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Discrete Incremental Nonlinear Dynamic Inversion for Attitude Control of a Small
Helicopter UAV

B.J.M.M. Slingera,∗, E.J.J. Smeura, Q.P. Chua, B.D.W. Remesa

aDelft University of Technology, Delft, Zuid-Holland, 2629HS, Netherlands

Abstract

This paper presents an attitude controller for a small helicopter Unmanned Aerial Vehicle (UAV) based on Incremental
Nonlinear Dynamic Inversion (INDI). INDI is a sensor-based control method which responds quickly to the commanded
input, but also to disturbances. While previous implementations of INDI used a control effectiveness matrix describing
effects on rotational accelerations, the implementation presented in this paper uses rotational rates. This is possible
with small hingeless-rotor helicopters since the rotational rates are achieved almost immediately, but also the transient
is taken into account. By doing so, the matrix contains only constants and the control structure is much simpler. The
proposed controller is implemented on a small helicopter which weighs less than 50 grams. The performance of the
controller is demonstrated with step responses on roll and heading angles. Also disturbance rejection capabilities are
demonstrated. Finally, the controller is deliberately configured incorrectly with wrong control effectiveness and actuator
model parameters. A theoretical derivation is provided to predict the effect of incorrect parameters. With experiments,
it is demonstrated that the helicopter can be stabilized over a wide range of incorrect values. It is concluded that the
demonstrated controller is a suitable choice for small autonomous helicopters.

1. Introduction

The multi-rotor configuration is the most common type
of Unmanned Aerial Vehicle (UAV) nowadays. The design
is mechanically simple and robust, since the motors are the
only moving parts. The maneuverability is generally very
good. With a properly tuned attitude controller it is also
relatively easy to fly. The downside of the multi-rotor con-
cept is its lower efficiency. A set of smaller rotors is less
efficient than a single large rotor that delivers the same
amount of thrust [1]. This is exactly what the classical
helicopter is. Even with a tail-rotor to compensate for
torque of the main rotor, it is more energy efficient. This
energy efficiency is a trade-off with robustness. The me-
chanical design of a helicopter is more complex with servo
actuators and a swash-plate mechanism. The design of
an attitude controller is more complicated because several
cross-coupling effects have to be taken into account.

Prox Dynamics has developed the PD-100 Black Hor-
net, which is a miniature helicopter for military applica-
tions, but no details are available on its capabilities and
inner workings. In literature, a lot of work can be found
on autonomous helicopters, although these helicopters are
much larger. PID control is a common attitude control
strategy in literature [2, 3]. Other control strategies in-
clude input/output linearization [4], gain scheduling [5],
LQR control [6, 7], neural networks [8, 9] and reinforce-
ment learning [10].

∗Corresponding author

Figure 1: Walkera Genius CP V2 unmodified.

In this paper, an attitude controller is designed for a
small helicopter UAV (Fig. 1), weighing only 45 grams. To
be able to fly in windy conditions in an urban environment,
it is necessary to quickly counteract any disturbances. In-
cremental Nonlinear Dynamic Inversion (INDI) [11] is a
sensor-based control method which has good disturbance
rejection qualities [12]. Using sensor measurements, the
system is feedback linearized and a simple linear controller
can be added to control the attitude. Once the control ef-
fectiveness in the INDI loop has been identified, which can
be done automatically by an adaptive algorithm, the UAV
shows excellent flight characteristics. This technique was
recently implemented on quadcopters with impressive re-
sults [12]. However, the same controller cannot be used
directly on helicopters.

Simplicio et al. [13] demonstrated the use of INDI al-
ready on a full size helicopter in a simulation study. The
control effectiveness functions for helicopters are much more
complicated, which significantly reduces the simplicity of

Preprint submitted to Elsevier June 10, 2016



the controller. In fact, the most complicated part of the
helicopter dynamics are contained in the control effective-
ness functions. These functions describe the relations be-
tween control inputs and angular accelerations. For quad-
copters, the actuator effectiveness with respect to angular
accelerations can be approximated by a matrix with con-
stants. This is impossible for helicopters since the actuator
effectiveness with respect to angular accelerations is actu-
ally a function of rotational rates and more.

To reduce the complexity while maintaining the robust-
ness, a method is proposed which implements INDI in a
different way. Instead of looking for a relation between
actuator deflections and rotational accelerations, a rela-
tionship is found with steady-state rotational rates. The
damping dynamics in roll and pitch are very fast, so these
steady-state rates are reached almost immediatly. The ac-
tuator effectiveness in pitch and roll can then be described
by constants, which can be identified in flight.

Section 2 shows the derivation of the closed-loop re-
sponse of INDI. Also the system response in case of dis-
turbances and modelling errors are provided. Section 3 de-
scribes the new control structure for helicopters in detail.
In Section 4, the hardware is described which was used
to test the new controller implementation, including mod-
els of the actuators. The control effectiveness experiments
and calculations are provided in Section 5. Section 6 pro-
vides the results and discussions of various experiments to
evaluate the performance of the new controller. The pa-
per concludes with conclusions and recommendations in
Section 7.

2. Incremental Nonlinear Dynamic Inversion

Until now, INDI is always derived from a continuous-
time system. This derivation of the control law is shown in
Section 2.1. In Section 2.2, a discret control law is derived
from a discretized linearized system. Real systems usually
have actuators, which are added in Section 2.3. The addi-
tion of a measurement filter is shown in Section 2.4. The
disturbance rejection characteristics are derived in Sec-
tion 2.5. Section 2.6 and 2.7 show the effect of errors in
the control effectiveness and actuator model.

2.1. Continuous-time INDI

Previous publications on INDI [11, 13, 12] start the
derivation of the control law from a continuous-time sys-
tem:

ẋ = f (x,u) (1)

It is assumed that all states of the system are measurable.
This system is then linearized around x0,u0, which gives:

ẋ ≈ f(x0,u0) +
∂f(x,u)

∂x

∣∣∣∣
x0,u0

(x− x0)

+
∂f(x,u)

∂u

∣∣∣∣
x0,u0

(u− u0) (2)

This can be written as follows:

ẋ ≈ ẋ0 + F(x0,u0)∆x + G(x0,u0)∆u (3)

It is assumed that ẋ0 can be measured. The term related
to system dynamics F is assumed to be much smaller than
the term related to the increment in control input. This
principle is often referred to as time-scale separation [13].
By neglecting this term, the equation is reduced to:

ẋ ≈ ẋ0 + G(x0,u0)∆u (4)

The control law is obtained by inverting the equation:

∆u = G−1(x0,u0) [ν − ẋ0] (5)

Where ν is the virtual control input and ẋ0 is the mea-
surement of the current state derivative. By applying this
control law to Eq. 4, the response of the system becomes:

ẋ = ν (6)

2.2. Discrete-time INDI

The derivation of the control law for a discrete-time
system starts with the discrete system:

xk+1 = xk +

∫ ∆t

0

ẋ dt (7)

= xk +

∫ ∆t

0

f(x,u) dt (8)

When the sample-rate is high, it can be assumed that ẋ
remains constant for a period of ∆t:

xk+1 ≈ xk + f (xk,uk) ∆t (9)

xk+1 − xk
∆t

≈ f (xk,uk) (10)

The term on the right-hand side can be linearized with a
first-order Taylor expansion around xk−1,uk−1:

xk+1 − xk
∆t

≈ f (xk−1,uk−1)

+
∂f(xk,uk)

∂xk

∣∣∣∣
xk−1,uk−1

(xk − xk−1)

+
∂f(xk,uk)

∂uk

∣∣∣∣
xk−1,uk−1

(uk − uk−1) (11)

which can be written as:

xk+1 − xk
∆t

= f (xk−1,uk−1) + F(xk−1,uk−1)∆xk

+ G(xk−1,uk−1)∆uk (12)

By substituting Eq. 10 for xk−1,uk−1 and by applying
the principle of time-scale separation [13], the equation is
reduced to:

xk+1 − xk
∆t

=
xk − xk−1

∆t
+ G(xk−1,uk−1)∆uk (13)

2



−

H(z)

G−1 −KG

z−1 z−1G−1H(z)G

A(z) G + z−1

Linearized discretized system

νk ∆uk

+

∆ck

−

∆ak ẋk,m

∆dk

ẋk+1,m

Figure 2: INDI block diagram for a discretized linearized system actuator dynamics A(z), a measurement filter H(z), a control effectiveness
G and control effectiveness error scalar KG.

This equation can be inverted to get the control law:

∆uk = G−1(xk−1,uk−1) [νk − ẋk,m] (14)

where

ẋk,m =
xk − xk−1

∆t
(15)

νk =
xk+1 − xk

∆t
(16)

ẋk,m is obtained from the measurement of the state xk and
νk is the virtual control. The result is very similar to the
continuous case, but now with a discrete approximation of
the state derivative.

2.3. Actuator Dynamics

The theoretical derivation of the control law assumes
that the requested actuator deflection is obtained imme-
diately. Real systems are usually limited by the dynam-
ics of the actuators. Because of the actuator dynamics, a
change in the actuator command does not immediately re-
sult in the desired system output. The actuator basically
delays the command. The control law will keep command-
ing more increments while the output has not reached the
target, because it is unaware of the actuator dynamics.

A modification of the command law is required such
that it takes into account the movement of the actuator
that is still to come. ∆ak represents the actual change in
actuator deflections, which is assumed to be measurable.
∆ck is the commanded increment to the actuator, which
contains the correction term:

∆ck = ∆uk − (∆uk−1 −∆ak−1) (17)

The corresponding block diagram is shown in Fig. 2. The
transfer function of this block diagram is given by:

ẋm = z−1GA(z)G−1ν (18)

This equation states that the system follows the virtual
control, but is delayed by the actuator dynamics.

2.4. Measurement Filter

In practical applications, an accurate measurement of
the output variables is often not available. Sensor read-
ings may have to be differentiated to obtain the output,

which adds noise. Without a measurement filter, the INDI
controller will also react to the noise.

By simply adding a measurement filter H(z) to the
output, the closed loop dynamics would also change. How-
ever, if the filter is also applied in the actuator feedback
loop, the open loop dynamics remain unchanged. This ap-
proach is similar to what was found in literature [14, 12].
The complete block diagram in Fig. 2 shows the INDI con-
trol loop with the measurement filters H(z) in place. The
system response is exactly the same as in Eq. 18. However,
the addition of a measurement filter reduces disturbance
rejection as is shown in Section 2.5.

2.5. Disturbance Rejection

A disturbance is added to the output of the system,
such that

ẋk+1,m = ẋk,m + G∆ak + ∆dk (19)

Taking into account that ∆dk = dk − dk−1, it can be
shown that the output in response to a disturbance is given
by:

ẋm = z−1
[
I− z−1GA(z)G−1H(z)

]
dk (20)

This equation shows that the disturbances are damped
out. The damping dynamics consists of the actuator dy-
namics and the measurement filter dynamics. The faster
these dynamics are, the faster the disturbance is rejected.

2.6. Control Effectiveness Mismatch

Inaccuracies in the control effectiveness matrix G do
not cause steady-state errors because of the incremental
nature of INDI. It will however change the closed loop dy-
namics. If the effectiveness matrix is overestimated, the
inverse will be smaller resulting in a smaller control in-
crement. On the other hand, if the effectiveness matrix
is underestimated, the control increment becomes larger.
The inaccuracies are modeled as a gain KG, which results
in the following modified control law:

∆uk = KGG−1 [νk −H(z)ẋk,m] (21)

A KG with values lower than one corresponds to an over-
estimated control effectiveness matrix. The smaller KG

becomes, the slower the system tracks the virtual control.

3



A KG with values larger than one corresponds to an under-
estimated control effectiveness matrix.

For a single degree of freedom, with no measurement
filter, the closed-loop transfer function is:

ẋm =
A(z)KG

z +A(z) (KG − 1)
ν (22)

In case of no actuator dynamics, the system reduces to:

ẋm =
KG

z +KG − 1
ν (23)

This transfer function has one pole which is located at
p = (1−KG). For 0 ≤ KG ≤ 2, the pole resides within
the unit-circle on the real axis, which means that the sys-
tem is stable. A similar analysis is possible with actuator
dynamics included. For example, if the actuator dynamics
are first-order:

∆ak = (1− β) ∆ak−1 + β∆uk (24)

with 0 < β ≤ 1. It has the following transfer function:

A(z) =
zβ

z − 1 + β
(25)

For this actuator, it can be shown that the closed-loop
transfer function of the INDI-loop is given by:

ẋm =
βKG

z + βKG − 1
ν (26)

The result is very similar to Eq. 23, but now the closed-
loop system response is stable for 0 ≤ βKG ≤ 2. The
slower the actuator is, the lower β is, which results in a
larger error margin for the control effectiveness matrix.
Still, the correct sign in KG is crucial for stability.

2.7. Actuator Model Mismatch

The INDI controller needs the output of the actuator
dynamics in the inner feedback loop. In practical situa-
tions, the actuator deflections ∆ak cannot always be mea-
sured. In that case, a model has to be used. Errors in
the model affect the open- and closed loop dynamics. An
analysis is done for an actuator with first-order dynamics
in a single degree of freedom. The actuator dynamics are
given by Eq. 25. The actuator model is also a first order
system, whose dynamics are described by:

M(z) =
zKAβ

z − 1 +KAβ
(27)

in which the factorKA describes the error in β with respect
to the real actuator dynamics. The two extremes areKA =
0 and KA = 1/β. The first case results in a model with
an output of zero. The latter case represents a model with
direct feed-through of the input.

The block diagram of the control structure which uses
the actuator model is shown in Fig. 3. It can be shown that
the closed-loop response of the INDI-loop is then given by:

ẋm =
A(z)

z −M(z) +A(z)
ν (28)

which can be expanded to:

ẋm =
zβ − β +KAβ

2

z2 + z(2β − 2) + 1− 2β +KAβ2
ν (29)

The two poles of this second-order system can be found
at:

p = ±
√
β2 −KAβ2 − β + 1 (30)

The poles always stay within the unit circle when 0 ≤
KA ≤ 1/β. From KA > 1, the poles have an imaginary
part, which means that the system contains oscillations.
To prevent oscillations, it is therefore preferred to estimate
the actuator model to be slower than the actual actuator.

3. Attitude Control of a Small Helicopter UAV

This section describes the application of INDI control
techniques to a small helicopter UAV. Previous work by
Simplicio et al. [13] already implemented INDI in a simu-
lation study for a Bölkow Bö-105 helicopter. This paper
presents a far more simple implementation of INDI, by
controlling directly roll and pitch rates instead of acceler-
ations inside the INDI loop.

3.1. Pitch and Roll Control

The dynamics and coupling in the pitch and roll mo-
tion make it difficult to apply INDI in the same way as it
was applied to quadcopters in [12]. In quadcopter control,
the actuators generate forces which results in rotational
accelerations. The deflection of the cyclic of a helicopter
can also be directly related to angular accelerations, but
there is also strong damping which causes the rotational
rate to reach a steady-state value quickly. The traditional
approach with INDI neglects the model dynamics, which
includes this strong damping of rotational rates.

Simplicio et al. [13] implemented an INDI controller
for a helicopter in a simulation study. The control effec-
tiveness matrix describes the relation between control in-
puts and rotational accelerations. These relations cannot
be described by a matrix with constant values. Instead,
the control effectiveness matrix is the Jacobian matrix of
the control effectiveness functions, which follows from the
first-order Taylor expansion.

This method significantly reduces the simplicity of INDI,
since the control effectiveness functions contain the most
complicated part of the helicopter model. A new approach
is introduced here. Instead of controlling the rotational ac-
celerations, the rotational rates are selected as the control
variables in INDI. A direct and affine relationship can be

4



−

H(z)

G−1 −KG

z−1 z−1G−1H(z)G

M(z) A(z) G + z−1

Linearized discretized system

νk ∆uk

+

∆ck

−

∆ak ẋk,m

∆dk

ẋk+1,m

Figure 3: INDI block diagram for a discretized linearized system actuator dynamics A(z), an actuator model M(z), a measurement filter
H(z), a control effectiveness G and control effectiveness error scalar KG.
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φ
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θref

θ
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ψref

ψ r

νṙ

∆uθ1c

∆uθ1s

∆θ1c

∆θ1s

∆ut

p q ṙ

Figure 4: Helicopter attitude control loop.

obtained between the control inputs and steady-state rota-
tional rates in pitch and roll. These constants go into the
G matrix and are usable for a large section of the flight
envelope. The rotational rate dynamics are not neglected,
but accounted for in the same way as the actuator dynam-
ics.

Since the INDI loop follows a rotational rate reference,
only a proportional gain is required for stabilization of
pitch and roll angles. Figure. 4 shows that the virtual
control for pitch and roll is generated with a P-controller.

3.1.1. Fast Damping Dynamics

The actuator dynamics, as described in Section 2.3, are
fast dynamics with a steady-state value of one. It could
also be seen as a part of something more generic. The
system A(z) can be described as fast dynamics of which
the state is not controlled directly, but the steady-state
value is.

In case of an actuator, the requested steady-state value
is commanded and the actuator moves towards that posi-
tion with certain dynamics. No effort is made by the INDI
loop to increase the speed at which the actuators reaches
this position. The actuator output ak represents the ac-
tual position.

The fast damping dynamics of the rotational rates in
pitch and roll can be implemented in the same way as the
actuator dynamics. The dynamics of the rotational rates
are already very fast, especially in the case of a hingeless

rotor and little body inertia. The rate damping dynam-
ics together with the actuator dynamics is represented by
A(z). Implementing the rate damping like this basically
means that the INDI controller accepts the delay caused
by the rate damping dynamics. It is not possible to mea-
sure the state of the damping, so a simple first-order model
needs to be used for that.

3.1.2. Pitch and Roll Coupling

The coupling between pitch and roll motion depends on
the type of rotor. With a teetering rotor, there is no hub
moment and rotational accelerations are generated only
by tilting the rotor disc. The rotor disc is tilted by ap-
plying maximum blade pitch exactly 90◦ in advance. In
this case, a lateral cyclic input will simply result in a roll
acceleration.

With the articulated and hingeless rotor types, the
pitch and roll dynamics are strongly coupled. A roll rate
causes an additional pitch acceleration and a pitch rate
causes an additional roll acceleration. The implementa-
tion of INDI by Simplicio et al. [13] actually accounts for
these couplings because the control effectiveness functions
include the pitch- and roll rate.

The approach taken here is very similar to what pilots
do when flying a helicopter. Instead of steering towards
the desired direction, the command is rotated to compen-
sate a large portion of the couplings. A pitch command
results in a very strong coupled roll acceleration. A roll
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command results in a relatively smaller coupling in pitch
acceleration. The difference is caused by the differences in
inertia around the roll and pitch axis. Therefore, different
compensation factors apply to pitch and roll commands.

The corrections are not included in the control effec-
tiveness matrix G. Instead, the corrections are applied
after the INDI controller, as shown in Fig. 4. This is ef-
fectively the same, but keeping G diagonal is more conve-
nient. The compensation factors Fθ1c and Fθ1s are initially
set to zero, which results in a flyable helicopter with small
oscillations in pitch and roll. The factors can be tuned to
reduce the couplings to a minimum.

3.2. Yaw Control

Acceleration in yaw is the result of moments generated
by the tail rotor and main rotor. The tail rotor moment
is approximated as a linear relation with the control in-
put. The control input can either be tail rotor pitch or
revolutions per minute (RPM), depending on the type of
helicopter. The collective pitch is used to control vertical
acceleration, but also generates a yaw moment with the
rotor blade drag.

The tail rotor input controls yaw acceleration while the
torque generated by collective pitch is considered to be a
disturbance. It is also possible to identify the relation
between yaw acceleration and collective pitch, in order to
add compensation with the tail rotor as soon as collective
pitch is applied. This compensation is not necessary since
the INDI controller is able to quickly react to disturbances,
as is shown in Section 6.2.

Since the INDI loop tracks a rotational acceleration in
yaw, a PD-controller can be used to control the heading.
The output of the PD-controller is the rotational acceler-
ation reference for the INDI loop, as indicated in Fig. 4.

3.3. Effectiveness Matrix

The three control inputs for attitude control are cyclic
roll θ1c, cyclic pitch θ1s and tail rotor command ut. The
controlled outputs are roll rate p, pitch rate q and yaw
acceleration ṙ.

ν =

νpνq
νṙ

 , y =

pq
ṙ


The assumption is made that the derivative of pitch and
roll angles are equal to the pitch and roll rates in the body
frame. This assumption is only valid for small angles,
which are typical for normal helicopter flight.

The actuator effectiveness matrix Γ is constructed as
follows: pq

ṙ

 =

Gθ1c 0 0
0 Gθ1s 0
0 0 Gut

θ1c

θ1s

ut

 (31)

Figure 5: Glavak brushless direct drive motor and adapter piece.

For the INDI controller, the inverse of the effectiveness
matrix is required, which is given by:

G−1 =

1/Gθ1c 0 0
0 1/Gθ1s 0
0 0 1/Gut

 (32)

4. Helicopter Description

4.1. Base Helicopter

The helicopter used for this research project is the
Walkera Genius CP V2 and is shown in Fig. 1. With-
out modifications and without battery, it weighs only 35
grams. Unlike most other toy helicopters in this class, the
Walkera Genius CP V2 does not have a flybar for stabi-
lization. It has built-in gyroscopes to stabilize attitude.

Specifications of the Walkera Genius CP V2:.

• Main rotor diameter: 240 mm
• Tail rotor diameter: 45 mm
• Nose-to-tail length: 220 mm
• Weight: 35 g
• Battery: 3.7V 200 mAh Li-Po

4.1.1. Brushless upgrade

By default, the helicopter is equipped with a brushed
motor which drives the main shaft through gearing. Brush-
less motors have several advantages over brushed motors,
including higher efficiency, less maintenance and better
heat dissipation. Walkera offers a brushless upgrade kit
to replace the brushed motor. With this upgrade kit, the
gearing still remains. The plastic gears wear out quickly
and are an extra source of vibrations.

Therefore, the helicopter is upgraded with a direct-
drive brushless motor from Glavak. An adapter piece is
made from nylon to attach the motor to the helicopter
frame. A longer drive shaft is required to extend into the
new motor. Figure 5 shows a picture of the stator and
rotor of the Glavak motor and the nylon adapter piece.
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Figure 6: Lisa/S autopilot.

4.2. Autopilot

The standard electronics board cannot easily be re-
programmed and does not have the required sensors for
attitude estimation. Therefore, the electronics board is
replaced by a Lisa/S autopilot [15]. This autopilot was
developed by the research group at the MAVLab and is
shown in Fig. 6. By default it has a radio link which can
also handle small telemetry messages. This radio link is
removed to make room for a 4GB micro-SD card, which is
soldered directly to the Lisa/S autopilot. The SD card can
store measurement data at high speed and the data can be
retrieved later. The new radio link uses a DSMX Deltang
receiver, which requires only a single pin. Telemetry is
done through an ESP-8266 WiFi chip, which requires only
two free pins. The autopilot runs the attitude stabilization
loop at 512 Hz.

Specifications of the Lisa/S autopilot:.

• Size: 2.0 x 2.0 x 0.5 cm
• Weight: 2.8 g
• Processor: 72MHz 32bit ARM Cortex M3 MCU with

16KB RAM and 512KB Flash
• IMU: InvenSense MPU-6050 3-axis gyroscope and 3-

axis accelerometer
• Magnetometer: HMC5883L
• Barometer: MS5611
• GPS: ublox MAX-6 series

4.3. Actuators

The helicopter has three servo-actuators linked to the
swashplate, visible in Fig. 7. The swashplate controls roll,
pitch and thrust. A small DC motor on the tail provides
control in yaw. This section describes the actuators and
their characteristics.

Figure 7: Close-up of the modified helicopter.

4.3.1. Measurement versus Model

In the inner feedback loop of INDI, the output of the
actuator is required. The incremental command is added
to the actuator output to obtain the new actuator com-
mand. The output can be either measured or estimated
using a model. The steady-state output of the actuator
needs to be equal to the actuator command, so the mea-
surement needs to be mapped to the same unit as the
command. If the mapping has an error, the steady-state
output is not equal to the input command. The controller
cannot correct for this error. As a result the output of the
INDI control loop will have a steady-state error.

The problem with steady-state errors does not occur
when using an actuator model. The model is guaranteed
to have a steady-state gain of 1. Inaccuracies may exist in
the model, but as shown in Section. 2.7, the output of the
INDI controller still converges to the input.

4.3.2. Servo Actuator Model

The three servos are linked to the swashplate at 120◦

separation. The output of each servo is obtained by solder-
ing a wire directly to the potentiometers inside the servo.
Using the kinematics of the swashplate, the servo deflec-
tions are converted to pitch, roll and collective ‘actuators’.
The actuator model for pitch and roll is a combination of:

• A first order model with bandwidth 70 [rad/s].
• A fixed time-delay of 18 [ms].
• A rate saturation of 48 [-/s] (normalized)

This model accurately represents the measured deflection,
as is shown in Fig. 8 for the pitch ‘actuator’. To prevent
steady-state errors, this model is preferred over direct mea-
surements for actuator feedback in the INDI controller.

4.3.3. Tail Rotor Model

The tail rotor is driven by a brushed DC motor. It is
assumed that thrust is linear with RPM and RPM is linear
with applied voltage. These assumptions correspond to an
error in the control effectiveness matrix. It is shown in
Section. 2.6 that INDI can handle this type of error up to
a certain level.
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Figure 8: Model of the servo actuators.
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Figure 9: Model of the tail rotor spinning up. ωc = 37 rad/s.

Since it is not possible to measure the RPM during
flight, a model has to be used. The RPM was measured
with an infrared tachometer in a static setup. It was found
that there is a significant difference between the motor
spinning up and down. Both directions are modeled as
a first order system, but with different bandwidths. The
bandwidth is 37 rad/s while spinning up and 13 rad/s when
spinning down. Figure. 9 and Fig. 10 show the response
to step inputs in both directions.

The model diverges at low RPM when the motor is
spinning down. However in normal flight conditions, the
RPM is not expected to reach such low values. It is more
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Figure 10: Model of the tail rotor spinning down. ωc = 13 rad/s.

important that the model is accurate around the trim con-
dition, which is at approximately 80% of the maximum
RPM.

5. Control Effectiveness Identification

While the actuator models could be identified without
flying, the control effectiveness can only be identified by
performing in-flight experiments. That is not trivial how-
ever, since the result of the identification are necessary
for stabilization. One way to overcome this dependency
loop is to use adaptive INDI, as proposed by Smeur et al.
[12]. The control effectiveness needs to be initialized with
some values of which the signs must be correct. For a
large range of initial values, the adaptive algorithm lets
the control effectiveness converge to flyable values before
the UAV crashes.

For the control effectiveness identification this section,
the helicopter is initially stabilized with PID controllers.
The PID controllers do not need to be tuned for best per-
formance, because they will be replaced by INDI. Small
disturbance signals are injected during flight and the re-
lations between actuator commands and output measure-
ments can be identified. This method is preferred over the
adaptive approach for better repeatability.

The Linear Least Squares (LLS) algorithm is applied
to derivatives of both inputs and outputs to find the effec-
tiveness. The use of derivatives eliminates the offset. This
reduces the number of parameters to fit when applying
LLS.

5.1. Pitch and Roll

The relations between cyclic inputs with pitch and roll
rate are modeled as:

∆p = ΓθcAp(z)∆θc (33)

∆q = ΓθsAq(z)∆θs (34)

where Ap(z) and Aq(z) represent the output of a non-
linear model of the combined actuator dynamics from Sec-
tion 4.3.2 and first-order damping as explained in Sec-
tion 3.1.1. The actuator model is known, but the band-
width of the first-order damping is still unknown.

A disturbance signal is constructed as a sum of four
sine-waves, at frequencies of 2, 4, 6 and 8 Hz. A phase-shift
is applied at each frequency to limit the maximum ampli-
tude of the combined signal. The disturbance is added to
the stabilization command. An ideal low-pass filter of 10
Hz is applied to the output of the combined actuator dy-
namics and first-order damping model. The same filter is
applied to the roll and pitch rate measurements.

To find the bandwidth of the first-order damping dy-
namics, the linear least squares method is applied for all
bandwidths in the range from 1 to 200 rad/s. The band-
width is found where the remaining squared error is the
smallest. In roll, the damping bandwidth is 68 rad/s. The
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Figure 11: Roll identification
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Figure 12: Pitch identification

damping in pitch is slower with a bandwidth of 17 rad/s.
The difference can be explained by the difference in inertia
in pitch and roll. Due to higher inertia in pitch, it takes
longer to reach a steady-state pitch rate.

The correction factors as described in Section. 3.1.2 are
found imperically as Fθ1s = 0.19 and Fθ1c = −0.58. Each
pitch command is accompanied by a roll command which
is 19% the magnitude of the pitch command. Every roll
command is accompanied by a negative pitch command of
58% the magnitude in roll. Without these compensations,
the helicopter is also able to stabilize but with slow oscilla-
tions. A better identification method for the compensation
parameters is left for future work.

5.2. Yaw

A direct relation is assumed between change in tail-
rotor speed ut and change in yaw acceleration ṙ, such that:

∆ut · Γut
= ∆ṙ (35)

where Γut
is the control effectiveness. The true RPM of the

tail rotor is not required. For convenience, it is normalized
such that ut ∈ [0, 1]. The normalization only results in a
scaling of the control effectiveness.

Similar to the identification procedure in pitch and roll,
a disturbance signal is added to the stabilization com-
mand. This signal also consists of four sine-waves at 2, 4, 6
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Figure 13: Tail rotor to yaw acceleration effectiveness model.

and 8 Hz. A change in collective pitch also causes acceler-
ation in yaw and is therefore carefully trimmed. The trim-
ming of collective allows the helicopter to hover steadily
for a period of several seconds, while the disturbance signal
is injected.

The tail-rotor speed cannot be measured directly, but
is calculated by applying the model from Section 4.3.3 to
the tail-rotor input signal ct. A non-causual low-pass fil-
ter is applied to the reconstructed tail-rotor speed with a
cutoff frequency of 10 Hz. The same filter is applied to
the differentiated yaw rate measurements. The cutoff fre-
quency at 10 Hz allows the results of the disturbance to
appear in the measurement, while high frequency noise is
excluded.

The effectiveness is obtained by applying LLS. Fig-
ure 13 shows that the model is an accurate estimate of
the real helicopter in hovering conditions. The model is
also used in other flight conditions, assuming that INDI is
able to resolve the model mismatch.

6. Results and Discussion

This section shows the performance of the INDI atti-
tude controller on the small helicopter UAV. Only the roll
and yaw directions are explored here, since the properties
of the controller in pitch are very similar to roll.

6.1. Roll Performance

To evaluate the control performance in roll, the heli-
copter is commanded to follow a doublet reference signal.

A simple PD-controller is used as a reference for a qual-
itative performance analysis. The goal here is not to de-
termine which controller is ‘better’ or ‘faster’, but to show
that INDI has some properties which are not present in a
simple PD-controller.

Figure 14a shows the response of the PD-controlled
helicopter to a doublet roll reference. The PD-controller
shows a steady-state offset which is not present with INDI
in Fig. 14c. The offset is caused by a slight misalignment
of the servo’s. When a roll command of zero is given,
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(a) Doublet response with PD-controller. (b) Disturbance rejection with PD-
controller.

(c) Doublet response with INDI con-
troller.

(d) Disturbance rejection with INDI con-
troller.

Figure 14: Roll angle response to a doublet input and a disturbance with a PD- and an INDI controller. The reference is marked by the
dashed line. The blue lines represent the roll angle. The light-green lines represent the pitch angle.

the swashplate is slightly tilted causing the helicopter to
roll. Adding an integral to the PD-controller could also
eliminate this error, but this would also affect the input
tracking dynamics. INDI does not have steady-state errors
as shown in Section. 2.

The reference signal for the doublet with INDI has an
offset of 4.5◦, while this is not present in the PD-controller.
A roll angle of approximately 4.5◦ is required to compen-
sate sideways drift caused by the tail rotor force. Since
the PD-controller has a steady-state error, the reference
signal is lowered. Otherwise, the helicopter would rapidly
drift to the right during the experiment.

During the doublet, the pitch angle is commanded to
stay zero. With both controllers, the simple decoupling
compensations as described in Section. 3.1.2 are applied.
The PD-controller shows a steady-state error in pitch which
appears to be proportional to the roll angle. The incre-
mental loop inside INDI already compensates quickly for
errors in pitch rate. Also, the INDI controller does not
give a steady-state error in the pitch angle.

Figures 14b and 14d show the roll angle response after
a step disturbance. Before the disturbance, the helicopter
carries a weight of 4.5 grams with a string at an offset of
4.5 cm from the center of gravity. By cutting the string,
the weight is removed instantaneously.

For the disturbance experiments, the helicopter is com-
manded to hover in the OptiTrack arena using a PD-
controller for horizontal guidance. The guidance controller
generates the pitch and roll reference angles. Because the

weight is on the left, the steady-state error with the PD-
controller is to the left. The guidance controller commands
a higher roll angle to make the helicopter hover. Before
the weight is cut, there are oscillations in roll. The PD-
controller has difficulties stabilizing with the weight at-
tached. After the weight is cut, the roll rate is damped
and the roll angle stabilizes with a different steady-state
error.

The INDI controller has no steady-state error while
tracking the roll angle reference in Fig. 14d. According
to the theory in Section 2.5, a disturbance in roll rate is
damped out with the dynamics of the actuator and the
measurement filter. In this case, the measurement filter is
a second order Butterworth filter with a cut-off frequency
of 40 Hz combined with a second order notch filter at the
frequency of the main rotor.

When the disturbance is applied by cutting the string,
the response does not show nice damping with INDI. In-
stead, the roll angle is strongly oscillating. It appears to
be coupled with the pitch motions. The simple decoupling
strategy as explained in Section 3.1.2 helps to some extent
in reference tracking as is visible in Fig. 14c. However in
disturbance rejection, it is counterproductive. The distur-
bance causes the roll rate to increase, which is counter-
acted by INDI by giving a negative command in roll. The
simple decoupling mechanism then also sends a positive
command to pitch, which makes the pitch angle increase.
The positive pitch rate is compensated with negative pitch
command, but also a negative roll command. This results
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in a roll rate which is more negative than the reference
from the P-controller. The roll rate is continuously over-
shooting the roll rate reference due to the coupling with
pitch. This is believed to be the main cause of the oscilla-
tions.

6.2. Yaw Performance

For heading control, the difference is shown between a
simple PD-controller and INDI. The PD-controller also has
a feed-forward component related to the thrust command.
The PD-controller shows a large steady-state error in Fig-
ures 15a and 15b. This can be attributed to bad tuning
of the feed-forward component and lack of an integral in
the controller. Ten doublets were performed on the same
battery with several seconds in between. It was found that
the steady-state error increases when the battery voltage
gets lower.

The PD-gains used in the INDI controller are set such
that the dynamic response is relatively close to that of
the PD-controller. By doing so, it is more clearly visible
how the controllers differ in disturbance rejection. The
disturbances in yaw are applied by adding a significant
amount of collective for half a second. This also generates
additional torque which needs to be compensated by the
tail rotor. The INDI controller performs much better here
since it feeds back rotational acceleration internally, while
the PD-controller feeds back the rotational rate.

The INDI controller is able to recover from the first
disturbance before the second disturbance occurs. During
this maneauvre, the tail rotor has to spin up quickly. After
the second disturbance it takes more time to recover. This
time, the tail rotor needs to slow down and it was shown in
Section 4.3.3 that the dynamics of the tail rotor spinning
down are slower. Therefore the disturbance rejection is
also slower, according to Eq. 20.

Also in the doublet on the heading reference in Fig. 15c,
a clear difference can be seen between the directions of
yaw. For a heading increase, the tail rotor has to spin up
and it has to slow down for a decrease in heading. This
results in faster or slower dynamics in the heading control
loop.

Another interesting observation is the steady-state er-
ror with the INDI controller in Figs. 15c and 15d. Ac-
cording to Eq. 29, there should be no steady-state error as
long as the actuator model has no steady-state error. In
this case, two different models are used to represent the
tail rotor for spinning up and down. When the accelera-
tion error is close to zero, the INDI controller is rapidly
switching between these two models. It was found that
when only a single model is used, either the faster or the
slower one, the steady-state error is actually zero.

6.3. Actuator Model Mismatch

It is not always possible to find an accurate model of
the actuators. In case of this helicopter, the roll damping
dynamics are also included in the actuator model. These

damping dynamics are difficult to estimate. The follow-
ing experiment is designed to evaluate the effects of an
incorrect actuator model.

The response to a doublet input on the roll angle is
measured for different incorrect actuator models. In all
cases, the P-gain is 12. The control effectiveness as identi-
fied in Section 5.1 is used. The fast damping dynamics are
not included in the actuator models in these experiments.

The step responses of the incorrect actuator models are
included in Fig. 8. The faster model (B) is a first order
system with a bandwidth of 70 rad/s and a fixed delay of
6 ms. The slower actuator model (C) has a bandwidth
of 2 rad/s and a fixed delay of 18 ms. The experiment is
repeated 10 times for both configurations.

In Fig. 16c, the helicopter slowly follows the reference
angle in roll. This behavior corresponds to the theory in
Section 2.7. Because the model is slower, the new control
input to the system is lower. The steady-state error should
still be zero according to theory. This is also observed in
the experiment.

Figure 16b shows the helicopter tracking the roll refer-
ence with a faster actuator model in the loop. The output
of the model is faster, resulting in a higher control input
to the system. According to theory, this results in a sec-
ond order under-damped system for the roll rate. These
oscillations also show up in the roll angle. Despite the os-
cillations, the roll angle still follows the reference with zero
steady-state error.

The final experiment in this category is designed to
show stability with an even faster actuator model (A),
which has a bandwidth of 210 rad/s and a fixed delay
of 6 ms. In this experiment, only a slowly varying roll an-
gle reference is tracked. The result is shown in Fig. 16a.
Theoretically, the roll rate still has zero steady-state er-
ror. However in this case, the P-controller is continuously
changing the roll rate reference νp according to the error
in roll angle. The combination results in a continuously
oscillating system response.

6.4. Control Effectiveness Mismatch

The estimated control effectiveness may not be accu-
rate or not applicable to a large part of the flight envelope.
The following experiment explores the effect of model mis-
match in the control effectiveness matrix on the roll axis.
The input signal is a doublet on the roll angle reference.
In the nominal case, the control effectiveness found in Sec-
tion 5.1 is used. In the underestimated case, the control
effectiveness is half of the nominal value. In the overesti-
mated case, the control effectiveness is selected twice the
value of the nominal case. These values represent large
errors in the estimated effectiveness.

Also the P-gain of the attitude command loop is varied
between three different values. The gains are selected to
be in the flyable range for all three control effectiveness
values. With the lowest P-gain, the helicopter responds
slowly to attitude commands, which makes it difficult to
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(a) Doublet response with PD-controller.(b) Disturbance rejection with PD-
controller.

(c) Doublet response with INDI con-
troller.

(d) Disturbance rejection with INDI con-
troller.

Figure 15: Heading response to a doublet input and a disturbance with a PD- and an INDI controller. The reference is marked by the dashed
line. The blue lines represent the heading.

(a) Faster actuator model: ωc = 210 rad/s
and fixed time delay of 6 ms.

(b) Faster actuator model: ωc = 70 rad/s
and fixed time delay of 6 ms.

(c) Slower actuator model: ωc = 2 rad/s
and fixed time delay of 18 ms.

Figure 16: Tracking a reference signal with different incorrect actuator models within the feedback loop in INDI. The dashed line shows the
reference. The blue lines represent the roll angle.

control. The highest P-gain is selected at a value where
the helicopter begins to show some oscillations.

The experiment is repeated 10 times for each set of pa-
rameters, which provides insight in the repeatability. With
the OptiTrack system, the experiment is performed com-
pletely autonomous. The altitude is controlled with a PID-
controller on collective and a feed-forward term depending
on the roll angle. During every experiment, the pitch an-
gle is controlled by INDI with the nominal effectiveness as
identified in Section 5.1 and a P-gain of 8.

The response of the helicopter is first estimated in a
simulation, by simply replacing the INDI loop with Eq. 21
for a single degree of freedom. The under- and over-
estimated effectivenesses are modeled with Kc. The simu-

lated response is shown by the red lines in Fig. 17.
Figures 17a-17c show the responses for the overesti-

mated actuator effectiveness. As a result of this, the INDI
loop follows the reference roll rate with a delay larger than
the actuator dynamics. Increased delay results in an in-
creased overshoot. The overshoot also increases with a
larger P-gain, which also happens in the simulations.

There is also a notable difference between the measured
and simulated responses. Also within the 10 experiments
per parameter set, there is some variation. The simulation
response should not be misinterpreted for a reference sig-
nal. Small differences in the beginning will result in larger
differences later on. Because the effectiveness is overes-
timated, only small control inputs are given to track the
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(a) Control effectiveness = 200%, P = 6 (b) Control effectiveness = 200%, P = 12 (c) Control effectiveness = 200%, P = 16

(d) Control effectiveness = 100%, P = 6 (e) Control effectiveness = 100%, P = 12 (f) Control effectiveness = 100%, P = 16

(g) Control effectiveness = 50%, P = 6 (h) Control effectiveness = 50%, P = 12 (i) Control effectiveness = 50%, P = 16

Figure 17: Response to a doublet input reference on the roll angle for various values of control effectiveness and different P-gains for the
attitude control loop. The reference is marked by the dashed line. The blue lines represent the roll angle. The light-green lines represent the
pitch angle. The red lines show the simulated system in response to the reference.

reference and reject disturbances. The ratio of control in-
put to disturbances is smaller compared to the nominal
case. Each test run has slightly different disturbances, re-
sulting in an observable difference in the response.

The measured response in the nominal case is in line
with the expectations, with only one exception. Especially
with the higher P-gains in Figs. 17e and 17f, a dip is ob-
served in the roll rate during the step from 24.5◦ to -15.5◦.
It can also be observed in Figs. 17h and 17i. This is most
likely related to the high magnitude of the roll rate, since
it is not observed during the initial smaller step. This be-
havior is not studied further, since it only occurs when
the step is large and it only results in a slightly slower
response.

With the underestimated effectiveness in Figs. 17g-17i,
the INDI controller responds about twice as fast to errors
in the roll rate. In Fig. 17g, the low P-gain provides a
relatively slow roll rate reference, which is quickly followed
by the INDI loop. Instead of just following the reference

twice as fast, the INDI loop also introduces oscillations.
The frequency of these oscillations is independent of the
P-gain, although the amplitude increases with higher P-
gains.

A possible explanation for these oscillations is a slightly
incorrect actuator model. Although it is not proven in this
paper, it is expected that errors in the actuator model in-
troduce larger errors in tracking if the effectiveness is un-
derestimated. Even though the actuator model matches
well with measurements, it must be considered that the
measurement was performed on the ground with no loads
applied. It is very well possible that the actuators behave
(slightly) different during flight. Section 2.7 shows that a
faster actuator model results in oscillations. Taken into
consideration that the oscillations due to the faster actu-
ator model are amplified by the underestimated actuator
effectiveness, this might explain the oscillations observed
in Figs. 17g-17i.
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7. Conclusions and Recommendations

An INDI attitude controller was proposed which con-
trols pitch- and roll rates directly, instead of accelerations.
The fast transient dynamics were accounted for in the same
way as actuator dynamics. The new controller was imple-
mented on a small modified Walkera Genius CP V2 heli-
copter. It was shown that with this method, it is possible
to find a control effectiveness matrix with just three con-
stants. This is much simpler than previously proposed
implementations of INDI on helicopters. Despite the sim-
plicity, the controller was able to track a reference signal
similarly to the simulated response. The disturbance rejec-
tion capabilities of the controller were also demonstrated.
The robustness of the controller was tested by experiment-
ing with deliberately incorrect values for the control effec-
tiveness matrix and actuator model. The helicopter could
successfully be controlled over a wide range of incorrect
parameters. It can be concluded that the attitude con-
troller presented in this paper is a suitable choice for small
autonomous helicopters.

The main difficulty in configuring the controller now
is to find the control effectiveness values, which has to
be done in flight. As a recommendation for future work,
an adaptive algorithm can be implemented as was already
demonstrated by Smeur et al. [12] on a quadcopter. The
actuator model can already be determined on the ground
and the calculation of the PD gains can also be done with-
out flying. The adaptive algorithm would make the con-
troller work from the first flight.

It is also suggested that the couplings in pitch and roll
are examined in more detail, so that the decoupling strat-
egy can be improved and parameters can be identified on-
line. Also, the controller now only controls the attitude.
This can be extended to vertical acceleration which would
also allow to decouple yaw from thrust more effectively.
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Chapter 1

Attitude Estimation

The most commonly used methods for attitude estimation on UAVs rely on combined gy-
roscope and accelerometer measurements. Gyroscopes measure the angular velocities and
an attitude estimate is obtained from integration. However, small errors in angular velocity
measurement will integrate towards large errors in the attitude estimate. The drift is compen-
sated with accelerometer measurements. Among other accelerations and noise, accelerometers
measure the direction of the gravity vector. The pitch and roll angle can be obtained from
the direction of the gravity vector in the body frame. It is impossible to distinguish gravity
from other accelerations. However in most flight conditions, the average of acceleration mea-
surements represents gravity. In these conditions it is possible to obtain an attitude estimate
by applying a fusion algorithm.

1-1 Fusion algorithms

The basic concept of an attitude state estimation algorithm is to combine measurements of
two or more sensors, using only the reliable frequencies of each sensor, to provide a reliable
signal over the entire bandwidth. To achieve a reliable attitude estimate, the low-frequency
data of the accelerometers can be combined with high-frequency data from gyroscopes.

Two types of filters are found in literature: Kalman filters ? and a complementary filters ?.
A Kalman filter can be either direct or indirect. The state vector of a direct Kalman filter
contains all the variables of interest, while an indirect Kalman filter holds only an error-state.

The three variations of complementary filters are direct, passive and explicit Mahony et al.
(2008). The difference between the direct and passive complementary is the reference frame
in which the gyroscope measurements are integrated. The direct filter uses the reference
frame which is constructed directly from the accelerometer measurements. The passive filter
uses the estimated reference frame itself in a feedback structure. The direct variation is more
sensitive to accelerometer noise, since gyroscope measurements are integrated in a reference
frame that is constructed from noisy accelerometer measurements.
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20 Attitude Estimation

The explicit complementary filter does not construct a frame of reference to propagate the
gyroscopes. Thereby it saves some computations. It is a reformulation of the passive com-
plementary filter in terms of direct measurements from the inertial sensors Mahony et al.
(2008).

In general, the performance of a Kalman filter is better, but so is the computational bur-
den Carminati et al. (2012). Considering the limited computational power on the Lisa/S
autopilot and ‘good’ performance of complementary filters in literature ????, the explicit
complementary filter is chosen as the attitude estimation algorithm.

1-2 Explicit Complementary Filter

An explicit complementary filter, as described by Mahony et al. (2008), is implemented using
a quaternion state representation. This representation can be implemented more efficient
than Euler angles or direction cosines. The processor on the Lisa/S has no Floating Point
Unit (FPU) or Digital Signal Processor (DSP). Therefore an implementation using integers
is used.

The explicit complementary filter consists of the following set of equations, which is cited
directly from Mahony et al. (2008):

ωmes = −vex

(

n
∑

i=1

ki
2

(

viv̂
T
i − v̂iv

T
i

)

)

(1-1)

˙̂q =
1

2
q̂ ⊗ p

(

Ωy − b̂+ kPωmes

)

(1-2)

˙̂
b = −kIωmes (1-3)

The correction term ωmes is an approximation of the error as measured from the current
estimate. The vector vi represents a measurement of a known inertial direction, such as
gravity and the local magnetic field. v̂i is the estimated direction of the vector in the current
estimate. Each of these vectors can have its own associated gain ki according to the confidence
in the sensor. For attitude estimation on the helicopter, only the gravity vector is used. In
case of only one inertial vector, Eq. 1-1 is effectively a cross product of the measurement with
its estimate:

ωmes = −
1

2
vg × v̂g (1-4)

where vg is the gravity vector and v̂g is its current estimate.

The rotational rate of the estimate of the attitude quaternion ˙̂q consists of the gyroscope
measurements Ωy, the estimate of gyroscope bias b̂ and a correction term multiplied by a
proportional gain kP . These rotational rates are considered to be in the current estimate.
The estimate of the gyroscope bias b̂ is not constant. Its rate of change is proportional to the
correction term ωmes and an integral gain kI . For a more detailed explanation of the explicit
complementary filter, the reader is referred to Mahony et al. (2008).
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1-3 Vibrations 21

1-3 Vibrations

Vibrations are also measured as accelerations. While vibrations are often misinterpreted
as noise, the accelerometer is actually accelerating due to vibrations. Since the average of
vibrations is zero, the average of the accelerometer measurements should represent the average
of the gravity vector.

Using the explicit complementary filter from Mahony et al. (2008), the part of the correc-
tion term ωmes as a result of vibrations does not average to zero. This is caused by the
normalization of the measured acceleration, by which only the information of the angles is
retained.

The solution implemented here is to not normalize the acceleration measurements. In this
case, the correction term from any pair of measurements separated by half the vibration period
is equal in magnitude and opposite in direction. A correct average is thereby guaranteed. The
downside of this method is that the the magnitude of the correction term increases when the
magnitude of vibration increases.

The the correction term is also increased in situations where the helicopter is accelerating.
Then, the accelerometers measure the sum of gravity and acceleration and the direction of
the accelerometer measurement does not necessarily represent that of gravity. The higher
correction term causes the filter to correct faster towards the wrong value, which is off course
undesired.

1-4 Accelerations

The the correction term ωmes is also increased in situations where the helicopter accelerates.
Then, the accelerometers measure the sum of gravity and acceleration and the direction of the
accelerometer measurement does not necessarily represent that of gravity. A higher correction
causes the filter to correct faster towards the wrong value, which is off course undesired.

If the flight profile only contains short periods of accelerations, the explicit complementary
filter is still able to present an accurate estimate of attitude. The adjectives short and accurate
will be quantified in an experiment.

1-5 Performance Evaluation

The performance of the complementary filter is compared with the attitude measured by
OptiTrack™, an optical motion tracking system using reflective markers. The flight area
is limited to 10m x 10m x 10m. Within this area, it is only possible to accelerate for a
short amount of time. This technique cannot be applied to verify the attitude estimation
performance for a normal outdoors mission.

Experiment setup

In the first experiment, the helicopter is simply commanded to hover at a fixed position
directly after takeoff. The position control loop is a PID-controller. The attitude controller
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Figure 1-1: Cumulative distribution function of pitch and roll error. Hover data is collected for
a period of 216 s. Dynamic data is collected during 192 s in which the trajectory was flown 12
times.

is an Incremental Nonlinear Dynamic Inversion (INDI)-controller with non-optimal gains.
These non-optimal gains result in small oscillations, which are quite useful in evaluating the
performance of the complementary filter.

The second experiment is designed to evaluate the influence of accelerations on the attitude
estimate. Instead of hovering, the helicopter is commanded to fly back and forth between two
points located 6.75 m apart. The helicopter hovers at each point for approximately 4 seconds
while changing the heading to face towards the other point. Then it is commanded to fly to
the other point with a velocity of 2.0 m/s. The same controllers are used for attitude and
position.

The metrics used for attitude estimation performance are the error in pitch and roll angle.
The difference between the two experiments can be attributed to the maneuvers performed
by the helicopter.

Results and Discussion

Figure 1-1 shows the cumulative distribution functions of the two experiments in one graph.
During the first experiment, when the helicopter hovers for 216 seconds, the pitch error is
bounded between approximately zero and three degrees. The pitch angle shows an average
offset of 1.5 degrees. The error in roll shows similar characteristics during hover, but with a
different offset. Errors between ±3 degrees in pitch and roll are considered to be sufficient for
autonomous flight. Actually, during the hover experiment, the helicopter managed to stay
within a radius of 6 cm from the waypoint using a simple PID position controller.

The attitude estimation performance is somewhat degraded during the second experiments,
in which the helicopter continuously flies back and forth between two waypoints. The cycle
is repeated 12 times in 192 s. Figure 1-2 shows the pitch and roll errors together with the
position along the track. At points (1), (3) and (5), the helicopter hovers at one waypoint
and quickly yaws 180◦ to make the nose point towards the other waypoint. During this turn,
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Figure 1-2: Attitude error in pitch and roll during the 6th cycle of a flight between two waypoints.

the tail rotor generates a sideways acceleration which is compensated by the position control
loop by rolling and pitching.

The peaks at (1), (3) and (5) actually occur at the moment where the pitch rate is the
highest. With a high pitch or roll rate, a tiny misalignment in time between OptiTrack and
the helicopter can cause large errors in the angles. That is exactly what is happening here.
The oscillator on the Lisa/S is not as accurate as the one used to log OptiTrack data. The
clocks have drifted slightly since the beginning of the log. This means that the actual pitch
error at these points is even smaller.

The same phenomena occurs at points (2) and (4), while the helicopter pitches forward to
accelerate in the direction of the next waypoint. During the forward acceleration, the pitch
error diverges by approximately two degrees, which is considered acceptable. The deceleration
which follows helps the estimation error to return to the original value. Larger errors can be
expected for longer periods of acceleration.

The error in roll seems to be related to the heading. The roll estimate error is smaller in
the sections where the helicopter flies from (A) to (B), compared to when it flies from (B)
to (A). This is true for all 12 cycles in the experiment. Also in static conditions, when the
helicopter was placed on the ground, the roll angle showed a difference of 1.5◦ between the
two headings used in the flight plan. The pitch angle was also affected by the heading, but
had approximately the same value at both headings. The differences are most likely caused
by misalignment of the flight arena. The calibration tool for the ground plane turned out to
be deformed.

Besides the effects of the misaligned ground-‘truth’, the roll error appears to be very similar
with the hover experiment. Still some small variations occur during maneuvers at (2) and
(4). The tail rotor, which causes lateral acceleration, may also affect the roll estimate. The
data however shows no clear relation, probably because the lateral acceleration is canceled
quickly a the change in the roll angle.
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Chapter 2

INDI Derivations

2-1 Closed Loop Input Tracking

The control loop structure of the INDI controller, with actuator dynamics and measurement
filters, is shown in Fig. 2-1. The closed loop dynamics of the INDI control loop, which describe
the dynamics between the virtual control input ν and system output yk, are derived here.

We start by describing small parts of the system:

ẋm = z−1ẋm + z−1G∆a (2-1)

[

I− z−1
]

ẋm = z−1G∆a (2-2)

∆a = A(z)
[

z−1G−1H(z)G∆a+
[

I− z−1
]

∆u
]

(2-3)
[

I− z−1A(z)G−1H(z)G
]

∆a = A(z)
[

I− z−1
]

∆u (2-4)

∆a =
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)

[

I− z−1
]

∆u (2-5)

∆u = G−1 [ν −H(z)ẋm] (2-6)

Combining Eq. 2-2, 2-5 and 2-6:

[

I− z−1
]

ẋm = z−1G
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)

[

I− z−1
]

G−1 [ν −H(z)ẋm] (2-7)

ẋm = z−1G
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)G−1 [ν −H(z)ẋm] (2-8)

[

I− z−1A(z)G−1H(z)G
]

G−1ẋm = z−1A(z)G−1 [ν −H(z)ẋm] (2-9)

G−1ẋm = z−1A(z)G−1
ν (2-10)

And finally:

ẋm = z−1GA(z)G−1
ν (2-11)
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−

H(z)

G−1 −KG

z−1 z−1G−1H(z)G

A(z) G + z−1

Linearized discretized system

νk ∆uk

+

∆ck

−

∆ak ẋk,m

∆dk

ẋk+1,m

Figure 2-1: INDI block diagram for a discretized linearized system actuator dynamics A(z), a
measurement filter H(z), a control effectiveness G and control effectiveness error scalar KG.

2-2 Control Effectiveness Mismatch

If KG 6= I, Eq. 2-6 changes to:

∆u = KGG
−1 [ν −H(z)ẋm] (2-12)

Substituting in Eq. 2-5 and 2-2 gives:

ẋm = z−1G
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)KGG

−1 [ν −H(z)ẋm] (2-13)

[

I− z−1A(z)G−1H(z)G
]

G−1ẋm = z−1A(z)KGG
−1 [ν −H(z)ẋm] (2-14)

This can be simplified further when considering only a single degree of freedom:

[

1− z−1A(z)H(z)
]

ẋm = z−1A(z)KG [ν −H(z)ẋm] (2-15)

[

1− z−1A(z)H(z) + z−1KGA(z)H(z)
]

ẋm = z−1A(z)KGν (2-16)
[

1 + z−1A(z)H(z) (KG − 1)
]

ẋm = z−1A(z)KGν (2-17)

The transfer function becomes:

ẋm =
A(z)KG

z +A(z)H(z) (KG − 1)
ν (2-18)

If there is no actuator and no measurement filter, then A(z) = H(z) = 1:

ẋm =
KG

z +KG − 1
ν (2-19)

The pole is found by setting the denominator to zero:

z +KG − 1 = 0 (2-20)

z = 1−KG (2-21)

Which is in the unit circle for 0 ≤ KG ≤ 2.

A similar derivation is possible without neglecting the actuator. It is shown here for a first-
order actuator:

A(z) =
zβ

z − 1 + β
(2-22)
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where 0 < β < 1. Then, Eq. 2-18 becomes:

ẋm =

zβ
z−1+βKG

z + (KG − 1) zβ
z−1+β

ν (2-23)

ẋm =
βKG

z − 1 + β + (KG − 1)β
ν (2-24)

ẋm =
βKG

z − 1 +KGβ
ν (2-25)

which has a pole at p = 1−KGβ. For stability it is required that 0 ≤ KGβ ≤ 1.

2-3 Disturbance Rejection

When looking at the disturbance rejection response, Eq. 2-1 is extended with a disturbance
input ∆d:

ẋm = z−1ẋm + z−1G∆a+ z−1∆d (2-26)

Substituting Eq. 2-5 and 2-6 into Eq. 2-26:

[

I− z−1
]

ẋm = z−1G
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)

[

I− z−1
]

G−1 [ν −H(z)ẋm]

+z−1∆d (2-27)

The increment in disturbance is a function of the full disturbance:

∆dk = dk − dk−1 (2-28)

Or in z-domain:

∆d =
[

I− z−1
]

d (2-29)

Substituting Eq. 2-29 in 2-27:

[

I− z−1
]

ẋm = z−1G
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)

[

I− z−1
]

G−1 [ν −H(z)ẋm]

+z−1
[

I− z−1
]

d (2-30)

Which can be reduced to:

ẋm = z−1G
[

I− z−1A(z)G−1H(z)G
]

−1
A(z)G−1 [ν −H(z)ẋm] + z−1d (2-31)

Since we are considering disturbance rejection, ν is set to zero:

[

I− z−1A(z)G−1H(z)G
]

G−1ẋm =− z−1A(z)G−1H(z)ẋm

+ z−1
[

I− z−1A(z)G−1H(z)G
]

G−1d (2-32)

G−1ẋm = z−1
[

I− z−1A(z)G−1H(z)G
]

G−1d (2-33)

ẋm = z−1
[

I− z−1GA(z)G−1H(z)
]

d (2-34)

Attitude Control of a Small Helicopter UAV B.J.M.M. Slinger



28 INDI Derivations

−

H(z)

G−1 −KG

z−1 z−1G−1H(z)G

M(z) A(z) G + z−1

Linearized discretized system

νk ∆uk

+

∆ck

−

∆ak ẋk,m

∆dk

ẋk+1,m

Figure 2-2: INDI block diagram for a discretized linearized system actuator dynamics A(z),
an actuator model M(z), a measurement filter H(z), a control effectiveness G and control
effectiveness error scalar KG.

2-4 Actuator Model Mismatch

Figure 2-2 shows the block diagram of the same INDI loop as in Fig. 2-1, but with an
actuator model instead of direct actuator feedback. This section explores the effect of an
incorrect actuator model in a single degree of freedom, where the incorrect model is given by:

M(z) =
zKAβ

z − 1 +KAβ
(2-35)

Both the model and the actual dynamics have a steady-state gain of 1. The actual actuator
dynamics are:

A(z) =
zβ

z − 1 + β
(2-36)

The derivation of the closed-loop response to an input is derived for a system with no mea-
surement filter, such that H(z) = I. Also the actuator effectiveness matrix G is assumed to
be error free, which means KG = I. The expression for the actuator increment is given by:

∆a = A(z)∆c (2-37)

∆c =
[

1− z−1
]

∆u+ z−1M(z)∆c (2-38)
[

1− z−1M(z)
]

∆c =
[

1− z−1
]

∆u (2-39)

∆c =
[

1− z−1M(z)
]

−1 [
1− z−1

]

G−1 [ν − ẋm] (2-40)

∆a = A(z)
[

1− z−1M(z)
]

−1 [
1− z−1

]

G−1 [ν − ẋm] (2-41)

Substituting in Eq. 2-2:

[

1− z−1
]

ẋm = z−1GA(z)
[

1− z−1M(z)
]

−1 [
1− z−1

]

G−1 [ν − ẋm] (2-42)

ẋm = z−1A(z)
[

1− z−1M(z)
]

−1
[ν − ẋm] (2-43)

[

1− z−1M(z)
]

ẋm = z−1A(z) [ν − ẋm] (2-44)
[

1− z−1M(z) + z−1A(z)
]

ẋm = z−1A(z)ν (2-45)
[

1− z−1M(z) + z−1A(z)
]

ẋm = z−1A(z)ν (2-46)
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ẋm =
A(z)

z −M(z) +A(z)
ν (2-47)

Now by substituting Eq. 2-35 and 2-36:

ẋm =

zβ
z−1+β

z − zKAβ
z−1+KAβ + zβ

z−1+β

ν (2-48)

ẋm =
zβ

z(z − 1 + β)− zKAβ
z−1+KAβ (z − 1 + β) + zβ

ν (2-49)

ẋm =
zβ(z − 1 +KAβ)

z(z − 1 + β)(z − 1 +KAβ)− zKAβ(z − 1 + β) + zβ(z − 1 +KAβ)
ν (2-50)

ẋm =
β(z − 1 +KAβ)

(z − 1 + β)(z − 1 +KAβ)−KAβ(z − 1 + β) + β(z − 1 +KAβ)
ν (2-51)

ẋm =
zβ − β +KAβ

2

z2 + z(2β − 2) + 1− 2β +KAβ2
ν (2-52)

The roots of the characteristic equation are found at:

z2 + z(2β − 2) + 1− 2β +KAβ
2 = 0 (2-53)

z =
1

2

(

2− 2β ±
√

4β2 − 8β + 4− 4(1− 2β +KAβ2)
)

(2-54)

z = 1− β ±
√

β2 −KAβ2 (2-55)

From this equation, it can be observed that the poles get an imaginary component if KA > 1.
To guarantee stability, we have to make sure that the poles are inside the unit circle. This is
true for all possible values 0 ≤ KA ≤ (1/β).

Attitude Control of a Small Helicopter UAV B.J.M.M. Slinger



30 INDI Derivations

B.J.M.M. Slinger Attitude Control of a Small Helicopter UAV



Part III

Literature Study

Attitude Control of a Small Helicopter UAV B.J.M.M. Slinger





Chapter 3

Introduction

The Unmanned Aerial Vehicle (UAV) business has been a fast-growing market in recent years.
UAVs come in many different shapes and sizes and are used in a wide range of applications.
The multi-rotor concept is the most common type, since it has several good characteristics.
It is capable of Vertical Takeoff and Landing (VTOL). The design is mechanically simple
and robust, since the motors are the only moving parts. The maneuverability is generally
very good. With a properly tuned attitude controller it is also relatively easy to fly. By
including an on-board GPS receiver, it is even possible to fly completely autonomous. All
these characteristics make it a very popular platform for hobbyists and professionals.

The downside of the multi-rotor concept is efficiency. A set of smaller rotors is less efficient
than a single large rotor that delivers the same amount of thrust Driessens & Pounds (2013).
This is exactly what the classical helicopter design looks like. Even with a tail-rotor to
compensate for torque of the main rotor, it is more energy efficient. This energy efficiency
is a trade-off with robustness. The mechanical design of a helicopter is more complex with
servo actuators and a swash-plate mechanism. The design of an attitude controller is more
complicated because several cross-coupling effects have to be taken into account.

Nowadays, small RC helicopters toys of decent quality are available. Together with develop-
ments in small scale electronics, it is time to reconsider the traditional helicopter configuration
for autonomous UAVs. The Walkera Genius CP V2 for example is a light-weight helicopter
weighing only 35 grams without battery. Most parts are made out of plastic which can absorb
energy in a crash, making it more robust. There are some research projects on autonomous
helicopters H. J. Kim et al. (2004); Bing et al. (2012), but these helicopters are much larger.
Prox Dynamics has developed the PD-100 Black Hornet, which is a miniature helicopter for
military applications, but no details are available on its capabilities and inner workings. As far
as is known to the author, no scientific research exists on small-scale ( <50 gram) autonomous
helicopters.

One of the difficulties with (small) helicopters, but also with other small-scale UAVs, is
attitude estimation. Without a good attitude estimate, it is impossible to control the attitude.
Without attitude control, it is impossible to fly autonomously. Helicopters in particular are
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known for their strong vibrations. These vibrations are sensed by the accelerometers and
can negatively affect the attitude estimation process. On most UAVs, the vibrations are
filtered by a mechanical suspension of the sensors using dampers. On a small-scale helicopter
however, possibilities for mechanical damping are limited because of the size. Additionally,
the choice of inertial sensors is limited to the very small ones, which generally provide lower
quality measurements.

The other challenging part is control. The most common approach is to use PID controllers on
the attitude angles. Implementation is straightforward, but tuning the gains can be difficult.
INDI is a sensor-based control method. Using sensor measurements, the system is feedback
linearized and a simple linear controller can be added to control the attitude. Once the ac-
tuator effectiveness in the INDI loop has been identified, which can be done automatically
by an adaptive algorithm, the UAV shows excellent flight characteristics. This technique was
recently implemented on quadcopters with impressive results Smeur et al. (2015). Unfortu-
nately, the same method cannot be directly applied to helicopters. The control effectiveness
functions for helicopters are much more complicated Simplicio et al. (2013), which significantly
reduces the simplicity of the controller.

3-1 Research questions

The goal of this project is to make a small helicopter fly autonomously outside using INDI.
The research is focused at two different topics: attitude estimation and INDI control. The
relation between the two is the need to have an attitude estimate in order to control it
with INDI. Therefore, two main research questions and their corresponding sub-questions are
formulated.

3-1-1 Attitude estimation

The first main research question is:

Can attitude estimation be accomplished with small inertial sensors by using an existing al-
gorithm in combination with vibration attenuation?

This preliminary thesis aims to answer the following subquestions:

• What are the characteristics of small inertial sensors?

• What attitude estimation algorithms exist in literature?

• What would be a suitable attitude estimation algorithm that can be used on a small-
scale helicopter?

• What are the options for attenuating vibrations in inertial measurements?

B.J.M.M. Slinger Attitude Control of a Small Helicopter UAV



3-2 Layout 35

3-1-2 Helicopter INDI control

The second main research question is:

Can INDI be applied directly for rate control of a helicopter UAV?

This preliminary thesis aims to answer the following subquestions:

• What are the control dynamics of a helicopter?

• Is it possible to implement control dynamics as actuator dynamics?

3-2 Layout

Chapter 4 describes the test platform used for this research and the properties of small
inertial sensors. The basic concept and two algorithms for attitude estimation are described
in Chapter 5. This chapter also describes methods for vibration attenuation which are required
for good attitude estimation. The basics of helicopter dynamics and existing controllers are
described in Chapter 6. Chapter 7 explains the concept of INDI and how it can be applied
for helicopter control. The project planning is given in Chapter 8 and the conclusions can be
found in Chapter 9.
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Chapter 4

Test Equipment

This chapter describes the helicopter that is used for this project, including modifications. The
last section describes the working principles of Micro-Electrical-Mechanical system (MEMS)
inertial sensors, which are typically used on small UAVs.

4-1 Helicopter

The helicopter used for this research project is the Walkera Genius CP V2 and is shown in
Figure 4-1. Without modifications and without battery, it weighs only 35 grams. Unlike
most other toy helicopters in this class, the Walkera Genius CP V2 does not have a flybar for
stabilization. It has built-in accelerometers and gyroscopes to stabilize attitude.

Specifications of the Walkera Genius CP V2:

• Main rotor diameter: 240 mm

• Tail rotor diameter: 45 mm

• Overall length: 220 mm

• Weight: 35 g

• Battery: 3.7V 200 mAh Li-Po

4-2 Brushless upgrade

By default, the helicopter is equipped with a brushed motor which drives main the shaft
through gearing. Brushless motors have several advantages over brushed motors, including
higher efficiency, less maintenance and better heat dissipation. Walkera offers a brushless
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Figure 4-1: Walkera Genius CP V2 unmodified.

Figure 4-2: Glavak brushless direct drive motor and adapter piece.
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Figure 4-3: Lisa/S autopilot.

upgrade kit to replace the brushed motor. With this upgrade kit, the gearing still remains.
The plastic gears wear out quickly and are an extra source of vibrations.

Therefore, the helicopter is upgraded with a direct-drive brushless motor from Glavak. An
adapter piece is made from nylon to attach the motor to the helicopter frame. A longer drive
shaft is required to extend into the new motor. Figure 4-2 shows a picture of the stator and
rotor of the Glavak motor and the nylon adapter piece.

4-3 Autopilot

For research purposes, it is necessary to be able to write custom control software. Therefore,
the electronics board which provides the radio link and stabilization, is removed. It is replaced
by the Lisa/S autopilot Remes et al. (2014) which was developed by the research group at
the MAVLab and is shown in Figure 4-3. The data link is not fast enough to transmit
accelerometer and gyroscope measurements real-time. A 4GB micro-SD card is soldered
directly to the Lisa/S autopilot to store measurement data which can be retrieved later when
the measurement has finished. Telemetry is done through an ESP-8266 WiFi chip. For the
radio communication link, a DSM2 deltang receiver is used.

Specifications of the Lisa/S autopilot:

• Size: 2.0 x 2.0 x 0.5 cm

• Weight: 2.8 g

• Processor: 72MHz 32bit ARM Cortex M3 MCU with 16KB RAM and 512KB Flash

• IMU: InvenSense MPU-6050 3-axis gyroscope and 3-axis accelerometer

• Magnetometer: HMC5883L

• Barometer: MS5611

• GPS: ublox MAX-6 series
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4-4 MEMS gyroscopes and accelerometers

There are many kinds of sensors to measure acceleration and angular velocity. However,
UAVs are forced to use small and light-weight devices. MEMS sensors are the most common
type of sensors found on UAVs.

The Lisa/S has an MPU-6050 from Invensense, which is a small chip that contains a 3-axis
MEMS gyroscope and 3-axis MEMS accelerometers. This type is similar to those found in
smartphones. The chip measures just 4x4x0.9 mm and costs only a few dollars.

4-4-1 Accelerometer measurements

In principle, a MEMS accelerometer consists of a small mass-spring system. Capacitive plates
are attached to the proof mass and form capacitors together with fixed plates. When the
position of the proof mass changes, it changes the capacitance. The difference in capacitance of
two subsequent capacitors are a measure for displacement. Since the position of the proof mass
in a mass-spring system relates to the applied force, it can be used to measure acceleration.

Since the accelerometers are used to correct for drift, they should be free of drift themselves.
Bias stability Martin et al. (2013) is therefore an import measure. It quantifies the possible
variations of the slowly varying static error, which is mainly a result of temperature changes.
Temperature variations can degrade performance of a MEMS sensor significantly, so most of
these sensors have internal temperature compensation.

Nonlinearity is a parameter which describes the offset from a best fit straight line. The
accelerometer based attitude to which the estimation converges can be off due to this effect.
Also, sensor noise is usually high with MEMS accelerometers. But since they are used to
correct long term drift, high frequency noise is not necessarily a problem. Other types of
errors exist as well, but these are smaller and assumed to be negligible.

4-4-2 Gyroscope measurements

The gyroscope sensor in the MPU-6050 consists of a resonating proof mass. Out of plane
oscillation due to the Coriolis effect is measured by measuring change in capacitance. This
is a direct measure for rotational velocity. Similar to MEMS accelerometers, the MEMS
gyroscope is also subject to bias (stability) error, nonlinearity and noise. Most sensor fusion
algorithms try to estimate the gyroscope bias using accelerometer measurements. Sensor noise
is important since it directly integrates into the attitude estimate. Sensor noise in MEMS
gyroscopes is generally low, so the measurements remain useful.

4-4-3 Amplitude and frequency limitations

Accelerometer and gyroscope sensors are only producing valid results when their limitations
are not exceeded. Above these limitations, the sensors will still produce data and it will be
difficult to see whether it is valid or not.

The sampling rate of the sensor defines the maximum measurable frequency, which is half
of that. Any frequency above the Nyquist frequency will appear as a reflections, resulting
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in false measurements. It is important to prevent high frequency signals from reaching the
sensors. This is usually done with physical dampers. Another important frequency that must
be prevented from reaching the sensor is the resonance frequency of the proof mass inside the
sensor. A recent study Son et al. (2015) showed that it is possible to bring down drones by
producing sound at the resonance frequency of the gyroscope sensor.

For both accelerometers and gyroscopes, if the proof mass inside the sensor reaches the
maximum deflection, it may start bouncing and even destroy the sensor. This will be the
cause of false measurements and should be prevented at all time.

4-4-4 Thermal MEMS accelerometers

A thermal MEMS accelerometer Fennelly et al. (2012) is based on the principle of convection
of heated gas. Highly accurate temperature sensors sense the difference throughout the cavity
and can thereby sense acceleration. This type of accelerometer has a very low bandwidth and
is insensitive to high frequency vibrations. The convection of gas acts as a low-pass filter
which also introduces delays. However, since accelerometers are only used to compensate for
long-term drift, a thermal MEMS accelerometer may still provide a good solution for attitude
estimation in combination with a MEMS gyroscope. The dimensions of these accelerometers
are slightly larger compared to regular MEMS accelerometers.
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Chapter 5

Attitude Estimation

To achieve autonomous flight, it is essential to have a correct attitude estimate. The attitude
is used for control of the thrust vector and thereby the lateral accelerations. If the estimate
is wrong, the helicopter will drift from the desired position or flight path. This chapter
describes the basic concept behind attitude estimation in Section 5-1. The Kalman filter
and Complementary filter are explained respectively in Sections 5-2 and 5-3. Section 5-4
elaborates on vibration attenuation methods to improve attitude estimation.

5-1 Basic concept

The most commonly used methods for attitude estimation on UAVs rely on combined gyro-
scope and accelerometer measurements. Gyroscopes measure the angular velocities and an
attitude estimate is obtained from integration. However, small errors in angular velocity mea-
surement will integrate towards large errors in the attitude estimate. This is compensated
with accelerometer measurements. Among other accelerations (and noise), accelerometers
measure the direction of the gravity vector. The pitch and roll angle can be derived from the
direction of the gravity vector in the body frame. Drift in yaw is usually corrected with mag-
netometer measurements. Heading estimation on a small helicopter poses no new challenges
compared to other UAVs, because magnetometers are not affected by vibrations. Therefore
this study only focuses at attitude (pitch and roll) estimation.

ameas = agrav + adyn (5-1)

Equation 5-1 shows that the measured acceleration of a perfect sensor is the sum of gravity and
dynamic accelerations. Only if the dynamic accelerations are zero, the measured acceleration
can be used to obtain the attitude. For the dynamic accelerations to be zero, the aerial vehicle
must be moving at a constant velocity. Vibrations in the vehicle are another type of dynamic
accelerations and should also be zero for a correct attitude estimate.

Attitude Control of a Small Helicopter UAV B.J.M.M. Slinger



44 Attitude Estimation

These restrictions would basically render accelerometer measurements unusable in practice.
But in the long-term, when the average of dynamic accelerations approaches zero, the ac-
celerometers provide a reasonable estimate of the direction of the gravity vector. This long-
term estimate is used to compensate long-term drift of gyroscope integration, thereby able to
provide a reasonable attitude estimate.

This trick does not work in situations where dynamic accelerations do not average to zero, for
example when flying in circles. In that case, it is required to subtract centripetal accelerations,
which can only be calculated when velocity is known.

5-2 Kalman filter

The Kalman filter is a very common choice for attitude estimation Carminati et al. (2012);
Wang et al. (2004); Suh (2010); Makni et al. (2014); Kang & Park (2009); Gebre-Egziabher
et al. (2004); Li & Wang (2013). Pitch and roll angles can be obtained from fusing gyroscope
and accelerometer measurements. Magnetometer measurements are commonly included to
also obtain heading information.

5-2-1 Linear Kalman filter

The Kalman filter is an algorithm that provides the optimal state estimate of a linear dynamic
system by fusing noisy measurement data. The standard discrete-time state-space model is
given by:

x (t+ 1) = F · x (t) + v1 (t) (5-2)

y (t) = H · x (t) + v2 (t) (5-3)

These equations are referred to as the process equation and the measurement equation. The
F matrix contains system dynamics. H is the model that describes how sensor readings are
reflected on the state. v1 and v2 are Gaussian noise, where v1 is the process noise and v2
describes measurement noise.

Each iteration follows a predictor-corrector feedback mechanism. The a priori state estimate
is obtained by propagating according to the model in the process equation. The a posteriori
state estimate then follows from sensor measurements in a correction step.

Table 5-1 contains the most general description of the Kalman filter. There is no single
solution for using a Kalman filter for attitude estimation. Different variables can be chosen
as states and different variations to the Kalman filter exist.

5-2-2 Attitude representations

There are three common choices for attitude representation: Euler angles Foxlin (1996);
Leavitt et al. (2006); Suh (2006), direction cosines Carminati et al. (2012); Lundberg et
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Table 5-1: Linear Kalman Filter

0.
Obtain initial state esti-
mate and covariance ma-
trix:

x̂0,0, P0,0

Begin iteration

1. One-step ahead predic-
tion

x̂(k+1,k) = Φ(k+1,k)x̂(k,k) +Ψ(k+1,k)u(k)

2. Covariance matrix of
state prediction error

P(k+1,k) = ΦkPkΦ
T
k +Q(d,k)

3. Calculate Kalman gain K(k+1) = Pk+1,kH
T
(k+1)

(

H(k+1)P(k+1)H
T
(k+1) +R(k+1)

)

−1

4. Measurement update x̂(k+1,k+1) = x̂(k+1,k) +K(k+1)

(

z(k+1) −H(k+1)x̂(k+1,k)

)

5. Covariance matrix of
state estimation error

P(k+1,k+1) =
(

I −K(k+1)H(k+1)

)

P(k+1,k)

al. (2000); Rehbinder & Hu (2001) and quaternions Xiong et al. (2011); Barshan & Durrant-
Whyte (1995); S. h. P. Won et al. (2009); S. H. P. Won et al. (2010); Wang et al. (2004); A. Kim
& Golnaraghi (2004); Choukroun et al. (2006); Greene & Trent (2003); Bijker & Steyn (2008);
Vaganay et al. (1993); Yun et al. (2003); Lee & Park (2009). Using Euler angles is the most
intuitive approach, but contains nonlinear equations and suffers from at least one singularity
Lee & Park (2009). Direction cosines and quaternions do not have singularities and possess
better numerical behavior. Direction cosines are mainly chosen for systems where heading
is irrelevant, because it saves one state variable compared to quaternions. Quaternions are
a computational friendly and singularity-free solution for full 3D direction information and
therefore the most popular choice in an Attitude and Heading Reference System (AHRS).

5-2-3 Direct and Indirect Kalman filter

There are two main designs for a Kalman filter: direct and indirect. With the direct Kalman
filter, the state vector contains all the variables of interest. The state vector of an indirect
Kalman filter only holds an error-state. This can be the difference in state estimated from
gyroscope integration and accelerometer measurements. The advantage of an indirect filter is
that the state dimension is smaller and it requires less computations Carminati et al. (2012);
Suh (2010). However, with the simplifications in the indirect filter, the achievable performance
is lower. It still shows excellent performance with both Euler angles Setoodeh et al. (2004)
and quaternions Suh (2010).

5-2-4 External accelerations

As mentioned in section 5-1, accelerometer measurements can not simply be used to detect
the gravity vector if external accelerations are present. For some applications like slow-moving
airships Bijker & Steyn (2008), it is safe to assume that there are no external accelerations.
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Other researchers A. Kim & Golnaraghi (2004); Vaganay et al. (1993) report that their filter
is still able to accurately estimate attitude when it is subject to small zero-mean or short-
lived external accelerations. No details are provided on the measurement noise covariance
matrix R, but it is suspected that this matrix is tuned with higher values than the actual
sensor noise. Thereby it is effectively reducing the weights of the accelerometers in the fusion
process.

Other researchers have considered the impact of external accelerations on the performance of
attitude estimation and proposed methods to improve the fusion algorithm. These methods
are based on detection of external acceleration, which can be done by comparing the mea-
surements with gravity. A common method is to use a switching mechanism with thresholds,
which reduces the weights of accelerometer measurements when external acceleration is de-
tected Sabatini (2006); Suh et al. (2006); Wang et al. (2004); Li & Wang (2013). By using
direction information of external acceleration, unnecessarily lowering weights on accelerome-
ter outputs that are not affected by the acceleration can be prevented, giving better results
Suh (2010).

Lee et al. (2012) used a model-based approach to solve the problem. This algorithm was
capable of estimating accurate attitudes and external accelerations for short accelerated pe-
riods, but showed gradually increasing errors when the testing condition involved prolonged
high external accelerations. This works well if it involves wearable sensors, but might not be
sufficient for UAV applications.

A more advanced method, the quaternion-based Adaptive Kalman filter (q-AKF), was re-
cently proposed Makni et al. (2014). It continuously estimates the covariance matrix as-
sociated with external acceleration. It is based on a method for unknown noise statistics.
This method needs no tuning of thresholds and also automatically incorporates directional
information as proposed by Suh Suh (2010).

5-3 Complementary filter

The other common choice for attitude estimation is a complementary filter Baerveldt & Klang
(1997a); Roberts et al. (2003); Hamel & Mahony (2006). With low-quality inertial sensors
such as the MPU-6050 on the Lisa/S, a Kalman filter can be difficult to apply due to the
non-linearities and non-Gaussian noise characteristics Mahony et al. (2005); Higgins (1975).
A complementary filter provides a good alternative since no assumptions are made about
linearity and noise statistics Brown & Hwang (1992). Compared to a Kalman filter, it is
mathematically simpler and computationally less expensive.

5-3-1 Basic complementary filter

The basic idea of a complementary filter is to combine measurements of two or more sensors,
using only the reliable frequencies of each sensor, to provide a reliable signal over the entire
bandwidth. To achieve a reliable attitude estimate, the low-frequency data of the accelerom-
eters can be combined with high-frequency data from gyroscopes in a complementary filter.
A block-diagram of a basic complementary filter is shown in Figure 5-1, with the following
transfer function: Jensen et al. (2013)
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Ha(s)

Hg(s)

Ga(s)

Gg(s)

+
x x̂

Figure 5-1: Frequency domain complementary filter Jensen et al. (2013).

− C(s) +
1
s

xa x̂

xg

Figure 5-2: Closed-loop complementary filter system Jensen et al. (2013).

Ha(s)Ga(s) +Hg(s)Gg(s) = 1 (5-4)

Ha and Hg represent the accelerometer and gyroscope sensors. The corresponding filters are
Ga and Gg. If the transfer function of the complete system is approximately equal to 1, the
output is an estimate for attitude. When the sensor dynamics are not exactly known, an ideal
sensor may be assumed (H = 1) while Ga and Gg are set as generic filters that can be tuned
to minimize the estimation error Jensen et al. (2013). The assumption of an ideal sensor
is also valid if the sensor measurements are only valid in the range of G. For an attitude
estimation filter, Ga is configured as a low-pass filter for accelerometers and Gg is a high-pass
filter for the gyroscopes.

By choosing Ga and Gg as follows, a classical closed-loop complementary filter can be ob-
tained:

Ga(s) =
C(s)

C(s) + s
(5-5)

Gg(s) =
s

C(s) + s
(5-6)

The corresponding block diagram is given in Figure 5-2. The simplest complementary filter
contains only proportional feedback by C(s) = k. The gain k is then the crossover frequency
for the filter. If the gyroscope measurements contain a bias term, which is usually the case
for MEMS gyroscopes, it is possible to add an integrator term into the compensator:

C(s) = k +
1

λs
(5-7)
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5-3-2 Direct and passive complementary filter

Mahony et al. (2005) proposed two non-linear filters: the direct and passive complementary
filter. Although these filters were already used before, they were never classified as such and
their publication provides the mathematics behind these filters.

The filters are constructed in special orthogonal group denoted SO(3). The following frames
of reference are used

• A denotes the inertial frame of reference.

• B denotes the body-fixed frame of reference.

• E denotes the estimator frame of reference.

The system considered is the kinematics of the orientation matrix R:

Ṙ = RΩ× (5-8)

where R is the rotation matrix from inertial frame A to body fixed frame B. Ω is the
vector with rotational rates in body-fixed frame. Ω× is the skew-symmetric matrix such that
Ω×v = Ω× v. The dynamics of the direct and passive complementary filter are proposed as:
Mahony et al. (2005, 2008)

˙̂
Rd =

(

RyΩ+ kP R̂dω
)

×

R̂d = R̂d

(

R̃dΩ+ kPω
)

×

(5-9)

˙̂
Rp =

(

RpΩ+ kP R̂pω
)

×

R̂p = R̂p (Ω + kPω)× (5-10)

where R̂d and R̂p denote the estimate of the rotation matrix R using the direct and passive
non-linear complementary filter. Ry is an estimate of the rotation matrix based directly
on accelerometer and magnetometer measurements, hence the name direct complementary
filter. The error matrix R̃d = R̂T

dRy (reps. R̃p = R̂T
p Ry) is a noisy measurement of the

attitude of the body fixed frame B with respect to the estimator frame E . The innovation
term ω is chosen as ω = Pa(R̃), where Pa is the anti-symmetric projection operator such that

Pa(R̃) = 1
2

(

R̃− R̃T
)

. kP is a positive gain.

Figures 5-3 and 5-4 show the block diagrams of both filters. The main difference between
the direct and passive complementary filter is which rotation matrix is used for propagation
of gyroscope measurements. The direct filter uses Ry, which is very noisy because it directly
uses accelerometer and magnetometer measurements. This noise will propagate further since
the gyroscope measurements are integrated in this estimate. The passive filter uses R̂ in a
feedback structure and is less sensitive to this noise.

Both filters can also be extended with a bias estimator, to correct for bias in the gyroscopes.
The measured values from gyroscope measurements are then denoted by

Ωy = Ω+ b (5-11)
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Figure 5-3: Block diagram of the direct complementary filter on SO(3) Mahony et al. (2008).

Figure 5-4: Block diagram of the passive complementary filter on SO(3) Mahony et al. (2008).
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where b is a constant or slowly varying bias. The direct complementary filter with bias com-
pensation is then defined by Mahony et al. (2008) as:

˙̂
Rd =

(

Ry

(

Ωy − b̂
)

+ kP R̂dω
)

×

R̂d (5-12)

˙̂
b = −kIω (5-13)

ω = vex
(

Pa

(

R̃d

))

(5-14)

The vex operator returns vector v from the skew-symmetric matrix, such that v = vex(v×).
The passive complementary filter with bias compensation is given by: Mahony et al. (2008)

˙̂
Rp = R̂p

(

Ωy − b̂+ kPω
)

×

(5-15)

˙̂
b = −kIω (5-16)

ω = vex
(

Pa

(

R̃p

))

(5-17)

5-3-3 Explicit complementary filter

After the direct and passive complementary filter, the explicit complementary filter was pro-
posed by Mahony et al. (2008). This is a further development on the passive complementary
filter that provides a formulation in terms of measurement error to avoid algebraic recon-
struction of the attitude. It requires only accelerometer and gyroscope measurements and
gyro biases are also estimated. The explicit complementary filter with bias compensation is
formulated as

˙̂
Re = R̂e

(

(

Ωy − b̂
)

×

+ kP (ωmes)×

)

(5-18)

˙̂
b = −kIωmes (5-19)

ωmes :=
n
∑

i=1

kivi × v̂i (5-20)

where vi denotes a set of n known inertial directions (gravity, magnetic field) and ki are the
corresponding gains. This algorithm also remains well conditioned in the case where only a
single vector direction is measured. The algorithm is also suitable for efficient implementation
using the quaternion representation.

5-3-4 External accelerations

A complementary filter has similar issues with external accelerations as a Kalman filter.
Several techniques have been developed for the Kalman filter and are described in Section 5-2-
4. This is not the case for complementary filters. Many authors Gebre-Egziabher et al. (1998);
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Euston et al. (2008); Baerveldt & Klang (1997a,b) use the assumption that low-frequency
measurements of the accelerometer represents gravity. This assumption works out well if
the gains are properly tuned and the amount of dynamic accelerations is limited. Still, the
threshold switching methods that have been applied in combination with Kalman filters would
also be applicable to complementary filters. Instead of varying the measurement covariance
matrix, the cross-over frequency of the complementary filter can be changed dynamically.

5-4 Vibration attenuation methods

Section 5-2-4 and 5-3-4 already refer to the problem of dynamic accelerations which are picked
up by the accelerometer. This section deals with a special kind of dynamic accelerations:
vibrations. Literature often refers to motor vibrations as noise. However, the accelerations
caused by vibrations are true accelerations and should not be classified as noise. To improve
state estimation, these vibrational accelerations should be removed from the accelerometer
measurements.

5-4-1 Mechanical damping

First of all, vibrations should be reduced mechanically. Almost any UAV has dampers to
separate the inertial sensors and battery from the main body. By including the battery, the
mass of the suspended system is increased which provides better damping of high frequency
vibrations. The main purpose of mechanical damping is to prevent signals that are outside
the measurements range from reaching the sensors.

5-4-2 Software filtering

Several methods can be considered to remove vibrations from accelerometer measurements.
The strongest vibrations are introduced by the main motor and rotor. The frequency is
known from an RPM sensor which is attached to the motor phases. If an RPM sensor is not
available, a real-time Fourier transform can be used to identify vibration frequencies. Using
a notch filter it is possible to remove a small bandwidth around the rotor frequency. A notch
filter was successfully applied by C. Kim et al. (2012) to enhance state estimation. However,
their publication does not go into detail on how the Kalman filter fuses this information and
how the measurement covariance matrix is tuned.

In this preliminary study, strong vibrations are measured at the rotor frequency (at 60 Hz)
and its harmonics. It is suspected that the first harmonic is caused by aerodynamics from the
two rotor blades. The other harmonics remain unexplained, but their amplitude is also much
lower. Three notch filters at the rotor frequency and the first harmonics remove the largest
vibrations. Figure 5-5 shows the original and resulting signal of lateral accelerations in the
helicopter during motion. The motion was generated by a person shaking the helicopter while
the main rotor was spinning. It does not yet prove that the filters work for state estimation,
but it does show that the strong oscillation can be removed.

Another option is to use a low-pass filter. A first-order low-pass filter is already implemented
in the complementary filter in the paparazzi autopilot software, but the main vibration of the
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Figure 5-5: Vibration attenuation of the main rotor frequency and harmonics using three notch
filters.

helicopter has a relatively low frequency and is not sufficiently attenuated by this filter. Other
higher order low-pass filters exist with better delay characteristics and stronger attenuation
beyond the cut-off frequency. A combination of notch filters and a low-pass filter can give even
better results, although this also introduces delays. Due to causality, delay is inevitable with
online low-pass filters. Zero delay can only be achieved by including future measurements.
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Chapter 6

Helicopter Dynamics and Control

A helicopter has four control inputs: Three for the main rotor and one for the tail rotor. The
rotational speed of the main rotor is approximately constant. A non-linear helicopter model
is described in the first section. Section 6-2 describes differences between different types of
rotors. Section 6-3 describes dynamics of a rigid spinning disc, which provides some insights
in control of gyroscopes. This is useful because the main rotor is basically a giant gyroscope.
The final section describes control methods that have been successful in helicopter control.

6-1 Helicopter Model

Previous work by Simplicio et al. (2013) on INDI for helicopter control was based on a non-
linear 8-Degrees Of Freedom (DOF) helicopter model. The work studies a full size Bölkow
Bö-185 helicopter. The helicopter used in the current project is multiple orders of magnitude
smaller and lighter. Size and weight are both parameters of the model. It is expected, but
not proven, that the same model can be applied for the smaller helicopter by changing the
set of parameters.

The model has 8 degrees of freedom. The first six are three rotations and three translations.
The latter two contain the dynamic inflows of the main- and tail rotor. Although it has many
simplifying assumptions, the model still captures the important non-linearities and cross-
couplings between different DOFs. The non-linearities are mainly related to the airspeed of
the rotor disc-plane.

Only the steady-state rotor disc-tilt motion is considered in the model. Flapping dynamics are
neglected. The disc-tilt angles are described by a set of non-linear equations which contain,
among others, the control inputs. The disc-tilt angles are then used to calculate the rotor
forces and moments which are acting on the body. The equations for the disc-tilt angles also
contain the pitch- and roll rate of the helicopter body. This is an important term which
causes damping of the rotation rates.
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Figure 6-1: Teetering rotor. Padfield (2008)

6-2 Rotor types

Different types of rotors have different dynamics. The different dynamics are described by
the 8-DOF helicopter model and can be selected by setting the right parameters. For INDI
control, it is fundamental to understand the relation between control inputs and rotational
motions.

6-2-1 Teetering rotor

A teetering rotor as in Figure 6-1 has two blades with a central hinge like a seesaw. This
type of rotor does not transfer a moment to the rotor shaft. The lift vector is perpendicular
to the rotor disc. In hovering flight, the lift vector is aligned with the helicopters center of
mass. Tilting the rotor disc causes an offset between the lift vector and the center of mass,
thereby inducing rotational acceleration. So in order to control rotational acceleration, the
orientation of the rotor disc must be controlled.

The swashplate controls the pitch angle of the rotor blades. By tilting the swashplate, the
blade pitch is increased on one side and decreased on the other side. The change in pitch
causes a change in lift force and creates a moment around the central hinge. Because of
the gyroscopic effect, a rotation is induced on the perpendicular axis. For example, with a
counter-clockwise rotating rotor, an increase in pitch on the left side will cause the rotor disc
to tilt forward.

6-2-2 Fully articulated rotor

A fully articulated rotor as in Figure 6-2 has a flapping hinge for each blade, allowing the
blades to move up and down independently. The blades can also rotate in plane about a
lead/lag hinge. The lift vector is perpendicular to the Tip-Path Plane (TPP). In addition,
there is a hub moment caused by the offset of the flapping hinges. The offset of the flapping
hinge is described as a fraction of the rotor diameter R:

e =
rhinge
R

(6-1)

Due to the hub moment, an articulated rotor has a faster response to a cyclic input compared
to a teetering rotor. The rolling response to a cyclic input is given by Bramwell et al. (2000):
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Figure 6-2: Articulated rotor. Padfield (2008)

Figure 6-3: Roll rate in response to a step input on the lateral cyclic. Bramwell et al. (2000)

dφ

dt
= −

lA1

lp
(1− elpt)A1 (6-2)

In this equation, A1 is the cyclic input, lA1
is a dimensionless representation of control power

and lp is a dimensionless damping term. The damping term increases as a function of the
hub moment. Higher hub moments have higher damping an thus result in faster response.
Numerical examples for this are given in Figure 6-3. The line e = 0 represents a teetering
rotor, since this type has no hinge offset and no hub moment.

6-2-3 Hingeless rotor

A hingeless rotor shown in Figure 6-4 is similar to a fully articulated rotor, but instead of
hinges it has elastic elements. This is made possible from the increasing understanding of rotor
dynamics and aeroelasticity. The hub moment is the largest of all rotor types, and thereby
the responsiveness is the highest. This can be seen in Figure 6-3. The Walkera Genius CP
V2 helicopter, which is used for this project, has this type of rotor. It is therefore expected
that the rotational rates of the Walkera helicopter converge quickly to a steady-state value.
The settling times for the different rotors in Figure 6-3 are indicative for full size helicopters.
The small model helicopter is expected to have a much smaller ratio between body inertia
and rotor moments, which will give an even faster settling time.

Attitude Control of a Small Helicopter UAV B.J.M.M. Slinger



56 Helicopter Dynamics and Control

Figure 6-4: Hingeless rotor. Padfield (2008)

6-3 Dynamics of a spinning disc

A rotor is basically a large gyroscope. For a theoretical analysis, it can be described as a rigid
spinning disc. Using pure rigid body dynamics, the general equations are:

M = I · ω̇ + ω × (I · ω) (6-3)

which can be expanded to

Mx = Ixxω̇x + (Izz − Iyy)ωyωz (6-4)

My = Iyyω̇y + (Ixx − Izz)ωzωx (6-5)

Mz = Izzω̇z + (Iyy − Ixx)ωxωy (6-6)

Ixx = Iyy because of symmetry of the disc. ωz is the rotational speed. If the disc is stationary
(ωz = 0), the applied moments are directly coupled to the rotational accelerations. It will
simply accelerate in the direction of moment.

That changes dramatically when |ωz| ≫ 0. When a moment Mx is applied, it will initially
accelerate in that direction. This acceleration results in a velocity ωx, which also appears in
the second term of Eq. 6-5. But the applied moment My is zero, so ω̇y needs to compensate
for this. In fact, the Eqs. 6-4 - 6-6 describe a coupled system of differential equations.
The differential equations are expressed in the reference frame that is rigidly attached to the
spinning disc. It is more convenient to use a reference frame that is attached to the spinning
disc, but is not rotating around the spinning axis. This is the frame in which the moments
are applied and rotations are measured.

For the analysis, the helicopter rotor is modeled as a spinning disc with a diameter of 24 cm,
a thickness of 1.5 mm and a mass of 3.35 grams. The rotational frequency is 60 Hz. The
differential equations are solved for an applied moment Mx = 1 mNm in the non-spinning
reference frame. Figure 6-5 show the resulting rotational accelerations, velocities and positions
of the system. Figure 6-5a shows that the accelerations about the x- and y-axis both average
to zero. The average of the rotational velocities (Figure 6-5b) is not zero around the y-axis,
due to the phase difference in acceleration. This is an interesting fact: An applied moment
around the x-axis results in a rotational velocity around the y-axis. This is called gyroscopic
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precession. The effect is often described as a 90◦ phase shift of the applied moment in the
direction of spin, but that is actually incorrect.
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Figure 6-5: Time response of a spinning disc to an applied moment Mx = 1mNm. The disc
spins at 60 Hz and has a diameter of 24 cm, a thickness of 1.5 mm and a mass of 3.35

6-4 Control

There are no research projects with similar size helicopters. Control theories for larger heli-
copters can still be applicable and are investigated in this section.

6-4-1 PID control

PID is a common type of controller used for attitude stabilization of helicopters. ArduPilot is
an autopilot platform which has code specifically designed for helicopters. It consists of three
separate PID controllers for the angular rates. There is also a feed-forward term in each rate
control loop. This term adds a control deflection that scales the requested angular rate. The
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feed-forward term is added because a non-zero control deflection is required for a sustained
angular velocity. Attitude stabilization is done with simple P controllers. The angular errors
are inputs and commanded angular rates are the outputs of the stabilization controllers.

This method of control does not account for cross-couplings. If the collective is increased,
the torque on the helicopter increases because of aerodynamic drag. The tail-rotor pitch
has to be increased to compensate for this. With the PID controller as described here, this
compensation is accomplished by the yaw rate controller. Large gains minimize the deflection
of the tail.

Increasing the thrust of the tail rotor also causes a sideways acceleration. This can only be
compensated by tilting the rotor disc. This is not included in the PID controllers. Eventually,
the position control loop will compensate for sideways drift.

PID control is a popular control method for hobbyists. There are a few research projects
on autonomous helicopters that use PID control as well Mejas et al. (2006); Saripalli et al.
(2003).

6-4-2 Other control methods

Although PID is the most common type of controller, a wide range of control methodologies
have been used for helicopters. These methodologies include input/output linearization Koo &
Sastry (1998), gain scheduling Sprague et al. (2001), LQR control Gavrilets et al. (2001); Jiang
et al. (2006), neural networks Johnson et al. (2003); Leitner et al. (1995) and reinforcement
learning Schölkopf et al. (2007). INDI control has not yet been attempted on helicopters and
will be discussed in the next chapter.
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Chapter 7

Incremental Nonlinear Dynamic
Inversion for Helicopter Control

The idea to use INDI for helicopter control originates from Simplicio et al. (2013). Section 7-1
describes the motivation to choose this type of controller for a helicopter. Sections 7-2 and
7-3 describe the mathematics of Nonlinear Dynamic Inversion (NDI) and INDI. Section 7-4
describes a proposed new method on how a rigid spinning disc, which is a greatly simplified
model of a helicopter, can be controlled using INDI.

7-1 Motivation

Helicopters are very complex and non-linear systems. The desire for a flight control system
is to provide good maneuverability while assuring stability. The flight controller should also
be robust, meaning that it should continue to work reliably in case of a inaccuracies. Such
inaccuracies could arise from different sources. Examples of inaccuracies are shifts in center
of gravity, or different battery sizes and weights.

Adaptive control systems are able to identify and update parameters of a model online. The
model is then inverted and used to calculate control inputs, as for example in NDI. However,
it is difficult to guarantee that the adaptive algorithm will never learn incorrectly. Also, it is
hard to show that the system will be able recover from failures in adaption Simplicio et al.
(2013).

INDI is a nonlinear control method which calculates incremental control inputs instead of the
total inputs. The incremental input is based on feedback from acceleration measurements.
Thereby the controller continues to increment the control inputs as long as there is a mismatch
between the desired and actual accelerations. With this control strategy, only the relations
between control inputs and acceleration measurements are required. Even when the system
is not affine in control inputs, the Jacobian matrix can be used as demonstrated by Simplicio
et al. (2013). The part of the model which depends only on the system states is not needed.
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This makes it automatically more robust against model mismatch, since the model is not
used.

In Simplicio et al. (2013), these benefits of an INDI controller are demonstrated for a full
scale helicopter in a simulation study. The current research project is aimed at implementing
the INDI control strategy for a small scale model helicopter.

7-2 Nonlinear Dynamic Inversion

NDI is a technique developed in the 1970s for control of nonlinear systems. It is applicable to
the class of systems that are feedback linearizable Slotine & Li (1991). The relations between
the virtual control inputs and the outputs of the system are reduced to simple integrators.
These integrators can be controlled with a simple linear controller. In a Multiple Input
Multiple Output (MIMO) system, the controlled dimensions are completely decoupled.

The basic principles of NDI and INDI are explained by Simplicio et al. (2013). The description
that follows is based on that explanation. A general system to which NDI can be applied is
described by:

ẋ = f(x) +G(x)u

y = h(x)
(7-1)

where f and h are vectors in R
n and R

m respectively and G is the n x m control effectiveness
matrix.

The general NDI procedure is to differentiate y until the input vector u appears explicitly
in the equation. By choosing h(x) = x, the input vector appears explicitly after the first
differentiation:

ẏ = ẋ = f(x) +G(x)u (7-2)

A virtual control input ν can be chosen as ν = ẋ if detG(x) 6= 0. The INDI loop will then
regulate the output ẋ to the virtual control. The virtual control is set by a simple linear
controller. The required control input to the system is then given by:

u = G−1(x) [ν − f(x)] (7-3)

An accurate description of f and G is required to cancel all the nonlinearities and cross-
couplings in the system. If the system has uncertainties, exact cancellation of nonlinearities
is impossible. This is demonstrated by adding uncertainties in the equation:

ẋ = fn(x) + ∆f(x) + (Gn(x) + ∆G(x))u (7-4)

The subscript n indicates the nominal parts known to the controller. When u is substituted
by Eq. 7-3 with only the nominal part (G = Gn), the relation ν = ẋ is only retrieved if the
uncertain parts are zero:

ẋ = ∆f(x)−∆G(x)G−1
n (x)fn(x) + (In×n +∆G(x)G−1

n (x))ν (7-5)

Adaptive NDI is one way to handle uncertainties. Parameters in the model f and actuator
effectiveness matrix G are identified online. Because of the online identification, the model
becomes an accurate description of the system and the uncertain parts are reduced.
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7-3 Incremental Nonlinear Dynamic Inversion

The problem with uncertainties in the system can also be solved with Incremental NDI (INDI).
Instead of calculating the control inputs u, the increments in control inputs ∆u are calculated.
A linear approximation of the system is obtained by a first-order Taylor series expansion of
Eq. 7-2 at each instant in time:

ẋ ≈ ẋ0 +
∂

∂x
[f(x) +G(x)u]

x0,u0
(x− x0) +G(x0)(u− u0) (7-6)

When assuming that u can change significantly faster than x and if the controller has a high
sampling frequency, it can also be assumed that x ≈ x0. In that case, Eq. 7-6 can be reduced
to

ẋ ≈ ẋ0 +G(x0)(u− u0) (7-7)

The control law to achieve ν = ẋ is then given by

u = G−1(x0)(ν − ẋ0) + u0 (7-8)

where x0 is obtained by sensor measurements. That is why this approach is sometimes referred
to as sensor based control, as opposed to model based control. The applied control input u0

needs to be known accurately. Uncertainties in the model are no longer present, but there
can still be uncertainties in the control effectiveness matrix G. Eq. 7-7 then turns into

ẋ = ẋ0 + (Gn(x0) + ∆G(x0))(u− u0) (7-9)

Applying the control law of Eq. 7-8 with G(x0) = Gn(x0) then yields

ẋ = ẋ0 + (Gn(x0) + ∆G(x0))G
−1
n (x0)(ν − ẋ0) (7-10)

which can be further reduced to:

ẋ = ẋ0 + (ν − ẋ0) + ∆G(x0)G
−1
n (x0)(ν − ẋ0) (7-11)

ẋ = ν +∆G(x0)G
−1
n (x0)(ν − ẋ0) (7-12)

This means that the relation ẋ = ν is only obtained if ∆G(x0) = 0.

7-3-1 Actuator dynamics

In real systems, it is usually not possible to make immediate changes in the control input u.
With the actuator dynamics captured in A(z), the INDI control scheme is provided in Figure
7-1. The inner part that constructs the control input u from a desired differential input ∆uc

has the following discrete transfer function:

u

∆uc
=

A(z)

1−A(z)z−1
(7-13)

The complete system dynamics can be derived from Figure 7-1:

ẋ = (ν − ẋz−1)G−1 A(z)

1−A(z)z−1
G (7-14)
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− G−1 + A(z)

z−1

z−1

G
ν ∆uc uc u ẋ

Figure 7-1: INDI control scheme with actuator dynamics.

− G−1 + A(z)

z−1

z−1

G +
ν ∆uc uc u

d

ẋ

Figure 7-2: INDI control scheme with actuator dynamics and external disturbance.

− G−1 + A(z)

z−1 H(z)

z−1 H(z)

G +
ν ∆uc uc u

d

ẋ

Figure 7-3: INDI control scheme with actuator dynamics, external disturbance and measurement
filter.
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Only if the actuator dynamics are equal for each actuator, such that A(z) = In×na(z), the
terms G−1 and G cancel each other. Eq. 7-14 can then be reduced as follows:

ẋ = (ν − ẋz−1)
A(z)

1−A(z)z−1
(7-15)

[

1 +
A(z)z−1

1−A(z)z−1

]

ẋ =
A(z)

1−A(z)z−1
ν (7-16)

Now multiplying both sides with (1−A(z)z−1) gives:

[(

1−A(z)z−1
)

+A(z)z−1
]

ẋ = ẋ = νA(z) (7-17)

This shows that the system will be as fast as the actuator dynamics. If the actuators do not
have the same dynamics, the control signals of the faster actuators can be filtered to give an
equal response. As mentioned in Section 7-3, the actual position of the actuators needs to
be known precisely. Depending on the type of actuator, it might be possible to measure the
actual output. If this is not possible, an accurate model of the actuator dynamics is required.

7-3-2 Disturbance rejection

Real systems will also be subject to external disturbances. An important aspect of the
controller is the ability to reject disturbances. The output of the system due to disturbances
can be derived from Figure 7-2 as

ẋd = d−
A(z) · z−1

1− z−1A(z)
ẋd (7-18)

ẋd

(

1 +
z−1A(z)

1− z−1A(z)

)

= d (7-19)

ẋd

d
=

1
(

1 + z−1A(z)
1−z−1A(z)

) =
1

(

1 + A(z)
z−A(z)

) ·
z −A(z)

z −A(z)
=

z −A(z)

z
= 1−

A(z)

z
(7-20)

This equation shows that disturbance rejection depends on the actuator dynamics. The faster
the actuator dynamics, the faster it rejects disturbances to the system.

7-3-3 Output measurement filtering

The described INDI approach assumes perfect sensors to measure x0. Real sensors are not
perfect but may produce noisy data. Especially when differentiating rate measurements to
obtain accelerations Smeur et al. (2015). It is undesirable that the controller responds to
measurement noise. If the measurement data is filtered with for example a low-pass filter,
there is no longer a direct input-output relation. The INDI controller will add more control
input until the filtered measurement shows the desired output. This will cause an overshoot
and can make the entire system unstable. The knowledge that the measurement data is
filtered must be included in the construction of the control input signal.
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If the same filter is also included in the construction of the input signal as in Figure 7-3, the
transfer function of the complete system will be exactly the same as Eq. 7-17. However, the
performance in disturbance rejection is affected. Using a similar derivation as for Eq. 7-20,
it can be shown that the effect of disturbances to the output is given by

ẋd

d
= 1−

A(z)H(z)

z
(7-21)

The slower the output measurement filter H(z) is, the slower disturbances are rejected as
well.

7-4 INDI for helicopter rate control

Since the rigid body dynamics of a spinning disc are comparable to the dynamics of a spinning
helicopter rotor, it is interesting to study how such a system can be controlled with INDI.
Traditionally, the angular rates of the UAV are chosen in the state vector x Simplicio et al.
(2013); Smeur et al. (2015), so that the first derivative describes the angular accelerations.
This makes perfect sense for multi-rotors, since the revolutions per minute (RPM) of the mo-
tors are directly proportional to the resultant angular accelerations. Therefore, the control
effectiveness matrix contains constant numbers. For helicopters however, the control effec-
tiveness then becomes a complex set of equations which is not affine in the control inputs. A
Jacobian matrix of the control effectiveness functions replaces the control effectiveness matrix.
Because of its complexity, this has to be done numerically Simplicio et al. (2013).

7-4-1 Incremental rate control loop

A simpler method is proposed here. The control inputs for a helicopter are swash plate
position and orientation. By varying the swash plate orientation, an aerodynamic moment is
generated by the rotor blades. Section 6-3 shows that applied moments on a spinning disc are
proportional to an average angular velocity in the perpendicular axis. A hingeless helicopter
is simulated by adding a body to this disc with a spring-damper link. The roll rate of the
body then behaves as a low-pass filter to control input, just as in Figure 6-3 and as in Eq.
6-2. The roll rate response of an arbitrary hingeless helicopter is modeled as:

H(s) =
φ̇(s)

θlat(s)
=

gφ̇
1 + s

ωc

(7-22)

where φ̇ is the roll rate, θlat is the cyclic input for roll, gφ̇ is the steady state roll rate and
ωc is the bandwidth. The steady-state roll rate is directly proportional with the cyclic input.
Although this is a heavily simplified model, it shows that no affine relation exists between
roll rate and control input. The equation does not fit in the form of Eq. 7-1.

The new method uses the steady state value gφ̇ as control effectiveness, while the dynamics
are handled as actuator dynamics. Figure 7-4 shows the control scheme for incremental roll
rate control. The virtual control ν is the roll rate reference φ̇ref . If there are no disturbances,
the system will respond exactly as the open loop system given in Eq. 7-22. The transfer
function is derived as follows:
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− g−1

φ̇ + gφ̇

1
1+s/ωc

+
1
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Helicopter (Eq. 7-22)

ν ∆uc u

d

φ̇

Figure 7-4: INDI control scheme for roll rate control.

u(s)

∆uc(s)
=

1

1− 1
1+s/ωc

=
1 + s/ωc

1 + s/ωc − 1
=

1 + s/ωc

s/ωc
(7-23)

HOL(s) = g−1

φ̇

u

∆uc
gφ̇

1

1 + s/ωc
=

1 + s/ωc

s/ωc

1

1 + s/ωc
=

ωc

s
(7-24)

φ̇(s)

ν(s)
=

HOL(s)

1 +HOL(s)
=

ωc/s

1 + ωc/s
=

ωc

s+ ωc
=

1

1 + s/ωc
(7-25)

This shows that the response is exactly the same as in Eq. 7-22. However, the system of Eq.
7-22 is not able to reject disturbances, while the control scheme of Figure 7-4 is. The transfer
function which describes the effect of disturbance on the roll rate is derived as follows:

φ̇(s)

d(s)
=

1
1+s/ωc

1 +HOL(s)
=

1
1+s/ωc

1 + ωc/s
=

1

(1 + s/ωc)(1 + ωc/s)
(7-26)

φ̇(s)

d(s)
=

1

1 + s/ωc + ωc/s+ 1
=

s

s2/ωc + 2s+ ωc
=

ωcs

s2 + 2ωcs+ ω2
c

(7-27)

The transfer function describes a critically damped second order system. It is also possible
to make the system faster by multiplying ∆uc with a gain K∆u. Using a similar derivation
as for Eqs. 7-25 and 7-27, it can be shown that the transfer functions of the system become:

φ̇(s)

ν(s)
=

1

1 + s
K∆uωc

(7-28)

φ̇(s)

d(s)
=

ωcs

s2 + (K∆u + 1)ωcs+K∆uω2
c

(7-29)

This shows that by increasing the gain K∆u, the helicopter responds quicker to control inputs
and disturbances.
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(b) Control inputs with saturation.

Figure 7-5: Helicopter roll rate and control input in response to a step input and a doublet
disturbance with a PID controller and an incremental controller.
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Figure 7-6: Roll rate response to a step input and a doublet disturbance with different values
for ωc in the feedback model. K∆u is 15 in all three cases.

7-4-2 Simulation

A simulation study is performed to see how the controller responds to control inputs and
disturbances. The response of a simple PID controller is given as a reference. It is not fair to
compare the controllers in a pure theoretical study. The gain K∆u can be increased to very
large numbers which will result in an almost perfect response.

In the simulation, a saturation level applies to the control inputs. A step input is commanded
as reference roll rate. A gain K∆u of 15 is used. The roll rate in Figure 7-5a shows no
overshoot because the system is first order (see Eq. 7-28). Between 0.3 and 0.4 seconds, a
doublet disturbance signal is fed into the system. The incremental controller responds to the
disturbance according to Eq. 7-29.

The response of the incremental controller is defined by the steady state control effectiveness
gφ̇ and the first order model in the incremental feedback loop. If these are not accurately
modeled, the helicopter should still stabilize towards the requested roll rate. Inaccuracy in gφ̇
will have the same effect as K∆u: it will make the response and disturbance rejection faster
or slower.

If the first order model in the incremental feedback loop has a higher bandwidth ωc than
the actual helicopter, the input signal u will be higher. That will result in overshoot, but
is quickly compensated. If the bandwidth in the in the model is lower than in the actual
helicopter, the control input u will be lower and the roll rate will stabilize at a lower value
than the reference. The difference is then slowly compensated so that it eventually reaches
the reference value. Figure 7-6 shows the response for correctly and wrongly estimated values
of the actual bandwidth ωc.

The simulation study shows that the control concept works in theory, but it is only for pitch
and roll. Integration with yaw and vertical motion is left for the main phase of the project.
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Chapter 8

Project Planning

The goal of the project is to make the helicopter fly autonomously outside using INDI. The
remainder of the project can be divided in two parts: attitude estimation and implementation
of an INDI controller. The second part can only be started with if the attitude estimation
works. Figure 8-1 shows a global planning of next project phases.

8-1 Attitude estimation

Two categories of attitude estimation algorithms are studied in Chapter 5. The Kalman
filter shows the best performance in literature. A complementary filter has also been applied
successfully numerous times in literature. The advantage of the complementary filter is that
it requires less computational power for results that are close to those of a Kalman filter.
A complementary filter is preferred because of the limited processing power on the Lisa/S
autopilot.

The paparazzi autopilot project already has a quaternion implementation of a complementary
filter which can be used. This can be extended with a set of notch filters to remove the
strongest vibrations from the accelerometer signals. It is also important to implement a
proper method of threshold switching, to make the complementary filter temporarily ignore
accelerometer measurements when dynamic accelerations are detected.

Figure 8-1: Gantt chart of the global project planning.
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The performance of the attitude estimation algorithm can be analyzed in the OptiTrack arena.
The helicopter can use standard PID control for these flights. If the results are satisfying, the
project continues to the next phase.

8-2 INDI controller implementation

The incremental control method which is proposed for control of rotational rates works in
theory. Some test flights need to be done using a standard PID controller to identify the
helicopter control dynamics. If these test results show that the roll rate can be modeled as
a first order system, the incremental control method can be implemented. Otherwise, the
method from Simplicio et al. (2013) can be implemented.

Once the INDI controller is implemented, it can be tested in the OptiTrack arena to analyze
its performance. If the helicopter can fly autonomously in the arena without problems, the
same can be tried outside using GPS. Then, the goal of the project is achieved and everything
will be written down in a final thesis.
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Chapter 9

Conclusions

Just like for the research questions, the conclusions are divided in two sections. The first is
related to attitude estimation while the second section is about INDI control of a helicopter.

9-1 Attitude estimation

MEMS gyroscopes and acceleromters are the most common type found on UAVs. They are
very small, light-weight and cheap. Integration of MEMS gyroscope measurements drifts very
quickly. Accelerometers are used to compensate drift. The two most commonly used attitude
estimation algorithms to fuse these measurements are Kalman filters and complementary
filters. Kalman filters perform slightly better, but require more computational power. A
complementary filter is chosen since the processing power of the processor on the Lisa/S is
limited.

Accelerometers do not only measure gravity, but also dynamic accelerations and vibrations.
Dynamic accelerations can be dealt with using threshold switching, which makes the estima-
tion process rely only on the gyroscopes for a short period of time. Vibrations can be filtered
with notch filters which are centered at the main rotor frequency and its first harmonics.

9-2 Helicopter INDI control

Three main categories of helicopter rotors are teetering, articulated and hingeless. The model
helicopter used in this project has a hingeless rotor. For this type of helicopter, the body
responds quickly to control inputs.

INDI has already been applied successfully on quadcopters. A theoretical study exists for he-
licopters, but this implementation has complicated control effectiveness functions. A simpler
method is proposed in which the relation between roll rate and control input is modeled as
a first order system. The steady state value of the first order system describes the control
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effectiveness, while the dynamics are handled as actuator dynamics. If the real helicopter
shows a similar relation between control inputs and angular velocities, this method can be
applied in practice. This method is designed only for pitch and roll. The combination with
control of yaw and vertical motion will be investigated in the main phase of the project.
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