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SUMMARY

Artificial intelligence (AI) is a field that has been increasingly and successfully
applied to solve practical problems in the railway infrastructure domain for over two
decades. Al has been employed to enhance the reliability of railway infrastructure,
ensuring smooth railway operations and services. Despite its success, Al solutions
for the entire railway system still need to be tailored to local conditions and further
optimised with field domain knowledge. This underscores the need for further Al
developments to achieve a truly intelligent railway infrastructure.

This dissertation comprises six chapters. Chapter 1 presents an introduction
to the research. Chapter 2 comprehensively reviews Al methodologies used in
railway infrastructure. The review indicates that some components of the railway
infrastructure have limited Al deployment and open challenges. This PhD research
addresses three challenges: 1) to improve the detection of early-stage defects in rails
and components such as fasteners, 2) to provide insight into massive unlabelled
railway data, and 3) to integrate information from multiple monitoring technologies
for accurate health assessment. These challenges are addressed in Chapters 3, 4, and
5 through the proposal of new Al solutions.

Chapter 3 addresses the challenge of detecting rail surface defects at early
development stages using axle box acceleration (ABA) measurements. Spiking neural
networks (SNNs) offer the ability to handle temporal and spatiotemporal patterns
through their unique mechanism of processing data as discrete events or spikes.
Therefore, a methodology based on SNN is proposed to tackle the challenge.
Additionally, the signal transmission in SNNs, occurring as trains of spiking events,
resembles the pattern of an ABA signal, where each spike represents an abrupt
change in ABA response at squats, further motivating the selection. The proposed
method utilises a simple SNN architecture with time-varying weights and no hidden
layers. The SNN is trained using a method that combines genetic algorithms, k-fold
cross-validation, and multi-start backpropagation to optimise hyperparameters and
weights. Demonstrated by real-field measurements from Dutch and Swedish railways,
the proposed methodology effectively captures subtle changes in the responses of
light squats in ABA signals. It significantly enhances the detection accuracy of light
squats from the traditional methods, which are 78-85%, to more than 93% using a
simpler network architecture. The success in squat detection is attributed to the
use of time-varying weights that allow variations in synaptic weights. Furthermore,
the proposed method provides interpretability. The internal behaviours of spike
responses, postsynaptic and membrane potentials highlight a correspondence with a
high-frequency band between 1000-2000 Hz of the detection problem of squats.

Chapter 4 addresses the challenge when high-frequency vibration signals are
obtained in new environments where prior knowledge or reference information
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XII SUMMARY

about infrastructure conditions is unavailable or very limited. To tackle the challenge,
this chapter proposes an unsupervised representation learning methodology to
automatically capture and extract characteristic features of dynamic responses that
reflect the conditions of rail infrastructures. This method employs a collaborative
optimisation process that synchronises empirical mode decomposition (EMD) with
a convolutional autoencoder (CAE). The EMD level is tuned to remove noise while
preserving effective vibration responses. The CAE is trained using demodulated
signals that are considered normal to generate representations that ensure
reconstruction quality and differentiate between normal and abnormal conditions.
The effectiveness of this approach is demonstrated using a Gaussian mixture model.
Applied to validated ABA data for rail defect detection and train-borne LDV data
for rail fastener monitoring, the proposed method outperforms other variants of
autoencoder-based models and the wavelet-based CAE in accurately identifying the
conditions. It achieves an average improvement of 16% with the ABA data and 21%
with the LDV data.

Chapter 5 addresses the limitations of individual monitoring technologies and
presents a data fusion framework to predict railway infrastructure health using
multiple monitoring technologies. The framework addresses missing data through
spatio-temporal interpolation and enhances predictive accuracy with a hybrid neural
network. The proposed framework is showcased to enable a more frequent
evaluation of transition zone health by integrating multiple monitoring technologies,
including track geometry, interferometric synthetic aperture radar (InSAR), and ABA
measurements. A spatio-temporal interpolation approach is employed to fill in
missing InSAR data. Then, hybrid neural models are evaluated to predict track
longitudinal levels, including a hybrid convolutional neural network (CNN) with
gated recurrent units (GRU) network and a hybrid CNN with a long short-term
memory (LSTM) network. The prediction relies on a fusion of historical and
interpolated data from InSAR and the ABA measurements. Subsequently, a novel
key performance index (KPI) based on the predicted track longitudinal levels is
proposed, facilitating more frequent assessments due to the regularity of InSAR and
ABA data. The framework effectively detects track irregularities early, even before the
next measurement of track geometry profiles. This offers predictive insights that can
guide decisions regarding the timing and locations for essential track maintenance.

These chapters collectively underscore the potential of Al to support decisions in
the maintenance of railway infrastructure, ultimately enhancing the maintenance
of large-scale railway infrastructure. Chapter 6 concludes the dissertation with
recommendations for future research and practice.



SAMENVATTING

Kunstmatige intelligentie of Artificial intelligence (AI) is een vakgebied dat al meer
dan twee decennia steeds vaker en succesvoller in het spoor wordt toegepast
om praktische problemen op te lossen. Het wordt ingezet voor verbetering
van de betrouwbaarheid van de spoorweginfrastructuur, zodat onderhoud en
dienstregelingen soepel verlopen. Ondanks dit succes moeten Al-oplossingen
voor het gehele spoorwegsysteem nog steeds worden afgestemd op de lokale
omstandigheden en verder worden geoptimaliseerd met technische domeinkennis
uit het veld. Dit onderstreept de noodzaak van verdere ontwikkelingen op het gebied
van Al in het spoor om een echt intelligente railinfrastructuur te bereiken.

Dit proefschrift bestaat uit zes hoofdstukken. Hoofdstuk 1 geeft een inleiding op
het onderzoek. Hoofdstuk 2 beschrijft een diepgaande review van Al-methodologieén
die reeds worden gebruikt in de spoorweginfrastructuur. Uit deze review blijkt dat
voor bepaalde onderdelen van de spoorweginfrastructuur het gebruik van Al nog
altijd beperkt is en er op dit vlak dus uitdagingen zijn die moeten worden aangepakt.
Dit promotieonderzoek richt zich op drie uitdagingen: 1) het verbeteren van de
detectie van defecten in rails en componenten zoals bevestigingsmiddelen in een
vroeg stadium, 2) het bieden van inzicht in enorme hoeveelheden niet-gelabelde
data, en 3) het integreren van informatie van meerdere monitoringtechnologieén
voor een nauwkeurige beoordeling van de conditie van de spoorweginfrastructuur.
Deze uitdagingen worden behandeld in de hoofdstukken 3, 4, en 5 door de
introductie van nieuwe Al-oplossingen.

Hoofdstuk 3 is gericht op het vraagstuk over het in een vroeg stadium detecteren
van het ontstaan van defecten in het rijoppervlak van rails met behulp van axle
box acceleration (ABA)-metingen. Spiking neural networks (SNNs) zijn kunstmatige
neurale netwerken die natuurlijke neurale netwerken beter simuleren en zo de
mogelijkheid bieden om temporele en spatiotemporele patronen te verwerken via
een uniek datamechanisme voor discrete toestanden of spikes. Vandaar dat een
op SNN gebaseerde methodologie wordt voorgesteld om de uitdaging van detectie
van genoemde raildefecten aan te pakken. Daarnaast vertoont de signaaloverdracht
in SNNs - die plaatsvindt als reeksen van spiking-gebeurtenissen — gelijkenis met
het patroon van een ABA-signaal, waarbij elke spike een abrupte verandering in
de ABA-respons bij squats vertegenwoordigt, hetgeen een onderbouwing is van de
selectie van SNN. De voorgestelde methode maakt gebruik van een eenvoudige
SNN-architectuur met tijdsafhankelijke waarden en geen verborgen lagen. De SNN
wordt getraind met een methode die genetische algoritmen, k-fold cross-validation
en multi-start backpropagation combineert om hyperparameters en waarden te
optimaliseren. Zoals met metingen in de Nederlandse en Zweedse railinfrastructuur is
aangetoond, registreert de voorgestelde methodologie effectief subtiele veranderingen
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in de reacties van beginnende of lichte squats in ABA-signalen. In vergelijking met
de bestaande methodieken voor verwerking van ABA-data leidt deze methodologie
met een eenvoudigere netwerkarchitectuur tot een aanzienlijke verbetering van
de detectienauwkeurigheid tot meer dan 93%, tegen 78-85% voor de bestaande
methodieken. Het succes in squat-detectie wordt toegeschreven aan het gebruik
van tijdsafhankelijke waarden die variaties in synaptische waarden mogelijk maken.
Bovendien biedt de voorgestelde methode interpreteerbaarheid. @ Het interne
gedrag van spike-reacties, postsynaptische- en membraanpotentialen laten een
overeenkomst zien met een hoogfrequentieband tussen 1000-2000 Hz van het
detectieprobleem van squats.

Hoofdstuk 4 behandelt het vraagstuk over hoogfrequente trillingssignalen die
worden verkregen in nieuwe omgevingen waar voorkennis of referentie-informatie
over de staat van de infrastructuur ontbreekt of zeer beperkt beschikbaar is. Om dit
vraagstuk aan te pakken, wordt in dit hoofdstuk een unsupervised representation
learning methodology voorgesteld om automatisch karakteristieke kenmerken van
dynamische reacties , die de staat van de railinfrastructuur weerspiegelen, vast
te leggen en te extraheren. Deze methode maakt gebruik van een collaboratief
optimalisatieproces dat de empirische mode decompositie (EMD) synchroniseert
met een convolutional auto-encoder (CAE). Het EMD-niveau wordt aangepast om
ruis te verwijderen terwijl daadwerkelijke trillingsreacties behouden blijven. De CAE
wordt getraind met gedemoduleerde signalen die als basis worden beschouwd voor
het genereren van representaties die de kwaliteit van reconstructie waarborgen en
daarbij onderscheid maken tussen normale en abnormale condities. De effectiviteit
van deze benadering wordt aangetoond met behulp van een Gaussian-mengmodel.
Toegepast op zowel gevalideerde ABA-data voor raildefectdetectie als op data van
railbevestigingsmonitoring, afkomstig van een op een trein gemonteerde Laser
Doppler Vibrometer (LDV), overtreft de voorgestelde methode andere varianten van
auto-encoder-gebaseerde modellen en de wavelet-gebaseerde CAE in het nauwkeurig
bepalen van de condities van rails en de bevestigingen. De methode bereikt een
gemiddelde verbetering van 16% met de ABA-gegevens en 21% met de LDV-gegevens.

Hoofdstuk 5 gaat in op de beperkingen van afzonderlijke monitoringtechnologieén
en introduceert een datafusiekader om de conditie van de spoorweginfrastructuur
te voorspellen met behulp van deze verschillende monitoringtechnologieén. Het
kader zorgt daarmee voor een oplossing voor ontbrekende gegevens door middel
van spatio-temporele interpolatie en verbetert zo de voorspellende nauwkeurigheid
met een hybride neuraal netwerk. De meerwaarde van het voorgestelde kader
wordt aangetoond door een frequentere evaluatie van de toestand van transitiezones
mogelijk te maken door de integratie van meerdere monitoringtechnologieén,
waaronder spoorgeometrie, Interferometrische Synthetic Aperture Radar (InSAR) en
ABA-metingen. Een spatio-temporele interpolatiebenadering wordt gebruikt om
ontbrekende InSAR-gegevens in te vullen. Vervolgens worden hybride neurale
modellen geévalueerd om de longitudinale spoorniveaus te voorspellen, inclusief
een hybride convolutioneel neuraal netwerk (CNN) met gated recurrent units (GRU)
netwerk en een hybride CNN met een long short-term memory (LSTM) netwerk.
De voorspelling is gebaseerd op een fusie van historische - en geinterpoleerde



XV

gegevens van InSAR en de ABA-metingen. Vervolgens wordt een nieuwe key
performance indicator (KPI) voorgesteld op basis van de voorspelde longitudinale
spoorniveaus, wat meer frequente beoordelingen mogelijk maakt dankzij de
regelmatige beschikbaarheid van de InSAR- en ABA-gegevens. Het kader detecteert
effectief en vroegtijdig geometrische afwijkingen in het spoor, zelfs v66r de volgende
reguliere meting van spoorgeometrieprofielen. Dit biedt voorspellende inzichten die
richting geven aan besluitvorming over de selectie van locaties en de planning van
noodzakelijk spooronderhoud.

De hoofdstukken benadrukken het potentieel van Al voor ondersteuning van
het besluitvormingsproces over onderhoud van het spoor, waarmee uiteindelijk het
onderhoud van grootschalige railinfrastructuur verbetert. Hoofdstuk 6 besluit het
proefschrift met aanbevelingen voor gebruik van de geintroduceerde methoden in
de praktijk en de uitvoering van toekomstig onderzoek.






1

INTRODUCTION

It all starts with an Introduction.



2 1. INTRODUCTION

1.1. MOTIVATION

AILWAY infrastructures are complex and large-scale systems. Railway
Rinfrastructures are characterised by dynamics that vary over time and across
different locations. = Temporal changes are primarily due to continuous use,
degradation, and maintenance activities, while spatial variations arise from the
variability of dynamics at various locations, such as railway tracks at bridges,
tunnels, stations, and curves, compared to straight tracks. Despite some local
periodic features like sleeper spacing, the track structure parameters are often
unique to each location. Moreover, the functionality of railway infrastructure is
influenced by stochastic factors like weather conditions. All of these make it a
dynamic, continuous, distributed, and stochastic system. This inherent complexity
highlights the need for innovative, intelligent methods tailored to address practical
and localised challenges in railway infrastructure.

Effective management of railway infrastructure necessitates an approach that
considers the underlying connections between infrastructure, society, and the
environment. Research in railway infrastructure is inherently multidisciplinary. To
address fundamental questions in this field, it is crucial to understand not only
the physical behaviours (such as structural and mechanical responses) but also
the limitations of various mathematical modelling techniques, the potential of
state-of-the-art measurement technologies (including vibration, images, and laser
scanning), and the available maintenance technologies. Additionally, we must
account for the influence of stochastic variables like weather and reliability, the
human factors related to both users and workers, and the complex relationships
between railway governance and contractual agreements. The unique nature of
railway infrastructure challenges at different locations and times presents numerous
opportunities to develop innovative solutions using Al. These Al solutions can capture
the essential characteristics of the infrastructure and address issues that traditional
methods fail to resolve. By exploring the current practices and technologies used in
railway infrastructure monitoring and maintenance, we can identify the areas where
Al can further contribute to the specific challenges in railway infrastructure that
need to be addressed. This PhD research focuses on Al-based solutions for decision
support to improve and facilitate monitoring and maintenance decisions.

1.2. OVERVIEW OF RAILWAY INFRASTRUCTURE MONITORING
AND MAINTENANCE

Health condition monitoring and maintenance play a vital role in ensuring the
safety, availability, and reliability of services and in prolonging the life span of
railway infrastructures. Early detection and preventive maintenance of possible
failures before they occur have shown great potential for cost savings [1, 2]. The
continuous monitoring of critical components has not only increased the level
of safety but drastically increased the availability of the infrastructure, as early
warning systems allowing to include the repairs or replacement of these components
during the routine maintenance slots. This section provides an overview of railway
infrastructures, condition monitoring, and maintenance.
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1.2.1. RAILWAY INFRASTRUCTURES

Railway infrastructure can be categorised into four key groups: track system, catenary
system, civil structures, and track substructures, as illustrated in Figure 1.1. The
track system is the backbone of railway infrastructure. The track system comprises
several critical components such as rails, sleepers, fasteners, ballast, switches and
crossings (turnouts), as depicted in Figure 1.1(a). The catenary system is essential for
electrified railways, supplying electrical power to trains. Examples of components in
the system include contact wires, catenary cantilevers, pantographs, masts and poles,
as depicted in Figure 1.1(b). Civil structures encompass the non-track elements of
railway infrastructure. Examples of components in the system are culverts, viaducts,
tunnels, and bridges, as depicted in Figure 1.1(c). The track substructure provides
the foundational support for the track system. Examples of components in the
system include sub-ballast, soil, and embankment, as depicted in Figure 1.1(d). Each
of these groups plays a vital role in the overall integrity and functionality of railway
infrastructure.

Track system

(a) Track system. (b) Catenary system.

Civil structures Track substructures

(c) Civil structures. (d) Track substructures.

Figure 1.1: Groups of railway infrastructures.

1.2.2. RAILWAY INFRASTRUCTURE MONITORING

With the developments in sensors and information technology, health conditions in
railway infrastructure can be continually assessed using information obtained from
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track-side measurements, onboard measurements, and remote sensing technologies.
Track-side measurements employ point-sensor technologies such as acceleration
sensors, strain gauges, temperature sensors, and ground penetrating radar. The
measurements are typically installed at critical locations. This results in the
local coverage of responses. Given the large scale of the railway infrastructure,
it is not always feasible to fully instrument railway lines spanning thousands
of kilometres with a large number of sensors. The costs associated with these
sensors, including expenses related to devices, labour, and power supplies, can be
prohibitive. Moreover, full instrumentation is often unnecessary as onboard systems
can effectively collect data. Additionally, some onboard monitoring techniques have
not yet been standardised. Therefore, significant efforts are required from the railway
industry to define their robust integration with existing systems and ensure efficient
data analysis.

Onboard measurement systems have been used in continuous monitoring
frameworks. These systems use sensors such as accelerometers and laser Doppler
vibrometers to acquire data related to the conditions of railway infrastructure during
train operations. This method provides information about the behaviours and
conditions of rail infrastructures over many kilometres in a single run, facilitating
large-scale monitoring. However, onboard monitoring techniques require robust
integration with existing systems and efficient data analysis. This is essential due
to the massive volume of data generated that covers each track position with a
very short signal duration for critical locations that require special attention. These
data contain a variety of dynamic and transient responses that vary significantly
along the track and are affected by noise. Additionally, adapting these systems for
use in passenger trains presents challenges, such as distinguishing global responses
from those specific to individual components, like substructures. Addressing these
challenges remains an ongoing research in the field.

Remote sensing technologies, such as satellite-based methods utilising global
navigation satellite system (GNSS) and interferometric synthetic aperture radar
(InSAR), are also employed for railway infrastructure monitoring. These technologies
enable real-time displacement monitoring of structures such as bridges and detecting
hazards such as landslides along railway embankments. While satellite data
provides valuable insights, challenges remain in achieving the required resolution
and accuracy for specific railway applications.

1.2.3. RAILWAY INFRASTRUCTURE MAINTENANCE

Preserving and enhancing the condition of railway infrastructures requires effective
maintenance strategies, comprising four primary strategies detailed as below.

CORRECTIVE MAINTENANCE

Corrective maintenance refers to the maintenance activities performed to identify,
isolate, and rectify a fault or defect that has already occurred in a system,
thereby restoring it to its proper working condition. This type of maintenance
is reactive in nature, meaning it takes place after a problem has been detected
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rather than preventing issues before they arise. While it can lead to downtime and
unsafe situations from unexpected failures, corrective maintenance is the simplest
maintenance strategy to implement.

PREVENTIVE MAINTENANCE

Preventive maintenance refers to an approach to maintaining railway infrastructure
by performing regular, scheduled inspections, and routine repairs to ensure proper
functioning, early detection of defects and failures, and to extend the lifespan of
assets. This approach aims to identify and address potential issues before they
escalate into significant problems, thereby reducing downtime, improving safety,
and optimising operational efficiency. The replacement or repair of components
in preventive maintenance is based on predefined time intervals or usage metrics.
However, this method may not capture all problems that arise between scheduled
maintenance activities. For example, preventive grinding might also remove healthy
rail top layer. Traditionally, preventive maintenance does not utilise predictive
models, meaning updates on robustness and predictive accuracy are not explicitly
considered.

PREDICTIVE MAINTENANCE

Predictive maintenance is a maintenance strategy that uses data analysis tools,
machine learning, and Al techniques to detect anomalies and predict failures
before they occur. The goal of predictive maintenance is to support maintenance
activities and minimise unexpected breakdowns by relying on continuous monitoring
and analysis of infrastructure conditions. This approach depends heavily on
predictive models, which can be affected by uncertainty in parameters, noise, and
drastic changes in operational conditions, potentially hindering predictive accuracy
and informed decision-making. Implementing predictive maintenance requires
significant initial investment in advanced data analysis tools, machine learning, and
Al technologies. Additionally, specialised expertise is required to interpret data and
maintain predictive systems.

PRESCRIPTIVE MAINTENANCE

Prescriptive maintenance is an advanced maintenance strategy that not only predicts
failures. It also aims to identify the root causes of problems and propose design
changes to eliminate the issues. Prescriptive maintenance comprises information
from diagnosis, prognosis to maintenance decision-making. It combines field
domain knowledge and know-how, data analytics, machine learning, and expert
knowledge to offer actionable insights and optimal recommendations on actions to
prevent or mitigate failures, thereby optimising maintenance schedules and resources
more effectively. In prescriptive maintenance, component health information should
represent a trend, and a major focus is on analysing the root cause of abnormal
behaviour, not just the symptoms. However, the successful implementation of
prescriptive maintenance in railway infrastructure requires the development of new
Al solutions. This includes solutions from defect detection, root-cause identification,
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classification, and prediction of degradation patterns to decision-making supporting
maintenance planning. A higher level of specialised expertise is also required to
interpret the recommendations and implement the suggested actions, which can be
more challenging and resource-intensive than predictive maintenance.

Overall, corrective maintenance is crucial for addressing unexpected issues
and ensuring the continued safe and efficient operation of railway systems. It
complements preventive and predictive maintenance strategies by tackling problems
that cannot be foreseen and preventively managed. Preventive, predictive,
and prescriptive maintenance are condition-based strategies that heavily rely on
advancements in monitoring technology to provide information about the current
health condition of railway infrastructures.

1.3. SELECTED CHALLENGES FROM RAILWAY
INFRASTRUCTURES

Monitoring of railway infrastructures has the potential to support the management
of their performance and maintenance strategies. Yet, how to respond to the
daily detection of faults poses another problem for inframanagers due to limited
resources, short closure times, lack of alternative routes, and the standards that rely
on time-based inspection. Additionally, databases constructed from continuous data
monitoring become larger over time, which poses a challenge to their transmission,
storage, and analytics. For instance, when using onboard axle box acceleration
systems and laser Doppler vibrometers, an open challenge is how to migrate such
high-frequency sampling data onto any cloud and database due to the limitation
of the existing communication bandwidth. Data pre-processing and on-premise
analytics can be options to reduce the amount of data. Further, new standards
are still required when using ABAs and LDVs and when dealing with multiple
measurement sources and new sensing technologies, e.g., satellite data. Further
discussion about the detailed challenges in railway infrastructures is elaborated in
Chapter 2. In this dissertation, some challenges addressed in the literature are
selected for this PhD research. The selected challenges include the detection of rail
surface defects called squats at their early development stage, insufficient labelled
data for supervised model training, and information fusion of various monitoring
technologies. Detailed information about the selected challenges is elaborated as
follows.

1.3.1. DETECTION OF RAIL SQUATS AT EARLY DEVELOPMENT STAGE

Squats are short-wave surface defects and one type of rolling contact fatigue of
railway rails [1-7]. Rail squats are critical to detect and manage because they
can lead to increased maintenance costs, reduced rail life, and potential safety
hazards. However, detecting squats, particularly for light squats, with high accuracy
is challenging. Some possible underlying reasons are the following. First, light squats
are anomalies with a low percentage of appearance in monitoring data. Some light



1.3. SELECTED CHALLENGES FROM RAILWAY INFRASTRUCTURES 7

squats are difficult to find via visual inspections (or even impossible when these
are still not visible to human eyes), making the labelling process difficult. Second,
the response of light squats in ABA signals appears suddenly and has a very short
duration. For example, at a light squat of 8 mm in wavelength with a measurement
speed of 110 km/hr, the duration of its response can be 0.26 milliseconds. Third, the
response of light squats in ABA signals is affected by the variability of the railway
track parameters and measurement conditions. For example, different dynamic
responses occur at squats on top or in between sleepers, thermite welds, flash welds,
joints, crossings, transition zones, etc. Last and most importantly, the frequency
components of light squats are slightly different from those of healthy rails, with
subtle characteristics occurring dominantly at high frequencies. Early detection
significantly reduces the maintenance cost of tracks because severe squats can lead
to the replacement of the track section, while light squats can be effectively treated
by grinding. Therefore, this PhD research considers using Al to improve the detection
accuracy of rail squats, particularly light squats, based on ABA measurements,
thereby enhancing the effectiveness of rail degradation control.

1.3.2. INSUFFICIENT LABELLED DATA FOR SUPERVISED MODEL TRAINING

Supervised methods, such as deep learning, require extensive labelled data to ensure
high performance. However, for railway infrastructures, collecting accurate and
verified labelled samples of high-quality faulty and healthy states from thousands of
kilometres of rail lines is extremely difficult, costly, and time-consuming. Regarding
class information for defects, often few labelled data are available due to the lack
of historical data with sufficient quality and localisation. Likewise, health data
are difficult to label because of their variants of behaviour at different locations;
in particular, rails are affected by local track dynamics and different operational
conditions and stochastic variables. In addition, there is no established standard or
threshold to evaluate the level of health conditions based on onboard measurements
such as LDVs and ABAs. Beyond the need for standardised evaluation methods
for all railway components, there are components like embankments that remain
particularly challenging. Existing studies do not clearly demonstrate that these
onboard measurements accurately capture their dynamic behaviours and reflect their
true health conditions. Consequently, we need further research on the fundamental
analysis of dynamic responses to better understand and assess their health under
varying conditions. Therefore, data from healthy infrastructure are abundant,
whereas defective ones are few. As a result, data used for training Al models are
seriously imbalanced, and labelled data are insufficient.

Rolling stock can be equipped with high-frequency vibration sensors to
continuously monitor rail infrastructures and detect defects. These moving sensors
measure at high speeds and sampling frequencies, generating a massive amount
of data that covers each track position with very short signal durations. These
data contain a variety of dynamic and transient responses that vary significantly
along the track and are affected by noise. Using moving vibration sensors poses an
additional challenge as this leads to a large amount of unlabelled and noisy data,
complicating the extraction of dynamic responses for effective anomaly detection.
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Hence, this PhD research considers using Al to automatically extract characteristic
features of dynamic responses that reflect the conditions of rail infrastructures in an
unsupervised manner.

1.3.3. INFORMATION FUSION OF VARIOUS MONITORING TECHNOLOGIES

Railway infrastructures are complex and highly nonlinear. They involve different
assets and can be affected by various anomalies. Several advanced technologies
are employed in railway infrastructure monitoring, each offering unique advantages
for specific purposes. Thus, detecting failures and maintaining the structure
requires multiple measurement systems. Typical monitoring systems used for railway
infrastructures employ eddy current and ultrasonic tests, vibration measurements of
wheel and rail using accelerometers, videos, and track geometry recording [8, 9].
Depending on traffic tonnage and maximum line speed, measurement frequencies
and data processing requirements can differ substantially among technologies.

Employing multiple systems to monitor railway infrastructure performance
indicates the need to deal with heterogeneous data. The information about defects
obtained by a single source can easily show trends; however, it is limited by the
nature of the measurement itself. Assessing transition zone conditions, for example,
heavily depends on the measurement frequency and the density of data gathered. A
more frequent measurement is essential to enhance forecasts and insights into the
evolution over time and assess severe events, allowing better maintenance strategic
plans. High-density measurements are essential for detecting track irregularities
along transition zones. The more frequent measurements from satellites offer the
advantage of tracking transition zone conditions over time and assessing significant
events on a global scale. In a complementary manner, data obtained from
ABA measurements excel at capturing local dynamic responses. Currently, ABA
measurements occur less frequently because the system is still on the path towards
standardisation, and it is required to be effectively installed in passenger trains.
Additionally, track geometry is a standardised measurement used in various railway
companies. While its quality is guaranteed with accuracy and resolution, track
geometry does not capture locations with a poor dynamic train-track interaction.
Recognising the complementary nature of these measurements, this PhD research
considers using Al for the fusion of track geometry, InSAR, and ABA measurements
to assess transition zone conditions with a more frequent evaluation.

1.4. RESEARCH OBJECTIVES AND QUESTIONS

This PhD research proposes Al solutions to support maintenance decisions in
railway infrastructure. Specifically, the research covers three key challenges of rail
surface defect detection at early development stages based on ABA measurements,
unsupervised representation learning from high-frequency moving vibration sensors,
and the fusion of information from different monitoring technologies. The primary
objective is to leverage Al to transform monitoring data into actionable insights,
thereby supporting maintenance planning for railway infrastructure. The key research
question guiding this research is:
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“How can Al be adopted so that maintenance in a large-scale railway
infrastructure is improved?"

Specifically, the thesis aims to respond to the following sub-research questions:

1.

How successful are Al developments in addressing railway infrastructure
problems?

2. Can an SNN-based methodology improve the detection accuracy of rail squats,

particularly light squats, based on ABA measurements?

3. How can we effectively extract, in an unsupervised manner and from

high-frequency moving vibration sensing, representations that characterise
dynamic behaviours of rail infrastructures?

4. How can a hybrid neural model exploit information from track geometry

measurements, InSAR measurements, and ABA measurements to assess
transition zone conditions with a more frequent evaluation?

1.5. RESEARCH SIGNIFICANCE

Upon completion, this dissertation offers several benefits to researchers and
engineers in academia and the railway industry:

1.5

.1. SCIENTIFIC CONTRIBUTIONS

* Through a comprehensive review, this dissertation provides considerations and
discussions on the challenges and the need for new intelligent methods to
bridge the gaps between industrial applications and new AI developments.
This information can help researchers and engineers in academia and industry
visualise trends and develop benchmarks tailored to the specific needs of
railway infrastructures.

* An SNN-based methodology is presented for detecting rail squats, particularly
light squats. This method utilises a simple network architecture with time-
varying weights and no hidden layers to address the complex spatiotemporal
problem of early squat detection. A global optimisation approach is
adopted for the SNN training process, incorporating a genetic algorithm for
hyper-parameter search based on cross-validation and backpropagation to
adjust time-varying weights with multi-starts. The process relies on SpikeProp
and an update rule that accounts for the time-varying characteristics of the
weights.

° A utilisation of spike responses, postsynaptic potentials, and membrane
potentials is presented to provide a new explainable way for squat detection
that relies on ABA signals. Visual explanations from these internal spike
behaviours can be used to identify a correspondence with the physical
problem.
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An unsupervised representation learning methodology is proposed to
automatically extract features that characterise the dynamic behaviours of
rail infrastructures from noisy, short-duration monitoring data obtained from
moving high-frequency sensors at different locations.

A collaborative optimisation process between empirical mode decomposition
and a convolutional autoencoder is proposed to generate representations that
demonstrate reconstruction quality and differentiate between rail infrastructures
under normal and abnormal conditions.

To demonstrate the applicability and performance of the proposed unsupervised
representation learning method for monitoring rail infrastructures, two field
measurements with different targeted components, sensor types, and
operational conditions are considered: one for monitoring rail defects using an
ABA and the other one for rail fasteners using a train-borne LDV.

Multiple monitoring data, including track geometry measurements, InSAR
measurements, and ABA measurements, are utilised for assessing the health of
railway transition zones.

A spatio-temporal interpolation approach is introduced to impute missing
InSAR data, while hybrid neural models are proposed to fuse information from
InSAR and ABA data to predict missing track longitudinal levels.

A novel key performance index based on InSAR and ABA measurements is
proposed to assess the health of railway transition zones.

1.5.2. SOCIETAL CONTRIBUTIONS

Enhance the safety of railway infrastructure: this minimises delays and
disruption through more reliable infrastructure as a result of condition-based
maintenance procedures at a large scale.

Reduce cost in maintenance: early warning through automatic condition
monitoring and condition-based maintenance improve the effectiveness of
maintenance activities.

Reduce cost in railway operation: early information about anomalies, e.g.,
rail surface defects, will help operators adjust their schedules to the current
situation.

Lastly, and most importantly, provide technological solutions to strengthen
rail transport: this helps to achieve sustainable development goals, with the
potential for significant advancements in transportation systems across diverse
national contexts.
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1.6. DISSERTATION OUTLINE

The outline of this dissertation is illustrated in Figure 1.2. Chapter 1 presents
an introduction to the PhD research. Chapter 2 comprehensively reviews Al
methodologies developed and integrated into railway infrastructure and provides
insights into the challenges for successful implementation in the railway industry.
Chapter 3 focuses on an improvement of rail squat detection using the spiking neural
network (SNN) with time-varying weights relying on ABA measurements. Research
presented in Chapter 4 involves an unsupervised representation learning methodology
to capture dynamic responses of rail infrastructures using monitoring data obtained
from high-frequency moving vibration sensors. Chapter 5 presents a framework that
enables a more frequent evaluation of transition zone health by integrating multiple
monitoring technologies, including track geometry measurements, InSAR, and ABA.
Chapter 6 concludes the dissertation with recommendations for future research and
practice.
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ARTIFICIAL INTELLIGENCE IN
RAILWAY INFRASTRUCTURE

The railway industry has the potential to make a strong contribution to the
achievement of various sustainable development goals, by an expansion of its role in
the transportation system of different countries. To realize this, complex technological
and societal challenges are to be addressed, along with the development of suitable
state-of-the-art methodologies fully tailored to the particular needs of the wide variety
of railway infrastructure types and conditions. Artificial intelligence (A) methods
have been increasingly and successfully applied to solve practical problems in the
railway infrastructure domain for over two decades. This chapter proposes a review of
the development of Al methods in railway infrastructure. First, we present a survey
limited to selected journal papers published between 2010 and 2022. Bibliographical
statistics are obtained, showing the increasing number of contributions in this field.
Then, we select key Al methodologies and discuss their applications in the railway
infrastructure. Next, AI methods for key railway components are analyzed. Finally,
current challenges and future opportunities are discussed.

This chapter is an award-winning paper published in Phusakulkajorn, W., Nufez, A., Wang, H.,
Jamshidi, A., Zoeteman, A., Ripke, B., Dollevoet, R.PB.J., De Schutter, B., Li, Z., Artificial intelligence
in railway infrastructure: Current research, challenges, and future opportunities, Intelligent
Transportation Infrastructure, liad016, pp. 1-24, 2023.
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2.1. INTRODUCTION

NDUSTRIAL sectors have been increasingly limiting the use of fossil fuel
Iconsumption. However, transport sectors still struggle to significantly reduce CO,
emissions. With the current technological progress, the road sector cannot cope
with the challenge despite the environmental standards and the development and
steady improvement of alternative fuel vehicles [10]. Increasing rail usage in the
modal share between rail and road transport is envisioned as an important strategy
when developing greener and more sustainable societies [11]. In some countries,
this can be achieved by equipping more regions with new railway networks and
infrastructures. In other countries where railway infrastructure is already densely
used, increasing the effectiveness of their operations, the level of satisfaction of
users, and the optimal use of resources are major challenges.

By 2030, rail sectors in Europe aim to reduce CO, emissions for passenger and
freight transport by 30% from 1990. However, more regions equipped with railway
tracks and more intense use of the infrastructure imply higher degradation rates and
a higher likelihood of facing disruptions. As trains run on the track, the quality of
railway infrastructure gradually deteriorates over time. When this deterioration is
not under control, it can cause disastrous events, e.g., broken rails, train derailment,
etc [12]. Thus, railway infrastructure must be kept in acceptable condition under
all sorts of different scenarios of degradation mechanisms, considering the most
updated knowledge about the particular types of failures in all the components and
their consequences. Further, in highly used networks, disruption might affect many
passenger and freight transports. Thus it is crucial to not only prevent safety issues
but to keep the trust of users in the reliability of services so that rail users do not
shift to other transportation modes [13].

Generally, railway assets can be grouped into two main types: the infrastructures
and the rolling stock. Railway infrastructures include tracks, tunnels, bridges, and
catenary systems. Rolling stock refers to assets that can move on a railway network,
and examples are locomotives, passenger coaches, and freight cars. Common
problems affecting these assets can include failures with origin in the usage of
infrastructure components (such as rail defects), failures in the rolling stock (such
as door opening failures), and events due to exogenous factors such as third parties
(e.g., collisions with persons at stations and non-authorized/trespassing people on
railway properties) and weather conditions (such as flooding). The railway industry
has been dealing with those problems mostly by relying on traditional approaches.
Still, some examples from the industry about the use of artificial intelligence (AI)
in railway applications have been reported. Just to mention some, there are
monitoring systems of the infrastructures powered by Al to monitor the status of
bridges, tunnels, switches, and energy systems. Other reported examples of sensing
technologies enhanced by Al include line-scan sensors and cameras from passenger
trains, and fiber optic acoustic sensors to detect rail and wheel defects, trespassers,
and level crossings. Al-based algorithms relying on wayside train monitoring systems
have been developed for damage detection of pantographs, wheels, and brake
blocks. Furthermore, Al has also been exploited for robust rail logistic planning.
However, the use of Al in railway environments is not yet the standard. This
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indicates that further developments are needed before reaching a maturity level to
be ready to implement reliable solutions under a large variety of infrastructures.
While the current developments in the industry are interesting to analyze as they
give indications on the acceptance level of Al solutions, in this chapter, we focus on
the advancements in Al solutions reported in journal publications. Our target is to
provide an overview of developments and discuss gaps and future opportunities that
can support understanding the use of Al technologies in railway infrastructure.

Our review primarily focuses on publications dealing with four selected groups
of railway infrastructures as illustrated in Figure 2.1. The selected groups comprise
railway track (rails, welds, joints, switches, fastening systems, ballast, crossings,
and sleepers), railway catenary (catenary and pantograph), railway civil structures
(tunnels, bridges, viaducts, culverts), and railway substructures (subgrade, soil,
and embankments). The reason is that these infrastructures form the foundation
for safety, quality and reliability of services, and long-term costs. Moreover, by
proactively identifying and addressing degradation-related failures, risks can be
minimized and a safe railway systems can be ensured. Therefore, the focus is on
their failures arising from degradation and usage. Rolling stock, railway signaling,
and operations are excluded from our review. Interested readers in other railway
topics are referred to other recent reviews such as [14-17].

W%
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Civil structures

Figure 2.1: Hllustration of the four selected groups of railway infrastructures
considered in this work: track system, catenary system, civil structures,
and track substructures.

Railway infrastructure is a highly complex distributed parameter system. In other
words, the dynamic characteristics of the railway infrastructure change over time and
space. The changes over time refer mainly to the consequences due to its continuous
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usage, degradation processes, and human interventions such as maintenance. The
changes over space refer to the fact that governing dynamics are different per
location; for instance, railway tracks at bridges, tunnels, stations, and curves behave
differently than straight tracks. Although the railway infrastructure can also be seen
as a line structure with some components presenting a sort of local periodicity
(such as the sleeper spacing), the substructure and structure track parameters are
unique at each location. Additionally, the railway infrastructure is subject to various
sources of stochasticity that can affect its functionality, such as weather conditions.
Thus, the railway infrastructure is a dynamic, continuous, distributed, and stochastic
system that is fundamentally challenging, and from where the need to develop
new intelligent methods that can be tailored to practical solutions at a local level
naturally appears.

The optimal use of railway infrastructure requires holistic approaches to its
management that explicitly include the complex interlinks among infrastructure,
society, and the environment. Railway infrastructure research is inherently
multidisciplinary. Answering fundamental questions in this field requires not only
knowledge of its physical responses (structural, mechanical, etc.). We also need
to understand the limitations of selected mathematical modeling approaches, the
capabilities of state-of-the-art measurement technologies (vibration, images, laser,
etc.), the maintenance technology available, the behavior of stochastic variables
(weather, reliability, etc.), the inclusion of the human aspects regarding users and
workers, and the complex interlinks between railway governance and contracts, etc.
It appears that the problems associated with railway infrastructure are unique to
different places and times. This opens up many opportunities to develop a variety of
new intelligent solutions to capture the essential characteristics of the infrastructure
and to provide solutions that traditional methods cannot truly provide.

Health condition monitoring and maintenance play a vital role in ensuring the
safety, availability, and reliability of service simultaneously and in prolonging the
life span of the infrastructure. Early detection and preventive maintenance of
possible failures before they occur have shown great potential for cost savings [18,
19]. The continuous monitoring of critical components has not only increased
the level of safety but drastically increased the availability of the infrastructure,
as early warning systems allow to include the repairs or replacement of these
components during the routine maintenance slots. Therefore, the railway industry
and researchers from various countries have been developing integrated and robust
approaches to continuously monitor and maintain railway infrastructures [20-24].
With the developments in sensors and information technology, health conditions
in railway infrastructure get monitored continually by using sensors installed in
the rolling stock (e.g., rail and pantograph monitoring), in areas adjacent to the
track (e.g., switch engine monitoring), and crowd sensing (e.g., with mobile phones
that measure vibrations, temperature, pressure, etc.). Monitoring of railway systems
has the potential to support the management of their performance. Yet, how to
respond to the daily detection of faults poses another problem for inframanagers
due to limited resources, short closure times, lack of alternative routes, and the
standards that rely on time-based inspection. Additionally, databases constructed
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from continuous data monitoring become larger over time, which poses a challenge
to their transmission, storage, and analytics. For instance, when using onboard axle
box acceleration systems and laser Doppler vibrometers, an open challenge is how
to migrate such high-frequency sampling data onto any cloud and database due to
the limitation of the existing communication bandwidth. To reduce the amount
of data, data pre-processing and analytics on-premise can be an option. Further,
new standards are still required when dealing with multiple measurement sources
and new sensing technologies, e.g., satellite data. All in all, the railway industry
and academia have been working to address these challenging issues in which
further cooperation can unlock the best solutions and overcome these barriers to
the adoption of AL

Thus, advanced railway networks, in essence, require standardization and
governance for big data management and analytics to monitor the infrastructure
condition and control life cycle costs adequately [14, 25]. In the literature,
sophisticated data management for data storage and analytics has proven to
enable the development of better railway maintenance solutions. This is because
big data analytics enables asset managers to switch from reactive maintenance
towards predictive maintenance [26]. The literature on data analytics [27-29] shows
that artificial intelligence (Al) is increasingly popular in various domains as it
allows automation in decision support tools by linking data with decisions and
enabling asset-specific and whole system behavior analyses. This chapter focuses
on Al applications in railway infrastructure, including technologies, methods, and
models in Al that have been published concerning monitoring, diagnosis, prognosis,
detection, classification, and maintenance. The paper is structured as follows. In the
next section, we conduct a bibliographical analysis to identify the most used and
promising Al methodologies in the field of railway infrastructure. Then, we discuss
how these methods have been adapted to railway environments for tackling different
challenges. Given the dense literature, we describe a few selected characteristic
examples of these Al methods and railway applications. Finally, we discuss open
challenges and opportunities for the development of Al in the asset management of
railway infrastructures.

The chapter is structured as follows. In the next section, we conduct a
bibliographical analysis to identify the most used and promising Al methodologies
in the field of railway infrastructure. Then, we discuss how these methods have been
adapted to railway environments to tackle different challenges. Given the dense
literature, we describe a few selected characteristic examples of these Al methods
and railway applications. Finally, we discuss open challenges and opportunities for
the development of Al in the asset management of railway infrastructures.

2.2. BIBLIOGRAPHICAL ANALYSIS

Artificial intelligence (Al) refers to developing computer systems and machines that
can replicate or simulate human cognitive abilities. Al involves the creation of
algorithms and models that allow computer systems and machines to understand
natural language, to recognize patterns, to solve problems, to make decisions, and to
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adapt to new situations. Al has been deployed in railway applications for decades.
Some of the first works reported in the literature of railways that explicitly mention
Al in the eighties are in the fields of diesel-electric locomotives using expert systems
[30] and derailment analysis [31]. For neural networks, the first applications reported
in the early nineties were in traffic management [32] and rail defects using ultrasonic
images [33], among others. Nowadays, Al plays an essential role in analyzing
characteristics of complex railway measurements and in identifying relevant patterns
amongst an abundance of information. Many intelligent systems relying on Al
technologies have been developed and integrated into railway infrastructure to tackle
problems arising from its usage and natural degradation mechanisms. To select
these topics, a first broad bibliographical search was conducted from where the
more prominent fields and recent trends were selected, including neural networks,
metaheuristics, regression (supervised), probabilistic graphical models, fuzzy logic,
clustering (unsupervised learning), and transfer learning.

The bibliographical search is conducted over papers published within the context
of Al and railway infrastructure. We consider the track system, catenary-pantograph
system, civil structures, and substructure. Papers about rolling stock, railway
signaling, and operations are excluded from the analysis. The review aims at papers
in scientific journals considering both article and review types of documents. The
publication years considered are from 2010 to 2022. Only papers in English and the
engineering subject area are included (which will leave out papers at the interfaces
with other domains). Scopus is chosen as the citation database, and the precise
search terms are considered in conjunction with the generic words to capture most
documents of our interest. The search terms are incorporated into three groups as
presented in Table 2.1.

2.2.1. PAPER RETRIEVING PROCESS

The search is restricted to fields in the article title, abstract, and keywords. As shown
in Table 2.1, the wildcard “asterisk” is employed to include plurals and spelling
variants. Likewise, the double quote, “ ”, is used to search for vague phrases in
which symbols are ignored. To search for papers using Al methodologies in railway
infrastructure, the associated search terms from Group 1, Group 2, and Group 3 are
all joined with the “AND” operator. Once the primary search is done, the results are
manually verified to check whether some of the most well-known publications in
the different fields are included in their respective lists. Next, the potential search
results are assessed by considering criteria described in Table 2.2. Upon completing
the literature retrieval process, the papers are analyzed and grouped based on the
aims and approaches of this review. Table 2.3 summarises the search results of each
related area. We understand particular papers might have been excluded from the
search engine, or some unrelated papers that mention the keywords in the abstract
might fall in the selection. With our manual check, we found that the number of
these cases was minimal, and the trends are representative enough to draw some
general analysis.
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Table 2.1: Search terms for retrieving publications.

Group Related area

Identified search terms

1 Railway infrastructure
2 Railway applications
3 Al

rail* AND (catenary OR pantograph OR “rail" OR track*
OR ballast* OR weld* OR joint* OR switch* OR turnout*
OR fasten* OR “level crossing*" OR sleeper* OR tunnel*
OR bridge* OR viaduct* OR culvert* OR subgrade*

OR substructure OR soil OR embankment)

monitoring OR diagnos* OR prognos* OR detect*

OR predict* OR classif* OR maintenance

“computational intelligen*" OR “artificial intelligen*"

OR “big data" OR “machine learning" OR “deep learning"
OR “computer vision" OR probabilistic* OR bayesian

OR markov OR “belief network" OR “transfer learning"
OR “domain adaptation” OR clustering OR k-mean

OR regression OR “neural network" OR convolution*

OR encoder OR heuristic* OR fuzzy OR “particle swarm"
OR “genetic algorithm" OR evolution*

Table 2.2: Inclusion criteria.

Criterion Description

1 Only papers in track systems, catenary system,
civil structures, and substructures.

2 Only papers in monitoring and maintenance.

3 Only papers that focus on using Al

4 Papers in railway signalling, rolling stock,
and operations are excluded.

Table 2.3: Summary of the search results.

Group Related area No. of papers
1&2 Railway infrastructure 17,393
3 Al 4,284,974
1 &2 &3 Al in railway infrastructure 3,465

2.2.2. BIBLIOGRAPHICAL ANALYSIS

The quantitative analysis assisted in identifying 3,465 papers. These are illustrated
in Figure 2.2 in which an overview of research trends observed from the number
of publications by year from 2010 to 2022 is given. As expected, research with Al
applications in this field has gained popularity over the last twelve years. Between
2010 and 2017, the number of publications per year rose slightly from 95 papers
to 208 papers. The number of publications expanded significantly after 2017. This
made the overall number of publications after 2017 approximately two times greater
than that between 2010-2017. This increasing trend over the past five years indicated
the need and demand for Al technology developments in the railway infrastructure
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domain.

Next, the current progress of Al applications in rail infrastructure is overviewed
based on the AI methodologies elaborated in the previous section. Figure 2.3
illustrates the utilization trend of each AI methodology for railway infrastructures.
It can be seen that the four most commonly used methods in rail infrastructure
are neural networks, metaheuristics, PGM, and regression. The total amount of
publications using the neural network-based method was the biggest.

A breakdown of the relative utilization of the AI categories over the years is
also shown in Figure 2.3. It can be seen that the utilization trend of the neural
network-based method shot up in 2017. This made the neural network-based
method the most deployed in 2022. For other Al categories, their utilization trend
progressed similarly over the past decade. However, a slight drop was observed
in the research trend using fuzzy-based methods. Note that no publications about
railway infrastructure that employ transfer learning have been found before 2018. Its
upsurge of interest was noticed after 2018.

An overview of the Al research share for railway infrastructure systems is presented
in Figure 2.4. Al has been employed the most in track systems, whereas less
attention has been paid to catenary and substructure systems. To obtain insight into
the share of Al in railway infrastructure research, a comparison between the number
of publications using Al and without Al is exhibited in Figure 2.5 per selected railway
component. To retrieve the relevant Al papers per component, the associated search
terms from the selected railway component from Group 1, all railway applications
from Group 2, and all Al methodologies from Group 3, shown in Table 2.1, are all
joined with the “AND” operator. In this figure, the analysis of viaducts and culverts
is included with bridges, the analysis of substructures includes soil, and wheels are
included due to wheel-rail dynamics. Even though rails, wheels, and bridges are
the top three components that have received the highest attention in research, their
proportion of Al research papers is less than that of catenary and pantographs.
Substructures and embankments have received the least attention in research, and
their proportion of Al research is also lower than the other components. Further
discussions on the underlying reasons that prevent the use of Al methodologies for
these components will be given later.

Figure 2.6 presents the distribution of AI methodologies across the four groups of
railway infrastructure. Unlike the retrieval process of Figure 2.5, the search terms for
Figure 6 were more restricted to the selected Al methodology. Without including
general terms of Al, this resulted in the number difference between Figure 2.5 and
Figure 2.6 due to particular papers being excluded from the search engine. However,
the analysis is to draw some general trends. Based on this, some insightful findings
are drawn:

1. For all four groups of railway infrastructures, neural networks, meta-heuristics,
PGMs, and regressions are the most commonly used methodologies.

2. Among the four groups, neural networks dominate the catenary system with a
share of 55%. The track system follows with a 34% share, while civil structures
and substructures account for 27% and 22%, respectively. In contrast, transfer
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learning exhibits limited applicability, constituting only a 1% share in both the
track system and civil structures.

3. All the selected Al methodologies have been adopted to tackle issues in railway

track system and civil structures.

. Not all the selected Al methodologies have been adopted to tackle issues

in every component of the railway track system, catenary system, and
substructures.  There was no deployment of transfer learning in some
components of the track system, the catenary system, and substructures,
whereas transfer learning has been applied to civil structures. Railway welds
and joints are examples that researchers have not used transfer learning for
the track system.

. Even though regression was widely used amongst other railway components,

there was no publication (to the best of our knowledge) about those methods
in research for fasteners. Likewise, no research was conducted on fasteners
using fuzzy logic.

. There were limited numbers of AI methodologies applied to embankments. To

the best of our knowledge, Al research was conducted using only methodologies
from neural networks, metaheuristics, PGMs, and regression. There was no
deployment of clustering, fuzzy logic, or transfer learning for embankments.

In Figure 2.7, the recent development of the selected Al methodologies in 2023 is
presented across the four groups of railway infrastructure, and a summary is given
as follows:

1. Within the context of the track system, railway researchers tend to focus

more intently on rails, wheels, and ballasts, with comparatively less attention
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to welds and fastenings. Similar to the Al developments observed in the
preceding years, all the selected Al methodologies have been applied within
the group and the utilization of neural networks is more prevalent than those
of the other methodologies. Transfer learning is the least popular method, and
its applications remain absent in welds and joints in 2023.

2. Within the context of the catenary system, the utilization of transfer learning
remains unexplored. A number of research is distributed equally between
catenary and pantographs, using predominantly methods stemming from
neural networks. As of 2023, there exists no research employing fuzzy logic
within the catenary system.

3. The development trend of the selected Al methods in civil structures is similar
to the catenary system. Nonetheless, all the selected Al methodologies have
found their applications within civil structures. Notably, there exists research
employing transfer learning in the context of bridges, but such applications
have yet to extend to tunnels.

4. The recent trend of Al method development in substructures also shares
similarities with that of the catenary system. Notably, the utilization of neural
networks is less than metaheuristics in embankments, and employment of
transfer learning is still missing.

2.3. Al IN RAILWAY INFRASTRUCTURE

Beyond a safe railway operation, multiple aspects have to be taken into account by
the inframanager and railway operators. For instance, to minimize passenger and
freight delay, to maximize the capacity at which they can operate their networks, to
maximize the reliability of the infrastructure, and to do all of these at minimum
costs. Further, societal and environmental impacts also have to be addressed. To
achieve those targets, the infrastructure needs to be reliable. This can be achieved
by proper maintenance strategies that can be used for requirements of new designs
when tackling root cause problems or new maintenance procedures over a lifecycle
that also considers the interlinks between replacements and recycling processes. This
is the so-call prescriptive maintenance. It is a new maintenance concept emerging
in the railway industry along with the development of business globalization. Similar
to the other maintenance concepts, prescriptive maintenance comprises information
from the diagnosis and prognosis and maintenance decision-making. Its goal is
also to intelligently monitor, predict, and optimize the performance of railway
infrastructure. In prescriptive maintenance, component health information should
represent a trend, and a major focus is on analyzing the root cause of abnormal
behavior, not just the symptoms. However, the successful implementation of
prescriptive maintenance in railway infrastructure requires the development of new
Al solutions. This includes solutions from defect detection, root-cause identification,
classification, and prediction of degradation patterns to decision-making supporting
maintenance planning. Following is a narrative literature review to offer insights into
the use of Al methodologies in railway infrastructure.
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2.3.1. RAILWAYS AND NEURAL NETWORKS

Neural networks are non-linear models that can be used to capture the dynamics of
complex systems. Their architecture/model structure is based on layers, namely the
input layer, hidden layer, and output layer. Each layer comprises interconnected
processing units (called neurons) to uncover the underlying patterns or relationships
within a dataset. Neural networks can be constructed 1) with different topologies
in which connections between processing units can be designed differently, 2) with
different input signals in which input neurons can accept continuous or binary
values, 3) with different internal state dynamics, and 4) with different learning
processes to perform certain tasks. Contrary to multiple-layer neural networks,
typically considered as shallow networks, deep neural networks consist of many layers
commonly ranging from several tens to more than hundreds. They are designed to
automatically learn and extract representations from raw input data. Deep learning,
with its emphasis on deep architectures and hierarchical representation learning,
has been developed and gained much attention from researchers to leverage the
capabilities of neural networks for feature transformation and extraction in big data
environments. Examples of neural networks are multilayer perceptron, artificial
neural network, spiking neural network, graph neural network, radial basis function
network, residual neural network, convolution neural network, and recurrent neural
network. Interested readers in the field of neural networks are referred to review
papers such as [34, 35], and recent reviews such as [36-38].

Much of modern technology is based on big data environments with highly
inherent complex relationships between dependent and independent variables. In
railway infrastructure, both neural networks and deep neural networks have found
their applications for various railway infrastructure components, e.g., rails [39],
catenary [40, 41], tracks [42-46], fasteners [44, 47], tunnels [48], turnouts [49], and
bridges [50]. The existing applications of neural networks focus, among others, on
detection [39-44, 47, 50, 51], prediction [45, 46, 48, 49], and decision-making [39,
43]. In the railway industry, there have been various applications of neural networks
and deep learning to detect defects and anomalies and to diagnose and prognose of
railway infrastructures including rails, level crossings, switches, welds, catenary and
pantographs.

In the research topic of detection, the challenge is to achieve complete automation
of defect detection at the early stages [40-42, 50]. Algorithms based on deep
convolutional neural networks (DCNNs) are predominantly utilized in railway fault
inspection and detection [39-43, 47]. This is due to the capabilities of DCNNs and
the popularity of vision-based inspection. Dealing with vision-based data, intensive
research has been devoted to alleviating problems concerning image quality acquired
from inspection systems [40, 42, 44, 47, 51].

To deal with the visual complexity of defects and the similarity between the
component and background, Kang et al. [40] and Chen et al. [47] proposed
methodologies based on DCNNs. Many modules were considered in developing
the detection system, including component localization and defect detection. In
the component localization module, object detection algorithms employed were the
single shot multibox detector, You-Only-Look-Once, a region convolutional neural
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network (R-CNN), and fast R-CNN. Besides a fully convolutional Network used in
[47], a deep multitask neural network integrating both a deep material classifier
and a deep denoising autoencoder into its architecture was introduced in [40]
to accomplish simultaneous segmentation and defect detection. To obtain better
high-speed performance in detection, Zhang et al. [44] proposed a novel structured
light method based on motion image to assist a feed-forward neural network for an
inspection of moving objects.

For prediction, neural networks are mainly selected due to their universal
approximation capabilities for non-linear systems, self-adaptation, and the precision
of their predictions. Some of the algorithms utilized within the area of railway
prediction are neural networks trained with back-propagation [45], multi-layer
perceptrons [46, 48], multi-valued neural network [49], and several other algorithms.
Multilayer feedforward neural networks based on multi-valued neurons (MLMVN)
proposed by Fink et al. [49] were applied to predict reliability and degradation based
on time series. This research demonstrated that the MLMVN developed good results
for multi-step ahead predictions and did not show accumulating errors.

Jamshidi et al. [39] and Oukhellou et al. [43] presented a framework using a neural
network to detect faults. A data-fusion technique based on Bayesian probability
theory was considered afterward to combine the outputs from a neural network
in order to make a final decision on the detection and localization of a fault in
the system. The Dempster-Shafer theory was considered in [43] while Bayesian
inference was considered in [39]. The Dempster-Shafer theory provides a convenient
framework for handling imprecision and uncertainty in decision problems regarding
the presence and location of a fault.

2.3.2. RAILWAYS AND REGRESSION

Regression and Al typically build models based on a labeled set of data examples
and predict a certain data characteristic. For instance, the regression models can be
used to evaluate new data, which will tend to provide a prediction as the examples
provided in the database. A new data point with a high similarity measure to
a data point in the dataset indicates the best match to predict a certain output
[52]. Examples of regression algorithms are logistic regression, ridge regression,
linear regression, stepwise regression, ordinary least-square regression, multivariate
adaptive regression, principal component regression, partial least-square regression,
and project pursuit regression. For recent review papers on regression, readers are
referred to [53, 54]. Regression has been widely employed in rail infrastructure due
to its simplicity. Based on our review, regression has been used for association,
prediction, and assessment.

For association, examples of algorithms are Bayesian regression [55], logistic
regression [56], auto-associative kernel regression [57], locally weighted regression
[57], partial least squared regression [58], etc. Chen et al. [57] employed an
auto-associative kernel regression to explicit mapping relationships between the
remaining useful life and health indexes to provide a reliable and effective RUL
estimation. Sysyn et al. [58] employed principal component analysis and partial least
squares regression to show a significant statistical relationship between a change
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in the dynamic response of a railway crossing and the rolling surface degradation
during the life cycle of the crossing.

For prediction, Wang et al. [55] employed Bayesian regression, a generalized linear
regression method, for probabilistic assessment of crack-alike rail damage using
acoustic emission monitoring data. This was developed based on a nonparametric
approach in the context of Bayesian inference with the combined use of Bayesian
regression and Bayes factor. To forecast the degradation of track geometry,
Cardenas-Gallo et al. [56] proposed an ensemble classifier based on deterioration,
regression, and classification. In regression, a binary logistic regression model was
employed to predict how the future state of a particular defect is described by the
independent variables.

Regression-based methods have also found their applications in feature extraction
and selection in railway infrastructure. A multivariate regression analysis with feature
selection and extraction techniques contains many popular methods like stepwise
regression, ridge and lasso regression, principal components analysis [58], partial
least squares regression [58], proper orthogonal decomposition [59], and locally
weighted regression [57], etc. Azam et al. [59] developed a framework to detect
damage under operational conditions in railway truss bridges. Before using an ANN
to detect damage, the proper orthogonal decomposition was employed to categorize
responses to different load patterns of trains near a bridge in their work. In [58],
principal components analysis and partial least squares regression were two feature
extraction methods applied to determine the rolling surface degradation during the
life cycle of a crossing. To reduce the noise interference, the extracted features
and the combined health indicators are all smoothed using the locally weighted
regression in [57].

2.3.3. RAILWAYS AND METAHEURISTICS

Metaheuristics are strategies that guide the search for near-optimal solutions to
an optimization problem. Convergence to a global optimum is not guaranteed,
yet statistical analysis shows that these techniques can systematically get close
to a global optimum. Their performance is rather problem-specific, but their
fundamentals can be applied to a broader class of problems. Their search techniques
range from local-search to global-search-based procedures, such as population-based
approaches.  Examples of metaheuristic algorithms are differential evolution,
evolutionary computation, particle swarm optimization (PSO), genetic algorithms
(GA), and ant colony optimization. For recent review papers on metaheuristics,
readers are referred to [60-62].

In recent years, metaheuristics have been applied to various railway infrastructures,
e.g., welds [18], bridges [63-67], tracks [68, 69], rails [70-73], catenary and
pantograph [74, 75]. According to our survey, applications of metaheuristics lie
within model updating [63, 65-67, 69] and optimization in structural design [64,
71-74], maintenance [18, 44, 70, 76], and operations and control [75].

In structural health monitoring and safety assessments, the Finite Element
Method (FEM) is the standard tool for modeling the structural behavior of railway
infrastructures. =~ However, the FEM cannot accurately represent the dynamic
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characteristics of a structure due to a wide range of simplifying assumptions.
To achieve a more suitable finite element model of the structure [65, 67, 77],
calibration, a.k.a. model updating, on uncertain parameters in the model with new
measurements is typically needed. This aims at minimizing the relative difference
between analytical predictions and experimental measurements. GA and PSO are
two optimization techniques widely used for this purpose. GA is a search and
optimization technique inspired by the process of natural selection and genetics.
PSO, on the other hand, is inspired by the collective behavior of bird flocking or fish
schooling, where particles adjust their position based on their own experience and
the experience of their neighboring particles. With its simplicity and trustworthy
evaluations, GA has been used in [63, 65, 67] to enhance assessment performance.
In [63], Tran-Ngoc et al. employed GA to update the unknown model parameters
for a railway bridge. Costa et al. [67] proposed an iterative method based on GA to
minimize the differences between numerical and experimental modal responses of a
stone masonry arch railway bridge. Ribeiro et al. [65] described the finite element
model updating of a bowstring-arch railway bridge based on experimental modal
data using an iterative procedure with GA.

As GA usually takes more time to converge towards a global optimum, PSO has
been employed by researchers to find the global optima of the problem. Qin et al.
[66] applied the kriging model and PSO for the dynamic model updating of bridge
structures using the higher vibration modes under large-amplitude initial conditions.
Tran-Ngoc et al. [63] employed PSO to minimize the discrepancies between the
experimental and the numerical results. A comparison between applying PSO and GA
was also studied in their work. The results showed that the PSO algorithm provided
better accuracy, and it reduced the computational time compared to GA. For model
updating, Shen et al. [69] employed PSO and proposed a fusion strategy that
directly infers the stiffness of the rail pad and the ballast from measured frequency
response functions based on Gaussian process regression. It was demonstrated that
their fusion method outperformed the PSO method in terms of accuracy and time
efficiency.

Metaheuristics have also been applied for structural design optimization. GA
is the most widely used technique within this area based on our literature
search results. Sgambi et al. [64] proposed a method based on the combined
application of GA and FEM to design a complex long-span suspension bridge. In
[72], GA was used to optimize the rail profile on the Stockholm underground to
alleviate a problem with rolling contact fatigue without consequent issues with
wear and noise. Li et al. [73] proposed a hybrid method to design a challenging
railway alignment for topographically complex mountainous regions. The hybrid
approach uses a bidirectional distance transform and GA. Even though this hybrid
method improved the performance of GA and solved the challenging problems
concerning topographically complex mountainous regions, it was computationally
more expensive than the other existing methods. In addition, differential evolution is
another technique used in [74, 78]. In [74], differential evolution was used to define
the regressive function and to determine the optimum values for stable current
collection performance of the pantograph for a high-speed train. In [78], the railway
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track Health monitoring system employed a dynamic differential evolution algorithm
for identifying defects in railway tracks. In [79], Harris hawks optimization with
PSO-based mutation were used for predicting soil consolidation parameter. In [30],
the performance of the Grey Wolf optimization, PSO, and GA were compared for
the estimation of railway track parameters. Their results showed that the Grey Wolf
optimization performed the best in most of the used tested cases.

The information provided by the metaheuristic-based methodology can be used
to support the decision for maintenance. Typically, most optimization solutions
in railway infrastructures have focused on single-objective problems. To schedule
the maintenance crew for freight rail optimally, Gorman et al. [76] adopted three
techniques (mixed integer programming, constraint programming, and GA) and
compared them. The results showed that the mixed integer programming network
formulation showed the most potential for quickly finding quality solutions among
the techniques used. Zhang et al. [68] developed an enhanced GA approach
to deduce the optimal scheduling for the maintenance work of railway tracks in
the UK. In the enhanced GA, they employed various additional techniques, e.g.,
orthogonal experimental design to initialize the population, roulette selection to
generate a population for the next generation of solutions, and the differential
evolution operator to perform the variation process. Moreover, the selection was
executed on the pooled solutions from both the parent and the newly generated
offspring to guarantee that the best solution was not disregarded.

However, in railway maintenance optimization, focusing on a single objective
is not always valid. In the structural health monitoring context, sometimes two
or more failures often occur simultaneously. It is thus necessary to consider all
related goals as bi-or multi-objective functions to be optimized. These objectives
make it challenging to find a single solution that optimally satisfies all of them
simultaneously. Evolutionary Multiobjective Optimization (EMO) is a computational
optimization technique that aims to solve problems with multiple objectives.

In the maintenance context, reliability, life-cycle costs, and sometimes environ-
mental costs are to be considered. Such optimization concerns multiple objectives
and searches for solutions in the global Pareto-optimal region, where solutions
cannot be reallocated to make one objective better off without making at least one of
the others worse off. This is to achieve solutions that are separated from one another
to the maximum possible extent to form the trade-off surface in the objective
space [70]. Various multi-objective methods have been employed to obtain multiple
Pareto optimal solutions. Generally, two classes can be distinguished: genetic
algorithm-based [18, 70, 71, 75] and evolutionary algorithm-based approach [18]. In
[18, 70, 71, 75], multi-objective optimization was handled by a fast nondominated
sorting genetic algorithm (NSGA). In [75], NSGA2 was used to optimize both the
contact force and the consumption of the energy supplied by the control force for
the design process and control of the catenary-pantograph system. In [71], Choi
et al. adopted NSGA2 to minimize both the wear and fatigue of a wheel with
consideration for derailment, lateral force, vehicle overturning, and vertical force
generated during motion along a curved track. The research objectives of Caetano
[70] was to support an informed decision that considered not only the railway track
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life-cycle cost but also the track occupation. Nunez et al. [18] also performed
multi-objective optimization to identify the set of all Pareto optimal solutions that
formed the trade-off surface between performance and maintenance cost for rail
welds in a regional railway network. In their work, a multi-objective optimization
tool from Matlab was used, and the algorithms ARMOEA, NSGA2, SPEA2, GrEA,
RSEA, and VaEA, were compared. It was shown that SPEA demonstrated superiority
among other algorithms for their proposed maintenance decisions optimization
problem, at least when the number of integer decision variables was not extremely
large.

2.3.4. RAILWAYS AND PROBABILISTIC GRAPHICAL MODELS

A probabilistic graphical model (PGM) expresses relationships between variables
based on graphic architectures. It operates to provide an intuitive framework
for representing uncertainty using probability distributions [81]. PGMs can be
divided into two classes, i.e., Bayesian models and Markov models [82]. Examples
of algorithms within PGMs are Naive and non-Naive Bayesian, Bayesian (belief)
network, Hidden Markov model, Markov models, and Averaged one-dependence
estimator. For recent review papers on PGMs, readers are referred to [83, 84].

PGMs have been applied for various railway infrastructures, e.g., railway bridges
[85-87], catenary [88], turnouts [89, 90], rails [39], tracks [91]. They are considered
a powerful tool for anomaly quantification in the presence of uncertainty. There
has been a growing interest in applying PGMs to fault diagnosis and prognosis in
railway systems. In particular, they offer solutions to damage detection, predicting
the future conditions of railway infrastructures, identifying causality inference, and
providing a learning mechanism that can be adaptive over time.

For railway infrastructures, it happens that multiple failure events cannot be
identified and the probability of failure cannot be reached quantitatively by event
tree and fault tree analysis [90]. Many researchers have then proposed methods
based on the Bayesian network to identify the probability and the underlying root
cause of failures in railway infrastructures through various basic principles and
inference algorithms. Generally, the systematic Bayesian networks are developed
in three steps; 1) variable selection, 2) structural design of the Bayesian network,
and 3) parameter learning. Wang et al. [89] proposed a Bayesian network for
weather-related failure prediction in railway turnout. In the Bayesian network
development, they first selected variables that related to weather and failures. An
entropy minimization-based method was presented to discretize model variables in
order to reduce the input type and to capture better performance. In the second
step, they designed the structure of the Bayesian network by learning from real
data combined with expert experience. Lastly, in parameter learning, the Bayesian
network was transferred into a noisy independence of causal influence model and
took advantage of learning the conditional probabilities using a noisy MAX model
to overcome the parameter learning problem from small data sets. Monte Carlo
simulations were also employed to determine with greater accuracy the mean and
the confidence interval for weekly estimations of failures. Dindar et al. [90] employed
a Bayesian network to analyze the probability of train derailments caused by extreme
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weather patterns on railway turnouts. They followed the same steps as in [89]
but employed fuzzy probability using Buckley’s confidence interval-based method to
allow for gathering more information than just a single confidence interval or just a
point estimate in the last step of the Bayesian network development. As opposed
to [89, 90], Imran Rafiq et al. [85] proposed a dynamic Bayesian network to model
the variation in the bridge condition with time. In a dynamic Bayesian network, the
Bayesian model is connected to its successive ‘time slices’ through temporal links
to form a time-varying model, while the Bayesian network model discussed in [89,
90] serves as a ‘snapshot’ model to estimate the railway infrastructure condition
based on its constituent element conditions at a given point in time. Markov chain
principles were employed to quantify the transitional probabilities in [85].

PGMs are computationally efficient in updating the model when new information
regarding the condition state of any variable becomes available. Neves et al. [87]
proposed a PGM-based method to update an ANN model for damage detection of
railway bridges. In their work, a Gaussian process was employed to statistically
analyze the distribution of the errors using the predicted acceleration errors obtained
from the developed ANN. This was to define the detection threshold for the system,
allowing the determination of the probability of true and false detection events.
Finally, probability-based expected cost, as a function of the chosen threshold, was
proposed based on the theorem of Bayes to update the model. To infer some
stiffness properties of the ballast and subsoil from measurements carried out on
the railway bridge, considering uncertain seasonal effects, Gonzales et al. [86]
also employed Bayesian updating of a 3D finite element model with Markov-Chain
Monte Carlo sampling to determine posterior distributions of the uncertain stiffness
properties in the warm and cold states of the bridge.

Another typical application of PGMs is for analysis of the risk factors correlated
with failures in railway systems. Jamshidi et al. [39] proposed a failure risk
assessment framework based on the PGM for analyzing the rail surface defects called
squats. The proposed framework aimed to estimate the probability of rail failure
based on the growth and severity of rail squats. In their work, defect severity and
growth analysis were performed via an N-step ahead prediction model using data
measured by ultrasonic detection. To assess model uncertainty and robustness for
stochastic data behaviors, the Bayesian inference model was employed to estimate
the failure probability. Andrade et al. [91] used a hierarchical Bayesian model to
handle the spatial correlations of the deterioration rates and the initial qualities for
consecutive track sections. With a hierarchical Bayesian model, the predictive model
for the degradation of railway track geometry was improved based on the deviance
information criterion.

Furthermore, a Markov random field model was developed in [88] for image
segmentation in order to facilitate automatic fault detection for the loose strands
of the isoelectric line in the catenary system. This work employed the Markov
random field model to provide a link between the uncertainty description and prior
knowledge in their work. They showed that detection accuracy was improved with
the use of Markov random field.
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2.3.5. RAILWAYS AND FUZZY SYSTEMS

Fuzzy logic can deal with ambiguity. While traditional logic allows a proposition to
be either true or false, in fuzzy logic, a proposition has a degree of truth, ranging
from being completely true to completely false. A formulation based on fuzzy logic
is defined by multi-valued logic where the value of a variable can be any real
number between, but not limited to, 0 and 1. The applications of fuzzy logic-based
methodology often lie within solving a problem with uncertainties, vagueness, or
imprecision [81]. Examples of fuzzy logic methods are typel- type2-fuzzy logic,
Takagi-Sugeno fuzzy inference system, Mamdani fuzzy inference system, fuzzy
C-means, and adaptive network-based fuzzy inference system. Interested readers in
fuzzy logic are referred to review papers such as [92-95].

The applications of fuzzy logic-based methods often lie within the problem
of prediction and decision under uncertainties or vagueness. Examples of their
applications for railway infrastructures are detection, risk assessment, and decision
support [96-100].

For detection problems within a railway environment, false alarms are one of the
biggest issues that create financial losses in the railway industry [96]. False alarms
are generated when the system detects a non-existent obstacle or does not detect
an existent obstacle. Techniques utilized to alleviate the problem include, e.g., the
design of the sensor used, the conditions in which the sensor is working, and the
signal processing that is carried out by the system, Garcia et al. [96] employed a
Mamdani fuzzy controller to weigh the certainty of the existence of objects given
by a multisensory system to inform the monitoring system about the existence of
obstacles. Hussain et al. [99] also employed a fuzzy logic-based method to deal with
such uncertain circumstances in detecting adhesion and its changes under different
wheel-rail contact conditions.

As detection and diagnosis systems can facilitate the decision-making process,
much attention has been paid to improving the reliability of such systems by
using fuzzy logic-based methods. As numerous circumstances threaten safety and
operations in railway infrastructures, it is necessary to consider key performance
indicators (KPIs) affecting the health conditions of railway infrastructures over time.
Under the stochasticity of operational conditions, fuzzy logic-based methods have
been adopted to assess the dynamics of threats. Within this context, Jamshidi et
al. [97] and Li et al. [100] proposed a technique stemming from fuzzy logic. To
assess the dynamic of water inrush in the progressive process of tunnel construction,
Li et al. [100] employed a fuzzy evaluation method to quantitatively analyze the
risk level of factors concerning both geological condition and construction situation.
Jamshidi et al. [97] presented a fuzzy Takagi-Sugeno interval model to predict squat
growth over time under different possible scenarios and under different maintenance
decisions. Moreover, a Mamdani fuzzy expert system was used to calculate a single
KPI to conclude the dynamics of the deterioration of railway tracks.

In addition to railway safety and operations, there are increasing requirements
concerning riding comfort. As railway tracks deteriorate over time and maintenance
becomes expensive, Metin et al. [98] presented a fuzzy logic controller to ensure
that the vibration responses are within permissible limits. In their work, the
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performance of the fuzzy logic controller was compared with the conventional
proportional integral derivative controller. The results showed that the fuzzy
logic controller demonstrated superiority in active vibration control and increased
passenger comfort. Other notable Al techniques applied in catenary systems using
fuzzy logic are [101-105].

2.3.6. RAILWAYS AND CLUSTERING

Clustering is a technique for partitioning a set of objects into different data groups.
The procedure is done so that objects in the same cluster are more similar than those
in other clusters. Further, different clusters are preferred to contain rather different
samples. Thus, clustering methods require selecting an appropriate measure and
an objective function that minimizes the within-cluster variation and maximizes the
between-cluster variation. Different measures result in different clusters. Examples of
clustering algorithms are k-means, k-nearest neighbor, self-organizing maps, mixture
of Gaussian models, and hierarchical clustering. Interested readers in the field of
clustering are referred to review papers such as [106-108].

Various applications in the area of railway monitoring and maintenance have
been found using clustering methodologies. For monitoring, clustering can be
employed to detect and assess damage in railway infrastructures. Cardoso et al.
[109] proposed a clustering technique to uncover hidden patterns in monitoring
data. A hierarchical clustering algorithm was applied to modal parameters and
used to perform automated modal identification in railway bridges. Unlike [109],
Cury et al. [110] proposed a novel technique based on symbolic data analysis for
providing a clustering of different structural states in which the number of states is
not known a priori and has to be determined. The symbolic clustering methods
considered in [110] included hierarchy-divisive methods, dynamic clustering, and
hierarchy-agglomerative schemes. The results highlighted the large capability of the
symbolic data analysis methods to provide clusters of different structural behaviors in
railway bridges. Both hierarchy-divisive and dynamic cloud methods demonstrated
better results compared to those obtained by using the hierarchy-agglomerative
method.

Clustering-based methodologies have been applied to support decisions for the
optimal planning of maintenance of railway infrastructures. Within this context,
Cirovic et al. [111], Su et al [19], and Peng and Ouyang [112] presented a clustering
technique to determine groups of maintenance jobs and groups of railway assets
that can be treated within either the allocated time slots or budget allowance. In
[111], Cirovic et al. proposed a technique based on fuzzy clustering to define the
optimal strategy which supports the choice of level crossings for installing safety
equipment in Serbian railway. These criteria were used to form a set of data for
training the adaptive neuro-fuzzy network. In [19], Su et al. solved a mixed integer
linear programming problem to obtain the resulting optimal clusters of railway
components that were treated within the allocated maintenance time slots. This
was to determine the trade-off between traffic disruption and the total setup cost
associated with each maintenance slot while guaranteeing that the total duration
of the resulting maintenance slots was no less than the estimated maintenance
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time. In [112], E Peng and Y. Ouyang also employed a mixed-integer mathematical
programming model in the form of a vehicle routing problem with side constraints
to classify track maintenance jobs into projects. The algorithm framework of job
clustering considered in their work included a constructive greedy heuristic, a local
search heuristic, and a feasibility heuristic.

2.3.7. RAILWAYS AND TRANSFER LEARNING

Transfer learning-based methods are developed to tackle problems concerning
limited labeled data in supervised learning. The knowledge from one or multiple
tasks (the source domain) is expected to transfer to other related but different ones
(the target domain). The transfer scenarios can be divided into two categories, i.e.,
transfer in the identical machine and transfer across different machines [82]. The
latter is also known as domain adaptation, where differences between feature spaces
and label spaces are allowed, e.g., transferring knowledge from railway track to
railway catenary. For recent review papers on transfer learning, readers are referred
to [113, 114].

The existing supervised Al learning algorithms manifest a relatively advanced
performance in different railway engineering applications. Their fruitful performance
relies extensively on sufficient training data and high-dimensional balanced datasets
[40, 42, 43]. Otherwise, imbalance and insufficient labeled datasets can impair the
ability of, e.g., the classification algorithms. For railway engineering, the amount of
monitoring data collected from railway infrastructures, especially defective samples,
cannot generally be collected in a short time to obtain balanced datasets for network
training under different operating conditions [115-118]. To alleviate this issue,
increasing attention has been paid to developing algorithms based on the transfer
learning approach. It refers to the concept of transferring the knowledge of the
pre-trained model to other related but different ones. The transfer scenarios can be
developed using other AI methodologies such as CNN [115, 116], deep learning [117,
118], and AdaBoost [115, 119].

Zhong et al. [115] and Chen et al [116] proposed a transfer learning approach
based on CNN. In [116], a multi-layer CNN was employed in which the low-level
layers of a model were pre-trained on large audio data for feature extraction. Next,
the acoustic-specific features were transferred to train the high-level layers by using
acoustic emission monitoring data for condition assessment of the rail structure. To
overcome the problem of a limited amount of defective data, Zhong et al. [115]
proposed an improved algorithm based on the Faster R-CNN algorithm to build a
transfer learning model in defect localization.

Based on deep learning, Zhong et al. [115] also introduced an algorithm based
on a generative adversarial network to construct defect detection models by using
only normal samples. Yao et al. [117] employed a generative adversarial network to
generate additional fault samples in order to balance and train the data sets. Residual
Network was developed for fault diagnosis and classification of track fasteners, and
the extended data set was used for group training and validation. With generative
adversarial network and residual network, the results showed that the fault detection
accuracy of rail fasteners did not impair when using a serious shortage of fault
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data. In [118], Zhuang et al. employed firstly extended Haar-like features to extract
effective features of cracks on railway ties and fasteners. Secondly, a cascading
classifier ensemble was developed by integrating individual cascading classifiers built
via the LogitBoost algorithm with a bootstrap aggregation. However, the framework
proposed in [118] could not identify patterns that were not included in the training
dataset.

Among transfer learning algorithms, the Adaboost algorithm is one of the most
widely used tools to overcome the problem of insufficient training data. The core
idea of AdaBoost is to iteratively train the weak learning algorithm, whose predictive
performance is lower, for the same data set and integrate them into a strong learning
algorithm, whose predictive performance is higher. Lin et al. [119] employed
AdaBoost to relate catenary fault frequency with meteorological conditions. In their
work, only a small number of training samples were classified correctly by each weak
classifier chosen from the single decision tree. The AdaBoost algorithm was adopted
to adjust the weights of misclassified samples and weak classifiers and train multiple
weak classifiers. Finally, the weak classifiers were combined to construct a strong
classifier for the final prediction.

Transfer learning can be applied to a pre-trained model of any type and
transfer learning alone particularly deals with the issue when the amount of
available data for the target task is limited. However, the combination of transfer
learning with other neural network architectures (such as recurrent neural networks,
and convolutional neural networks) can lead to hybrid models that leverage the
strengths of different approaches, providing more accurate solutions for railway
problems. Furthermore, when multiple neural networks are trained independently,
the knowledge of the pre-trained models can be aggregated by using transfer
learning in an ensemble setting and can be adapted to different railway networks or
different environments. The combination of transfer learning with neural networks
can potentially lead to improved performance, generalization, and robustness. In
[120], the concept of transfer learning was applied to deep convolutional neural
networks for multi-category damage image classification recognition of high-speed
rail reinforced concrete bridges. The results showed that the approach reduced the
training time of the neural network models and led to lower generalization errors.
In [121], deep transfer learning and graph neural networks were proposed for the
health assessment of high-speed rail suspension systems. Using transfer learning
in an ensemble setting to combine transferable features in the source domain, the
shortage problem of labeled data in the real operating condition was alleviated as
the initial hyper-parameters of the model in the target domain were obtained from
the pre-train model in the source domain.

2.3.8. DISCUSSION

Table 2.4 presents the potentials of the selected Al methodologies for applications in
railway infrastructure and their limitations. Based on these, some insightful findings
are:

* Neural networks require further adaptations to describe real-world physical
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interpretation due to their black-box characteristic. Having a black box model
that is not guaranteed to perform under new unexpected conditions makes
the users and rail operators concerned about the use of the model predictions.
Based on the review in this section, it is observed that several works have
applied neural networks in combination with regression [48, 50] and other
soft-computing techniques, e.g., support vector machine [51], decision tree
[43], and fuzzy [39] to provide more explainability about the correlation
between model behaviors and the physical problem.

e It was observed that researchers have developed hybrid models combining
two (or more) Al techniques to perform a specific task. Examples of combing
Al methods are 1) meta-heuristics-based method with neural network-based
method [73, 87], 2) PGM-based method with neural network-based method
[39, 43], 3) regression-based method with PGM-based methods [55, 56], etc.
The use of a combination of methods has the potential to improve overall
performance when these methods are complementary to each other. For
instance, global optimization approaches can potentially find parameters of
neural networks that better fit an objective function. However, when different
methods solve a similar task, a major emphasis on the analysis of the
consensus between these methods is needed.

* Deep learning concerns multiple layers of computational units in which the
actual optimization of the whole structure is a highly non-convex problem.
They contain a huge amount of parameters and, in some cases, more than
millions of parameters which results in long computation time to find a
near-optimal solution. Moreover, large labeled datasets, preferably balanced,
are required to train deep learning models. Despite these shortcomings,
interest in these methods has increased in view of the rather impressive results
from other fields. To alleviate the issues and make its advantages more
pronounced, transfer learning is employed to help retrain the trained deep
learning models to perform a similar task. This not only reduces computational
effort but also the amount of training data for deep learning.

°* PGMs and fuzzy logic have received a growing interest for applications in
fault prognosis due to their powerful capability to deal with the presence
of vagueness, uncertainty and solving inference problems [39, 85, 89-91].
However, there are several sources of uncertainty, e.g., measurement data,
model structure and parameters, and different data behavior from future
operational conditions. These uncertainties propagate over time and the
existing models have to be updated when new information regarding the
health condition of any variable becomes available. Most existing models are
computationally inefficient in updating. Based on our review, however, limited
work has been found to address such a problem for railway infrastructure.
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2.4. CHALLENGES FROM RAILWAY INFRASTRUCTURE

State-of-the-art intelligent solutions show good generalization capabilities to solve
problems from different fields. Some particular challenges from railway infrastructures
prevent direct exploitation of the existing state-of-the-art methodologies, as will be
highlighted in a sequel. Consequently, their successful application in the field of
railway infrastructure requires designing and developing methodologies to capture
the particular and challenging characteristics of railway infrastructure.

2.4.1. INSUFFICIENT AND IMBALANCED DATA FOR MODEL TRAINING

For railway infrastructure, conventional supervised methods, particularly deep
learning, require a large amount of labeled data available for learning to guarantee
their performance. However, collecting accurate and verified labeled samples of
high-quality faulty and healthy states from thousands of km of rail lines is extremely
difficult, costly, and time-consuming. Regarding class information for defects, often
few labeled data are available due to the lack of historical data with sufficient
quality and localization. Likewise, healthy data are difficult to label because of
their variants of behavior at different locations; in particular, rails are affected
by local track dynamics and different stochastic variables. Sometimes, there is
no standard/threshold to evaluate the level of health conditions. For instance,
an embankment is one of the areas in railway infrastructure that require further
study. Furthermore, in some railway infrastructure, obtaining a wide variety of
class information for defects is extremely difficult. Therefore, data from healthy
infrastructure are abundant, whereas defective ones are few. As a result, the
data used for training Al models are seriously imbalanced, and labeled data are
insufficient.

2.4.2. TRAINING AI MODELS WITH COMPLEX RAILWAY DATA

Railway infrastructures are complex and highly nonlinear. They involve different
assets and can be affected by various anomalies. Detecting failures and maintaining
the structure requires multiple measurement systems. Most of the information about
the condition of the infrastructure is collected with inspection systems. Typical
systems in the industry include eddy current, ultra-sonic, vibration measurements
between wheel and rail using accelerometers, video images and track geometry
recording vehicles [8, 9]. Depending on track tonnage, the number of trains
passing by the track, and maximum line speed, data measurement frequencies
and data processing requirements can differ substantially. = Thus, selecting a
proper Al methodology must account for the nature of the railway components
and their inherent dynamics. There is a significant interdependency between
railway track-related assets, not only in functionality but also in using anomaly
detection algorithms or maintenance planning. For example, a track video scan
[122-125] allows the asset manager to capture the health condition of different
track components, e.g., fasteners, switches, and sleepers [126-131]. However, video
image-based measurements can only capture anomalies in the track structure when
they are visible. This means that early-stage anomalies in rail (invisible ones) or
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vertical irregularities in the track cannot be detected effectively using only video
cameras. Using together images and other sources of data, such as axle box
acceleration (ABA) measurements, track geometry, or eddy current and ultrasonics,
can provide a more integrated assessment of the track condition. ABA measurements
can detect light squats [132, 133], which occur at frequency bands up to 2.5 kHz
with train speeds of about 100 kilometers per hour [134]. New technologies, such as
a Laser Doppler Vibrometer sensor, can also provide continuous monitoring along a
railway line, and they can measure with frequency sampling that goes higher than
the order of MHz. Thus, continuous monitoring of hundreds of kilometers with the
latest technologies creates a better overview of the current track condition, but at the
expense of creating a huge volume of data and a very high dimensionally problem
from which key features are to be extracted to represent the data effectively. In
this case, developing ultra-fast Al solutions, also considering edge computing [135],
could support addressing these challenges.

In addition to the characteristics of the railway infrastructure, the most suitable
Al method can be determined based on the nature of the measurement data.
Measuring data can vary from an unorganized and semi-organized data structure
to a fully organized structure. Measured data collected by human operators, e.g.,
track information and historical operational activities, usually are fully structured
or semi-structured. On the contrary, advanced anomaly detection systems contain
a massive sampling pool and high complexity as they are high-dimensional and
nonlinear that require additional methodologies for preprocessing, including noise
removal, feature extraction, and selection.

Employing multiple systems to monitor railway infrastructure performance
indicates the need to deal with heterogeneous data. The information about defects
obtained by a single source can easily show trends; however, it is limited by the
nature of the measurement itself. When different data types are exploited to extract
information and to provide additional information about the same defect, we have
the risk that the data sources are not containing complementary information for
data analytics. That is when the physical understanding of the advantages and
limitations of the different monitoring systems is not included. Different systems
might provide different detection reports that appear to contradict each other.
Thus, new AI solutions to deal with heterogeneous data can also support the
development of holistic approaches to integrate railway information and make the
decision-support models more robust. In addition to the integration of information,
data alignment from different measurement trains on a track is another challenge. A
robust optimization model is needed to correct positional errors of inspection data
from heterogeneous measurements [136].

2.4.3. TRAINING Al MODELS FOR MAINTENANCE PURPOSES

Railway infrastructures are dynamic, stochastic, and distributed parameter systems
that change critical parameters over different locations and times. Moreover, their
failures have complex characteristics that result from multiple incidents involving
different causalities and uncertainties affecting their functionality, e.g., operational
conditions, maintenance activities, weather conditions, traffic loads, the geometry of
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the infrastructure, and the properties of construction materials [137, 138]. Therefore,
it is crucial to have an accurate remaining useful life and degradation pattern
estimation. An early prediction may result in over-maintenance, and a late prediction
could lead to catastrophic failures. Consequently, the existing degradation models
for rails have to be updated when new information regarding the health condition of
any variable becomes available. However, some models may not be computationally
efficient in updating. New models and techniques are needed to alleviate the issue.

To estimate remaining useful life or degradation patterns, many existing models
rely on handcrafted features representing degradation processes caused by those
factors. The feature selection/extraction often requires domain knowledge and
expertise about common causes leading to system degradation. For instance, the
location or type of rail surface defects may cause different degradation patterns. The
dependency on a large variability of datasets and experimental tests in large railway
infrastructures presents a challenge for training in prognostic models. Research in
certain applications uses data from run-to-failure tests, from which the labels can
be derived [139]. For railway applications, it is impossible to conduct such tests. To
accurately determine the associated remaining useful life and degradation pattern
at every time step for railway infrastructure, the threshold of its failure must be
defined. Therefore, some experiential knowledge is needed. For instance, a rail is
deemed reliable when the size of rail surface defects achieves a threshold of a certain
length [39]. As such, condition-based maintenance strategies have to systematically
improve to capture new situations and to perform better under new conditions, e.g.,
when facing new challenges from more intensive use of the infrastructure, climate
change, and harsh environmental conditions.

Railway infrastructure systems are also large-scale due to various reasons. Firstly,
railway infrastructure often involves many basic components distributed over various
kilometers of railway tracks. Further, a railway line can cover a long distance
(e.g., over 250 km) with defects that have a size in the order of centimeters
(e.g., squats) which their locations are distributed over the whole infrastructure
[19]. This causes the maintenance optimization problem to become large and
intractable. Obtaining an exact resolution of each plan along the prediction horizon
is time-consuming and leads to the large-scale optimization problem [140]. Secondly,
maintenance operations over the whole prediction horizon might change when
performing maintenance optimization based on a rolling horizon under real-life
conditions. That is, long-term maintenance plans might continuously change
according to new predictions and new operation plans. Consequently, the flexibility
in the maintenance contracts to include adaptive plans and methods for learning
from these plans can be supported with new Al methodologies. Lastly, and most
importantly, incorporating the inherent characteristics of the railway system gives
rise to a complex nonlinear model that becomes too large and complex to solve
efficiently and that leads to a high computational burden [141]. For these, the
amount of information needed to guarantee the proper operation and the high
computational burden of solving problems for such complex and large-scale systems
present challenges in research concerning Al. The difficulties include stack overflow
and long computation time, and a very challenging-to-obtain set of optimal solutions
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due to the irregular shape of the resulting Pareto fronts.

2.4.4. BARRIERS FOR Al DEPLOYMENTS IN THE RAILWAY INDUSTRY

Many stakeholders are interrelated within the railway industry. However, they are
conservative and usually resist the changes introduced by the digitalization of railway
infrastructure, as these can affect the way they worked before. Likewise, the lack
of understanding of Al used and the reliability of the results are barriers to the
adoption of new methods, especially with regard to safety requirements. Without
effective cybersecurity, rail operators cannot be assured of securing their data and
information. Consequently, business resources cannot be consolidated, and data are
scarce with limited access.

Other aspects that prevent the successful implementation of Al in railway
infrastructures also include a lack of standards, traceability, and interpretability of
results using complex Al methodologies, particularly neural networks. Results and
their implications for the safety of railway infrastructure provided by Al are often
difficult to understand. As the infrastructure manager is responsible for his assets
and has to ensure the required safe operation, the physical explanation of the
problem and the causality are crucial for preventing failures. Failing to provide
such information prevents the exploitation of AI methodologies for decision support
systems.

Even though there are more applications of Al methodologies in the railway
industry, some projects did not have a continuation. The reasons are, firstly and
importantly, lack of budget. Secondly, digitalization is not complete and accurate.
The railway industry tends to be conservative, and for some inframanagers, the
documentation is mainly paper-based. Dynamical models used are primarily in
2D and digital maps of the asset positions are partly not available. This creates a
problem of allocating failures when the location of railway infrastructures is not
accurate and precise. Therefore, Al developments are needed to check and improve
localization accuracy in order to obtain reliable data in the future. Lastly, system
integration requires a proper understanding of the system hazards and associated
risks. Proper integration of a new system into the current operating system requires
to be done in a smooth way and without interrupting the service. Moreover, how to
implement Al in real operations is another challenge.

2.5. RESEARCH DIRECTIONS AND FUTURE OPPORTUNITIES

The challenges discussed previously create a need to develop new intelligent
methods based on AI that should be tailored to the particularities of railway
infrastructures. This section presents research directions and future opportunities for
railway infrastructure. As the use of Al is not yet standardized and their solutions
are mostly not traceable and interpretable, implementing Al solutions only serves as
a decision-support for railway infrastructure managers at the moment. Humans are
still required to make final decisions. We have not yet reached the point of having
fully automated AI capable of making final decisions.




40 2. ARTIFICIAL INTELLIGENCE IN RAILWAY INFRASTRUCTURE

Based on our literature review and our view, research directions and future
opportunities for railway infrastructure given in Subsections 2.5.1 - 2.5.7 are
conceivable as there exist current developments in academia. However, further
validations in different environments/network lines and standardizations are still
needed before reaching a maturity level to be ready for real implementation in the
railway industry.

It is noteworthy that some research directions are relatively difficult to achieve
in the upcoming years within the context of railway infrastructure. Given the
rapid pace of technological development and advancements, making such conclusive
judgments about the feasibility and ease of potential research directions in the
near future for railway infrastructures is complex and subjective. Therefore, the
discussion only serves as an informative and advantageous resource for the readers.
Drawing from our perspective, these are transformers (see Section 2.5.8), metaverse
(see Section 2.5.9), and emerging technologies such as blockchain technology (see
Section 2.5.10). This is because their adoption and implementation are hindered by
the unique challenges and characteristics of the railway infrastructures. For instance,
many railway infrastructures and systems have been in place for decades. They may
have been designed and built using outdated technologies and standards. Introducing
new technologies often requires retrofitting or replacing existing infrastructure, which
can be expensive, time-consuming, and disruptive. Moreover, integrating new
technologies like transformers or blockchain requires careful consideration of how
these technologies will interact with existing systems and processes. A skilled
workforce with expertise is also required for implementing and maintaining advanced
technologies like transformers, metaverse-related solutions, and blockchain where
railway organizations may lack the necessary expertise and resources.

2.5.1. HYBRID MODELS

Hybrid models are promising and have the potential to offer more competitive Al
and machine learning models with high performance. Hybrid models refer to a
combination of multiple methods or techniques to solve a particular problem. They
are developed not only to improve overall performance via their advantages but
also to alleviate the limitations of the methods. The models can be constituted
by combining 1) different Al methods, 2) human experts and Al methods, 3)
physical-based methods or other traditional methods and AI methods, or 4) a
mixture of Al, human experts, and physical-based models. Tailoring hybrid models to
railway infrastructure applications requires in-depth knowledge of the particularities
of the problem and a particular focus on the interfaces between the methods. For
example, the performance of probabilistic models in prognosis can be impaired by
the accumulating error from using results obtained from diagnosis models based
on deep learning. Then, a combination of Al-based models with human-expert or
physical-based knowledge is required. In catenary systems, it was mentioned in [142]
that, despite the fruitful outcomes of using Al for catenary systems, the growing
dependency on data has led to underutilized knowledge of physics accumulated in
the past decades. However, the use of Al for catenary systems seldom exploits
the physical knowledge to improve the resulting performances. It has been
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demonstrated that PGMs such as Bayesian networks can consider the underlying
physics in inspection data using tailored features [143]. Likewise, hybrid multi-scale
models can also capture degradation mechanisms for various components involved
in the maintenance process while considering some parameters and dynamics
determined by data-based approaches. As the methods explicitly include the
physical/mechanical characteristics of the infrastructure, the link between data and
the physical infrastructure system can be explainable. This helps to improve the
interpretability of Al methodologies, particularly neural networks. Therefore, it
can be foreseen that Al applications will be even more powerful when combined
with knowledge from other approaches. Hybrid models will allow researchers in
railway engineering to enhance model effectiveness and get better solutions for
railway problems. Moreover, combining Al-based models with human-expert or
physical-based knowledge is expected to increase exploitation and reduce resistance
to the use of Al in the railway industry.

2.5.2. LEARNING METHODOLOGIES

Learning methodologies are crucial to improving performance based on current and
previous experiences systematically. AI methods have been used to learn from
current data and performance. However, learning can be continuous based on
previous experiences and mistakes. For example, defects that were not detected
on time or maintenance decisions that were not correctly prioritized. Learning
mechanisms (such as deep reinforcement learning) allow us to systematically include
ways to improve our perception and decision mechanism continuously. Learning
methodologies provide practical answers to how railway infrastructures 1) can
perceive their condition, 2) can make optimal and timely decisions, and 3) can keep
learning to improve their performance over time systematically. For these, three
promising approaches to learning methodologies are highlighted as follows:

DEEP LEARNING

Deep learning has shown the capability to extract highly complex abstractions from
different data types and achieved great success in many applications. It is foreseen
that deep learning has opened up an opportunity to step beyond the capabilities
of a human operator. Deep learning provides a promising direction for big data
analytics for assessment and prediction using a tremendous amount of railway
data. With the help of deep learning, inspections of railway infrastructures can
be fully automated, which fully or partially replaces traditional manual testing and
visual inspections. Moreover, computational intelligence methods for expert system
design can support railway infrastructure assessment in real time. For instance, in
[144], deep learning relying on image-based data that can capture the vibrations of
pantograph-catenary interactions and the health conditions of catenary-supporting
structures was employed to simultaneously monitor the health condition of catenary
components, including contact wires, messenger wires, droppers, and up to 12 types
of supporting components. In [40, 41, 47, 88, 145-154], deep learning was also
employed for defect detection and achieved satisfactory results in imaging data.
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Likewise, recent deep learning-based approaches have significantly demonstrated
their capability to fuse information for multi-sensor condition data, including the
fusion of static, moving, and crowd-based sensing technologies [43, 104]. Various
fusion techniques using deep learning algorithms have been proven to assist in
learning features from multiple signal sources simultaneously and effectively [57].
However, choosing data representations of fused data plays a fundamental role in
designing data fusion algorithms. As a result, how to integrate information from
multiple data sources and then make a more robust deep learning algorithm is
another challenging task for railway infrastructure. In addition to data-based deep
learning approaches, physics-informed neural networks [155, 156] have recently
emerged as another promising approach for solving problems based on mathematical
physics models of railway infrastructures with a small amount of data.

TRANSFER LEARNING

Within the concept of transfer learning, we can benefit from existing pre-trained
models in various ways. Firstly, statistically similar datasets of identical structures
can be leveraged to replace the requirement of augmenting a training dataset,
especially when some of the actual measurement data are difficult to obtain. In
[157], it showed that transfer learning allows the CNN model trained in one domain
to the use in other domains where training data are lacking. In [116], transfer
learning was employed for evaluating structural conditions of rail in a progressive
manner by using acoustic emission monitoring data and knowledge transferred from
an acoustic-related database. Secondly, transfer learning has shown its potential
to relax the prerequisite for training a deep learning architecture containing up to
millions of model parameters. This allows computation time to be reduced, and
this facilitates online monitoring of railway infrastructure systems. Thirdly, transfer
learning can be used to adapt to work under new conditions where the models have
not yet been tested/trained. Due to the impossibility of acquiring training data that
represent all operating conditions and fault types, transfer learning is beneficial to
make use of information between units or between models. In [158-160], transfer
learning was shown to be able to train models that are robust to newly encountered
conditions. This resulted in an improvement in the model performance on the target
task. Therefore, transfer learning should be further explored in the field of railway
infrastructure, where we aim to apply knowledge from a different railway network
to the monitoring and decision-making processes in another network. With transfer
learning, intelligent sensing and decision support systems can improve over time.

DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) refers to a broad group of learning techniques
that emulate how living beings learn by trying actions and learning from successes
and failures [161]. Its learning process is experience-driven, and its efficiency is
enhanced by trial and error to optimize the cumulative reward. In DRL, labeled
data are not required, which is beneficial when mainly unlabeled data are available.
DRL has shown the potential to handle the dynamic and complex nature of physical
problems where solutions to new problems can be adjusted and utilize experience
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and knowledge learned from solving old problems. For instance, an algorithm
developed for track component A can be applied to track component B even
though they might be at the same usage level, track tonnage, or environmental
situation. In [162], a DRL approach was developed to refine the localization of
fasteners in the catenary support to improve an automatic looseness detection
method based on deep learning. With state-of-the-art methods, the learning process
can be fast and efficient. DRL is also capable of modeling complex stochastic
environments and handling relatively high-dimensional problems. It can be used
to optimize maintenance and renewal planning by considering cost-effectiveness
and risk reduction over a planning horizon and taking into account predictive
and condition-based maintenance tasks, as well as time, resource, and engineering
constraints [163]. However, DRL has not experienced many key developments
compared to deep learning. Research on its application to solve problems related to
renewal and maintenance planning for railway infrastructure is still limited. As DRL
is relatively new to railway infrastructure, its adaptation to solve railway problems
has many open challenges, e.g.,, a major difficulty is data recorded at different
monitoring times that is required to train this sort of network. In addition to
data-based deep learning approaches, recent advances in physics-informed neural
networks have emerged as another promising approach for solving problems based
on mathematical physics models of railway infrastructures with a small amount of
data.

All in all, by including perception, decision, and learning, the railway infrastructures
can be emulated as a living being from where each methodology will contribute to
creating its digital brain. However, learning methodologies for railway infrastructures
have still been relatively limited.

METAHEURISTICS

Heuristic optimization is a promising approach for decision-making in railway
infrastructure systems. For example, one typical characteristic of maintenance
strategies in railways (such as grinding and tamping) is that relaxing strong
assumptions of simple models leads to the formulation of more realistic and
complex problem formulations. This may create a need for nonlinear relationships
between variables which gives rise to a mixed-integer nonlinear optimization
problem, especially when discrete decisions are present in a problem. To
deal with challenges in maintaining large-scale railway infrastructures, hierarchical
and distributed optimization-based methods can be considered. A significant
challenge is to speed up the solution of the optimization problems by partitioning
and coordination between reduced-size subproblems. Most decomposition-based
approaches work by decomposing the large-scale multi-objective optimization
problem into multiple single-objective subproblems based on a set of weight
vectors. Then, the subproblems can be solved cooperatively in, e.g., an evolutionary
algorithm framework. Stochastic optimization for decisions in rail systems explicitly
includes the effect of different sources of stochasticity and uncertainty, such as in
measurements, loading conditions, infrastructure parameters, and external factors,
including climate/weather. Multi-objective decision-based methods for dynamic
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decision support tools in railway infrastructure systems help find different solutions,
typically to quantify trade-offs between cost reduction and performance. But they can
include punctuality, efficiency, robustness, safety, sustainability (recycling/disposal),
energy consumption, etc.

2.5.3. DIGITAL TWINS

When only limited data are available and they are imbalanced, transfer learning, on
the one hand, can be considered to alleviate the issues arising from using small
datasets to train machine learning models. On the other hand, it is crucial to have a
sufficient amount of data. When it is not possible to collect real data, particularly
data related to rare events, e.g., failures or defects, using synthetic data is an option.
A digital twin can be a good candidate for that.

Digital twins are a conceptual framework for interconnecting a physical system
and its digital representations [164]. Digital twins are created by capturing and
integrating various data types from sensors, devices, and other sources, including
physical models. The purpose is to gain deeper insights into the physical entities they
represent. Digital twins allow us to emulate future scenarios of the consequences.
This helps us with risk assessment and decision-making to prepare for and mitigate
the impact of rare events. Within this context, an open challenge that needs to be
addressed is an effective method to generate synthetic data representing the total
variation of the expected railway operating conditions.

In [165], a building information model (BIM) was used to photo-realistically
simulate severe structural damage in a synthetic computer graphics environment.
In [166], a deep learning-integrated digital twin model was developed to establish
an interoperable functionality and to develop typologies of models described
for autonomous real-time interpretation and decision-making support for the
architecture, engineering and construction sector. By applying the concept of
digital twins to railway infrastructure, railway companies can cut costs, modernize
workflows, and increase efficiency and performance. Digital twins allow companies
to offer new services such as remote monitoring, real-time diagnostics, predictive
maintenance, and automated operations. With a combination of various sensors
throughout the whole infrastructure, information can be immediately analyzed by Al
and big data to plan maintenance actions proactively. This can avoid incidents or
delay and improve safety and operational efficiency.

While digital twins bring numerous opportunities to the railway industry, they
present challenges in their implementation. To successfully implement digital twins
in railway infrastructure, sufficient data need to be available for properly calibrating
digital twins. Moreover, a new mindset of rail operators and authorities must be
developed; they must promote cooperation, share data, and consolidate business
resources. Also, business models need to be changed, and, most importantly,
financial investments and a strategy to tackle cyber threats are required [167].
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2.5.4. MULTIDISCIPLINARY RESEARCH FOR HOLISTIC APPROACH

Railway infrastructure research is inherently multidisciplinary. Answering fundamental
questions in the field requires knowledge from different fields. Combined with
Al, some of the emerging fields related to resilience engineering, climate change,
cyber security, etc., are essential for solving open research questions. For example,
Al research related to an embankment requires knowledge of geosciences, railway
engineering, and computer sciences, among other fields. Without knowledge sharing
and research collaborations, the essential physics and dynamics of the infrastructures
cannot be studied efficiently =~ When considering the whole life cycle of the
railway infrastructure, environmental and social impacts add more dimensions. This
requires a holistic approach to analyze different aspects of the overall life cycle
cost to evaluate the system’s environmental, economic, and social performance. For
instance, the study in [168] showed that the operation and maintenance phases
are responsible for most emissions, with electricity consumption being the primary
contributor. Energy costs were identified as the main contributor (92%) to the
overall life cycle cost, and reducing these costs could help lower the system’s total
cost. The social impact assessment in [168] revealed that the urban transportation
industry has strong connections with consumers, workers, the local community,
and society. Even though new Al technologies can be employed to assist learning,
they can extract valuable insights, patterns, or relationships from the data without
human dependency. When no historical data is available, physical models are
needed. In the field of railway infrastructure, 3D dynamic models are widely
used as they offer dynamics and physical interpretation of the systems. However,
when it comes to a complex non-static problem, e.g., soil [169, 170], a new
dynamical model and sensing technologies are needed. The lack of historical data
and efficient higher-dimensional dynamic models results in less research on some
railway components, e.g., substructures and embankments. However, this also opens
up opportunities for Al approaches in the areas with few data when the available
physical knowledge can be included.

2.5.5. VALIDITY OF THE DATA

Many existing studies developed Al methodologies using training data under specific
environments and operating conditions. Ultimately, we aim to develop innovative
solutions that can facilitate the work of infra managers so they can focus on other
critical challenges. To ensure the robustness, generalization, and efficacy of the new
methodologies, the validity of the data sources and field validations are required. It's
essential to regularly and continuously assess and measure the impact of data to
ensure they deliver tangible results that meet the needs of rail operators. Accurate
and reliable data serves as the foundation for making informed decisions. For
example, can we trust the decision driven by the data we use to train the model?
Moreover, more controlled field measurements and shared case studies should be
provided so that the researchers can validate and compare the performance level
of their models developed with the state-of-the-art methods in the field of railway
infrastructures.
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2.5.6. INTEROPERABILITY OF THE DATA

In the railway industry, data interoperability appears to be a significant challenge
in delivering Al-based solutions. Its problem is how to convert and integrate the
data between different systems, e.g., the data coming from the APIs of different
customers. Each API has its own way of working. Having compatibility among
software is thus critical to facilitate the use of Al. A data standard is also required to
enable the available interactions between heterogeneous formats and systems.

2.5.7. CLOUD INFRASTRUCTURES

Digitalization in railway infrastructures generates a large volume of real-time data
as many devices and sensors are used to monitor the assets. This data can
provide insights into the health conditions of the monitored assets, and this
enables predictive maintenance. To derive actionable insights in real-time, cloud
infrastructures need to be invested and leveraged. With such big data, the
communication network and the adoption of 5G technology are required. A
petabyte-scale Internet of Things and edge data to the cloud must be agile. The
adoption of edge computing is required for the use of machine learning and Al
algorithms to help manage the infrastructures in near real-time.

2.5.8. TRANSFORMERS

Transformer models refer to a specific type of deep learning networks. They are
designed with large encoder and decoder blocks based on a self-attention mechanism
which represents the key innovation that allows transformers to selectively focus
on different parts of the input sequence [171]. Instead of relying on sequential
processing, transformers process the entire input sequence in parallel. Before
transformers arrived, users had to train neural networks with large labeled datasets
that were costly and time-consuming to produce. By finding patterns between
elements mathematically, transformers eliminate that need. Even without pre-training
on large datasets, transformer-based models are more robust to generalization
[172]. Therefore, transformer models have opened up another technique to tackle
insufficient and imbalanced railway data. This allows more researchers in railway
engineering to conduct research with machine learning without facing issues arising
from the training data. However, transformer models themselves can contain trillion
parameters, e.g., Google’s Switch Transformer has 1.6 trillion parameters [173]. This
poses another challenge in training transformer models that require further research.

2.5.9. METAVERSE

Metaverse is a concept referring to a virtual world where users can interact with
each other and computer-generated environments in real time. The concept of the
metaverse often involves a combination of technologies such as virtual reality (VR),
augmented reality (AR), artificial intelligence (AI), blockchain, and other emerging
technologies, e.g., robotics and drones. Even though the metaverse is currently used
for entertainment and gaming, it has the potential to be applied in the railway
industry.
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By using technologies that are equipped with cameras, IoT devices, and sensors
that collect real-time data from instrumented railway infrastructure, data obtained
can be analyzed by Al and can be used to create virtual environments. Many aspects
of real fieldwork that transcend physical limitations can be created. For instance, to
create a virtual environment from information collected in areas that are difficult to
access and risky to humans. This enables railway infra managers to conduct virtual
inspections, identify issues, explore, analyze, and optimize various aspects of the
railway infrastructure, e.g., design, operation, and maintenance. However, applying
the metaverse in railway infrastructure is still an emerging concept, and its full
potential is yet to be explored.

2.5.10. EMERGING TECHNOLOGIES

Several emerging technologies can contribute to improving the reliability of railway
infrastructure. Examples include blockchain technology, robotics, and drones.
Blockchain technology can enhance the reliability of the supply chain management
process in the railway industry. It can provide transparent and tamper-resistant
records of the origin, maintenance history, and certification of critical components,
ensuring the integrity and reliability of the infrastructure. Robots and drones,
equipped with cameras and sensors, can be used to regularly inspect railway tracks,
bridges, tunnels, and other infrastructure components. They can provide detailed
visual data and collect information in areas that are difficult to access and risky to
humans. In addition to the aforementioned trends, further potential technologies can
include web3, cryptocurrencies, nonfungible tokens, natural language processing, 5G
or 6G technology, conversational Al Humans, etc. These emerging technologies have
the potential to revolutionize the railway industry by improving reliability, safety,
minimizing various types of risks, and enhancing the overall performance of the
railway infrastructure. However, their use cases and implementation will depend on
technological advancements, industry requirements, and regulatory considerations
on planning and integration with existing systems.

2.6. CONCLUSION

This chapter reviews some Al methodologies developed and integrated into railway
infrastructures to tackle problems arising from its usage and natural degradation
mechanisms. The methods focused on in this chapter are neural networks,
metaheuristics, regressions, probabilistic graphical models, clustering, fuzzy logic,
and transfer learning. Based on our survey of journal papers on Scopus, they
have shown great promise for various applications in railway infrastructure. Not
only at a research level but many of these Al and ML applications have also been
implemented in the railway industry, in which the extent of their implementations
varies across different railway operators and regions. Despite their success, the use
of Al methodologies exhibits certain limitations that pose challenges for a successful
implementation in the railway industry. Some considerations and discussions about
the challenges and the need for new intelligent methods are presented in this
chapter to bridge the gaps between industrial applications and new Al developments.
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Researchers in academia and industry can exploit the information from our paper
to visualize trends and to develop benchmarks of problems and methods tailored
to the particularities of railway infrastructures. Finally, we aim with this chapter to
also inform the railway industry about the overview of technological advances in the
field of Al, so even more innovative use cases and applications can emerge in the
near future. In addition to the enthusiasm surrounding the implementation of Al in
railway infrastructure, it is imperative to prioritize economic efficiency and feasibility.
For instance, the existing maintenance and operational protocols rely on predefined
rule sets, which would necessitate modifications when incorporating solutions
provided by Al technologies. Consequently, alongside technological advancements,
a fundamental redesign of inspection, monitoring, and maintenance procedures
becomes essential.
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Figure 2.6: Distribution of the selected Al methodologies across the four groups of
railway infrastructures. NB: one research paper can include multiple Al
methodologies.
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SPIKING NEURAL NETWORK WITH
TIME-VARYING WEIGHTS FOR RAIL
SQUAT DETECTION

Axle box acceleration (ABA) measurements can be used for continuously monitoring
rail infrastructure and detecting rail surface defects such as squats. However,
accurately detecting squats is challenging due to their short-duration responses and
low occurrence in ABA signals, particularly for light squats that exhibit subtle ABA
responses. To address this challenge, we propose using a spiking neural network
(SNN) with time-varying weights to enhance the detection accuracy of rail squats
based on ABA measurements. QOur approach employs a simple SNN architecture
without hidden layers, trained using a method that combines genetic algorithms,
k-fold cross-validation, and multi-start backpropagation to optimise hyperparameters
and weights. The proposed methodology demonstrates competitive accuracy compared
to other state-of-the-art SNN-based methods on UCI benchmarks for both binary and
multi-class nonlinear problems. Part of the advantages of the methodology due to
the use of SNN include higher efficiency with a simpler architecture that reduces
computational times while achieving effective spatiotemporal pattern detection. As
shown by real-field measurements from Dutch and Swedish railways in anomaly
detection, it effectively captures subtle changes in light squat defect responses in
ABA signals and achieves a detection accuracy of 100% for severe squat defects and
over 93% for light squat defects. Furthermore, we show that the spike responses,
postsynaptic potentials, and membrane potentials can be used as a new way to
explain and analyse the ABA signals. The proposed method using time-varying
weights highlights a correspondence with the physical problem and offers an ability to
capture sudden and subtle changes in the responses, which is crucial, particularly for
detecting defects in their early stages.

This chapter has been submitted for publication as: Phusakulkajorn, W., Hendriks, J.M., Li, Z., Nufez,
A., Spiking Neural Network with Time-Varying Weights for Rail Squat Detection, under review
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3.1. INTRODUCTION

S QUATS are short-wave surface defects and one type of rolling contact fatigue
on railway rails [1-7]. Figure 3.2 illustrates examples of surface defects from a
railway line in Sweden and the Netherlands. The severity of squats can be classified
into light, moderate, and severe [134]. Early detection and assessment of all types of
squats are crucial for planning maintenance operations [24, 174, 175].

(a) Sweden

(b) The Netherlands

Figure 3.1: Rail surface defects from different countries.

Rail maintenance typically considers grinding and replacement. In the case of light
squats with minor cracks, grinding has the potential to remove them completely
from the rail surface [176]. When squats become severe, a degradation of the track
structure is experienced, and rail breaks can eventually occur. For severe squats,
rail replacement is more suitable as multiple grinding passages might not entirely
remove them, leading to the re-appearing of the defect due to residual damages. As
grinding is more cost- and performance-effective than rail replacement, the early
and accurate detection and management of squats are needed.

Various measurement technologies have been used for the detection of squats, for
example, ultrasonic [39], eddy current [177], guided waves [178], image processing
[40-42], axle box acceleration (ABA) [3, 47, 97, 134], among others. In the literature,
light squats can be detected using ABA measurements with accuracy between 78%
to 85% [3, 134]. Using vertical and longitudinal ABA signals in conjunction with
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noise-reduction techniques in [3], 100% of severe squats were detected, while 85% of
small rail surface defects were found. For the automatic detection method proposed
in [134], the detection accuracy was 100% for severe squats but 78% for light squats.
As approximately 15-22% of light squats are not detected using traditional methods,
we consider using neural networks to increase performance in this work.

In the literature, deep learning neural networks have been utilised to detect squats
[179-181]. In [179], the performance of small, medium, and large DCNNs for
detecting squats using video images were compared. The results demonstrated that a
large DCNN model was needed to detect light squats with 64.4% accuracy. In [180],
a deep convolutional neural network (DCNN) was proposed to detect squats using
video images correlated to the corresponding ABA signals. This approach detected
96.9% of visible squats. In [181], the proposed unsupervised method based on
convolutional variational auto-encoder achieved a hit rate of 100% for light squats
using ABA measurements under a simulated vehicle-track environment. However, in
practice, the detection accuracy of light squats is not 100% due to their complex
spatiotemporal patterns, which are challenging for current detection methods to
capture.

Spiking neural networks (SNNs), considered the third generation of neural networks
[182], offer the ability to handle temporal and spatiotemporal patterns through their
unique mechanism of processing data as discrete events or spikes. The potential
applications of SNNs span various fields such as biomedical science and mechanical
engineering [183-191]. To explore their capability in railway application further,
this chapter proposes using SNNs for detecting rail squats due to their capability
in capturing spatiotemporal patterns. Additionally, the signal transmission in SNNs,
occurring as trains of spiking events, resembles the pattern of an ABA signal,
where each spike represents an abrupt change in ABA response at squats, further
motivating their use in this application.

SNNs have been designed with many network parameters [192-197]. On the
one hand, having many hidden layers and nodes allows biological plausibility and
higher accuracy. On the other hand, having many parameters poses the issue that
SNNs are more difficult to train and their evaluation can be computationally costly.
Railway infrastructures are inherently large-scale, with variations that depend on
time and track location (spatial dependency) and stochastic systems. Additionally,
rail squat detection technologies rely on high-frequency monitoring data. Thus, a
less computationally expensive model that meets online detection requirements and
facilitates decision-making is preferred.

Employing SNNs without hidden layers or hidden nodes has been considered in
the literature to reduce computational efforts. In [198] and [199], efficient algorithms
for networks with no hidden layer were presented. In both works, the algorithms
outperformed the existing SNNs with more complex network architecture in terms of
both accuracy and computational cost when testing with benchmarks from the UCI
machine learning repository for both binary and multiple classes. The contribution
from [198] and [199] has opened up an opportunity to find a well-balanced trade-off
between computational effort and accuracy for SNNs. Therefore, instead of using
large network architecture, this work uses simple network architecture with no
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hidden layers to solve a complex spatiotemporal problem presented in early squat
detection. The main contributions of this chapter are:

1. An SNN-based methodology with time-varying weights is proposed to detect
rail surface defects, e.g., squats, of varying severity levels, using ABA
measurements. This method aims to improve the detection accuracy of light
squats, which present challenges due to their subtle, short-duration responses
and typically a low percentage of appearance in ABA signals compared to
healthy rails. Instead of using large network architecture, this work uses simple
network architecture with no hidden layers to solve a complex spatiotemporal
problem presented in early squat detection.

2. A global optimisation approach is considered for the training process,
incorporating a genetic algorithm to search for hyper-parameters based on
cross-validation and backpropagation to adjust time-varying weights with
multiple starts.

3. A utilisation of spike responses, postsynaptic potentials, and membrane
potentials is presented to provide an explainable way for squat detection that
relies on ABA signals. Visual explanations from these internal spike behaviours
are presented to identify a correspondence with the physical problem.

The rest of this chapter is outlined as follows. Section 3.2 provides background
knowledge of rail squats and SNNs. Section 3.3 introduces the problem of squat
detection and the proposed framework, while the feature engineering is elaborated
in Section 3.4. Section 3.5 presents the proposed SNN-based methodology. Section
3.6 presents a sensitivity analysis of hyper-parameters of our methodology and the
comparative study with the state-of-the-art SNNs using UCI benchmarks. In Section
3.7, the capability of our SNN-based methodology to solve a complex spatiotemporal
problem presented in squat detection based on ABA measurements is compared
with other methods. The explainability of the methodology for squat detection is
also elaborated in this section. This chapter is concluded in Section 3.8.

3.2. BACKGROUND KNOWLEDGE
3.2.1. RAIL SQUATS

(a) Severe squat. (b) Moderate squat. (c) Light squat.

Figure 3.2: Illustration of rail squats with different severity levels.
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A rail squat is a type of rail surface defect that arises from rolling contact
fatigue (RCF). It is characterised by local plastic deformation on the rail top
surface. The direct cause is excessive dynamic wheel-rail contact force. Contributing
factors to their occurrence include increased axle loads and traffic density, different
maintenance policies, deteriorating track quality, new materials for wheels and rails,
and the use of stiffer concrete sleepers [200].

Severe, moderate, and light squats are classifications of rail squats distinguished
by their wavelengths and the frequency characteristics of wheel-rail dynamic
interactions, which can be measured by ABA systems. Figure 3.2 illustrates squat
classifications in which Figures 3.2(a), 3.2(b), and 3.2(c) show an example of a
severe, moderate, and light squat, respectively. Severe squats are the largest and
deepest defects among the three categories, with lengths typically ranging more than
50 millimetres [97]. Severe squats generate pronounced, high-amplitude vibrations
with distinct frequency characteristics between 200-400 Hz [134]. The larger the
severe squats, the greater the risk of derailment. Moderate squats are smaller than
severe squats, with lengths ranging between 30-50 millimetres [97]. They cause
rail vibrations with the same frequency band as the severe squats, though less
pronounced amplitudes. Light squats are the smallest and shallowest defects among
the three categories, often representing the initial or early stages of rail squats. Their
lengths range between 8-30 millimetres [97]. The characteristic frequency bands for
light squats are between 200-400 Hz and 1000-2000 Hz [134]. If left untreated, light
squats can develop into more severe defects. However, some small defects can be
worn away through natural wear.

Rail squats are critical to detect and manage because they can lead to increased
maintenance costs, reduced rail life, and potential safety hazards. However, detecting
squats, particularly for light squats, with high accuracy is challenging. Some possible
underlying reasons are the following. First, light squats are anomalies with a low
percentage of appearance in monitoring data. Some light squats are difficult to
find via visual inspections (or even impossible when these are still not visible to
human eyes), making the labelling process difficult. Second, the response of light
squats in ABA signals appears suddenly and has a very short duration. For example,
at a light squat of 8 mm in wavelength with a measurement speed of 110km/hr,
the duration of its response can be 0.26 milliseconds. Third, the responses of light
squats in ABA signals are affected by the variability of the railway track parameters
and measurement conditions. For example, different dynamic responses occur at
squats on top or in between sleepers, thermite welds, flash welds, joints, crossings,
transition zones, etc. Last and most importantly, the frequency components of light
squats are slightly different from those of healthy rails, with subtle characteristics
occurring dominantly at high frequencies. Therefore, advanced detection methods
are essential for identifying these defects early and accurately.

3.2.2. SPIKING NEURAL NETWORKS

A spiking neural network (SNN) is brain-inspired and is a class of neural networks
that more closely mimic the functioning of biological brains compared to traditional
neural networks [182]. Unlike the other two generations, inputs of SNNs are
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encoded into temporal information represented as trains of spiking events rather
than numeric values.

SPIKING NEURON MODELS

The core component of an SNN is spiking neurons. They communicate with each
other by generating and propagating electrical pulses known as action potentials or
spikes. The likelihood of a spike generation depends on the types of synaptic inputs,
i.e., excitatory or inhibitory. Excitatory inputs enhance the likelihood of a neuron
firing a spike, whereas inhibitory inputs decrease this likelihood. The dynamics of a
spiking neuron are characterised by its membrane potential, which evolves according
to the excitatory and inhibitory inputs it receives from presynaptic neurons. When
the membrane potential reaches a certain threshold, the neuron generates one or
more spikes. As a result, the internal potential of each neuron has to be computed
for a continuous duration of time to obtain the precisely timed patterns of spikes
[192, 195]. Producing a continuous time-encoded output and connecting to other
neurons, SNNs offer an ability to deal with temporal and spatiotemporal patterns.

The most widely used model to describe the dynamics of the spiking neurons is
the leaky integrate-and-fire (LIF) neuron model. The LIF model integrates incoming
spikes until the membrane potential v(#) reaches a threshold vy, at which point the
neuron fires (emits a spike) and resets its potential. The dynamics of the LIF model
are described by the following formula [201]:

dv(t)
Tm dr = —(v(8) — Vrest) + Texc(£) — Linn (1), (3.1)

if v(t) = vy, then v(f) — Vst and emit a spike,

where 7, is the membrane time constant, v is the resting potential, Iexc(#) and
Iinn(2) are the excitatory and inhibitory currents, respectively. More spiking neuron
models can be found in [202].

INFORMATION TRANSMISSION AND PROCESSING

Synapses in SNNs are the connections between neurons, where the presynaptic
neuron sends signals and the postsynaptic neuron receives them. When a presynaptic
neuron fires, a spike is transmitted to another neuron across synapses, in which
synaptic weights play a crucial role as they determine the strength and impact of
these transmitted spikes on the postsynaptic neuron. The postsynaptic neuron then
responds to the incoming spike from multiple presynaptic neurons by integrating the
signal into its membrane potential and generating spikes when the potential exceeds
a certain threshold. In SNNs, information processing relies on the precise timing
of these spikes, enabling efficient computation. The event-driven nature of SNNs
allows for asynchronous processing [203], where neurons fire only when necessary,
potentially reducing power consumption and enhancing response times compared
to traditional neural networks [203, 204]. These properties make SNNs particularly
well-suited for applications requiring real-time processing and energy efficiency [182,
203, 204].
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LEARNING

Synaptic plasticity plays an important role in reaching the high-level performance
of SNNs. It is the process of learning and adjusting the synaptic weights to
perform a given task. Various approaches have been proposed to adjust the synaptic
weights. The spike-timing-dependent plasticity (STDP) is an approach based on
a bio-inspired formulation of synaptic plasticity. The STDP updates synaptic
weights in an unsupervised manner based on dependencies between presynaptic
and postsynaptic spikes. Learning algorithms developed based on the STDP
are, for instance, Tempotron [194], SWAT [196], ReSuMe [197], TMM-SNN [205],
SEFRON [198], and reward-modulation spike-timing-dependent plasticity (R-STDP)
[206]. The SWAT, TMM-SNN, and R-STDP algorithms successfully implemented
the classification of multi-layer feed-forward SNNs, while the Tempotron, ReSuMe,
and SEFRON algorithms were successful for a single-layer SNN. Another approach
for training SNNs considers the backpropagation algorithm [207]. In the case of
SNNs, the discontinuity mechanism between the internal state potential and the
response of spiking neurons prevents the direct use of backpropagation. In [192], the
SpikeProp deployed backpropagation with the assumption that a piece-wise linear
function can approximate the internal potential at an infinitesimal time around the
instant of neuronal firing. The learning rule of SpikeProp has been successfully
extended from single to multiple spikes to enhance the training performance of
SNNs [193, 195, 208-212].

Inspired by [198], the SNN in this chapter is designed with time-varying weights
and contains no hidden layers. We use the SpikeProp to deal with the discontinuity
when a spike is fired. Then, backpropagation is used to adjust time-varying weights
by including an additional term that captures the variations over time in the update
rule of the weights. Multi-starts are considered, and a genetic algorithm is employed
to search for the optimal hyper-parameters based on cross-validation.

3.3. SQUAT DETECTION PROBLEM

The detection of squats using ABA measurements can be considered a classification
problem. This problem assumes availability of training samples #p = {(x¥, @),
d=1,...,D} in which an input xX) e RM. and its class label ¢¥ e N are required.
Assigning a respective class label for ABA measurements at rails is a tedious and
time-consuming process. Additionally, when dealing with squats at an early stage of
their development, multiple data sources are required to confirm their existence and
it is common to rely on field observation which is prone to human error. Moreover,
it is difficult to obtain class information for defective and healthy samples because
early squats can be invisible to the human eye or video cameras. Also, rails are
affected by local infrastructure conditions, local railway track dynamics, and different
stochastic variables. In this chapter, labelling was carried out by human domain
experts and was verified by fieldwork.

To obtain an estimator of the mapping between measured ABA signals at rails
and their class label, an SNN-based methodology is proposed. Figure 3.3 illustrates
the framework of early detection of rail squats considered in this chapter. It
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comprises two main parts: the feature engineering to obtain the representations of
the measured ABA signals at rails (see 3.4) and the spiking neural network-based
methodology that classifies whether or not a given rail segment contains squats. The
latter part is detailed in Section 3.5.
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Figure 3.3: The framework of spiking neural network with time-varying weights for
detecting rail squats.
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3.4. FEATURE ENGINEERING

Figure 3.4 presents the processes of feature engineering considered in this work. The
original acceleration signals of each rail sample are first pre-processed by means
of wavelet analysis with the Morlet function to realise the frequency content of the
rail dynamics. A moving standard deviation is proposed to extract representative
features for ABA measurements in the frequency domain. Then, data are represented
by concatenating representative features from vertical and longitudinal ABAs.

3.4.1. WAVELET ANALYSIS

To analyse the frequency content of the signal, we employ wavelet analysis due to its
independence between the window size and the time—frequency representation. The
continuous wavelet transform (CWT) is a time—frequency analysis tool in which the
observed function is multiplied by a group of shifted and scaled wavelet functions. To
achieve computational feasibility, we discretised the CWT and the wavelet coefficient
W, (s) at a discrete wavelet scale s >0 and time index n are defined as [134]:

N-1 I _
W, (s) = Z apw* ((n—sn)(%)y
n'=0

(3.2)

where a, is a time series with a time step of §; n' =0,...,N—1 is the time shift
operator where N is time window of the signal; ¢* is a family of wavelets deduced
from the mother wavelet by different translations and scaling; * indicates a complex
conjugate. In this chapter, we consider the Morlet function for the mother wavelet.
The Morlet function is defined as:

woln) = 4eiwan g 12, 3.3)

where v is a nondimensional frequency. The power spectrum of a wavelet transform
is defined as the square of the wavelet coefficients, i.e.,

|W2(s)|. (3.4)

Note that the frequency scale s obtained from our wavelet analysis has logarithmic
spacing. This is due to the adjustable length of each wavelet. At higher frequencies,
the length is shorter. Thus, higher frequencies have a larger bandwidth and are
spaced further apart than lower frequencies. In this work, we select 113 wavelet
scales as they provide a good trade-off between computational time for the wavelet
analysis and the SNN and representation of the responses of rail dynamics at defects.

3.4.2. FEATURE EXTRACTION USING MOVING STANDARD DEVIATION

For a vector of the wavelet power spectrum at a wavelet scale s,
W(s) = [[W2(S)],...,|W(s)|] e R"V, the moving standard deviation Z(s) = [z1(s),
e 2g(8),...,20(5)] € RT*Q of W(s) is obtained by calculating a standard deviation
over a sliding window of length k across the N neighbouring elements of W(s). When
k is odd, the window is centred about the element in the current position. When k
is even, the window is centred on the current and previous elements. The window
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Figure 3.4: Steps in feature engineering.

size is automatically truncated at the endpoints when there are not enough elements
to fill the window, i.e., Q = (N —k+1). When the window is truncated, the standard
deviation is taken over only the elements that fill the window. Mathematically, the
moving standard deviation Z(s) of the sliding window of length k is expressed as:

2q(9) =J Z?:;_l (’Wiz(s)| —W(s))z‘q_

1 ; o) (3.5)
where W (s) is the mean of [|W3(s)|,...,IW;HC_I(S)I]. The representative feature at
each frequency scale s, x(s), is then obtained by:

x(s) = maxzq(s). (3.6)
q

In this chapter, a sensitivity analysis is performed to obtain the appropriate length
of sliding windows, k, that is used to extract features from ABA signals in the
vertical and longitudinal directions. With the length window k moving along a rail
line as shown in Figure 3.4, variation of the energy contents can be realised. In
this work, these energy contents along distances provide temporal characteristics
of a rail, whereas the energy contents across different frequencies are regarded as
spatial characteristics of a rail. Using (3.6), these temporal pieces of information
are embedded per frequency. When considering a certain range of frequencies,
their corresponding temporal information forms one-dimensional frequency-based
features that serve as inputs that provide spatiotemporal characteristics of rail defects
to an SNN.
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3.4.3. FEATURE SELECTION

To represent the dynamic of rails, we follow [134], and we select the wavelet scales
where most of the physical responses of squats are observed, that is, in the range
between 200-2000 Hz as:

x = {x; = x(s;); s; € [200,2000]}. 3.7

Considering ABA signals from both vertical and longitudinal directions [3],
particularly longitudinal ABA increases the detection of light squats, a total of 54
frequency-based features are used to represent the dynamic of rails in this chapter.
For further research, it is interesting to explore a combination of data-based and
physics-based approaches to determine the optimal resolution for the methodology.
While the current study uses bands chosen in logarithmic ranges, alternative
partitioning or other frequency-based features could be of interest for effective
detection.

3.5. SPIKING NEURAL NETWORK WITH TIME-VARYING

WEIGHTS METHODOLOGY

The SNN-based methodology consists of five main aspects: the temporal spike
encoding scheme, the spiking neuron model, the network architecture, the
methodology used to train the SNN, and the classification rule.

3.5.1. ENCODING SCHEME

For a given input x = (X1, Xi, ..., xm]1 T € 10,11, each feature x; must be converted
into spike events. In this chapter, we consider the most used population rank
encoding scheme to convert information into spike events [213]. Unlike time-to-first
spike encoding, which uses the precise timing of the first spike, and rate encoding,
which uses the firing rate, population rank encoding represents information based
on the pattern of neuron activation rather than the timing order or firing rate alone.
In this chapter, the scheme uses overlapping Gaussian receptive field neurons to
encode each input feature x; into spike times. The firing strength of the i input
feature ry (x;) emitted by the Gaussian receptive field neuron k is defined as [199]:

—(xi = 61)°

I (x1) = exp —— -, (3.8)

2k-3
Sp=—", 3.9
k 2(K-2) 3.9)

and

11
o=——, (3.10)

vy K-2

where K represents the number of receptive field neurons (given by the number of
populations with different Gaussian receptive fields), and y the overlap constant, the
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centre 6y and the width o of the Gaussian function are defined according to the
range of the input features.

Therefore, each feature x; is converted into K presynaptic spikes of firing strength
[r1(x7),...,7x (x;)]T using (3.8). The associated firing times t; = [tl.l, o t{(]T €0, T1X
of the feature x; are obtained by linearly distributing r (x;), k=1,...,K into the
presynaptic spike time interval of [0, T] ms.

3.5.2. SPIKING NEURON MODEL

In this chapter, a spiking neuron model based on the leaky-integrate-and-fire
model [214] is adopted, as illustrated in Figure 3.5. Our SNN is designed with
time-varying synaptic weights, wfj(t) €[0,T], to connect between the presynaptic

neurons associated with the k® spike time, tll‘, of the input feature x; and the
postsynaptic neuron j.
A postsynaptic potential Sifj(t) of the output neuron j at time ¢ is determined

as the product of the spike response of the presynaptic spike tf, e(t—tlk), and
the time-varying synaptic weight wfj(t) evaluated at = t¥, wl’“](tlk), which is
mathematically expressed as [198]:

sk = w; (1F) (e 1f). 3.11)

A membrane potential v;(f) of the output neuron j is defined as the summation
of a postsynaptic potential Sfj(t) over the input spikes of x, t; = [tl.l,...,tl.K]T. A
membrane potential v;(z) is expressed as [198]:

M K
i)=Y Y S5 (3.12)
i=1k=1
M K
=3 > whi(e)e(e-1f), (3.13)
i=lk=1
0 ifr=<o0,
e(y=4 t (3.14)

t .
—exp(l——) if t>0,
T T

where 7 is the time constant of the spiking neuron.
The neuron fires a postsynaptic spike when the membrane potential reaches the
firing threshold A. The postsynaptic firing time #; is defined as:
i ={tlv; (i) = A}. (3.15)

At the postsynaptic firing time fj, the membrane potential of the neuron j is defined
as:

éwfj(t{‘)-e(ij -], (3.16)

Mz

vj () =,

1

Il
—
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Figure 3.5: The spiking neuron model.

where 7; lies in the postsynaptic spike time interval of [0, Tsjm] ms. The parameter
Tsim represents the simulation time used for the internal potential to reach the
threshold of the neuron. Its value can be set differently [198], and it is a
problem-dependent parameter.

3.5.3. SPIKING NEURAL NETWORK ARCHITECTURE

This chapter considers a two-layered fully connected feedforward SNN with no
hidden layers and no hidden nodes, as illustrated in Figure 3.3. For K receptive field
neurons, an input x is encoded into the presynaptic input spike time t=[ty,...,t)]7
€ [0, T1™*K  in which the number K x M determines the number of input neurons
for our SNN architecture. An output neuron is designed to associate with one of
the N classes. Therefore, the network architecture comprises N output neurons.
This architecture is referred to as Kx M:N and constitutes a total of Kx M x N
time-varying synaptic weights to determine.

3.5.4. TRAINING THE SNN

For the proposed SNN, three groups of parameters are defined: a group of given
parameters, a group of hyper-parameters, and a group of initial synaptic weights
and synaptic weights. The first group contains parameters that are assumed given as
in [198]. The parameters and their associated value are encoding-related parameters




66 3. SNN WITH TIME-VARYING WEIGHTS FOR RAIL SQUAT DETECTION

with K =6 and y =0.7, the presynaptic spike interval T =3 ms, and the postsynaptic
spike interval Ty, =4 ms. A time resolution of 0.01 ms is considered for all synapses
in the network.

To obtain the value of parameters of the second and the third group, an SNN-based
methodology is proposed as illustrated in Figure 3.6. To obtain parameters as
close to optimal global ones as possible, three main steps considered in the
methodology include 1) hyper-parameter tuning with a genetic algorithm (GA), 2)
weight initialisation with multi-starts and 3) weight updating with a backpropagation

algorithm including the effects of the time dependency of the weights in the update
rule.
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Figure 3.6: Schematic diagram of the SNN training.
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HYPER-PARAMETER TUNING WITH GA

To achieve a near-global optimal set of hyper-parameters, 6, we perform a genetic
algorithm considering the number of individuals, p €{1,...,P} and the number
of generations, ge€{l,...,G}. The hyper-parameters tuned by a GA include the
time-varying weight kernel (o € [0.05,0.55]) [198], the desired postsynaptic firing time
(i‘d € [0, Tsim]), the time constant of spike response function (zr = T), and learning
rate of weight update (). The time constant of the spike response function is set
to be greater than T as only a single spike is allowed from the output neuron.
The maximum value of 7 is considered to be 4 ms as a higher value of 7 results
in difficulty in raising the potential toward the threshold. The range of each
hyper-parameter shown in Table 3.1 is determined to search for a good classification
of all benchmarks.

Table 3.1: A range of the hyper-parameters considered for classification.

Hyper-parameter Range Search step size
F [0.05,3.5] 0.05
o [0.05,0.55] 0.05
n [0.0001,0.001] 0.00005
T [3.0,4.0] 0.01

Throughout the evolution process of the GA, individuals of each generation, 0, g,
are obtained via the process of crossover and mutation. The two parents are chosen
randomly from the whole population of the present generation. Then, two off-springs
are bred by swapping the tails of their two parents at a random crossover point. The
tuning parameters of GA are selected by default in the toolbox. A sensitivity analysis
can be conducted to determine a reasonable number of generations and individuals.

Using a given set of hyper-parameter values 6, ., the SNN is trained using the
multi-start and cross-validation strategy to obtain the optimal set of time-varying
weights W, ¢(£). Then, the different P combinations of hyper-parameter values are
computed and evaluated to find the near-global optimal set of hyper parameters of
the generation g, 0p ¢~ Finally, the set of hyper-parameter values 0 Pg 8= 1,...,G that
achieves the best solution is selected as the set of hyper-parameters, 9p,G

WEIGHT INITIALISATION WITH MULTI-STARTS

For a given K x M input spike times and the corresponding N output synaptic
neurons, the total number of K x M x N synaptic weights are initialised by the
uniformly distributed random numbers between 0 and 1. We limit the range of
the initial synaptic weights to make sure that all neurons fire within the simulation
time in the first epoch of network training. These initial weights are then
distributed over the time interval by employing (3.23) to obtain time-varying weights,

winit () = {wf]’.init(t);kz 1,...,K,i=1,...,M, j=1,...,N}. In this chapter, the training
process of the synaptic weights are repeated according to the multiple sets of initial
weights {w‘l““(t); l=1,...,L}, in which L is the number of multi-starts.
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TIME-VARYING WEIGHTS UPDATING WITH BACKPROPAGATION

Using encoding, each input x gets a unique spike representation t. For a given set
of hyper-parameter values 0, and an initial set of time-varying weights wilnit(t),
the predicted postsynaptic output spike times, i%, are obtained. Then, the error
(&) obtained at the output neurons between the predicted and the desired spike
time is used to update the synaptic weights between the i presynaptic and the jo
postsynaptic neurons.

In our approach, the time-varying weights are updated by using SpikeProp as
proposed in [192] and a back-propagation update rule that includes the effect of
time in the weights. For epoch e, the synaptic weights, wf]’.e(t) at a single time

instance t = tl(‘ is adjusted by:

0Z
ke k) _ _
Awij (ti)— n—aw(‘:e(ﬂ“)' (3.17)
ij i

where 7 is the learning rate and the sum squared error (%) is used as a measure of
the discrepancy between the desired and the predicted postsynaptic spike times. As
fj is a function of v;, which depends on the weights w:‘j at time instance tlk, the
derivative on the right-hand part of (3.17) can be expanded to:

92 _aﬁ(fa) 8i; )(fa) an(fj))(fa)‘ (3.18)

awg‘:e(t}“)_afj 7 av; (1 jawf’e(tf ]

i J

As given in [192], the first and the third derivative terms can be expressed
coordinatewise for j=1,...,N as:

L .. .
— —fe_ td, (3.19)
atj J

ov; |14
WE(Z)’C) =e(tr- ), (3.20)

and, the second derivative term can be obtained by following [192] as:

. -1 -1
dv; (1) ik dv; () /0% [7)= ov; (i) roie

(3.21)
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Considering the denominator, we have

or af;.’ i1i=1
M K ae(i‘.’—tl’c)
_ Z Z w{c,e (tk) J
ij 14 a*a
i=1k=1 j
M & ke [k ca k 1 1
- wk: (t.)e(r.—t.) — . (3.22)
P ERCA AU P

Substituting (3.22) into (3.21), the second derivative term is obtained. Hence, the
error gradient at the postsynaptic spike time of an output neuron j at t=1; is
obtained using (3.19), (3.20), and (3.21).

Next, we include short-term plasticity by distributing the long-term plasticity over
a specific time interval. Following [198], a Gaussian distribution is chosen as the
modulating function. Therefore, Awl{‘]’.e(tf) at single time instance ¢¥ is embedded

into a Gaussian distribution such that a time-varying function Ffj(t) is described as:

53 (3.23)

. to(E —(t— k)
Fl.]’.e(t) = Awi]'.e(ti )-exp(—’),
where o is the efficacy update range. The use of the exponential function to describe
time-varying features of synaptic weights is followed from [198] to achieve biological
plausibility. It is described in [215, 216] that neural behaviour and learning processes
in the human brain involve changes in synaptic potential that follow exponential
decay or growth patterns. While exponential functions are often employed to model
these temporal dynamics, an evaluation of the impact of different time-varying
functions can be interesting.

Hence, the update rule of time-varying synaptic weights for the synapse connected
between the presynaptic neuron i and the postsynaptic neuron j is:

k,e+1 _ ke k,e _
wij (n) = wl.]. (t)+Fij (t),e=1,...,E, (3.24)

in which E denotes the maximum number of training epochs used for a simulation.

Note that (3.24) is used to obtain the weight parameters for each cross-validation
fold. To obtain the optimal set of time-varying weights, k-fold cross-validation is
considered to train and test the SNN with k different portions of the dataset. Then,
the optimal set of time-varying weights is obtained by minimising the cross-entropy
loss.

3.5.5. CLASSIFICATION RULE

In this chapter, the transmission types are ruled by the time-to-first spike coding
scheme. Our output neuron can emit only once and its output associated with
class j is the first postsynaptic spike time #;. For a problem with N classes, the
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classification rule to predict the class label from the postsynaptic spike times t
= [t bjyeens ZN]T for an input x is defined as follow:

¢=argmin{;. (3.25)
J

3.6. COMPARATIVE STUDY USING UCI BENCHMARKS

In this section, we perform a sensitivity analysis of hyper-parameters and evaluate
the classification performance of the proposed SNN-based methodology using UCI
benchmarks.

3.6.1. SENSITIVITY ANALYSIS

The Iris dataset is considered as a showcase for sensitivity analyses of the number
of individuals and generations used in GA and a number of multi-starts. The Iris
dataset contains 3 classes of 50 instances each [217]. Each class refers to a type of
iris plant which are Iris Setosa (class 1), Iris Versicolour (class 2), and Iris Virginica
(class 3). There are 4 input features for each instance: sepal length, sepal width,
petal length, and petal width. In total, 75 instances are used for training and 75
instances are used for testing.

After the normalisation, each input feature is encoded by an array of six different
one-dimensional Gaussian receptive fields. The network architecture for the Iris
dataset, therefore, consists of 24 input neurons and 3 output neurons, referred to as
24:3. We followed the procedure presented in Figure 3.6 to obtain the parameters
that better fit the Iris dataset. The number of epochs considered in the analysis is
100 epochs which shows to be sufficient for the training.

NUMBER OF MULTI-STARTS

For the network architecture of 24:3, a total number of 72 synaptic weights
are initialised and distributed over the time interval [0,3] ms. Given a set
of hyper-parameters 6 = {i% = 0.95,0 = 0.30,7 = 0.00045,7 = 3.30}, we investigate
the proposed SNN-based methodology in terms of classification accuracy when
considering different numbers of multi-starts. Considering [ =10,20,...,90,100 and
repeating the experiments ten times, Figure 3.7 shows that the classification accuracy
is distributed between 94.54% and 98.67%. It is observed that the higher the number
of multi-starts, the lower the variance and the higher the average classification
accuracy. However, there is a trade-off between the computational time and the use
of a higher number of multi-starts.

HYPER-PARAMETER VARIATION

To understand the effect of the hyper-parameters in the SNN architecture,
classification accuracy as a function of some hyper-parameters is presented in
Figure 3.8. It is observed that when the value of pd increases, the obtained
classification accuracy tends to decrease. The same trend is also observed for the
variation of n and 7, whereas the obtained classification accuracy is enhanced by
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Figure 3.7: The effect of the number of multi-starts.

decreasing their value. For the value of o, higher classification accuracy can be
achieved by increasing its value. Furthermore, it is observed that the proposed
methodology is sensitive to the variations of ¢ more than the variation of other
hyper-parameters.
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generation. The plot shows the classification accuracy at the last epoch
(=100).

Following the procedure in Figure 3.6 with the number of multi-starts set to 60, we
perform a sensitivity analysis for the number of individuals and generations in GA
to obtain a set of hyper-parameters, 0, for the Iris dataset. We consider the numbers
of individuals, p €{1,...,P},P ={10,30,50,70,100} and the number of generations,
gefl,...,G},G=100. Figure 3.9 illustrates that the classification accuracy increases
as the number of generations increases. Moreover, it is demonstrated that a larger
population size can significantly improve accuracy using fewer generations. This
observation allows understanding the effect of the GA parameters to obtain the
hyper-parameter setting considering the Iris dataset. However, a GA expends more
memory and more computational time in finding a solution for a large population
size. Therefore, a compromise between accuracy and computational effort is to be
considered for a reasonable trade-off.

3.6.2. PERFORMANCE

First, the performance of the SNN-based methodology is examined using four
benchmarks from the UCI machine learning repository [217]. Each UCI benchmark
dataset presents unique challenges such as imbalanced classes, small sample sizes,
high dimensionality, nonlinear separability, and noisy data [217]. These datasets have
been widely used to benchmark proposed methods in several studies [196, 198, 199].
The datasets are described in Table 3.2. To solve the classification problems, our
SNN is trained by following the procedure in Figure 3.6. The tuned hyper-parameters
are the time-varying weight kernel (o), the desired postsynaptic firing time (%), the
time constant of spike response (7), and the learning rate of weight update (7).
Table 3.3 presents the optimal set of hyper-parameters and the corresponding
classification accuracy for each benchmark obtained from our proposed SNN-based
methodology. By setting the hyper-parameters as described, Table 3.3 shows that
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Table 3.2: A description of benchmark datasets from the UCI machine learning

repository.
Dataset Feature No. of No. of Instances
Class Training Testing
Liver disorders 6 2 170 175
Breast cancer 9 2 350 333
Ionosphere 33 2 175 176
Iris 4 3 75 75

Table 3.3: The optimal set of hyper-parameter values and the corresponding
classification accuracy for UCI benchmarks obtained from the proposed
SNN-based methodology.

Benchmark Hyper-parameter Accuracy (%) Epoch
Training Testing
i o n T Max  Avg Max Avg

Liver disorders 3.48 0.52 0.00015 3.09 95.4 91.8 756 70.2 100
Breast cancer 0.20 0.50 0.00080 3.45 96.5 96.3 988 98.7 100
Ionosphere 1.90 0.25 0.00010 3.00 100.0 99.5 97.7 943 100
Iris 0.95 030 0.00045 3.30 100.0 100.0 98.7 96.5 100

the classification accuracy for both training and test sets achieves more than 90%
for Breast cancer, Ionosphere, and Iris datasets. The highest averaged accuracy is
100% and 98.7% for training and test sets, respectively. The obtained performance
demonstrates the effectiveness of the proposed methodology in addressing the
mentioned challenges in each dataset. However, it initially encountered poor
performance on the liver disorder dataset, achieving only 67% accuracy. After the
proposed global optimisation approach is employed to fine-tune network parameters,
the liver disorder dataset accuracy is improved by 3.5% and overall performance
is enhanced. Consequently, our methodology outperformed other methods like
SpikeProp, SWAT, and SEFRON, as shown in Table 3.4.

3.6.3. COMPARISON WITH OTHER SNN METHODS

Our methodology is compared with state-of-the-art SNNs. Three learning algorithms
with larger SNN architecture, e.g. SpikeProp [192], SWAT [196] and TMM-SNN
[205], and two learning algorithms with a simple SNN architecture (without hidden
layers and nodes), e.g. SEFRON [198] and WOLIF [199] are selected. To quantify
the advantages of the proposed global optimisation approach, a comparison of
our methodology both with and without the use of GA is also included. For our
methodology without the GA, the hyper-parameter values as suggested in [198] are
used. However, our learning rate is set to 0.001 in order to increase the probability
of convergence [192, 195]. The comparative analysis considers the evaluation of
averaged classification accuracy, the number of epochs used in each method, and
the average training time used per epoch. Note that the training time reported for
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Table 3.4: Performance comparison with the other SNN methods.

Dataset Method Architecture  Avg. accuracy (%) No. of  Training
Training  Testing Epoch  time (s)
SpikeProp [192] 37:15:2 715 65.1 3000 11.36
SWAT [196] 36:468:2 74.8 60.9 500 93.04
TMM-SNN [205] 36:5:8:2 74.2 70.4 442 4.16
Liver WOLIF [199] 19:1 81.9 80.3 500 -
disorders SEFRON [198] 37:1 91.5 67.7 100 1.1637
SNN with time-varying  36:2 89.5 67.8 100 0.4401
weights without GA
SNN with time-varying  36:2 91.8 70.2 100 0.4401
weights with GA
SpikeProp [192] 64:15:2 97.6 97.0 1500 16.07
SWAT [196] 54:702:2 96.5 95.8 500 278.87
TMM-SNN [205] 54:2:8:2 97.4 97.2 70 17.75
Breast WOLIF [199] 28:1 97.8 97.0 500 -
cancer SEFRON [198] 55:1 98.3 96.4 100 1.3202
SNN with time-varying 54:2 98.9 97.2 100 0.7225
weights without GA
SNN with time-varying — 54:2 96.3 98.7 100 0.7225
weights with GA
SpikeProp [192] 199:25:2 89.0 86.5 3000 27.30
SWAT [196] 198:2574:2 86.5 90.0 500 503.79
TMM-SNN [205] 204:23:34:2 98.7 92.4 246 25.17
Ionosphere WOLIF [199] 100:1 94.4 90.6 500 -
SEFRON [198] 199:1 97.0 88.9 100 2.1686
SNN with time-varying 198:2 97.1 91.5 100 0.8147
weights without GA
SNN with time-varying 198:2 99.5 94.3 100 0.8147
weights with GA
SpikeProp [192] 50:10:3 97.4 96.1 1000 9.01
SWAT [196] 16:208:3 95.5 95.3 500 34.77
TMM-SNN [205] 24:4:7:3 97.5 97.2 94 1.41
Iris WOLIF [199] 13:1 94.1 95.1 500 -
SNN with time-varying — 24:3 99.6 95.3 100 0.2626
weights without GA
SNN with time-varying 24:3 100 96.5 100 0.2626

weights with GA

the SpikeProp, SWAT, TMM-SNN, and SEFRON is obtained from [198, 218], while
the computational time for our methodology with and without GA is conducted in
MATLAB 2021b using a 64-bit operating system with Windows 10 OS in a CPU with
4 cores, 16 GB memory, and 3.6 GHz speed. For a fair comparison, we reproduce the
computational time of SEFRON on our hardware and calculate the performance ratio
of the computational time for SEFRON between our hardware and the one used in
[198, 218]. Then, we use the SEFRON as an intermediary to estimate computational
time for other methods on our hardware through the performance ratio.

It is shown in Table 3.4 that the SpikeProp, SWAT, and TMM-SNN require many
hidden neurons to achieve a testing accuracy above 85% on Ionosphere, Breast
cancer, and Iris benchmarks, whereas our method achieves comparable performance
with fewer neurons. Consequently, the larger SNN architectures of those methods
result in significantly higher computational time used per training epoch compared
to our method. In the case of Ionosphere dataset, the SpikeProp algorithm achieves
89% training accuracy and 86.5% testing accuracy using 25 hidden nodes and 3000
epochs, taking 27.3 seconds per epoch. In contrast, our methodology achieves a
significantly higher training accuracy of 99.5% and testing accuracy of 94.3%, using
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no hidden nodes, significantly fewer epochs, and lower computational time per
epoch. For the difficult binary classification problem of Liver disorders, our method
requires fewer epochs, fewer neurons, and less computational time to achieve similar
accuracy to the TMM-SNN. This indicates that the time-varying weight SNN, trained
using our proposed methodology, achieves performance comparable to that of an
SNN with a larger network architecture while requiring less computational time.
Notably, when the GA is not utilised, there is a noticeable decline in performance.
This underscores the importance of our proposed global optimisation approach in
determining the network parameters and highlights its significant contribution to
the effectiveness of our method.

Compared with the WOLIF in which its network is designed with constant weights
and without hidden layers, both of our method configurations (with and without the
GA) use a lower number of epochs to achieve higher accuracy for Ionosphere, Breast
cancer and Iris benchmarks. With the global optimisation using GA, our method
demonstrates approximately 2% improved accuracy on average from the WOLIE
However, the WOLIF demonstrates the highest accuracy in Liver disorders dataset
among the methods. The training time for the WOLIF is not available and, therefore,
is not included in the table.

Compared to SEFRON on benchmarks for Liver disorders, Breast cancer,
Ionosphere, our proposed SNN-based methodology achieves higher classification
accuracy regardless of the use of a GA. With the same number of epochs
and a similar architecture, our method also consumes less training time per
epoch. This improvement indicates that backpropagation can effectively train an
SNN with time-varying weights, offering higher classification accuracy with lower
computational cost compared to the STDP-based learning rule. Additionally, when
our method employs global optimisation using GA, it achieves an average accuracy
improvement of approximately 5% over SEFRON. Note that the SEFRON cannot
directly be tested using the Iris benchmark as the network is applicable only for
binary classification due to the use of a single output neuron, whereas we employed
more output neurons.

3.7. SPIKING NEURAL NETWORK-BASED METHODOLOGY

WITH SQUAT DETECTION

With its promising performance on classification, this section presents the
applicability of an SNN with time-varying weights having no hidden layers and our
proposed methodology to solve a complex spatiotemporal problem presented in
squat detection.

3.7.1. MEASUREMENTS

Data used in this chapter were obtained from multiple ABA measurements mounted
on a measuring train in a track section measured at almost constant speed in a range
between 100 and 110 km/hr. The sampling frequency of the ABA measurements
was 25.6 kHz. The information was acquired from accelerometers installed in both
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longitudinal and vertical directions and from the left and the right wheels of the
leading and trailing wheelsets [3, 134]. We repeated the measurements and both are
used in the analysis.

The ABA measurements and field validation campaigns were conducted in 1) the
track between Zwolle and Meppel, the Netherlands and 2) the track between Lulea
and Narvik, Sweden. The measurements captured responses from healthy rails,
welds, insulated joints, switches, and squats (light and severe). Our measurements
are labelled according to observations and fieldwork. The locations of insulated
joints, welds, and switches are known. The responses of insulated joints and switches
are removed from the analysis as their locations are known and their degradation
mechanisms have particular characteristics that are possible to analyse. As squats
can initiate from welds, our analysis includes the responses of welds for both welds
with squats and welds without visible squats.

3.7.2. IMPLEMENTATION DETAILS

A sensitivity analysis on the length of the ABA signals used is performed for both
measurements. For the measurements from the Netherlands, the analysis suggests
that using the ABA signals covering a distance of 78 cm yields the best predictive
performance in terms of detection accuracy for the particular measurements of light
squats considered in this case study. This performance is obtained with the sliding
window of length equals to the distance of 8 and 4 centimetres for the vertical
and longitudinal ABA signals, respectively. For the measurements from Sweden, the
analysis suggests using the ABA signals covering a distance of 100 cm with the
sliding window of length equals to the distance of 10 and 5 centimetres for the
vertical and longitudinal ABA signals, respectively.

For each case study, the SNN is trained to classify whether or not a given rail
segment contains squats. Therefore, our problem consists of a class of non-defective
rails, referred to as Class 1, and a class of rails with squats, referred to as Class
2. For Class 1, the samples include rails at welds and healthy rails, whereas Class
2 includes rail samples with light and severe squats. For the Dutch case study,
the dataset contains a total of 944 rail samples, of which 824 samples are labelled
as non-defective rails and 120 samples are labelled as rails with squats. For the
Swedish case study, the dataset contains a total of 1222 rail samples, of which 1068
samples are labelled as non-defective rails and 154 samples are labelled as rails with
squats. In railway applications, labelled data are limited due to the complexity of
the labelling process. For instance, the correct label of one defect, particularly for
early-stage defects, requires an analysis of locations and a confirmation from multiple
data sources because of their subtle development and these early-stage defects are
frequently overlooked by human observers or video cameras. Additionally, railway
tracks involve hundreds of kilometres, and fieldwork has limited access. Moreover,
diverse local infrastructure conditions, track dynamics, and stochastic variables make
the labelling process more difficult. As a result, assigning class labels is a laborious
and time-consuming process. For the model training, each of the datasets is divided
into the training and test sets with the ratio of 70:30, and 10-fold cross-validation is
performed, in which 90% of the training set is used to train the SNN and the other
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10% are used for validating the trained model. The trained model is then tested with
the holdout test set to evaluate its performance for squat detection.

3.7.3. IMBALANCED DATASET

Conventional supervised methods rely extensively on balanced datasets between
classes to guarantee their performance. In some railway infrastructures, it is
extremely difficult to obtain a wide variety of class information for defects. That is
the case when the inframanager conducts preventive grinding campaigns. In the
cases reported in this chapter, the dataset used for training our model is imbalanced;
that is, examples of healthy rails are abundant. Moreover, not only defects but
healthy data are also difficult to label. This is because of different rail behaviours at
different locations, the time-varying characteristic of railway infrastructure conditions
and various different stochastic variables.

To deal with the situation of imbalanced data, clustering can be exploited to
construct the balanced data set by reducing the number of the majority classes
[219-222] or oversampling the minority classes [223, 224]. Transfer learning is
another approach that researchers use to transfer learned parameters from a domain
of balanced datasets to another one whose datasets are imbalanced [115-119, 225].
To show the effect of the imbalanced dataset on the performance of our method, a
sensitivity analysis is done by considering different percentages of faulty data in the
training set. By reducing the number of the healthy class, we consider five different
percentages of faulty samples: 1) 13%, 2) 17%, 3) 25%, 4) 50%, and 5) 67%. To obtain
model performance, we follow the feature engineering described in Section 3.4 and
obtain the 54 frequency-based representations of the measured ABAs at rails. After
encoding these features into spikes, the SNN architecture for this problem constitutes
54 x 6 = 324 input nodes and 2 output nodes. Following our SNN-based methodology
(see Figure 3.6), Figure 3.10 reports an averaged classification performance obtained
from the training set of each case. It is observed that detection accuracy for
defects improves when a higher percentage of defective samples is included in the
training set. However, for this experiment, total classification accuracy and detection
accuracy for healthy samples degrade as the model is trained with an insufficient
amount of data.

3.7.4. RESULTS

Firstly, the capability of our SNN-based methodology to solve the problem of squat
detection is compared with other methods using ABA measurements from the
Netherlands in terms of detection accuracy and computational cost. Then, we show
its applicability in a railway line from Sweden. For both case studies, we follow the
datasets described in section 3.7.2.

EVALUATION METRICS

The effectiveness of the proposed methodology is assessed based on the following
metrics:




78 3. SNN WITH TIME-VARYING WEIGHTS FOR RAIL SQUAT DETECTION

100 D
& 904
=
2 -
S 80f *=
Q
Q
<
B 70t
)
s
o —*—Class 1
< 60 | —e—Class 2
—x -Total
%
50 : : :
13 17 25 50 67

Percentage of faulty samples

Figure 3.10: Effect of the percentage of faulty samples in the training set.
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where true positives (TP) are the number of correctly classified defects, false positives
(FP) are the number of normal samples classified as defects, and False Negatives
(FN) are the number of misclassified defects. Specificity is a metric for the detection
accuracy of non-defective rails (Class 1), while Recall is a metric for the detection
accuracy of defective rails (Class 2). FA denotes false alarm or false positive rate.

CLASSIFICATION PERFORMANCE AND COMPUTATIONAL COST

Following our SNN-based methodology (see Figure 3.6), the optimal set of
hyper-parameter values for the Dutch railway line is: T = 3, Tgim = 4, 74 =246, 0 =
0.21, n=0.000248, and 7 = 3.44. By setting the hyper-parameters as described, the
experimental results show that our SNN-based methodology yields an accuracy of
93.12% for non-defective rails (Specificity) and 97.14% for squat detection (Recall).
The methodology can detect 100% of severe squats and 95.83% of light squats. It
achieves the highest F1l-score at 79.07% with an FA of 33.33%. Figure 3.11a) shows
an example of predictions for the Dutch railway line. The length showcased here is
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1.03 km, with 30 locations of squats reported. Our method predicts 42 locations
of squats, of which 29 locations are correct, one squat location is missed, and 13
locations are false alarms. The field validation has indicated that these false alarms
are at welds. With the high magnitude of ABA responses, the method classified them
as defects. Further research is needed to differentiate welds from defects directly
from ABA responses. Still, the location of welds can be registered in advance by
inframanagers and verified with other measurement sources. Thus, welds can be
excluded from the analysis of the detection of isolated defects. An example of a false
alarm is given and discussed in Section 3.7.6.

PP False alarm (weld)

£ 200
< o % w
2720() S

ﬂ)

a) Class1¢- ¢ > b

The Netherlands

o 400~

b)

== Healthy

*  Defects
——© False alarm
—© Predicted defect

250

400 4{‘0 " m
Hit (rail defect)

oy

Sweden
Q
2 L
: a3
> f—T— 1T ¥
2

o vl
Figure 3.11: Detection of rail squats.

In order to justify its applicability of squat detection, the performance of our
method is compared with a wavelet-based method [134], support vector machine
(SVM), and neural network-based methods. SVM is included as it has a simple
architecture. For the NN-based methods, Gated Recurrent Unit (GRU) and artificial
NN (ANN) are selected. Although more layers can be used to increase the predictive
performance of the models, GRU and ANN are designed with a single hidden layer
to showcase a comparison with our SNN which contains no hidden layers. To
evaluate the performance of the SNN with time-varying weights and no hidden layer,
a comparison with the SEFRON [198] and a constant weights version of our method
is also presented.

For the wavelet-based method presented in [134], the scale-averaged wavelet power
(SAWP) was proposed to detect squats in which an empirical constant C related to
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the mother wavelet and a constant threshold are chosen to maximise the hit rate
and reduce the number of false alarms. In this chapter, the constant C is optimized
and set to 35 and the same threshold of 0.5 m?/s* is used to detect squats. For
the other methods, the same implementation details described in Section 3.7.2 are
followed and sensitivity analysis of hidden nodes used is performed.

Table 3.5 presents the comparative results of a squat detection obtained from
the selected methods. It can be seen that all the methods achieve reasonable
accuracy for non-defective rails (Class 1). For the detection accuracy of squats (Class
2), particularly light squats, SNN-based approaches, including SEFRON, SNN with
constant weights, and SNN with time-varying weights, demonstrate higher accuracy.
Among these, our SNN-based method achieves the highest detection accuracy for
squats, particularly light squats. This benefit comes from its ability to produce
time-encoded outputs that resemble the continuous scanning of ABA measurements.

The wavelet-based method can detect approximately 80.0% of light squats. This
is consistent with the results reported in Molodova,Li in which light squats can be
detected using ABA measurements with accuracy between 78% to 85%. The SVM
and NN-based methods using a single hidden layer demonstrate similar detection
accuracy for light squats. Their accuracy is less than 60.0%. Among all the methods,
the SVM shows the lowest percentage of false alarms. Even though our SNN-based
method produces more false alarms than the SVM, our SNN-based methodology
has shown an ability to capture subtle changes in the responses of light squats in
ABA signals using simple network architecture. Additionally, our method achieves
a significantly higher Fl-score, indicating a superior balance between precision
and recall. Compared with the SEFRON, an SNN with the time-varying weights
trained by our methodology achieves 8.3% higher accuracy for the detection of
light squats but produces 2.6% more false alarms. Moreover, the comparison with
the constant weights demonstrates that SNN with the time-varying weights trained
by our methodology has improved accuracy in solving the complex spatiotemporal
pattern presented in the light squat detection problem.

Table 3.6 presents a comparison of the computational time, measured as the
average time taken to complete one epoch, for our SNN-based methodology and
other methods using ABA measurements from the Netherlands. Our method
outperforms the others in terms of computational efficiency. Despite having a
single hidden layer, the NN-based methods, i.e., GRU and ANN, require the most
time per epoch due to the complexity of their network structures. Among the
simpler architectures, SVM consumes more computational time than both SEFRON
and our method. The SNN-based methods require less computational time,
highlighting their efficiency by utilising temporal information instead of numeric
values. Notably, our method is faster than SEFRON, underscoring the effectiveness
of using back-propagation over the STDP learning approach.

For the measurements from Sweden, the optimal set of hyper-parameters used in
its SNN model is: T = 3, Tgim = 4, i =04, 0 = 0.1, 1 =0.00085, and 7 = 3.76. By
setting the hyper-parameters as described, our SNN-based methodology can be used
to detect squats in a railway line from Sweden with an accuracy of 95.65% with
8.33% false alarm rate. Figure 3.11b) illustrates the selected portion from the Swedish
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Table 3.5: Comparative results of our SNN-based methodology with other methods
using the ABA measurements from the Netherlands.

Method Architecture Detection accuracy (%) Precision F1-score FA
Class 1  Class 2 Light Severe (%) (%) (%)
(Spec.) (Recall) squats  squats

- Wavelet-based - 87.87 85.71 79.17 100.0 50.0 63.16 50.0

method Molodova

- SVM with non- - 98.38 60.00 45.83 90.91 84.0 70.0 16.00

linear RBF kernel

- GRU 54:150:2 85.00 68.57 58.33 90.91 80.0 73.85 20.00

- ANN 54:450:2 77.50 68.57 58.33 90.91 72.72 70.59 27.27

- SEFRON [198] 324:1 95.14 91.43 87.50 100.0 69.23 72,97 30.77

- SNN with constant 324:2 93.12 88.57 83.33 100.0 64.58 74.69 35.42

weights

- SNN with time- 324:2 93.12 97.14 95.83 100.0 66.67 79.07 33.33

varying weights

Table 3.6: Comparison of computational time obtained from our SNN-based
methodology and other machine learning methods using the ABA
measurements from the Netherlands.

Method Architecture  Avg. time per epoch (s)
SVM with non-linear RBF kernel - 25.2488
GRU 54:150:2 145.6138
ANN 54:450:2 34.0459
SEFRON [198] 324:1 4.2244
SNN with time-varying weights 324:2 1.9222

railway line with a length of 0.3 km, where 10 locations of squats are reported. The
model has detected 12 locations of squats, of which 10 locations are correct, one
location is missed, and 2 locations show as false alarms. Similar to the performance
obtained for the Netherlands results, the Swedish railway line data demonstrate the
applicability of our SNN-based methodology for rail squat detection. Similar to the
measurements from the Netherlands, the locations of false alarms are at welds that
are not in a good condition.

3.7.5. SCALABILITY

This section evaluates the scalability of the proposed SNN-based methodology as
data complexity increases. The railway data from the Netherlands is exploited and
the data complexity is reflected through increased dimensionality and utilisation
of training data from both the time and time-frequency domains. Detecting rail
squats from high-dimensional time-domain ABA signals can be challenging due
to significant variability in dynamic behaviours at different track locations, which
are affected by local properties of rail infrastructures and changing operational
conditions of trains. Incorporating a longer signal length includes more variability of
dynamic behaviours, complicating the analysis. Consequently, time-domain analysis
can be more sensitive to variations, which may obscure important patterns related
to rail squat dynamics. Therefore, the effect of increased data complexity on
performance is investigated through five cases with different feature dimensions.
The first three cases address data complexity in the frequency domain by selecting
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Figure 3.12: Effect of data dimensions on the performance of our SNN-based method
in terms of a) convergence rate over 100 epochs and b) computational
time.

three different frequency ranges to describe ABA signals: 200-2000 Hz resulting
in 54 features, 50-4000 Hz resulting in 102 features, and the full frequency range
resulting in 226 features. These frequency-based features are obtained as described
in Section 3.4. The last two cases focus on the temporal aspect reflected by different
rail segment lengths. In these cases, we simulate scalability by increasing the length
of the time series corresponding to feature dimensions of 1000 and 2000. The
simulations are repeated 10 times, and the performance of the method is evaluated
in terms of convergence and computational efficiency across varying complexities.
The reported values represent the average results from these ten repetitions.

Figure 3.6 illustrates that both the computational time and the convergence rate
of the proposed SNN-based methodology are affected as the dimensionality of the
data increases. For 54 and 102 features, the convergence is relatively fast, with
loss decreasing rapidly within the first 20 epochs and stabilising thereafter as seen
in Figure 3.12(a). When the number of features increases to 226, the convergence
rate slows slightly compared to 54 and 102 features. However, the loss still reduces
to a low value, demonstrating that the method can handle moderate increases
in dimensionality without significant degradation in performance. The training
time per epoch for 54, 102, and 226 features remains relatively low, with a slight
increase as the number of features rises from 54 to 226, as shown in Figure 3.12(h).
However, when the feature dimension is significantly increased to 1000 and 2000,
the convergence rate is notably slower, resulting in higher loss values. Moreover,
the training time per epoch escalates dramatically, as depicted in Figure 3.12(b).
This indicates that while the method can still learn from high-dimensional data,
the increased complexity from using time-domain features impairs its efficiency and
effectiveness.

3.7.6. EXPLAINABILITY FOR REPRESENTATION LEARNING

Researchers have been working on developing models with a good balance
between explainability and accuracy [226-228]. To achieve the explainability of
squat detection, wavelet analysis is typically employed due to its direct physical



3.7. SPIKING NEURAL NETWORK-BASED METHODOLOGY WITH SQUAT DETECTION 83

interpretation. However, due to multiple sources of variability in the ABA responses,
its accuracy is inferior to NN-based models (see Section 3.7.4). On the other hand,
even though using NN-based models can achieve high accuracy, they are blackboxes
and their prediction under new measurement conditions can be unreliable and not
explainable.

To address the explainability of squat detection using SNN, we investigate 1) how
well the SNN learns the data representations, 2) how the decision of the SNN is
obtained, and 3) how the representative features learned by our methodology are
favourable for early squat detection. Measurements from the Dutch railway are used
as a showcase.

VISUALISATION OF OUR FEATURES USING T-SNE

For demonstration purposes, we perform a t-Distributed Stochastic Neighbor
Embedding (t-SNE) of the representative features in three dimensions using the
Euclidean distance metric. Figure 3.13 shows the cluster assignments obtained
with our SNN-based methodology. The visualisation demonstrates a minimal
overlap between the class of non-defective rails (blue) and the class of rails with
squats (yellow) in the three represented dimensions. As features that are close in
the high-dimensional feature space are also close in the three t-SNE represented
dimensions, it infers that a reasonably good separation of clusters is given by our
method. This supports that the SNN learns well the represented data.

Feature 3

40
20

-20
Feature 2 40 2 2 Feature 1

Figure 3.13: The three-dimensional t-SNE embedding of the representative features
for our SNN-based methodology. The class of non-defective rails is
illustrated in blue and the class of rails with squats is illustrated in
yellow.

VISUALISATION OF REPRESENTATION LEARNING

Figure 3.14 illustrates the time-varying weights for Class 1 and Class 2 after learning
with our methodology. It is seen that the values of the synaptic weights inside box A
fluctuate as time varies. In box B, the synaptic weights for Class 1 switch in sign
from negative to positive. The same behaviours are also observed for Class 2 but
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Figure 3.14: Visualisation of the time-varying synaptic weights from the input layer
to the output layer after learning with our method for squat detection.

with small variation. The key characteristic that allows the variations in the synaptic
weights is the use of an exponential decay function, as defined in (3.23). The
exponential function plays an important role in controlling the weight variations,
Awfjﬁe(tf), with the parameter o determining the range of influence over time.
This dynamic adjustment allows the method to effectively track changes in synaptic
weights within a specific time window. Consequently, the variations in synaptic
weights facilitate both excitatory and inhibitory postsynaptic potentials depending
on the timing of presynaptic spikes tf. Without the exponential decay function, the
weights remain constant over time. This results in inferior performance compared to
using time-varying weights, as evidenced by the results in Table 3.5. Therefore, the
success in squat detection is attributed to the implementation of the exponential
function within the time-varying weight framework.

To provide information about which input features have contributed to the
respective decision of the SNN-based methodology, the postsynaptic potentials for
Class 1 and Class 2 are evaluated over the simulation time using the time-varying
synaptic weights of the corresponding class and the spike response in order to
determine the membrane potentials of the corresponding class. In the following,
we illustrate how different representations of rail dynamics affected the performance
of the detection of squats. The colour mapping of the postsynaptic potentials is
symmetric around 0 (green), from dark-blue (strong inhibitory) to dark-red (strong
excitatory). The change in sign from positive to negative reveals that our SNN can
capture both excitatory and inhibitory states within a single synapse.

Figures 3.15 and 3.16 demonstrate a correct detection of a weld and a light squat
by our SNN-based methodology. It is observed in Figures 3.15 (see D and F) and
3.16 (see H and J]) that, for both Class 1 and Class 2, the excitatory postsynaptic
potentials or positively activated parts of the SNN (red) increase towards the end
of the simulation time. However, the excitatory postsynaptic potentials of Class 2
increase relatively slower than Class 1.
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To determine the membrane potential of each class at a time instance, the
excitatory postsynaptic potentials are compensated with the inhibitory postsynaptic
potentials. If the measured ABA signals are at squats, their corresponding membrane
potential of Class 2 has to cross the threshold (represented by the dotted red line)
and emit the first spike. This infers that the membrane potential of Class 1 has to
be weaker positively activated (lower amplitude) than that of Class 2 at the output
spike time.

From our observations, the inhibitory postsynaptic potentials or deactivated parts
of the SNN (blue) appear to influence the decision. It is shown that the inhibitory
postsynaptic potentials in Figure 3.16 (see I) are more pronounced and remain
deactivated towards the end of the simulation time in Class 1, compared to those in
Figure 3.15 (see E). The final membrane potential of Class 1 in Figure 3.16 is then
weaker positively activated than that in Figure 3.15. Therefore, the measured ABAs
in Figure 3.16 are classified as a rail at squats.

Figure 3.17 provides an analysis of rail responses measured by ABAs at a weld that
are misclassified by our SNN-based methodology. It is observed that the inhibitory
postsynaptic potentials are more pronounced towards the end of simulation time
in Class 1 as shown in Figure 3.17 (see L). The wrong behaviour of inhibitory
postsynaptic potentials in Class 1 is a possible reason that leads to misclassification.

EXPLANATION OF THE REPRESENTATIVE FEATURES

Figures 3.15 and 3.16 show that the spike response of the encoded input features
from different classes are different. The response of all input spikes from the
ABA signals of non-defective rails increases uniformly over the simulation time, as
illustrated in Figure 3.15 (see C). In contrast, Figure 3.16 (see G) shows that there
are input spikes from the measured ABA signals at squats whose response increases
dominantly. These input spikes are representative features from both vertical and
longitudinal ABA signals that are associated with the high-frequency band between
1000-2000 Hz. According to [3], this frequency band is a frequency characteristic
of light and severe squats. When making a decision, the features from this band
are informative for evaluating squats. Figure 3.17 (see K) assures the finding as the
wrong behavior of the spike responses leads to misclassification. This infers that our
representative features are favourable for early squat detection as the variation of
energy of light squats in the high-frequency band is more pronounced using an SNN.

3.7.7. DISCUSSION

The proposed SNN-based methodology achieves an improvement in the detection
accuracy of light squats. However, it still suffers from misclassification from the
measured ABA signals at non-defective rails into the class of rails with squats. At
these non-defective rails with false detection, it is observed that our method provides
consistent squat predictions in signals with different measurements. For instance,
squats are predicted by our method in the signals of all wheels from the left and the
right rails with the first measurement, whereas squats are predicted in the signals
of all wheels from the left rail and in the signals of one out of two wheels from
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the right rail with the second measurement. This suggests that there might be
some invisible rail defects located at these healthy rails. Further experiments can be
conducted at those rails where a false detection is shown.

Further improvement on the false negative and positive rates is needed because
they have an impact on maintenance costs. New methods that can support reducing
the uncertainties coming from the labelling process are needed. As the presence
of invisible defects is highly affected by the labelling process, having historical
information allows investigating the complete time evolution of a defect, from the
moment it was first detected by the system until the latest stage of its evolution.
This can be obtained using the advancement of ABA measurements in which
accelerometers can be mounted on operational trains and multiple measurements
can be easily conducted over the same track and over different time periods.

Moreover, our SNN-based methodology has exhibited difficulty in differentiating
between the ABA responses of welds and squats. An underlying reason for the
misclassification is that a weld and a squat can be located in close proximity
in certain rail sections. Consequently, the rail response of squats influences the
measured ABAs at welds. Additionally, welds can be healthy (with ABA signals
resembling healthy rail) or suffer from degradation (with ABA signals resembling
local defects). This poses a challenge for our method to distinguish by using solely
ABA measurements. Still, the location of welds is known, and they are visible, so
they can be obtained and verified with measurement campaigns and technology
such as video images. As monitoring data of rail health conditions are also available
in other formats, e.g. images, our future research will use these monitoring data as
well. Therefore, the fusion of information obtained from different data types will be
studied to provide not only more accurate early detection of rail surface defects but
also fewer false alarms.

Even though the frequency characteristics of squats in ABA signals are consistent
and typically appear in a frequency band of 200-2000 Hz for the train speed of 100
km/hr, making the method potentially applicable across different railway systems,
variations in environmental conditions, infrastructure layouts, and operational
characteristics can affect signal prominence. For example, lower loads and speeds
produce less pronounced responses. To ensure generalisation, careful adaptation is
required. This includes preprocessing and filtering to denoise and enhance signal
prominence, and adjusting model parameters with new data to minimise false
alarms and ensure accurate detection across different systems.

3.8. CONCLUSIONS

This chapter proposes a spiking neural network with time-varying weights using no
hidden layers and its training methodology based on backpropagation. Testing on
four UCI benchmarks, the accuracy obtained from our SNN-based methodology is
competitive to other state-of-the-art SNNs when dealing with nonlinear classification
problems for not only binary but also multiple classes. Using field measurements
from the Netherlands and Sweden, the results from a squat detection have shown
that our method is applicable of solving a complex spatio-temporal problem in
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railway. We have improved the detection accuracy of light squats from the traditional
methods which is of 78-85% to more than 93%. Furthermore, our method can be
used to provide interpretability. The spike responses, postsynaptic potentials, and
membrane potentials have offered an explainable way to analyse the ABA signals.
These internal spike behaviours highlight a correspondency with high frequency
band between 1000-2000 Hz of the detection problem of squats and offer an ability
to capture subtle changes in the responses. Despite its success, the effectiveness
of our SNN-based methodology can be affected by factors such as class imbalance,
noise levels, and uncertainty in distinguishing subtle behaviours, such as rail
dynamics. Future research can consider enhancing the robustness and effectiveness
of the SNN-based methodology in handling these data characteristics by explicitly
including possible stochasticity in the objective function and the robust parameters
in the design.

Compared to current state-of-the-art methods, the SNN-based approach excels
in situations with limited training data and complex spatiotemporal problems.
These advantages arise because SNNs process data as discrete events (spikes) and
capture information through spike timing patterns. Additionally, the proposed
SNN incorporates time-varying weights, allowing the variations in the synaptic
weights as time varies. This capability allows SNNs to model temporal sequences
and dynamic behaviours where the timing and sequence of events are critical,
such as in rail squat detection. The use of a global optimisation approach for
determining network parameters further enhances the performance of our method
as the approach helps in mitigating overfitting and avoiding local minima. However,
the proposed SNN-based methodology has limitations. The SNN is not explicitly
designed to address class imbalance, noise, and uncertainties. However, it is
interesting for further research to analyse how explicitly the SNN can tackle these
issues and evaluate its performance compared to the existing methods, such as
generative-based, probabilistic, and transfer learning methods. Understanding these
limitations is essential for optimising the application of the proposed method and
improving its performance and robustness across various datasets and conditions.
Additionally, a hybrid approach that combines those state-of-the-art methods with
SNNs could further enhance performance in jointly tackling issues presented in the
problems.

3.9. FUTURE RESEARCH DIRECTION

Further research lines can include a technique to alleviate the issue of imbalanced
dataset and the adaptations for using SNN considering multiple measurements
from different sources and data types. An evaluation of the impact of different
time-varying functions can be considered. The use of fuzzy interval methods is
being explored to explicitly capture uncertainties from the training process, so to
better understand the behaviour of an SNN-based classifier when dealing with rail
data. In addition, advancements in machine learning, signal processing, and railway
engineering can enhance the development of rail defect detection techniques [132].
For instance, deep learning models, such as convolutional neural networks (CNNs),
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can enable autonomous feature extraction, alleviating reliance on expert knowledge
and improving detection accuracy. Applying transfer learning techniques can help
models adapt to new conditions by using knowledge learned from different railway
networks. This allows for defect detection in environments where models have not
been previously trained or tested. Implementing advanced denoising algorithms
can enhance the detection of subtle defects by improving the signal-to-noise ratio.
This makes it easier to identify and address issues in their early stages. Deploying
high-frequency sensors, such as ABAs, on operational trains can enable continuous
monitoring of rail infrastructure, enhancing detection capabilities and predictive
maintenance. Incorporating additional monitoring data sources and measurements
can be considered with the development of data fusion techniques to enhance the
accuracy and reliability of rail defect detection.
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Figure 3.15: Visualisation of correctly classified ABA responses at a weld by the
SNN-based methodology. In the membrane potential graphs, the blue
line represents the membrane potential v(f). The red dotted line
indicates the threshold for neuron firing. When the membrane potential
crosses this threshold, the neuron fires a postsynaptic spike, which is
marked by blue star symbols on the graph.
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Figure 3.16: Visualisation of correctly classified ABA responses at a light squat by
the SNN-based methodology. In the membrane potential graphs, the
blue line represents the membrane potential v(¢f). The red dotted line
indicates the threshold for neuron firing. When the membrane potential
crosses this threshold, the neuron fires a postsynaptic spike, which is
marked by blue star symbols on the graph.
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Figure 3.17: Visualisation of misclassified ABA responses at a weld by the SNN-based

methodology. In the membrane potential graphs, the blue line represents
the membrane potential v(¢). The red dotted line indicates the threshold
for neuron firing. When the membrane potential crosses this threshold,
the neuron fires a postsynaptic spike, which is marked by blue star
symbols on the graph.






UNSUPERVISED REPRESENTATION
LEARNING FOR MONITORING RAIL
INFRASTRUCTURES WITH
HIGH-FREQUENCY MOVING
VIBRATION SENSORS

Nowadays, rolling stock can be equipped with high-frequency vibration sensors
to continuously monitor rail infrastructures and accurately detect defects. These
moving sensors generate a massive amount of data that contains multiple local
transient dynamic responses with short signal duration. These responses are
affected by noise and strong variations across different locations, complicating the
identification of the dynamic responses. This leads to a complex and large amount
of unlabeled data. This chapter proposes an unsupervised representation learning
methodology to automatically capture the dynamic responses of rail infrastructures
and provide insights into the underlying characteristics of their conditions. It aims for
exploratory purposes, which allows the analysis of vibration signals in new operating
environments where previous data about rail infrastructure health conditions are
unavailable. A collaborative optimization process that synchronizes the empirical
mode decomposition (EMD) with the parameters of a convolutional autoencoder (CAE)
is presented. The CAE is trained on demodulated signals at each EMD level considering
normal condition data to generate representations that ensure reconstruction quality
and effectively differentiate between normal and abnormal conditions. In this chapter,
a Gaussian mixture model is used to showcase the effectiveness of the learned

This chapter has been submitted for publication as: Phusakulkajorn, W., Zeng, Y., Li, Z., Nuiez,
A., Unsupervised Representation Learning for Monitoring Rail Infrastructures with High-Frequency
Moving Vibration Sensors.
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representations for rail infrastructures. Applied to validated axle box acceleration data
for rail defect detection and train-borne laser Doppler vibrometer data for rail fastener
monitoring, our method outperforms other variants of autoencoder-based models and
the wavelet-based CAE in accurately identifying the conditions. It achieves an average
improvement of 16% with ABA data and 21% with LDV data.



4.1. INTRODUCTION 95

4.1. INTRODUCTION

TRUCTURAL health monitoring plays a pivotal role in ensuring the safety and
Sintegrity of rail infrastructures. Through the development of various sensing
technologies and data analytics techniques, defects can be detected timely, thus
allowing corrective and predictive maintenance to prevent catastrophic accidents.
The collection and analysis of data further enable the digitalization of railway
transportation systems. Among various monitoring technologies, vibration-based
monitoring is an effective approach to characterize a wide range of dynamic
behaviors and properties of rail infrastructures [229-233].

Vibration-based monitoring can be implemented by distributing sensors on rail
infrastructures and measuring their vibrations induced by moving train loads, such
as in [234, 235]. Distributed sensors can record structural vibrations at different
locations over time, thus providing rich data for parameter estimation and health
assessment. Numerous methods have been developed to analyze such signals,
including signal processing methods [236, 237] and machine learning methods
[238]. However, it is cost-prohibitive to apply distributed sensors to large-scale
transportation systems, such as railway lines spanning thousands of kilometers.

Vibration-based monitoring of rail infrastructures with sensors on trains in
operation is gaining increasing prominence. In [239-243], accelerometers are utilized,
while in [244-246], vibrometers are employed to monitor various components and
properties of railway track structures. In [247, 248], smartphones are used for
evaluating the quality of railway tracks. These technologies enable the dynamic
behaviors at different locations of an infrastructure to be measured in a single run,
which is highly preferred for large-scale monitoring. These technologies generally
pursue monitoring under the operational speed and load of the rail network to avoid
disturbance to train traffic and capture structural response under realistic loading
conditions.

Compared to the use of distributed sensors, vibration-based monitoring with
moving sensors poses several challenges for data analysis and anomaly detection.
The first challenge is significant variability in dynamic behaviors at different
locations, which is affected by local properties of rail infrastructures and changing
operational conditions of trains. For example, Fig. 4.1 depicts a portion of a vibration
signal measured by an axle box accelerometers (ABA). This signal contains rail
dynamics that vary along the track, which are evident by the vibration patterns of
the weld and surface defects, highlighted as examples in the figure. Additionally, the
green boxes in the figure represent the ABA signals from nearby locations that exhibit
significantly different amplitudes in their frequency contents. This variability across
large-scale infrastructures complicates the identification of anomalies, necessitating
advanced techniques to isolate them.

The second challenge arises from the need to segment signals for high-resolution
localization of defects. This segmentation process results in short-duration signal
fragments. For instance, when a train travels at a speed of 100 km/h, it covers a
distance of 1 meter in 36 milliseconds. As train speed increases, the time duration
over a specific distance decreases accordingly. A shorter duration of the signals
makes it more difficult to achieve accurate and reliable defect detection because less
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information is available within the segment. Therefore, a high sampling frequency
is necessary to capture the variations of dynamic behaviors within these signals,
resulting in an increased number of data points within a given distance. For
example, ABA data are collected with a high sampling frequency of 25.6 kHz in [134],
while the sampling frequency of a train-borne laser Doppler vibrometer (LDV) is
102.4 kHz in [244]. This generates large volumes of data with short durations and
high frequencies, requiring effective and efficient methods to process them.

The third challenge concerns disturbances and noise from multiple sources,
including vehicle vibrations, track irregularities, and measurement noise. Fig. 4.2
shows an example of the train-borne LDV signal measured on rail fasteners where
severe noise is observed. The major source is the speckle noise due to the drastic
change of speckle patterns as the laser spot scans the rough surfaces [249]. The
speckle noise deteriorates the quality and usability of LDV signals. It obscures the
actual vibration patterns of defects and anomalies, making it difficult to detect
accurately. The mitigation of noise and disturbances is achieved with specialized
filtering algorithms in [245, 249].

The last challenge involves fuzziness in distinguishing between different dynamic
behaviors. For instance, when dealing with defects at the early stage of their
development, their responses in ABA signals are subtle and slightly different from
those of healthy rails, as seen from the dynamic responses of the small defect in
Fig. 4.1. These responses may not be apparent to human inspectors or traditional
detection methods. As a result, many samples fall within the ambiguous boundaries
between normal and abnormal conditions. These samples complicate the labeling
process and yield a substantial amount of unlabeled data, hindering the use of
supervised learning.

Conventionally, the above challenges are addressed by crafting data analysis
methods based on the knowledge and experience of experts in the physics of targeted
structures and defects, such as [245, 250]. However, with the increasing volume of
data, diversity of objects, and complexity of features, manual judgement becomes
less efficient, robust, and reliable. Alternatively, the advancement of unsupervised
learning has the potential to fill this gap [132].

Several unsupervised learning approaches have been developed to analyze vibration
data from distributed sensors, such as t-distributed stochastic neighbor embedding
(t-SNE) [251, 252], principal component analysis [253], K-means clustering [252],
tensor clustering [254], one-class support vector machine [255], and self-organizing
maps [256]. Deep learning has gained attention in addressing such problems
in recent years, and various auto-encoder (AE) variants have been developed for
feature learning. In [257-261], convolutional autoencoder (CAE) is exploited in
feature extraction and fault detection based on vibration signals. In [262], an
expectation-maximization algorithm with an adversarial autoencoder was used in
feature extraction for rotating machinery fault diagnosis. In [263], a one-dimensional
residual convolutional autoencoder was proposed in which residual learning played
a role in feature learning on 1-D vibration signals for gearbox fault diagnosis. In
[264], an unsupervised feature learning method for machinery health monitoring
was proposed using a generative adversarial networks model. In [265-267], a
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Figure 4.1: Example of a raw ABA signal containing various rail dynamics: a) weld,
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Figure 4.2: Example of a raw LDV signal containing severe noise.

method based on sparse filtering, an unsupervised two-layer neural network, was
proposed for fault feature learning from mechanical vibration signals. However,
all the aforementioned research focuses on vibration data measured by distributed
sensors. Given the challenges mentioned above, there is a very limited amount of
unsupervised learning methods developed to handle vibration data from moving
Sensors.

Therefore, this chapter develops an wunsupervised representation learning
methodology to extract features characterizing the dynamic behaviors of rail
infrastructures measured by high-frequency moving vibration sensors. The
methodology employs a collaborative optimization process that synchronizes
empirical mode decomposition (EMD) with the parameters of a CAE. EMD plays a
fundamental role in this method based on its advantage of adaptively separating
different frequency characteristics without the need for predefining each frequency
range [240, 268]. EMD offers the possibility to explore dynamic behaviors over a
broad frequency band while reducing the disturbance of measurement noise. The
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CAE then extracts features from vibration signals to characterize these dynamic
behaviors automatically. The latent features learned from the collaborative process
of EMD and CAE ensure reconstruction quality and distinguish between normal
and abnormal behaviors. This facilitates various analyses, including dimensionality
reduction, classification, clustering, and supports anomaly detection by identifying
deviations from the normal behavior pattern. The key contributions of this work are
summarized as follows:

° An unsupervised representation learning methodology is proposed to
automatically extract features that characterize dynamic behaviors of rail
infrastructures from vibration data that is noisy and short-duration obtained
from high-frequency moving sensors at different locations.

* A collaborative optimization process between EMD level and the parameters
of CAE is proposed for a generation of representations that demonstrate
reconstruction quality and can differentiate between rail infrastructures under
normal and abnormal conditions.

* Two field measurements with different targeted components, sensor types,
and operational conditions are used to demonstrate the applicability and
performance of the proposed methodology for monitoring rail defects using an
ABA and rail fasteners using a train-borne LDV.

The rest of the chapter is as follows. Section 4.2 presents fundamental knowledge
of the methodology used. Section 4.3 presents problem formulation and the
proposed framework. In Section 4.4, the proposed unsupervised representation
learning methodology is elaborated. Section 4.5 describes the real-world applications
used to showcase the methodology. The comparison of the proposed methodology
with different models from the literature and discussions are presented in Section 4.6.
The paper is concluded in Section 4.7.

4.2. FUNDAMENTAL KNOWLEDGE

4.2.1. EMPIRICAL MODE DECOMPOSITION

The EMD has been pioneered by Huang et al. [269] for adaptively representing
nonlinear and non-stationary signals. For a given signal x(¢), EMD decomposes x(f)
into a series of intrinsic mode functions (IMFs), denoted as c;(t), where i =1,2,...,1
and [ is the total number of IMFs, and a residual r;(¢) [270]. The EMD algorithm,
referred to as the sifting process, iteratively extracts IMFs based on the local maxima
and minima of the signal. At the end of the EMD process, the original signal x(¢)
can be expressed by a sum of IMFs and a residual component as [271]:

x(t) =

12

ci () +ry(1). (4.1)

1
=1
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4.2.2. CONVOLUTIONAL AUTOENCODER

A CAE is a type of autoencoder architecture that combines convolutional layers
with an autoencoder model [272, 273]. It aims at unsupervised learning of a
lower-dimensional representation from higher-dimensional data. The CAE network
comprises three main parts: encoder, latent representation, and decoder. The
encoder and decoder are designed using convolutional layers and can have several
hidden layers, making a deep CAE.

Given an input signal x(¢) and let denote the output of the convolutional layer
as zj, where [ ranges from 1 to L, in which L is the number of convolutional layers
designed in the encoder. The output of the encoder z; is a latent representation
of the input data x(¢), typically with reduced dimensions. The decoder takes the
latent representation z; and aims to reconstruct the original input x(¢). The decoder
consists of a stack of transposed convolutional layers. Let denote the output of the
k" transposed convolutional layer as u;, where k ranges from 1 to the number
of transposed convolutional layers K. The output of the decoder ugx = X(¢#) is the
reconstructed version of the input data x(¢). Mathematically, the process of encoding
and decoding in a CAE is given as follows:

lth

z] =a(wl *Z1_1 +bl), (4.2)
up = o (ve * ug—1 +ex), 4.3)

where * denotes the convolution operation, ¢ denotes an activation function, w;
and b; are the weights and biases of the I?" convolutional layer, vy and ey are the
weights and biases of the k‘" transposed convolutional layer.

4.3. PROBLEM FORMULATION AND THE PROPOSED

FRAMEWORK

Let x,(t) = a(p(t)) denote acceleration signals from ABA and x,(#) = v(p(t)) denote
velocity signals from LDV obtained from a positioning system at track position p(f)
and at time instance . For simplicity, we will represent these signals collectively as
x(t) throughout the rest of the chapter.

For a vibration signal x(#) obtained from a moving sensor collected with sampling
frequency f Hz and measuring speed s(f) m/s, this work assumes segmenting the
signal x(#) into a set 2 of M smaller segments containing  datapoints. The set 2 is
mathematically expressed as:

M

2= {xm(t) | L= tm-1)p+1r--» t(mfl)(erﬁr} (4.4)

m=1’
where x,,(f) denote the m‘" segment corresponding to the time instances between
tm-1p+1 and fun-1)p+p with time duration (= fon-1)p+p — tm-1p+1 and ¢ is the
number of datapoints used as a step size for moving the segment.

The signal segmentation can be done to allow overlapping, meaning ¢ < f. A
sensitivity analysis can also be considered to identify the appropriate time duration
{m suitable for the data analysis task. This is due to a need to balance between
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Figure 4.3: Framework for unsupervised representation learning.
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accommodating the characteristic response length and capturing sufficient detail for
the detection and localization of the targeted rail infrastructure. Given a targeted
rail infrastructure r, let f;, and t,, be the starting and ending time of its dynamic
response, and 7, =1, —1f, be the duration of this response. Additionally, let
o, Tepresent an additional time duration used to capture extra responses. The
appropriate segment length can be determined by minimizing the datapoints f
contained within each segment while finding an optimal #,, that ensures the
segments cover the critical dynamic response duration 7,. This optimization process
can be formalized into the objective function and constraints as follows.

min g, () (4.5)
ﬂvtar
subject to, VrezZ™,
2tq, +Tr ={m(P),Vm=1,..., M, (4.6)
[tb, = ta,  te, + ta, | € [tam-1)p+1> tim-1)p+p], 3. (4.7)

Unsupervised representation learning aims at autonomously extracting useful
features that capture key characteristics of data without labels. This technique
generally involves a reconstruction process relying on learning representations from
data with normal behaviors/conditions to capture their common and essential
features. In alignment with this principle, this chapter introduces a hard threshold
for identifying some normal samples from the unlabeled data. This hard threshold
allows the reconstruction process to function without requiring a complete and pure
dataset of normal data. Instead, it allows part of normal data to be utilized and even
some ambiguous abnormalities to be included. This approach eliminates the need
for extensive collections of purely normal data. The flexibility in data acquisition
aligns with the unsupervised learning paradigm, which does not rely on prior input
from experts or extensive fieldwork.

For a given hard threshold A, this chapter considers a set A4 €2 containing
samples most likely with normal conditions for representation learning. The set A
is obtained as:

N ={x(nea | C(xn(t),a)}jzl,N<M, (4.8)
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where C is a specified condition for a selection of normal samples.

As vibration signals from moving sensors contain various disturbances and noise,
this work employs EMD to decompose x,(f) € A into several IMFs. Each IMF
represents an oscillatory mode embedded within the signal, with different levels
of IMFs capturing different high-frequency components and noise inherent in
the signal. The residual signal represents the part of the signal that cannot be
effectively decomposed into the IMFs of the respective level. It typically consists
of low-frequency components and trends of the signal. This chapter considers the
residual signal at various levels r;(f),i =1,2,...,1, to extract representations inherent
in the normal data. This approach resembles multi-level denoising, as the noise
components are removed at various levels. In this context, these residual signals are
referred to as demodulated signals as they are the signals from which the cumulative
sum of IMFs up to level i has been extracted from the original signal. Let N; be a
set of demodulated signals at level i, then the demodulated signal %, ;(¢) at level i
within this set is expressed as:

i
Zni (1) = xp (1) = ) ¢j(1). 4.9)
j=1

The EMD method allows for a separation of noise and extraction of meaningful
representations from the vibration signals. Therefore, this chapter considers learning
a representation of .4 through the demodulated signals in N.

For the reconstruction process at each EMD level i, an autoencoder model
F; = DjoE; is developed such that the encoder E; encodes the demodulated signals
Xn,i(t) EJT/; into a lower-dimensional latent representation space z,;(f). Then,
the decoder D; decodes it back to the original space, yielding the reconstructed
data X, ;(?) from its representation. The reconstruction process is mathematically
expressed as:

Xn,i(t) = Fi(Xp,;()) = Di (E; (%n,i (1)), (4.10)

in which
Zp,i (1) = E;i (Xy,,: (1)), (4.11)
Xn,i(t) = Di(zy,; (1)). 4.12)

This chapter proposes a methodology to collaboratively train the EMD and
reconstruction for generating discriminative and informative representations. Fig.
5.3 illustrates the proposed unsupervised representation learning framework,
consisting of three main parts. The first part utilizes EMD to remove the disturbance
and noise and preserve the vibration pattern in the learning data, resulting in
the demodulated signals. The second part uses a CAE model to implement
representation learning from the demodulated signals based on the reconstruction
technique. The final part applies the learned representations to various data analysis
tasks. This step demonstrates the practical utility of the extracted features for further
analysis, such as anomaly detection.
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Figure 4.4: Workflow of the proposed methodology.

4.4, PROPOSED METHODOLOGY

Fig. 4.4 illustrates the workflow of the collaborative method proposed in this chapter.
The method involves, firstly, signal denoising via EMD described in (4.9), secondly,
identification of a corresponding autoencoder model defined in (4.10), (4.11), and
(4.12) that allows mapping input signals onto the latent representation such that the
reconstruction loss is minimized, and, lastly, an identification of the optimal EMD
level of (4.9) for anomaly detection of rail infrastructures via binary clustering.
M
For a given hard threshold, consider a set of vibration data 2 = {xm(t)} . and a
m=
N
set of normal data A = {xn(t)} X We define a set of abnormal data A" as a subset
n=

of 2 that remains after removing the data present in .#. This set 4’ contains
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abnormal data, including data with uncertain abnormalities, in which it is defined as
I _ _ ! / N
N'=d-N={x0eD | xneN| .

For a given EMD level i and the corresponding set of demodulated signals
j/,-\ = {fcn_,-(t)}g:l, the reconstruction technique is considered to train CAE relying
on learning representations from .4; to capture its common and essential features.
Then, the CAE is trained on .#; to obtain the latent representation by minimizing
a loss function that measures the discrepancy between the input data and its
reconstruction. In this work, a loss function is defined as a combination of mean
squared error (MSE), %usg, and KL divergence, %1, as our reconstruction loss,
Zrec, and it is expressed as:

Lrec = LMsE + L1, (4.13)
where
1 X, - 2
st = n; ENOEEO)E (4.14)

2 2
1 1 75 Hj
== (1+10g0}) -1 -0%) + 5 3 (IOg“’Enor) gt
7 j prior prior

where N is the number of normal samples, y; and o; are, respectively, the mean
and standard deviation of the distribution of the latent representation z along
the j th dimension, Mprior and Oprior are the mean and standard deviation of the
prior distribution, in which its value can be obtained from a standard Gaussian
distribution, i.e., prior =0 and o prior = 1.

The trained CAE allows us to obtain an encoder E; developed with respect to
the EMD level i, which is used to generate the respective embedded representation
zp,i(2). This chapter considers a binary clustering task to identify the optimal EMD
level that provides the discriminative representation between normal and abnormal
conditions of rail infrastructures. The Gaussian Mixture Models (GMM) are employed
to showcase clustering, chosen for their robustness to initialization compared to
k-means [274]. In this chapter, the GMM is trained to provide two -clusters
using a dataset containing normal and abnormal samples. By following Fig. 4.4,
a trained encoder E; encodes normal and abnormal samples into the respective
representations. Then, class labels are predicted and compared with those from the
specified hard threshold to assess clustering performance. The training process is
repeated according to the total number of IMFs. Based on the clustering performance
achieved for all the EMD levels, we identify the optimal level as the one that
yields the highest clustering performance. Algorithm 1 presents a pseudo-algorithm
detailing the steps involved in the proposed collaborative optimization.

The effectiveness of the proposed methodology is evaluated based on its
performance in representation learning and clustering. The performance of
representation learning is measured via a signal reconstruction and a generation
of discriminative features to distinguish between normal and abnormal conditions.
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Algorithm 1 Collaborative optimization procedure

1:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

© X N2 DR

Input: Normal set (x(¢) € A4") and its labels (Y) obtained from a hard threshold,
abnormal set (x'(1) € A4') and its labels (Y’) obtained from a hard threshold, the
maximum number of IMFs (1)

: Output: Optimal level of EMD (iopt), clustering performance, dissimilarity

between A and A’

: Initialize EMD level i — 1
: repeat

/1 Step 1: EMD on x(t) € &
Xi(t) — H;(x(t)) %IMF at level i
Initialize number of epoch e — 1
repeat
/1 Step 2: CAE Training on %;(f) € j/,\
Train CAE using cross-validation on X;(#)
X;i(t) — D;(E;(x;(1))) % Reconstruction at level i
Compute reconstruction loss Lec(X;(1), X; (1))
e—e+l1
until e = Maximum epoch
/1 Step 3: Obtain Latent Representations
E; — Trained encoder at level i
%(t) — H;(x'()) %EMD on x'(t) € N’
Latent representations for normal samples: z;(¢) — E;(%; (1))
Latent representations for abnormal samples: z;.(t) — E; (fc;.(t))
/1 Step 4: Binary Clustering Analysis
Perform binary clustering on z;(¢) and z;(?)
Obtain predicted class labels ¥; and ?l.’
Compute clustering performance at EMD level i
/1 Step 5: Compute Average Dissimilarity
Compute average dissimilarity AD;(z;(1),z}(1))
i—i+1
until i > 71
/1 Step 6: Determine Optimal EMD Level
iopt < argmax; (clustering performance at level i,average dissimilarity at level i)
return Optimal level of EMD igp, clustering performance, average dissimilarity
=0
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The former aspect is quantitatively assessed through the reconstruction loss, ZLec,
defined in (4.13). To assess the effectiveness of the method in generating
discriminative features, we measure the dissimilarity between normal and abnormal
samples obtained from clustering analysis, in which an average dissimilarity (AD) is
exploited for this purpose. It is calculated from the average distance across all pairs
of normal and abnormal samples. In this chapter, an Euclidean distance metric is
considered. A greater dissimilarity indicates a greater distinction between the normal
and abnormal samples. The average dissimilarity based on the Euclidean distance is
expressed as:

1 N N ﬁ’
AD;(2n,i(1), 21 ; () = NN Zlkzl > (zni(t)) = 2 (1)), (4.15)
n= =

j=1

where z;,;(f;) and z;”.(tj) denote the jth dimension of the latent representation at

the EMD level i of the n" normal and k™ abnormal sample. The total number of
normal and abnormal samples are denoted by N and N’, respectively, and g’ is the
number of dimensions of the latent representation.

Compared against labels obtained from the hard threshold, the -clustering
performance is assessed in terms of precision, recall, and F1 score, which are
expressed as:

.. TP
Precision = ————, (4.16)
TP+ FP
TP
Recall= ——, (4.17)
TP+FN
2 x Precision x Recall
F1-score = — ) (4.18)
Precision + Recall

where, in the context of anomaly detection, true positives (TP) are the number
of correctly classified abnormalities, false positives (FP) are the number of normal
samples classified as abnormalities, and False Negatives (FN) are the number of
abnormalities classified as normal.

4.5, CASE STUDIES

To demonstrate the proposed methodology, we present two case studies from field
measurements conducted on operational rail lines in Sweden and the Netherlands.
In the two case studies, different track components are monitored using different
sensing technologies applied on different operational conditions.

4.5.1. CASE 1: MONITORING RAIL SURFACES WITH ABA

ABA is a measurement technology that utilizes accelerometers attached to the axle
boxes of moving trains to measure dynamic responses due to wheel-rail contact.
Rail component conditions and defects can be assessed by examining deviations
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Figure 4.5: Train-borne sensing technology. (a) Illustration; Implementation of (b)
ABA measurement in Sweden and (c) train-borne LDV on the TU Delft
CTO measurement train in the Netherlands.

in their responses. ABA has been successfully tested in various countries to
assess the conditions of various railway components, e.g., fasteners, rails, insulated
joints, transition zones, and crossings [134, 241, 250, 275]. This chapter uses
ABA technology to monitor rail surfaces and applies the proposed unsupervised
representation learning for anomaly detection, where the method learns the normal
behavior from the ABA data and helps detect abnormalities for further inspection.

Fig. 4.5 illustrates a setup of the ABA measurement system. The ABA data used in
this chapter are collected from the Iron Ore line between Luled, Sweden, and Narvik,
Norway. It is a single-track line with passenger-freight mixed traffic and heavy axle
load (up to 31 t). This chapter acquires information from accelerometers installed
in the longitudinal direction as signals obtained from the longitudinal direction have
proven effective in capturing early-stage characteristics of defects [134]. Additionally,
the information is collected from both the left and right wheels of all axles. The
obtained measurements contain various rail dynamics, including healthy rails, welds,
insulated joints, switches, and rail surface defects. This chapter assumes that the
locations of insulated joints and switches are known. Hence, the signals at these
locations are excluded from the analysis.

In this chapter, the ABA signals are aggregated into smaller segments, each
containing 2000 datapoints, resulting in a total of 583 rail segments. With a hard
threshold set to 60 m/s?, we identify rail segments with ABA responses lower than
the specified threshold for representation learning. These segments are assigned into
a class of samples representing normal conditions, referred to as Class 0, containing
362 samples. Using information from fieldwork, we identify the defective samples
containing rails with visible defects. These comprise 85 defective rail segments,
referred to as Class 1. This leaves 136 ABA samples whose classification is ambiguous
under the hard threshold, and they are grouped into Class U. A summary of the ABA
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dataset is presented in Table 4.1.

4.5.2. CASE 2: MONITORING RAIL FASTENERS WITH TRAIN-BORNE LDV

While ABA monitors rails indirectly through train vibrations, in contrast, train-borne
LDV is an innovative technology that offers the ability to measure track vibrations
from a moving train directly by emitting a laser beam downward onto the track
[244-246]. As illustrated in Fig. 4.5(a), an LDV is mounted on a train emitting a laser
beam downward onto the track. As the train moves, the laser spot scans the track
surface and measures its vibration velocity contactlessly. Different track components
can be targeted, such as rails (245, 246] and sleepers [244]. In this case study, LDV is
exploited to target rail fasteners, which are critical components in railway tracks to
provide connection, constraint, and vibration reduction between rails and sleepers
or track slabs.

The open-path scanning of a train-borne LDV may provide invalid measurements
on some fasteners due to the lateral shift of the laser spot out of the fastener
surface (see Fig. 4.6) or due to poor surface quality. An example of such an invalid
measurement is shown in the second example of Fig. 4.2. Considering the large
number of rail fasteners in a rail network, it is impractical to manually check the
signal segment of each fastener and label it as valid or invalid. Meanwhile, the
diversity of fastener vibrations and the presence of speckle noise induce significant
fuzziness in distinguishing between valid and invalid signal segments, especially
for those with small vibration amplitude, such as the third example in Fig. 4.2.
Therefore, the developed unsupervised learning method is applied in this case study
to extract useful features that characterize the rail fastener vibrations autonomously.

The LDV data considered in this case study are obtained from the rail fasteners of
the same type on the slab tracks of seven bridges in the Rotterdam-Gouda line in
the Netherlands, as shown in Fig. 4.6. On each bridge, the train-borne LDV scans
these rail fasteners in a row and measures their vertical vibration individually. In
total, 610 rail fasteners are scanned at the train speed of 45-75 km/h. The sampling
frequency of the LDV is 102.4 kHz.

The mean of the FFT spectrum within the frequency range between 200 and 800
Hz is considered for class assignment. For LDV, two hard thresholds are used.
We identify LDV data at rail fasteners as valid if the mean exceeds one threshold.
These result in 211 samples that are assigned to Class 0. The other 258 samples
are identified as invalid measurements, referred to as Class 1 if the mean is below
the other threshold. The remaining 141 LDV samples are labeled to Class U due
to uncertainties and fuzziness, as their mean is between the two thresholds. A
summary of the LDV dataset is presented in Table 4.1.

4.6. RESULTS
4.6.1. IMPLEMENTATION DETAILS

Following the procedure depicted in Fig. 4.4, the vibration signals are first
decomposed into IMFs by the EMD algorithm. In this chapter, various EMD levels up
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Table 4.1: Summary of the datasets from the two case studies.
Cases Target Length No. of Definition of (No. of samples)
components (datapoints) segments Class 0 Class 1 Class U
ABA Rail defects 2000 583 Normal rail Defective rail uncertain condition
(362) (85) (136)
LDV Rail fasteners 2048 610 Valid mea- Invalid mea- uncertain mea-
surement (211) surement (285) surement (141)
_ Bridge 6 Bridge 7
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Figure 4.6: Targeted railway track sections on the Rotterdam-Gouda line in the
Netherlands (Map: from ProRail).

to a maximum of five are explored. After decomposing the signal into different IMFs,
the demodulated signal at each decomposition level is obtained by (4.9). The CAE
structure considered in this chapter is symmetric, meaning that the same number of
convolutional layers is designed for the encoder and decoder. We experiment with
the number of convolutional layers used within the structures in which up to four
layers are considered. Four different numbers of filters are used in the trial: 64, 32,
16, and 8. We also experiment with different filter sizes: 3x3, 5x5, 7x7, 9x9, and
11x11. Each convolutional layer in the encoder is followed by an activation layer in
which the rectifier or ReLU activation function is used in the convolutional layers.
A max-pooling layer with stride two is defined for downsampling at the end of the
layer. Similarly, the upsampling steps use transposed convolutions with the ReLU
function. At each upsampling step, the number of filters is doubled.

The demodulated signals from Class 0 are divided into training and test sets with
a ratio of 75:25. Then, we employ signals from the training set to train the CAE while
the test set is held out to validate the generalization of the proposed methodology.
Five-fold cross-validation is performed in which 90% of the training set is used to
train the models, and the other 10% is used for validating the trained model. The
Adam with Nesterov momentum optimizer is exploited for the training, and the
maximum number of epochs considered is 100. The early stopping is also applied
when Z. has stopped improving for more than five epochs.

To account for fuzziness and disturbance presented in data, all samples
are included in binary clustering analysis, with the trained CAE generating
representations serving as input to the GMM. The GMM is executed multiple times
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with varying initializations, and the optimal result is selected based on within-cluster
variance. Cluster separability is visualized to evaluate clustering results, including
samples from Class U that exhibit more uncertainties and fuzziness. The report of
clustering performance is based on the consideration of Class 0 and Class 1.

4.6.2. RESULTS OF DIFFERENT EMD LEVELS

This section investigates the impact of different EMD levels on the proposed
method for representation learning, measured by reconstruction loss and average
dissimilarity, and clustering performance, measured by F1-score. We showcase using
LDV data as they contain more severe and complex noise components (speckle
noise) than ABA data. In this analysis, the CAE architecture remains consistent as it
learns representations from the demodulated signals at various EMD levels.

Fig. 4.7 shows the demodulated signals corresponding to various EMD levels
obtained from rail fasteners with valid and invalid measurements. Specifically,
analysis is conducted on demodulated signals for EMD levels up to 5. As the level
of EMD increases, the demodulated signals become smoother, and the prominence
of noise and high-frequency components is reduced. This enhances the signal
reconstruction capability of the CAE, resulting in representations that can be used
for a more accurate reconstruction for Class 0, as evidenced by the decreasing
trend of the blue line in Fig. 4.8(a). This improvement is further shown by the
consistency observed between the input signal and its corresponding reconstruction,
as illustrated in Fig. 4.7(a). In contrast, Fig. 4.7(b) exhibits that a sample from Class
1 is not as effectively reconstructed compared to the sample from Class 0 at the
respective EMD level.

Despite the enhancement in signal reconstruction at higher EMD levels, the
disparity between the representations of normal and abnormal samples does
not proportionally improve. This becomes apparent when evaluating the learned
representations at each EMD level through clustering analysis, as shown in Fig. 4.8(b).
It is suggested that the demodulated signal at EMD level 2 demonstrates optimal
clustering efficacy as its embedded features are effective at distinguishing between
normal and abnormal samples, evident by a high value of F1-score for both Class 0
and 1. Additionally, the average dissimilarity at EMD level 2 is promising, ranking
second among all five levels, as depicted by the red line in Fig. 4.8(a). This
observation underscores a tradeoff. While increasing the level of EMD offers signal
denoising, it simplifies vibration patterns, thus affecting the capability of CAE to
discriminate between normal and abnormal samples. Achieving an optimal balance
between denoising and representation learning capability is thus crucial for accurate
anomaly detection.

In the subsequent sequels, we present the proposed methodology for monitoring
rail surfaces with ABA and monitoring rail fasteners with train-borne LDV. For each
case study, we provide a comparative analysis for representation learning considering
four variants of autoencoder-based models: autoencoder (AE), long short-term
memory (LSTM)-AE, gated recurrent unit (GRU)-AE, and CAE, in which suitable
experimental configurations are adopted for their development. We also compare
with the denoising sparse wavelet network (DeSpaWN) [258], in which the parameter
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Figure 4.7: Examples of LDV signals from two different rail fasteners and their
respective demodulated signal at different EMD levels.
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Figure 4.8: (a) Effect of the EMD levels on the proposed method for the reconstruction
loss and the ability to generate the discriminative features. (b) Effect of
the EMD levels on the clustering results measured via F1-score.

setting and loss are followed from [258]. To be consistent with the development
of our model, four maximum encoder and decoder layers are considered for all
comparative models.
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4.6.3. RESULTS OF RAIL SURFACE DEFECT DETECTION USING ABA

This section presents results from the representation learning considering the ABA
data. It can be seen from Fig. 4.9(a) that different methods perform differently
in signal reconstruction and differentiation of embedded representations between
clusters. The GRU-AE method yields the lowest reconstruction loss. It also
achieves the highest average dissimilarity, indicating that it generates embedded
representations that discriminate between normal and abnormal samples better than
the other methods. Our method provides the second-lowest reconstruction loss and
average dissimilarity, reflecting its competitive capability for representation learning.

Fig. 4.10 presents clustering results obtained from using latent features extracted
by different methods to train the GMM algorithm to provide two different clusters,
considering all 583 ABA samples. The t-SNE [251, 252] using the perplexity of
200 is employed for a visualization of the 2D representations. Note that perplexity
is related to the number of nearest neighbors each point considers in the t-SNE
algorithm during the dimensionality reduction process. Lower values of perplexity
make the algorithm focus on a very local structure, while higher values take into
account a broader neighborhood. It is noticeable that the GRU-AE and our method
provide better separability between two clusters with fewer overlaps than the others,
reflecting their high average dissimilarity obtained. In contrast, the LSTM-AE exhibits
more noticeable overlap, corresponding to its highest reconstruction loss and low
average dissimilarity.

Next, the clustering results are evaluated using labeled data from Class 0 and
Class 1 to investigate the informativeness of the learned representations obtained
from each method. Table 4.2 presents a comparative study on the clustering tasks
using different sets of latent features obtained from different methods. The results
show that our method using the demodulated signals at EMD level 2 provides very
competitive results. It correctly assigns 96% of Class 0 and correctly assigns 41% of
Class 1. While the DeSpaWN exhibits cluster separability with more overlap than
our method, it demonstrates the highest accuracy in correctly identifying samples of
Class 1, yielding a 38% higher accuracy for this class. However, the DeSpaWN detects
Class 0 with 63% lower accuracy compared to our method. Additionally, the GRU-AE
method demonstrates the lowest reconstruction loss and exhibits good cluster
separability owing to the high average dissimilarity obtained. Nevertheless, our
method outperforms GRU-AE in terms of cluster performance. Furthermore, GRU-AE
shows a lower precision for Class 1, indicating a higher misclassification rate where
samples from Class 0 are incorrectly labeled as Class 1. The clustering performance
of the proposed method demonstrates its efficacy in generating discriminative and
informative representations of normal and abnormal rail surface conditions using
ABA, attributed to the utilization of EMD.

It is noteworthy that the parameter configuration for the DeSpaWN can be further
optimized to align with the characteristics of the problem, potentially resulting in
improved performance. Furthermore, as the GRU-AE has a complex network (8
hidden layers are exploited), the model might have overfitted on the normal samples
during training. Using a larger dataset can be considered to train the GRU-AE,
potentially resulting in improved performance.
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Figure 4.9: Reconstruction loss and average dissimilarity between Class 0 and Class
1 obtained from different methods.

Next, we examine the effectiveness of our proposed method in handling
uncertainties and fuzziness. Figs. 4.11(a) and 4.11(b) show two examples from
Class U whose ABA responses display ambiguous abnormalities. Consequently, both
examples are labeled as Class 1 by the hard threshold for clustering. According
to the hard threshold labels, the method correctly identifies Fig. 4.11(a) to Class 1
and misidentifies Fig. 4.11(b) to Class 0. Validation against fieldwork information
reveals that Fig. 4.11(a) represents a rail segment at a weld, while Fig. 4.11(b) is a
rail segment at a small defect. However, it can be seen that the ABA signal of the
rail at the weld in Fig. 4.11(a) shares similar characteristics with the ABA signal of
the rail at squat in Fig. 4.11(c). This suggests that there might be some invisible
rail defects located on this rail segment. Further experiments can be conducted to
confirm their existence. Similarly, the ABA signal of the rail with a small defect in
Fig. 4.11(b) resembles that of the normal rails shown in Fig. 4.11(d). These findings
demonstrate that the latent features obtained from our method are informative for
grouping rail dynamic responses with similar characteristics.

Table 4.2: Comparison results of clustering performance for ABA data.

Method Class 0 Class 1
Precision | Recall | Fl-score | Precision | Recall | Fl-score

DeSpaWN [258] 0.87 0.33 0.48 0.22 0.79 0.34
AE 0.85 0.43 0.57 0.22 0.68 0.33
LSTM-AE 0.82 0.52 0.64 0.20 0.49 0.28
GRU-AE 0.84 0.52 0.65 0.22 0.56 0.31
CAE 0.81 0.62 0.70 0.19 0.36 0.25
Our method 0.87 0.96 0.91 0.69 0.41 0.51

NB: Better performances are highlighted in bold for each clustering algorithm.
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Figure 4.10: Clustering results using latent features extracted from different models.
The t-SNE with a perplexity of 200 is employed for visualizing clusters
of two colors, from which red represents a cluster of Class 0 and blue
represents a cluster of Class 1.

4.6.4. RESULTS OF MONITORING RAIL FASTENERS WITH LDV

This section presents results from the representation learning considering the LDV
data. Similar to ABA, Fig. 4.9(b) shows that different methods perform differently in
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Figure 4.11: Examples of validated rail segments at (a) a weld, (b) a small defect, (c)
a squat, and (d) a rail without visible defects.

signal reconstruction and generation of embedded features. The GRU-AE method
yields the lowest reconstruction loss and generates the embedded representations
that provide a good average dissimilarity between normal and abnormal samples.
Our method provides the second-lowest reconstruction loss, reflecting its competitive
capability for representation learning. Meanwhile, it has higher dissimilarity than the
GRU-AE, reflecting its capability for clustering using the learned features. Similar to
the ABA case study, this highlights the use of EMD in the proposed method.

Fig. 4.12 presents clustering results obtained from using latent features extracted
by different methods. The t-SNE using the perplexity of 30 is employed for a
visualization of the 2D representation of the encoded features obtained from each
method. Despite different reconstruction loss and dissimilarity obtained, the latent
features obtained from all methods provide a clear separation between a cluster of
two colors representing a cluster of Class 0 and Class 1, with some minor overlaps
seen more from the DeSpaWN than the other methods.

Evaluating against labeled data, Table 4.3 shows that our proposed methodology
using the demodulated signals from the EMD level 2 demonstrates competitive
results for both Class 0 and Class 1. It correctly assigns 47% of Class 0 and correctly
assigns 90% of Class 1. Although the GRU-AE method yields the least reconstruction
loss and provides good cluster separability due to high average dissimilarity, it
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demonstrates a 43% lower accuracy in correctly identifying samples of Class 1
compared to our methodology. However, the GRU-AE achieves 18% higher detection
accuracy for Class 0 than our method. The GRU-AE method also exhibits a higher
rate of incorrectly identifying an LDV signal as invalid when it is valid. Mitigating
these false positives is crucial as false positives impair the learning of actual trends
and patterns in rail fastener health. By reducing false alarms, operators can identify
issues early and proactively address them before they escalate.

Table 4.3: Comparison results of clustering performance for LDV data.

Method Class 0 Class 1
Precision | Recall | Fl-score | Precision | Recall | F1-score

DeSpaWN [258] 0.61 0.64 0.62 0.69 0.66 0.67
AE 0.37 0.40 0.38 0.47 0.44 0.46
LSTM-AE 0.39 0.41 0.40 0.49 0.47 0.48
GRU-AE 0.50 0.65 0.57 0.62 0.47 0.54
CAE 0.34 0.53 0.42 0.30 0.16 0.21
Our method 0.71 0.47 0.57 0.65 0.90 0.75

NB: Better performances are highlighted in bold for each clustering algorithm.

To examine the effectiveness of our proposed method in handling samples of
Class U from LDV data, we compare the clustering results obtained from the latent
features learned by our method with those obtained from a hand-crafted method.
The hand-crafted method, as outlined in [276], involves the manual design of three
features: the variations in the time and frequency domains as well as the power
spectrum density entropy of each raw signal segment (without denoising). Various
clustering algorithms are implemented, including k-means, k-medoids, and fuzzy
c-means. For each algorithm, clustering with multiple clusters is used to handle the
diverse patterns observed in the valid measurements and then merge them into a
single group. The optimal number of clusters is tuned for each algorithm. More
details of the feature design and clustering analysis can be found in [276].

Out of the 141 samples of Class U, 10 (or 20) samples are labeled as valid
measurements, while 131 (or 121) samples are labeled as invalid measurements
when using the hand-crafted method in [276] (or the proposed method). The ratio
between the two labels is similar between the two methods despite their significant
differences in the feature design as well as the clustering algorithm. The two
methods consistently label 115 out of 141 samples (81.56%), whereas the remaining
is labeled differently. Figs. 4.13 and 4.14 show several samples with inconsistent
clustering results. The LDV samples shown in Fig. 4.13 are labeled as invalid using
the hand-crafted method in [276] but as valid using the proposed method. It can
be seen that these samples on top indeed carry vibration patterns (evident by the
demodulated LDV), while the severe speckle noise makes them less pronounced.
Owing to the use of EMD for denoising, the proposed method captures these
vibration patterns more effectively, thus providing more reasonable labels compared
to the hand-crafted method. The samples shown in Fig. 4.14 are labeled as valid
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Figure 4.12: Clustering results using latent features extracted from different models.
The t-SNE with a perplexity of 30 is employed for visualizing clusters
of two colors, from which red represents a cluster of Class 0 and blue
represents a cluster of Class 1.

by the hand-crafted method, most likely due to the local and sudden variations in
the signals, which are actually different from the targeted vibration patterns that are
more stationary and continuous. The proposed method identifies such differences
and avoids such signals being labeled as valid. These typical examples showcase the
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effectiveness of the developed representation learning framework in capturing the
targeted vibration pattern while reducing the disturbance of the noise.
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Figure 4.13: Examples of LDV measurements that are identified as valid measurements
by our methodology but identified as invalid by the prediction using the
handcrafted features.
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Figure 4.14: Examples of LDV measurements that are identified as invalid
measurements by our methodology but identified as valid by the
prediction using the handcrafted features.

4.7. CONCLUSIONS

This chapter presents an unsupervised representation learning methodology that
synchronizes the empirical mode decomposition (EMD) with a convolutional
autoencoder (CAE). By testing with the ABA measurements from the Swedish rail
network and the LDV measurements from the Dutch rail network, the proposed
methodology demonstrates a promising performance for unsupervised rail defect
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and rail fastener analysis. Evaluating the obtained representations using the Gaussian
mixture model clustering, cluster separability with minor overlaps is achieved for
both application cases. This proves the effectiveness of the method in generating
features that differentiate between normal and abnormal samples, even the inherent
fuzziness and disturbance present in the ABA and LDV data. Verified against
labels from a hard threshold, it demonstrates an improvement in detection accuracy
compared to other variants of autoencoder-based models and the wavelet-based
CAE. Furthermore, the latent features obtained from the proposed method have been
proven to be informative. In the case of ABA data, clusters of rail segments with
similar characteristics can be used to guide the inframanager about the locations of
defects. For LDV data, clusters of rail segments with similar characteristics can be
used to learn trends and patterns in rail fastener health. The success of the proposed
method highlights the importance of EMD for denoising, enhancing representation
learning of rail infrastructure characteristics and reducing noise interference.

Future research includes improving cluster separability through advanced
clustering techniques and hybrid approaches to better distinguish between normal
and abnormal samples. Incorporating additional data sources and measurements
can be considered with a development of data fusion techniques to provide a
comprehensive analysis and enhance accuracy and reliability of rail infrastructure
conditions. Examining scalability and real-time processing capabilities can be
considered for enabling real-time analysis of large-scale rail network data. Validating
the methodology across different rail networks with varying environmental conditions
and operational patterns is also essential to ensure its robustness and applicability.



A HYBRID NEURAL MODEL
APPROACH FOR HEALTH
ASSESSMENT OF TRANSITION
ZONES WITH MULTIPLE DATA

This chapter proposes a framework that enables a more frequent evaluation of
transition zone health by integrating multiple monitoring technologies, including track
geometry measurements, interferometric synthetic aperture radar (InSAR), and axle
box acceleration (ABA). Firstly, a spatio-temporal interpolation approach is employed
to fill in missing InSAR data. Then, hybrid neural models are evaluated to predict
missing track longitudinal levels, including a hybrid convolutional neural network
(CNN) with gated recurrent units (GRU) network and a hybrid CNN with a long
short-term memory (LSTM) network. The prediction relies on a fusion of historical
and interpolated data from InSAR and the ABA measurements. As InSAR and ABA
measurements can be obtained more frequently, a novel key performance index (KPI)
is proposed using the predicted track longitudinal levels. To validate our framework,
transition zones at a railway bridge between Dordrecht and Lage Zwaluwe station in
the Netherlands are considered. A comparative analysis is conducted considering CNN,
GRU, LSTM, hybrid CNN-GRU and CNN-LSTM models to assess their performance.
The results show that CNN-LSTM and CNN-GRU exhibit superior capabilities in
capturing spatial and temporal relationships between track longitudinal levels, InSAR,
and ABA measurements. For one track, CNN-GRU emerges as the optimal choice, while
for the other track, CNN-LSTM shows superiority. However, when considering overall
performance, CNN-GRU yields the best on average. Furthermore, our framework
demonstrates early detection capability for track irregularities, even before the next

This chapter has been submitted for publication as: Phusakulkajorn, W., Unsiwilai, S., Chang, L.,
Nufez, A., Li, Z., A Hybrid Neural Model Approach for Health Assessment of Railway Transition
Zones with Multiple Data Sources.
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measurement of track geometry profiles. This generates predictive results that can
guide decisions regarding the time and locations for essential track maintenance.
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5.1. INTRODUCTION

N railways, transition zones denote areas marked by structural discontinuities,

leading to abrupt variations in track stiffness, damping, and track geometry.
They are often observed at critical points like bridges, culverts, tunnels, transitions
between ballasted and slab tracks, and road crossings. The abrupt changes in
train dynamic responses significantly accelerate the degradation of transition zones,
resulting in substantial maintenance costs to sustain smooth operation and safety.
Hence, it is crucial to assess the structural health condition of transition zones more
frequently to detect changes at an early stage. Correct health assessment allows
prescriptive interventions to maintain operational efficiency and mitigate potential
risks.

The health assessment of a railway transition zone includes various aspects.
Examples are track geometry inspection to measure the track deviations from design
specifications, condition monitoring of rail and other track components in areas
of transition to examine wear, defects, and damage, dynamic response analysis to
identify any irregularities or excessive forces that could affect safety and health, and
embankment stability inspection where the transition zone is situated to prevent
derailment, among others.

Information on the health of transition zones can be collected from track-side
measurements, onboard measurements, and remote sensing technologies to perform
the health assessment. Track-side measurements employ point-sensor technologies
such as borehole inclinometers, geophones, linear variable differential transformers
(LVDTs), and accelerometers [277-279]. Multidepth deflectometers and strain gauges
were employed in [280] to assess conditions of railroad track transitions. Digital
Image Correlation)-based device was used to evaluate track degradation in the
embankment-bridge and bridge-embankment transitions [281]. Advanced fiber-optic
technologies, including Rayleigh backscattered [282] and fiber Bragg grating [283],
have also been employed for condition monitoring in transition zones. However,
track-side measurements are typically installed at critical locations. This results
in the local coverage of responses. The need for a broader perspective of train
responses necessitates the installation of a greater number of sensors. This involves
costs from not only devices but also expenses related to labour and power supplies.

In the case of onboard systems, they have been used in continuous monitoring
frameworks related to transition zones. In [284], data collected from track geometry
car measurements was used to predict long-term differential track settlement in
a transition zone. In [285], an inertial measurement unit mounted on the bogie
of the suspended train was used to detect track irregularities. In [286], a digital
image correlation system was mounted on railcars to assess the conditions of ballast
support. In [239], acceleration measurements recorded by in-service high-speed
vehicles were exploited to monitor rail track conditions. In [250, 287, 288],
measurement systems based on accelerometers installed at the axle box of a train
were employed to assess the railway transition zone conditions. Some challenges
that onboard monitoring techniques face include their integration with existing
systems, the need for efficient data processing and analysis due to vast amounts of
generated data, and their adaptations to make them robust and implementable in,
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for instance, passenger trains.

Remote sensing technologies, particularly satellite measurements, have been
employed in the literature for monitoring railway infrastructures and transition
zones. Examples of remote sensing technologies include using satellite signals
with GNSS technology for real-time displacement monitoring of a railway cable
bridge [289] and satellite images for detecting potential landslides along high-speed
railways [290]. Current dedicated Radar satellite missions, such as Sentinel-1, deliver
radar images on a biweekly basis, with (tens of) meter-level spatial resolution.
Interferometric synthetic aperture radar (InSAR) [291] is a specific technique used
to process Radar images in several works to detect subtle ground movements with
sub-centimetre precision, such as subsidence, uplift, and landslides. In [292, 293],
railway irregularities were detected using InSAR. In [294], InSAR measurements
were used for monitoring surface deformation over permafrost. In [295], InSAR
time series measurements were used to study and characterise the deformation
process resulting from subway-induced subsidence in the construction and operation
periods. Despite its ability to provide valuable data, some railway applications
require higher resolution and accuracy that are not currently possible to obtain from
satellite data.

Assessing transition zone conditions heavily depends on the measurement
frequency and the density of data gathered across a given area. A more
frequent measurement is essential to enhance forecasts and insights into the
evolution over time and assess severe events, allowing better maintenance strategic
plans. High-density measurements over an area are essential for detecting track
irregularities along transition zones. The more frequent measurements from satellites
offer the advantage of tracking transition zone conditions over time and assessing
significant events on a global scale. In a complementary manner, data obtained
from ABA measurements excel at capturing local dynamic responses. Currently,
ABA measurements occur less frequently because the system is still on the path
towards standardisation, and it is required to be effectively installed in passenger
trains. Additionally, track geometry is a standardised measurement used in various
railway companies. While its quality is guaranteed with accuracy and resolution,
track geometry does not capture locations with a poor dynamic train-track
interaction. Recognising the complementary nature of these measurements, this
chapter considers track geometry data, InSAR, and ABA measurements to predict
conditions of transition zones.

Various machine learning models have been employed to predict railway transition
zone conditions. Examples are support vector machine [296-298], random forests
[298, 299], multi-layer perceptron [300], artificial neural networks [297, 301], and
deep neural networks [302, 303]. As a prediction of railway transition zone conditions
is regarded as a spatio-temporal dependency problem, models that are efficient in
simultaneously capturing spatial and temporal data characteristics are needed. In
the literature, convolutional neural networks (CNNs) have shown their capability to
deal with spatial characteristics in various applications [304-306]. Recurrent neural
networks (RNNs)-based models demonstrate their capability to learn the temporal
dependencies of time series data [307]. However, these individual CNNs and RNNs
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consider the spatial and temporal characteristics independently.

In railway applications, hybrid models integrating CNNs and RNNs have been
presented to overcome this limitation [308-310]. Due to vanishing gradients, it is
challenging for RNNs to capture long-term dependencies in time series data. The
long short-term memory (LSTM) network model addresses the issue of RNNs by
introducing additional gates and memory cells. In [308], a hybrid CNN and LSTM
model was presented to account for spatial-temporal dependence with respect to
track geometry change. In [309], a hybrid model of CNN-LSTM model was proposed
to predict passenger flow. While effectively capturing long-term dependencies, LSTM
has more parameters due to additional memory cells and gates. This makes them
computationally expensive. The gated recurrent unit (GRU) is a type of RNN
architecture also designed with gates and memory cells to address the vanishing
gradient issue of RNNs. Compared to LSTM models, GRU models offer fewer
parameters due to fewer gates and connections used [310]. Therefore, this chapter
considers a hybrid CNN-LSTM and a hybrid CNN-LSTM model to solve a spatial
and temporal dependency problem presented in track geometry changes.

This chapter proposes a framework that exploits track geometry measurements,
InSAR measurements, and ABA measurements to assess transition zone conditions.
This is with the objective of obtaining a more frequent evaluation when only track
geometry is measured, typically once or twice per year in the Dutch railways.
The proposed framework includes a spatio-temporal interpolation to fill in missing
InSAR data, hybrid neural models to predict missing track longitudinal levels by
integrating historical and interpolated data from InSAR and ABA measurements, and
a key performance index (KPI) based on InSAR and ABA data to assess transition
zone conditions. A case study from a transition zone at a railway bridge between
Dordrecht and Lage Zwaluwe station in the Netherlands is used to validate our
methodology. The following summarises our key contributions:

1. Multiple monitoring data, including track geometry measurements, InSAR
measurements, and ABA measurements are used for assessing the health of
railway transition zones.

2. A spatio-temporal interpolation approach is presented to impute missing InSAR
data.

3. Hybrid neural models are proposed to fuse information from InSAR and ABA
data and to predict missing track longitudinal levels.

4. A novel KPI is proposed by including InSAR and ABA data.

5. The method is tested at a transition zone of a railway bridge in the Netherlands.

The rest of this chapter comes in the following sequels. Section 5.2 introduces the
measurement technologies considered. Section 5.3 presents problem formulation,
while Section 5.4 discusses the proposed model and methodology used for a health
assessment of railway transition zones. Section 5.5 describes a case study to evaluate
the proposed methodology. A comparison of the proposed methodology with
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different models from the literature and discussions are presented in Section 5.6.
Section 5.7 concludes the chapter.

5.2. MEASUREMENT TECHNOLOGY
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Figure 5.1: Illustration of the measurement technologies used in this chapter. (a)
Track geometry measurement system, (b) InSAR, and (c) ABA system.
Note that red points represent InSAR data points.

Fig. 5.1 illustrates an overview of three measurement technologies used in this
chapter. The technologies include a track geometry measurement system, InSAR,
and ABA measurement system.

5.2.1. TRACK GEOMETRY MEASUREMENT

Track geometry measurement is often performed using measurement cars equipped
with sensors and instruments. These cars move along the track and collect data
on various parameters. Typically, the track geometry measurement includes the
longitudinal level of both rails, alignment of both rails, gauge, and twist. The spatial
resolution of track geometry measurements can be in the range of centimetres to
decimetres. The frequency of track geometry measurements depends on several
factors, including budget and the availability of measurement cars. The level of
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train traffic and maintenance activities also affect the frequency of track geometry
measurements due to track possession. Generally, track geometry measurements are
performed regularly. In the Netherlands, for example, the measurement campaign is
conducted once or twice per year.

5.2.2. INTERFEROMETRIC SYNTHETIC APERTURE RADAR

InSAR is a remote sensing technique that uses synthetic aperture radar (SAR) to
measure and monitor surface changes of the Earth over time. SAR is an active
sensing technique that emits electromagnetic pulses (in the microwave range) toward
the surface of the earth and records the backscattered radar signal. The radar pulses
are emitted along the satellite line-of-sight direction. Radar signals are composed of
two main components: amplitude and phase. To derive the ground displacement
that occurred between the two acquisitions, InSAR involves comparing the phase
difference of radar signals acquired over the same area at different times, particularly
for repeat-pass SAR satellites. A stack of radar signals over different times is used
to get a time series of ground target movement [311]. InSAR data, namely InSAR
displacements for our study, are collected every 5-12 days, and the spatial density of
InSAR data varies depending on the studied area and processing strategy, which can
be in the range of metres.

5.2.3. AXLE BOX ACCELERATION MEASUREMENT SYSTEM

Axle-box Acceleration (ABA) measurement system is an onboard measurement
technique. It eliminates the need for dedicated measurement vehicles by mounting
directly onto passenger trains. The fundamental concept of ABA measurement
systems is to use a train as a moving load to excite the infrastructure and to detect
defects and irregularities through an analysis of time-frequency characteristics. This
analysis is derived from the dynamic response of the train-track interaction captured
by accelerometers installed on the axle boxes.

In comparison to other measurement techniques that use dedicated measurement
vehicles, ABA technology comes with the advantages of lower cost and easier
maintenance. The ABA measurement system achieves high spatial resolution,
typically within the millimetre range due to a high sampling frequency. While its
technology readiness level is increasing [133, 275, 312], the ABA system still needs
to evaluate its robustness and generalisation. This involves conducting extensive
measurement and validation campaigns in different locations and under different
measurement conditions. Once the technology advances and matures, more frequent
ABA measurements are anticipated. This involves installing ABA systems on existing
passenger trains or considering these systems already in the design of new generation
trains with embedded smart sensors, offering real-time or near-real-time monitoring
of track conditions. In this case study, ABA measurements are obtained yearly.
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Figure 5.2: The availability of all measurement data in space and time obtained from
the track geometry measurements (blue), InSAR measurements (other
colors), and the ABA measurements (red). White spaces represent missing
information, while the grey area defines the neighbouring measurements
used for constructing the interpolation functions.

5.3. PROBLEM FORMULATION

This chapter assumes the availability of datasets @; = {éﬁjf ,5’;,&{;} containing
three different measurement technologies for a given railway track jeN and
rail r € {inner,outer}. The measurements include, firstly, a set of track geometry
measurements, Cﬁj’ ; secondly, a set of displacements derived from InSAR data .¥/;
lastly, a set of ABA measurements d}f. The measurements are collected from a
transition zone at a position x within the kilometre range from x; to x,, and during
the month ¢ within time frame f;, and ¢,. They are mathematically expressed as
follows.

(g]fz{l]r.(x,t) | x=x7,..., ;‘,91 and t= tig,...,t;i},

yjfz{d]f(x,t) ‘ x=xy,...,x/, and t=t1y,...,tﬁ‘5:},

g{j’:{a;(x,t) ‘ x:xff,...,x;g and t= tfj,...,tgi},

where l]’. (x, 1), d]f (x,1), and aj’. (x,t) denote, respectively, the track longitudinal level,
the displacement, and the ABA data collected at a position x and in month
t. The variables y;, y2, and y3 represent the number of measurements in the
spatial domain corresponding to track geometry, displacements, and ABA signals,
respectively. Similarly, §1, B2, and B3 represent the number of measurements in the
temporal domain for each respective dataset. For all the measurements, missing
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data can happen in which l]r. (x,1), d; (x,t), and a]r.(x, 1) are represented by the
Not-a-Number value.

The average spatial resolutions of the track geometry, ABA measurements, and
displacements are defined as Ax¥ = ),ll_l(yc;‘,g1 -x{),Ax7 = yzl_l(xy‘y; —x7),Ax? =
Ysl_l(x% —xff ), respectively. Similarly, the average temporal resolutions of
the track geometry, ABA measurements, and displacements are defined as

G _ 1 G _ G\ ANtS — L (4 F P\ Al L i i : ;
At? = ﬁ171(1f131 1), A7 = ﬁrl(tﬂ32 ), A% = ﬁ371(tﬁ3 ), respectively. In this

chapter, we assume that At¥ and At? are similar, but both are much less than At”".
Conversely, Ax is significantly higher compared to both Ax“ and Ax”, with Ax¥
being denser than Ax”. Fig. 5.2 shows which measurements were obtained across
track positions and time. Track geometry measurements are in solid blue lines,
InSAR in lines with other colours, and the ABA measurements with solid red lines.
The spatial and temporal resolution of the different data sources can be estimated
from such a diagram.

For track j and rail r, let Jﬁjr denote a 2D spatio-temporal function that provides

the unobserved value of ABA data &]r.(x, ) at position x € [xp, x.] and in the ABA
measurement month < = tf¢ . tgi such that:

a5 (x, 1) = 77 (x,17). 5.1)

Likewise, let J,’jr denote a 2D spatio-temporal function that provides the unobserved

value of the displacements d}(x, t) at position x € [xp,X.] and in month ¢ € [tp, t,],
such that:
dj(x, 0) = &7 (x, 1). (5.2)

To predict the track longitudinal level i; (x¥,t%) at the observed position

x9 = x‘lg,...,x;‘,gl, and in the unobserved month ¥, ¥ # t?,...,t;i, we exploit the
interpolated values of InSAR an ABA data to construct a hybrid neural model .#;

defined for all rails r such that:
o9 Gy _ X o9 .o re.%9 9
I, ) =y (6, 1, 2] (1, 6D

= 5@ (7, 157), df (67, 17), (5.3)

where Jz,”j’ is derived from the closest available ABA measurement month

tgf ,0E {1,...,[33}, occurring prior to the measurement month ¥ of the predicted

“ and the same month ¥ of

track geometry. £ is defined at the position x
the predicted track longitudinal level. Then, a KPI is evaluated across unobserved
months spanning the entire transition zone utilising the predicted track longitudinal
level lA]’.(x(g, t9).

This chapter proposes a methodology that involves the identification of (1), (2), and
(3) for an estimation of a KPI that aims at facilitating a more frequent assessment of
transition zone health. The proposed methodology offers the capability to evaluate

transition zone health prior to the next measurement of track geometry. With the
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new available InSAR data that comes frequently, the KPI is updated to provide
early warnings to support decision-making regarding the time and locations for
maintenance interventions.

5.4. METHODOLOGY

Fig. 5.3 illustrates the framework of this chapter. It involves the development of
two distinct 2D spatio-temporal interpolation functions to estimate values from
InSAR and ABA data. Then, a hybrid neural model is developed to predict track
longitudinal levels using these interpolated values. Finally, utilising the predicted
track longitudinal levels, the KPI is evaluated across unobserved months spanning
the entire transition zone.

5.4.1. SPATIO-TEMPORAL INTERPOLATION

The railway track is a distributed system characterised by dynamic variations over
time and locations. Temporal variation is due to continuous usage, degradation,
and maintenance, while spatial variations arise from distinct dynamics at different
locations, including transition zones. As performing an interpolation within a smaller
region allows for addressing local variations over different locations and times, this
work considers the development of spatio-temporal interpolation within smaller
regions. Fig. 5.4 shows the workflow of the spatio-temporal interpolation. It involves
domain discretisation, surface fitting for the displacements, and curve fitting for the
ABA data within the subdomains.

DOMAIN DISCRETISATION

This work predicts track longitudinal levels by utilising interpolated values derived
from InSAR and ABA measurements. Subsequently, the domain is discretised to
ensure that each subdomain contains displacements from at least two distinct
locations and ABA values from at least one measurement. Based on these

assumptions, a distance Ax can be defined for a spatial domain discretisation
such that Ax = max{(xfp—x'zl),i :2,...,y2}. Likewise, At for a temporal domain

discretisation can be defined such that At > max{(tf{ - tffl),i = 2,...,ﬁ3}.
Given Ax and At and a spatio-temporal domain I = {(x, 1) | X € [xp,Xe] and t €

[tp, te]}, we have that the spatial domain is uniformly discretised into M sub-spatial
domains and the temporal domain is uniformly discretised into N sub-temporal
domains. This results in a total of M x N subdomains. Mathematically, a subdomain
T, is defined as:

Tm,n:{(x,t) | xe [1+(m-1)-Ax,m-Ax],

te[1+(n-1-Arn-ar}, (5.4)

where m=1,...,M and n=1,...N.
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Figure 5.3: The proposed framework.

Step 1: Domain discretisation

[ Discretise the spatio-temporal domain into subdomains ]
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[ Displacement ] SAWP
Step 2: Surface fitting within | Step 3: Curve fitting within
subdomains . subdomains
P . SAWP for each subdomain
subdomain

Approximate .
dispplgcements at Approximate SAWP at
unobserved locations unobserved locations and
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Figure 5.4: Workflow of the spatio-temporal interpolation.

The shaded region depicted in Fig. 5.2 provides an example of a subdomain where
the interpolation functions are formulated based on the available InSAR and ABA
measurements within that specific subdomain. Within this shaded region, ABA data
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from the month ¢ and InSAR data collected from positions and months confined by
the spatial and temporal boundaries of the shaded area will be utilised to construct
the interpolation functions.

SURFACE FITTING FOR DISPLACEMENTS

drmn| x

Given a subdomain 7}, , and the displacements N ) collected from rail r of

track j at position x7 € [1+(m—1)-Ax,m-Ax] and in month 7 € [1+(n—1)-At,n-At]

that are available within T}, ,. This chapter considers two-dimensional polynomial

interpolation to estimate values of displacements, d;m” (x(g, t(g) at the position, x,

and in the month, 9, of the predicted track longitudinal level within a subdomain
Tmn- The two-dimensional polynomial interpolation Jf]rm” defined for rail r of
track j within a subdomain T, , is mathematically expressed as:

rnm,n rnm,n
PyRQ

K (x, 1) = Z Z ci X e, (5.5)

where P]”"" and Q7™" denote the degree of the polynomial used for
interpolation in the spatial and temporal subdomain, respectively. The coefficients
;’Z’q”, p=0,...,P""" and g =0, ...,Q]r’m ' are determined using the given data points
in each corresponding subdomain, aiming at minimising the sum of the squared
differences between the observed and predicted values. The degree of the polynomial

defined in each subdomain is optimised to attain the lowest sum square error.

CURVE FITTING FOR THE ABA SIGNAL

Given a subdomain Tj,, and the ABA data ajr.’m" x ) obtained from rail r of

track j at position x?e [1+(m—1)-Ax,m-Ax] and in month ¥ € [1+(n—1)-At,n-At
that are available within T}, ,. Even though ABA data exhibits temporal variation,
this chapter assumes a constant variation of the ABA values between two consecutive
measurement months. This allows the formulation of 2D spatio-temporal
interpolation to be simplified into 1D interpolation. To estimate the values of the

ABA data d;'m’”(x(‘q,tf ) at the position x¥ from the closest ABA measurement
month, £, 0€ { ﬁg} occurring prior to the measurement month ¢“, this chapter
considers one-dimensional polynomial interpolation Jﬁr’f,"(x) defined for rail r of
track j within a subdomain T}, , is mathematically expressed as:

RO
J
A=), DI (5.6)
Ito EZO ,%

where R]rm” denotes the degree of the polynomial used for interpolation in the

Rr,m,n

spatial subdomain T, ,,. The coefficients b;’fm’”,ﬁ =0,..., are determined using
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the given data points in each corresponding subdomain, aiming at minimising the
sum of the squared differences between the observed and predicted values of the
ABA signals. The degree of the polynomial defined in each subdomain is optimised
to attain the lowest sum square error.

5.4.2. HYBRID NEURAL MODEL

This chapter considers a hybrid CNN-LSTM and CNN-GRU model to predict the
track longitudinal levels. Both hybrid models are designed to have CNN layers on
top. Then, the LSTM or GRU structure is designed to follow the CNN layers, as
seen in Fig. 5.3. The inputs to the CNN layers are the interpolated values of the
displacements derived from the InSAR data and the ABA measurements. After the
CNN layers, their output is fed into the LSTM or GRU layers and the fully connected
layers, allowing for a prediction of the track longitudinal levels.

Given railway track j, rail r, and the interpolated values of the displacements
d;’m’"(x(g, tg) and the ABA signals d;m” (x(‘q,td ), this chapter considers the
input vector to a hybrid neural model as a concatenated vector denoted as
X = [cf}’m’"(x(g,tg),d;’m'"(x(g,td)]. For the f® convolutional layer, let denote its
input as Xp, its filters as Wy, the bias term as by, and the activation function as ¢.
The output z; of the f™ convolutional layer can be expressed mathematically as
follow:

zp =Wy Xy + by (5.7)

where * denotes the convolution operation, which involves sliding the filters Wy
over the input Xy and computing the dot product at each position. The result is
then passed through the activation function ¢. The obtained output z; represents
the feature maps passed on to the next layers.

After the CNN layers, LSTM layers or GRU layers are considered. For the GRU
layers, the core building blocks include hidden state (h), update gate (v), reset gate,
(r), candidate hidden state (%), and hidden state update rule [313]. For a time step
t, the hidden state h; is the memory of the GRU that captures information from
previous time steps. The update gate v; determines how much of the previous
hidden state /;_; to retain and how much of the new candidate hidden state 7; to
incorporate. The update gate is computed using a sigmoid activation function (o) as
seen in (5.8). The reset gate determines how much of the previous hidden state h;_;
to forget. It is also computed using a sigmoid activation function (o) as seen in (5.9).
The candidate hidden state at the time step ¢ represents the new information that
could be added to the memory. It is computed by applying the hyperbolic tangent
(tanh) activation function to the weighted sum of the reset-gated previous hidden
state and the current input, as seen in (5.10). Then, the new hidden state h; is
computed by combining the previous hidden state h;-; and the candidate hidden
state /1, using (5.11).

V= (I(W,, . [ht_l,zt]), (5.8)
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rtza(Wr'[ht—l»Zt]); (5.9)
h; :tanh(Wh-[rteht_l,zt]), (5.10)
ht=tanh((1— VI)Oht—l + Uthlt), (5.11)

where z; is an input to the GRU layers obtained from the last convolution layer of
the CNN layers, W, is the weight matrix for the update gate, W}, is the weight matrix
for the candidate hidden state, © represents element-wise multiplication.

Similar to the GRU layers, the LSTM cell has three gates: the input gate, the
forget gate, and the output gate. The forget gate determines what information
from the previous cell state should be discarded. The input gate decides what new
information to store, and the output gate controls how much of the current cell
state should be revealed as the output. Additionally, there are a cell state update, ¢;,
and the actual cell state ¢, designed for LSTM. Mathematically, they are expressed as
follows:

fi=o(Wp-[her, 2] + by), (5.12)
Ir=0(Wi- [he1, 2] + 1), (5.13)
& =tanh(W,- [hi-1,2.] + bc), (5.14)
cr=fr-cr—1+1;- ¢, (5.15)

01 =0 (Wo-[hi1,2:] + o), (5.16)
h; = 0;-tanh(c;), (5.17)

where z; is an input to the LSTM layers obtained from the last convolution layer of
the CNN layers. f; denotes forget gate, I; is input gate, ¢; is cell state, c; is update
cell state, o; is output gate, and h; is hidden state update. The weight matrices are
denoted as We, W, We, Wo, and the bias vectors are represented by bf,b[,bc,bo.

The final layer after the hybrid neural model consists of a fully connected layer.
The output y} from the a™ node of the A" layer is mathematically expressed as:

Ya =2 g (sb(h?,a) + bﬁ), (5.18)
j

where w?, represents the weight of the a™ and €™ node for the layer A and 1 -1,

respectively, ¢ is an activation function, and b} is its bias.
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5.4.3. EVALUATION OF KEY PERFORMANCE INDEX

Let the proposed KPI based on InSAR and ABA data denote as KPIjnsar+aBa- TO
assess the health of transition zones, this work focuses on computing KPIi,sar+aBa
for two track segments k € {Entrance, Exit}. These segments cover a distance of 30
meters each, extending from the entrance and exit sides of the transition zones
[250]. Specifically, the spatial boundaries are defined by x; and x,+30 metres
for the entrance side, while for the exit side, the spatial boundaries are defined
by x.—30 metres and x,. With a single value assigned to each segment k, two

k,j
values of KPL "¢, ¢ apa on
determining the standard deviation of the predicted longitudinal levels, SD,, at rail
k,j
InSAR+ABA

are determined for a given track j. Their calculation involves

re {inner, outer}. The proposed KPI for a given segment k of track j is

obtained as follows:

ki ek
k,j (SDinner + SDouter)
KPL sarsaBA = > ) (5.19)
where
o = () -1)
SD; " = —— 2 (5.20)
Y1
and f; (x¥,t%) is the predicted track longitudinal levels at a position x* contained

within the spatial boundaries of segment k and in a month ¥, [’ is the mean of the
predicted track longitudinal levels from rail r of track j, and y; is the number of
track geometry measurements in the spatial domain.

Following the European standard EN 13848-6 [314], the conventional TQI, referred
to as CoSD, and the performance index based on the average between the standard
deviation of the track longitudinal levels at the inner rail and that at the outer rail,
referred to as avgSD, are considered baseline comparisons. Mathematically, the
CoSD is expressed as in (5.21) and the avgSD can be obtained by considering the
observed value of track longitudinal levels in (5.19) and (5.20).

CoSD = |/ wpSD2_+ wGSDE + weSDY + wpSD2, (5.21)

where for the individual geometry parameter i, SD; is its standard deviation, w; is
its weighting factor. AL is the average alignment of the inner and outer rails, G is
the track gauge, C is the cant, and LL is the average longitudinal level between 2
rails. This CoSD is calculated considering a track segment of the same distance.

5.4.4. EVALUATION METRICS

The CNN-LSTM and CNN-GRU models are trained to minimise the difference
between the observed and the predicted track longitudinal level. In regression tasks,
root mean square error (defined in (5.24)) is typically used as a loss function for
model training. As typically conducted in CNN literature, including studies by [223,
308, 315], the following four statistics are utilised to evaluate model performance in
this chapter:
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° Mean absolute error (MAE) calculates the absolute differences between the
actual and predicted values generated by the model and then averages these
absolute differences. MAE gives equal weight to all errors without considering
overestimation or underestimation. MAE is expressed as [223]:

1 N
MAE:NZ{U,-—)?,-”. (5.22)
i=1

° Mean squared error (MSE) computes the squared differences between the
actual and predicted values generated by the model and then averages these

squared differences. By squaring the differences, MSE emphasises significant
deviations in the model predictions. MSE is expressed as [315]:

1

MSE= g (yi - j/i)z. (5.23)

* Root mean square error (RMSE) is the square root of the average of the
squared differences between the actual and predicted values generated by the
model. RMSE is expressed as [223, 308, 315]:

RMSE = (5.24)

+ R? measures the proportion of variance explained by the model and ranges
from 0 to 1, with 1 indicating a perfect fit. R? is expressed as [315]:

Z, 1 (J’l )71')2

R>=1- .
Z, 1(y1 )2

(5.25)

where N is the number of samples, y; indicates the predicted track longitudinal level
value, j; denotes the observed value, and y denotes the mean of the measurements.

5.5. CASE STUDY
5.5.1. DESCRIPTION OF THE CASE STUDY SITE

This chapter selects transition zones at a railway bridge between Dordrecht and Lage
Zwaluwe station as our case study. It is a 9-metre single-span bridge that crosses
over a water channel. The bridge supports two tracks of a railway line with fixed
travel directions. Fig. 5.5(a) shows photographs of the double-track rallway bridge
across a water channel from the side and top view, from which Fig. 5.5(b) shows
aerial photographs obtained from different years. Track 1 is for trains travelling
from Lage Zwaluwe to Dordrecht, and Track 2 is for trains from Dordrecht to Lage
Zwaluwe. This transition zone features the entrance and exit sides on each of
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(a) Photographs at the double-track railway bridge across a water channel from the side
and top view.

(b) Examples of aerial photographs showing the variability of the area near the railway
track from 2014, 2015, 2016, and the most recent year (source: BBMS, ProRail)

Figure 5.5: Our study area of transition zones.

the two tracks, as well as the inner and outer rails. The entrance side marks the
beginning of the transition in which trains move from the conventional track to the
bridge. The exit side of a railway transition zone is the segment where the trains
return back to the standard configuration of tracks.

5.5.2. DESCRIPTION OF THE MEASUREMENTS

All the measurement technologies are analysed at the track sections at both ends
of the bridge, from 30 metres before the railway bridge on the entrance side to
30 metres after the bridge on the exit side and 30 metres away from both tracks.
Therefore, the boundary area of our case study is defined to include measurements
collected at positions x within the kilometre range from x;, =edgel—-0.03 km to
X =edge2 +0.03 km. The transition zone of the bridge at the entrance side of Track
1, denoted as edgel, is marked at 24.652 km. The transition zone of the bridge at
the exit side of Track 1, denoted as edge2, is marked at 24.661 km. The distance
from x; to x, accounts for a total distance of 69 metres, including the bridge length
of 9 metres.
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TRACK GEOMETRY MEASUREMENTS

This chapter considers only track longitudinal levels from track geometry
measurements conducted from a railway track j e {1,2} at rail r € {inner,outer}. The
measurements used are available yearly between November 2018 and August 2022.
This accounts for five measurements in which tlg corresponds to November 2018,
tf corresponds to December 2019, t;g corresponds to August 2020, tff corresponds
to November 2021, and tgg corresponds to August 2022. The measurements are
processed with a bandpass filter within a wavelength range of 3 metres to 25 metres,
and the measurements are reported in the spatial domain with a resolution Ax¥ =
0.25 metres [316]. This accounts for 276 datapoints within the boundary area. Hence,
for this case study, a set of track longitudinal levels collected from a rail r of track j
at position x and month ¢ can be defined as:

(5}:{l;(x,t)‘x:xig,x;g,...,x;‘%ﬁ and ¢t = tig,...,tf}.

INSAR DATA

We use InSAR data that SkyGeo processed [317], and data were obtained from four
satellites: west-la, west-2a, midden-1, and midden-2. In this chapter, the data
were collected by Sentinel-1 SAR satellites, with multi-track images, every 5-12 days
from September 2018 to August 2022. Due to the temporal variations in InSAR
data collection, this chapter considers representing InSAR data on a monthly basis
to ensure a uniform measurement time across different satellites. We also perform
a moving average technique to mitigate noise inherent in InSAR data, which can
be due to temporal changes on the ground. Hence, the measurement month tly
aligns with September 2018. With subsequent measurement months determined
at a monthly resolution, culminating in the final measurement month t;fg , which
corresponds to August 2022. Within the boundary area, only 67 InSAR points were
available. These InSAR points are spatially aligned by projecting their positions
perpendicularly onto tracks 1 and 2. The projection yields InSAR data points spaced
at an average interval of 1 meter, i.e., Ax? =1 metre, with a maximum discrepancy
between individual data points equals to 5.4 meters. For this chapter, we assume
that the InSAR data for the inner rail are the same as those of the outer rail of the
same track. Hence, a set of line-of-sight displacements collected from track j at
position x and month ¢ can be defined as:

yjz{dj(x, t)‘xzxfﬁ,xzy,...,xz and 1= tly,...,tﬁ}.

AXLE BOX ACCELERATION MEASUREMENTS

The ABA signals are collected from four wheelsets at a rail r € {inner,outer} and
from a track je{1,2}. The measurements are available yearly between 2018-2019
and 2021-2022. This accounts for four measurements in which tff corresponds to
September 2018, tz'd corresponds to June 2019, tf' corresponds to November 2021,
and t;f" corresponds to May 2022. In this chapter, the measurements come from the
high sampling frequency of 25.6 kHz, e.g., local dynamic responses are measured
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at every millimetre approximately for a measuring speed of 100 km/hr. Only the
vertical ABA signals corresponding to the vertical train-track dynamic are considered
in this work. A low pass filter at 100 Hz is applied to filter out high-frequency
contents within the vertical ABA signals unrelated to transition zone conditions.

Then, the ABA signals in the time domain are transformed into the time-frequency
domain using the Morlet wavelet. After the wavelet power spectrum (WPS) of the
ABA signal is obtained, their corresponding scale average wavelet power (SAWP) is
calculated to investigate characteristic frequency responses at the transition zones.
Only the spatial frequency range between 0.04 m~! and 0.33 m~!, corresponding
to track irregularities in the wavelength from 3 m to 25 m, are selected for our
analysis as this is related to the condition of the substructure layer reported in [250].
This chapter considers the average SAWP from four ABA signals corresponding to
the same rail to reduce uncertainty from the measurements, in which the SAWP
is reported with a spatial resolution of 1 centimetre, i.e,, Ax® =0.01 metre. This
accounts for 6900 data points within the boundaries of the spatial domain. Hence, a
set of the average SAWP derived from the ABA measurements collected from rail r
of track j at position x and month ¢ can be defined as:

o o o o o
dj’:{a;(x,t)|x:x1 VX5, Xggoo and t= 177, 1 }

5.6. RESULTS
5.6.1. IMPLEMENTATION DETAILS

Due to limitations in the available measurement history, we discretise the temporal
domain into five fixed subdomains. Then, we vary the number of subdomains in the
spatial domain to assess their impact on the overall analysis. For a given subdomain,
the degrees of polynomials used in the curve fitting for the SAWP and the surface
fitting for displacements are experimented with. The polynomials up to the fifth
degree are trials. The hybrid neural models are developed separately for Track 1 and
Track 2, in which the same network architecture is used to predict the longitudinal
levels from both the inner and outer rails of the respective track. We experiment
with the number of hidden layers used within the CNN, GRU, and LSTM structures.
For the CNN structure, up to three convolutional layers are considered, and four
different numbers of filters are trial: 64, 32, 16, and 8. We also experiment with
different filter sizes: 3x3, 5x5, 7x7, and 11x11. The rectifier or ReLU activation
function is used in CNN. For the GRU and LSTM structure, up to two layers are
considered, and six different numbers of hidden units are trial: 256, 128, 64, 32, 16,
and 8. The hyperbolic tangent and sigmoid functions are exploited as the state and
gate activation functions, respectively.

For the model training, the following parameter setting is specified: number of
data in each batch (MiniBatchSize) = 10, the maximum number of epochs = 300,
and the learning rate for parameter updates = 0.01. The dataset is divided into
training and test sets with a ratio of 60:40, in which 90% of the training set is used
to train the model, and the other 10% is used for validating the trained model. The
trained model is then tested with the holdout test set to evaluate its performance for
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the regression task. The models are trained with 5-fold cross-validation considering
inner and outer rails data. The dropout layer and the L,-regularisation are also
considered to prevent overfitting.

5.6.2. RESULTS OF DIFFERENT INTERPOLATION FUNCTIONS

This section investigates the impact of using different interpolation functions on
predictive performance. In this analysis, the hybrid CNN-GRU model is used to
showcase the analysis and we consider uniformly discretising the domain into 35
subdomains. This is obtained by dividing the spatial and temporal domain uniformly
into 7 and 5 subdomains, respectively. The tested interpolation functions include
local linear regression, polynomial function, nearest interpolation, biharmonic
interpolation, and cubic spline. @We assess the performance in two aspects:
interpolation performance and predictive performance. To assess the interpolation
performance, the deviations of the estimates of the missing values from the actual
values are measured, in which the evaluation metrics used are RMSE and R?. To
assess the predictive performance, RMSE, MSE, MAE, and R? are calculated.

Table 5.1 shows that the polynomial function yields the best predictive performance
even though the nearest, biharmonic, and cubic spline interpolations demonstrate
better fitting performance. Fig. 5.6 presents the results of the spatio-temporal
interpolation obtained from the polynomials. The results are showcased from Track
1. It is observed from the experiments that the suitable degrees of the polynomials
differ for different subdomains. This results from the variations in the distribution of
the displacement data in different subdomains, as illustrated in Fig. 5.6(a). Fig. 5.6(b)
presents the surface fitting results across the entire domain. Notably, the consistency
between predicted and observed values are reasonable, evident by residuals shown
in Fig. 5.6(c). The surface fitting of the displacements yields the average RMSE
values of 0.0027 m and R? = 0.7731.

5.6.3. RESULTS OF DIFFERENT NUMBERS OF SUBDOMAINS

Considering the polynomial functions obtained from Section 5.6.2 to estimate values
of displacements, this section investigates the impact of discretising the domain into
different numbers of subdomains. The hybrid CNN-GRU model is also used to
showcase the analysis. It is observed in Table 5.2 that employing large subdomains
for interpolation fails to capture local variations along the track. This leads to poor
predictive performance, as indicated by a high error and a large R?> value when
discretising the domain into 5 subdomains. However, performing an interpolation
with subdomains that are too small can result in overfitting, where the interpolation
passes through all the data points. This is evident in the well-fitted performance
with a small error and an R? value close to 1 when the domain is discretised into
50 subdomains. Analysing the results in Table 5.2 reveals that the best predictive
performance is achieved through uniform discretisation into 35 subdomains.
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Table 5.1: Impact on the predictive performance when using different interpolation
functions. Shown are the results obtained from the hybrid CNN-GRU of

Track 1.
Interpolation function Interpolation Predictive performance
performance
RMSE R’ RMSE | MSE MAE R?
Local linear regression 0.0030 | 0.5547 | 0.0489 | 0.0033 | 0.0323 | 0.5061
Polynomial 0.0027 | 0.7731 | 0.0403 | 0.0017 | 0.0275 | 0.8048
Nearest interpolation 0.0 1.0 0.0472 | 0.0039 | 0.0303 | 0.7244
Biharmonic interpolation 0.0 1.0 0.0458 | 0.0022 | 0.0325 0.1959
Cubic spline 0.0 1.0 0.0862 | 0.0082 | 0.0600 | -2.7106

Table 5.2: Impact on the predictive performance when discretising domain into
different sizes of subdomains. Shown are the results from using a
polynomial function in the interpolation and the hybrid CNN-GRU of
Track 1 in the prediction.

No. of Interpolation performance Predictive performance
subdomains | RMSE R? RMSE | MSE | MAE R?
5 0.0042 0.1197 0.0649 | 0.0045 | 0.0447 -6.4755
15 0.0035 0.3690 0.1127 0.0130 0.0595 0.3451
35 0.0027 0.7731 0.0403 | 0.0017 | 0.0275 0.8048
45 0.0021 0.7996 0.0782 | 0.0062 | 0.0534 0.0563
50 0.0018 0.8466 0.0703 | 0.0058 | 0.0436 0.0344
55 0.0020 0.8020 0.0989 | 0.0105 | 0.0630 | -37.2659

Table 5.3: Performance comparison among different predictive models. The reported
performance is an average value between the inner and outer rail.

Model Track 1

Architecture RMSE MSE MAE R?
CNN 128-64 0.0828 | 0.0128 | 0.0579 | 0.5203
GRU 32-16-8 0.0477 | 0.0031 | 0.0327 | 0.5845
LSTM 128-64 0.0779 | 0.0069 | 0.0584 | 0.5829

CNN-LSTM | 32-16-8-32-16 0.0374 | 0.0015 | 0.0281 | 0.8149
CNN-GRU 32-16-8-128-64 | 0.0403 | 0.0017 | 0.0275 | 0.8048

Model Track 2

Architecture RMSE MSE MAE R?
CNN 64-64 0.1045 | 0.0115 | 0.0744 | 0.5222
GRU 32-16-8 0.0558 | 0.0032 | 0.0396 | 0.5848
LSTM 64-32 0.0868 | 0.0080 | 0.0629 | 0.5436

CNN-LSTM | 32-16-8-32-16 0.0553 | 0.0033 | 0.0395 | 0.7016
CNN-GRU 32-16-8-128-64 | 0.0509 | 0.0031 | 0.0355 | 0.7539

5.6.4. COMPARATIVE STUDY FOR TRACK LONGITUDINAL LEVEL
PREDICTION

Following the results of Sections 5.6.2 and 5.6.3, we discretise the domain into 35
subdomains and using a polynomial for interpolation of displacements. For the
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SAWP, the degrees of polynomials used in the interpolation are also experimented
with. The results suggest the utilisation of a fifth-degree polynomial for the
interpolation, in which the obtained interpolation performance is given with average
RMSE values of 0.0012 m?/s* and R? = 0.9999. To evaluate the effectiveness of the
hybrid CNN-LSTM and CNN-GRU models, this chapter considers other models in
the comparative study as benchmarks. The benchmark models include CNN, GRU,
and LSTM. Each model employs the same parameter settings for the model training
and undergoes the same experiments with different numbers of filters and sizes as
described in Section 5.6.1.

Table 5.3 compares performance obtained from different predictive models
developed using data obtained from railway Track 1 and 2. The reported
performance is an average value between the inner and outer rail. Different network
architectures are designed for different railway tracks, with those outlined in Table 5.3
exhibiting the lowest RMSE values. Notably, the GRU and LSTM models perform
better than the CNN model. This is attributed to their ability to handle temporal
characteristics. On average, their RMSE improves from that of the CNN model by
24.15%, and their R? improves by 12.19%. Within the comparison between the GRU
and LSTM models, the GRU model, designed according to the network architecture
specified in Table 5.3, exhibits higher performance than the LSTM model for the
dataset from Track 1 and 2. Employing a hybrid model approach leads to enhanced
performance. This is evident in both hybrid CNN-LSTM and CNN-GRU models. The
CNN-GRU model outperforms all the individual models for Track 1 and 2, improving
with an average RMSE of 32.88% and R? of 40.40%. Notably, the CNN-GRU model
yields inferior performance to the CNN-LSTM model for Track 1, which is impaired
by 7.75% for RMSE and 1.24% for R?. Conversely, the hybrid CNN-GRU model
yields superior performance for Track 2, surpassing the CNN-LSTM model with an
improved RMSE of 7.96%, and R? of 7.45%.

Fig. 5.7 illustrates a comparison between the predicted track longitudinal levels
obtained from different models in the years 2018-2022. These are the results obtained
from the inner rail of Track 2. It can be seen that different models demonstrate
different capabilities in capturing the spatial and temporal characteristics presented
in the track longitudinal level changes over the years. This capability can be
investigated through the spatial and temporal relationship between the predictions
and measurements. In other words, a consistent trend between the predictions and
measurements along the track positions and across the years should be observed.
The predicted values obtained from the individual models, i.e., CNN, GRU, and
LSTM, exhibit inconsistent trends with the real measurements. The inconsistency
trend is more pronounced in 2022. This is evident by their smaller R?> values,
indicative of a less consistent trend with the observed track longitudinal levels.
In contrast, the hybrid CNN-LSTM and CNN-GRU models exhibit more consistent
trends, as evidenced by their higher R?> values compared to the individual models.
This suggests a superior ability to capture spatial characteristics. As time evolves,
the increased errors in the predicted values from CNN, GRU, and LSTM models are
observed. Also, the trend in their predictions shifts, failing to accurately capture
peaks. While a slight drop in capturing peaks is observed in the hybrid CNN-GRU
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model, it demonstrates an ability to adapt to the trends of the track longitudinal
changing over time. This emphasises the effectiveness of the hybrid CNN-LSTM and
CNN-GRU models in predicting track longitudinal levels.

——Obs ---CNN ---GRU
- - -LSTM - - -CNN-LSTM - - -CNN-GRU
Bridge ! I B
% Zs \\\\ -~

2018

1 | | |
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Figure 5.7: Predicted track longitudinal levels obtained from different models. Shown
are the results from the inner rail of Track 2.

5.6.5. KPI BASED ON INSAR AND ABA DATA FOR THE HEALTH
ASSESSMENT OF RAILWAY TRANSITION ZONES

This section employs the results obtained from the hybrid CNN-GRU to showcase
the evaluation of the proposed KPIihsar+apa. Fig. 5.8 shows a continuous evolution
of the proposed KPIysar+aBa, at the entrance and exit side of the transition zones
from September 2018, marked by month 1, to August 2022, marked by month 48.
There were only five measurements of track geometry parameters within this period.
Notably, the KPIjnsar+aBa provides consistent health conditions with the CoSD and
the avgSD in the months highlighted in the black boxes for both Track 1 and 2.
Specifically, from June 2019, marked by month 10, the KPIjysar+aBa is similar to the
trend of the CoSD and avgSD derived from the track geometry measurements. The
transition zone at the exit side was more degraded than the entrance for Track 1,
whereas the entrance side was more degraded than the exit for Track 2. Likewise, the
CoSD, avgSD, and KPIjysar+aBa consistently revealed that Track 2 was more degraded
than Track 1, evident by their higher value.

In month 3, a contrasting trend is observed in Track 1, as highlighted by the red
boxes. The KPIpsariapa analysis for Track 1 uncovered that the entrance side of
the transition zone exhibited greater degradation compared to the exit side. This is
consistent with the information obtained from the ABA measurements depicted in
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Figure 5.8: Continuous evolution of the KPI at the entrance and exit side of the
transition zones from September 2018, marked by month 1, to August
2022, marked by month 48.

Figs. 5.9(a), where the average values of SAWP on the entrance side of the transition
zone surpass those on the exit side for Track 1. The inconsistency with the CoSD
in Track 1 can be attributed to the inherent integration of ABA measurements
in predicting track longitudinal levels. This integration enables the inclusion of
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local changes within the substructure layers in the proposed KPI, a capability
that traditional track geometry measurements may lack. This results from the
consideration of the spatial frequency range of 0.04 m~! to 0.33 m~! (substructure
related) in the SAWP calculation.

Furthermore, the track longitudinal levels at unobserved months can be obtained
using our hybrid model. This results in a more frequent estimation of the KPI
that can be used to facilitate regular assessments of transition zone health, owing
to a high-frequency measurement of InSAR data. This approach can enhance the
ability to detect changes in track irregularities early, even before obtaining the next
measurement of track geometry profiles, as illustrated in the green box. In Fig. 5.8(a)
and 5.8(b), abrupt changes of the KPIjysar+apa value are observed between months
9-10 and 38-39. This was when the track longitudinal levels were predicted from
the ABA measurements of the most recent year. As seen in Fig. 5.9, the SAWP
values for both Track 1 and 2 in 2019 increased from those of 2018, resulting
in more degraded conditions of the transition zones in 2019 compared to 2018.
This pattern is followed between months 38-39 as the increased SAWP values are
observed in Figs. 5.9(c) and 5.9(f) for both Track 1 and 2 compared to those in 2019.
Consequently, the KPIjpsariapa in month 10 is higher than in month 9, and similarly,
the KPIjnsar+aBa in month 39 exceeds that of month 38. This consistent trend is
observed for both tracks. Evaluating from the KPIj,sar+aBa Values, in cases where the
severity is classified as high, this proactive information allows for effective planning
of maintenance actions.

5.6.6. DISCUSSION

This section delves deeper into the analysis of predicted track longitudinal levels,
providing insights into the physics. The investigation is showcased using data
collected in 2020 from track 1. While consistency is evident between the prediction
and observation in the time domain, depicted in Fig. 5.10a), a distinct variation in
energy distribution within the frequency domain is noticeable. As seen in Figs. 5.10b)
and 5.10c), differences are observed in the frequency content for wavelengths ranging
from 3 to 25 metres when comparing observations to predictions. This is more
pronounced, particularly when the wavelength is less than 5 metres for the entrance
and exit sides of the inner and outer rails. The predicted track longitudinal levels
at the railway bridge transition zones exhibit different characteristics, reflecting the
limitation arising from the data-driven nature of the predictive models employed in
this chapter. This comes from a lack of the incorporation of physical information
from the track system.

5.7. CONCLUSIONS

This chapter presents a framework that enables a more frequent evaluation of
transition zone health by integrating multiple monitoring technologies, including
track geometry, InSAR, and ABA measurements. To illustrate its effectiveness, a
case study at a railway bridge between Dordrecht and Lage Zwaluwe station in the
Netherlands is used. Compared to individual models, i.e., CNN, GRU, and LSTM,
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Figure 5.9: The interpolated SAWP for predicting the track longitudinal levels.
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Figure 5.10: Comparison results between the predicted and observed track longitudi-
nal levels in a) the time domain, and the frequency domain considering
b) WPS and c) PSD at the transition zones from track 1.

hybrid CNN-LSTM and CNN-GRU exhibit a superior ability to capture the spatial
and temporal relationships between the track longitudinal levels, InSAR, and ABA
measurements. The hybrid models allow for more accurate predictions of track
longitudinal levels during unobserved months, leading to a more frequent estimation
of the KPI. This owes to a high-frequency measurement provided by InSAR data.
As new measurements become available, the hybrid models facilitate the timely
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estimation of KPI values. The proposed KPI proves effective in detecting changes in
track irregularities, thereby enabling regular assessments of transition zone health.

Future research lines include evaluating the generalisation and robustness of
the proposed methodology and the proposed KPI based on InSAR and ABA data
for assessing the health of transition zones. This involves using a larger dataset
containing diverse locations under varying transition zone conditions. Then,
probabilistic models, e.g., the fuzzy-interval method and Bayesian networks, can
be considered as predictive models to incorporate and quantify uncertainty in
the data arising from diverse locations and conditions. The inclusion of physical
variables and maintenance information in the predictions can also be considered
via physics-informed machine learning to better capture the dynamic behaviour of
transition zones. Given that ABA measurements depend on speed, a method to
mitigate the impact of speed variations in measurements is needed to facilitate the
broader application of the proposed framework.
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At last, it comes to an end.
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6.1. CONCLUSIONS

The comprehensive review of the development of Al methodologies in railway
infrastructure allows us to gain insights into the challenges for successful
implementation in the railway industry. Based on these, this PhD research considers
Al solutions to address the selected challenges and provide support for maintenance
decisions of railway infrastructure. The challenges covered are the detection of
rail surface defects at early development stages based on ABA measurements,
unsupervised representation learning from high-frequency moving vibration sensors,
including ABA and LDV, and the fusion of information from different monitoring
technologies. The research questions are addressed in the sequels.

RQI1: How successful are Al developments in addressing railway infrastructure
problems?

Chapter 2 provides a comprehensive review of the development of Al methodologies
in railway infrastructure. Our review primarily focuses on publications dealing
with four selected groups of railway infrastructures: track system, catenary system,
civil structures, and track substructures. The review highlights significant advances
in addressing various problems within railway infrastructure. Examples of Al
applications include monitoring the health status of railway components, detecting
defects and failures, and planning maintenance activities. However, the distribution
of Al methodologies across different railway components is uneven. While some
components deploy Al methodologies extensively, others have only a limited number
of Al applications. Despite its success, several challenges specific to railway
infrastructure hinder the direct application of state-of-the-art Al methodologies.
These challenges include insufficient and imbalanced data for model training, the
complexity of railway data, and resistance to change within the industry. Therefore,
to successfully apply Al in railway infrastructure, it is essential to design and develop
methodologies that address its unique and challenging characteristics.

RQ2: Can an SNN-based methodology improve the detection accuracy of rail
squats, particularly light squats, based on ABA measurements?

Chapter 3 provides the answer to this question. This chapter presents a spiking
neural network with time-varying weights using no hidden layers, along with a
training methodology that incorporates genetic algorithms, k-fold cross-validation,
and multi-start backpropagation. As shown by real-field measurements from
Dutch and Swedish railways, this approach improves the learning of complex
spatio-temporal patterns presented in squats based on ABA measurements from
the traditional methods, which are 78-85% to more than 93%. Our approach
outperforms neural network-based models such as SVM, ANN, and GRU, as they
detect only 60-68% of squats. Moreover, our SNN model has a simpler architecture
without hidden layers. This success is primarily attributed to the use of time-varying
weights, which allow the SNN to produce time-encoded outputs that simulate
the continuous scanning of ABA measurements. Compared to constant weights,
these time-varying weights enhance the ability of the model to handle temporal
sequences and dynamic behaviours by 8.57%, which are crucial for accurate rail
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squat detection. Furthermore, The method can be used to provide interpretability.
The spike responses, postsynaptic potentials, and membrane potentials have offered
an explainable way to analyse the ABA signals. These internal spike behaviours
highlight a correspondency with high frequency band between 1000-2000 Hz of the
detection problem of squats and offer an ability to capture subtle changes in the
responses. However, the performance of our SNN-based method can be impaired
by data quality such as class imbalance and noise. Variations in environmental
conditions, infrastructure layouts, and operational characteristics may reduce signal
prominence, further impacting the effectiveness of our SNN-based approach.

RQ3: How can we effectively extract, in an unsupervised manner and from
high-frequency moving vibration sensing, representations that characterise dynamic
behaviours of rail infrastructures?

Chapter 4 addresses this question by presenting an unsupervised representation
learning methodology to characterise the dynamic behaviours of rail infrastructures
using high-frequency moving vibration sensors. This methodology synchronises
empirical mode decomposition (EMD) levels with the parameters of a convolutional
autoencoder (CAE) to extract meaningful representations. Testing the proposed
methodology with ABA measurements from the Swedish rail network and LDV
measurements from the Dutch rail network demonstrated its effectiveness in
distinguishing between normal and abnormal samples. Despite the inherent
fuzziness and disturbances in ABA and LDV data, the method achieved clear cluster
separability with minimal overlaps. Our method correctly assigns 96% of normal
samples and correctly assigns 41% of abnormal samples for ABA data, and it
correctly assigns 47% of normal samples and correctly assigns 90% of abnormal
samples for LDV data. Compared to other variants of autoencoder-based models and
the wavelet-based CAE, it achieves an improvement of 16% for ABA data and 21%
for LDV data. Additionally, the latent features obtained from this method proved
informative. For ABA data, clusters of rail segments with similar characteristics help
guide infrastructure managers in terms of defect locations. For LDV data, clusters of
rail segments with similar characteristics facilitate learning trends and patterns in rail
fastener health. The success of the proposed method underscores the importance
of EMD in denoising, enhancing the representation learning of rail infrastructure
characteristics, and reducing noise interference.

RQ4: How can a hybrid neural model exploit information from track geometry
measurements, InNSAR measurements, and ABA measurements to assess transition
zone conditions with a more frequent evaluation?

Chapter 5 addresses this question by presenting a framework incorporating
spatio-temporal interpolation with a hybrid neural model. A spatio-temporal
interpolation approach is employed to fill in missing InSAR data. The framework
considers two hybrid neural models: a convolutional neural network (CNN)
combined with gated recurrent units (GRU) and a CNN combined with a long
short-term memory (LSTM) network. These hybrid models exploit the spatial and
temporal characteristics inherent in the fusion of historical and interpolated data
from InSAR and ABA measurements. The CNN layers extract spatial features from
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the high-frequency vibration data. In contrast, the GRU and LSTM layers capture
temporal dependencies from the InSAR. We employ a hybrid model approach to
predict track longitudinal levels, and it achieves an averaged RMSE of 0.0459 and
R2 of 0.7788. Compared to individual models such as CNN, GRU, and LSTM, this
approach reduces RMSE from 0.0759 by an average of 39.53% and increases R? from
0.5564 by 39.97%. This dual capability is crucial for understanding the dynamic
behaviours of rail infrastructures over time and space. Then, this dissertation utilises
the predicted track longitudinal levels to define a new key performance index, namely
KPIisar+ABA, toO assess transition zone conditions. With this KPIjysar+aBa COmbining
InSAR and ABA data, transition zone conditions can be assessed more frequently as
InSAR can be obtained every 5 to 12 days, and ABA data can be collected in real-time
or near-real-time. Testing the proposed framework using data from a railway bridge
between Dordrecht and Lage Zwaluwe station in the Netherlands demonstrates its
capability to predict track longitudinal levels during unobserved months accurately.
This leads to a more accurate and frequent estimation of the KPI that can be used to
detect track irregularities early, even before the next measurement of track geometry
profiles. Therefore, the proposed framework enables continuous monitoring and
regular assessment of transition zone health. Although the KPIjysar+aBa is updated
more frequently, its accuracy is influenced by the quality of the InSAR data collected,
with noise levels exceeding 10%. However, as ABA technology advances and
enables real-time or near-real-time data collection, the KPIjysariaBa iS expected to
improve significantly with more ABA signals. This will allow infrastructure managers
to monitor conditions more effectively via a dashboard, integrating all available
information to better quantify the level of defects with increased flexibility.

The answers to these research questions conclude the dissertation and address the
key research question:

“How can Al be adopted so that maintenance in a large-scale railway
infrastructure is improved?"

The answers to RQ1, RQ2, RQ3, and RQ4 demonstrate the significant potential of
Al-driven methodologies in enhancing rail transport through advanced technological
solutions. This potential illuminates pathways for future advancements and the
development of sustainable railway systems. By detecting defects at their early
stages and enhancing the accuracy and frequency of condition assessments through
data fusion, the safety and reliability of railway infrastructures are significantly
enhanced. Consequently, delays and disruptions are minimised due to more
reliable infrastructure supported by condition-based maintenance procedures on
a large scale. Automatic condition monitoring and early anomaly detection,
such as rail surface defects, improve the effectiveness of maintenance activities,
enabling operators to adjust their schedules based on real-time data, thus reducing
maintenance and operational costs. Furthermore, unsupervised learning allows
exploratory analysis of high-frequency vibration signals when prior knowledge or
reference information about infrastructure conditions is unavailable or very limited.
Therefore, the maintenance of large-scale railway infrastructure is improved.
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6.2. RECOMMENDATIONS

Despite their success in addressing the challenges outlined in the conclusions, the
developed Al methodologies have certain limitations that hinder their successful
implementation in the railway industry. To overcome these challenges, the following
recommendations for future research are proposed.

* For the detection of defects at their early stages, future research should
focus on techniques that address the issue of imbalanced datasets and
adapt SNNs to incorporate multiple measurements from various sources and
data types to minimise false alarms. Transformer models, for example,
can be considered to tackle insufficient and imbalanced railway data. The
integration of the metaverse and the Internet of Things (IoT) can also
alleviate issues related to imbalanced data, as the metaverse can generate
a wide range of virtual scenarios to create a more balanced dataset using
information from sensors and IoT devices that collect real-time data from
instrumented railway infrastructure. Exploring fuzzy interval methods can
explicitly capture uncertainties during the training process, improving the
understanding of SNN-based classifier behaviour when dealing with railway
data. Advancements in machine learning, signal processing, and railway
engineering can further enhance rail defect detection techniques. For instance,
deep learning models, such as convolutional neural networks (CNNs), can
enable autonomous feature extraction, reducing reliance on expert knowledge
and improving detection accuracy. Transfer learning techniques can help
models adapt to new conditions by leveraging knowledge from different
railway networks, allowing for defect detection in untested environments.
Implementing advanced denoising algorithms can improve the signal-to-noise
ratio, making it easier to identify and address issues in their early stages.
Deploying high-frequency sensors like ABAs on operational trains can enable
continuous monitoring of rail infrastructure, enhancing detection capabilities
and predictive maintenance.

e For the unsupervised representation learning from high-frequency moving
vibration sensors, future research should aim to improve cluster separability
through advanced clustering techniques and hybrid approaches to better
distinguish between normal and abnormal samples. Incorporating additional
data sources and developing data fusion techniques can provide a
comprehensive analysis, enhancing the accuracy and reliability of rail
infrastructure condition assessments. Examining scalability and real-time
processing capabilities is crucial for enabling real-time analysis of large-scale
rail network data. Validating the methodology across different rail networks
with varying environmental conditions and operational patterns is essential to
ensure robustness and applicability.

e For the fusion of information from different monitoring technologies, future
research should evaluate the generalisation and robustness of the proposed
methodology and KPI based on InSAR and ABA data for assessing the health
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of transition zones. This involves using a larger dataset containing diverse
locations under varying transition zone conditions. Probabilistic models,
such as fuzzy-interval methods and Bayesian networks, can be considered as
predictive models to incorporate and quantify uncertainty in the data arising
from diverse locations and conditions. The inclusion of physical variables
and maintenance information in the predictions can also be considered via
physics-informed machine learning to better capture the dynamic behaviour of
transition zones. Given that ABA measurements depend on speed, developing
methods to mitigate the impact of speed variations in measurements is needed
to facilitate the broader application of the proposed framework.

Beyond the challenges presented in this dissertation, the maintenance of railway
infrastructures is pitted with a vast array of challenges, as discussed in Chapter 2.
Current maintenance and operational protocols, which rely on predefined rule sets,
will need adjustments to effectively integrate Al-driven solutions. Proper integration
of a new Al-based system into the current operating system requires smooth
integration without interrupting the service. The following recommendations outline
examples of how the railway industry can realistically integrate Al for enhanced
engineering and maintenance processes:

* Tailored cybersecurity policies should be introduced to protect sensitive data
generated from Al systems and onboard monitoring. Without effective
cybersecurity, rail operators cannot ensure the security of critical data and
information. Consequently, business resources cannot be consolidated, and
data are scarce with limited access.

° A data standard is required to enable the available interactions between
heterogeneous formats and systems. This is because data interoperability
presents a major challenge in deploying Al-based solutions in the railway
industry. Its problem is how to convert and integrate the data across diverse
systems, e.g., the data coming from the APIs of different customers. Each API
has its way of working. Having compatibility among software is thus critical to
facilitate the use of Al

* The impact of Al-based maintenance solutions should be regularly evaluated
to ensure safety. For example, risk assessments should accompany each
Al recommendation to provide engineers with a clear understanding of the
potential impacts on infrastructure safety.

* All Al-based solutions and recommendations should be logged and times-
tamped. This allows operators to track the sequence of Al recommendations
and actions taken. This will facilitate the accountability and transparency of AL

 The railway industry should promote the new way of work. This could include
training railway staff to understand and interpret Al-driven insights. Improving
knowledge of Al models will help them evaluate the results more effectively,
improving confidence in Al recommendations.
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Researchers in both academia and industry can leverage the insights from this
dissertation to identify trends and develop benchmarks tailored to the specific
challenges of railway infrastructure. The technological advancements in Al discussed
here can serve as a foundation for generating even more innovative applications
and use cases within the railway sector. Alongside the excitement about integrating
Al into railway infrastructure, it is crucial to also consider economic efficiency and
feasibility. Therefore, a comprehensive redesign of inspection, monitoring, and
maintenance procedures is necessary to align with these technological advancements.
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