

Delft University of Technology

Modeling Team Dynamics for the Characterization and Prediction of Delays in User
Stories

Kula, Elvan; Deursen, Arie van; Gousios, Georgios

Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Citation (APA)
Kula, E., Deursen, A. V., & Gousios, G. (2021). Modeling Team Dynamics for the Characterization and
Prediction of Delays in User Stories. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE): Proceedings (pp. 991-1002). Article 9678939 IEEE.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Modeling Team Dynamics for the Characterization
and Prediction of Delays in User Stories

Elvan Kula
Delft University of Technology

Delft, The Netherlands
e.kula@tudelft.nl

Arie van Deursen
Delft University of Technology

Delft, The Netherlands
arie.vandeursen@tudelft.nl

Georgios Gousios
Delft University of Technology

Delft, The Netherlands
g.gousios@tudelft.nl

Abstract—In agile software development, proper team struc-
tures and effort estimates are crucial to ensure the on-time deliv-
ery of software projects. Delivery performance can vary due to
the influence of changes in teams, resulting in team dynamics that
remain largely unexplored. In this paper, we explore the effects of
various aspects of teamwork on delays in software deliveries. We
conducted a case study at ING and analyzed historical log data
from 765,200 user stories and 571 teams to identify team factors
characterizing delayed user stories. Based on these factors, we
built models to predict the likelihood and duration of delays
in user stories. The evaluation results show that the use of
team-related features leads to a significant improvement in the
predictions of delay, achieving on average 74%-82% precision,
78%-86% recall and 76%-84% F-measure. Moreover, our results
show that team-related features can help improve the prediction
of delay likelihood, while delay duration can be explained exclu-
sively using them. Finally, training on recent user stories using
a sliding window setting improves the predictive performance;
our predictive models perform significantly better for teams that
have been stable. Overall, our results indicate that planning
in agile development settings can be significantly improved by
incorporating team-related information and incremental learning
methods into analysis/predictive models.

I. INTRODUCTION

The overall perceived success of a software project de-
pends heavily on the timeliness of its delivery [1]. Reducing
delays is therefore a critical goal for software companies.
Over the past two decades, software organizations have in-
creasingly embraced agile development methods to manage
software projects [2]. Agile gained popularity in the soft-
ware industry because, in comparison to traditional (waterfall-
like) approaches, it uses an iterative approach to software
development, aimed at reducing development time, managing
changing priorities and inherently reducing risk [3]. However,
on-time delivery remains a challenge in agile software devel-
opment. Prior work [4] has found that around half of the agile
projects run into effort overruns of 25% or more.

In agile settings, software is incrementally developed
through short iterations to enable a fast response to changing
markets and customer demands. Each iteration requires the
completion of a number of user stories, which are a common
way for agile teams to express user requirements. Agile
teams are responsible for determining the next iteration’s
workload together and then breaking these into user stories
that can be implemented, tested and shipped in one iteration.
Agile teams are characterized by self-organization and intense

collaboration [3], [5]. Several studies [1], [6]–[9] have shown
the importance of teamwork for the success of agile projects.
Various aspects of teamwork, such as team orientation, team
coordination and work division, can affect software delivery
performance [9], [10]. Moreover, delivery performance can
vary due to the influence of changes in teams, resulting in
team dynamics that remain largely unexplored. Hence, there
is a need to better understand the effects of teamwork and team
dynamics on delays, which can benefit the effective application
of agile methods in software development.

Today’s agile projects require different approaches to plan-
ning due to their iterative and team-oriented nature [11].
Central to the planning is the ability to predict, at any phase
of the project, if a team can deliver the planned software
features on-time. Agile teams would therefore benefit from
team-specific, actionable information about the current exis-
tence of delay risks at the fine-grained level of user stories,
allowing them to take measures to reduce the chance of
delays. Recent approaches have leveraged machine learning
techniques for evaluating risk factors in software projects
(e.g., [12], [13]), estimating effort for issue reports (e.g., [14]–
[16]) and predicting delays in bugs or issues (e.g., [17]–[19]).
These approaches focus on the technical aspects of software
deliveries and do not adequately take into account team-
related factors. Studies of software teams [9], [10], [20], [21]
have developed theoretical concepts and detailed performance
models that articulate relationships between various aspects
of teamwork quality and the extent to which a team is able
to meet time and cost objectives in software projects. These
studies point out that various aspects of teamwork need to be
considered when planning software deliveries. Therefore, the
predictive power of existing effort prediction models might be
enhanced by incorporating such factors.

In this paper, we explore the effects of various aspects of
teamwork on delays in software deliveries. Project delays are
common in the software industry [4], [22], which makes it
important to study this phenomenon in more detail. There is a
need to understand and predict, especially during early project
phases, which projects will be delayed. This would allow
teams to better manage and possibly prevent delays. To do so,
we conduct a case study at ING, a large Dutch internationally
operating bank with more than 15,000 developers. Teams at
ING develop software using an agile development process.

1

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

ING offers a great opportunity to study delays in agile projects,
as around one quarter of its user stories are delayed. We
analyze historical log data from 571 teams and 765,200 user
stories at ING to identify team factors characterizing delayed
user stories. Based on these factors, we build models that can
effectively predict the likelihood and duration of delays in user
stories. Our models learn from a team’s past delivery perfor-
mance to predict delay risks in new user stories. To determine
whether the use of team features has a positive impact on
the predictive performance, we compare the results of models
learned using different sets of features: story features, text
features and team features. We also evaluate the models with a
sliding window setting to explore incremental learning and the
impact of team churn on the models’ performance. The sliding
window works as a forgetting mechanism: the model learns
from a team’s recent delivery performance in the window and
forgets older, irrelevant data to follow team changes over time.

Our results show that the use of team features leads to a
significant improvement in the predictions of delay, achieving
on average 74%-82% precision, 78%-86% recall, 76%-84% F-
measure and 80%-92% AUC. Team features can help improve
the prediction of delay likelihood, while delay duration can
be predicted exclusively using them. Moreover, developer
workload, team experience, team stability and past effort
estimates are the most important team features for predicting
delay. Finally, training on recent user stories using a sliding
window improves the predictive performance; our predictive
models perform significantly better for teams that have been
stable.

II. CONTEXT

In agile software development, a project has a number
of iterations (e.g., sprints in Scrum [23]). An iteration is
usually a short (2–4 weeks) period in which the development
team designs, implements, tests and delivers a distinct product
increment. Each iteration requires the completion of a number
of user stories. Agile teams work with a product backlog
to keep track of the status and priority of user stories [24].
Figure 1 shows an example of a user story from the backlog
management tool used by teams at ING. A user story has a
title, textual description and a few standard fields to record its
priority, type, status and dependencies on other stories.

Planning is done before an iteration starts and focuses on
selecting and estimating the user stories to be delivered in that
iteration. To plan the iteration, the team discusses each story
and breaks it down into tasks to facilitate estimation [26].
Multiple developers can work on various sub-tasks of a story
but only one developer is assigned to the story and responsible
for its implementation. Agile teams heavily rely on experts’
subjective assessment to estimate the effort of completing a
user story [27]. Story points are a commonly used unit of
measure that reflect the relative amount of effort, complexity
and risks involved in implementing the user story [11]. Agile
teams usually estimate story points together in a dedicated
planning session (e.g., using Planning Poker [28]).

A. Usage Scenarios

At the end of an iteration, a number of user stories are
completed and there may also be a number of incomplete/unre-
solved user stories delayed to future iterations. Our prediction
models enable teams to identify these user stories before
the start of an iteration. There are two scenarios in which
predictions are being made: before and after an effort estimate
has been made for a user story. The availability of an estimate
might affect the accuracy and usefulness of our predictions. It
is likely that in the latter scenario, our predictions get more
accurate (since we have information about the estimated size
of a user story) but the less useful it is (since the team has
already spent a considerable amount of time on estimating the
story).

In both scenarios, our predictive models can be used as a
decision support system to generate proactive feedback and
make informed decisions on the planning and feasibility of
a user story. Foreseeing delay risks allows teams to identify
problematic user stories and take corrective actions, such as
story splicing (i.e., splitting large stories into smaller ones) or
resolving inter-story dependencies. Our models learn from the
past delivery performance of the specific team which they are
deployed to assist. Hence, the predictions our models make
are team-specific. This helps teams improve their schedule es-
timates and gain an increased awareness of their own behavior
patterns.

B. Teams and User Stories at ING

In recent years, ING has reinvented its organisational struc-
ture, moving from traditional functional departments to a
completely agile organisational structure based on Spotify’s
‘Squads, Tribes and Chapters’ model [29]. The main purpose
of this model is to be able to control agile with hundreds
of development teams. All development teams at ING use
Scrum as agile methodology. They work with sprints of
one to four weeks. The teams consist of 5 to 9 members,
including a Scrum master and product owner. The product
owner is responsible for prioritizing the product backlog. In
consultation with the product owner, the teams divide up the

Fig. 1: An example of a user story [25]

2

work to be done into user stories. Story points are assigned
using planning poker [28] in a structured group meeting called
Sprint Planning before the start of the sprint.

III. STUDY DESIGN

In this paper, we propose a team-driven approach to de-
termine early on the impact and probability of a delay risk
occurring in a user story. To do so, we extract 24 risk factors
representing technical and team-related aspects of a user story.
Based on these factors, we build models that can effectively
predict the likelihood and duration of delays in user stories.
As discussed in Section II, predictions are made for two usage
scenarios: before and after an effort estimate has been made
for the user story. For convenience, in the remainder of this
paper, we denote the scenarios as SC1 and SC2, respectively.

Throughout our study, the following research questions
guide our work:

• RQ1. Benefits of team features: Does the use of team
features have a positive impact on our predictive per-
formance? (RQ1.1), How effective is our approach when
team features are used exclusively? (RQ1.2) To answer
these questions, we compare the performance of models
learned using combinations of different sets of features:
story features, text features and team features.

• RQ2. Feature importance: Which team features are
most important for predicting delays in user stories? For
this question, we train models using the extracted 24
features and determine the relative importance of team
features in terms of predictive power.

• RQ3. Benefits of sliding window: Does the use of a slid-
ing window provide more accurate and robust estimates?
As teams change over time and these changes might affect
their delivery performance, we want to analyze whether it
is beneficial for our predictive model to learn from recent
user stories and forget older data. To do so, we compare
the performance of models learned using all features in a
sliding window setting versus expanding window setting.

• RQ4. Factor of change: How does team churn affect
story delays and our predictive performance? Changes
in team composition (due to either a member leaving
or joining the team) can cause teams to become less
predictable at delivering software. We employ the sliding
window setting and determine for each user story the
number of consecutive windows a team has been stable
for. We perform a statistical analysis to assess the impact
of the number of consecutive stable windows on story
delays and our models’ performance.

We can split our approach into four main steps:

1) Data collection and pre-processing: We collect and pre-
process backlog management data (past user stories) from
571 development teams at ING.

2) Risk factor extraction and analysis: We extract 24 risk
factors representing technical and team-related aspects

of user stories, and then perform correlation analysis to
determine whether the factors affect delays in user stories.

3) Text feature extraction: We use RoBERTa [30], a state-of-
the-art language representation model, to produce vector
representations (i.e., embeddings) for the textual descrip-
tions of user stories. To adapt the model to our prediction
task, we update it with additional training on our corpus
of unlabeled user stories.

4) Model building: We use the selected risk factors and text
embeddings to build models that predict delays in user
stories.

5) Model evaluation: We evaluate our models using various
sets of features in different experimental settings to
answer the research questions.

A. Data Collection and Pre-Processing

We extracted log data from ServiceNow, a backlog manage-
ment tool used by a majority of teams at ING [25]. The dataset
consists of user stories delivered by 571 teams at ING between
January 01, 2016 and January 01, 2021. The user stories
have significant variety in terms of the products developed,
the size and application domain (banking applications, cloud
software, software tools). The dataset contains the following
fields for user stories: Identification Number, Creation Date,
Sprint Identification Number, Planned Start Date, Actual Start
Date, Planned Delivery Date, Actual Delivery Date, Story
Points and the textual Title and Description fields. The Planned
Start Date coincides with the start date of the sprint that the
story was originally assigned to. We acknowledge that the
planned start date of a user story might change before the
sprint is started. Therefore, we consider only the planned start
date as scheduled on the day that the development phase of a
sprint is started. For each user story, the dataset contains the
entire history of changes. This enabled us to track the number
of sprints a user story was delayed for. We acknowledge that
a team might decide to temporarily move a story back to
the product backlog after a delay. Therefore, we calculate the
delay duration based on the number of sprints a story has
actually been part of.

To eliminate noise and missing values, we removed user
stories with a status other than ‘Completed’. We also filtered
out user stories with empty Planned Delivery Date, Actual
Delivery Date, Story Points and Description fields. Moreover,
we deleted user stories that have not been assigned to a
developer. We also removed stories that were added to a sprint
during the development phase, because they are likely to be
unstable and not accurately represent delay. We found a few
user stories that had been delayed for an unusually long period
of time (e.g., in some cases over 10 sprints). We removed
such outliers that exceed two standard deviations from the
mean delay duration of all user stories. The original dataset
contained 889,014 user stories. After removing outliers and
pre-processing the data, the final dataset decreased to 765,200
user stories from 571 teams. This dataset consists of 183,342
(24%) delayed and 581,858 (76%) non-delayed user stories.

3

TABLE I: The 24 extracted risk factors representing the characteristics of a user story and development team. Correlation
coefficients are based on Spearman’s Correlation [32]: they measure the strength of the relationship between factors and the
risk classes. Statistical significance with Holm correction [33] is indicated with * (p-value < 0.01) and ** (p-value < 0.001).

Category Factor name Description Type Correlation coefficient
Spearman’s ρ Interpretation

Story factors

dev-type The development type (1. new feature, 2. bug fix or 3. improvement) of a story Categorical −0.19* Weak
priority Does a story have a major priority to the customer? Binary −0.31** Weak
security Whether a story is associated with a security-critical system Binary 0.44** Moderate
out-degree Number of outgoing dependencies of a story on other stories Continuous 0.41** Moderate
sprint-duration Planned duration of the sprint that a story was originally assigned to Continuous −0.26** Weak
planned-stories Total number of user stories in the sprint that a story was originally assigned to Continuous 0.22** Weak
planned-points Total number of story points in the sprint that a story was originally assigned to Continuous 0.13** Weak
initial-points Number of story points initially estimated for a user story Continuous 0.51** Moderate

Team factors

team-size Number of team members Continuous 0.08* Weak
avg-story-size Average number of story points that the team assigned to past stories Continuous 0.46* Moderate
team-existence Number of years the team has existed for Continuous −0.35** Weak
team-stability Ratio of team members that did not change in the last six months Continuous −0.40** Moderate
po-stability Did the product owner of the team stay the same in the last six months? Binary −0.29** Weak
team-capacity-stories Total number of user stories that have been completed by the team so far Continuous −0.28** Weak
team-capacity-points Total number of story points that have been completed by the team so far Continuous −0.26** Weak
global-distance The Global Distance Metric [31] measured across teams members Continuous 0.17* Weak
dev-seniority The seniority rank of a developer at ING Categorical 0.24** Weak
dev-age-team Number of years spent by a developer in the current team Continuous −0.28** Weak
dev-age-project Number of years spent by a developer in the current project Continuous −0.12** Weak
dev-age-abc Number of years spent by a developer at ING Continuous −0.43** Moderate
dev-workload-stories Number of user stories assigned to a developer in the current sprint Continuous 0.53** Moderate
dev-workload-points Number of story points assigned to a developer in the current sprint Continuous 0.49** Moderate
dev-capacity-stories Total number of user stories that have been completed by a developer so far Continuous −0.45** Moderate
dev-capacity-points Total number of story points that have been completed by a developer so far Continuous −0.41** Moderate

Risk classes. The delayed stories in our dataset consist of
76,398 (42%) stories that were delayed for a single sprint,
61,052 (33%) stories that were delayed for two sprints,
34,821 (19%) stories that were delayed for three sprints and
11,071 (6%) stories that were delayed for more than three
sprints. For our predictions, we choose to use four risk classes
that reflect the degree of delay: non-delayed, minor delay
(delay of one sprint), medium delay (delay of two sprints) and
major delay (delay of three sprints or more). Since a small
fraction of the user stories in our data were delayed for more
than three sprints, we decided to merge this group with the
user stories that were delayed for three sprints.

B. Risk Factor Extraction and Analysis
We extracted 24 risk factors from the collected log data

to explore which factors characterize delayed user stories.
Table I provides an overview and correlation analysis of these
factors. The factors are divided in two groups: story factors
and team factors. The story factors represent the inherent
characteristics of user stories, such as its size, type and priority.
The team-related factors represent characteristics of individual
team members and the group as a whole. We now explain the
risk factors in detail. The factor names are underlined.

Story factors. Several story factors are extracted directly
from the story’s primitive attributes, which include dev-type
and priority. Each story will be assigned a type and priority
which indicate the nature and urgency of the task associated
with implementing the story. Both factors have been shown to
affect the delivery of a story in related work [34]. We extract
security to determine whether a user story needs to go through
a mandatory, resource-intensive security testing procedure at
ING that might lead to delay. We extract the outgoing degree
(out-degree) of dependencies of a story; this has been shown to

predict delay in related work [17]. The remaining story factors
are used to extract the size of a story and the sprint.

Team factors. Previous work (e.g. [35], [36]) has found
that member turnover can lead to tacit knowledge loss, and
thus may negatively affect team productivity. Therefore, we
compute the stability of a team (team-stability) and that of its
product owner (po-stability). We also measure team-existence
to quantify the familiarity and maturity of a team; both
have been shown to lead to better team interactions and
project performance in related work (e.g., [37], [38]). Previous
studies (e.g., [39], [40]) have shown that the interactions
among team members are less effective in distributed teams.
To quantify the distance between team members, we calculate
global-distance based on the Global Distance Metric proposed
in related work [31]. We calculate the metric for pair-wise
combinations of team members and take the maximum value.

Developers’ capabilities and experience can influence their
contributions to projects (e.g., [36], [41], [42]). Thus, we com-
pute dev-capacity-stories and dev-capacity-points to quantify
the software delivery experience of the developer that a user
story is assigned to. Similarly, we use team-capacity-stories
and team-capacity-points to quantify the team’s overall ex-
perience with software deliveries. Moreover, we extract the
developers’ seniority; the intuition here is that senior devel-
opers might more often be assigned to complex user stories
that have a higher delay risk. ING employs the five-stage
Dreyfus Model [43] to assess the expertise of developers based
on their experience in the software industry. We also extract
dev-age-team, dev-age-project and dev-age-abc to measure
how long team members have been working in their specific
teams, projects and at ING.

Related work has identified an inappropriate division

4

of work as an important barrier to achieving team ef-
fectiveness [9]. Hence, we calculate dev-workload-stories
and dev-workload-points. Finally, we extract team-size and
avg-story-size as larger projects are associated with greater
risk in literature (e.g., [37], [44], [45]).

C. Text Feature Extraction

The title and description of a user story can provide good
features since they explain the nature and complexity of a
story. To extract features from text, we combined the title
and description of a user story into a single text document
where the title is followed by the description. Our approach
computes vector representations for these documents that are
then used as features to predict delays in user stories. We tried
different methods for text feature extraction: the traditional
Bag-of-Words (with TF-IDF [46] and Okapi BM25 [47]),
the neural network-based Doc2Vec [48] and the state-of-the-
art transformer-based language model RoBERTa [30]. In case
of TF-IDF and BM25, we pre-processed the texts by lower
casing the words and removing punctuation and stop words.
We compared and evaluated the methods on our prediction
task and corpus of user stories. We found that RoBERTa
outperforms the other methods on average by 11%-27% in
precision, 5%-38% recall and 9%-33% F-measure. Therefore,
we decided to use RoBERTa as part of our experimental setup
for answering the research questions.

RoBERTa is an optimization based on Google’s BERT [49],
which is able to learn bidirectional word embeddings from
texts. To adapt the model to the domain-specific vocabulary
of user stories, we updated it with additional training on our
corpus of unlabeled user stories. In this updating procedure,
we implemented the same masked language modeling strategy
as in the pre-training procedure of the original model, with a
set of newly designated hyperparameters (training steps: 60K,
batch size: 64, optimizer: Adam, learning rate 3×10-5).

D. Model Building

Our objective is to predict the probability of a delay occur-
ring (i.e., delay likelihood) and a probability distribution over
the aforementioned risk classes (i.e., delay duration in terms
of the number of sprints overrun). Therefore, our predictive
models should be able to provide probability estimates. We
employ binary classification for predicting the likelihood of
delay. We reduce the aforementioned risk classes into two
binary classes: delayed and non-delayed. The delayed class
covers the user stories that belong to the aforementioned minor
delay, medium delay and major delay classes. For predicting
the delay duration of delayed stories, we employ multi-class
classification for the minor delay, medium delay and major
delay classes.

We compared and evaluated four different classifiers that
are able to provide class probabilities and that have been
shown to be effective classifiers in risk prediction: Random
Forests [50], AdaBoost [51], Multi-layer Perceptron [52] and
Naive Bayes [53]. A comparison on both prediction tasks
showed that Random Forests outperforms the other classifiers

Fig. 2: Our pipeline for predicting delays in user stories

on average by 2%-23% in precision, 9%-48% in recall and 4%-
33% in terms of F-measure. Therefore, we chose to employ
Random Forests (RF) [50] as part of our experimental setup.

Figure 2 shows the design of our pipeline of predicting
delays in user stories: (i) extract numerical story features, (ii)
extract numerical team features, (iii) produce document rep-
resentations of user stories using RoBERTa, (iv) concatenate
features and (iv) classification using Random Forests.

E. Model Evaluation

Evaluation setup. We performed experiments on the
765,200 user stories in our dataset. We built team-specific
predictive models, meaning that our models are trained and
tested on a dataset containing the past user stories from one
specific team. Hence, we built two models for each team in
the dataset: one for predicting delay likelihood and one for
predicting delay duration.

To mimic a real prediction scenario where the delay of
a given user story is estimated based on knowledge from
previous stories, we sorted the stories based on their start
date. Then, for training and evaluation in RQ1 and RQ2, we
used time-based 10-fold cross-validation. Cross-validation is
a well-known technique to prevent the classifier from over-
fitting. The time-based variant of cross-validation ensures that
in the kth split, the stories in the first k folds (training set) are
created before the stories in the (k+1)th fold (test set). Unlike
standard cross-validation, successive training sets are supersets
of previous ones (also known as an expanding window).

For RQ1, we evaluated the performance of the models
learned using different sets of features. We ran all experiments
for the two types of usage scenarios: SC1 (excluding the
initial-points feature) and SC2 (including the initial-points
feature). For RQ2—RQ4, we ran the experiments using all
features (including initial-points).

Our predictive models are able to estimate class probabilities
for the delay likelihood and delay duration of user stories.
During the testing phase of our models, we chose the class
with the highest probability as the predicted class.

5

(a) Evaluation results obtained for predicting delay likelihood: the story features baseline achieved 0.67/0.69 precision, 0.64/0.65 recall, 0.65/0.67 F1 and
0.68/0.70 AUC for SC1/SC2.

(b) Evaluation results obtained for predicting delay duration: the story features baseline achieved 0.62/0.63 precision, 0.60/0.62 recall, 0.61/0.62 F1, 0.69/0.71
AUCminor delay, 0.65/0.67 AUCmedium delay and 0.64/0.64 AUCmajor delay for SC1/SC2.
Fig. 3: Evaluation results for predicting the likelihood and duration of delay in usage scenario SC1 (before effort estimation) and SC2 (after
effort estimation) using story features, a combination of story and text features (S+T) and all features (story, text and team features) (RQ1.1).
The results are averaged across the teams in the dataset. The predictions of the story features model are used as a baseline and visualized
as a dashed line. Results are also given for when team features are used exclusively (RQ1.2).

Sliding window setting. For RQ3, we evaluated our pre-
dictive models using two different experimental settings: the
expanding window and the sliding window. In both settings,
the user stories are first sorted based on their start date and then
divided into multiple time-based windows. For each window
ki in the expanding window setting, we use the stories from
the previous windows k0...ki−1 to train a model. In the sliding
window setting, however, we train the model only on the last
window ki−1. The sliding window allows us to train the model
on a team’s recent delivery performance, while the expanding
window uses all observations available.

To analyze the impact of team churn on delays and our
models’ performance (RQ4), we employed the sliding window
setting and determined for each window whether a team had
been stable or not. We marked a team as stable during a
window if no team members left or joined the team during that
window (i.e., if the team composition did not change during
that window). Then, for each story, we determined the number
of consecutive windows a team had been stable for. If the
team composition had changed in the previous window, then
this number was considered to be zero. Finally, we performed
a statistical comparison of delays and our models’ evaluation
results between stable and unstable teams.

Performance measures. We computed the widely used
precision, recall and F1-score to evaluate the performance of

our predictive models. To account for class imbalance, we
calculated the weighted averages of these measures (i.e, the
score of each class is weighted by the number of samples
from that class). We also used Area Under the Curve (AUC)
of receiver operator characteristics (ROC) [54] in classifying
the outcome of a user story.

To compare the performance of predictive models, we tested
the statistical significance of their evaluation results using the
Wilcoxon Signed Rank Test [55]. This is a non-parametric test
that makes no assumptions about underlying data distributions.
We employed the non-parametric effect size measure, the
Vargha and Delaney’s Â12 statistic [55]. This measure is
commonly used for evaluation in effort estimation [56].

IV. RESULTS

In this section, we report the results in answering research
questions RQs 1-4.

RQ1: Benefits of Team Features

For this research question, we compared the performance
of models learned using story features, a combination of
story and text features, and all features (story, text and team
features). We used the Wilcoxon test and Â12 effect size to
investigate whether the improvements achieved by the addition
of team features are statistically significant.

6

(a) (b)
Fig. 4: Feature importance for predicting delays in user stories: team features are highlighted in blue, story features in gray.

RQ1.1: Does the use of team features have a positive
impact on our predictive performance? Figure 3a presents
the evaluation results for predicting delay likelihood in usage
scenarios SC1 and SC2 (described in Section II-A). In both
scenarios, the models learned using all features outperform the
models learned using a subset of features in terms of precision,
recall, F1 and AUC. On average, the all-features models
improve the story and story+text models by 19% (precision),
23% (recall), 21% (F1-score) and 22% (AUC). Statistical
tests show that the improvements achieved by the all-features
models are significant (p < 0.001) and the effect sizes are large
(ranging between 0.71 and 0.87). This demonstrates that the
addition of team features leads to a significant improvement
in the predictions of delay likelihood.

Figure 3b presents the evaluation results for predicting delay
duration. Similarly, in both scenarios, the models learned using
all features outperform the models learned using a subset of
features in terms of precision, recall, F1 and AUC. On average,
the all-features models improve the story and story+text mod-
els by 16% (precision), 20% (recall), 18% (F1-score) and 17%
(AUC). These improvements are significant (p < 0.001) and
the effect sizes are at least medium (ranging between 0.65 and
0.78). This indicates that the addition of team features leads to

a significant improvement in the predictions of delay duration.
RQ1.2: How effective is our approach when team

features are used exclusively? As shown in Figure 3a, the
models learned using team features only for predicting delay
likelihood perform better than the story models and slightly
worse than the story+text models. The improvements achieved
by the all-features models over the team models are significant
and the effect sizes are at least medium (ranging between
0.63 and 0.76). This indicates that the three feature sets have
statistically significant contributions to the predictions of delay
likelihood.

Figure 3b shows that the models learned using team features
only for predicting delay duration achieve similar results as
the all-features models. The statistical tests show that the
differences between both models in terms of precision, recall,
F1 and AUC are significant but the effect sizes are negligible.
This indicates that we can effectively predict delay duration
using team features exclusively.

RQ2: Feature Importance

Using the feature importance evaluation built in Random
Forests [57], we obtained the top most important features and
their normalized weights from models learned using story and

Fig. 5: Evaluation results for predicting delay likelihood across different window sizes in a sliding versus expanding window setting.

7

(a) Sliding window (b) Expanding window
Fig. 6: Evaluation results obtained over time in the sliding window and expanding window settings (using a 6-month window)

team features (including initial-points). The text features were
not included as it is not possible to reduce the vectors pro-
duced by RoBERTa to one single feature. The models learned
using story and team features achieve on average 0.74/0.76
precision, 0.79/0.80 recall, 0.77/0.78 F1 and 0.81/0.81 AUC
for predicting delay likelihood/duration. Figures 4a and 4b
provide a ranking of the features by order of importance for
predicting delay likelihood and delay duration. We averaged
the importance values of the features across the teams in the
dataset to produce an overall ranking. Features that have an
importance value lower than 0.05 are not shown.

Figure 4a shows that 13 features from Table I contribute
significantly to the predictions of delay likelihood. Dev-work-
load-stories, team-capacity-stories, planned-stories, avg-story-
size and out-degree are the top-5 most important features.
Their importance values range from 14% to 22%. Figure 4b
shows that a partially overlapping set of 8 features is ef-
fective in predicting delay duration. Even though the top
most important features in Figure 4b are similar to those for
delay likelihood, there are a few ranking differences. Overall,
the team features have greater explanatory power for delay
duration than for delay likelihood. This corresponds to our
results for RQ1. Dev-capacity-stories and team-stability play
a significantly larger role in the predictions of delay duration.

RQ3: Benefits of Sliding Window

Figure 5 presents the evaluation results obtained for pre-
dicting the likelihood of delay using an expanding versus
sliding window. The results are averaged across windows and
the teams in the dataset. As shown in Figure 5, the sliding
window consistently outperforms the expanding window in
terms of precision, recall, F1 and AUC across all window
sizes. The Wilcoxon test shows that the improvements are
significant (p < 0.001), and the effect sizes are between 0.55
and 0.68 (small to medium). Comparing the results across
window sizes, we observe that both the expanding window
and the sliding window achieve the best performance for a
window of six months.

Figures 6a and 6b visualize the evaluation results obtained
over time in the sliding and expanding window settings using a
6-month window. The first window is not included as it is used
for training only. Figure 6a shows lower variance over time

in the prediction results for the sliding window. Both window
settings start off with the same precision, recall, F1 and AUC
scores for the second window and then their performance
declines during the third and fourth windows. Further analysis
of the data shows that a majority of teams have greater
variance in their story delays during the initial windows. This
might explain why the performance of both approaches decline
at the start. We observe that the performance of the expanding
window drops drastically during the initial windows, while
the performance of the sliding window remains more stable.
This suggests that the sliding window is better able to adapt
to changes in teams’ delivery performance.

RQ4: Factor of Change

Figure 7 presents a percentage distribution of different levels
of team stability based on the percentage of stories that were
delayed. We observe that user stories that are delivered by
stable teams are less likely to be delayed. 29% of the stories
that have been delivered after a team change (i.e., zero stable
windows) are delayed, of which 10% are hindered by a major
delay. The percentages of delayed user stories decrease for
teams that have been stable for a longer period of time. 21%
of the stories that have been delivered after one stable window
are delayed, of which 7% has a major delay. Only 15%-17%
of the stories that have been delivered after more than one
stable window are delayed.

Fig. 7: Delay percentage distribution across different stability levels

8

Fig. 8: Evaluation results obtained for different levels of stability

Figure 8 presents the evaluation results obtained for pre-
dicting the likelihood of delay for stories delivered by teams
of varying stability. We observe that our predictive models
achieve better precision, recall, F1 and AUC scores for teams
that have been stable. On average, the models achieve 19%
higher precision, 13% higher recall, 16% higher F1 and 10%
higher AUC for stories that are delivered after at least one
stable window. Statistical tests show that these improvements
are significant (p < 0.001) and the effect sizes are between
0.63 and 0.71 (small to medium). Figure 8 also shows a greater
variance in the results for stories delivered after a team change.

V. DISCUSSION

A. Recommendations for Practitioners

Our study provides practitioners with an extensive list of
risk factors. By collecting and analyzing these factors, software
companies can identify delay risks and derive useful models
to predict delays in deliveries. Our models are effective in
predicting the likelihood and duration of delays in user stories,
achieving on average 74%-82% precision, 78%-86% recall,
76%-84% F-measure and 80%-92% AUC. Our models enable
development teams to foresee, either before or after effort
estimation, if a user story is at risk of being moved to a future
iteration. This allows teams to identify problematic user stories
and take corrective actions to reduce the chance of delays.

The evaluation results of our predictive models show that
the use of team features leads to a significant improvement in
the predictions of delay. Moreover, our results show that team
features can help improve the prediction of delay likelihood,
while delay duration can be explained exclusively using them.
For delay likelihood, the feature sets are complementary
to each other. This means that the probability of a delay

occurring depends on a combination of technical and team-
related aspects, while the impact of the occurred delay (i.e.,
how fast it is resolved) mainly depends on the characteristics of
the team. We therefore recommend organizations to encourage
and facilitate teams to improve their work allocation, effort
estimates, knowledge sharing and accountability in order to
reduce the impact of delays. Companies must also have a
stable ecosystem in place to ensure that teams are able to
operate effectively.

B. Implications for Researchers

Feedback mechanisms on team behaviors. Our predictive
models can be used by teams as awareness or feedback
mechanisms on their behavior patterns during planning. The
support provided by our models can help teams to increase the
awareness of their own behavioral habits (e.g., to reduce the
bias towards over-optimistic estimates). This is likely to foster
productive behavior change and improve schedule estimates.
To better realize the benefits of such mechanisms, there is
a need for better tool support that can support agile teams
in tracking their team behavior and improving the manage-
ment of agile projects. Current agile project management
tools lack advanced analytical methods that are capable of
deriving actionable insights from project data for planning. An
extension of existing tools with actionable information about
team dynamics and the current existence of risks in a sprint
would be beneficial. Initial work in this direction has been
carried out by Kortum et al. [58].

Team dynamics monitoring. One of the key novelties in
our approach is deriving new team features for a user story
by aggregating the features either at team- or individual-level.
We derived the features by using a range of statistics over
the past stories delivered by a specific team or developer.
Our experimental results demonstrate the effectiveness of this
approach. Previous research [59], [60] has shown that team-
related information is often difficult to capture or not available
due to lacking information sources. As a consequence, these
factors are often not monitored. Our results indicate the signifi-
cant benefits of incorporating such data into analysis/predictive
models for effort estimation and planning in agile projects.
Further research on team monitoring approaches is needed
to address this gap and to gain a better understanding of
what information and metrics can be collected across software
organizations.

Impact of social-driven factors. The set of team-related
factors identified in this paper are by no means comprehensive
to encompass all aspects of teamwork. We were limited to
the repository data available at ING. It is an interesting
opportunity for future work to analyze the effects of social-
driven factors related to the collaborative nature of software
development work. Previous studies [8], [40], [61] have re-
ported on the impact of social-driven factors, such as trust,
team leadership, team cohesion and communication. These
factors would be a good starting point for future work.

Applicability of effort prediction models. Our evaluation
results show that our predictive models perform significantly

9

better for teams that have been stable for a longer period of
time. In our analyses, we did not make a distinction between
someone leaving or joining the team, nor did we take into
account the number of people leaving or joining. It is an
interesting opportunity for future work to analyze the effects of
different types of team changes on the models’ performance.
This could also include external changes, such as organiza-
tional restructuring or changes in senior management. Such
changes have been identified as risk factors in literature [62]–
[64]. Future research should also explore the impact of other
team characteristics (e.g., team experience and seniority) on
the performance of effort prediction models.

VI. THREATS TO VALIDITY

Construct validity. We consider data variables as constructs
to meaningfully measure delay and risk factors. This intro-
duces possible threats to construct validity [65]. We mitigated
these threats by collecting real-world data from user stories
and teams, and all the relevant historical information available.
The ground-truth (i.e., the delay in terms of the number of
sprints overrun) is based on the number of sprints a story has
been part of. However, it might happen that teams close their
stories too early or too late. We cannot account for the impact
of poor record keeping on our results. Even though all teams at
ING are encouraged to deliver on-time, there is a possibility
that some teams treat their delivery deadlines less seriously
than others. These teams might add stories to sprints without
the commitment to deliver on-time.

Internal validity. Our dataset has the class imbalance
problem. This has implications to a classifier’s ability to learn
to identify delayed stories. To overcome this issue, we used
the weighted variants of performance measures and employed
AUC which is insensitive to class imbalance. We applied
statistical tests to verify our assumptions [55], and followed
best practices in evaluating and comparing predictive models
for effort estimation [66]–[68]. However, we acknowledge
that more advanced techniques could also be used, such as
statistical over-sampling [69]. Another threat to our study
is that the patterns in the training data may not reflect the
situation in the test data. To mitigate this threat we used time-
based cross-validation to mimic a real prediction scenario.

External validity. As with any single-case empirical study,
external threats are concerned with our ability to generalize
our results. We have considered 765,200 user stories from
571 teams, which differ significantly in size, composition,
products developed and application domain. Although we
control for variations using a large number of projects and
teams, we acknowledge that our data may not be representative
of software projects in other organizations and open source
settings. Agile teams in other settings might have a different
team structure and may work at a different pace or create
stories differently. Further research is required to confirm our
findings in different development settings.

VII. RELATED WORK

Teamwork in agile development. Previous research has
analyzed the nature of agile teams in software development:
their characteristics, how they collaborate, and the challenges
they face in geographically and culturally diverse environ-
ments [70], [71]. A survey of success factors of agile projects
identified team capability as a critical factor [1]. Other stud-
ies [9], [21] have used performance models to investigate the
impact of teamwork quality on project success. Moe et al. [9]
showed that problems with team orientation, coordination,
work division and conflict between team and individual auton-
omy are important barriers for achieving team effectiveness.
Melo et al. [36] found that team structure, work allocation and
member turnover are the most influential factors in achieving
productivity in agile projects. Our study complements prior
work by exploring the effects of various aspects of teamwork
in the context of predicting software delays.

Effort estimation and planning. A great body of research
has been published on the study of effort estimation meth-
ods [72]. Estimation methods that rely on expert’s subjective
judgement are most commonly used in agile projects [4].
Project factors and personnel factors are the top mentioned
effort drivers in agile projects [4], [27].

Recent efforts have leveraged machine learning techniques
to support effort estimation and planning in software projects.
They have achieved promising results in estimating effort
involved in resolving issues [14]–[16], predicting the elapsed
time for bug-fixing or resolving an issue (e.g., [19], [73]–
[75]). Previous research [17], [18], [34] has also been done
in predicting the delay risk of resolving an issue in traditional
development. Some studies have been dedicated to effort
estimation for agile development at the level of issues [14]–
[16] and iterations [76], [77]. Our work specifically focuses
on predicting delays in user stories, and complements prior
work by introducing team features and incremental learning
to follow team changes over time.

VIII. CONCLUSION

Modern agile development settings require different ap-
proaches to planning due to their iterative and team-oriented
nature. In this paper, we explored the effects of various aspects
of teamwork on delays in software deliveries. We extracted a
set of technical and team-related risk factors that characterize
delayed user stories. Based on these factors, we built models
that can effectively predict the likelihood and duration of
delays in user stories. The evaluation results demonstrate that:

1) The use of team features leads to a significant improve-
ment in the predictions of delay likelihood, while delay
duration can be predicted exclusively using them.

2) Developer workload, team experience, team stability and
past effort estimates are the most important predictors for
delays in user stories.

3) Training on recent user stories leads to more accurate and
robust predictions of delay.

4) Our predictive models perform significantly better and
more consistently for teams that have been stable.

10

Overall, our results indicate that planning in agile software
development can be significantly improved by incorporating
team-related information and incremental learning methods
into analysis/predictive models. We identified several promis-
ing research directions related to team dynamics monitoring,
designing feedback and awareness mechanisms on team be-
haviors, and the applicability of effort prediction models in
agile projects. Progress in these areas is crucial in order to
better realize the benefits of agile development methods.

REFERENCES

[1] T. Chow and D.-B. Cao, “A survey study of critical success factors in
agile software projects,” Journal of systems and software, vol. 81, no. 6,
pp. 961–971, 2008.

[2] VersionOne, “14th state of agile survey,” https://stateofagile.
com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494,
accessed: 2021-03-28.

[3] A. Cockburn and J. Highsmith, “Agile software development, the people
factor,” Computer, vol. 34, no. 11, pp. 131–133, 2001.

[4] M. Usman, E. Mendes, F. Weidt, and R. Britto, “Effort estimation in ag-
ile software development: a systematic literature review,” in Proceedings
of the 10th international conference on predictive models in software
engineering. ACM, 2014, pp. 82–91.

[5] H. Sharp and H. Robinson, “Three ‘c’s of agile practice: collabora-
tion, co-ordination and communication,” in Agile software development.
Springer, 2010, pp. 61–85.

[6] S. C. Misra, V. Kumar, and U. Kumar, “Identifying some important suc-
cess factors in adopting agile software development practices,” Journal
of Systems and Software, vol. 82, no. 11, pp. 1869–1890, 2009.

[7] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F. Shull,
R. Tesoriero, L. Williams, and M. Zelkowitz, “Empirical findings in agile
methods,” in Conference on extreme programming and agile methods.
Springer, 2002, pp. 197–207.

[8] N. B. Moe, T. Dingsøyr, and T. Dybå, “Overcoming barriers to self-
management in software teams,” IEEE software, vol. 26, no. 6, pp. 20–
26, 2009.

[9] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork model for under-
standing an agile team: A case study of a scrum project,” Information
and Software Technology, vol. 52, no. 5, pp. 480–491, 2010.

[10] M. Hoegl and H. G. Gemuenden, “Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,”
Organization science, vol. 12, no. 4, pp. 435–449, 2001.

[11] M. Cohn, Agile estimating and planning. Pearson Education, 2005.
[12] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information

value in software requirements and architecture,” in Proceedings of the
36th International Conference on Software Engineering, 2014, pp. 883–
894.

[13] H. R. Joseph, “Poster: Software development risk management: using
machine learning for generating risk prompts,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 2. IEEE,
2015, pp. 833–834.

[14] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and
T. Menzies, “A deep learning model for estimating story points,” IEEE
Transactions on Software Engineering, vol. 45, no. 7, pp. 637–656, 2018.

[15] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and R. Tonelli, “Esti-
mating story points from issue reports,” in Proceedings of the The 12th
International Conference on Predictive Models and Data Analytics in
Software Engineering, 2016, pp. 1–10.

[16] E. Scott and D. Pfahl, “Using developers’ features to estimate story
points,” in Proceedings of the 2018 International Conference on Soft-
ware and System Process, 2018, pp. 106–110.

[17] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting delays
in software projects using networked classification (t),” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 353–364.

[18] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Predicting the
delay of issues with due dates in software projects,” Empirical Software
Engineering, vol. 22, no. 3, pp. 1223–1263, 2017.

[19] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time:
an empirical study of commercial software projects,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 1042–1051.

[20] T. L. Dickinson and R. M. McIntyre, “A conceptual framework for team-
work measurement,” Team performance assessment and measurement,
pp. 19–43, 1997.

[21] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. R. Bergersen, and T. Dybå,
“Teamwork quality and project success in software development: A
survey of agile development teams,” Journal of Systems and Software,
vol. 122, pp. 274–286, 2016.

[22] M. Bloch, S. Blumberg, and J. Laartz, “Delivering large-
scale it projects on time, on budget, and on value,” https:
//www.mckinsey.com/business-functions/mckinsey-digital/our-insights/
delivering-large-scale-it-projects-on-time-on-budget-and-on-value,
accessed: 2021-03-28.

[23] H. F. Cervone, “Understanding agile project management methods
using scrum,” OCLC Systems & Services: International digital library
perspectives, 2011.

[24] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall Upper Saddle River, 2002, vol. 1.

[25] ServiceNow. (2021) Servicenow: Workflows for the modern enterprise.
[Online]. Available: https://servicenow.com

[26] M. Cohn, User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[27] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in agile soft-
ware development: a survey on the state of the practice,” in Proceedings
of the 19th international conference on Evaluation and Assessment in
Software Engineering, 2015, pp. 1–10.

[28] J. Grenning, “Planning poker or how to avoid analysis paralysis while
release planning,” Hawthorn Woods: Renaissance Software Consulting,
vol. 3, pp. 22–23, 2002.

[29] H. Kniberg and A. Ivarsson, “Scaling agile@ spotify,” online], UCVOF,
ucvox. files. wordpress. com/2012/11/113617905-scaling-Agile-spotify-
11. pdf, 2012.

[30] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[31] J. Noll and S. Beecham, “Measuring global distance: A survey of
distance factors and interventions,” in International Conference on
Software Process Improvement and Capability Determination. Springer,
2016, pp. 227–240.

[32] W. W. Daniel et al., “Applied nonparametric statistics,” 1990.
[33] S. Holm, “A simple sequentially rejective multiple test procedure,”

Scandinavian journal of statistics, pp. 65–70, 1979.
[34] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Characterization

and prediction of issue-related risks in software projects,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, 2015, pp. 280–291.

[35] B. Boehm and R. Turner, “Using risk to balance agile and plan-driven
methods,” Computer, vol. 36, no. 6, pp. 57–66, 2003.

[36] C. d. O. Melo, D. S. Cruzes, F. Kon, and R. Conradi, “Interpretative
case studies on agile team productivity and management,” Information
and Software Technology, vol. 55, no. 2, pp. 412–427, 2013.

[37] V. Lalsing, S. Kishnah, and S. Pudaruth, “People factors in agile
software development and project management,” International Journal
of Software Engineering & Applications, vol. 3, no. 1, p. 117, 2012.

[38] R. Popli and N. Chauhan, “Agile estimation using people and project
related factors,” in 2014 International Conference on Computing for
Sustainable Global Development (INDIACom). IEEE, 2014, pp. 564–
569.

[39] S. Dorairaj, J. Noble, and P. Malik, “Understanding team dynamics in
distributed agile software development,” in International conference on
agile software development. Springer, 2012, pp. 47–61.

[40] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb, “Famil-
iarity, complexity, and team performance in geographically distributed
software development,” Organization science, vol. 18, no. 4, pp. 613–
630, 2007.

[41] T. Tan, Q. Li, B. Boehm, Y. Yang, M. He, and R. Moazeni, “Productivity
trends in incremental and iterative software development,” in 2009
3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE, 2009, pp. 1–10.

[42] K. D. Maxwell and P. Forselius, “Benchmarking software development
productivity,” Ieee Software, vol. 17, no. 1, pp. 80–88, 2000.

[43] S. E. Dreyfus and H. L. Dreyfus, “A five-stage model of the mental
activities involved in directed skill acquisition,” California Univ Berkeley
Operations Research Center, Tech. Rep., 1980.

11

https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://servicenow.com

[44] R. W. Zmud, “Management of large software development efforts,” MIS
quarterly, pp. 45–55, 1980.

[45] L. Wallace, M. Keil, and A. Rai, “Understanding software project risk:
a cluster analysis,” Information & management, vol. 42, no. 1, pp. 115–
125, 2004.

[46] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, vol. 242, no. 1. Citeseer, 2003, pp. 29–48.

[47] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-
ford et al., “Okapi at trec-3,” Nist Special Publication Sp, vol. 109, p.
109, 1995.

[48] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning. PMLR,
2014, pp. 1188–1196.

[49] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[50] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[51] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[52] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[53] P. Domingos and M. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Machine learning, vol. 29, no. 2, pp.
103–130, 1997.

[54] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning
algorithms,” IEEE Transactions on knowledge and Data Engineering,
vol. 17, no. 3, pp. 299–310, 2005.

[55] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[56] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software
effort estimation,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 619–630.

[57] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using
random forests,” Pattern recognition letters, vol. 31, no. 14, pp. 2225–
2236, 2010.

[58] F. Kortum, J. Klünder, and K. Schneider, “Behavior-driven dynamics
in agile development: The effect of fast feedback on teams,” in 2019
IEEE/ACM International Conference on Software and System Processes
(ICSSP). IEEE, 2019, pp. 34–43.

[59] V. R. Basili and R. W. Reiter Jr, “An investigation of human factors
in software development.” IEEE Computer, vol. 12, no. 12, pp. 21–38,
1979.

[60] F. Kortum, J. Klünder, and K. Schneider, “Don’t underestimate the
human factors! exploring team communication effects,” in International
conference on product-focused software process improvement. Springer,
2017, pp. 457–469.

[61] R. S. Huckman, B. R. Staats, and D. M. Upton, “Team familiarity, role
experience, and performance: Evidence from indian software services,”
Management science, vol. 55, no. 1, pp. 85–100, 2009.

[62] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying software
project risks: An international delphi study,” Journal of management
information systems, vol. 17, no. 4, pp. 5–36, 2001.

[63] K. Ewusi-Mensah, Software development failures. Mit Press, 2003.
[64] S. L. Jarvenpaa and B. Ives, “Executive involvement and participation

in the management of information technology,” MIS quarterly, pp. 205–
227, 1991.

[65] P. Ralph and E. Tempero, “Construct validity in software engineering
research and software metrics,” in Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering
2018, 2018, pp. 13–23.

[66] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in 2011 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 1–10.

[67] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” IEEE Transactions on Software Engineering, vol. 38,
no. 6, pp. 1403–1416, 2011.

[68] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices for
effort estimation,” IEEE Transactions on Software Engineering, vol. 32,
no. 11, pp. 883–895, 2006.

[69] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[70] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9-10, pp. 833–859, 2008.

[71] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile software development,” 2012.

[72] M. Jørgensen, “A review of studies on expert estimation of software
development effort,” Journal of Systems and Software, vol. 70, no. 1-2,
pp. 37–60, 2004.

[73] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Fourth International
Workshop on Mining Software Repositories (MSR’07: ICSE Workshops
2007). IEEE, 2007, pp. 29–29.

[74] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models: can
we do better?” in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011, pp. 207–210.

[75] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, 2010, pp. 52–56.

[76] M. Choetkiertikul, H. K. Dam, T. Tran, A. Ghose, and J. Grundy,
“Predicting delivery capability in iterative software development,” IEEE
Transactions on Software Engineering, vol. 44, no. 6, pp. 551–573, 2017.

[77] P. Abrahamsson, R. Moser, W. Pedrycz, A. Sillitti, and G. Succi, “Ef-
fort prediction in iterative software development processes–incremental
versus global prediction models,” in First International Symposium
on Empirical Software Engineering and Measurement (ESEM 2007).
IEEE, 2007, pp. 344–353.

12

	Introduction
	Context
	Usage Scenarios
	Teams and User Stories at ING

	Study Design
	Data Collection and Pre-Processing
	Risk Factor Extraction and Analysis
	Text Feature Extraction
	Model Building
	Model Evaluation

	Results
	Discussion
	Recommendations for Practitioners
	Implications for Researchers

	Threats to Validity
	Related Work
	Conclusion
	References

