MMPS formulation can
be a useful first step in the recasting process.
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Chapter 3

Model Predictive Control

Model predictive control (MPC) is an on-line control strategy which makes use of a receding
horizon Np. It is a popular control method for discrete-time (DT) systems. One of the
reasons for this is that it is simple to add constraints in the optimization, as opposed to for
example Linear-quadratic regulator (LQR) control. This chapter introduces the MPC control
technique and its procedure for controlling nonlinear DT systems. This will provide a solid
background and show where alterations are necessary to be able to use MPC on (nonlinear)
discrete-event (DE) Max-Min-Plus-Scaling (MMPS) systems as well.

3-1 Introduction to Model predictive control (MPC)

An MPC controller is a controller that predicts, at each time step t, the optimal control inputs
over the finite horizon Np: ut,ut+1,. . . ,ut+Np . It only applies the first input ut to the system
and shifts the horizon one time step, such that it now runs from t + 1 to t + Np + 1. Then a
new optimal control problem is solved to determine these inputs. This is continued for each
cycle, such that the future control actions are optimized by minimizing the cost function over
prediction window Np subject to constraints [1]. This is outlined in Figure 3-1.

The cost function in MPC is typically chosen as [11]

J(x0, u) = VN (x0, u) =
Np−1∑
t=0

ℓ(x(t), u(t)) + Vf (x(Np)) (3-1)

where ℓ(x, u) is the stage cost and Vf (x) is the terminal penalty.

Here it is assumed that the state and input vector should be steered to zero. If this is not
the case, the vectors should be altered by subtracting their equilibrium values: x′ = x − xeq,
u′ = u − ueq. Then these altered vectors x′ and u′ should again be steered to zero.
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10 Model Predictive Control

Figure 3-1: Graphical representation of the MPC control strategy [12]

The cost function has to be defined in such a way that stability is established. This means
that

V 0
N (f(x, κN (x)) − V 0

N (x) ≤ −ℓ(x, κN (x)) (3-2)

where κN = KN x is the control law at stage N [13] and V 0
N (x) is the MPC optimal value

function.
Because a DE MMPS system is a nonlinear system, the next section will focus on how to
guarantee stability for a nonlinear DT system.

3-2 MPC on nonlinear DT systems

The MPC problem for nonlinear DT systems is given in Definition 3-2.1. This section will
use the DT time increment t.

Definition 3-2.1 (MPC problem for nonlinear DT systems).

min
u(0),...,u(Np−1)

J(x0, u) = min
u(0),...,u(Np−1)

Np−1∑
t=0

ℓ(x(t), u(t)) + Vf (x(Np)) (3-3)

subject to:

x(0) = x0

x(t + 1) = f(x(t), u(t)) ∀t

(x(t), u(t)) ∈ Z ∀t

u(t + j) = u(t + Nc − 1) j = Nc, Nc + 1, . . . , Np − 1
x(t + Np) ∈ Xf ⊂ X

(3-4)
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3-2 MPC on nonlinear DT systems 11

where J(x0, u) is the cost function, ℓ(x, u) is the stage cost, Vf (x) is the terminal cost, Xf is
the terminal constraint set and X is the state constraint set.

The cost function that will be used in this section is a quadratic (or 2 norm) cost function.
This means

ℓ(x, u) = 1
2xT Qx + 1

2uT Ru

Vf (x) = 1
2xT Px

(3-5)

The 2 norm cost function is a popular choice in conventional MPC. In this cost function larger
deviations from the reference value will be more severely punished than small deviations.
Other common choices for the cost function are a 1 norm or ∞ norm cost function.

The procedure in this section is based on the process in Chapter 2.5.5 of [11]. First, several
assumptions that need to hold for the procedure to be valid will be mentioned. Subsection
3-2-1 outlines these assumptions. It also introduces two theorems that are needed later on.
Before these are given, the definition for a Lyapunov function is given, that will be used later
on.

Definition 3-2.2 (Lyapunov function). Suppose that X is positive invariant for x+ = f(x).
A function V : Rn → R≥0 is said to be a Lyapunov function in X for x+ = f(x) if there exist
functions α1, α2 ∈ K∞ and a continuous, positive definite function α3 such that for any x ∈ X

V (x) ≥ α1(|x|)
V (x) ≤ α2(|x|)

V (f(x))−V (x) ≤ −α3(|x|)

3-2-1 Assumptions and Theorems

X is the state constraint set, U is the input constraint set and Xf is the terminal constraint
set. Z is the system constraint region given by Z ⊆ X × U. This is generally a polyhedron,
i.e. Z = {(x, u) | Fx + Eu ≤ e} for some F , E and e.

Assumption 3-2.1 (Continuity of system and cost [11]). The function f : Z → X, ℓ : Z →
R≥0 and Vf : Xf → R≥0 are continuous, f(xeq, ueq) = xeq, ℓ(xeq, ueq) = 0 and Vf (xeq) = 0.

Assumption 3-2.2 (Properties of constraint sets [11]). The set Z is closed and the set
Xf ⊆ X is compact. Each set contains the origin (= equilibrium). If U is bounded (hence
compact), the set U(x) is compact for all x ∈ X. If U is unbounded, the function u 7→ VN (x, u)
is coercive, i.e., VN (x, u) → ∞ as |u| → ∞ for all x ∈ X.

Assumption 3-2.3 (Basic stability assumption [11]). Vf (·), Xf and ℓ(·) have the following
properties:

• For all x ∈ Xf , there exists a u (such that (x, u) ∈ Z) satisfying

f(x, u) ∈ Xf

Vf (f(x, u)) − Vf (x) ≤ −ℓ(x, u)
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12 Model Predictive Control

• There exist K∞ functions α1(·) and αf (·) satisfying

ℓ(x, u) ≥ α1(|x|) ∀x ∈XN , ∀u such that (x, u) ∈ Z
Vf (x) ≤ αf (|x|) ∀x ∈ Xf

where XN is the set of feasible states for the optimal control problem at stage N . A
function belongs to class K∞ if it is continuous, zero at zero, strictly increasing and
unbounded [11].

Theorem 3-2.1 (Asymptotic stability of the equilibrium). Suppose Assumptions 3-2.1, 3-2.2
and 3-2.3 are satisfied and Xf contains the equilibrium in its interior. Then

• There exists K∞ functions α1(·) and α2(·) such that for all x ∈ XN (X̄ c
N , for each

c ∈ R>0)

α1(|x|) ≤V 0
N (x) ≤ α2(|x|)

V 0
N (f(x, κN (x)))−V 0

N (x) ≤ −α1(|x|)

• The origin is asymptotically stable in XN (X̄ c
N , for each c ∈ R>0) for x(k) = f(x(k −

1), κN (x)).

Theorem 3-2.2 (Lyapunov function and exponential stability). Suppose X ⊂ Rn is positive
invariant for x(k) = f(x(k − 1)). If there exists a Lyapunov function in X for the system
x(k) = f(x(k − 1)) with αi(·) = ci| · |a in which a, ci ∈ R>0 i = 1, 2, 3 then the equilibrium is
exponentially stable for x(k) = f(x(k − 1)) in X.

3-2-2 The Procedure

The first step in solving the MPC problem for nonlinear DT systems (Definition 3-2.1) is deter-
mining the terminal cost Vf and terminal constraint set Xf . These should ensure asymptotic
stability of the origin for the controlled problem [11]. The first step is linearizing the nonlinear
system x(t+1) = f(x(t), u(t)) around its equilibrium. To be able to do this Assumption 3-2.1
needs to hold.

The linearization results in the following system:

x(t + 1) = Ax(t) + Bu(t)
where A = fx(xeq, ueq), B = fu(xeq, ueq)

Assuming (A, B) is stabilizable, the controller gain K (u = Kx) should be chosen such that the
equilibrium is globally exponentially stable for the system x(t + 1) = AKx(t), AK = A + BK.
This means that AK will be stable. Now the stage cost in Equation 3-5 for u = Kx is given
as ℓ(x, Kx) = 1

2xT QKx, QK = Q + KT RK.

To determine Vf , we should first define P by the Lyapunov function

AT
KPAK + µQK = P (3-6)
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3-2 MPC on nonlinear DT systems 13

for some µ > 1. If we make sure Q and R are positive definite, so is QK . Next to that, AK is
stable and thus P is positive definite as well. Now Vf = 1

2xT Px is a global Control Lyapunov
function (CLF) for the linearized system, since:

Vf (AKx) + µ

2 xT QKx − Vf (x) = 0 (3-7)

If we now consider the nonlinear system x(t + 1) = f(x(t), u(t)) again, with linear control
u = Kx. The goal is to show that Vf is a local CLF for x(t + 1) = f(x(t), u(t)) in some
neighbourhood of the equilibrium. This means that we need to show that there exists an
a ∈ (0, ∞) such that

Vf (f(x, Kx)) + 1
2xT QKx − Vf (x) ≤ 0 ∀x ∈ leva Vf (3-8)

in which, for all a > 0, leva Vf = {x|Vf (x) ≤ a} is a sublevel set of Vf .

Comparing Equation 3-8 and 3-7 shows that Equation 3-8 holds when:

Vf (f(x, Kx)) − Vf (AKx) ≤ µ − 1
2 xT QKx ∀x ∈ leva Vf (3-9)

This also demonstrates the reason for including µ > 1. It allows for a larger difference in
Vf (f(x, Kx)) and Vf (AKx), while still proving that Equation 3-8 holds.

To prove that Equation 3-9 holds, let e(·) = f(x, Kx) − AKx. Then

Vf (f(x, Kx)) − Vf (AKx) = (AKx)T Pe(x) + 1
2e(x)T Pe(x) (3-10)

It holds that e(0) = f(0, K · 0) − AK · 0 = 0 and ex(x) = fx(x, Kx) + fu(x, Kx)K − AK . So
ex(0) = 0. If f(·) is twice continuously differentiable, for any δ > 0, there exists a cδ > 0 such
that |exx(x)| ≤ cδ for all x in δB. Here B is a ball in Rn of unit radius. That f(·) is twice
continuously differentiable also means that [11]

|e(x)| =
∣∣e(0) + ex(0)x +

∫ 1

0
(1 − s)xT exx(sx)xds

∣∣
≤

∫ 1

0
(1 − s)cδ|x|2ds ≤ 1

2cδ|x|2
(3-11)

for all x ∈ δB. From Equation 3-10, one can observe that there exists an ε ∈ (0, δ] such that
Equation 3-9 holds and thus Equation 3-8 is satisfied as well for all x ∈ εB [11]. Because of
choosing ℓ(·) as in Equation 3-5, there exists a c1 > 0 such that Vf (x) ≥ ℓ(x, Kx) ≥ c1|x|2

for all x ∈ Rn. From this it follows that x ∈ leva Vf implies |x| ≤
√

a
c1

. By making a satisfy√
a
c1

= ε, x ∈ leva Vf implies |x| ≤ ε ≤ δ. This results in Equation 3-8 being satisfied.

So indeed, there exists an a > 0 such that Vf (·) and Xf = levaVf satisfy Assumptions 3-2.1 and
3-2.2. To make sure Assumption 3-2.3 is satisfied as well and the prerequisites of Theorem
3-2.1 hold, the first step is to see that for each x ∈ Xf there exists a u = κf (x) = Kx
such that Vf (x, u) ≤ Vf (x) − ℓ(x, u), since ℓ(x, Kx) = (1/2)xT QKx. We stated that in
ℓ(x, u) = 1

2(xT Qx + uT Ru) both Q and R are positive definite. Combining this with our
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14 Model Predictive Control

definition of Vf (·) will ensure the existence of positive constants c1, c2 and c3, such that
V 0

N (x) ≥ c1|x|2 for all Rn, Vf (x) ≤ c2|x|2 and V 0
N (f(x, κf (x))) ≤ V 0

N (x)−c3|x|2 for all x ∈ Xf .
Thus Assumption 3-2.3 is satisfied. Finally, by definition, the set Xf contains the origin (=
equilibrium) in its interior.

So in summary: if Assumptions 3-2.1, 3-2.2 and 3-2.3 are satisfied, Xf contains the origin (=
equilibrium) in its interior and α1(·), α2(·) and α3(·) satisfy the hypotheses of Theorem 3-2.2,
the origin (its equilibrium) is exponentially stable for the system x(t + 1) = f(x(t), κN (x(t)))
in XN by Theorems 3-2.1 and 3-2.2 [11].

3-3 Conclusion

This chapter gives an overview of the process of applying MPC on a nonlinear DT system.
In MPC a certain cost function needs to be minimized. This chapter shows how the cost
function should be chosen such that stability for the nonlinear DT system is ensured. This
can be used as a basis to describe this process for a (nonlinear) DE MMPS system. There are
several concerns that arise when trying to apply the DT procedure to a (non homogeneous)
DE system.

Firstly, the equilibrium point for time variables (which are present in a DE system) are
nonzero and also not constant, because this would mean that in the equilibrium all events
happen at the same time. This means that for time variables xt and ut it is not possible to
subtract a constant equilibrium value (x′ = x−xeq, u′ = u−ueq) and steer the altered vectors
to zero.

Next to that, there are multiple concerns with the assumptions that are made in Section
3-2-1. In Assumption 3-2.2, it is stated that the set Z is closed. However, for a DE system
Z depends on the initial conditions. This is the case, because time variables are additive
homogeneous (Definition 2-4.3). So if a system is started at a later time, the state constraint
set and system constraint region are shifted by that same amount. Next to that, the location
of the set depends on the event counter k, because the value of xt grows as the event counter
increases. Thus these regions can only be closed for a certain initial condition and a certain
value of k specifically. A same reasoning holds for the terminal set Xf . It is not compact, due
to additive homogeneity. It is only shift invariant. This means that it is positive invariant for a
certain initial condition of a time variable, but the set shifts when these initial conditions shift
and when the event counter k increases. So it needs to be checked whether these differences
will lead to problems.

Another concern is that the procedure mentions that the system needs to be linearized around
the equilibrium point. Calculating the derivative for a MMPS system is not straightforward,
as it is hard to differentiate a system that consists of the operations maximization and mini-
mization. This same problem comes into play again, when the procedure mentions that the
system should be twice continuously differentiable for Equation 3-11 to hold.

All these concerns will be addressed in Chapter 4, to make sure that it is possible to perform
MPC on a general (partially) additive homogeneous DE system.
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Chapter 4

Stability of the Discrete-event MPC
Problem

The process to assure stability in a Model predictive control (MPC) problem on a general
discrete-event (DE) Max-Min-Plus-Scaling (MMPS) system, is not entirely the same as as-
suring stability in a discrete-time (DT) system. In the conclusion of Chapter 3, multiple
concerns were raised. This chapter will discuss these concerns and solve these problems if
needed.

4-1 Altering the MPC procedure

The goal in MPC is to stabilize the system to an equilibrium point. When translating the
MPC control method to DE systems, a problem arises here. Time variables xt(k) in a DE
system cannot stay constant after a certain event, because then all those events will happen
at the same time. This is why the aim for these variables should be to keep the growth rate
constant. So xt(k) = xt(k − 1) + constant or xt(k) − xt(k − 1) = xt(k − 1) − xt(k − 2).
This means that to fit the original MPC framework, the state matrix should be altered.
It should use the growth rate of the time variables, rather than the time variables xt(k)
themselves, and the normal quantitative variables xq(k). So the new vector would look like:

xnew(k) =
[
xt(k) − xt(k − 1)

xq(k)

]
Now this new state vector can be steered to a constant equilibrium.
However, for a general MMPS system it might not be possible to describe the growth rate of
xt and original states xq (if the system is non-homogeneous) without the original xt states.
This means that the state vector needs to contain both xt(k) − xt(k − 1) and xt. So then:

xnew(k) =

xt(k) − xt(k − 1)
xt(k)
xq(k)


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16 Stability of the Discrete-event MPC Problem

To be able to perform MPC on the xt variable(s), we should use an equilibrium point where
the values for the time variables vary, based on the event k the system is in. Now the state
vector should stay close to the varying equilibrium point xeq(k).
Because xeq(k) is not a constant value, it cannot be easily subtracted from the state vector
beforehand. This is why it makes more sense to alter the formulation of the stage cost ℓ(x, u)
and terminal cost Vf (x), such that xeq(k) is part of the description. So for an MMPS system
the cost function will have the following form:

Definition 4-1.1 (Cost function DE MMPS system).

J(x0, u) = VN (x0, u) =
Np−1∑
i=0

ℓ(x(k − 1 + i), u(k + i)) + Vf (x(k + Np − 1)) (4-1)

where

ℓ(x, u) = 1
2(x(k) − xeq(k))T Q(x(k) − xeq(k)) + 1

2(u(k) − ueq(k))T R(u(k) − ueq(k))

Vf (x) = 1
2(x(k) − xeq(k))T P (x(k) − xeq(k))

4-2 System constraint region

The system constraint region Z is computed as Z ⊆ X × U. As (part of) the state vector is
additive homogeneous, the state constraint set will be as well. This means that the system
constraint region is (partially) additive homogeneous too. In Assumption 3-2.1, Z is assumed
to be closed. Clearly, this is not the case for the MMPS case, since the region can be shifted
by an infinite amount. However, for a certain initial condition and a certain event counter
k, Z is bounded. So the additive homogeneity of the system constraint region will not be a
problem in the optimization. It just does not always lay at the same location.

4-3 Terminal constraint set

In the same way as the system constraint region, the terminal constraint set is (partially)
additive homogeneous, because it depends on the initial condition of the time variables xt(k).
So for the time variables, when the system is started at a later time, all xeq,t values will be
shifted by a similar amount. The equilibria for xq(k) and xt(k) − xt(k − 1) will stay at the
same location. As the previous section already pointed out, this shift based on xt(0) will not
be a problem, because the initial conditions are known at the beginning of the optimization.
Another concern to take a look at is that the terminal set Xf for an MMPS system depends
on the event counter k. In Section 3-2, the terminal set is described as a sub-level set of the
terminal cost Vf (Xf = leva Vf ). So it has the shape of an ellipsoid with xeq at its center.
Now that the equilibrium point for the time variables xeq,t varies with event counter k, the
terminal constraint set varies with k as well. So actually Xf (k). Next to that, both xt(k) and
xt(k) − xt(k − 1) can only be positive. So the terminal set will only consist of the positive
values of the sub-level set in the direction of xt(k) and xt(k) − xt(k − 1). For a certain x(0)
and k, this terminal set Xf (k) will be closed and bounded. So it is a compact set, which is
needed for Assumption 3-2.2 to hold.

J.C.M. Kroese Master of Science Thesis



4-4 Linearizing the system 17

4-4 Linearizing the system

In order to determine the terminal cost Vf and the terminal constraint set Xf , a linearization
of the MMPS system around the equilibrium point is needed. Because the system contains
the operations minimization and maximization, this is not straightforward to acquire.

The equilibrium point can be computed based on the original MMPS formulation together
with the conditions that should hold at the equilibrium: xt(k)−xt(k−1) = xt(k−1)−xt(k−2)
and xq(k) = xq(k−1). Then the MMPS system should be written into the conjunctive canon-
ical format. According to Theorem 2-5.1, this is always possible. The calculated equilibrium
value can be used to figure out which part of the conjunctive formulation is responsible for
the value of x(k) when the system is at the equilibrium. So it needs to be determined which
part of the conjunctive formulation "wins" at the equilibrium.

To acquire the linearization of the MMPS system at the equilibrium, one now just needs
to linearize this "winning" part of the conjunctive formulation. This is straightforward, be-
cause the "winning" part only consists of the operations addition and scaling. Now that the
linearization is acquired, the state feedback gain K and the terminal cost matrix P can be
determined in the same way as in Section 3-2-2.

4-5 Conclusion

This chapter addressed the concerns that had been raised in the conclusion of Chapter 3. To
fix the issue that the equilibrium is not constant, the MPC procedure was altered. xt(k) −
xt(k − 1) was added to the state vector. As it is generally not possible to describe the states
without the original state xt, xt was also kept a part of the new state vector. Next to that,
the equilibrium values are included in the description for the cost function, since subtracting
them in the beginning is not as straightforward as in the DT case.

Dealing with the additive homogeneity property of the time variables comes down to looking
at the sets in a different way. They will not always have the same value. However, if the
initial values are known the sets can be computed. Dealing with a dependency on the event
counter k needs some extra care. A set will move as the horizon moves, so its value will shift
during the optimization. One needs to make sure that at each optimization the right set is
taken into account.

The concerns on how to linearize an MMPS system, was solved by looking at the conjunctive
formulation and finding out which part of this formulation is responsible for the value of the
state at the equilibrium. From here, the linearization is easy to acquire.

As all concerns raised in Chapter 3 have been addressed and a solution was proposed if needed,
the MPC procedure from Chapter 3 can now be applied to (non-homogenous) DE MMPS
systems. Chapter 6 will investigate an example of such a system.

Master of Science Thesis J.C.M. Kroese



18 Stability of the Discrete-event MPC Problem

J.C.M. Kroese Master of Science Thesis



Chapter 5

Control of the MMPS System

This chapter demonstrates how a Max-Min-Plus-Scaling (MMPS) system should be rewritten
such that it can be controlled efficiently with Model predictive control (MPC). Firstly, the
model will be rewritten as a Mixed logical dynamical (MLD) system. Combined with a cost
function this can be recast as a Mixed integer quadratic programming (MIQP) problem.

This chapter uses the altered state vector

x(k) =

xt(k) − xt(k − 1)
xt(k)
xq(k)


that was proposed in Section 4-1.

5-1 Rewriting the MMPS system as an MLD system

To be able to apply MPC on an MMPS system in an efficient way, the problem needs to be
written into another format. This section describes the first step to achieve this: recasting
the MMPS system as an MLD system. It follows a similar procedure as in [14].

According to Theorem 2-5.1, all MMPS systems can be rewritten into the conjunctive MMPS
format.

x(k) = min
i=1,...,K

max
j=1,...,ni

(αT
i,jp(k) + βi,j) (5-1)

To be able to rewrite this conjunctive MMPS model as an MLD model the conditions at
the end of Section 2-5-3 should hold. What these conditions entail for a conjunctive MMPS
system, is summarized in Assumption 5-1.1.

Master of Science Thesis J.C.M. Kroese



20 Control of the MMPS System

Assumption 5-1.1 (Bounded conjunctive MMPS system). Define:

gi = maxj=1,...,ni(αT
i,jp(k) + βi,j) = maxj=1,...,ni hi,j for i = 1, . . . , K

f = mini=1,...,K gi

Then it holds that:

• gi − hi,j is bounded for i = 1, . . . , K and j = 1, . . . , ni.

• gi − f is bounded for i = 1, . . . , K.

To describe the procedure on how to rewrite a conjunctive MMPS system as an MLD system,
we will first take a look at a one-dimensional example system:

x(k) = min
(

max( αT
1,1p(k) + β1,1︸ ︷︷ ︸

h11

, αT
1,2p(k) + β1,2︸ ︷︷ ︸

h12

, αT
1,3p(k) + β1,3︸ ︷︷ ︸

h13

, αT
1,4p(k) + β1,4︸ ︷︷ ︸

h14

) ,

max( αT
2,1p(k) + β2,1︸ ︷︷ ︸

h21

, αT
2,2p(k) + β2,2︸ ︷︷ ︸

h22

, αT
2,3p(k) + β2,3︸ ︷︷ ︸

h23

)
)

For each extra term in the maximizations and minimization of the example, a variable needs
to be defined. With l10 = h11 and l20 = h21, it can be defined that:

l11 = max(l10, h12)
l12 = max(l11, h13)
l13 = max(l12, h14)
l21 = max(l20, h22)
l22 = max(l21, h23)
x(k) = min(l13, l22)

With these definitions, the MMPS model can be written as an MLD model. For the first
maximization it holds that:

o11 = h12 − l10

δ11 =
{

1 if o11 ≥ 0
0 if o11 < 0

then l11 = l10 + (h12 − h10) · δ11 = l11 + o11 · δ11 = h11 + z11

o12 = h13 − l11

δ12 =
{

1 if o12 ≥ 0
0 if o12 < 0

then l12 = l11 + (h13 − l11) · δ12 = l11 + o12 · δ12 = l11 + z12 = h11 + z11 + z12

o13 = h14 − l12

δ13 =
{

1 if o13 ≥ 0
0 if o13 < 0

then l13 = l12 + (h14 − l12) · δ13 = l12 + o13 · δ13 = l12 + z13 = h11 + z11 + z12 + z13
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The second maximization can be transformed in a similar way. The minimization can be
represented as:

o1 = l22 − l12

δ1 =
{

1 if o1 ≤ 0
0 if o1 > 0

then x(k) = l12 + (l22 − l12) · δ1 = l12 + o1 · δ1 = l12 + z1 = h11 + z11 + z12 + z13 + z1

Now the δ constraints should be altered to fit the MLD format. First, we define mij = min oij

and Mij = max oij . In the same way mi = min oi and Mi = max oi. Now the maximization
δ constraint

[oij(k) ≥ 0] ⇔ [δij = 1]

can be represented by{
oij(k) ≥ ε + (mij − ε)(1 − δij)
oij(k) ≤ Mijδij

and the minimization δ constraint

[oi(k) ≤ 0] ⇔ [δi = 1]

can be represented by{
oi(k) ≥ ε + (mi − ε)δi

oi(k) ≤ Mi(1 − δi)

The variables zij = δij · oij , can be expressed as:

[δij = 1] ⇒ [zij = oij(k)]
[δij = 0] ⇒ [zij = 0]

This is the same as the four constraints:
zij ≤ Mijδij

zij ≥ mijδij

zij ≤ oij − mij(1 − δij)
zij ≥ oij − Mij(1 − δij)

The same conversion holds for zi = δi · oi.

For the example model, all of the above can be summarized as the following MLD system:

x(k) = h11 + z11 + z12 + z13 + z1 = α1p(k) + β1 +
[
1 1 1 0 0 1

]


z11(k)
z12(k)
z13(k)
z21(k)
z22(k)
z1(k)


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subject to:
s.t.

−1 0 0 0 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 1





o11(k)
o12(k)
o13(k)
o21(k)
o22(k)
o1(k)


+



−m11 0 0 0 0
−M11 − ε 0 0 0 0 0

0 −m12 0 0 0 0
0 −M12 − ε 0 0 0 0
0 0 −m13 0 0 0
0 0 −M13 − ε 0 0 0
0 0 0 −m21 0 0
0 0 0 −M21 − ε 0 0
0 0 0 0 −m22 0
0 0 0 0 −M22 − ε 0
0 0 0 0 0 m1 − ε
0 0 0 0 0 M1

−M11 0 0 0 0 0
m11 0 0 0 0 0

−m11 0 0 0 0 0
M11 0 0 0 0 0

0 −M12 0 0 0 0
0 m12 0 0 0 0
0 −m12 0 0 0 0
0 M12 0 0 0 0
0 0 −M13 0 0 0
0 0 m13 0 0 0
0 0 −m13 0 0 0
0 0 M13 0 0 0
0 0 0 −M21 0 0
0 0 0 m21 0 0
0 0 0 −m21 0 0
0 0 0 M21 0 0
0 0 0 −M21 0
0 0 0 0 m22 0
0 0 0 0 −m22 0
0 0 0 0 M22 0
0 0 0 0 0 −M1
0 0 0 0 0 m1
0 0 0 0 0 −m1
0 0 0 0 0 M1





δ11(k)
δ12(k)
δ13(k)
δ21(k)
δ22(k)
δ1(k)


+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

−1 0 0 0 0 0
1 0 0 0 0 0

−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
0 0 0 0 0 1
0 0 0 0 0 −1





z11(k)
z12(k)
z13(k)
z21(k)
z22(k)
z1(k)


+ ≤



−m11
−ε

−m12
−ε

−m13
−ε

−m21
−ε

−m22
−ε
−ε
M1
0
0

−m11
M11

0
0

−m12
M12

0
0

−m13
M13

0
0

−m21
M21

0
0

−m22
M22

0
0

−m1
M1



For the general system (Equation 2-4), this can be generalized in Theorem 5-1.1.

Theorem 5-1.1 (Rewriting a conjunctive MMPS system as an MLD system). Provided that
Assumption 5-1.1 holds, the conjunctive MMPS system in Definition 2-5.1 can be written as
the following MLD system

x(k) = α1,1p(k) + β1,1 +
n1−1∑
j=1

z1j +
K−1∑
i=1

zi (5-2)

subject to:
for each maximization

−oij(k) + (ε − mij)δi ≤ −mij

oij(k) − Mijδij ≤ 0
zij − Mijδij ≤ 0

−zij + mijδij ≤ 0
−oij + zij − mijδij ≤ −mij

oij − zij + Mijδij ≤ Mij

for i = 1, . . . , K − 1, j = 1, . . . , ni

(5-3)
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5-2 Rewriting the MLD system as an MIQP Problem 23

for each minimization

−oi(k) + (mi − ε)δi ≤ −ε

oi(k) + Miδi ≤ Mi

zi − Miδi ≤ 0
−zi + miδi ≤ 0
−oi + zi − miδi ≤ −mi

oi − zi + Miδi ≤ Mi

for i = 1, . . . , K − 1

(5-4)

Next to that the bounds on the state and the input need to be added if these apply.

For larger systems it can happen that several oij descriptions are equal among themselves or
equal to oi. Then these descriptions (and their corresponding δi(j) and zi(j) variables) can be
merged. This will result in a smaller system with fewer constraints.

When x(k) is not one-dimensional, the model can be looked at component-wise. So

x(k) =
[
x1(k) x2(k) x3(k) x4(k)

]T

x1(k) = min
i=1,...,K1

max
j=1,...,n1,i

(αT
i,jp(k) + βi,j)

5-2 Rewriting the MLD system as an MIQP Problem

To be able to control the system with MPC, the newly acquired MLD system needs to be
reformulated as a Mixed integer programming problem. Based on the objective function,
the problem will either turn out to be a Mixed integer quadratic programming (MIQP) or a
Mixed integer linear programming (MILP) problem.

Definition 5-2.1 (MLD-MPC Problem [15]). The MLD-MPC problem can be recast as a
MIQP problem.

min
V̂ (k)

V̂ (k)T S1V̂ (k) + 2(S2 + xT (k)S3)V̂ (k)

subject to: F1V̂ (k) ≤ F2 + F3x(k)
(5-5)

If S1 = 0, the MLD-MPC problem is a MILP problem.

This thesis focuses on a quadratic cost function. To write the MLD-MPC problem in the way
defined above, multiple steps have to be completed. These steps will be illustrated in the
next subsections.

Master of Science Thesis J.C.M. Kroese



24 Control of the MMPS System

5-2-1 Rewriting the system model

The first step to reach the formulation in Definition 5-2.1 is to use successive substitution:

x(k) = Ax(k − 1) + B1u(k) + B2δ(k) + B3z(k) + B4
x(k + 1) = A(Ax(k − 1) + B1u(k) + B2δ(k) + B3z(k) + B4) + B1u(k + 1) + B2δ(k + 1)

+B3z(k + 1) + B4
...

x(k + Np − 1) = ANpx(k − 1) +
∑Np−1

i=0 Aj−i−1(B1u(k + i) + B2δ(k + i) + B3z(k + i) + B4)

This can also be written in matrix format:


x(k)

x(k + 1)
...

x(k + Np − 1)

 =


A
A2

...
ANp


︸ ︷︷ ︸

M2

x(k − 1) +


B1 0 · · · 0

AB1 B1 · · · 0
...

... . . . ...
ANp−1B1 ANp−2B1 · · · B1


︸ ︷︷ ︸

T1


u(k)

u(k + 1)
...

u(k + Np − 1)



+


B2 0 · · · 0

AB2 B2 · · · 0
...

... . . . ...
ANp−1B2 ANp−2B2 · · · B2


︸ ︷︷ ︸

T2


δ(k)

δ(k + 1)
...

δ(k + Np − 1)



+


B3 0 · · · 0

AB3 B3 · · · 0
...

... . . . ...
ANp−1B3 ANp−2B3 · · · B3


︸ ︷︷ ︸

T3


z(k)

z(k + 1)
...

z(k + Np − 1)



+


B4

AB4 + B4
...

ANp−1B4 + ANp−2B4 + · · · + B4


︸ ︷︷ ︸

M3

(5-6)

This is equal to the more compact matrix notation:

x̂(k) = M2x(k − 1) + T1û(k) + T2δ̂(k) + T3ẑ(k) + M3

where

ŝ(k) =
[
s(k) s(k + 1) · · · s(k + Np − 1)

]T

The input and auxiliary variables can be merge into the free variable vector V (k). Now in
the same way

V̂ (k) =
[
û(k)T δ̂(k)T ẑ(k)T

]T

Using this V̂ (k) results in:

x̂(k) = M2x(k − 1) +
[
T1 T2 T3

]
V̂ (k) + M3 = M2x(k − 1) + M1V̂ (k) + M3 (5-7)
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5-2-2 Rewriting the constraints

The constraints from the MLD model are given as:

E1x(k − 1) + E2u(k) + E3δ(k) + E4z(k) ≤ g5

These need to be satisfied at each time step. Next to that, the final state x(k + Np − 1) needs
to be within the bounds on the state. This comes down to:



E1 0 . . . 0 0
0 E1 . . . 0 0
...

... . . . ...
...

0 0 . . . E1 0
0 0 . . . 0 I
0 0 . . . 0 −I


︸ ︷︷ ︸

Ê1


x(k − 1)

x(k)
...

x(k + Np − 2)
x(k + Np − 1)

 +



E2 0 . . . 0
0 E2 . . . 0
...

... . . . ...
0 0 . . . E2
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê2


u(k)

u(k + 1)
...

u(k + Np − 1)



+



E3 0 . . . 0
0 E3 . . . 0
...

... . . . ...
0 0 . . . E3
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê3


δ(k)

δ(k + 1)
...

δ(k + Np − 1)

 +



E4 0 . . . 0
0 E4 . . . 0
...

... . . . ...
0 0 . . . E4
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê4


z(k)

z(k + 1)
...

z(k + Np − 1)

 ≤



g5
g5
...

g5
xmax

−xmin


︸ ︷︷ ︸

ĝ5

So in short:

Ê1

[
x(k − 1)

x̂(k)

]
+ Ê2û(k) + Ê3δ̂(k) + Ê4ẑ(k) ≤ ĝ5 (5-8)

[
x(k − 1)

x̂(k)

]
needs to be written in terms of x(k − 1):

[
x(k − 1)

x̂(k)

]
=

[
I

M2

]
x(k − 1) +

[
0

M1

]
V̂ (k) +

[
0

M3

]

Filling this in in Equation 5-8 gives:(
Ê1

[
0

M1

]
+

[
Ê2 Ê3 Ê4

] )
︸ ︷︷ ︸

F1

V̂ (k) ≤ ĝ5 − Ê1

[
0

M3

]
︸ ︷︷ ︸

F2

−Ê1

[
I

M2

]
︸ ︷︷ ︸

F3

x(k − 1) (5-9)

Combining the model in Equation 5-7 and the constraints in Equation 5-9, a description of
the constrained system up to the planning horizon Np is formulation in Equation 5-10. This
is done in terms of the previous state and the free variables up to the prediction horizon.

x(k) = M1V̂ (k) + M2x(k − 1) + M3

subject to: F1V̂ (k) ≤ F2 + F3x(k − 1)
(5-10)

Master of Science Thesis J.C.M. Kroese



26 Control of the MMPS System

5-2-3 Implementing a quadratic cost function

The last step in writing the MLD system as an MIQP problem is implementing a cost function.
Just like in Section 3-2, this section will use the quadratic cost function in Equation 4-1.
In matrix format, the cost function looks like:

J2(x0, u) =
( [

x(k − 1)
x̂(k)

]
−


xeq(k − 1)

xeq(k)
...

xeq(k + Np − 1)


︸ ︷︷ ︸

x̂eq

)T


Q 0 · · · 0 0
0 Q · · · 0 0
...

... . . . ...
...

0 0 · · · Q 0
0 0 · · · 0 P


︸ ︷︷ ︸

Q̂

( [
x(k − 1)

x̂(k)

]
−


xeq(k − 1)

xeq(k)
...

xeq(k + Np − 1)


︸ ︷︷ ︸

x̂eq

)

+
(
û(k) −


ueq(k − 1)

ueq(k)
...

ueq(k + Np − 1)


︸ ︷︷ ︸

ûeq

)T


R 0 · · · 0
0 R · · · 0
...

... . . . ...
0 0 · · · R


︸ ︷︷ ︸

R̂

(
û(k) −


ueq(k − 1)

ueq(k)
...

ueq(k + Np − 1)


︸ ︷︷ ︸

ûeq

)

Now the state evolution can be filled in in this cost function.

J2(x0, u) =
( [

I
M2

] [
x(k − 1)

x̂(k)

]
+

[
0

M1

]
V̂ (k) +

[
0

M3

]
− x̃eq

)T
Q̂

( [
I

M2

] [
x(k − 1)

x̂(k)

]
+

[
0

M1

]
V̂ (k) +

[
0

M3

]
− x̃eq

)

+
(
V̂ (k) −

ûeq

0
0

 )T

R̂ 0 0
0 0 0
0 0 0

 (
V̂ (k) −

ûeq

0
0

 )

=V̂ T (k)
( [

0
M1

]T

Q̂

[
0

M1

]
+

R̂ 0 0
0 0 0
0 0 0

 )
V̂ (k)

+ 2
(
xT (k − 1)

[
I

M2

]T

Q̂

[
0

M1

]
+

( [
0

M3

]
− x̂eq

)T
Q̂

[
0

M1

]
−

ûeq

0
0


R̂ 0 0

0 0 0
0 0 0

 )
V̂ (k)

+
( [

I
M2

]
x(k − 1) +

[
0

M3

]
− x̂eq

)T
Q̂

( [
I

M2

]
x(k − 1) +

[
0

M3

]
− x̂eq

)
+

ûeq

0
0


T R̂ 0 0

0 0 0
0 0 0


ûeq

0
0


(5-11)

When the cost function is minimized, only the terms that include the free variable V̂ (k) have
to be taken into account. So with the 2-norm cost function, the minimization will look like:

min
V̂ (k)

V̂ (k)T S1V̂ (k) + 2(S2 + xT (k − 1)S3)V̂ (k)

subject to: F1V̂ (k) ≤ F2 + F3x(k − 1)
(5-12)

where

S1 =
[

0
M1

]T

Q̂

[
0

M1

]
+

R̂ 0 0
0 0 0
0 0 0


S2 =

( [
0

M3

]
− x̂eq

)T
Q̂

[
0

M1

]
−

ûeq

0
0


R̂ 0 0

0 0 0
0 0 0


S3 =

[
I

M2

]T

Q̂

[
0

M1

]
(5-13)
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5-3 Conclusion 27

This is indeed an MIQP problem.

How the cost matrices Q, R and P should be chosen to ensure a stable closed-loop system,
has been discussed in Chapter 4.

5-3 Conclusion

This chapter gave an overview of the steps that need to be taken to transform an MMPS
system into an MIQP problem, that can be solved using MPC. Every MMPS system can be
recast as an conjunctive MMPS system. Using auxiliary variables, all bounded conjunctive
MMPS systems can be transformed into an MLD system. This chapter used a quadratic cost
function to transform perform the last transformation: from an MLD system to an MIQP
problem. Here the altered cost function from Equation 4-1 was used, such that it works when
the equilibrium value of the state and the input is not constant or equal to zero.

All steps that are taken in this chapter are not necessarily difficult, but especially rewriting the
MMPS system as an MLD system (Section 5-1) can be quite a tedious process. Next to that,
this is a step where errors can be made quite easily, which would mess up the optimization
in the end. Caution is therefore recommended.
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Chapter 6

Case Study: Urban Railway Line

This chapter applies the research in this Master thesis project to a real life example. The
system that will be used is a partially homogeneous discrete-event (DE) Max-Min-Plus-Scaling
(MMPS) system of an urban railway line. This chapter will run through the same steps as
that were taken in Chapter 5. Next to that, the stability of the system will be investigated by
a disturbance rejection analysis and by looking at the consequences of parametric uncertainty.

The chapter starts off by introducing the parameters that are present in the system in Table
6-1 and by initializing the state vector. Furthermore, the system description is presented.

Description Parameter
trains k
stations j
arrival time at station k aj(k)
departure time at station k dj(k)
# passengers in train k when leaving station j ρj(k)
# passengers at station j when train k leaves σj(k)
maximum capacity train ρmax

running time from station j-1 to j τr,j

# passengers entering station j per minute ej

# passengers that can board the train per minute b
# passengers that can disembark the train per minute f
fraction of passengers in train k that leave the train k at station j βj

headway time τH

Table 6-1: List of model parameters

There are several variables that depend on these parameters. These are summarized in Table
6-2.
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α values γ values
α1 = b

b−ej
γ0 = 1

b ρmax

α2 = b
b−ej

βj

f γ1 = 1
α3 = 1

b−ej
γ2 = −1−βj

b + βj

f

α4 = − ej

b−ej

Table 6-2: Computation of α and γ values

The initial values of the system are equal to:

for j = 1 for k = 0
a1(k) = max(τr,1 , kτ̄1 + τH) aj(0) = max((j − 1)τ̄0 + τr,j , τH)
d1(k) = (k + 1)τ̄1 dj(0) = jτ̄0
ρ1(k) = ρ̄1 ρj(0) = ρ̄0
σ1(k) = 0 σj(0) = 0

(6-1)

Using this initialization and the parameters in Table 6-1, the urban railway model can be
described by Equation 6-2.

for j > 1 and k > 0:

aj(k) = max
(
dj−1(k) + τr,j , dj(k − 1) + τH

)
(6-2a)

dj(k) = min
(
α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1) , γ0 + γ1aj(k) + γ2ρj−1(k)

)
(6-2b)

ρj(k) = (1 − βj)ρj−1(k) + b
(
dj(k) − aj(k) − βj

f
ρj−1(k)

)
(6-2c)

σj(k) = σj(k − 1) + ej
(
dj(k) − dj(k − 1)

)
− b

(
dj(k) − aj(k) − βj

f
ρj−1(k)

)
(6-2d)

These equations can be interpreted in the following way. The arrival time aj(k) is the max-
imum of the time train k can be at station j and the time the previous train has enough
headway time from station j. The departure time dj(k) is the minimum of the time that ei-
ther the platform is empty or that the train is full. The people in the train when it leaves the
station ρj(k) is the amount of people in train at previous station ρj−1(k) minus the amount
of people getting out at the station plus the amount of people getting in. The amount of
people at the platform when the train leaves σj(k) is equal to the amount of people left on
the platform when previous train left σj(k − 1) plus the amount of people that arrived in the
meantime minus the amount of people getting in in train k.

The four states are combined in one state vector

xj(k) =


aj(k)
dj(k)
ρj(k)
σj(k)

 x(k) =


x2(k)

...
xJ−1(k)
xJ(k)


where J is the total amount of stations.
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6-1 Rewriting the System

To be able to efficiently optimize the urban railway line with Model predictive control (MPC),
it needs to be written as an Mixed integer quadratic programming (MIQP) problem. The
first step in achieving this is to add an input to the system, such that control is possible.
After that, this section carries out the rewriting process (as described in Chapter 5), where
it starts with rewriting the state vector.

6-1-1 Adding an input vector

The system in Equation 6-2 does not include a control variable, this is why the first step
in rewriting the system is to add this. The input that is chosen for this system is an extra
waiting time at the station. This means it should be added to dj(k). However, it does not
make sense to let the train wait longer if the train is already full. So the input is only added
to the first term of the minimization, which corresponds to a situation where the train would
leave because the platform is empty.

Next to that, it will be assumed that the amount of people that can board the train per
minute b is higher than the amount of people that will enter the platform per minute ej . This
means that all people that entered the station in the extra waiting time uj(k) have actually
boarded the train. So σj(k) is not influenced by the input and ejuj(k) should be added to
the formula for ρj(k). So we end up with the system in Equation 6-3.

aj(k) = max
(
dj−1(k) + τr,j , dj(k − 1) + τH

)
dj(k) = min

(
α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1) + uj(k) , γ0 + γ1aj(k) + γ2ρj−1(k)

)
ρj(k) = (1 − βj)ρj−1(k) + b

(
dj(k) − aj(k) − βj

f
ρj−1(k)

)
+ ejuj(k)

σj(k) = σj(k − 1) + ej
(
dj(k) − dj(k − 1)

)
− b

(
dj(k) − aj(k) − βj

f
ρj−1(k)

)
(6-3)

6-1-2 Rewriting the state vector

To rewrite the state vector, the state vector first needs to be separated in time and quantitative
variables:

xj,t(k) =
[
aj(k)
dj(k)

]
xj,q(k) =

[
ρj(k)
σj(k)

]
(6-4)

As it is not possible to describe the difference in the time variables (aj(k) − aj(k − 1) and
dj(k) − dj(k − 1)) without the original time variables, the new state vector per station will
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consist of the following six states:

xj(k) =



aj(k) − aj(k − 1)
dj(k) − dj(k − 1)

aj(k)
dj(k)
ρj(k)
σj(k)


(6-5)

6-1-3 Rewriting to conjunctive canonical form

Following Theorem 2-5.1, the general formulation of an MMPS system can rewritten into a
conjunctive canonical formulation.

The conjunctive canonical form is defined as

x(k) = min
i=1,...,K

max
l=1,...,ni

(αT
i,lp(k) + βi,l)

Each of the six states in the state description can be rewritten into this format. As the size
of some of these descriptions is rather large, the full description can be found in Appendix
A-1. ρj(k) and σj(k) are described as a min-max-min formulation, because then the size of
the system remains smaller and from there it is already possible to rewrite the system as an
Mixed logical dynamical (MLD) system. Here, only the sizes of the six state descriptions are
listed.

aj(k) − aj(k − 1) = min
i1=1

max
l1=1,2

(ηT
i1,l1xj(k − 1) + λi1,l1xj−1(k) + µi1,l1)

dj(k) − dj(k − 1) = min
i2=1,2

max
l2=1,2

(ηT
i2,l2xj(k − 1) + λi2,l2xj−1(k) + µi2,l2)

aj(k) = min
i1=3

max
l3=1,2

(ηT
i3,l3xj(k − 1) + λi3,l3xj−1(k) + µi3,l3)

dj(k) = min
i4=1,2

max
l4=1,2

(ηT
i4,l4xj(k − 1) + λi4,l4xj−1(k) + µi4,l4)

ρj(k) = min
i5=1,2

max
l5=1,2

min
r5=1,2

(ηT
i5,l5xj(k − 1) + λi5,l5xj−1(k) + µi5,l5)

σj(k) = min
i6=1,2

max
l6=1,2

min
r6=1,...,8

(ηT
i6,l6xj(k − 1) + λi6,l6xj−1(k) + µi6,l6)

(6-6)

6-1-4 Rewriting to MLD system

An MMPS system can be recast as an MLD system if Assumption 5-1.1 holds. This means
that no term in the maximizations should be equal to −∞ and no term in the minimizations
should be equal to +∞. Since this condition is satisfied for all terms in the formulation in
Equation 6-6, the MMPS system can indeed be recast as an MLD system.

To do this we follow the procedure in Section 5-1, for each of the 6 states separately, starting
from the formulation in Equation 6-6. When doing this, one will notice that there is a large
portion of identical oij and oi functions. These can be replaced by only one o value and thus
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one pair of auxiliary variables δ and z. In the end, this results in the system per station
described in Equation 6-7.

xj(k) =



0 0 −1 0 0 0
0 0 0 −α1 0 α3
0 0 0 0 0 0
0 0 0 α4 0 α3
0 0 0 bα4 0 α1
0 0 0 0 0 0


︸ ︷︷ ︸

A1,j

xj(k − 1) +



0
1
0
1
ej

0


︸ ︷︷ ︸
B1,j

uj(k) +



1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 0 1


︸ ︷︷ ︸

B3

zj(k)+



0 1 0
0 α1 0
0 1 0
0 α1 0
0 −bα4 0
0 0 0


ρmax

τr,j

τH


︸ ︷︷ ︸

B4,j

+



0 0 0 1 0 0
0 0 0 α1 α2 0
0 0 0 1 0 0
0 0 0 α1 α2 0
0 0 0 −bα4 b(α2 − γ2) 0
0 0 0 0 0 0


︸ ︷︷ ︸

A11,j

xj−1(k)

(6-7)

subject to:

E1,jxj(k − 1) + E2,juj(k) + E3,jδj(k) + E4zj(k) ≤ g5,j − E11,jxj−1(k)

The set of constraints is fully written out in Appendix A-2. Here the last nine constraints are
the state and input constraints. Each variable has a lower bound of zero. ρj(k) is the only
state with a constraint on the maximal value (the train capacity). If there is a maximal extra
waiting time, this can be incorporated by choosing umax < ∞. So in short, the MLD model
equivalent to the original MMPS system in Equation 6-2 is:

xj(k) = A1,jxj(k − 1) + B1,juj(k) + B2zj(k) + B4,j + A11,jxj−1(k)
s.t. E1,jxj(k − 1) + E2,juj(k) + E3,jδj(k) + E4zj(k) ≤ g5,j − E11,jxj−1(k)

(6-8)

It is desired to have a system for the entire network (not per station) and we want this system
to only depend on the previous state x(k−1), the input u(k) and known variables. To achieve
this, we need to get rid of xj−1(k). So each state description of the previous station is filled
in in xj(k), until it depends on the the state at station 1: x1(k). This is an initial condition.

For the state description and the constraints, this results in the following description. Here
all matrices, apart form the last one, have a lower block triangular structure.

x(k) =


x2(k)
x3(k)

...
xJ(k)

 =


A1,2 0 · · · 0

A11,3A1,2 A1,3 · · · 0
...

... . . . ...
A11,J · · · A11,3A1,2 A11,J · · · A11,4A1,3 · · · A1,J

 x(k − 1) +


B1,2 0 · · · 0

A11,3B1,2 B1,3 · · · 0
...

... . . . ...
A11,J · · · A11,3B1,2 A11,J · · · A11,4B1,3 · · · B1,J

 u(k)

+


B3,2 0 · · · 0

A11,3B3,2 B3,3 · · · 0
...

... . . . ...
A11,J · · · A11,3B3,2 A11,J · · · A11,4B3,3 · · · B3,J

 z(k) +


I 0 · · · 0

A11,3 I · · · 0
...

... . . . ...
A11,J · · · A11,3 A11,J · · · A11,4 · · · I




B4,2
B4,3

...
B4,J



+


A11,2

A11,3A11,2
...

A11,J · · · A11,2

 x1(k)
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subject to:


E1,2 0 0 · · · 0
E11,3A1,2 E1,3 0 · · · 0

E11,4A11,3A1,2 E11,4A1,3 E1,4 · · · 0
...

...
... . . . ...

E11,JA11,J−1 · · · A11,3A1,2 E11,JA11,J−1 · · · A11,4A1,3 E11,JA11,J−1 · · · A11,5A1,4 · · · E1,J

 x(k − 1) +


E2,2 0 0 · · · 0

E11,3B1,2 E2,3 0 · · · 0
E11,4A11,3B1,2 E11,4B1,3 E2,4 · · · 0

...
...

... . . . ...
E11,JA11,J−1 · · · A11,3B1,2 E11,JA11,J−1 · · · A11,4B1,3 E11,JA11,J−1 · · · A11,5B1,4 · · · E2,J

 u(k)

+


E3,2 0 0 · · · 0

E11,3B2,2 E3,3 0 · · · 0
E11,4A11,3B2,2 E11,4B2,3 E3,4 · · · 0

...
...

... . . . ...
E11,JA11,J−1 · · · A11,3B2,2 E11,JA11,J−1 · · · A11,4B2,3 E11,JA11,J−1 · · · A11,5B2,4 · · · E3,J

 δ(k) +


E4,2 0 0 · · · 0

E11,3B3,2 E4,3 0 · · · 0
E11,4A11,3B3,2 E11,4B3,3 E4,4 · · · 0

...
...

... . . . ...
E11,JA11,J−1 · · · A11,3B3,2 E11,JA11,J−1 · · · A11,4B3,3 E11,JA11,J−1 · · · A11,5B3,4 · · · E4,J

 z(k)

≤


g5,2
g5,3

...
g5,J

 −


0 0 0 · · · 0

E11,3 0 0 · · · 0
E11,4A11,3A1,2 E11,4 0 · · · 0

...
...

... . . . ...
E11,JA11,J−1 · · · A11,3 E11,JA11,J−1 · · · A11,4 E11,JA11,J−1 · · · A11,5 · · · 0




B4,2
B4,3

...
B4,J

 −


E11,2

E11,3A11,2
...

E11,JA11,J−1 · · · A11,2

 x1(k)

Or in short:

x(k) = A1x(k − 1) + B1,u(k) + B3z(k) + B4 + A11x1(k)
s.t. E1x(k − 1) + E2u(k) + E3δ(k) + E4z(k) ≤ g5 − E11x1(k)

(6-9)

6-1-5 Rewriting to MIQP problem

The description of the MLD system (Equation 6-9) is very similar to the description in the
general procedure that was followed in Section 5-2. Only the terms related to x1(k) are added.
This is why in this section only the main steps in the transformation to an MIQP problem
will be stated.

By successive substitution the model can be written as:


x(k)
x(k + 1)

...
x(k + Np − 1)

 =


A1
A2

1
...

A
Np

1


︸ ︷︷ ︸

M2

x(k − 1) +


B1 0 · · · 0

A1B1 B1 · · · 0
...

... . . . ...
A

Np−1
1 B1 A

Np−2
1 B1 · · · B1


︸ ︷︷ ︸

T1


u(k)

u(k + 1)
...

u(k + Np − 1)

 +


B3 0 · · · 0

A1B3 B3 · · · 0
...

... . . . ...
A

Np−1
1 B3 A

Np−2
1 B3 · · · B3


︸ ︷︷ ︸

T3


z(k)

z(k + 1)
...

z(k + Np − 1)



+


B4

A1B4 + B4
...

A
Np−1
1 B4 + A

Np−2
1 B4 + · · · + B4


︸ ︷︷ ︸

M3

+


A11 0 · · · 0

A1A11 A11 · · · 0
...

... . . . ...
A

Np−1
1 A11 A

Np−2
1 A11 · · · A11


︸ ︷︷ ︸

Mx1


x1(k)

x1(k + 1)
...

x1(k + Np − 1)



This is equal to the more compact matrix notation:

x̂(k) =M2x(k − 1) + T1û(k) + T3ẑ(k) + M3 + Mx1 x̂1(k)
=M2x(k − 1) + M1V̂ (k) + M3 + Mx1 x̂1(k)

(6-10)

The constraints can be written as:

E1 0 . . . 0 0
0 E1 . . . 0 0
...

... . . . ...
...

0 0 . . . E1 0
0 0 . . . 0 I
0 0 . . . 0 −I


︸ ︷︷ ︸

Ê1


x(k − 1)

x(k)
...

x(k + Np − 2)
x(k + Np − 1)

 +



E2 0 . . . 0
0 E2 . . . 0
...

... . . . ...
0 0 . . . E2
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê2


u(k)

u(k + 1)
...

u(k + Np − 1)

 +



E3 0 . . . 0
0 E3 . . . 0
...

... . . . ...
0 0 . . . E3
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê3


δ(k)

δ(k + 1)
...

δ(k + Np − 1)


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+



E4 0 . . . 0
0 E4 . . . 0
...

... . . . ...
0 0 . . . E4
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê4


z(k)

z(k + 1)
...

z(k + Np − 1)

 ≤



g5
g5
...

g5
xmax

−xmin


︸ ︷︷ ︸

ĝ5

−



E11 0 . . . 0
0 E11 . . . 0
...

... . . . ...
0 0 . . . E11
0 0 . . . 0
0 0 . . . 0


︸ ︷︷ ︸

Ê11


x1(k)

x1(k + 1)
...

x1(k + Np − 1)



So in short:

Ê1

[
x(k − 1)

x̂(k)

]
+ Ê2û(k) + Ê3δ̂(k) + Ê4ẑ(k) ≤ ĝ5 − Ê11x̂1(k) (6-11)

which is equal to:

(
Ê1

[
0

M1

]
+

[
Ê2 Ê3 Ê4

] )
︸ ︷︷ ︸

F1

V̂ (k) ≤ ĝ5 − (Ê11 − Ê1

[
0

Mx1

]
)x̂1(k) − Ê1

[
0

M3

]
︸ ︷︷ ︸

F2

−Ê1

[
I

M2

]
︸ ︷︷ ︸

F3

x(k − 1)

(6-12)

When combining this with a quadratic cost function, this can be recast as an MIQP problem.
For the urban railway line, this means that the MIQP problem can be written as:

min
V̂ (k)

V̂ (k)T S1V̂ (k) + 2(S2 + xT (k − 1)S3)V̂ (k)

subject to: F1V̂ (k) ≤ F2 + F3x(k − 1)
(6-13)

where

S1 =
[

0
M1

]T

Q̂

[
0

M1

]
+

R̂ 0 0
0 0 0
0 0 0


S2 =

( [
0

M3

]
+

[
0

Mx1

]
x̂1(k) − x̂eq

)T
Q̂

[
0

M1

]
−

ûeq

0
0


R̂ 0 0

0 0 0
0 0 0


S3 =

[
I

M2

]T

Q̂

[
0

M1

]

F1 = Ê1

[
0

M1

]
+

[
Ê2 Ê3 Ê4

]
F2 = ĝ5 − (Ê11 − Ê1

[
0

Mx1

]
)x̂1(k) − Ê1

[
0

M3

]

F3 = −Ê1

[
I

M2

]

A quadratic cost function makes sense for the urban railway line model, because large delays
will the penalized more severely. For an urban railway line there is not a clear timetable.
This means that small delays are not a very large problem. Next to that, it is not possible to
overtake in this model. So trains with a large delay can really clog the system.
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6-2 The Cost function

This section follows the procedure from Chapter 3, together with the alterations proposed in
Chapter 4.

6-2-1 Determining the equilibrium values

To determine the equilibrium values of the urban railway line, one has to take a look at the
original MMPS system including the input, together with the conditions that should hold at
the equilibrium.

aj(k) = max
(
dj−1(k) + τr,j , dj(k − 1) + τH

)
dj(k) = min

(
α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1) + uj(k) , γ0 + γ1aj(k) + γ2ρj−1(k)

)
ρj(k) = (1 − βj)ρj−1(k) + b

(
dj(k) − aj(k) − βj

f
ρj−1(k)

)
+ ejuj(k)

σj(k) = σj(k − 1) + ej
(
dj(k) − dj(k − 1)

)
− b

(
dj(k) − aj(k) − βj

f
ρj−1(k)

)
The conditions at the equilibrium are:

aj(k) − aj(k − 1) = aj(k − 1) − aj(k − 2)
dj(k) − dj(k − 1) = dj(k − 1) − dj(k − 2)
ρj(k) = ρj(k − 1)
σj(k) = σj(k − 1)

(6-14)

Apart from these constraints we will also assume: ρj(k) = ρj−1(k), because this will make
the computation easier and in practice it would be preferable to keep the amount of people
in a train equal over the whole network.

If we use the description of σj(k) together with the fourth condition, we can see that: dj(k) =
α1aj(k) + α2ρeq + α4dj(k − 1). This means that σeq = 0 and ueq = 0.

The description of ρj(k) together with the extra constraint shows us that: aj(k) = dj(k) −
(1

b + 1
f )βjρeq. From this we can conclude that aj(k) − aj(k − 1) = dj(k) − dj(k − 1). When

combining this with the previous expression, it can be concluded that dj(k)−dj(k−1) = βj

ej
ρeq.

This means that the equilibrium values for the whole state vector will be

xj,eq =



βj

ej
ρeq

βj

ej
ρeq

aj(0) + k
βj

ej
ρeq

dj(0) + k
βj

ej
ρeq

ρeq

0


uj,eq = 0

(6-15)

It is obvious that the equilibrium value for aj(k) and dj(k) are not constant for a certain
station, as they depend on the event counter k, but they are known.
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6-2-2 Determining the terminal cost

To determine the terminal cost, the first step is to linearize the system around its equilibrium,
which has been computed in the previous subsection. This linearization will have the following
form:

x(k) = A1,eqx(k − 1) + B1,equ(k)

The choice for the parameters of the system has an influence on the position of the equilibrium
and thus on the part of the MMPS system that is used in that equilibrium (as described in
Section 4-4). This means that we need to make sure that it holds that: xj,eq(k) = A1j,eqxj(k−
1) + B1j,equj(k) + A11j,eqxj−1(k) + B4j,eq for j = 2, . . . , J .
After a few iterations we find out that the part of the conjunctive MMPS formulation that is
responsible for the value of xj(k) at the equilibrium is:

xj(k) =



0 0 −1 0 0 0
0 0 0 −α1 0 α3
0 0 0 0 0 0
0 0 0 α4 0 α3
0 0 0 bα4 0 α1
0 0 0 0 0 0


xj(k − 1) +



0 0 0 1 0 0
0 0 0 α1 α2 0
0 0 0 1 0 0
0 0 0 α1 α2 0
0 0 0 −bα4 b(α2 − γ2) 0
0 0 0 0 0 0


xj−1(k) +



0
1
0
1
ej

0


uj(k) +



0 1 0
0 α1 0
0 1 0
0 α1 0
0 −bα4 0
0 0 0


ρmax

τr,j

τH



(6-16)

For the parameters, it then needs to hold that:

βj

ej
= βi

ei

ρ̄0 = ρ̄1 = ρeq

τ̄0 = τ̄1 = βj

ej
ρeq

τr,j = βj( 1
ej

− 1
b

− 1
f

)ρeq

(6-17)

These constraints on the parameters can be quite restrictive. This will be looked at more
closely when studying the robustness of the system.
In a similar way as in Section 6-1-4, the expression in Equation 6-16 can be rewritten as
a system for the whole network that only depends on the states at the first station x1(k)
(together with x(k−1) and u(k)). This will have the form: x(k) = A1,eqx(k−1)+B1,equ(k)+
A11,eqx1(k) + B4,eq.
For J = 3 the matrices will have the following structure:

A1,eq =



0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −α1,2 0 α3,2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α4,2 0 α3,2 0 0 0 0 0 0
0 0 0 bα4,2 0 α1,2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α4,2 0 α3,2 0 0 −1 0 0 0
0 0 0 α1,3α4,2 + bα2,3α4,2 0 α1,3α3,2 + α2,3α1,2 0 0 0 −α1,3 0 α3,3
0 0 0 α4,2 0 α3,2 0 0 0 0 0 0
0 0 0 α1,3α4,2 + bα2,3α4,2 0 α1,3α3,2 + α2,3α1,2 0 0 0 α4,3 0 α3,3
0 0 0 −bα4,3α4,2 + b2(α2,3 − γ2,3)α4,2 0 −bα4,3α3,2 + b(α2,3 − γ2,3)α1,2 0 0 0 bα4,3 0 α1,3
0 0 0 0 0 0 0 0 0 0 0 0


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B1,eq =



0 0
1 0
0 0
1 0
e2 0
0 0
1 0

α1,3 + α2,3e2 1
1 0

α1,3 + α2,3e2 1
−bα4,3 + b(α2,3 − γ2,3)e2 e3

0 0



B4,eq =



0 1 0 0
0 α1,2 0 0
0 1 0 0
0 α1,2 0 0
0 −bα4,2 0 0
0 0 0 0
0 α1,2 1 0
0 α1,3α1,2 − bα2,3α4,2 α1,3 0
0 α1,2 1 0
0 α1,3α1,2 − bα2,3α4,2 α1,3 0
0 −bα4,3α1,2 − b2(α2,3 − γ2,3)α4,2 −bα4,3 0
0 0 0 0




ρmax

τr,2
τr,3
τH



A11,eq =



0 0 0 1 0 0
0 0 0 α1,2 α2,2 0
0 0 0 1 0 0
0 0 0 α1,2 α2,2 0
0 0 0 −bα4,2 b(α2,2 − γ2,2) 0
0 0 0 0 0 0
0 0 0 α1,2 α2,2 0
0 0 0 α1,3α1,2 − bα2,3α4,2 α1,3α2,2 + bα2,3(α2,2 − γ2,2) 0
0 0 0 α1,2 α2,2 0
0 0 0 α1,3α1,2 − bα2,3α4,2 α1,3α2,2 + bα2,3(α2,2 − γ2,2) 0
0 0 0 −bα4,3α1,2 − b2(α2,3 − γ2,3)α4,2 −bα4,3α2,2 + b2(α2,3 − γ2,3)(α2,2 − γ2,2) 0
0 0 0 0 0 0



(6-18)

The linear version of this system is:

x(k) = A1,eqx(k − 1) + B1,equ(k)

We should choose Q, R ≻ 0 and (A, B) stabilizable (which is the case if e2 & b(α2,3 − γ2,3)e2
or e3 are not zero). Then the state feedback gain K (u = Kx) should be chosen as the infinite
horizon LQ gain. Now, P is the solution to the Lyapunov equation in Equation 3-6. Then
the terminal cost is equal to Vf (x) = 1

2(x(k) − xeq(k))T P (x(k) − xeq(k)).

6-2-3 Determining the terminal constraint set

In the terminal set for the Urban railway line there is one condition that needs to hold:
ρj(k) ≤ ρmax. As the terminal set is positive definite, it should hold that if the system starts
in Xf , it should stay in Xf . This means that the terminal set should only consist of positive
state values (x(k) ≥ 0), because both a (difference in a) time instance and an amount of
people cannot be negative.
So this means that the terminal set can be summarized as

x(k) ≥ 0
⋂ [

ρ2(k)
ρ3(k)

]
≤ ρmax

However, this is not a very robust choice. If there is some parameter uncertainty,
[
ρ2(k)
ρ3(k)

]
≤

ρmax will lead to instability rather easily. This is why some caution is built into the terminal
set. This means that the final terminal set is:

x(k) ≥ 0
⋂ [

ρ2(k)
ρ3(k)

]
≤ µρmax (6-19)

Where µ ≤ 1. How to choose µ will be described in Section 6-4-4
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6-3 Assumptions and Theorems

This section will prove that the assumptions in Section 3-2-1 hold for the urban railway line.
In this way in can be ensured that the reasoning from Section 3-2-2 holds and that using the
2-norm cost function will result in a stable MPC controller.

The functions f (which is the state description), ℓ and Vf are continuous. When the conditions
in Equation 6-17 hold, f(xeq, ueq) = xeq. Next to that, ℓ(xeq, ueq) = 0 and Vf (xeq) = 0. This
means that Assumption 3-2.1 holds.

X = [0, ∞)× [0, ∞)× [0, ∞)× [0, ∞)× [0, ρmax]× [0, ∞). U = [0, ∞)× [0, ∞) and it is coercive.
Both these sets contain the equilibrium. The terminal set Xf in Equation 6-19 is a subset of
X. For the set Z it holds that Z ⊆ X × U. This set has the shape of a polyhedron, as it is
bounded by the constraint in Equation 6-13. This means Z is closed and Assumption 3-2.2
holds.

Lastly, we take a look at the conditions in Assumption 3-2.3. It needs to hold for all x ∈ Xf

that
Vf (f(x, u)) ≤ Vf (x) − ℓ(x, u)

This can also be written as Vf (AK(x−xeq)) ≤ Vf (x−xeq)− 1
2(x−xeq)T QK(x−xeq). Because

it holds that AT
KPAK = P − µQK , µ > 1 (Equation 3-6), the equation can be rewritten as

Vf (AK(x − xeq)) = 1
2(x − xeq)T P (x − xeq) − 1

2µ(x − xeq)T QK(x − xeq)

≤ 1
2(x − xeq)T P (x − xeq) − 1

2(x − xeq)T QK(x − xeq)

= Vf (x − xeq) − ℓ(x − xeq, AK(x − xeq))

(6-20)

Next to that, the second part of the assumption holds because ℓ(x, u) ≥ q||x||2 + r||u||2 ≥
q||x||2 and Vf (x) ≤ p||x||2 for q = min eig(Q) and p = max eig(P ).

This means that all assumptions from Section 3-2-1 are satisfied. Since Xf contains the
equilibrium in its interior, Theorem 3-2.1 is valid. Furthermore, the hypotheses in Theorem
3-2.2 are satisfied as well. So the equilibrium is exponentially stable in XN .
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6-4 Results

This section shows the results for the MIQP problem. The parameter values that were used
for this optimization can be found in Appendix A-3. The Matlab scripts can be found in
Appendix B. The simulation uses a homogeneous system. So when there are no disturbances,
βj = βi = β and ej = ei = e. In this way the α and γ variables (Table 6-2) will be equal for
each station as well. The results are gathered for 100 trains (k = 100), but only the part of
the graphs that gives information will be depicted. The prediction horizon Np is equal to 5
trains.

First the results will be analyzed on its own. After this it will be analyzed how the system
behaves in the presence of disturbances and parametric uncertainty.

6-4-1 Analysis unperturbed system

When optimizing the MIQP problem in Equation 6-13, the results in Figure 6-1 are acquired.

Here the following stage cost matrices are used:

Qj =



10 0 0 0 0 0
0 10 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 10 0
0 0 0 0 0 1


Rj = 3

The first thing to notice is that the growth rate in aj(k) and dj(k) both go to the constant value
that was expected by the equilibrium value calculation (Figures 6-1a and 6-1b, respectively).
Next to that, the amount of people in the train (Figure 6-1e) stays at the assigned equilibrium
value as well (aside from a small computational error). Furthermore, the amount of people
left on the platform σj(k) (Figure 6-1f) is indeed zero. So without disturbances or parameter
uncertainty, the system behaves as expected.
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(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for aj(k) (d) Results for dj(k)

(e) Results for ρj(k) (f) Results for σj(k)

Figure 6-1: Results MPC state vector with 6 states
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6-4-2 Stability

The poles of A1,eq when J = 3 are α4,2, α4,3 and 10 times 0. This means that the linearized
plant is stable if |α4,2| < 1 and |α4,3| < 1. Since α4 = −e

b−e , the plant is stable when b > 2e.
To show that the controlled closed loop system is stable as well, we will take a look at the
disturbance rejection properties of the system. Two different output disturbances will be
added to the system. These disturbances represent the following two situations:

1. There are more people on the station than expected when the train arrives.
This can be represented as a pulse of size pρ on ρj(k) and a pulse of size 1

b pρ on dj(k)
and dj(k) − dj(k − 1) (if ρj(k) + pρ ≤ ρmax).

2. There is an animal on the train track, so the train needs to lower its speed.
This means the train arrives at the station later than expected, that there are more
people that need to enter the train and the train will leave later as well. So this can be
represented as a pulse of size pa on aj(k) and aj(k) − aj(k − 1), a pulse of size α1 · pa

on dj(k) and dj(k) − dj(k − 1) and a pulse of size bα4 · pa on ρj(k).

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure 6-2: Case 1: Results MPC output disturbance pρ
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For both cases the disturbance is present at station 2 and trains 5 up until 10 are influenced
by it. After that, the system goes back to the normal (disturbance-free) situation. In case
1 the pulses represent the situation when all extra people can fit in the train. Otherwise
pρ,real = pmax − peq and there would also be a pulse on σj(k) of size pρ − pρ,real. The design
of the system is depicted in Figure 6-3.

Figure 6-3: Setup output disturbance MPC control

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure 6-4: Case 2: Results MPC output disturbance pa
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For case 1 and pρ = 20, the results are summarized in Figure 6-2. Here the results for aj(k)
and dj(k) are skipped, since the disturbances are not very visible. The results for σj(k) are
skipped as well, because it is still equal to zero everywhere. From Figures 6-2a-6-2c, it is clear
that, indeed, after train 10 the disturbance is rejected in only a few events. After this, the
value is again at the equilibrium value. The input does stay above zero after the disturbance
has ended, because the trains that did not have to deal with extra people did not get delayed
and thus have to wait for the delayed trains to be able to leave station 2. The extra waiting
time is already a lot smaller at station 3. Next to that, the amount of people in the train
immediately after the disruption ended is lower than the equilibrium, because the train before
that left later than usual. So there were less people on the station when this train arrived.

For case 2 and pa = 2, the results are summarized in Figure 6-4. These graphs show a similar
picture to the graphs in Figure 6-2. Again, the disturbance is rejected only a few trains after
the pulse disturbance has ended and u2(k) stays large after the disruption has ended.

So the stability of the system is supported by these two cases of output disturbance rejection.

6-4-3 Uncertainty and robustness

This section checks whether the system has robust stability. For the system to be robustly
stable, the system needs to remain stable under the uncertainty that can be present in the sys-
tem.[16] This uncertainty can be caused by parametric uncertainty or unmodelled/neglected
dynamics uncertainty. In this section we will assume that there is only parametric uncertainty
present. For this situation, the uncertain parameters are assumed to be bounded within some
region [αmin, αmax].

In the urban railway line, the parametric uncertainty mainly lays in the parameters that
consider passengers. This means that the amount of passengers that enter the station per
minute ej , the fraction of people leaving the train βj and the initial amount of people ρ0 and
ρ1 are subject to uncertainty. Next to this, the running time τr,j has an uncertain factor, as
the train might need to stop or slow down on its way to the next station.

In this analysis, it is assumed that the parametric uncertainty in these parameters is equal
to:

• [e − 2, e + 2]

• [β − 0.2, β + 0.2]

• [ρ̄0 − 20, ρ̄0 + 20]

• [ρ̄1 − 20, ρ̄1 + 20]

• [τr − 2, τr + 2]

To show the consequences of the parametric uncertainty, we will start by looking at the same
two situations as in the previous subsection. After this the consequences of all parametric
uncertainties will be shown by analyzing their system description.

Now these situations are represented by an alteration in the parameters:
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1. There are more people than expected on the station when the train arrives.
This is represented as e2 = e + 2.

2. There is an animal on the train track, so the train needs to lower its speed.
This is represented as τr,2 = τr + 2.

The parametric uncertainty holds for all stations.

In Figure 6-5 the first situation is depicted. Even when the actual value of e2 is 2 people/min
higher, the MPC controller based on the original system is able to steer the growth rates back
to the right equilibrium values. The amount of people in the train is higher than the original
equilibrium value, but they do both go to a stable equilibrium. This shows that the system
has robust stability for the maximal parameter uncertainty of e2.

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure 6-5: Case 1: Results MPC with parameter uncertainty in e2

For situation 2, all states and the input will return to a stable value again. However, for the
states this value is not constant to the original equilibrium value. This makes sense, since a
larger τr,2 means that there is more time for people to arrive at the station and it takes more
time until all those people will have entered the train (d2(k) − a2(k) is larger). The headway
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time between the train does stay the same. For this headway time stay respected during the
simulation, we see that with some delay the values for the growth rate of a (Figure 6-6a) go
to the same (higher) value of the growth rate of d (Figure 6-6b). As this shift does not mean
that the system loses stability, robust stability is satisfied when the maximal running time
uncertainty is present.

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure 6-6: Case 2: Results MPC with parameter uncertainty in τr,2

Summary influence parameter uncertainty

Based on the system in Equation 6-18, the influence of the uncertainty set can be determined.
Here, the values in the situation where there is no uncertainty are depicted as e, β, α1, etc,
because in the homogeneous system these values are equal for each station. For convenience
we will abbreviate aj(k) − aj(k − 1) as aaj(k) and dj(k) − dj(k − 1) as ddj(k). Next to that,
we leave out the σj(k) terms, as these are always equal to zero.
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The influence of uncertainty in τr can be characterized as:

∆aa2(k) = ∆τr,2 − ∆a2(k − 1)
∆dd2(k) = −α1∆d2(k − 1) + α1∆τr,2 + ∆u2

∆ρ2(k) = e2∆d2(k − 1)
∆aa3(k) = ∆dd2(k)
∆dd3(k) = (α1 + α2e2)∆dd2(k) + α1∆d2(k − 1) − α1∆d3(k − 1) + ∆u3

∆ρ3(k) = b(−α4 + e2(α3 − γ2))∆dd2(k) + e3(α1∆d2(k − 1) − α1(3)∆d3(k − 1) − ∆u3)

where ∆ represents the deviation for the original equilibrium value caused by the uncertainty.

The first thing to notice is that τr,2 has an influence on the initial value of a2(k) (aj(0) =
max((j − 1)τ̄0 + τr,j , τH)). However, when τr,2 is lowered, this influence can be partially
compensated at the beginning by τH . So then ∆aa2(1) will be negative. If τr,2 is heightened
∆aa2(k) = ∆τr,2 − ∆a2(k − 1) will be zero. However, the value of aa2(k) needs to respect the
constraints caused by aj(k) = max(dj−1(k) + τr,j , dj(k − 1) + τH). So this is why the value of
aa2(k) gradually goes to the same value as dd2(k). A similar reasoning holds for aa3(k). At
first it is equal to dd2(k), but as it cannot stay at this value while satisfying the constraints,
it gradually transitions to the value of dd3(k) as well.

The extra waiting time at station 2 causes ∆dd2(k) to stay at a constant value. This constant
value is zero when τr,2 is lowered and larger than zero when τr,2 is heightened. u3 is able to
compensate the ∆d2(k − 1) and ∆d3(k − 1) term in ∆dd3(k) and ∆ρ3(k). So the values of
∆dd3(k) and ∆ρ3(k) in the equilibrium will be equal to a multiple of ∆dd2(k). So these will
be zero when τr,2 is lowered and larger than zero when τr,2 is heightened.

In the end, it can be concluded that the uncertainty in τr,2 does not lead to instability in the
system.

In a similar way influence of uncertainty in β2 can be described as:

∆aa2(k) = 0

∆dd2(k) = −α1∆d2(k − 1) + α1
f

ρ̄1∆β2 + ∆u2

∆ρ2(k) = e∆dd2(k) − ρ̄1∆β2

∆aa3(k) = ∆dd2(k)
∆dd3(k) = (α1 − eα2)∆dd2(k) − α2ρ̄1∆β2 + α1(∆d2(k − 1) − ∆d3(k − 1)) + ∆u3

∆ρ3(k) = (−bα4 + b(α2 − γ2))∆dd2(k) − b(α2 − γ2)ρ̄1∆β2 + e(α1∆d2(k − 1) − α1∆d3(k − 1)) + e∆u3

The results for β2 = β2 − 0.2 can be found in Appendix A-4. Altering β2 does not influence
the initial values of the system. When β2 is lowered, the system is able to return to the
original growth rates by itself without the input needing to interfere. However, the amount of
people in the train will end up in a higher equilibrium value, because there a negative input
would have been needed. This is not possible in the current system description.

When β2 is heightened it is harder to compensate, because if the train waits longer at the
second station, there will be more people at the third station as well. So the controller will
try to find a middle ground, but is unable to fully solve all of the deviations in the equilibrium
values.
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The influence of uncertainty e is harder to quantify, because e is present in all α variables
and there it can be part of the denominator as well as the numerator. This is why we will
show the actual equilibrium values rather than the change in these values. In general the
equilibrium values can be described as:

aa2(k) = −a2(k − 1) + τr + (k + 1)τ1

dd2(k) = b

b − e2
(τr + β

f
ρ̄1 + (k + 1)τ̄1 − d2(k − 1)) + u2

ρ2(k) = e2dd2(k) + (1 − β)ρ̄1

aa3(k) = (a2(k) − a2(k − 1))eq + u3

dd3(k) = (1 + e2
β

f
)α1dd2(k) + α1(d2(k − 1) − d3(k − 1) + τr) + u3

ρ3(k) = edd3(k) + (1 − β)ρ2(k) + eα2(1 − β)ρ1

An example of the heightened e2 value was already presented in Figure 6-5d. For an example
of the lowered e2 value, one can take a look at Appendix A-5. The first thing to notice is that
aa2(k) is calculated in the normal way. So its description is not influenced by uncertainty.
Next to that, in dd2(k) the influence of (k + 1)τ̄1 and −d2(k − 1) counteract each other, so
this has a stabilizing effect. If e2 is lowered, the system can stabilize itself without input,
because b

b−e2
will be lowered so the effect will die out. If e2 is heightened b

b−e2
will grow, as

well as d2(k −1). So this effect needs to be counteracted with a positive u2(k). This is what is
shown in figure A-2d in Appendix A-5. In this Appendix you can also see that, even though
dd2(k) and dd3(k) can (almost) be brought back to the original equilibrium, ρ3(k) and ρ2(k)
will not. This is because of the ρ̄1 terms in those descriptions.

There is no influence of the uncertainty in ρ̄0 on the location of the equilibria. Altering ρ̄0
only changes the location of the initial value.

Uncertainty in ρ̄1 can influence the equilibria. Its effect can be described as:

∆aa2(k) = ∆α2(k − 1)
∆dd2(k) = −α1∆d2(k − 1) + ∆u2 + α2∆ρ̄1

∆ρ2(k) = e∆dd2(k) + (1 − β)∆ρ̄1

∆aa3(k) = ∆dd2(k)
∆dd3(k) = (α1 + α2e2)∆dd2(k) + α2(1 − β)∆ρ̄1 + α1∆d2(k − 1) − α1∆d3(k − 1) + ∆u3

∆ρ3(k) = b(α4 + e(α2 − γ2))∆dd2(k) + b(α2 − γ2)(1 − β)∆ρ̄1 + e(α1∆d2(k − 1) − α1∆d3(k − 1) + ∆u3)

An example for ρ̄1 +20 can be found in Appendix A-6. If there are more people in the train at
station 1 this will automatically be compensated over time, as a larger portion of those people
will get out at later stations as well. If there are fewer people in the train at the beginning we
will see graphs that are very similar in shape to the situation where β2 is heightened. This
makes sense since the descriptions for the deviation of those variables is very similar.

As none of the parameter uncertainties in this section will lead to instability, it can be
concluded that the system has robust stability for uncertainties in the parameter for station
2.
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6-4-4 Sensitivity Terminal Set

In Section 6-2-3, it was already pointed out that a terminal set with the constraint ρj(k) ≤
ρmax would not be a robust choice. When the system is at ρj(k) = ρmax, uncertainty in the
parameters can very easily lead to instability. In this section it will be shown which buffer
needs to be build into the description of the terminal set to ensure that the terminal set is
indeed positive definite for all systems in the uncertainty set. So if we apply all worst-case
uncertainties on the parameters of station 2 at the same time, what is the maximal value of
ρj(k) that will ensure stability.
The peak that ρ2(k) and ρ3(k) reach under the uncertainty can be calculated as:

ρ2(k) =
( be2β2
(b − e2)f + 1 − β2

)
ρ̄1 + be2

b − e2
τr,2

ρ3(k) = bα4β(1
b

+ 1
f

)ρeq − (bα4α1,2 + b2(α2 − γ2)α4,2)(τr,2 + β2
f

ρ̄1) + b(α2 − γ2)(1 − β2)ρ̄1

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure 6-7: Results MPC sensitivity of terminal set

So we need to make sure that the choice of ρeq ensures that both ρ2(k) ≤ ρmax and ρ3(k) ≤
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ρmax. If we fill in ρ̄1 = ρeq +20 and τr,2 = β(1
e − 1

b − 1
f )ρeq +2, we get the following conditions:

ρeq ≤ (b − e2)fρmax − 20(be2β2 + (1 − β2)(b − e2)f) − 2be2f

be2(β2 − β) + (1 − β2)(b − e2)f + e2
e3

(b − e)βf

ρeq ≤
ρmax − 20

(
− bα4α2,2 + b2(α2 − γ2)(α2,2 − γ2,2)

)
+ 2(bα4α1,2 + b2(α2 − γ2)α4,2)

bα4(β(1
b + 1

f ) − α2,2 − α1,2β(1
e − 1

b − 1
f )) + b2(α2 − γ2)(α2,2 − γ2,2 − α4,2β(1

e − 1
b − 1

f ))

With the parameter values in Appendix A-3 and the uncertainty from Section 6-4-3, this
comes down to ρeq ≤ 126 and ρeq ≤ 130. So if the terminal set is chosen as

x(k) ≥ 0
⋂ [

ρ2(k)
ρ3(k)

]
≤ 126 (6-21)

the terminal set will be a robust choice for uncertainty in the parameters of station 2. The
results for ρeq = 126 and all worst-case uncertainties combined is depicted in Figure 6-7. One
can see that indeed the peak at station 2 is just slightly below ρmax (=217) and a larger value
would lead to instability.

6-5 Conclusion

This chapter implemented the procedure that has been composed in this master thesis on
a real life example: an urban railway line. The urban railway line is a partially additive
homogeneous DE MMPS system. The input that was used to control the system was an
extra waiting time at the station. The system has two time variables and two quantitative
variables. So for the time variables the difference in these states was added to the state vector.

In several steps the control on the MMPS system could be recast as an MIQP problem. Here,
the optimization variables were captured in the free variables V̂ (k), which consists of the
auxiliary variables δ̂(k) and ẑ(k) and the input û(k).

After the problem was fully described, it was confirmed that the assumptions and theorems
that were established in Chapter 3 indeed hold for the urban railway line. Next, the system
was simulated for several situations. For this simulation a homogeneous system was used. So
the parameters are equal for each station. It was concluded that the system is stable when
b > 2e. Next to that, the controlled system is able to successfully reject multiple disturbances.

When the equilibrium values were determined, several conditions on the parameters were
composed. As these conditions were quite restrictive, it made sense to study what the effect
would be of these values were being altered. This was done by studying the robust stability
of the system under parameter uncertainty. Here, it could be concluded that the system did
have robust stability. It was not always possible to return to the original equilibrium values,
though. In some situations it might help if the input is also allowed to be negative. So the
train could leave earlier than when it is full or all people have gotten in. This would mean
that, the input uj(k) should also be added in the second term of the description of dj(k). So
the description for the departure time at a station would become:

dj(k) = min
(
α1aj(k) + α2ρj−1(k) + α3σj(k − 1) + α4dj(k − 1) + uj(k), γ0 + γ1aj(k) + γ2ρj−1(k) + uj(k)

)
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Furthermore, the terminal set for the urban railway line was computed. This is the set of
state values where the states are all bigger than zero and the amount of people in the train
is smaller than ρmax. However, this is not a robust choice. When the uncertainty set for the
parameter at station 2 are taken into account, the second constraints should be altered. The
new condition that should hold for the terminal set, when using the parameters in Appendix
A-3, is ρj(k) ≤ 126.

So this example supports that the proposed procedure on how to design an MPC controller
for a (partially) additive homogenous DE MMPS system, is indeed able to guarantee a stable
outcome.
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Chapter 7

Conclusions and Contributions

This chapter will summarize the main conclusions that can be drawn from the research in this
master thesis. Next to that, this chapter will also give concise overview of the contribution
of this master thesis to the field of systems and control.

7-1 Conclusions

In this section an overview is given of the main conclusions in this master thesis report. This
will be done based on the research questions that were discussed in Section 1-2-1. First the
subquestions will be answered separately. Thereafter, everything will be combined to show
that the main research question of this master thesis was resolved.

7-1-1 Choice of state vector

The first subquestion that was investigated is:

How should the state vector of a time-invariant Max-Min-Plus-Scaling (MMPS) system be
defined?

A conventional Model predictive control (MPC) controller aims to steer a state and input to a
constant equilibrium value. For the MMPS system this is not possible for the time variables.
In this master thesis this was solved by adding an extra state for each time variable xt(k)
that was the difference between the current and the previous time variable xt(k) − xt(k − 1).
Now this difference can be steered to a constant equilibrium value. However, it is not always
possible to describe the difference in xt(k) without using the state xt(k) itself. This means
that xt(k) needs to stay in the state vector as well. So the altered state vector will look like

x(k) =

xt(k) − xt(k − 1)
xt(k)
xq(k)


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In the case study this solution was applied to a model of an urban railway line. Here it was
showed that the method works well for the undisturbed and disturbed case, as well as the
case where parameter uncertainty is present.

7-1-2 Linearization of the state description

The section subquestion that was examined is:

How can a time-variant MMPS system be linearized?
In the process of determining the terminal cost that will ensure stability, a linearization of
the MMPS system around the equilibrium is needed. This can be a challenge for a system
that consists of the operations minimization and maximization.

This problem is solved by first rewriting a general MMPS system into the canonical con-
junctive MMPS format. This is always possible. Now, one can determine which part of the
conjunctive MMPS system is responsible for determining the new state value when the sys-
tem is in the equilibrium. This part of the conjunctive formulation can be easily linearized.
In this way one has determined the linearization of the original MMPS system around the
equilibrium.

7-1-3 Choice of objective function

The third subquestion was:

How should the objective function be defined to guarantee stability for a time-variant MMPS
system?
In this master thesis the procedure for controlling a nonlinear discrete-time (DT) system with
a quadratic objective function was used as a basis. From there the procedure was altered such
that is was valid for a (nonlinear) discrete-event (DE) MMPS system as well.

In this procedure it is necessary that the weighting matrix on the state in the stage cost is
positive definite. This means that the weight on the original time variables xt(k) cannot be
put at zero. This meant that an alteration to the original quadratic objective function was
needed, because a time variable cannot be steered to a constant equilibrium value. To fix
this, a variable equilibrium value was added in the stage cost ℓ(x, u) and terminal cost Vf

that increases for the xt(k) state(s) as k increases.

Next to this, it could be concluded that the assumptions, that needed to hold for the nonlinear
DT system such that the objective function could control it in a stable way, were also valid
for the DE MMPS system.

7-1-4 Shape of terminal set

The third subquestion was the following:

What will the terminal set for a time-variant MMPS system look like?
The terminal constraint set of a (partially) additive homogeneous MMPS system is the sub-
level set of the terminal cost. This is an ellipsoid with xeq(k) at its center. Since the value of
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xt,eq(k) depends on the initial value and the value of k, the location of the terminal set is not
always the same. Next to this xt(k) and xt(k) − xt(k − 1) are always larger than zero (since
they represent times/time differences). So in general, the terminal set is a (multidimensional)
ellipsoid, where for xt(k) and xt(k) − xt(k − 1) only the positive values are included.

7-1-5 Main question

The main research question that needed to be answered in this master thesis is:

How can the process of designing a stabilizing MPC controller for a time-invariant MMPS
system be fully described?

For a DE system time-invariance comes down the system being (partially) additive homoge-
neous. So the question could be rephrased as:

How can the process of designing a stabilizing MPC controller for a (partially) additive ho-
mogeneous MMPS system be fully described?

This master thesis has successfully described the full process of how to design an MPC
controller for such a system. To apply the procedure that was proposed in Chapter 3, several
obstacles needed to be overcome. The first challenge was how to handle the equilibrium
for time variables. Next to this, we needed to find out how to linearize the MMPS system
around this acquired equilibrium. Furthermore, it needed to be checked whether the stability
assumptions for the objective function for nonlinear DT systems were still valid for nonlinear
DE systems. This included figuring out the shape of the terminal set.

7-2 Contributions

This master thesis has provided new insights in the field of system and control. These insights
can be summarized as:

• It provides a clear overview of how to recast MPC control on an MMPS system as an
Mixed integer quadratic programming (MIQP) problem.

• It provides a procedure on how to alter the state vector and how to choose a cost
function such that the MMPS system is stabilized.

• It shows how it can be proven that the procedure works by investigating the stability.
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Chapter 8

Recommendations for Future Work

As the Max-Min-Plus-Scaling (MMPS) system is a relatively new system description and
therefore not that thoroughly researched yet, there are still a lot of areas that can be in-
vestigated further. To continue on the work that I have conducted in this thesis, I would
recommend focusing on the next four areas:

• Develop a more compact way to write the conjunctive MMPS equation. It
might be possible to rewrite xt(k) − xt(k − 1) in a way that it is not necessary to have
the original xt(k) in the state vector as well. When you take a look at the system of the
urban railway model, this would mean that you would have to fill in for example dj(k)
in aj(k) multiple times. This would make the expression for aj(k) very large. However,
multiple of these terms will most likely be redundant.
Next to this, going from a maximization to a minimization (and vise versa) also adds a
lot of terms. So if this has to be done multiple times in a row, this will most likely lead
to redundant terms as well.
So it would be interesting to investigate if it is possible to develop an algorithm where
these redundant terms can be filtered out more easily.

• Use a new weight on the original state such that xt(k) does not need to be
weighted in the cost function. Right now both xt(k) and xt(k) − xt(k − 1) are
present in the state vector, because it is not possible to describe the states without
xt(k). In the cost function of the Model predictive control (MPC) problem, the weight
matrix on the state needs to be positive definite. So there has to be a weight on this
original xt(k) value. This is not ideal, because if there are some perturbation in the
system, it might not be possible to return to the wanted xt(k) value. The aim should
be to get the growth rate xt(k) − xt(k − 1) back to the equilibrium value.
A suggestion to solve this issue this is using the original state vector

x(k) =
[

xt(k)
xq(k)

]
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and using a non-diagonal weighting matrix on these states, such that in that way only
the difference in xt(k) can be charged.
For the stage cost on the state, this would look like:

(
[
x(k − 1)

x(k)

]
−

[
xeq(k − 1)

xeq(k)

]
)T ET QE(

[
x(k − 1)

x(k)

]
−

[
xeq(k − 1)

xeq(k)

]
) (8-1)

where the new weight on the state is ET QE and

E =
[

−Int 0 Int 0
0 0 0 Inq

]

One can observe that it holds that

E

[
x(k − 1)

x(k)

]
=

[
xt(k) − xt(k − 1)

xq(k)

]

So indeed, only xt(k) − xt(k − 1) and xq(k) will be weighted. In a same way the event
counter dependence in xeq(k) will be cancelled out as well. This can be extended to all
states from x(k − 1) up until x(k + Np − 1).
As this new weight matrix uses both x(k) and x(k − 1), the weight matrices for the
whole prediction horizon will partially overlap. It is interesting to investigate whether
this new weight matrix will indeed work or whether new problems will arise.

• Repeat the design process for other cost functions. This research focused on the
quadratic cost function, because it is the most commonly used in conventional MPC.
Next to that, it also made the most sense for the Urban railway line. There are other
cost function that might be interesting to investigate further, for example the 1-norm or
∞-norm. Furthermore, the Hilbert’s projective norm could be interesting for the time
variables, since this would circumvent the problem that the variable should go to an
equilibrium value.

• Design a new MMPS model. There are not that many real life examples of MMPS
systems yet. This is why it could be interesting to construct a new one. Then the
procedure in this master thesis can be tested on this new MMPS system as well.
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Appendix A

Urban Railway Network

This appendix expands on the details of the Urban railway network.

A-1 Conjunctive canonical formulation

This section elaborates on the conjunctive canonical formulation of the Urban railway network
examined in this master thesis.

aj(k) − aj(k − 1) = min
(

max(
[
0 0 −1 0 0 0

]
xj(k − 1) +

[
0 0 0 1 0 0

]
xj−1(k) +

[
0 1 0

] ρmax

τr,j

τH

 ,

[
0 0 −1 1 0 0

]
xj(k − 1) +

[
0 0 0 0 0 0

]
xj−1(k) +

[
0 0 1

] ρmax

τr,j

τH

)
)

dj(k) − dj(k − 1) = min
(

max(
[
0 0 0 −α1 0 α3

]
xj(k − 1) +

[
0 0 0 α1 α2 0

]
xj−1(k) + uj(k) +

[
0 α1 0

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 α3

]
xj(k − 1) +

[
0 0 0 0 α2 0

]
xj−1(k) + uj(k) +

[
0 0 α1

] ρmax

τr,j

τH

) ,

max(
[
0 0 0 −1 0 0

]
xj(k − 1) +

[
0 0 0 1 γ2 0

]
xj−1(k) +

[
1/b 1 0

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 0 γ2 0

]
xj−1(k) +

[
1/b 0 1

] ρmax

τr,j

τH

)
)

aj(k) = min
(

max(
[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 1 0 0

]
xj−1(k) +

[
0 1 0

] ρmax

τr,j

τH

 ,

[
0 0 0 1 0 0

]
xj(k − 1) +

[
0 0 0 0 0 0

]
xj−1(k) +

[
0 0 1

] ρmax

τr,j

τH

)
)
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dj(k) = min
(

max(
[
0 0 0 α4 0 α3

]
xj(k − 1) +

[
0 0 0 α1 α2 0

]
xj−1(k) + uj(k) +

[
0 α1 0

] ρmax

τr,j

τH

 ,

[
0 0 0 1 0 α3

]
xj(k − 1) +

[
0 0 0 0 α2 0

]
xj−1(k) + uj(k) +

[
0 0 α1

] ρmax

τr,j

τH

) ,

max(
[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 1 γ2 0

]
xj−1(k) +

[
1/b 1 0

] ρmax

τr,j

τH

 ,

[
0 0 0 1 0 0

]
xj(k − 1) +

[
0 0 0 0 γ2 0

]
xj−1(k) +

[
1/b 0 1

] ρmax

τr,j

τH

)
)

ρj(k) = min
(

max
(

min(
[
0 0 0 bα4 0 α1

]
xj(k − 1) +

[
0 0 0 −bα4 b(α2 − γ2) 0

]
xj−1(k) + ejuj(k) +

[
0 −bα4 0

] ρmax

τr,j

τH

 ,

[
0 0 0 −bα1 0 α1

]
xj(k − 1) +

[
0 0 0 bα1 b(α2 − γ2) 0

]
xj−1(k) + ejuj(k) +

[
0 bα1 −b

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 b 0 α1

]
xj(k − 1) +

[
0 0 0 −b b(α2 − γ2) 0

]
xj−1(k) + ejuj(k) +

[
0 −b bα1

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 α1

]
xj(k − 1) +

[
0 0 0 0 b(α2 − γ2) 0

]
xj−1(k) + ejuj(k) +

[
0 0 −bα4

] ρmax

τr,j

τH

)
)

,

max
(

min(
[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 0 0 0

]
xj−1(k) + ejuj(k) +

[
1 0 0

] ρmax

τr,j

τH

 ,

[
0 0 0 −b 0 0

]
xj(k − 1) +

[
0 0 0 b 0 0

]
xj−1(k) + ejuj(k) +

[
1 b −b

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 b 0 0

]
xj(k − 1) +

[
0 0 0 −b 0 0

]
xj−1(k) + ejuj(k) +

[
1 −b b

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 0 0 0

]
xj−1(k) + ejuj(k) +

[
1 0 0

] ρmax

τr,j

τH

)
))

σj(k) = min
(

max
(

min(
[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 0 0 0

]
xj−1(k) +

[
0 0 0

] ρmax

τr,j

τH

 ,

[
0 0 0 −bα1 0 0

]
xj(k − 1) +

[
0 0 0 bα1 0 0

]
xj−1(k) +

[
0 bα1 −bα1

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 bα4 0 α1

]
xj(k − 1) +

[
0 0 0 −bα4 b(α2 − γ2) 0

]
xj−1(k) +

[
−1 −bα4 0

] ρmax

τr,j

τH

 ,

[
0 0 0 −bα1 0 α1

]
xj(k − 1) +

[
0 0 0 bα1 b(α2 − γ2) 0

]
xj−1(k) +

[
−1 bα1 −b

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 b 0 0

]
xj(k − 1) +

[
0 0 0 0 −b 0

]
xj−1(k) +

[
0 −b b

] ρmax

τr,j

τH

 ,

[
0 0 0 bα4 0 0

]
xj(k − 1) +

[
0 0 0 −bα4 0 0

]
xj−1(k) +

[
0 −bα4 bα4

] ρmax

τr,j

τH

) ,
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min(
[
0 0 0 bα4 + b 0 α1

]
xj(k − 1) +

[
0 0 0 −bα4 − b b(α2 − γ2) 0

]
xj−1(k) +

[
−1 −bα4 − b b

] ρmax

τr,j

τH

 ,

[
0 0 0 bα4 0 α1

]
xj(k − 1) +

[
0 0 0 −bα4 b(α2 − γ2) 0

]
xj−1(k) +

[
−1 −bα4 0

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 −bα4 0 0

]
xj(k − 1) +

[
0 0 0 bα4 0 0

]
xj−1(k) +

[
0 bα4 −bα4

] ρmax

τr,j

τH

 ,

[
0 0 0 −b 0 0

]
xj(k − 1) +

[
0 0 0 b 0 0

]
xj−1(k) +

[
0 b −b

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 0 0 α1

]
xj(k − 1) +

[
0 0 0 0 b(α2 − γ2) 0

]
xj−1(k) +

[
−1 0 −bα4

] ρmax

τr,j

τH

 ,

[
0 0 0 −b 0 α1

]
xj(k − 1) +

[
0 0 0 b b(α2 − γ2) 0

]
xj−1(k) +

[
−1 b −bα4 − b

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 bα1 0 0

]
xj(k − 1) +

[
0 0 0 0 −bα1 0

]
xj−1(k) +

[
0 −bα1 bα1

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 0

]
xj(k − 1) +

[
0 0 0 0 0 0

]
xj−1(k) +

[
0 0 0

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 b 0 α1

]
xj(k − 1) +

[
0 0 0 −b b(α2 − γ2) 0

]
xj−1(k) +

[
−1 −b bα1

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 α1

]
xj(k − 1) +

[
0 0 0 0 b(α2 − γ2) 0

]
xj−1(k) +

[
−1 0 −bα4

] ρmax

τr,j

τH

)
)

,

max
(

min(
[
0 0 0 −ejα4 0 α4

]
xj(k − 1) +

[
0 0 0 ejα4 ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b ejα4 0

] ρmax

τr,j

τH

 ,

[
0 0 0 −b − ej 0 α4

]
xj(k − 1) +

[
0 0 0 b + ej ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b b + ej −bα1

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 −ej 0 1

]
xj(k − 1) +

[
0 0 0 ej ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 ej 0

] ρmax

τr,j

τH

 ,

[
0 0 0 −b − ej 0 1

]
xj(k − 1) +

[
0 0 0 b + ej ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 b + ej −b

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 bα1 − ej 0 α4

]
xj(k − 1) +

[
0 0 0 −bα1 + ej ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b −bα1 + ej b

] ρmax

τr,j

τH

 ,

[
0 0 0 −ej 0 α4

]
xj(k − 1) +

[
0 0 0 ej ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b ej −bα4

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 b − ej 0 1

]
xj(k − 1) +

[
0 0 0 −b + ej ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 −b + ej b

] ρmax

τr,j

τH

 ,

[
0 0 0 −ej 0 1

]
xj(k − 1) +

[
0 0 0 ej ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 ej 0

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 −bα4 0 α4

]
xj(k − 1) +

[
0 0 0 bα4 ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b bα4 ej

] ρmax

τr,j

τH

 ,

[
0 0 0 −b 0 α4

]
xj(k − 1) +

[
0 0 0 b ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b b ej − bα1

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 0 0 1

]
xj(k − 1) +

[
0 0 0 0 ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 0 ej

] ρmax

τr,j

τH

 ,

[
0 0 0 −b 0 1

]
xj(k − 1) +

[
0 0 0 b ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 b ej − b

] ρmax

τr,j

τH

) ,
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min(
[
0 0 0 bα1 0 α4

]
xj(k − 1) +

[
0 0 0 −bα1 ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b −bα1 b + ej

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 α4

]
xj(k − 1) +

[
0 0 0 0 ejγ2 + bβj/f − bα2 0

]
xj−1(k) +

[
ej/b 0 −ejα4

] ρmax

τr,j

τH

) ,

min(
[
0 0 0 b 0 1

]
xj(k − 1) +

[
0 0 0 −b ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 −b b + ej

] ρmax

τr,j

τH

 ,

[
0 0 0 0 0 1

]
xj(k − 1) +

[
0 0 0 0 ejγ2 + 1 − βj 0

]
xj−1(k) +

[
ej/b − 1 0 ej

] ρmax

τr,j

τH

)
))
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A-2 Constaints MLD system

In this section the constraints are written out that are formed when the conjunctive Max-
Min-Plus-Scaling (MMPS) system is written as a Mixed logical dynamical (MLD) system.
This means that the compact notation

E1,jxj(k − 1) + E2,juj(k) + E3,jδj(k) + E4zj(k) ≤ g5,j − E11,jxj−1(k)

is equal to:


0 0 0 −1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 1 0 0
0 0 0 −α1 0 0
0 0 0 α1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −α1 0 0
0 0 0 α1 0 0
0 0 0 α4 0 α3
0 0 0 −α4 0 −α3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 α4 0 α3
0 0 0 −α4 0 −α3
0 0 0 b 0 0
0 0 0 −b 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 b 0 0
0 0 0 −b 0 0
0 0 0 −bα1 0 0
0 0 0 bα1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −bα1 0 0
0 0 0 bα1 0 0
0 0 0 −b 0 0
0 0 0 b 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −b 0 0
0 0 0 b 0 0
0 0 0 bα4 0 α1
0 0 0 −bα4 0 −α1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 bα4 0 α1
0 0 0 −bα4 0 −α1
0 0 0 bα1 0 0
0 0 0 −bα1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 bα1 0 0
0 0 0 −bα1 0 0
0 0 0 −bα4 0 −α1
0 0 0 bα4 0 α1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −bα4 0 −α1
0 0 0 bα4 0 α1
0 0 0 bα4 0 0
0 0 0 −bα4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 bα4 0 0
0 0 0 −bα4 0 0
0 0 0 −ej 0 0
0 0 0 ej 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −ej 0 0
0 0 0 ej 0 0
0 0 0 ejα4 0 −α4
0 0 0 −ejα4 0 α4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ejα4 0 −α4
0 0 0 −ejα4 0 α4

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
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E1(j)

xj(k − 1) +



0
0
0
0
0
0
0
0
0
0
0
0
1

−1
0
0
1

−1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−1
1
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uj(k) +



ε − m1 0 0 0 0 0 0 0 0 0 0 0
−M1 0 0 0 0 0 0 0 0 0 0 0
−M1 0 0 0 0 0 0 0 0 0 0 0
m1 0 0 0 0 0 0 0 0 0 0 0

−m1 0 0 0 0 0 0 0 0 0 0 0
M1 0 0 0 0 0 0 0 0 0 0 0
0 ε − m2 0 0 0 0 0 0 0 0 0 0
0 −M2 0 0 0 0 0 0 0 0 0 0
0 −M2 0 0 0 0 0 0 0 0 0 0
0 m2 0 0 0 0 0 0 0 0 0 0
0 −m2 0 0 0 0 0 0 0 0 0 0
0 M2 0 0 0 0 0 0 0 0 0 0
0 0 m3 − ε 0 0 0 0 0 0 0 0 0
0 0 M3 0 0 0 0 0 0 0 0 0
0 0 −M3 0 0 0 0 0 0 0 0 0
0 0 m3 0 0 0 0 0 0 0 0 0
0 0 −m3 0 0 0 0 0 0 0 0 0
0 0 M3 0 0 0 0 0 0 0 0 0
0 0 0 m4 − ε 0 0 0 0 0 0 0 0
0 0 0 M4 0 0 0 0 0 0 0 0
0 0 0 −M4 0 0 0 0 0 0 0 0
0 0 0 m4 0 0 0 0 0 0 0 0
0 0 0 −m4 0 0 0 0 0 0 0 0
0 0 0 M4 0 0 0 0 0 0 0 0
0 0 0 0 ε − m5 0 0 0 0 0 0 0
0 0 0 0 −M5 0 0 0 0 0 0 0
0 0 0 0 −M5 0 0 0 0 0 0 0
0 0 0 0 m5 0 0 0 0 0 0 0
0 0 0 0 −m5 0 0 0 0 0 0 0
0 0 0 0 M5 0 0 0 0 0 0 0
0 0 0 0 0 ε − m6 0 0 0 0 0 0
0 0 0 0 0 −M6 0 0 0 0 0 0
0 0 0 0 0 −M6 0 0 0 0 0 0
0 0 0 0 0 m6 0 0 0 0 0 0
0 0 0 0 0 −m6 0 0 0 0 0 0
0 0 0 0 0 M6 0 0 0 0 0 0
0 0 0 0 0 0 m7 − ε 0 0 0 0 0
0 0 0 0 0 0 M7 0 0 0 0 0
0 0 0 0 0 0 −M7 0 0 0 0 0
0 0 0 0 0 0 m7 0 0 0 0 0
0 0 0 0 0 0 −m7 0 0 0 0 0
0 0 0 0 0 0 M7 0 0 0 0 0
0 0 0 0 0 0 0 m8 − ε 0 0 0 0
0 0 0 0 0 0 0 M8 0 0 0 0
0 0 0 0 0 0 −M8 0 0 0 0 0
0 0 0 0 0 0 0 m8 0 0 0 0
0 0 0 0 0 0 0 −m8 0 0 0 0
0 0 0 0 0 0 0 M8 0 0 0 0
0 0 0 0 0 0 0 0 ε − m9 0 0 0
0 0 0 0 0 0 0 0 −M9 0 0 0
0 0 0 0 0 0 0 0 −M9 0 0 0
0 0 0 0 0 0 0 0 m9 0 0 0
0 0 0 0 0 0 0 0 −m9 0 0 0
0 0 0 0 0 0 0 0 M9 0 0 0
0 0 0 0 0 0 0 0 0 ε − m10 0 0
0 0 0 0 0 0 0 0 0 −M10 0 0
0 0 0 0 0 0 0 0 0 −M10 0 0
0 0 0 0 0 0 0 0 0 m10 0 0
0 0 0 0 0 0 0 0 0 −m10 0 0
0 0 0 0 0 0 0 0 0 M10 0 0
0 0 0 0 0 0 0 0 0 0 ε − m11 0
0 0 0 0 0 0 0 0 0 0 −M11 0
0 0 0 0 0 0 0 0 0 0 −M11 0
0 0 0 0 0 0 0 0 0 0 m11 0
0 0 0 0 0 0 0 0 0 0 −m11 0
0 0 0 0 0 0 0 0 0 0 M11 0
0 0 0 0 0 0 0 0 0 0 0 m12 − ε
0 0 0 0 0 0 0 0 0 0 0 M12
0 0 0 0 0 0 0 0 0 0 0 −M12
0 0 0 0 0 0 0 0 0 0 0 m12
0 0 0 0 0 0 0 0 0 0 0 −m12
0 0 0 0 0 0 0 0 0 0 0 M12
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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︸ ︷︷ ︸

E3

δj(k)
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0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 −1 1 0 0 0 0 0
0 0 0 0 −1 1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 1 1 0 0 0
0 0 0 1 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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︸ ︷︷ ︸

E4

zj(k) ≤



0 −1 1 −m1
0 1 −1 0
0 0 0 0
0 0 0 0
0 −1 1 −m1
0 1 −1 M1
0 −α1 α1 −m2
0 α1 −α1 0
0 0 0 0
0 0 0 0
0 −α1 α1 −m2
0 α1 −α1 M2
1
b α4 0 −ε

−1
b −α4 0 M3

0 0 0 0
0 0 0 0
1
b α4 0 −m3

−1
b −α4 0 M3

0 b −b −ε
0 −b b M4
0 0 0 0
0 0 0 0
0 b −b −m4
0 −b b M4
0 −bα1 bα1 −m5
0 bα1 −bα1 0
0 0 0 0
0 0 0 0
0 −bα1 bα1 −m5
0 bα1 −bα1 M5
0 −b b −m6
0 b −b 0
0 0 0 0
0 0 0 0
0 −b b −m6
0 b −b M6
1 bα4 0 −ε

−1 −bα4 0 M7
0 0 0 0
0 0 0 0
1 bα4 0 −m7

−1 −bα4 0 M7
0 bα1 −bα1 −m8
0 −bα1 bα1 0
0 0 0 0
0 0 0 0
0 bα1 −bα1 −m8
0 −bα1 bα1 M8

−1 −bα4 0 −m9
1 bα4 0 0
0 0 0 0
0 0 0 0

−1 −bα4 0 −m9
1 bα4 0 M9
0 bα4 −bα4 −m9
0 −bα4 bα4 0
0 0 0 0
0 0 0 0
0 bα4 −bα4 −m10
0 −bα4 bα4 M10
0 −ej ej −m11
0 ej −ej 0
0 0 0 0
0 0 0 0
0 −ej ej −m11
0 ej −ej M11
ej

b ejα4 0 −ε
− ej

b −ejα4 0 M12
0 0 0 0
0 0 0 0
ej

b ejα4 0 −m12
− ej

b −ejα4 0 M12
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 umax
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
ρmax

τr,j

τH

1

 −



0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 α1 0 0
0 0 0 −α1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 α1 0 0
0 0 0 −α1 0 0
0 0 0 −α4 α2 − γ2 0
0 0 0 α4 γ2 − α2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −α4 α2 − γ2 0
0 0 0 α4 γ2 − α2 0
0 0 0 −b 0 0
0 0 0 b 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −b 0 0
0 0 0 b 0 0
0 0 0 bα1 0 0
0 0 0 −bα1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 bα1 0 0
0 0 0 −bα1 0 0
0 0 0 b 0 0
0 0 0 −b 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 b 0 0
0 0 0 −b 0 0
0 0 0 −bα4 b(α2 − γ2) 0
0 0 0 bα4 b(γ2 − α2) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −bα4 b(α2 − γ2) 0
0 0 0 bα4 b(γ2 − α2) 0
0 0 0 −bα1 0 0
0 0 0 bα1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −bα1 0 0
0 0 0 bα1 0 0
0 0 0 bα4 b(γ2 − α2) 0
0 0 0 −bα4 b(α2 − γ2) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 bα4 b(γ2 − α2) 0
0 0 0 −bα4 b(α2 − γ2) 0
0 0 0 −bα4 0 0
0 0 0 bα4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −bα4 0 0
0 0 0 bα4 0 0
0 0 0 ej 0 0
0 0 0 −ej 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ej 0 0
0 0 0 −ej 0 0
0 0 0 −ejα4 −ejγ2 − bβj(j)

f + bα2 0
0 0 0 ejα4 ejγ2 + bβj(j)

f − bα2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −ejα4 −ejγ2 − bβj(j)

f + bα2 0
0 0 0 ejα4 ejγ2 + bβj(j)

f − bα2 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



xj−1(k)

︸ ︷︷ ︸
g5(j)
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A-3 Parameter values

This appendix lists the parameter values that are used in the case study. These parameters
satisfy the conditions in Equation 6-17.

Parameter value Description
Np = 5 prediction horizon
J = 3 total # stations
K = 100 total # trains
ρmax = 217 [#] max. people in a train
τr,j = 2.692 [min] running times
ej = 8 [#/min] passenger entering station per minute
b = 30 [#/min] passengers that can board the train per minute
f = 35 [#/min] passengers that can disembark the train per minute
βj = 0.667 [-] fraction of passengers in train k leaving train at station j
τH = 1 [min] headway time
ρ̄0 = 64 [#] ρj(0) = ρ̄0
ρ̄1 = 64 [#] ρ1(k) = ρ̄1
τ̄1 = 5.333 [min] d1(k) = (k − 1)τ̄1
τ̄0 = 5.333 [min] dj(0) = jτ̄0
ρeq = 64 [#] amount of people in train at equilibrium

Table A-1: Parameter values Urban railway model
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A-4 Results uncertainty on lowered β2 value

This appendix gives the results for a parametric uncertainty in β2 which is equal to βj − 0.2.

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure A-1: Case 3: Results MPC with parameter uncertainty in β2
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A-5 Results uncertainty on lowered e2 value

This appendix gives the results for a parametric uncertainty in e2 which is equal to e2 − 2.

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure A-2: Case 1b: Results MPC with parameter uncertainty for lowered e2
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A-6 Results uncertainty on heightened ρ1 value

This appendix gives the results for a parametric uncertainty in ρ̄1 which is equal to ρ̄1 + 20.

(a) Results for aj(k) − aj(k − 1) (b) Results for dj(k) − dj(k − 1)

(c) Results for ρj(k) (d) Results for uj(k)

Figure A-3: Results MPC with parameter uncertainty for heightened ρ̄1
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Appendix B

Matlab code

B-1 Main code

1 clear all
2 close all
3 clc
4
5 % the states: [a_j(k)-a_j(k-1) d_j(k)-d_j(k-1) a_j(k) d_j(k) rho_j(k)

sigma_j(k)]
6 %% Variables
7 load equilibriumvar_full6st . mat
8 load Variables_6basic . mat
9

10 A111=zeros (6 , 6 , J ) ;
11 A1111=zeros (6 , 6 , J ) ;
12 B111=zeros (6 , 1 , J ) ;
13 B411=zeros (6 , 1 , J ) ;
14 for j=2:J
15 A111 ( : , 3 : end , j )=[−1 0 0 0 ;0 −alpha_1 ( j ) 0 alpha_3 ( j ) ; 0 0 0 0 ;0

alpha_4 ( j ) 0 alpha_3 ( j ) ; 0 b∗alpha_4 ( j ) 0 alpha_1 ( j ) ; 0 0 0 0 ] ;
16 A1111 ( : , 3 : end , j ) =[0 1 0 0 ;0 alpha_1 ( j ) alpha_2 ( j ) 0 ; 0 1 0 0 ;0 alpha_1

( j ) alpha_2 ( j ) 0 ; 0 −b∗alpha_4 ( j ) b ∗( alpha_2 ( j )−gamma_2 ( j ) ) 0 ; 0 0 0
0 ] ;

17 B111 ( : , : , j ) = [ 0 ; 1 ; 0 ; 1 ; e_j ( j ) ; 0 ] ;
18 B411 ( : , : , j ) =[0 1 0 ;0 alpha_1 ( j ) 0 ; 0 1 0 ;0 alpha_1 ( j ) 0 ; 0 −b∗alpha_4 ( j

) 0 ; 0 0 0 ] ∗ [ rho_max ; tau_rj ( j ) ; tau_H ] ;
19 end
20
21 for j=2:3
22 A1 ( : , : , j )=A111 ( : , : , j ) ;
23 A11 ( : , : , j )=A1111 ( : , : , j ) ;
24 B1 ( : , : , j )=B111 ( : , : , j ) ;
25 B4 ( : , : , j )=B411 ( : , : , j ) ;
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26 end
27
28 matr1=A1 ( : , : , 2 ) ;
29 matr2=A11 ( : , : , 2 ) ;
30 matr3=B1 ( : , : , 2 ) ;
31 matr4=eye ( size ( A11 ( : , : , 2 ) , 2 ) ) ;
32 A1tot=[matr1 zeros ( size ( A1 ( : , : , 2 ) , 1 ) , size ( A1 ( : , : , 2 ) , 2 ) ∗(J−2) ) ] ;
33 A11tot=matr2 ;
34 B1tot=[matr3 zeros ( size ( B1 ( : , : , 2 ) , 1 ) , size ( B1 ( : , : , 2 ) , 2 ) ∗(J−2) ) ] ;
35 B4hor=[matr4 zeros ( size ( A11 ( : , : , 2 ) , 1 ) , size ( A11 ( : , : , 2 ) , 2 ) ∗(J−2) ) ] ;
36 B4vert=B4 ( : , : , 2 ) ;
37 for j=3%:J
38 matr1= [ A11 ( : , : , j ) ∗matr1 A1 ( : , : , j ) ] ;
39 A1tot= [ A1tot ; matr1 zeros ( size ( A1 ( : , : , j ) , 1 ) , size ( A1 ( : , : , j ) , 2 ) ∗(J−j ) )

] ;
40 matr2= A11 ( : , : , j ) ∗matr2 ;
41 A11tot= [ A11tot ; matr2 ] ;
42 matr3= [ A11 ( : , : , j ) ∗matr3 B1 ( : , : , j ) ] ;
43 B1tot= [ B1tot ; matr3 zeros ( size ( B1 ( : , : , j ) , 1 ) , size ( B1 ( : , : , j ) , 2 ) ∗(J−j ) )

] ;
44 matr4= [ A11 ( : , : , j ) ∗matr4 eye ( size ( A11 ( : , : , j ) , 2 ) ) ] ;
45 B4hor= [ B4hor ; matr4 zeros ( size ( A11 ( : , : , j ) , 1 ) , size ( A11 ( : , : , j ) , 2 ) ∗(J−j

) ) ] ;
46 B4vert= [ B4vert ; B4 ( : , : , j ) ]
47 end
48 B4tot=B4hor∗B4vert ;
49 eq . A1tot=A1tot ;
50 eq . A11tot=A11tot ;
51 eq . B1tot=B1tot ;
52 eq . B4tot=B4tot ;
53
54 %% State feedback gain & weight matrix
55 Qx=kron ( eye (J−1) , diag ( [ 1 0 10 0 .01 0 .01 10 1 ] ) ) ;
56 Qu=kron ( eye (J−1) ,3 ) ;
57 mu=2;
58
59 K_L=dlqr ( eq . A1tot , eq . B1tot , Qx , Qu ) ;
60 Q_K=Qx+K_L ’ ∗ Qu∗K_L ;
61 P=dlyap ( ( eq . A1tot−eq . B1tot∗K_L ) ’ , mu∗Q_K ) ;
62
63 %% maxima & minima
64 maximum =24∗60∗100; % minutes in a day
65 minimum=−maximum ;
66 Max1=maximum ;
67 Max2=maximum ;
68 Max3=maximum ;
69 Max4=maximum ;
70 Max5=maximum ;
71 Max6=maximum ;
72 Max7=maximum ;
73 Max8=maximum ;
74 Max9=maximum ;
75 Max10=maximum ;
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76 Max11=maximum ;
77 Max12=maximum ;
78
79 min1=minimum ;
80 min2=minimum ;
81 min3=minimum ;
82 min4=minimum ;
83 min5=minimum ;
84 min6=minimum ;
85 min7=minimum ;
86 min8=minimum ;
87 min9=minimum ;
88 min10=minimum ;
89 min11=minimum ;
90 min12=minimum ;
91
92 %% State initialization
93 sys_small=buildsysk_6states ( Max1 , min1 , Max2 , min2 , Max3 , min3 , Max4 , min4 , Max5 ,

min5 , Max6 , min6 , Max7 , min7 , Max8 , min8 , Max9 , min9 , Max10 , min10 , Max11 , min11 ,
Max12 , min12 , J , 1 ) ;

94 addpath ’C:\Users\justi\Documents\Werktuigbouw\SC\Afstuderen\Matlab code\
Full model’

95 sys_full=buildsysk_fullmodel ( sys_small , J ) ;
96
97 %% Disturbance
98 % model error
99 sys_small_dis=buildsysk_6states ( Max1 , min1 , Max2 , min2 , Max3 , min3 , Max4 , min4 ,

Max5 , min5 , Max6 , min6 , Max7 , min7 , Max8 , min8 , Max9 , min9 , Max10 , min10 , Max11 ,
min11 , Max12 , min12 , J , 2 ) ;

100 sys_full_dis=buildsysk_fullmodel ( sys_small_dis , J ) ;
101
102
103 %% MPC using YALMIP and Gurobi
104 %%
105 choice_case=2; % no disturbance: case 0, for output disturbance:

choose case 1 or case 2, for uncertainty: case 3
106 % parameter uncertainty
107 if choice_case==3
108 load Variables_6basic_uncertain . mat
109 end
110
111 % output disturbances
112 pulse_rho=20;
113 pulse_a=2;
114 dis=zeros (6∗J , K+1) ;
115
116 % initialize free variables
117 Size_u=(J−1) ∗1 ;
118 Size_d=(J−1) ∗12 ;
119 Size_z=(J−1) ∗12 ;
120
121 V_rec=zeros ( Size_u+Size_d+Size_z , K ) ;
122 u_rec=zeros ( Size_u , K ) ;
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123 delta_rec=zeros ( Size_d , K ) ;
124 z_rec=zeros ( Size_z , K ) ;
125 J_rec=zeros ( Size_u , K ) ;
126
127 % initialize state vector
128 x=zeros (6∗J , K+1) ;
129 x ( 1 : 6 , : )=x1_k ;
130 xjzero=xj_0 ( : , 2 : J ) ;
131 x ( 7 : end , 1 )=xjzero ( : ) ;
132
133
134 for k=2:K+1 % k=1 is k=0
135 Np=min (5 , K+1−k+1) ;
136 Nc=Np ;
137
138 [ MILPsysk , M2k , M3k , Mx1k ]=MILP_sysk_fullmodel6st ( sys_full , Np , Nc , x ( 7 : end

, k−1) , x1_k ( : , k : k+Np−1) , rho_max , x_eq6 ( 7 : end , k−1:k+Np−1) , u_eq ( : , k : k+
Np−1) , delta_eq ( : , k : k+Np−1) , z_eq ( : , k : k+Np−1) ,J , P , Qx , Qu ) ;

139
140 % Solve the constrained optimization problem (with YALMIP)
141 V_con = [ sdpvar ( ( Size_u ) ∗( Np ) , 1 ) ; binvar ( ( Size_d ) ∗( Np ) , 1 ) ; sdpvar ( (

Size_z ) ∗( Np ) , 1 ) ] ; % define optimization
variable

142 Constraint = [ MILPsysk . A∗V_con<=MILPsysk . b ] ; % define
constraints

143 Objective = V_con ’ ∗ MILPsysk . Q∗V_con+(MILPsysk . c ) ∗V_con ; % define cost
function

144 options = sdpsettings ( ’solver’ , ’gurobi’ , ’verbose’ , 1) ; %,’gurobi.
MIPGap ’,.1,’gurobi.MIPGapAbs ’,0.01);

145 optimize ( Constraint , Objective , options ) %solve the
problem

146
147 % Select the first input only
148 V_rec ( : , k ) = [ V_con ( 1 : Size_u ) ; V_con ( Size_u ∗( Np ) +1:Size_u ∗( Np )+

Size_d ) ; V_con ( Size_u ∗( Np )+Size_d ∗( Np ) +1:Size_u ∗( Np )+Size_d ∗( Np )+
Size_z ) ] ;

149 u_rec ( : , k ) = V_con ( 1 : Size_u ) ;
150 delta_rec ( : , k ) = V_con ( Size_u ∗( Np ) +1:Size_u ∗( Np )+Size_d ) ;
151 z_rec ( : , k ) = V_con ( Size_u ∗( Np )+Size_d ∗( Np ) +1:Size_u ∗( Np )+Size_d

∗( Np )+Size_z ) ;
152
153 % Compute the state/output evolution
154 % case 1: no disturbance/noise
155 x ( 7 : end , k ) = sys_full . A1∗x ( 7 : end , k−1)+sys_full . B1∗u_rec ( : , k )+

sys_full . B2∗delta_rec ( : , k )+sys_full . B3∗z_rec ( : , k )+sys_full . B4+
sys_full . A11∗x1_k ( : , k ) ;

156 % case 2: add output disturbance
157 if (k>=5) && (k<=10)
158 if choice_case==1
159 % ten extra people (extra waiting time)
160 if x (1∗6+5 ,k )+pulse_rho<=rho_max
161 pulse_rho_real=pulse_rho ;
162 else
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163 pulse_rho_real=rho_max−x (1∗6+5 ,k ) ;
164 end
165 dis (6∗1+2 ,k )=pulse_rho_real/b ;
166 dis (6∗1+4 ,k )=pulse_rho_real/b ;
167 dis (6∗1+5 ,k )=pulse_rho_real ;
168 dis (6∗1+6 ,k )=pulse_rho−pulse_rho_real ;
169
170 elseif choice_case==2
171 % lower speed
172 dis (6∗1+1 ,k )=pulse_a ;
173 dis (6∗1+2 ,k )=pulse_a∗alpha_1 (2 ) ;
174 dis (6∗1+3 ,k )=pulse_a ;
175 dis (6∗1+4 ,k )=pulse_a∗alpha_1 (2 ) ;
176 dis (6∗1+5 ,k )=−pulse_a∗b∗alpha_4 (2 ) ;
177 end
178 end
179 x ( 7 : end , k ) = x ( 7 : end , k )+dis ( 7 : end , k ) ;
180
181 % case 3: model error
182 % x(7:end,k) = sys_full_dis.A1*x(7:end,k-1)+sys_full_dis.B1*

u_rec(:,k)+sys_full_dis.B2*delta_rec(:,k)+sys_full_dis.B3*z_rec(:,k)+
sys_full_dis.B4+sys_full_dis.A11*x1_k(:,k);

183
184 clear V_con
185
186 end
187
188 %% plot results
189 close all
190
191 % crop figures
192 K_plot=20;
193
194
195 k=0:K_plot ; % used for plotting equilibrium value
196
197 figure (1 )
198 plot ( 0 : K_plot , x ( 1 , 1 : K_plot+1) )
199 hold on
200 plot ( 0 : K_plot , x ( 7 , 1 : K_plot+1) )
201 plot ( 0 : K_plot , x ( 1 3 , 1 : K_plot+1) )
202 plot ( 0 : K_plot , beta_j (1 ) /e_j (1 ) ∗rho_eq∗ones (1 , length ( k ) ) , ’k--’ )
203 % legend(’station 1’,’station 2’,’station 3’)
204 legend ( ’station 1’ , ’station 2’ , ’station 3’ , ’equilibrium value’ )
205 xlabel ( ’trains (k)’ )
206 title ( ’Growth rate a per station’ )
207
208 figure (2 )
209 plot ( 0 : K_plot , x ( 2 , 1 : K_plot+1) )
210 hold on
211 plot ( 0 : K_plot , x ( 8 , 1 : K_plot+1) )
212 plot ( 0 : K_plot , x ( 1 4 , 1 : K_plot+1) )
213 plot ( 0 : K_plot , beta_j (1 ) /e_j (1 ) ∗rho_eq∗ones (1 , length ( k ) ) , ’k--’ )
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214 legend ( ’station 1’ , ’station 2’ , ’station 3’ , ’equilibrium value’ )
215 xlabel ( ’trains (k)’ )
216 title ( ’Growth rate d per station’ )
217
218 figure (3 )
219 plot ( 0 : K_plot , x ( 3 , 1 : K_plot+1) )
220 hold on
221 plot ( 0 : K_plot , x ( 9 , 1 : K_plot+1) )
222 plot ( 0 : K_plot , x ( 1 5 , 1 : K_plot+1) )
223 legend ( ’station 1’ , ’station 2’ , ’station 3’ )
224 xlabel ( ’trains (k)’ )
225 title ( ’Arrival time per station’ )
226
227 figure (4 )
228 plot ( 0 : K_plot , x ( 4 , 1 : K_plot+1) )
229 hold on
230 plot ( 0 : K_plot , x ( 1 0 , 1 : K_plot+1) )
231 plot ( 0 : K_plot , x ( 1 6 , 1 : K_plot+1) )
232 legend ( ’station 1’ , ’station 2’ , ’station 3’ )
233 xlabel ( ’trains (k)’ )
234 title ( ’Departure time per station’ )
235
236 figure (5 )
237 plot ( 0 : K_plot , x ( 5 , 1 : K_plot+1) )
238 hold on
239 plot ( 0 : K_plot , x ( 1 1 , 1 : K_plot+1) )
240 plot ( 0 : K_plot , x ( 1 7 , 1 : K_plot+1) )
241 plot ( 0 : K_plot , rho_eq∗ones (1 , length ( k ) ) , ’k--’ )
242 legend ( ’station 1’ , ’station 2’ , ’station 3’ , ’equilibrium value’ )
243 xlabel ( ’trains (k)’ )
244 title ( ’People in train per station’ )
245
246 figure (6 )
247 plot ( 0 : K_plot , x ( 6 , 1 : K_plot+1) )
248 hold on
249 plot ( 0 : K_plot , x ( 1 2 , 1 : K_plot+1) )
250 plot ( 0 : K_plot , x ( 1 8 , 1 : K_plot+1) )
251 legend ( ’station 1’ , ’station 2’ , ’station 3’ )
252 xlabel ( ’trains (k)’ )
253 title ( ’People left at platform per station’ )
254
255 figure (7 )
256 plot ( 0 : K_plot , u_rec ( 1 , 1 : K_plot+1) )
257 hold on
258 plot ( 0 : K_plot , u_rec ( 2 , 1 : K_plot+1) )
259 legend ( ’station 2 (u_1)’ , ’station 3 (u_2)’ )
260 xlabel ( ’trains (k)’ )
261 title ( ’Extra waiting time per station’ )
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B-2 Build MLD model per station

1 function sys=buildsysk_6states ( Max1 , min1 , Max2 , min2 , Max3 , min3 , Max4 , min4 ,
Max5 , min5 , Max6 , min6 , Max7 , min7 , Max8 , min8 , Max9 , min9 , Max10 , min10 , Max11 ,
min11 , Max12 , min12 , J , var )

2 if var==1
3 load Variables_6basic . mat
4 elseif var==2
5 load Variables_6basic_uncertain . mat
6 end
7
8 sys . A1= zeros (6 , 6 , J ) ;

% x_j(k-1)
9 sys . A11= zeros (6 , 6 , J ) ;

% x_j -1(k)
10 sys . B1= zeros (6 , 1 , J ) ;

% u_j(k)
11 sys . B2= zeros (6 ,12 , J ) ;

% delta_j(k)
12 sys . B3= zeros (6 , 12 ) ;

% z_j(k)
13 sys . B4_mat= zeros (6 , 3 , J ) ;
14 sys . B4= zeros (6 , 1 , J ) ;
15
16 % forming the matrices
17 for j=1:J
18 sys . A1 ( : , 3 : end , j )= [−1 0 0 0 ;0 −alpha_1 ( j ) 0 alpha_3 ( j ) ; 0 0 0 0 ;0

alpha_4 ( j ) 0 alpha_3 ( j ) ; 0 b∗alpha_4 ( j ) 0 alpha_1 ( j ) ; 0 0 0 0 ] ;
19 sys . A11 ( : , 3 : end , j ) =[0 1 0 0 ;0 alpha_1 ( j ) alpha_2 ( j ) 0 ; 0 1 0 0 ;0

alpha_1 ( j ) alpha_2 ( j ) 0 ; 0 −b∗alpha_4 ( j ) b ∗( alpha_2 ( j )−gamma_2 ( j ) )
0 ; 0 0 0 0 ] ;

20 sys . B1 ( : , : , j )= [ 0 ; 1 ; 0 ; 1 ; e_j ( j ) ; 0 ] ;
21 sys . B4_mat ( : , : , j )= [ 0 1 0 ;0 alpha_1 ( j ) 0 ; 0 1 0 ;0 alpha_1 ( j ) 0 ; 0 −b∗

alpha_4 ( j ) 0 ; 0 0 0 ] ;
22
23 sys . B4 ( : , : , j )= sys . B4_mat ( : , : , j ) ∗ [ rho_max ; tau_rj ( j ) ; tau_H ] ;
24 end
25
26 sys . B3 ( 1 , 1 )= 1 ;
27 sys . B3 ( 2 , 2 : 3 )= [ 1 1 ] ;
28 sys . B3 ( 3 , 1 )= 1 ;
29 sys . B3 ( 4 , 2 : 3 )= [ 1 1 ] ;
30 sys . B3 ( 5 , 4 : 7 )= [ 1 1 0 1 ] ;
31 sys . B3 ( 6 , 6 : 1 2 )= [ 1 0 1 1 1 0 1 ] ;
32
33 % matrix sizes constaints
34 sys . E1= zeros (6∗12 ,6 , J ) ; %

x_j(k-1)
35 sys . E11= zeros (6∗12 ,6 , J ) ; %

x_k -1(k)
36 sys . E2= zeros (6∗12 ,1 , J ) ; %

u_j(k)
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37 sys . E3= zeros (6∗12 ,12) ; %
delta_j(k)

38 sys . E4= zeros (6∗12 ,12) ; %
z_j(k)

39 sys . g5_mat= zeros (6∗12 ,4 , J ) ;
40 sys . g5= zeros (6∗12 ,1 , J ) ;
41
42 % forming the matrices (incl. u=>0)
43 for j=1:J
44 sys . E1 ( 1 : 6 , 4 , j )= [ − 1 ; 1 ; 0 ; 0 ; − 1 ; 1 ] ;
45 sys . E1 ( 7 : 1 2 , 4 , j )= [−alpha_1 ( j ) ; alpha_1 ( j ) ;0 ;0 ; − alpha_1 ( j ) ;

alpha_1 ( j ) ] ;
46 sys . E1 ( 1 3 : 1 8 , 4 : end , j )= [ alpha_4 ( j ) 0 alpha_3 ( j ) ;−alpha_4 ( j ) 0 −

alpha_3 ( j ) ; 0 0 0 ;0 0 0 ; alpha_4 ( j ) 0 alpha_3 ( j ) ;−alpha_4 ( j ) 0 −
alpha_3 ( j ) ] ;

47 sys . E1 ( 19 : 24 , 4 , j )= [ b;−b ; 0 ; 0 ; b;−b ] ;
48 sys . E1 ( 25 : 30 , 4 , j )= [−b∗alpha_1 ( j ) ; b∗alpha_1 ( j ) ;0 ;0 ; − b∗alpha_1 ( j )

; b∗alpha_1 ( j ) ] ;
49 sys . E1 ( 31 : 36 , 4 , j )= [−b ; b ; 0 ;0 ; − b ; b ] ;
50 sys . E1 ( 3 7 : 4 2 , 4 : end , j )= [ b∗alpha_4 ( j ) 0 alpha_1 ( j ) ;−b∗alpha_4 ( j ) 0

−alpha_1 ( j ) ; 0 0 0 ;0 0 0 ; b∗alpha_4 ( j ) 0 alpha_1 ( j ) ;−b∗alpha_4 ( j ) 0
−alpha_1 ( j ) ] ;

51 sys . E1 ( 43 : 48 , 4 , j )= [ b∗alpha_1 ( j ) ;−b∗alpha_1 ( j ) ; 0 ; 0 ; b∗alpha_1 ( j )
;−b∗alpha_1 ( j ) ] ;

52 sys . E1 ( 4 9 : 5 4 , 4 : end , j )= [−b∗alpha_4 ( j ) 0 −alpha_1 ( j ) ; b∗alpha_4 ( j ) 0
alpha_1 ( j ) ; 0 0 0 ;0 0 0;−b∗alpha_4 ( j ) 0 −alpha_1 ( j ) ; b∗alpha_4 ( j ) 0
alpha_1 ( j ) ] ;

53 sys . E1 ( 55 : 60 , 4 , j )= [ b∗alpha_4 ( j ) ;−b∗alpha_4 ( j ) ; 0 ; 0 ; b∗alpha_4 ( j )
;−b∗alpha_4 ( j ) ] ;

54 sys . E1 ( 61 : 66 , 4 , j )= [−e_j ( j ) ; e_j ( j ) ;0 ;0 ; − e_j ( j ) ; e_j ( j ) ] ;
55 sys . E1 ( 6 7 : 7 2 , 4 : end , j )= [ e_j ( j ) ∗alpha_4 ( j ) 0 −alpha_4 ( j ) ;−e_j ( j ) ∗

alpha_4 ( j ) 0 alpha_4 ( j ) ; 0 0 0 ;0 0 0 ; e_j ( j ) ∗alpha_4 ( j ) 0 −alpha_4 ( j
) ;−e_j ( j ) ∗alpha_4 ( j ) 0 alpha_4 ( j ) ] ;

56
57 sys . E11 ( 1 : 6 , 4 , j )= [ 1 ; − 1 ; 0 ; 0 ; 1 ; − 1 ] ;
58 sys . E11 ( 7 : 1 2 , 4 , j )= [ alpha_1 ( j ) ;−alpha_1 ( j ) ; 0 ; 0 ; alpha_1 ( j ) ;−

alpha_1 ( j ) ] ;
59 sys . E11 ( 1 3 : 1 8 , 4 : 5 , j )= [−alpha_4 ( j ) alpha_2 ( j )−gamma_2 ( j ) ; alpha_4 ( j

) gamma_2 ( j )−alpha_2 ( j ) ; 0 0 ;0 0;−alpha_4 ( j ) alpha_2 ( j )−gamma_2 ( j ) ;
alpha_4 ( j ) gamma_2 ( j )−alpha_2 ( j ) ] ;

60 sys . E11 ( 19 : 24 , 4 , j )= [−b ; b ; 0 ;0 ; − b ; b ] ;
61 sys . E11 ( 25 : 30 , 4 , j )= [ b∗alpha_1 ( j ) ;−b∗alpha_1 ( j ) ; 0 ; 0 ; b∗alpha_1 ( j )

;−b∗alpha_1 ( j ) ] ;
62 sys . E11 ( 31 : 36 , 4 , j )= [ b;−b ; 0 ; 0 ; b;−b ] ;
63 sys . E11 ( 3 7 : 4 2 , 4 : 5 , j )= [−b∗alpha_4 ( j ) b ∗( alpha_2 ( j )−gamma_2 ( j ) ) ; b∗

alpha_4 ( j ) b ∗( gamma_2 ( j )−alpha_2 ( j ) ) ; 0 0 ; 0 0;−b∗alpha_4 ( j ) b ∗(
alpha_2 ( j )−gamma_2 ( j ) ) ; b∗alpha_4 ( j ) b ∗( gamma_2 ( j )−alpha_2 ( j ) ) ] ;

64 sys . E11 ( 43 : 48 , 4 , j )= [−b∗alpha_1 ( j ) ; b∗alpha_1 ( j ) ;0 ;0 ; − b∗alpha_1 ( j
) ; b∗alpha_1 ( j ) ] ;

65 sys . E11 ( 4 9 : 5 4 , 4 : 5 , j )= [ b∗alpha_4 ( j ) b ∗( gamma_2 ( j )−alpha_2 ( j ) ) ;−b∗
alpha_4 ( j ) b ∗( gamma_2 ( j )−alpha_2 ( j ) ) ; 0 0 ; 0 0 ; b∗alpha_4 ( j ) b ∗(
gamma_2 ( j )−alpha_2 ( j ) ) ;−b∗alpha_4 ( j ) b ∗( alpha_2 ( j )−gamma_2 ( j ) ) ] ;
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66 sys . E11 ( 55 : 60 , 4 , j )= [−b∗alpha_4 ( j ) ; b∗alpha_4 ( j ) ;0 ;0 ; − b∗alpha_4 ( j
) ; b∗alpha_4 ( j ) ] ;

67 sys . E11 ( 61 : 66 , 4 , j )= [ e_j ( j ) ;−e_j ( j ) ; 0 ; 0 ; e_j ( j ) ;−e_j ( j ) ] ;
68 sys . E11 ( 6 7 : 7 2 , 4 : 5 , j )= [−e_j ( j ) ∗alpha_4 ( j ) −e_j ( j ) ∗gamma_2 ( j )−b∗

beta_j ( j ) /f+b∗alpha_2 ( j ) ; e_j ( j ) ∗alpha_4 ( j ) e_j ( j ) ∗gamma_2 ( j )+b∗
beta_j ( j ) /f−b∗alpha_2 ( j ) ; 0 0 ;0 0;−e_j ( j ) ∗alpha_4 ( j ) −e_j ( j ) ∗
gamma_2 ( j )−b∗beta_j ( j ) /f+b∗alpha_2 ( j ) ; e_j ( j ) ∗alpha_4 ( j ) e_j ( j ) ∗
gamma_2 ( j )+b∗beta_j ( j ) /f−b∗alpha_2 ( j ) ] ;

69
70 sys . E2 ( 1 3 : 1 8 , : , j )= [ 1 ; −1; 0 ; 0 ; 1 ; −1];
71
72 sys . g5_mat ( 13 : 18 , 1 , j )= [1/ b ;−1/b ; 0 ; 0 ; 1 / b ;−1/b ] ;
73 sys . g5_mat ( 37 : 42 , 1 , j )= [ 1 ; − 1 ; 0 ; 0 ; 1 ; − 1 ] ;
74 sys . g5_mat ( 49 : 54 , 1 , j )= [ − 1 ; 1 ; 0 ; 0 ; − 1 ; 1 ] ;
75 sys . g5_mat ( 67 : 72 , 1 , j )= [ e_j ( j ) /b;−e_j ( j ) /b ; 0 ; 0 ; e_j ( j ) /b;−e_j ( j ) /b ] ;
76 sys . g5_mat ( 1 : 6 , 2 : 4 , j )= [−1 1 −min1 ; 1 −1 0 ;0 0 0 ;0 0 0;−1 1 −min1 ; 1

−1 Max1 ] ;
77 sys . g5_mat ( 7 : 1 2 , 2 : 4 , j )= [−alpha_1 ( j ) alpha_1 ( j ) −min2 ; alpha_1 ( j ) −

alpha_1 ( j ) 0 ; 0 0 0 ;0 0 0;−alpha_1 ( j ) alpha_1 ( j ) −min2 ; alpha_1 ( j ) −
alpha_1 ( j ) Max2 ] ;

78 sys . g5_mat ( 1 3 : 1 8 , 2 : 4 , j ) =[alpha_4 ( j ) 0 −eps ;−alpha_4 ( j ) 0 Max3 ; 0 0 0 ;
0 0 0 ; alpha_4 ( j ) 0 −min3 ;−alpha_4 ( j ) 0 Max3 ] ;

79 sys . g5_mat ( 1 9 : 2 4 , 2 : 4 , j ) =[b −b −eps ;−b b Max4 ; 0 0 0 ;0 0 0 ; b −b −min4 ;−
b b Max4 ] ;

80 sys . g5_mat ( 2 5 : 3 0 , 2 : 4 , j )=[−b∗alpha_1 ( j ) b∗alpha_1 ( j ) −min5 ; b∗alpha_1 ( j
) −b∗alpha_1 ( j ) 0 ; 0 0 0 ;0 0 0;−b∗alpha_1 ( j ) b∗alpha_1 ( j ) −min5 ; b∗
alpha_1 ( j ) −b∗alpha_1 ( j ) Max5 ] ;

81 sys . g5_mat ( 3 1 : 3 6 , 2 : 4 , j )=[−b b −min6 ; b −b 0 ;0 0 0 ;0 0 0;−b b −min6 ; b −
b Max6 ] ;

82 sys . g5_mat ( 3 7 : 4 2 , 2 : 4 , j ) =[b∗alpha_4 ( j ) 0 −eps ;−b∗alpha_4 ( j ) 0 Max7 ; 0 0
0 ;0 0 0 ; b∗alpha_4 ( j ) 0 −min7 ;−b∗alpha_4 ( j ) 0 Max7 ] ;

83 sys . g5_mat ( 4 3 : 4 8 , 2 : 4 , j ) =[b∗alpha_1 ( j ) −b∗alpha_1 ( j ) −eps ;−b∗alpha_1 ( j
) b∗alpha_1 ( j ) Max8 ; 0 0 0 ;0 0 0 ; b∗alpha_1 ( j ) −b∗alpha_1 ( j ) −min8 ;−
b∗alpha_1 ( j ) b∗alpha_1 ( j ) Max8 ] ;

84 sys . g5_mat ( 4 9 : 5 4 , 2 : 4 , j )=[−b∗alpha_4 ( j ) 0 −min9 ; b∗alpha_4 ( j ) 0 0 ;0 0
0 ; 0 0 0;−b∗alpha_4 ( j ) 0 −min9 ; b∗alpha_4 ( j ) 0 Max9 ] ;

85 sys . g5_mat ( 5 5 : 6 0 , 2 : 4 , j ) =[b∗alpha_4 ( j ) −b∗alpha_4 ( j ) −min10 ;−b∗alpha_4
( j ) b∗alpha_4 ( j ) 0 ; 0 0 0 ;0 0 0 ; b∗alpha_4 ( j ) −b∗alpha_4 ( j ) −min10 ;−
b∗alpha_4 ( j ) b∗alpha_4 ( j ) Max10 ] ;

86 sys . g5_mat ( 6 1 : 6 6 , 2 : 4 , j )=[−e_j ( j ) e_j ( j ) −min11 ; e_j ( j ) −e_j ( j ) 0 ; 0 0
0 ;0 0 0;−e_j ( j ) e_j ( j ) −min11 ; e_j ( j ) −e_j ( j ) Max11 ] ;

87 sys . g5_mat ( 6 7 : 7 2 , 2 : 4 , j ) =[e_j ( j ) ∗alpha_4 ( j ) 0 −eps ;−e_j ( j ) ∗alpha_4 ( j )
0 Max12 ; 0 0 0 ;0 0 0 ; e_j ( j ) ∗alpha_4 ( j ) 0 −min12 ;−e_j ( j ) ∗alpha_4 ( j )
0 Max12 ] ;

88 sys . g5 ( : , : , j )=sys . g5_mat ( : , : , j ) ∗ [ rho_max ; tau_rj ( j ) ; tau_H ; 1 ] ;
89 end
90
91 sys . E3 ( 1 : 6 , 1 )= [ eps−min1 ;−Max1 ;−Max1 ; min1 ;−min1 ; Max1 ] ;
92 sys . E3 ( 7 : 1 2 , 2 )= [ eps−min2 ;−Max2 ;−Max2 ; min2 ;−min2 ; Max2 ] ;
93 sys . E3 ( 1 3 : 1 8 , 3 )= [ min3−eps ; Max3 ;−Max3 ; min3 ;−min3 ; Max3 ] ;
94 sys . E3 ( 1 9 : 2 4 , 4 )= [ min4−eps ; Max4 ;−Max4 ; min4 ;−min4 ; Max4 ] ;
95 sys . E3 ( 2 5 : 3 0 , 5 )= [ eps−min5 ;−Max5 ;−Max5 ; min5 ;−min5 ; Max5 ] ;
96 sys . E3 ( 3 1 : 3 6 , 6 )= [ eps−min6 ;−Max6 ;−Max6 ; min6 ;−min6 ; Max6 ] ;
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97 sys . E3 ( 3 7 : 4 2 , 7 )= [ min7−eps ; Max7 ;−Max7 ; min7 ;−min7 ; Max7 ] ;
98 sys . E3 ( 4 3 : 4 8 , 8 )= [ min8−eps ; Max8 ;−Max8 ; min8 ;−min8 ; Max8 ] ;
99 sys . E3 ( 4 9 : 5 4 , 9 )= [ eps−min9 ;−Max9 ;−Max9 ; min9 ;−min9 ; Max9 ] ;

100 sys . E3 ( 55 : 60 , 10 )= [ eps−min10 ;−Max10 ;−Max10 ; min10 ;−min10 ; Max10 ] ;
101 sys . E3 ( 61 : 66 , 11 )= [ eps−min11 ;−Max11 ;−Max11 ; min11 ;−min11 ; Max11 ] ;
102 sys . E3 ( 67 : 72 , 12 )= [ min12−eps ; Max12 ;−Max12 ; min12 ;−min12 ; Max12 ] ;
103
104 sys . E4 ( 3 : 6 , 1 )= [1 ; −1 ;1 ; −1 ] ;
105 sys . E4 ( 9 : 1 2 , 2 )= [1 ; −1 ;1 ; −1 ] ;
106 sys . E4 ( 1 3 : 1 8 , 1 : 3 )= [−1 1 0 ;1 −1 0 ;0 0 1 ;0 0 −1;−1 1 1 ;1 −1 −1];
107 sys . E4 ( 2 1 : 2 4 , 4 )= [1 ; −1 ;1 ; −1 ] ;
108 sys . E4 ( 2 7 : 3 0 , 5 )= [1 ; −1 ;1 ; −1 ] ;
109 sys . E4 ( 3 3 : 3 6 , 6 )= [1 ; −1 ;1 ; −1 ] ;
110 sys . E4 ( 3 7 : 4 2 , 5 : 7 )= [ 1 −1 0;−1 1 0 ;0 0 1 ;0 0 −1;1 −1 1;−1 1 −1];
111 sys . E4 ( 4 5 : 4 8 , 8 )= [1 ; −1 ;1 ; −1 ] ;
112 sys . E4 ( 4 9 : 5 4 , 4 : 9 )= [−1 0 0 0 1 0 ;1 0 0 0 −1 0 ;0 0 0 0 0 1 ;0 0 0 0 0

−1;−1 0 0 0 1 1 ;1 0 0 0 −1 −1];
113 sys . E4 ( 57 : 60 , 10 )= [1 ; −1 ;1 ; −1 ] ;
114 sys . E4 ( 63 : 66 , 11 )= [1 ; −1 ;1 ; −1 ] ;
115 sys . E4 ( 6 7 : 7 2 , 1 0 : 1 2 )= [ 1 −1 0;−1 1 0 ;0 0 1 ;0 0 −1;1 −1 1;−1 1 −1];
116
117 %% add state & input constraints:
118 % d-a>=0
119 % a>=0
120 % 0<=rho<=rho_max
121 % sigma >=0
122 % u>=0
123
124 for j=1:J
125 E1tot ( : , : , j ) =[sys . E1 ( : , : , j ) ;−eye (6 ) ; 0 0 0 0 1 0 ;0 0 0 0 0 0 ;0 0 0 0 0

0 ] ;
126 E11tot ( : , : , j ) =[sys . E11 ( : , : , j ) ; zeros (6+1+2 ,6) ] ;
127 E2tot ( : , : , j ) =[sys . E2 ( : , : , j ) ; zeros (6+1 ,1) ; − 1 ; 1 ] ;
128 g5tot ( : , : , j ) =[sys . g5 ( : , : , j ) ; zeros ( 6 , 1 ) ; rho_max ; 0 ; 1 0 ] ;
129 end
130 sys . E1=E1tot ;
131 sys . E11=E11tot ;
132 sys . E2=E2tot ;
133 sys . g5=g5tot ;
134
135 sys . E3=[sys . E3 ; zeros (6+1+2 ,12) ] ;
136 sys . E4=[sys . E4 ; zeros (6+1+2 ,12) ] ;
137
138
139 end
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B-3 Combine MLD model for all stations

1 function sys=buildsysk_fullmodel ( sys_small , J )
2
3 % full state matrices
4 matr1=sys_small . A1 ( : , : , 2 ) ;
5 matr2=sys_small . B1 ( : , : , 2 ) ;
6 matr3=sys_small . B2 ( : , : , 2 ) ;
7 matr4=sys_small . B3 ; %(:,:,2);
8 matr5=eye ( size ( sys_small . A11 ( : , : , 2 ) ) ) ;
9 matr6=sys_small . A11 ( : , : , 2 ) ;

10
11 sys . A1=[matr1 zeros ( size ( sys_small . A1 ( : , : , 2 ) , 1) , size ( sys_small . A1

( : , : , 2 ) , 2) ∗(J−2) ) ] ;
12 sys . B1=[matr2 zeros ( size ( sys_small . B1 ( : , : , 2 ) , 1) , size ( sys_small . B1

( : , : , 2 ) , 2) ∗(J−2) ) ] ;
13 sys . B2=[matr3 zeros ( size ( sys_small . B2 ( : , : , 2 ) , 1) , size ( sys_small . B2

( : , : , 2 ) , 2) ∗(J−2) ) ] ;
14 sys . B3=[matr4 zeros ( size ( sys_small . B3 , 1) , size ( sys_small . B3 , 2) ∗(J−2) ) ] ;
15 B4mat=[matr5 zeros ( size ( sys_small . A11 ( : , : , 2 ) , 1) , size ( sys_small . A11

( : , : , 2 ) , 2) ∗(J−2) ) ] ;
16 B4_vert=sys_small . B4 ( : , : , 2 ) ;
17 sys . A11=matr6 ;
18 for j=3:J
19 matr1=[sys_small . A11 ( : , : , j ) ∗matr1 sys_small . A1 ( : , : , j ) ] ;
20 sys . A1=[sys . A1 ; matr1 zeros ( size ( sys_small . A1 ( : , : , j ) , 1) , size (

sys_small . A1 ( : , : , j ) , 2) ∗(J−j ) ) ] ;
21 matr2=[sys_small . A11 ( : , : , j ) ∗matr2 sys_small . B1 ( : , : , j ) ] ;
22 sys . B1=[sys . B1 ; matr2 zeros ( size ( sys_small . B1 ( : , : , j ) , 1) , size (

sys_small . B1 ( : , : , j ) , 2) ∗(J−j ) ) ] ;
23 matr3=[sys_small . A11 ( : , : , j ) ∗matr3 sys_small . B2 ( : , : , j ) ] ;
24 sys . B2=[sys . B2 ; matr3 zeros ( size ( sys_small . B2 ( : , : , j ) , 1) , size (

sys_small . B2 ( : , : , j ) , 2) ∗(J−j ) ) ] ;
25 matr4=[sys_small . A11 ( : , : , j ) ∗matr4 sys_small . B3 ] ;
26 sys . B3=[sys . B3 ; matr4 zeros ( size ( sys_small . B3 , 1) , size ( sys_small . B3 ,

2) ∗(J−j ) ) ] ;
27 matr5=[sys_small . A11 ( : , : , j ) ∗matr5 eye ( size ( sys_small . A11 ( : , : , j ) ) ) ] ;
28 B4mat=[B4mat ; matr5 zeros ( size ( sys_small . A11 ( : , : , j ) , 1) , size (

sys_small . A11 ( : , : , j ) , 2) ∗(J−j ) ) ] ;
29 B4_vert=[B4_vert ; sys_small . B4 ( : , : , j ) ] ;
30
31 matr6=sys_small . A11 ( : , : , j ) ∗matr6 ;
32 sys . A11=[sys . A11 ; matr6 ] ;
33 end
34 sys . B4=B4mat∗B4_vert ;
35
36 % full constraint matrices
37 matr7=sys_small . A1 ( : , : , 2 ) ;
38 matr8=sys_small . B1 ( : , : , 2 ) ;
39 matr9=sys_small . B2 ( : , : , 2 ) ;
40 matr10=sys_small . B3 ; %(:,:,2);
41 matr11=eye ( size ( sys_small . E11 ( : , : , 3 ) , 2 ) ) ;
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42
43 sys . E1=[zeros ( size ( sys_small . E1 ( : , : , 2 ) , 1) , size ( sys_small . E1 ( : , : , 2 ) , 2)

∗(J−1) ) ; sys_small . E11 ( : , : , 3 ) ∗matr7 zeros ( size ( sys_small . E1 ( : , : , 2 ) , 1)
, size ( sys_small . E1 ( : , : , 2 ) , 2) ∗(J−2) ) ] ;

44 sys . E2=[zeros ( size ( sys_small . E2 ( : , : , 2 ) , 1) , size ( sys_small . E2 ( : , : , 2 ) , 2)
∗(J−1) ) ; sys_small . E11 ( : , : , 3 ) ∗matr8 zeros ( size ( sys_small . E2 ( : , : , 2 ) , 1)
, size ( sys_small . E2 ( : , : , 2 ) , 2) ∗(J−2) ) ] ;

45 sys . E3=[zeros ( size ( sys_small . E3 , 1) , size ( sys_small . E3 , 2) ∗(J−1) ) ;
sys_small . E11 ( : , : , 3 ) ∗matr9 zeros ( size ( sys_small . E3 , 1) , size ( sys_small
. E3 , 2) ∗(J−2) ) ] ;

46 sys . E4=[zeros ( size ( sys_small . E4 , 1) , size ( sys_small . E4 , 2) ∗(J−1) ) ;
sys_small . E11 ( : , : , 3 ) ∗matr10 zeros ( size ( sys_small . E4 , 1) , size (
sys_small . E4 , 2) ∗(J−2) ) ] ;

47 EB4_mat=[zeros ( size ( sys_small . E11 ( : , : , 3 ) , 1) , size ( sys_small . E11 ( : , : , 3 ) ,
2) ∗(J−1) ) ; sys_small . E11 ( : , : , 3 ) ∗matr11 zeros ( size ( sys_small . E11 ( : , : , 3 )
, 1) , size ( sys_small . E11 ( : , : , 3 ) , 2) ∗(J−2) ) ] ;

48 EB4_vert=[sys_small . B4 ( : , : , 2 ) ; sys_small . B4 ( : , : , 3 ) ] ;
49 for j=4:J
50 matr7=[sys_small . A11 ( : , : , j−1)∗matr7 sys_small . A1 ( : , : , j ) ] ;
51 sys . E1=[sys . E1 ; sys_small . E11 ( : , : , j ) ∗matr7 zeros ( size ( sys_small . E1

( : , : , j ) , 1) , size ( sys_small . E1 ( : , : , j ) , 2) ∗( J+1−j ) ) ] ;
52 matr8=[sys_small . A11 ( : , : , j−1)∗matr8 sys_small . B1 ( : , : , j ) ] ;
53 sys . E2=[sys . E2 ; sys_small . E11 ( : , : , j ) ∗matr8 zeros ( size ( sys_small . E2

( : , : , j ) , 1) , size ( sys_small . E2 ( : , : , j ) , 2) ∗( J+1−j ) ) ] ;
54 matr9=[sys_small . A11 ( : , : , j−1)∗matr9 sys_small . B2 ( : , : , j ) ] ;
55 sys . E3=[sys . E3 ; sys_small . E11 ( : , : , j ) ∗matr9 zeros ( size ( sys_small . E3 , 1)

, size ( sys_small . E3 , 2) ∗( J+1−j ) ) ] ;
56 matr10=[sys_small . A11 ( : , : , j−1)∗matr10 sys_small . B3 ] ;
57 sys . E4=[sys . E4 ; sys_small . E11 ( : , : , j ) ∗matr10 zeros ( size ( sys_small . E4 ,

1) , size ( sys_small . E4 , 2) ∗( J+1−j ) ) ] ;
58 matr11=[sys_small . A11 ( : , : , j−1)∗matr11 eye ( size ( sys_small . E11 ( : , : , j )

, 2 ) ) ] ;
59 EB4_mat=[EB4_mat ; sys_small . E11 ( : , : , j ) ∗matr11 zeros ( size ( sys_small . E11

( : , : , j ) , 1) , size ( sys_small . E11 ( : , : , j ) , 2) ∗( J+1−j ) ) ] ;
60 EB4_vert=[EB4_vert ; sys_small . B4 ( : , : , j ) ] ;
61 end
62 sys . EB4=EB4_mat∗EB4_vert ;
63
64 diagE1=sys_small . E1 ( : , : , 2 ) ;
65 diagE2=sys_small . E2 ( : , : , 2 ) ;
66 diagE3=sys_small . E3 ; %(:,:,2);
67 diagE4=sys_small . E4 ; %(:,:,2);
68 for j=3:J
69 diagE1=blkdiag ( diagE1 , sys_small . E1 ( : , : , j ) ) ;
70 diagE2=blkdiag ( diagE2 , sys_small . E2 ( : , : , j ) ) ;
71 diagE3=blkdiag ( diagE3 , sys_small . E3 ) ; %(:,:,j));
72 diagE4=blkdiag ( diagE4 , sys_small . E4 ) ; %(:,:,j));
73 end
74 sys . E1=sys . E1+diagE1 ;
75 sys . E2=sys . E2+diagE2 ;
76 sys . E3=sys . E3+diagE3 ;
77 sys . E4=sys . E4+diagE4 ;
78
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79 sys . g5=sys_small . g5 ( : , : , 2 ) ;
80 matr12=eye ( size ( sys_small . E11 ( : , : , 2 ) , 2 ) ) ;
81 sys . Ex1=sys_small . E11 ( : , : , 2 ) ∗matr12 ;
82 for j=3:J
83 sys . g5=[sys . g5 ; sys_small . g5 ( : , : , j ) ] ;
84 matr12=sys_small . A11 ( : , : , j−1)∗matr12 ;
85 sys . Ex1=[sys . Ex1 ; sys_small . E11 ( : , : , j ) ∗matr12 ] ;
86 end
87
88 end
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B-4 Build MIQP model

1 function [ MILPsys , M2 , MB4 , Mx1 ]=MIQP_sysk_fullmodel6st ( sys , Np , Nc , xkmin1 ,
x1_k , rho_max , x_eq , u_eq , delta_eq , z_eq , J , P , Qx , Qu )

2 %% 2-norm
3 Nx=size ( sys . A1 , 2 ) ;
4 Nx1=size ( x1_k , 1 ) ;
5 Nu=size ( sys . B1 , 2 ) ;

% B1 not
dependent on j

6 Ndelta=size ( sys . E3 , 2 ) ;
% E3 not

dependent on j
7 Nz=size ( sys . B3 , 2 ) ;

% B3 and E4
not dependent on j

8 Nrest=size ( sys . B4 , 2 ) ;
9

10 M2 = [ ] ;
%

A1
11 for i=1:Np
12 M2=[M2 ; sys . A1^i ] ;
13 end
14
15 MB4 = [ ] ;

%
B4

16 sum=0;
17 for i=1:Np
18 sum=sum+sys . A1^(i−1) ;
19 MB4=[MB4 ; sum ] ;
20 end
21 MB4=MB4∗sys . B4 ;
22
23 matrt1 = [ ] ;
24 matrt3 = [ ] ;
25 matrt4 = [ ] ;
26
27 T1 = [ ] ;
28 T3 = [ ] ;
29 Mx1 = [ ] ;
30
31 for i=1:Np
32 matrt1=[sys . A1^(i−1)∗sys . B1 matrt1 ] ;
33 T1=[T1 ; matrt1 zeros ( size ( sys . B1 , 1) , size ( sys . B1 , 2) ∗( Np−i ) ) ] ;

%T1=Tu
34 matrt3=[sys . A1^(i−1)∗sys . B3 matrt3 ] ;
35 T3=[T3 ; matrt3 zeros ( size ( sys . B3 , 1) , size ( sys . B3 , 2) ∗( Np−i ) ) ] ;

%T3=Tz
36 matrt4=[sys . A1^(i−1)∗sys . A11 matrt4 ] ;
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37 Mx1=[Mx1 ; matrt4 zeros ( size ( sys . A11 , 1) , size ( sys . A11 , 2) ∗( Np−i ) ) ] ;
%Mx_j -1(k)

38 end
39
40 % M1=[T1*Ku T2*Kdelta T3*Kz]

% M1
41 M1=[T1 zeros ( size ( T3 ) ) T3 ] ;
42
43
44 % constraints:
45 E1hat = [ ] ;
46 Ex1hat = [ ] ;
47 E2hat = [ ] ;
48 E3hat = [ ] ;
49 E4hat = [ ] ;
50 for i=1:Np
51 E1hat=blkdiag ( E1hat , sys . E1 ) ;
52 E2hat=blkdiag ( E2hat , sys . E2 ) ;
53 E3hat=blkdiag ( E3hat , sys . E3 ) ;
54 E4hat=blkdiag ( E4hat , sys . E4 ) ;
55 Ex1hat=blkdiag ( Ex1hat , sys . Ex1 ) ;
56 end
57
58 E1hat=[E1hat , zeros ( size ( E1hat , 1 ) , Nx ) ; zeros ( Nx+(J−1) , size ( E1hat , 2 ) ) , kron (

eye (J−1) , [ 0 0 0 0 1 0;−eye ( Nx1 ) ] ) ] ; % E1hat (5=J-1)
59
60 E2hat=[E2hat ; zeros ( Nx+1∗(J−1) , size ( E2hat , 2 ) ) ] ;

% E2hat
61 E3hat=[E3hat ; zeros ( Nx+1∗(J−1) , size ( E3hat , 2 ) ) ] ;

% E3hat
62 E4hat=[E4hat ; zeros ( Nx+1∗(J−1) , size ( E4hat , 2 ) ) ] ;

% E4hat
63 Ex1hat=[Ex1hat ; zeros ( Nx+1∗(J−1) , size ( Ex1hat , 2 ) ) ] ;

% E11hat
64
65 g5hat = [ ] ;
66 EB4hat = [ ] ;
67 for i=1:Np
68 g5hat=[g5hat ; sys . g5 ] ;
69 EB4hat=[EB4hat ; sys . EB4 ] ;
70 end
71 g5hat=[g5hat ; repmat ( [ rho_max ; zeros ( Nx1 , 1 ) ] , J−1 ,1) ] ; % g5hat
72 EB4hat=[EB4hat ; zeros ( Nx+1∗(J−1) ,1 ) ] ; % F3
73
74 % Cost function 2-norm
75 Qu_hat=1/2∗kron ( eye ( Np ) , Qu ) ;
76 Qdelta_hat=1/2∗kron ( eye ( Np ) , zeros ( Ndelta , Ndelta ) ) ;
77 Qz_hat=1/2∗kron ( eye ( Np ) , zeros ( Nz , Nz ) ) ;
78 Qx_hat=blkdiag (1/2∗ kron ( eye ( ( Np ) ) , Qx ) ,1/2∗ zeros ( size ( P ) ) ) ;
79 u_eq_hat=u_eq ( : ) ;
80 delta_eq_hat=delta_eq ( : ) ;
81 z_eq_hat=z_eq ( : ) ;
82 x_eq_hat=x_eq ( : ) ;
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83
84 % Full contraints
85 F1=E1hat ∗ [ zeros ( Nx , size ( M1 , 2) ) ; M1 ]+[ E2hat E3hat E4hat ] ;

% F1, removed Ku,Kz,Kdelta
86 F2=g5hat−EB4hat−E1hat ∗ [ zeros ( Nx , 1 ) ; MB4 ] −(Ex1hat+E1hat ∗ [ zeros ( Nx , Nx1∗Np ) ;

Mx1 ] ) ∗x1_k ( : ) ; % F2
87 F3=−E1hat ∗ [ eye ( Nx ) ; M2 ] ; % F3
88
89 % Full minimization matrices
90 S1=[zeros ( Nx , size ( M1 , 2 ) ) ; M1 ] ’ ∗ Qx_hat ∗ [ zeros ( Nx , size ( M1 , 2 ) ) ; M1 ]+blkdiag (

Qu_hat , Qdelta_hat , Qz_hat ) ;
91 S2=([ zeros ( Nx , 1 ) ; MB4 ]+[ zeros ( Nx , Nx1∗Np ) ; Mx1 ] ∗ x1_k ( : )−x_eq_hat ) ’∗ Qx_hat ∗ [

zeros ( Nx , size ( M1 , 2 ) ) ; M1 ] −[ u_eq_hat ’ ∗ Qu_hat delta_eq_hat ’ ∗ Qdelta_hat
z_eq_hat ’ ∗ Qz_hat ] ;

92 S3=[eye ( Nx ) ; M2 ] ’ ∗ Qx_hat ∗ [ zeros ( Nx , size ( M1 , 2 ) ) ; M1 ] ;
93 S2_tot=2∗(S2+xkmin1 ( : ) ’∗ S3 ) ;
94
95 % Final matrices
96 Frho2=F2+F3∗xkmin1 ;
97
98 MILPsys . Q=sparse ( S1 ) ;
99 MILPsys . c=S2_tot ;

100 MILPsys . A=sparse ( F1 ) ;
101 MILPsys . b=Frho2 ;
102 MILPsys . bin_part =(Nu ∗( Np )+1) : ( ( Nu+Ndelta ) ∗( Np ) ) ;
103 end
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Glossary

List of Acronyms

MMPS Max-Min-Plus-Scaling
MPC Model predictive control
MPL Max-plus-linear
ELC Extended linear complementarity
PWA Piecewise-affine
DT discrete-time
DE discrete-event
LQR Linear-quadratic regulator
MIQP Mixed integer quadratic programming
MILP Mixed integer linear programming
MLD Mixed logical dynamical
CLF Control Lyapunov function

List of Symbols

∆ Deviation of a variable for the original equilibrium
ℓ(x, u) Stage cost
κN Control law at stage N

R Set of real numbers
Rε Set of real numbers including −∞
Rc Set of real numbers including −∞ and +∞
RT Set of real numbers including ∞
U Input constraint set
X State constraint set
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88 Glossary

Xf Terminal constraint set
Z System constraint region
B Ball in Rn of unit radius
XN Set of feasible states for optimal control problem at stage N

J(x0, u) MPC cost function
K Optimal controller gain
Np Prediction horizon
ut Control input at time(DT)/event(DE) t
Vf (x) Terminal cost
VN (x0, u) MPC objective function
V 0

N (x) MPC optimal value function
⊕ Max-plus addition (= maximization)
⊗ Max-plus multiplication (= addition)
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