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Consider the sum Y = B + B(H) of a Brownian motion B and an inde-
pendent fractional Brownian motion B(H) with Hurst parameter H ∈ (0,1).
Even though B(H) is not a semimartingale, it was shown by Cheridito
(Bernoulli 7 (2001) 913–934) that Y is a semimartingale if H > 3/4. More-
over, Y is locally equivalent to B in this case, so H cannot be consistently
estimated from local observations of Y . This paper pivots on another unex-
pected feature in this model: if B and B(H) become correlated, then Y will
never be a semimartingale, and H can be identified, regardless of its value.
This and other results will follow from a detailed statistical analysis of a more
general class of processes called mixed semimartingales, which are semipara-
metric extensions of Y with stochastic volatility in both the martingale and
the fractional component. In particular, we derive consistent estimators and
feasible central limit theorems for all parameters and processes that can be
identified from high-frequency observations. We further show that our esti-
mators achieve optimal rates in a minimax sense.

1. Introduction. Mixed fractional Brownian motions (mfBms) were introduced by [11]
as the sum

(1.1) Yt = σBt + ρB(H)t , t ≥ 0,

of a standard Brownian motion B and an independent fractional Brownian motion B(H) with
Hurst parameter H ∈ (0,1) \ {1

2}. While this class of processes was originally introduced in
mathematical finance to model long memory in asset prices, it poses nonstandard challenges
from a statistical perspective: Even though the laws of B and B(H) on a finite time interval
are mutually singular, the law of their superposition, Y , can be locally equivalent to that of
σB (if H > 3

4 ) or ρB(H) (if H < 1
4 ); see [8, 11, 41]. In these cases, either (ρ,H) or σ cannot

be consistently estimated on a finite time interval.
In this paper, we are interested in whether these results remain valid if B and B(H) are no

longer assumed to be independent. The answer to this question is negative.

THEOREM 1.1. Suppose that Y is given by (1.1) with σ,ρ > 0 and

(1.2) B(H)t = K−1
H

∫ t

−∞
(
(t − s)H− 1

2 − (−s)
H− 1

2+
)

dB̃s, t ≥ 0,

is the Mandelbrot–van Ness representation of standard fractional Brownian motion (see, e.g.,
[34], Chapter 1.3), where (B, B̃) is a two-dimensional Brownian motion with Var(B1) =
Var(B̃1) = 1 and λ = Cov(B1, B̃1) ∈ [0,1] and KH is the normalizing constant given in
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(2.3). Then the process Y has the same distribution as Ỹ given by

(1.3) Ỹt = σWt +
√√√√ 2λρσ

KH(H + 1
2)

W(H)t + ρW(H)t ,

where W is a standard Brownian motion, W(H) and W(H) are fractional Brownian motions
with Hurst parameters H and H = 1

2(H + 1
2), respectively, and all three processes are inde-

pendent. Moreover, if λ > 0, Y is not a semimartingale and its distribution is locally singular
to both σB and ρB(H) for all H ∈ (0,1) \ {1

2}.

The newly emerging fBm with Hurst parameter H significantly changes the properties of
the model. In particular, for all values of H , we have |H − 1

2 | < 1
4 , which has two conse-

quences for the correlated case: first, the mixed process will never be locally equivalent to
either of the two pure processes, and second, H (and therefore H ) is identifiable from high-
frequency observations in all cases. Our asymptotic results below show that this also upholds
for negative correlation coefficients λ.

Fractional processes have a long history of applications in fields such as hydrology
[23, 35, 37], telecommunications [28, 33], finance [11, 16, 21], turbulence [9, 17] among
others. In these applications, superpositions of fractional processes arise naturally when mul-
tiple sources have a cumulative effect. For example, [42] describe a continuous GPS signal
affected by both white noise and fractional noise. The same phenomenon is found by [43] in
a range of astronomical data sets. Another example is found in hydrology, where fractional
Brownian motion is commonly used to model river runoff, with varying Hurst parameters for
different rivers [37]. In a system of multiple connected rivers, the runoffs add up downstream,
which leads to a superposition of fBms with different Hurst parameters. Due to the spatial
correlation of rainfall, these constituent fBms will be correlated, analogous to the mixed fBm
model studied in this paper. The results of this paper highlight that correlation between the
fBms is not negligible, as it alters the statistical properties significantly.

Our interest in mixed fractional Brownian motion of the specific form (1.1) is motivated
by recent applications of mixed processes in financial econometrics. In [13], it is shown
that for a large set of high-frequency stock return data, observed prices are contaminated by
microstructure noise that locally resembles fractional Brownian motion with Hurst parame-
ter H ∈ (0, 1

2). Like in most microstructure noise models in the literature, the two innovation
processes driving price and noise (which are B and B(H) in (1.1)) are assumed to be indepen-
dent of each other. However, both economic theory [19] and empirical evidence [22] suggest
that efficient price and microstructure noise should be contemporaneously cross-correlated.

Against this background, the main contribution of this paper is to develop an infill asymp-
totic theory for semiparametric extensions of the mfBm model (called mixed semimartin-
gales) where σ and ρ can be stochastic and time-varying. The fundamental statistical ques-
tion we address is the following: what parameters can be inferred from local observations of
the sum of a martingale and a correlated fractional process, and what are the optimal rates of
convergence as the sample size increases? To this end, we first derive in Section 2 a stable
central limit theorem (CLT) for the empirical autocovariances of the increments of a mixed
semimartingale process as the sampling frequency increases to infinity (Theorem 2.1). In line
with Theorem 1.1, the population autocovariance consists of three terms with different scal-
ing exponents. Most importantly, the leading order term only contains information about the
parameter σ (if H > 1

2 ) or (ρ,H) (if H < 1
2). To optimally estimate all parameters, it is thus

necessary to utilize the information in the asymptotically smaller contributions to the autoco-
variance. In particular, in Section 3, we combine the results of Theorem 2.1 with an optimal
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generalized methods of moments (GMM) procedure to construct consistent and asymptoti-
cally mixed normal estimators for all identifiable model parameters in Theorem 3.1. Interest-
ingly, the rates of convergence are nonstandard and depend on the parameter value H . This
phenomenon can be traced back to the utilization of autocovariance information of smaller
asymptotic order than the leading term. To make the GMM method feasible, we exhibit in
Corollary 3.3 consistent estimators of the asymptotic (co-)variances. In Section 4, we return
to the parametric setting of mfBm and show in Theorem 4.1 that the rates of our estimators
in Theorem 3.1 are optimal in the minimax sense. Section 5 presents Monte Carlo evidence
for the estimators from Theorem 3.1. Sections 6 and 7 contain the proofs of our main results,
except for Theorem 2.1, which is proved, in a more general setting, in Appendices A–D.
Appendix E contains additional simulation results.

Since our principal aim is to analyze the impact of cross-correlation, we do not include
jumps [1, 27], irregular observation times [6, 10, 24] or rounding errors [18, 30, 38] in our
analysis. To simplify the exposition, we further refrain from studying mixed fractional models
with more than two components. In what follows, C denotes a constant in (0,∞), whose
value may change from line to line. We also write A� B if A ≤ CB .

2. Central limit theorem for sample autocovariances. On a filtered space (�,F,F=
(Ft )t≥0,P) satisfying the usual conditions, consider a mixed semimartingale

(2.1) Yt = Y0 +
∫ t

0
as ds +

∫ t

0
σs dBs +

∫ t

0
g(t − s)ρs dBs +

∫ t

0
g(t − s)ρ′

s dB ′
s,

where B and B ′ are two independent one-dimensional standard F-Brownian motions and a,
σ , ρ and ρ′ are one-dimensional predictable processes. Moreover, we assume that g : R→ R

is a kernel of the form

(2.2) g(t) = K−1
H tH− 1

2 1{t>0} + g0(t), t ∈ R,

where H ∈ (0,1) \ {1
2},

(2.3) KH =
√

1

2H
+
∫ ∞

1

(
rH− 1

2 − (r − 1)H− 1
2
)2 dr = �(H + 1

2)√
sin(πH)�(2H + 1)

,

and g0 : R → R is a continuously differentiable function with g0(x) = 0 for all x ≤ 0. By
(2.2), the kernel g behaves as a power-law kernel around 0, but due to the addition of g0, the
behavior of g outside of 0 is not further specified. In particular, because g is not specified at
infinity, the increments of Y may have long or short memory, irrespective of the value of H .

Let �n be a small time step such that �n → 0 and define

(2.4) �n
i Y = Yi�n − Y(i−1)�n

(and similarly for other processes). Our goal is to prove a CLT as �n → 0 for the (normalized)
autocovariances of the increments of Y , given by

V n
r,t = �1−2H

n

[t/�n]−r∑
i=1

�n
i Y�n

i+rY, V̂ n
r,t =

[t/�n]−r∑
i=1

�n
i Y�n

i+rY

for r ∈ N0. This will then be used in Section 3 to derive feasible estimators of H and

CT =
∫ T

0
cs ds =

∫ T

0
σ 2

s ds, 	T =
∫ T

0
λs ds =

∫ T

0
σsρs ds,


T =
∫ T

0

(
ρ2

s + ρ′2
s

)
ds,

whenever possible. We impose the following structural assumptions.
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ASSUMPTION (CLT). Consider the process Y from (2.1) and let

(2.5) N(H) = [1/|2H − 1|].
1. The kernel g is of the form (2.2) where H ∈ (0,1) \ {1

2} and g0 ∈ C1(R) satisfies
g0(x) = 0 for all x ≤ 0.

2. The drift process a is locally bounded, F-adapted and càdlàg. Moreover, B is a standard
F-Brownian motion.

3. If H > 1
2 , the volatility process σ takes the form

(2.6) σt = σ
(0)
t +

∫ t

0
σ̃s dBs +

∫ t

0
σ̃ ′

s dB ′
s +
∫ t

0
σ̃ ′′

s dB ′′
s , t ≥ 0,

where

(a) σ (0) is an F-adapted locally bounded process such that for all T > 0, there are γ ∈ (1
2 ,1]

and K1 ∈ (0,∞) with

(2.7) E
[
1 ∧ ∣∣σ (0)

t − σ (0)
s

∣∣]≤ K1|t − s|γ , s, t ∈ [0, T ];
(b) σ̃ , σ̃ ′ and σ̃ ′′ are F-adapted locally bounded processes such that for all T > 0, there are

ε ∈ (0,1) and K2 ∈ (0,∞) with

(2.8) E
[
1 ∧ |σ̃t − σ̃s |]≤ K2|t − s|ε, s, t ∈ [0, T ],

and an analogous bound for σ̃ ′ and σ̃ ′′.
(c) B ′′ is a standard F-Brownian motion that is independent of (B,B ′).
If H < 1

2 , we have (2.6) but with σ , σ (0), σ̃ , σ̃ ′ and σ̃ ′′ replaced by ρ and some processes
ρ(0), ρ̃, ρ̃′ and ρ̃′′ satisfying conditions analogous to (2.7) and (2.8).

4. If H > 1
2 , the process ρ is F-adapted and locally bounded. Moreover, for all T > 0,

there is K3 ∈ (0,∞) such that

(2.9) E
[
1 ∧ |ρt − ρs |]≤ K3|t − s| 1

2 , s, t ∈ [0, T ].
If H < 1

2 , we have the same condition but with ρ replaced by σ .

These assumptions are fairly standard in high-frequency statistics (cf. [2, 25]). As usual,
the most restrictive assumptions are (2.6) and (2.9), which essentially demand that the volatil-
ity processes σ and ρ be no rougher than a continuous Itô semimartingale. In particular, they
do not cover the case of rough volatility (see [21]). However, we conjecture that the CLTs
do remain valid even in the presence of rough volatility. This is due to the special structure
of quadratic functions, which has been exploited for instance in [15] in a slightly different
context.

For the following theorem, which is the main result of this section, we use the notation

(2.10) �H
0 = 1 and �H

r = 1

2

(
(r + 1)2H − 2r2H + (r − 1)2H ), r ≥ 1,

and

(2.11) 
H
0 = 2K−1

H

H + 1
2

, 
H
r = K−1

H

H + 1
2

(
(r + 1)H+ 1

2 − 2rH+ 1
2 + (r − 1)H+ 1

2
)
, r ≥ 1.

Note that (�H
r )r≥0 is the autocovariance function of fractional Gaussian noise (i.e., of

(B(H)n+1 − B(H)n)n∈N) and 
H
r = 
H

0 �H
r . We also use st=⇒ to denote functional stable

convergence in law in the space of càdlàg functions equipped with the local uniform topol-
ogy.
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THEOREM 2.1. Suppose that Assumption (CLT) holds and let V n
t = (V n

0,t , . . . , V
n
r−1,t )

T

and V̂ n
t = (V̂ n

0,t , . . . , V̂
n
r−1,t )

T for some fixed r ∈ N. Further define �H = (�H
0 , . . . ,�H

r−1)
T ,


H = (
H
0 , . . . ,
H

r−1)
T and e1 = (1,0, . . . ,0)T ∈R

r .

1. If H > 1
2 , then

(2.12) �
− 1

2
n

{
V̂ n

t − e1Ct − �
H− 1

2
n 
H	t − �2H−1

n �H
t

} st=⇒ Z ′,
where Z ′ = (Z ′

t )t≥0 is an R
r -valued process, defined on a very good filtered extension

(�,F, (F t )t≥0,P) of the original probability space (�,F, (Ft )t≥0,P) (see [25], Chap-
ter 2.1.4), that conditionally on F is a centered Gaussian process with independent incre-
ments and covariance process C′

t = (C′ij
t )r−1

i,j=0 given by

(2.13) C′ij
t = E

[
Z ′i

t Z
′j
t | F]= 21{i=0}

∫ t

0
σ 4

s ds 1{i=j}.

2. If H < 1
2 , then

�
− 1

2
n

{
V n

t − �H
t − �
1
2 −H
n 
H	t − e1�

1−2H
n Ct

}
= �

1
2 −2H
n

{
V̂ n

t − e1Ct − �
H− 1

2
n 
H	t − �2H−1

n �H
t

} st=⇒Z,

(2.14)

where Z = (Zt )t≥0 is an R
r -valued process defined on (�,F, (F t )t≥0,P) that conditionally

on F is a centered Gaussian process with independent increments and covariance process
Ct = (Cij

t )r−1
i,j=0 given by

(2.15) Cij
t = E

[
Z ′i

t Z
′j
t | F]= Cij

∫ t

0

(
ρ2

s + ρ′2
s

)2 ds, Cij = v
H,0
ij +

∞∑
k=1

(
v

H,k
ij + v

H,k
ij

)
,

with

(2.16) v
H,k
ij = �H

k �H|i−j+k| + �H|k−j |�H
k+i .

Theorem 2.1 is a special case of Theorems A.1 and A.2, which are stated and proved in the
appendix. Note that if H > 3

4 , the term �2H−1
n �H
t in (2.12) is dominated by the Gaussian

fluctuation process �
1/2
n Z ′ and can thus be omitted in this case. The same comment applies

to (2.14), where the term e1Ct can be dropped if H < 1
4 .

3. Semiparametric estimation of mixed semimartingales. In order to construct rate-
optimal estimators of �T = (H,CT ,	T ,
T ), we combine Theorem 2.1 with a GMM ap-
proach. The idea is to choose r lags and, at stage n, a symmetric positive weight matrix
Wn ∈ R

r×r (which can be a random statistic) and to obtain an estimator of �T by solving the
minimization problem

argmin
θ=(H,C,	,
)

∥∥W1/2
n

(
V̂ n

T − e1C − �
H− 1

2
n 
H	 − �2H−1

n �H

)∥∥2

2,(3.1)

where ‖·‖2 is the Euclidean norm. More precisely, we construct an estimator �̂n
T =

(Ĥ n, Ĉn
T , 	̂n

T , 
̂n
T ) of �T by solving the estimating equation

(3.2) Fn(θ) = 0,

where Fn(θ) = ∇θ‖W1/2
n (V̂ n

T − μn(θ))‖2
2 = −2Dθμn(θ)T Wn(V̂

n
T − μn(θ)) ∈ R

4 and

μn(θ) = μn(H,C,	,
) = e1C + �
H−1/2
n 
H	 + �2H−1

n �H
 ∈ R
r . Using the theory of

estimating equations (see [26, 32]), we can derive the asymptotic properties of this estimator.
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THEOREM 3.1. Suppose that conditions 2–5 in Assumption (CLT’) hold for the processes
specified in (A.2). Further assume that r ≥ 5 and that W and Wn are (possibly random)

symmetric positive definite matrices in R
r×r such that Wn

P−→ W . If H < 1
2 , suppose that


T > 0 almost surely; if H > 1
2 , suppose that 	T 
= 0 almost surely.

1. If H ∈ (1
4 , 1

2), there exists a sequence �̂n
T = (Ĥ n, Ĉn

T , 	̂n
T , 
̂n

T ) of estimators of

�T = (H,CT ,	T ,
T ) such that P(Fn(�̂
n
T ) = 0)

P−→ 1 and

(3.3) D−1
n

(
�̂n

T − �T

) st−→ E−1(∂H�H
T , e1,

H ,�H )T WZT ,

where

Dn =

⎛⎜⎜⎜⎜⎜⎝
�

1
2
n 0 0 0

0 �
2H− 1

2
n 0 0

0 0 �H
n 0

2�
1
2
n log�−1

n 
T 0 0 �
1
2
n

⎞⎟⎟⎟⎟⎟⎠ ,

E = (∂H�H
T , e1,

H ,�H )T W(∂H�H
T , e1,


H ,�H ) ∈ R
4×4,

(3.4)

and Z is the same process as in Theorem 2.1. The matrix E in the last display is regular.
Moreover, the sequence �̂n

T is locally unique in the sense that any other sequence �̃n
T of esti-

mators such that P(Fn(�̃
n
T ) = 0)

P−→ 1 and P(‖�̃n
T −�T ‖2 ≤ 1/(log�−1

n )2)
P−→ 1 satisfies

P(�̃n
T = �̂n

T )
P−→ 1.

2. If H ∈ (0, 1
4), define F

(1)
n (θ(1)) = ∇θ‖W1/2

n (V̂ n
T − μ

(1)
n (θ(1)))‖2

2, where μ
(1)
n (θ(1)) =

μ
(1)
n (H,	,
) = �

H−1/2
n 
H	 + �2H−1

n �H
. Then there is a locally unique sequence

�̂
n,(1)
T = (Ĥ n,(1), 	̂

n,(1)
T , 
̂

n,(1)
T ) of estimators of �

(1)
T = (H,	T ,
T ) with the property

P(F
(1)
n (�̂

n,(1)
T ) = 0)

P−→ 1 such that (3.3) remains valid for �̂
n,(1)
T − �

(1)
T with the second

row and column (out of four) deleted from all vectors and matrices appearing in (3.3) and
(3.4).

3. If H ∈ (1
2 , 3

4), Part 1 of the theorem remains true if (3.3) and (3.4) are replaced by

(3.5) D−1
n

(
�̂n

T − �T

) st−→ E−1(∂H
H	T , e1,

H ,�H )T WZ ′

T ,

and

Dn =

⎛⎜⎜⎜⎜⎜⎝
�1−H

n 0 0 0

0 �
1
2
n 0 0

�1−H
n log

(
�−1

n

)
	T 0 �1−H

n 0

0 0 0 �
3
2 −2H
n

⎞⎟⎟⎟⎟⎟⎠ ,

E = (∂H
H	T , e1,

H ,�H )T W(∂H
H	T , e1,


H ,�H ) ∈R
4×4,

(3.6)

respectively, and Z ′ is the same process as in Theorem 2.1.
4. If H ∈ (3

4 ,1), define F
(2)
n (θ(2)) = ∇θ‖W1/2

n (V̂ n
T − μ

(2)
n (θ(2)))‖2

2, where μ
(2)
n (θ(2)) =

μ
(2)
n (H,C,	) = e1C + �

H−1/2
n 
H	. Then there is a locally unique sequence �̂

n,(2)
T =

(Ĥ n,(2), Ĉ
n,(2)
T , 	̂

n,(2)
T ) of estimators of �

(2)
T = (H,CT ,	T ) satisfying P(F

(2)
n (�̂

n,(2)
T ) =

0)
P−→ 1 such that (3.5) remains valid for �̂

n,(2)
T − �

(2)
T with the last row and column (out of

four) deleted from all vectors and matrices appearing in (3.5) and (3.6).
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5. In the setting of Part 2 (resp., Part 4), if a sequence of estimators �̂n
T = (Ĥ n, Ĉn

T , 	̂n
T ,


̂n
T ) satisfies P(Fn(�̂

n
T ) = 0) → 1, then the weak convergence statements in Part 2 (resp.,

Part 4) remain valid with �
n
T = (Ĥ n, 	̂n

T , 
̂n
T ) instead of �̂

n,(1)
T (resp., �

n
T = (Ĥ n, Ĉn

T , 	̂n
T )

instead of �̂
n,(2)
T ).

The proof will be given in Section 6. Note that a nondiagonal rate matrix also occurs in
similar situations where a self-similarity parameter is estimated; see [7, 12, 32], for example.

In the case H ∈ (1
4 , 3

4), all parameters of the model are identifiable, and Parts 1 and 3
of Theorem 3.1 describe how the exact value of H affects the asymptotic behavior of the
estimators. In the case H /∈ (1

4 , 3
4), the model is only partially identifiable: if H < 1

4 (Part 2),
we cannot consistently estimate CT , while if H > 3

4 (Part 4), we cannot consistently estimate

T . Parts 2 and 4 of Theorem 3.1 state that in these partially identifiable cases, one may
obtain asymptotically normal estimators by reducing the GMM equations to only include
identifiable parameters. However, these estimators are infeasible if the regime of H is not
known. Fortunately, by Part 5, the feasible GMM estimator (3.1) can still be employed in the
regime H /∈ (1

4 , 3
4) to derive asymptotically normal estimators for all identifiable parameters.

REMARK 3.2. The assumption 	T 
= 0 is important in Theorem 3.1 if H > 1
2 to en-

sure identifiability of all parameters. For example, in the case of an mfBm as in (1.1),
if λ = 0, then by [41] there is no way to consistently estimate H and ρ if H > 3

4 .
Moreover, by Theorem 1.1, it will not be possible to asymptotically distinguish the
model (H,σ,λ,ρ) = (H0, σ0, λ0, ρ0) ∈ (3

4 ,1) × (0,∞) × (0,1] × (0,∞) from the model
(H,σ,λ,ρ) = (H1, σ1,0, ρ1) if H1 = 1

2(1
2 + H0), σ1 = σ0 and ρ1 = (2λ0ρ0σ0/(KH0(H0 +

1
2)))1/2. To see this, note that the process Y in the model (H0, σ0, λ0, ρ0) has the same
law as σ0W + ρ1W(H1) + ρ0W(H0) by Theorem 1.1. Moreover, by [41], the laws of
σ0W + ρ0W(H0) and σ0W are locally equivalent, so we deduce that the laws of σ0W +
ρ0W(H0) + ρ1W(H1) and σ0W + ρ1W(H1) are equivalent by noting that convolution of
measures preserves equivalence. However, since σ remains the same in both models, this
local equivalence has no consequence for estimating σ , which often (e.g., in econometrics)
is the main parameter of interest. We also note that if 1

2 < H < 3
4 and 	T = 0, then the rate

of convergence for estimating H will be slower (equal to �
3/2−2H
n , see [20]), as one can no

longer rely on the fictitious fBm for inferring H .

In order to make the CLTs of Theorem 3.1 feasible, we adapt the results of [29] to construct
consistent estimators of the involved asymptotic covariance matrices. This further allows us
to choose an optimal weight matrix Wn. We choose two integer sequences kn and ℓn and
define

�̂n = �̂(0)
n +

ℓn∑
ℓ=1

w(ℓ, ℓn)
(
�̂(ℓ)

n + (�̂(ℓ)
n

)T )
,

�̂(ℓ)
n = �n

[T/�n]−r+1∑
i=ℓ+1

ψ(i)(ψ(i−ℓ))T ∈ R
r×r , ψ(i) = (ψ(i)

0 , . . . ,ψ
(i)
r−1
)T

,

ψ
(i)
j = �n

i Y�n
i+jY − m̂

n,j
i , m̂

n,j
i = 1

kn

kn−1∑
k=0

�n
i+kY�n

i+k+jY,

η̂n = (�2Ĥ n

n 
̂n
T

(
∂H�Ĥn − 2

(
log�−1

n

)
�Ĥn)+ �Ĥn+1/2

n 	̂n
T

(
∂H
Ĥn − (log�−1

n

)

Ĥn)

,

�ne1,�
Ĥn+1/2
n 
Ĥn

,�2Ĥ n

n �Ĥn) ∈ R
r×4

(3.7)

for some deterministic weight function w.
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COROLLARY 3.3. Assume the conditions of (any part of) Theorem 3.1 and suppose that
kn, ℓn → ∞ with ℓn/

√
kn → 0 and ℓn

√
kn�n → 0. Further assume that w is uniformly

bounded and satisfies w(ℓ, ℓn) → 1 for every ℓ ≥ 1. If we denote the diagonal entries of

(3.8) Vn = �n

(
η̂T

n Wnη̂n

)−1
η̂T

n Wn�̂nWnη̂n

(
η̂T

n Wnη̂n

)−1 ∈ R
4×4

by VH
n , VC

n , V	
n and V


n , then asymptotic γ -confidence intervals for H , CT (if H > 1
4 ), 	T

and 
T (if H < 3
4 ) for γ ∈ (0,1) are given by[

Ĥ n ± 
−1((1 − γ )/2
)√

VH
n

]
,

[
Ĉn

T ± 
−1((1 − γ )/2
)√

VC
n

]
,[

	̂n
T ± 
−1((1 − γ )/2

)√
V	

n

]
,

[

̂n

T ± 
−1((1 − γ )/2
)√

V

n

]
,

respectively, where 
 is the cumulative distribution function of the standard normal law and
�̂n

T = (Ĥ n, Ĉn
T , 	̂n

T , 
̂n
T ) is the solution to (3.2).

REMARK 3.4 (Optimal GMM). If we choose Wn = �̂−1
n and we have H ∈ (1

4 , 1
2) (resp.,

H ∈ (1
2 , 3

4)), then the right-hand side of (3.3) (resp., (3.5)) has a centered Gaussian distribu-
tion with mean 0 and covariance matrix E−1 with W = C−1

T (resp., W = (C′
T )−1). Analogous

statements hold if H ∈ (0, 1
4) and H ∈ (3

4 ,1).

4. Statistical lower bounds. To derive a statistical lower bound, we consider the para-
metric setup of an mfBm

(4.1) Yt =
∫ t

0
σ dBs + ρ

∫ t

−∞
hH (t, s)dBs + ρ′

∫ t

−∞
hH (t, s)dB ′

s,

where hH (t, s) = K−1
H [(t − s)

H−1/2
+ − (−s)

H−1/2
+ ], σ > 0, ρ,ρ′ ∈ R, and B and B ′ are two

independent standard Brownian motions. Note that this model is a special case of (A.1) but
with as = (H − 1

2)K−1
H

∫ 0
−∞(s − r)H−3/2(ρ dBr + ρ′ dB ′

r ), which is unbounded as s ↓ 0
if H < 1

2 . Nevertheless, one can show that any small neighborhood around 0 only has a
negligible impact on the asymptotics in V n

t , so Theorem 2.1 remains valid.
The methods presented in Section 3 therefore yield estimators of the parameters H , σ 2,


 = ρ2 + ρ′2 and 	 = ρσ , with rates given in Table 1. We show that these rates are optimal,
by establishing matching minimax lower bounds. To this end, consider model (4.1) with
parameter vector θ = (H,σ 2,	,
) ⊂ � for the open parameter set

� =
{(

H,σ 2,	,

) ∈R

4 : H ∈ (0,1) \
{

1

2

}
, σ 2 > 0, 	 
= 0, 
 > 0, 	2 < σ 2


}
.

We use the notation H(θ) = θ1, σ 2(θ) = θ2 etc. For θ0 ∈ �, define the local parameter set

Dn(θ0) = {θ ∈ � : ‖θ − θ0‖ ≤ 1/|log�n|}
TABLE 1

Rates of convergence of the estimators presented in Section 3

Parameter H ∈ (0, 1
2 ) H ∈ ( 1

2 ,1)

H �
1
2
n �1−H

n

σ 2 �
2H− 1

2
n (if H > 1

4 ) �
1
2
n

	 �H
n �1−H

n |log�n|

 �

1
2
n |log�n| �

3
2 −2H
n (if H < 3

4 )
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FIG. 1. Constant in the asymptotic variance of the optimal GMM estimator of H in an mfBm model.

and the rate vector

Rn(θ0) =

⎧⎪⎪⎨⎪⎪⎩
(
�

1
2
n ,�

2H− 1
2

n ,�H
n ,�

1
2
n /|log�n|) if H(θ0) <

1

2
,(

�1−H
n ,�

1
2
n ,�1−H

n /|log�n|,�
3
2 −2H
n

)
if H(θ0) >

1

2
.

For the regime H ∈ (0, 1
4), the parameter σ 2 is not identifiable, as evidenced by the deterio-

rating rates of convergence. The same holds for 
 in the regime H ∈ (3
4 ,1).

THEOREM 4.1. Let θ0 ∈ � be such that 	(θ0) 
= 0. If H(θ0) ∈ (1
4 , 3

4) \ {1
2}, there exists

some c > 0 such that

(4.2) lim sup
n→∞

inf
θ̂n

sup
θ∈Dn(θ0)

Pθ

(∣∣(θ̂n − θ)k
∣∣≥ cRn(θ0)k

)
> 0, k = 1,2,3,4,

where the infimum is taken among all measurable functions θ̂n of {Yi�n : i = 1, . . . , [1/�n]}.
If H ∈ (0, 1

4 ] (resp., H ∈ [3
4 ,1)), then (4.2) remains true for k = 1,3,4 (resp., k = 1,2,3).

While our current methods do not allow us to determine the sharp value of the constant
c in (4.2), we conjecture that the GMM estimators from the previous section (if the weight
matrix is chosen as in Remark 3.4) are close to being asymptotically efficient. Figure 1 plots
the value of the constant

√
C(H) as a function of H , where C(H) is the asymptotic variance

of the optimal GMM estimator Ĥ n from Theorem 3.1 in the mfBm model (1.1), that is, C(H)

is the constant that satisfies �
−1/2
n (Ĥ n −H)

d−→ N(0,C(H)/T ) if H < 1
2 and �H−1

n (Ĥ n −
H)

d−→ N(0,C(H)( σ
λρ

)2/T )) if H > 1
2 .

As we can see, while the rate of convergence of Ĥ n for H > 1
2 improves as H ↓ 1

2 , the
associated constant deteriorates. This happens because in the limit as H ↓ 1

2 , mfBm converges
in distribution to Brownian motion, with the consequence that the fBm and the BM parts can
no longer be separately identified. The same argument clearly applies when H ↑ 1

2 , except
that here the convergence rate itself does not change with H . The divergence of C(H) as
H → 1

2 will have an impact on the finite-sample performance of our estimators, as we shall
see momentarily in a Monte Carlo simulation. Besides the singular behavior at H ≈ 1

2 we
also find the asymptotic variance to be very large in absolute terms. This demonstrates the
intrinsic difficulty of the statistical problem.

5. Simulation study. In order to evaluate the performance of the estimators from The-
orem 3.1, we simulate {Yi�n : i = 1, . . . , [T/�n]} from the mfBm model (1.1) with �n =
1/23,400 and T = 20, which in a typical financial context corresponds to sampling every sec-
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ond and aggregating one month of data. We consider H ∈ {0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9}
and λ ∈ {−0.9,−0.5,0,0.5,0.9} and further take σ = 0.02. In order to simulate from a set-
ting that is representative of the magnitude of noise in high-frequency financial data (see,
e.g., [3]), we fix the signal-to-noise ratio to 2 : 1, that is, we assume that the increments of
Brownian motion are responsible for 2/3 of the variance of �n

i Y and compute ρ accordingly.
We also include H = 0.5, in which case we let ρ = λ = 0. In Appendix E of the Supplemen-
tary Material [14], we present additional simulation results where we fix σ and ρ instead of
the signal-to-noise ratio.

Regarding the tuning parameters, we choose r = 31 and kn = 300 ≈ 2�
−1/2
n in (3.7),

which corresponds to considering autocorrelations up to half a minute and computing the
local autocovariance estimates m̂

n,j
i over 5-minute blocks (if �n has the meaning of one

second). We also experimented with r = 16 and obtained similar results. In (3.7), we further
choose the Parzen kernel w(ℓ, ℓn) = w(ℓ/(ℓn +1)), where w(x) = (1−6x2 +6x3)1{x≤1/2} +
2(1 − x)31{x>1/2} and the sequence ℓn is chosen according to the optimal procedure by [36]
(with the details given in Table I B and Table II C of the reference). With this choice, �̂n is
positive semidefinite in finite samples and ℓn is of order �

−1/5
n and hence satisfies ℓn/

√
kn →

0 and ℓn

√
kn�n → 0 if kn is order �

−1/2
n .

For every simulated path, we first use a classical Ljung–Box test statistic Qn
T =

�T/�n�(�T/�n� + 2)
∑r−1

ℓ=1(R
n
ℓ )2/(�T/�n� − ℓ), where Rn

ℓ is the sample autocorrelation
coefficient of {�n

i Y : i = 1, . . . , �T/�n�} at lag ℓ, to discriminate whether H = 1
2 or not.

Indeed, if H = 1
2 , we have Sn

T

d−→ χ2
r−1, while Sn

T

P−→ ∞ in the case H 
= 1
2 because

Rn
ℓ

P−→ �H
ℓ 
= 0. If the Brownian case H = 1

2 is not rejected, we let (Hn,Cn,	n,
n) =
(1

2 , V̂ n
0,T ,0,0) be the estimated parameter vector. This initial test is necessary because as

H → 1
2 , the mfBm model collapses to Brownian motion. Thus, if H = 1

2 (or close to 1
2 ), sim-

ply minimizing (3.1) typically produces a value of H which is very close to 1
2 and arbitrary

splits the total variance among C, 
 and 	. This is in line with the behavior of the asymptotic
variance as H → 1

2 depicted in Figure 1. Therefore, the initial test we perform can be seen
as shrinking our estimators towards the Brownian model to circumvent the weakly identified
regime.

If H = 1
2 is rejected, we let (Hn,Cn,	n,
n) be a numerical solution to (3.1) found in the

following way: For each candidate H , we first we run a weighted linear regression of W1/2
n V̂ n

T

on W1/2
n e1, �

H−1/2
n W1/2

n 
H and �2H−1
n W1/2

n �H (with intercept forced to be 0 and the op-
timal weight matrix Wn = �̂−1

n ) with the constraint that C, 	 and 
 must satisfy 
 ≥ 0,
C ≥ 0 and 	2 ≤ 
C. This is to reflect the fact that ρ2 ≥ 0, σ 2 ≥ 0 and 	2

T ≤ 
T CT . Denot-
ing the resulting coefficients by Cn(H), 	n(H) and 
n(H), we construct Hn by minimizing
the objective function H �→ score(H) on the interval (0,1), where score(H) is the sum of
squared residuals in the regression analysis associated with H but set to score(H) = ∞ if
Cn(H)/(
n(H)�2H−1

n + 
H
0 	n(H)�

H−1/2
n + Cn(H)) > 0.99. In the latter case, we con-

sider the fractional part as practically absent if the Brownian motion part accounts for more
than 99% of the variance of increments. Indeed, if H is close to or equal to 1

2 , it can happen
that adding a tiny fractional component with H very close to 0 can achieve a higher score
value, which is undesirable in practice.

Finally, we define the remaining estimators by Cn = Cn(Hn), 	n = 	n(Hn) and 
n =

n(Hn). If score(H) = ∞ for all H , we let Hn = 0.5 and (Hn,Cn,	n,
n) = (1

2 , V̂ n
0,T ,0,0).

Comparing with Theorem 3.1, we note that (Hn,Cn,	n,
n) is equal to (Ĥ n, Ĉn
T , 	̂n

T , 
̂n
T )

unless one of the constraints or exceptions above occur (which happen with asymptotically
vanishing probability). Having obtained these estimators using T = 20 days of data, we fur-
ther estimate integrated volatility on the last day, that is, C20 − C19 = σ 2, by rerunning the



RATE-OPTIMAL ESTIMATION OF MIXED SEMIMARTINGALES 229

TABLE 2
Median and interquartile range of Hn based on 1000 simulated paths

λ

H −0.9 −0.5 0 0.5 0.9

0.1 0.0995 0.0989 0.0960 0.0976 0.1492
[0.0939, 0.1058] [0.0860, 0.1133] [0.0467, 0.1364] [0.0582, 0.1951] [0.1123, 0.2499]

0.2 0.2000 0.1996 0.1975 0.2104 0.2590
[0.1959, 0.2038] [0.1868, 0.2121] [0.1139, 0.2443] [0.1769, 0.3203] [0.2237, 0.3646]

0.3 0.2999 0.2992 0.2902 0.3292 0.3603
[0.2953, 0.3044] [0.2806, 0.3166] [0.2071, 0.3615] [0.2887, 0.4081] [0.3184, 0.4198]

0.4 0.3994 0.3981 0.3789 0.4019 0.4148
[0.3818, 0.4084] [0.3192, 0.4157] [0.3493, 0.4287] [0.3699, 0.4389] [0.3775, 0.4679]

0.5 0.5000
[0.5000,0.5000]

0.6 0.5999 0.5986 0.5954 0.5977 0.5818
[0.5942, 0.6133] [0.5888, 0.6441] [0.5726, 0.6463] [0.5663, 0.6255] [0.5428, 0.6151]

0.7 0.6994 0.6991 0.6983 0.7044 0.6629
[0.6922, 0.7071] [0.6888, 0.7107] [0.6739, 0.7336] [0.6298, 0.7332] [0.6012, 0.6962]

0.8 0.7978 0.7975 0.7981 0.7975 0.7879
[0.7916, 0.8055] [0.7897, 0.8072] [0.7856, 0.8126] [0.7688, 0.8364] [0.7354, 0.8081]

0.9 0.8918 0.8913 0.8905 0.8895 0.8885
[0.8819, 0.9058] [0.8801, 0.9062] [0.8778, 0.9074] [0.8727, 0.9118] [0.8635, 0.9067]

weighted and constrained linear regression mentioned above, but using only data of the last
day and with H fixed at Hn (which was previously obtained using 20 days of data). We denote
this estimator by C[19,20]

n . In a financial context, this mimics daily estimation of integrated
volatility based on an estimate of H obtained from a moving window of one month.

Table 2 summarizes the results for Hn. If λ = −0.9 or λ = −0.5, the estimator Hn is
centered around the true value of H with only low to moderate dispersion uniformly for all
considered values of H . At λ = 0 or λ = 0.5, Hn is still relatively centered around its true
value but there is a noticeable increase in the variability of the estimates. At λ = 0.9, the
estimator Hn exhibits a clear upward (resp., downward) bias for H < 0.5 (resp., H > 0.5). It
is interesting that this bias together with an increase in the spread only appears at the positive
end but not at the negative end of λ. In fact, additional plots (not shown here to save space)
reveal that for negative values of λ, the empirical distribution of Hn has a symmetrical bell
shape around the true value of H , while for positive values of λ, the empirical distribution of
Hn becomes bimodal, with one local maximum around H and another one at some value not
far from 1

2(1
2 + H). We believe that this is due to the fact that the original fBm with Hurst

index H and the fictitious one with Hurst parameter 1
2(H + 1

2) in the case of positive (resp.,
negative) λ introduce return autocorrelations with the same (resp., opposite) sign, making it
harder (resp., easier) to separate them.

The situation is different for the volatility estimator C[19,20]
n , as Table 3 reveals. Here the

results vary much less with λ but mainly with the value of H itself. Both the median bias
and the interquartile range tend to increase as H gets closer to but does not reach 1

2 . This is
because the fBm, the fictitious fBm and the Brownian motion collapse to one in the limit as
H → 1

2 , making it harder to distinguish the three as H approaches 1
2 (see the discussion at

the end of Section 4). It is interesting to note that the volatility estimator performs quite well
even if H < 1

4 , even though in theory volatility is not identifiable in this case. This, of course,
is due to our simulation setup, in which we fix the signal-to-noise ratio rather than σ and ρ.
Indeed, if we fix σ and ρ instead, then the signal-to-noise ratio decreases sharply with H (e.g.,
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TABLE 3
Median and interquartile range of C

[19,20]
n /σ 2 based on 1000 simulated paths

λ

H −0.9 −0.5 0 0.5 0.9

0.1 1.0005 1.0009 1.0064 1.0199 1.0229
[0.9614, 1.0390] [0.9539, 1.0461] [0.9585, 1.0553] [0.9728, 1.0738] [0.9698, 1.0940]

0.2 0.9994 0.9984 1.0103 1.0442 1.0465
[0.9532, 1.0491] [0.9325, 1.0753] [0.9506, 1.1020] [0.9774, 1.1547] [0.9604, 1.1942]

0.3 1.0004 1.0029 1.0302 1.0759 1.0722
[0.9232, 1.0882] [0.8592, 1.1809] [0.9414, 1.2249] [0.9576, 1.3396] [0.9246, 1.4233]

0.4 0.9092 0.8077 1.0487 1.1634 1.2228
[0.4252, 1.3912] [0.5862, 1.4440] [0.8745, 1.4470] [0.9696, 1.6896] [0.9840, 2.0461]

0.5 1.0007
[0.9942,1.1068]

0.6 0.8722 0.8084 1.0727 1.1545 1.1850
[0.3602, 1.7096] [0.4232, 1.5999] [0.8752, 1.6210] [0.9570, 1.5893] [0.9590, 1.7388]

0.7 1.0109 1.0158 1.0128 1.0727 1.0874
[0.7115, 1.3561] [0.7783, 1.2695] [0.9008, 1.2201] [0.9859, 1.2302] [0.9627, 1.3477]

0.8 1.0240 1.0058 0.9995 1.0215 1.0297
[0.8769, 1.1752] [0.8721, 1.1419] [0.9220, 1.0882] [0.9783, 1.0730] [0.9862, 1.0846]

0.9 1.0305 1.0005 0.9879 1.0035 1.0208
[0.9144, 1.1296] [0.8994, 1.1160] [0.9251, 1.0768] [0.9647, 1.0469] [0.9875, 1.0553]

if σ = ρ and �n = 23,400, the signal-to-noise ratio will be in the range 1:3000 to 1:3200,
depending on λ, at H = 0.1). In additional simulations in Appendix E of the Supplementary
Material [14], where we fix σ and ρ, we do see that the variance of C[19,20]

n increases as H

becomes smaller.
Next, we report simulation results for 	n/

√
Cn
n as an estimator of λ in Table 4. Here

the picture is closer to what we observed for Hn. For nonpositive values of λ, the estimator

TABLE 4
Median and interquartile range of 	n/

√
Cn
n (defined as 0 if 
n = 0) based on 1000 simulated paths

λ

H −0.9 −0.5 0 0.5 0.9

0.1 −0.9005 −0.5007 0.0104 0.5690 0.5619
[−0.9069, −0.8949] [−0.5248, −0.4749] [−0.1297, 0.2866] [0.0162, 0.9707] [−0.0461, 0.7417]

0.2 −0.9001 −0.4999 0.0113 0.5377 0.4909
[−0.9050, −0.8945] [−0.5382, −0.4569] [−0.1839, 0.4411] [−0.1937, 0.6355] [−0.3396, 0.6186]

0.3 −0.8996 −0.4970 0.0162 0.4539 0.4700
[−0.9089, −0.8903] [−0.5864, −0.3905] [−0.4076, 0.6350] [−0.4873, 0.5873] [−0.4875, 0.6017]

0.4 −0.9040 −0.4844 0.5423 0.5490 0.5130
[−0.9265, −0.8240] [−0.6839, 0.8631] [−0.4863, 0.6871] [−0.3783, 0.6134] [−0.5045, 0.9777]

0.6 −0.9209 −0.5482 −0.1145 0.6914 0.6545
[−0.9997, −0.9035] [−0.6673, 0.9978] [−0.4754, 0.8584] [−0.3639, 0.7694] [−0.3771, 0.9811]

0.7 −0.9020 −0.5082 −0.0196 0.6289 0.4570
[−0.9171, −0.8824] [−0.5955, −0.3894] [−0.2687, 0.3519] [−0.2415, 0.8973] [−0.4257, 0.8507]

0.8 −0.9046 −0.5117 −0.0089 0.4797 0.8148
[−0.9166, −0.8866] [−0.5536, −0.4564] [−0.1019, 0.1021] [0.2148, 1.0000] [0.2354, 0.9998]

0.9 −0.9071 −0.5226 −0.0317 0.4544 0.8219
[−0.9174, −0.8929] [−0.5552, −0.4771] [−0.0952, 0.0486] [0.3233, 0.6273] [0.5653, 1.0000]
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TABLE 5
Median and interquartile range of 
n/(20ρ2) based on 1000 simulated paths

λ

H −0.9 −0.5 0 0.5 0.9

0.1 0.9868 0.9726 0.9040 0.8409 3.8838
[0.8626, 1.1509] [0.7019, 1.3861] [0.2543, 2.5844] [0.2994, 14.5667] [1.5175, 84.0271]

0.2 0.9998 0.9858 0.9354 1.1647 6.7238
[0.9008, 1.1021] [0.7025, 1.3560] [0.0912, 3.5754] [0.4954, 44.1307] [2.5029, 323.7322]

0.3 0.9954 0.9829 0.8002 2.0526 8.1592
[0.8723, 1.1385] [0.5547, 1.6563] [0.0457, 8.3227] [0.6617, 81.7545] [2.5609, 228.6105]

0.4 0.9831 0.9140 0.1906 0.8187 2.8029
[0.4771, 1.4473] [0.0331, 2.0469] [0.0851, 4.9195] [0.2751, 13.0497] [0.6495, 97.6562]

0.6 1.0076 1.0299 1.1053 0.8441 1.5601
[0.8997, 1.0551] [0.7188, 1.1265] [0.5266, 1.5510] [0.6166, 3.2883] [1.1024, 6.5762]

0.7 0.9935 0.9992 1.0033 1.0671 1.3798
[0.9484, 1.0526] [0.9406, 1.0637] [0.9400, 1.0914] [0.8951, 1.2127] [1.0304, 1.9491]

0.8 0.9669 0.9662 0.9681 0.9780 0.9236
[0.8898, 1.0709] [0.8805, 1.0889] [0.8674, 1.1212] [0.8290, 1.1729] [0.8048, 1.0568]

0.9 0.8405 0.8333 0.8348 0.8388 0.8157
[0.6926, 1.1298] [0.6825, 1.1369] [0.6746, 1.1419] [0.6578, 1.1673] [0.6453, 1.1054]

performs relatively well (with exceptions), while biases start to show up as λ moves into the
positive range. In fact, comparing the results between λ = 0.5 and λ = 0.9, it seems that the
estimator 	n/

√
Cn
n has a hard time distinguishing between these two cases. We do not

have a plausible explanation for this behavior.
Finally, we consider the simulation results for 
n, which can be found in Table 5. Here

the impact of λ is particularly striking: the estimator shows a relatively good performance for
negative values of λ and is practically useless for positive values of λ. We conjecture that the
cause is the same as before: with positive values of λ, both the original and the fictitious fBm
components lead to autocorrelations of the same sign, making it difficult to separate them.

In summary, we draw the following conclusions from the simulation study for a scenario
where the signal-to-noise ratio is fixed:

• The statistical estimation of mixed semimartingale models is a hard task in general.
Even in a parametric mfBm model, the behavior of the estimators Hn, 
n, C[19,20]

n and
	n/

√

nCn is quite different for different true parameter values.

• If λ is negative and H is bounded away from 1
2 , all estimators Hn, 
n, C[19,20]

n and
	n/

√

nCn perform relatively well. This is exactly the case where the statistical prop-

erties of the fractional component, the fictitious fractional component and the Brownian
motion component are sufficiently distinct to separate them from each other.

• In all other cases, at least two of three are statistically similar, making it intrinsically diffi-
cult to disentangle them.

6. Proof of Theorem 1.1, Theorem 3.1, Corollary 3.3 and Theorem 4.1.

PROOF OF THEOREM 1.1. One could derive the first statement of the theorem from gen-
eral results about multivariate fractional Brownian motion [4]. For the sake of complete-
ness, we give a short direct proof here. Since both Y and Ỹ are centered Gaussian processes
with stationary increments, it suffices to study the variance of increments. On the one hand,
E[(Ỹt+h− Ỹt )

2] = σ 2h+2λρσ(KH(H + 1
2))−1h2H +ρ2h2H ; on the other hand, we can com-

pute E[(Yt+h −Yt )
2] via Itô’s isometry. Writing hH (t, s) = K−1

H [(t − s)
H−1/2
+ − (−s)

H−1/2
+ ],
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we have that B(H)t = ∫ t
−∞ hH (t, s)dB̃s and

(6.1) E
[
(Yt+h − Yt )

2]= σ 2h + ρ2h2H + 2λρσ

∫ t+h

t

[
hH (t + h, s) − hH (t, s)

]
ds,

where the last integral equals
∫ h

0 [hH (h, s) − hH (0, s)]ds = K−1
H

∫ h
0 (h − s)H− 1

2 ds =
h2H/(KH(H + 1

2)). Thus, E[(Yt+h − Yt )
2] = E[(Ỹt+h − Ỹt )

2] and (Yt )t≥0
d= (Ỹt )t≥0.

It remains to show that Y is not a semimartingale for λ > 0. To this end, we may em-
ploy the same arguments as [11]: If H < 1

2 , the process has an infinite quadratic variation,
which contradicts the semimartingale property. If H ∈ (3

4 ,1), then the law of σW + ρW(H)

is locally equivalent to that of σW . Thus, Y is locally equivalent to σW + (2λρσ/(KH(H +
1
2)))1/2W(H). Since H ∈ (1

2 , 3
4), [11], Theorem 1.7, shows that Y is not a semimartingale. If

H ∈ (1
2 , 3

4 ], then Y is the sum of three independent (fractional) Brownian motions. The proof
given in [11], Section 4, which is presented for two components, straightforwardly general-
izes to the case of three fractional Brownian motions, showing that Y is not a semimartingale.

�

PROOF OF THEOREM 3.1. We want to apply [32], Theorem A.2, so we verify the asso-
ciated conditions called (E.1) and (E.2)’. Note that the latter theory is formulated for classi-
cal weak convergence but readily extends to stable convergence. We only consider the case
H ∈ (1

4 , 1
2) ∪ (1

2 , 3
4) as the other two cases H ∈ (0, 1

4) and H ∈ (3
4 ,1) are analogous. For

(E.1), define the matrices An = An(θ), Bn = Bn(θ) ∈ R
4×4 as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

An = �
1
2 −2H
n Bn, Bn =

⎛⎜⎜⎜⎜⎜⎝
�1−2H

n 0 0 2�1−2H
n log

(
�−1

n

)



0 1 0 0

0 0 �
1
2 −H
n 0

0 0 0 �1−2H
n

⎞⎟⎟⎟⎟⎟⎠ for H <
1

2
,

An = �
− 1

2
n Bn, Bn =

⎛⎜⎜⎜⎜⎜⎝
�

1
2 −H
n 0 �

1
2 −H
n log

(
�−1

n

)
	 0

0 1 0 0

0 0 �
1
2 −H
n 0

0 0 0 �1−2H
n

⎞⎟⎟⎟⎟⎟⎠ for H >
1

2
.

Since Dθμn(θ) = (�
H− 1

2
n (∂H
H − 
H log�−1

n )	+ �2H−1
n (∂H�H − 2�H log�−1

n )
, e1,

�
H− 1

2
n 
H ,�2H−1

n �H ) ∈ R
r×4, we have by Theorem 2.1 that⎧⎪⎪⎨⎪⎪⎩

An(�T )Fn(�T )
st−→ −2

(
∂H�H
,e1,


H ,�H )T WZT for H ∈
(

1

4
,

1

2

)
,

An(�T )Fn(�T )
st−→ −2

(
∂H
H	,e1,


H ,�H )T WZ ′
T for H ∈

(
1

2
,

3

4

)
.

This proves (E.1) in [32].
For (E.2)’, note that continuous differentiability of Fn(θ) around �T is clear. Next, we

observe that

DθFn(θ) = −2D2
θμn(θ)T Wn

(
V̂ n

T − μn(θ)
)+ 2Dθμn(θ)T WnDθμn(θ).

A straightforward computation shows that 2Bn(�T )[Dθμn(θ)T WnDθμn(θ)]Bn(�T )T
P−→

2E, locally uniformly in a shrinking neighborhood of size rn = 1/(log�−1
n )2 around �T .



RATE-OPTIMAL ESTIMATION OF MIXED SEMIMARTINGALES 233

Applying Theorem 2.1, we further have Bn(�T )D2
θμn(θ)T Wn(V̂

n
T −μn(θ))Bn(�T )T

P−→ 0
locally uniformly. Hence,

(6.2) sup
θ : |θ−�T |≤1/(log�−1

n )2

∥∥Bn(�T )DθFn(θ)Bn(�T )T − 2E
∥∥ P−→ 0.

Finally, by (3.4) and (3.6), we can check that ‖Bn(�T )T ‖‖Bn(�T )An(�T )−1‖/rn
P−→ 0 in

the range of H we consider, which proves (E.2)’ in [32], with Cn = BT
n and W = 2E.

The matrix E is regular because the vectors e1, ∂H�H ,
H ,�H ∈ R
r are linearly indepen-

dent. For r → ∞, this is evident as all four vectors have different decay rates. For r ≥ 5 fixed,
we can check that the 3 × 3 submatrix consisting of the entries two, three and five (i.e., lags
1, 2, 4) of ∂H�H , 
H , �H has a nonzero determinant. We have verified that this is the case
for H 
= 1

2 , using a computer algebra system. Analogously, we have verified the regularity of
the same matrix based on ∂H
H , 
H , �H . Thus, [32], Theorem A.2, yields, for H ∈ (1

4 , 1
2),

An(�T )Bn(�T )−1E
(
Bn(�T )−1)T (�̂n

T − �T

) st−→ (
∂H�H
T , e1,


H ,�H )T WZT ,

which is equivalent to (3.3). For H ∈ (1
2 , 3

4), we obtain (3.5).
Part 2 (resp., Part 4) of the theorem can be derived along the same lines, but with the

second (resp., fourth) row and column (out of four) deleted from all vectors and matrices. For
Part 5, we restrict ourselves to the setting of Part 3, where H ∈ (3

4 ,1) (the proof in the setting
of Part 2 is similar). On the event Fn(�̂

n
T ) = 0, which happens with probability converging

to 1, we have

0 = Fn

(
�̂n

T

)= −2Dθμn

(
�̂n

T

)T Wn

(
V̂ n

T − μn

(
�̂n

T

))
.

Next, we introduce the matrix Gn(θ) = ((∂H�H − 2�H log�−1
n )�2H−1

n 
,0,0) ∈ R
r×3 and

denote the restriction of a matrix M ∈ R
4×4 to the upper left 3 × 3-corner by M(2) and the

restriction of a vector v ∈ R
4 to the first three entries by v(2). Now, applying (·)(2) to both

sides of the previous display and multiplying the result by A
(2)
n (�

(2)
T ) (recall the definition of

An(θ) and Bn(θ) from the beginning of this proof), we obtain

0 = −2A(2)
n

(
�

(2)
T

)(
Dθ(2)μ

(2)
n

(
�

n
T

)+ Gn

(
�̂n

T

))T Wn

(
V̂ n

T − μ(2)
n

(
�

n
T

)− �2Ĥ n−1
n �Ĥn


̂n
T

)
= −2A(2)

n

(
�

(2)
T

)
Dθ(2)μ

(2)
n

(
�

n
T

)T Wn

(
V̂ n

T − μ(2)
n

(
�

n
T

))+ oP(1)

= A(2)
n

(
�

(2)
T

)
F (2)

n

(
�

n
T

)+ oP(1).

For the second equality, note that H ∈ (3
4 ,1) and that A

(2)
n (�

(2)
T ), A

(2)
n (�

(2)
T )Gn(�̂

n
T )T and

Dθ(2)μ
(2)
n (�

n
T ) have matrix norms of order �

−1/2
n , �H−1

n log�−1
n and 1, respectively, while

V̂ n
T − μ

(2)
n (�

n
T ) = OP(�

1/2
n ) by Theorem 2.1. With high probability, F

(2)
n (�̂

n,(2)
T ) = 0, so in

this case, Taylor’s theorem gives us some �̃n
T between �

n
T and �̂

n,(2)
T such that

0 = A(2)
n

(
�

(2)
T

)
Dθ(2)F

(2)
n

(
�̃n

T

)(
�

n
T − �̂

n,(2)
T

)+ oP(1)

= A(2)
n

(
�

(2)
T

)
B(2)

n

(
�

(2)
T

)−1[
B(2)

n

(
�

(2)
T

)
Dθ(2)F

(2)
n

(
�̃n

T

)
B(2)

n

(
�

(2)
T

)T ]
× (B(2)

n

(
�

(2)
T

)T )−1(
�

n
T − �̂

n,(2)
T

)+ oP(1).

As in (6.2), one can show that B
(2)
n (�

(2)
T )Dθ(2)F

(2)
n (�̃n

T )B
(2)
n (�

(2)
T )T

P−→ 2E(2). Since

A
(2)
n (�

(2)
T )B

(2)
n (�

(2)
T )−1 = �

−1/2
n Id3, �

1/2
n B

(2)
n (�

(2)
T ) = D

(2)
n and E(2) is regular, we con-

clude that (D
(2)
n )−1(�

n
T − �̂

n,(2)
T )

P−→ 0. �
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PROOF OF COROLLARY 3.3. As before, we only consider one case, namely when H ∈
(1

2 , 3
4). The other cases are similar. Let

m
n,j
i = σ 2

(i−1)�n
1{j=0} + σ(i−1)�nρ(i−1)�n


H
j �H−1/2

n + (ρ2
(i−1)�n

+ ρ′2
(i−1)�n

)
�H

j �2H−1
n

and ψ
(i)
j (resp., �

(ℓ)
n , �n) be defined in the same way as ψ

(i)
j (resp., �

(ℓ)
n , �n) but with m

n,j
i

(resp., ψ
(i)

, �
(ℓ)
n ) substituted for m̂

n,j
i (resp., ψ(i), �̂

(ℓ)
n ). Then, because σ , ρ and ρ′ are

at least 1
2 -Hölder continuous in L2, one can borrow from classical results concerning spot

volatility estimation (e.g., [25], Chapter 13.3) to show that �−1
n (m

n,j
i − m

n,j
i ) = OP(k

−1/2
n ∨√

kn�n) uniformly in j , which implies �−2
n (�̂n − �n) = OP(ℓn(k

−1/2
n ∨ √

kn�n))
P−→ 0

by our assumptions on ℓn and kn. Next, again because σ , ρ and ρ′ are 1
2 -Hölder continuous

in L2, we have �−2
n �n = ∫ T

0 [c(0)
n (s)+∑ℓn

ℓ=1 w(ℓ, ℓn)(c
(ℓ)
n (s)+ c

(ℓ)
n (s)T )]ds +OP(ℓn

√
�n),

where

c(ℓ)
n (s)jj ′ = σ 4

s (21{ℓ=j=j ′=0} + 1{ℓ=0,j=j ′>0})

+ σ 2ρ2(
H
ℓ 
H

|j ′−j−ℓ| + 
H
|j ′−ℓ|


H
j+ℓ

)
�2H−1

n

+ (ρ2
s + ρ′2

s

)2(
�H

ℓ �H
|j ′−j−ℓ| + �H

|j ′−ℓ|�
H
j+ℓ

)
�4H−2

n

+ σ 3
s ρs

(

H

|j ′−j |(1{ℓ=0} + 1{ℓ=j ′−j}) + 
H
j+j ′(1{ℓ=j ′} + 1{ℓ=j=0})

)
�H−1/2

n

+ σ 2
s

(
ρ2

s + ρ′2
s

)
× (�H

|j ′−j |(1{ℓ=0} + 1{ℓ=j ′−j}) + �H
j+j ′(1{ℓ=j ′} + 1{ℓ=j=0})

)
�2H−1

n

+ σsρs

(
ρ2

s + ρ′2
s

)
× (
H

ℓ �H
|j ′−j−ℓ| + �H

ℓ 
H
|j ′−j−ℓ| + 
H

|j ′−ℓ|�
H
j+ℓ + �H

|j ′−ℓ|

H
j+ℓ

)
�3H−1/2

n .

Note that all terms defining c
(ℓ)
n (s)jj ′ are summable in ℓ because H < 3

4 and �H
r = O(r2H−2)

and 
H
r = O(rH−3/2) as r → ∞. Therefore, we have �−2

n �n = diag(2,1, . . . ,1)
∫ T

0 σ 4
s ds +

OP(ℓn

√
�n ∨�

H−1/2
n )

P−→ C′
T . Since �

−3/2
n η̂nDn

P−→ (∂H
H	T , e1,

H ,�H ), we obtain

D−1
n Vn

(
D−1

n

)T = �n

(
DT

n η̂T
n Wnη̂nDn

)−1
DT

n η̂T
n Wn�̂nWnη̂nDn

(
DT

n η̂T
n Wnη̂nDn

)−1

P−→ E−1(∂H
H	T , e1,

H ,�H )T WC′

T W
(
∂H
H	T , e1,


H ,�H )E−1.

Recalling (3.5), we have shown that Vn consistently estimates the asymptotic covariance
matrix of �̂n

T , which is the claim of the corollary. �

For the proof of Theorem 4.1, we assume �n = 1
n

to simplify notation. Since Y0 =
Ỹ0 = 0, observing {Yi/n : i = 1, . . . , n} is equivalent to observing the increments {�n

i Y : i =
1, . . . , n}. These increments constitute a stationary centered Gaussian time series with some
covariance matrix �̃n(θ) ∈R

n×n. Noting that (6.1) is also valid for λ < 0, we find that

(6.3) �̃n(θ) = σ 2 n−1In + 
n−2H�n(H) + 	b(H)n−2H�n(H),

where H = 1
2(H + 1

2), b(H) = 2/�(H + 3
2) and �n(H) = (�H|i−j |)nj,k=1 is the covariance

matrix of n consecutive normalized increments of a fractional Brownian motion with Hurst
parameter H . Given θ0 ∈ � and four nonnegative sequences r1,n, r2,n, r3,n, r4,n → 0, we
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define θn ∈ � by

(6.4)

H(θn) = H + r1,n, σ 2(θn) = σ 2 + r2,n,

	(θn) = 	
b(H)

b(H + r1,n)
nr1,n(1 + r3,n), 
(θn) = 
n2r1,n(1 + r4,n),

abbreviating (H,σ,	,
) = (H,σ,	,
)(θ0). The parameter θn is chosen carefully such
that

�̃n(θn) = (σ 2 + r2,n

)
n−1In + (1 + r4,n)
n−2H�n(H + r1,n)

+ (1 + r3,n)	b(H)n−2H�n

(
H + r1,n

2

)
.

(6.5)

For now, we only assume that ri,n → 0 as n → ∞ for i = 1,2,3,4.
Following the general approach outlined in [40], Chapter 2, we shall prove Theorem 4.1

by deriving sharp KL divergence estimates. Recall that for two covariance matrices �1,�2 ∈
R

n×n, the KL divergence of the corresponding centered Gaussian distributions is given by

KL(�1‖�2) = KL
(
N (0,�1)‖N (0,�0)

)= 1

2

{
tr
(
�−1

0 �1
)− n + log

det�0

det�1

}
.

In the next proposition, which is the main technical estimate in the proof of Theorem 4.1, we
establish an upper bound on the KL divergence

KL(θn‖θ0) = KL
(
�̃n(θn)‖�̃n(θ0)

)
.

We give the proof in Section 7.

PROPOSITION 6.1. Suppose that H = H(θ0) ∈ (0, 1
2). For any δ > 0 sufficiently small,

there exists a C = C(θ0, δ) such that

KL(θn‖θ0) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2
2,n n + (r2

1,n + r2
3,n

)
n3−4H + r2

4,n nδ if H ∈
[

3

4
,1
)
,

r2
2,n n + (r2

1,n + r2
3,n

)
n3−4H + r2

4,nn
3−4H if H ∈

(
1

2
,

3

4

)
,

r2
2,n n4H−1 + (r2

1,n + r2
4,n

)
n + r2

3,n n1−4(H−H) if H ∈
(

1

4
,

1

2

)
,

r2
2,n nδ + (r2

1,n + r2
4,n

)
n + r2

3,n n1−4(H−H) if H ∈
(

0,
1

4

]
.

PROOF OF THEOREM 4.1. For any θ0 = (H,σ 2,	,
) ∈ �, we define θn as in (6.4) and
ri,n = r0n

αi(H) as shown in Table 6. In view of Proposition 6.1, these rates are chosen such

TABLE 6
Choice of r1,n, . . . , r4,n in the proof of Theorem 4.1

H ∈ (0, 1
4 ) H ∈ ( 1

4 , 1
2 ) H ∈ ( 1

2 , 3
4 ) H ∈ ( 3

4 ,1)

r1,n n− 1
2 n− 1

2 n2H− 3
2 n2H− 3

2

r2,n 0 n
1
2 −2H n− 1

2 n− 1
2

r3,n n2(H−H)− 1
2 n2(H−H)− 1

2 n2H− 3
2 n2H− 3

2

r4,n n− 1
2 n− 1

2 n2H− 3
2 0
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that KL(θn‖θ0) ≤ r2
0C(θ0). Upon setting r0 small enough, we find that

KL(θn‖θ0) ≤ 1

9
.(6.6)

Moreover, from (6.4), it is simple to derive a lower bound on the errors θn − θ0, component
by component. In particular, since r1,n = o(1/ logn), we have∣∣	(θn) − 	(θ0)

∣∣= �(r1,n logn + r3,n),
∣∣
(θn) − 
(θ0)

∣∣= �(r1,n logn + r4,n),

where � denotes an asymptotic lower bound, that is, an = �(bn) if bn = O(an). The resulting
bounds on θn − θ0 are exactly the rates Rn(θ) of Theorem 4.1 (listed in Table 1).

In order to translate these KL estimates into statistical lower bounds, we follow [40], Chap-
ter 2. Intuitively speaking, if θn satisfies (6.6), we cannot consistently decide whether θn or
θ0 is the true parameter. Hence, no estimator can converge towards θ0 faster than θn. To make
this mathematically precise, let θ̂n be any measurable function of {Yi/n : i = 1, . . . , n}. Note
that θn ∈Dn(θ0) for n large enough. Then, for any c > 0,

sup
θ∈Dn(θ0)

Pθ

(∣∣(θ̂n − θ)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)

≥ 1

2
Pθ0

(∣∣(θ̂n − θ0)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)+ 1

2
Pθn

(∣∣(θ̂n − θn)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)

≥ 1

2
Pθ0

(∣∣(θ̂n − θ0)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)+ 1

2
Pθ0

(∣∣(θ̂n − θn)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)− 1

3
.

In the last step, we used that the fact that the total variation distance between Pθn and Pθ0 is
upper bounded by

√
KL(θn‖θ0)/2 ≤ √

KL(θn‖θ0) ≤ 1
3 . Now use the union bound to obtain

Pθ0

(∣∣(θ̂n − θ0)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)+ Pθ0

(∣∣(θ̂n − θn)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)

≥ Pθ0

(∣∣(θ̂n − θ0)k
∣∣∨ ∣∣(θ̂n − θn)k

∣∣≥ c
∣∣(θn − θ0)k

∣∣)
≥ Pθ0

(∣∣(θn − θ0)k
∣∣ ≥ 2c

∣∣(θn − θ0)k
∣∣)= 1,

where the last equality holds for c ≤ 1
2 . Hence,

sup
θ∈Dn(θ0)

Pθ

(∣∣(θ̂n − θ)k
∣∣≥ c

∣∣(θn − θ0)k
∣∣)≥ 1

6
.

Because |(θn − θ0)k| = �(Rn(θ0)k), this establishes the claimed minimax rates. �

7. Proof of Proposition 6.1. Let A(h) = h�̃n(θn) + (1 − h)�̃n(θ0) and δn = �̃n(θn) −
�̃n(θ0). By Taylor expansion,

KL
(
A(1)‖A(0)

)= d

dh
KL
(
A(h)‖A(0)

)|h=0 + 1

2

∫ 1

0

∫ s

0

d2

dh2 KL
(
A(h)‖A(0)

)|h=v dv ds,

where
d

dh
KL
(
A(h)‖A(0)

)= 1

2
tr
(
A(0)−1δn

)− 1

2
tr
(
A(h)−1δn

)= 1

2
tr
([

A(0)−1 − A(h)−1]δn

)
,

d2

dh2 KL
(
A(h)‖A(0)

)= 1

2
tr
(
A(h)−1δnA(h)−1δn

)
.

Hence,

KL
(
A(1)‖A(0)

)= 1

4

∫ 1

0

∫ s

0
tr
(
A(h)−1δnA(h)−1δn

)
dhds

≤ 1

4
sup

h∈[0,1]
tr
(
A(h)−1δnA(h)−1δn

)
.

(7.1)

In order to find an upper bound for (7.1), we will use the following technical lemma.
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LEMMA 7.1. Let B be a symmetric matrix and A and A0 be symmetric positive semidef-
inite matrices such that A − A0 is positive semidefinite, too. Then

tr(A0BA0B) ≤ tr(ABA0B) = tr(A0BAB) ≤ tr(ABAB).

PROOF. Denote C = BA0B , which is symmetric positive semidefinite. Von Neumann’s
trace inequality yields tr((A − A0)C) ≥∑n

i=1 aibn−i+1, where ai and bi are the descending
eigenvalues of A − A0 and C, respectively. Since ai, bi ≥ 0, we conclude that tr(A0C) ≤
tr(AC), which proves the first inequality and, consequently, the second. �

To bound (7.1), we therefore need a lower bound on A(h) and an upper bound on δn.

LEMMA 7.2. For any θ0 ∈ � and δ > 0, there exists c = c(θ0, δ) > 0 such that

(7.2) A(h) ≥ c
[
n−1In + n−2H�n(H − δ)

]
, h ∈ [0,1].

Here, ≥ denotes the Loewner partial order on the cone of positive semidefinite matrices.

PROOF OF LEMMA 7.2. Since A(h) is a convex combination, it suffices to establish the
lower bounds for A(1) and A(0). Note that by definition

√

σ 2b(H)n−2H�n(H)jk

= Cov
(
|σ |�

n
jB

�
1/2
n

,
√



�n

kB(H)

�H
n

)
+ Cov

(
|σ |�

n
kB

�
1/2
n

,
√



�n

jB(H)

�H
n

)
,

where B(H)t = ∫ t
−∞ hH (t, s)dBs . Since XYT + YXT ≤ XXT + YYT for X,Y ∈ R

n×n, it

follows that
√


σ 2b(H)n−2H �n(H) ≤ σ 2n−1In + 
n−2H�n(H) and therefore, by (6.3),

�̃n(θ) ≥
(

1 − |	|√

σ 2

)(
σ 2n−1In + 
n−2H�n(H)

)
.

If we apply this to θ = θ0, we immediately obtain (7.2) for A(0) = �̃n(θ0). To derive the
estimate for A(1) = �̃n(θn), we apply the above to θ = θn, which yields

A(1) ≥ 1

2

(
1 − |	|√


σ 2

)(
σ 2n−1In + 
n−2H�n(H + r1,n)

)
for all sufficiently large n. Since 	2 < 
σ 2, this implies (7.2) for h = 1. �

We proceed to finding an upper bound on δn.

LEMMA 7.3. For any θ0 ∈ � and δ > 0, there exists C = C(θ0, δ) > 0 such that δn ≤
CBn(θ0, δ), where

Bn(θ0, δ) = r2,nn
−1In + (r1,n + r4,n)n

−2H�n(H + δ) + (r1,n + r3,n)n
−2H�n(H + δ).

PROOF OF LEMMA 7.3. By [39], Proposition 7.2.9, we have that

�n(H) = Tn(fH ),

where

(7.3) Tn(f )j,k =
∫ π

−π
f (λ)e−iλ|j−k| dλ



238 C. H. CHONG, T. DELERUE AND F. MIES

and the spectral density fH is given by

fH (λ) = �(2H + 1) sin(πH)

π
(1 − cosλ)

∑
k∈Z

|λ + 2kπ |−2H−1.

In particular, by (6.5),

δn = �̃n(θn) − �̃n(θ)

= r2,nn
−1In + 
n−2H [(1 + r4,n)�n(H + r1,n) − �n(H)

]
+ 	b(H)n−2H

[
(1 + r3,n)�n

(
H + r1,n

2

)
− �n(H)

]
= Tn(g̃n),

where

g̃n = r2,n

n−1

2π
+ 
n−2H [(1 + r4,n)fH+r1,n

− fH

]+ 	b(H)n−2H [(1 + r3,n)fH+ r1,n
2

− fH

]
≤ C(θ0)

[
r2,nn

−1 + n−2Hr4,n|fH+r1,n
| + n−2H |fH+r1,n

− fH |
+ n−2Hr3,n|fH+ r1,n

2
| + n−2H |f

H+ r1,n
2

− fH |]
and C(θ0) may change its value from line to line. For large n, we have that∣∣fH+r1,n

(λ)
∣∣≤ C(θ0)|λ|1−2H−2r1,n ≤ C(θ0)|λ|1−2H−2δ,∣∣f

H+ r1,n
2

(λ)
∣∣≤ C(θ0)|λ|1−2H−r1,n ≤ C(θ0)|λ|1−2H−2δ,∣∣fH+r1,n

(λ) − fH (λ)
∣∣≤ C(θ0)r1,n|λ|1−2H−2r1,n

∣∣log |λ|∣∣≤ C(θ0)r1,n|λ|1−2H−2δ,∣∣f
H+ r1,n

2
(λ) − fH (λ)

∣∣≤ C(θ0)r1,n|λ|1−2H−r1,n
∣∣log |λ|∣∣≤ C(θ0)r1,n|λ|1−2H−2δ

for all λ ∈ [−π,π]. Hence, g̃n(λ) ≤ C(θ0)ĝn(λ) for all λ ∈ [−π,π], where

g̃n ≤ C(θ0)

[
r2,n

n−1

2π
+ (r1,n + r4,n)n

−2HfH+δ + (r1,n + r3,n)n
−2HfH+δ

]
,

which yields the claim. �

LEMMA 7.4. Let g : [−π,π] → R be a symmetric function such that g(λ) = O(|λ|−β)

as λ → 0 for some β ∈ [0,1). Then, for all δ > 0 and H ∈ (0,1),

tr
(
Tn(g)Tn(g)

)= O
(
n ∨ n2β+δ),

tr
(
�n(H)−1Tn(g)�n(H)−1Tn(g)

)= O
(
n ∨ n2(β−2H+1)+δ).

PROOF OF LEMMA 7.4. We apply [31], Theorem 5 in the full version, to the spectral
densities f = fH and g with α = α(θ) = 2H − 1 and β as above. �

PROOF OF PROPOSITION 6.1. By (7.1) and Lemmas 7.2 and 7.3, we obtain for δ > 0,

KL(θn‖θ0) ≤

⎧⎪⎪⎨⎪⎪⎩
C(θ0)n

2 tr(BnBn) if H >
1

2
,

C(θ0)n
4H tr
(
�n(H − δ)−1Bn�n(H − δ)−1Bn

)
if H <

1

2
,

where Bn = Bn(θ0, δ) as in Lemma 7.3.
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If H > 1
2 , the Cauchy–Schwarz inequality yields

tr(BnBn) ≤ 3r2
2,nn

−2 tr
(
I 2
n

)+ 3(r1,n + r4,n)
2n−4H tr

(
�n(H + δ)2)

+ 3(r1,n + r3,n)
2n−4H tr

(
�n(H + δ)2).

Clearly, tr(I 2
n ) = n. Moreover, since �n(H + δ) and �n(H + δ) satisfy the conditions of

Lemma 7.4 with β = 2H + 2δ − 1 and β = 2H + 2δ − 1, respectively, we have that

tr
(
�n(H + δ)2)= O

(
n ∨ n4H+5δ−2), tr

(
�n(H + δ)2)= O

(
n ∨ n4H+5δ−2).

Since δ > 0 was arbitrary, we find that tr(BnBn) = O(zn), where

zn = r2
2,nn

−1 + (r1,n + r4,n)
2(n1−4H ∨ nδ−2)+ (r1,n + r3,n)

2(n1−4H ∨ nδ−2).
This establishes the KL upper bound for the cases H ∈ (1

2 , 3
4) and H ∈ [3

4 ,1).
If H < 1

2 , we may again apply Lemma 7.4 to find that

tr
[(

�n(H − δ)−1In

)2]= O
(
n ∨ n2−4H+5δ),

tr
[(

�n(H − δ)−1�n(H + δ)
)2]= O

(
n ∨ n4(H−H)+5δ),

tr
[(

�n(H − δ)−1�n(H + δ)
)2]= O

(
n ∨ n5δ).

Since δ > 0 was arbitrary, we find that tr[�n(H − δ)−1Bn�n(H − δ)−1Bn] = O(wn), where

wn = r2
2,n

(
n−1 ∨ n−4H+δ)+ (r1,n + r3,n)

2(n1−4H ∨ n−4H+δ)
+ (r1,n + r4,n)

2(n1−4H ∨ n−4H+δ).
This yields the KL upper bound for the remaining cases H ∈ (1

4 , 1
2) and H ∈ (0, 1

4 ]. �

APPENDIX A: CENTRAL LIMIT THEOREM FOR GENERAL VARIATION
FUNCTIONALS

In this section, we state and prove a CLT for general variation functionals of multivari-
ate mixed semimartingale processes. To this end, we consider a d-dimensional mixed semi-
martingale of the form

(A.1) Yt = Y0 +
∫ t

0
as ds +

∫ t

0
σs dBs +

∫ t

0
g(t − s)ρs dBs,

where now B is a d ′-dimensional Brownian motion, a (resp., σ and ρ) is R
d -valued (resp.,

R
d×d ′

-valued) and predictable and g : R → R is given by (2.2). Since d ′ may be larger than
d , (A.1) includes the case where the martingale and the fractional part of Y are driven by
correlated (and not necessarily identical) Brownian motions. In fact, the situation considered
in Section 2 can be embedded into the current setting by defining d ′ = 2 and

(A.2) B(A.1) = (B,B ′), σ (A.1) = (σ,0), ρ(A.1) = (ρ,ρ′)
(the superscript stands for “from equation (A.1)”). In particular, Theorem 2.1 then becomes
a special case of Theorems A.1 and A.2 below.

Let f : Rd×L → R
M for some L,M ∈ N. For Y and similarly for other d-dimensional

processes, we define

(A.3) �n
i Y = Yi�n − Y(i−1)�n ∈ R

d, �n
i Y = (�n

i Y,�n
i+1Y, . . . ,�n

i+L−1Y
) ∈ R

d×L.
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Our goal is to formulate and prove a CLT for normalized variation functionals of the form

(A.4) V n
f (Y, t) = �n

[t/�n]−L+1∑
i=1

f

(
�n

i Y

�
H∧(1/2)
n

)
, t ≥ 0,

where [·] denotes the floor function. In what follows, ‖ · ‖ denotes the Euclidean norm in R
n

for any n ∈ N. Also, if z is some matrix in R
n×m for any n,m ∈ N, then ‖z‖ is defined by

viewing z as a vector in R
nm. We introduce the following assumptions.

ASSUMPTION (CLT’). Consider the process Y from (A.1) and recall N(H) from (2.5).
We make the following assumptions:

1. The function f : Rd×L → R
M is even (i.e., satisfies f (−x) = f (x) for all x) and be-

longs to C2N(H)+1(Rd×L,RM), with all partial derivatives up to order 2N(H)+1 (including
f itself) being of polynomial growth.

2. The kernel g is of the form (2.2) where H ∈ (0,1) \ {1
2} and g0 ∈ C1(R) satisfies

g0(x) = 0 for all x ≤ 0.
3. The drift process a is d-dimensional, locally bounded, F-adapted and càdlàg. More-

over, B is a d ′-dimensional standard F-Brownian motion.
4. If H > 1

2 , the volatility process σ takes the form

(A.5) σt = σ
(0)
t +

∫ t

0
σ̃s dBs, t ≥ 0,

where

(a) σ (0) is an F-adapted locally bounded R
d×d ′

-valued process such that for all T > 0, there
are γ ∈ (1

2 ,1] and K1 ∈ (0,∞) with

(A.6) E
[
1 ∧ ∥∥σ (0)

t − σ (0)
s

∥∥]≤ K1|t − s|γ , s, t ∈ [0, T ];
(b) σ̃ is an F-adapted locally bounded R

d×d ′×d ′
-valued process such that for all T > 0, there

are ε ∈ (0,1) and K2 ∈ (0,∞) with

(A.7) E
[
1 ∧ ‖σ̃t − σ̃s‖]≤ K2|t − s|ε, s, t ∈ [0, T ].

If H < 1
2 , we have (A.5) but with σ , σ (0) and σ̃ replaced by ρ and some processes ρ(0) and

ρ̃ satisfying conditions analogous to (A.6) and (A.7).
5. If H > 1

2 , the process ρ is F-adapted, locally bounded and R
d×d ′

-valued. Moreover,
for all T > 0, there is K3 ∈ (0,∞) such that

(A.8) E
[
1 ∧ ‖ρt − ρs‖]≤ K3|t − s| 1

2 , s, t ∈ [0, T ].
If H < 1

2 , we have the same condition but with ρ replaced by σ .

To state the CLT, we need more additional notation. For suitable v = (vkℓ,k′ℓ′)d,d,L,L
k,k′,ℓ,ℓ′=1

and q = (qkℓ,k′ℓ′)d,d,L,L
k,k′,ℓ,ℓ′=1 ∈ R

(d×L)×(d×L), define

μf (v) = (E[fm(Z)
])M

m=1 ∈R
M,

γf (v, q) = (Cov
(
fm(Z),fm′

(
Z′)))M

m,m′=1 ∈ R
M×M, γf (v) = γf (v, v),

(A.9)

where (Z,Z′) ∈ (Rd×L)2 is multivariate normal with mean 0 and Cov(Zkℓ,Zk′ℓ′) =
Cov(Z′

kℓ,Z
′
k′ℓ′) = vkℓ,k′ℓ′ and Cov(Zkℓ,Z

′
k′ℓ′) = qkℓ,k′ℓ′ . Furthermore, given a multi-index
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χ = (χkℓ,k′ℓ′)d,d,L,L
k,k′,ℓ,ℓ′=1 ∈ N

(d×L)×(d×L)
0 , we define

(A.10)

|χ | =
d∑

k,k′=1

L∑
ℓ,ℓ′=1

χkℓ,kℓ′, χ ! =
d∏

k,k′=1

L∏
ℓ,ℓ′=1

χkℓ,k′ℓ′ !,

vχ =
d∏

k,k′=1

L∏
ℓ,ℓ′=1

v
χkℓ,k′ℓ′
kℓ,k′ℓ′

and the partial derivatives

(A.11) ∂χμf (v) = ∂ |χ |μf

∂v
χ11,11
11,11 · · · ∂v

χdL,dL

dL,dL

(v) ∈ R
M.

For s ≥ 0, we also define

c(s)kℓ,k′ℓ′ = (σsσ
T
s

)
kk′1{ℓ=ℓ′},

πr(s)kℓ,k′ℓ′ = (ρsρ
T
s

)
kk′�H

|ℓ−ℓ′+r|, π(s)kℓ,k′ℓ′ = π0(s)kℓ,k′ℓ′,

λ(s)kℓ,k′ℓ′ = 2−1{ℓ=ℓ′}(σsρ
T
s 1{ℓ≤ℓ′} + ρsσ

T
s 1{ℓ≥ℓ′}

)
kk′
H

|ℓ−ℓ′|

(A.12)

for all k, k′ ∈ {1, . . . , d} and ℓ, ℓ′ ∈ {1, . . . ,L}, where �H
r and 	H

r are defined in (2.10) and
(2.11), respectively.

THEOREM A.1. If Assumption (CLT’) holds with H > 1
2 , then

(A.13) �
− 1

2
n

{
V n

f (Y, t) − Vf (Y, t) −A′n
t

} st=⇒Z ′,

where Vf (Y, t) = ∫ t
0 μf (c(s))ds and

(A.14) A′n
t =

N(H)∑
j=1

∑
|χ |=j

1

χ !
∫ t

0
∂χμf

(
c(s)
)(

�
H− 1

2
n λ(s) + �2H−1

n π(s)
)χ ds

and Z ′ = (Z ′
t )t≥0 is an R

M -valued process, defined on a very good filtered extension
(�,F, (F t )t≥0,P) of the original probability space (�,F, (Ft )t≥0,P) that conditionally on
F is a centered Gaussian process with independent increments and covariance function

(A.15) C′
t = (E[Z ′m

t Z ′m′
t | F])Mm,m′=1 =

∫ t

0
γf

(
c(s)
)

ds.

THEOREM A.2. If Assumption (CLT’) holds with H < 1
2 , then

(A.16) �
− 1

2
n

{
V n

f (Y, t) −
∫ t

0
μf

(
π(s)
)

ds −An
t

}
st=⇒Z,

where

(A.17) An
t =

N(H)∑
j=1

∑
|χ |=j

1

χ !
∫ t

0
∂χμf

(
π(s)
)(

�
1
2 −H
n λ(s) + �1−2H

n c(s)
)χ ds

and Z = (Zt )t≥0 is an R
M -valued process defined on (�,F, (F t )t≥0,P) that conditionally

on F is a centered Gaussian process with independent increments and covariance function

Ct = (E[Zm
t Zm′

t | F])Mm,m′=1

=
∫ t

0

{
γf

(
c(s)
)+ ∞∑

r=1

(
γf

(
π(s),πr(s)

)+ γf

(
π(s),πr(s)

)T )}ds.
(A.18)
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The proof of the two results is given in Appendices B–D of the Supplementary Material
[14]. Apart from the term A′n

t , Theorem A.1 is exactly the CLT of semimartingale variation
functionals (see [25]). Similarly, if we ignore An

t , Theorem A.2 is the CLT for variation func-
tionals of a fractional process with roughness parameter H (cf. [5, 17]). The two processes
A′n

t and An
t respectively play the role of higher-order bias terms (for the estimation of the

integrated volatility or noise volatility functional). However, these processes are also key to
identifying all other quantities of interest in Y . If λ ≡ 0 and H < 1

2 , Theorem A.2 reduces to
[13], Theorem 3.1. If λ 
≡ 0, additional terms involving λ appear in both A′n

t and An
t .

Acknowledgments. We would like to thank the Associate Editor and four referees for
their careful reading of the paper. Their constructive comments have led to significant im-
provements of the paper.

Funding. The first author is supported by ECS project 26301724.
The second author is partially supported by the DFG, project number KL 1041/7-2.

SUPPLEMENTARY MATERIAL

Supplement to “Rate-optimal estimation of mixed semimartingales” (DOI: 10.1214/
24-AOS2461SUPP; .pdf). The supplement [14] contains Appendices B–E.

REFERENCES

[1] AÏT-SAHALIA, Y. and JACOD, J. (2009). Testing for jumps in a discretely observed process. Ann. Statist. 37
184–222. MR2488349 https://doi.org/10.1214/07-AOS568

[2] AÏT-SAHALIA, Y. and JACOD, J. (2014). High-Frequency Financial Econometrics. Princeton Univ. Press,
Princeton, NJ.

[3] AÏT-SAHALIA, Y. and YU, J. (2009). High frequency market microstructure noise estimates and liquidity
measures. Ann. Appl. Stat. 3 422–457. MR2668714 https://doi.org/10.1214/08-AOAS200

[4] AMBLARD, P.-O., COEURJOLLY, J.-F., LAVANCIER, F. and PHILIPPE, A. (2013). Basic properties of the
multivariate fractional Brownian motion. In Self-Similar Processes and Their Applications. Sémin.
Congr. 28 63–84. Soc. Math. France, Paris. MR3203519

[5] BARNDORFF-NIELSEN, O. E., CORCUERA, J. M. and PODOLSKIJ, M. (2011). Multipower variation for
Brownian semistationary processes. Bernoulli 17 1159–1194. MR2854768 https://doi.org/10.3150/10-
BEJ316

[6] BARNDORFF-NIELSEN, O. E. and SHEPHARD, N. (2005). Power variation and time change. Teor. Veroyatn.
Primen. 50 115–130. MR2222740 https://doi.org/10.1137/S0040585X97981482

[7] BROUSTE, A. and FUKASAWA, M. (2018). Local asymptotic normality property for fractional Gaussian
noise under high-frequency observations. Ann. Statist. 46 2045–2061. MR3845010 https://doi.org/10.
1214/17-AOS1611

[8] CAI, C., CHIGANSKY, P. and KLEPTSYNA, M. (2016). Mixed Gaussian processes: A filtering approach. Ann.
Probab. 44 3032–3075. MR3531685 https://doi.org/10.1214/15-AOP1041

[9] CHEN, D., CHENG, Y., CHONG, C. H., GENTINE, P., JIA, W., MONIER, B. and SHEN, S. (2022). Pre-
averaging fractional processes contaminated by noise, with an application to turbulence. Available at
arXiv:2212.00867.

[10] CHEN, D., MYKLAND, P. A. and ZHANG, L. (2020). The five trolls under the bridge: Principal component
analysis with asynchronous and noisy high frequency data. J. Amer. Statist. Assoc. 115 1960–1977.
MR4189770 https://doi.org/10.1080/01621459.2019.1672555

[11] CHERIDITO, P. (2001). Mixed fractional Brownian motion. Bernoulli 7 913–934. MR1873835 https://doi.
org/10.2307/3318626

[12] CHIGANSKY, P. and KLEPTSYNA, M. (2023). Estimation of the Hurst parameter from continuous noisy data.
Electron. J. Stat. 17 2343–2385. MR4649984 https://doi.org/10.1214/23-ejs2156

[13] CHONG, C. H., DELERUE, T. and LI, G. (2024). When frictions are fractional: Rough noise in high-frequency
data. J. Amer. Statist. Assoc. Forthcoming. https://doi.org/10.1080/01621459.2024.2428466

[14] CHONG, C. H., DELERUE, T. and MIES, F. (2025). Supplement to “Rate-optimal estimation of mixed semi-
martingales.” https://doi.org/10.1214/24-AOS2461SUPP

https://doi.org/10.1214/24-AOS2461SUPP
https://doi.org/10.1214/24-AOS2461SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=2488349
https://doi.org/10.1214/07-AOS568
https://mathscinet.ams.org/mathscinet-getitem?mr=2668714
https://doi.org/10.1214/08-AOAS200
https://mathscinet.ams.org/mathscinet-getitem?mr=3203519
https://mathscinet.ams.org/mathscinet-getitem?mr=2854768
https://doi.org/10.3150/10-BEJ316
https://doi.org/10.3150/10-BEJ316
https://mathscinet.ams.org/mathscinet-getitem?mr=2222740
https://doi.org/10.1137/S0040585X97981482
https://mathscinet.ams.org/mathscinet-getitem?mr=3845010
https://doi.org/10.1214/17-AOS1611
https://doi.org/10.1214/17-AOS1611
https://mathscinet.ams.org/mathscinet-getitem?mr=3531685
https://doi.org/10.1214/15-AOP1041
https://arxiv.org/abs/2212.00867
https://mathscinet.ams.org/mathscinet-getitem?mr=4189770
https://doi.org/10.1080/01621459.2019.1672555
https://mathscinet.ams.org/mathscinet-getitem?mr=1873835
https://doi.org/10.2307/3318626
https://doi.org/10.2307/3318626
https://mathscinet.ams.org/mathscinet-getitem?mr=4649984
https://doi.org/10.1214/23-ejs2156
https://doi.org/10.1080/01621459.2024.2428466
https://doi.org/10.1214/24-AOS2461SUPP


RATE-OPTIMAL ESTIMATION OF MIXED SEMIMARTINGALES 243

[15] CHONG, C. H., HOFFMANN, M., LIU, Y., ROSENBAUM, M. and SZYMANSKI, G. (2024). Statistical in-
ference for rough volatility: Central limit theorems. Ann. Appl. Probab. 34 2600–2649. MR4757488
https://doi.org/10.1214/23-aap2002

[16] COMTE, F. and RENAULT, E. (1998). Long memory in continuous-time stochastic volatility models. Math.
Finance 8 291–323. MR1645101 https://doi.org/10.1111/1467-9965.00057

[17] CORCUERA, J. M., HEDEVANG, E., PAKKANEN, M. S. and PODOLSKIJ, M. (2013). Asymptotic theory
for Brownian semi-stationary processes with application to turbulence. Stochastic Process. Appl. 123
2552–2574. MR3054536 https://doi.org/10.1016/j.spa.2013.03.011

[18] DELATTRE, S. and JACOD, J. (1997). A central limit theorem for normalized functions of the increments of
a diffusion process, in the presence of round-off errors. Bernoulli 3 1–28. MR1466543 https://doi.org/
10.2307/3318650

[19] DIEBOLD, F. X. and STRASSER, G. (2013). On the correlation structure of microstructure noise: A finan-
cial economic approach. Rev. Econ. Stud. 80 1304–1337. MR3129949 https://doi.org/10.1093/restud/
rdt008

[20] DOZZI, M., MISHURA, Y. and SHEVCHENKO, G. (2015). Asymptotic behavior of mixed power variations
and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18 151–175. MR3348583
https://doi.org/10.1007/s11203-014-9106-5

[21] GATHERAL, J., JAISSON, T. and ROSENBAUM, M. (2018). Volatility is rough. Quant. Finance 18 933–949.
MR3805308 https://doi.org/10.1080/14697688.2017.1393551

[22] HANSEN, P. R. and LUNDE, A. (2006). Realized variance and market microstructure noise. J. Bus. Econom.
Statist. 24 127–218. MR2234447 https://doi.org/10.1198/073500106000000071

[23] HURST, H. E. (1951). Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civ. Eng. 116 770–799.
[24] JACOD, J., LI, Y. and ZHENG, X. (2017). Statistical properties of microstructure noise. Econometrica 85

1133–1174. MR3681766 https://doi.org/10.3982/ECTA13085
[25] JACOD, J. and PROTTER, P. (2012). Discretization of Processes. Stochastic Modelling and Applied Proba-

bility 67. Springer, Heidelberg. MR2859096 https://doi.org/10.1007/978-3-642-24127-7
[26] JACOD, J. and SØRENSEN, M. (2018). A review of asymptotic theory of estimating functions. Stat. Inference

Stoch. Process. 21 415–434. MR3824976 https://doi.org/10.1007/s11203-018-9178-8
[27] JACOD, J. and TODOROV, V. (2014). Efficient estimation of integrated volatility in presence of infinite vari-

ation jumps. Ann. Statist. 42 1029–1069. MR3210995 https://doi.org/10.1214/14-AOS1213
[28] LELAND, W., TAQQU, M., WILLINGER, W. and WILSON, D. (1994). On the self-similar nature of Ethernet

traffic (extended version). IEEE/ACM Trans. Netw. 2 1–15.
[29] LI, J. and XIU, D. (2016). Generalized method of integrated moments for high-frequency data. Econometrica

84 1613–1633. MR3537165 https://doi.org/10.3982/ECTA12306
[30] LI, Y. and MYKLAND, P. A. (2015). Rounding errors and volatility estimation. J. Financ. Econom. 13

478–504.
[31] LIEBERMAN, O., ROSEMARIN, R. and ROUSSEAU, J. (2012). Asymptotic theory for maximum likeli-

hood estimation of the memory parameter in stationary Gaussian processes. Econometric Theory 28
457–470. MR2913638 https://doi.org/10.1017/S0266466611000399

[32] MIES, F. and PODOLSKIJ, M. (2023). Estimation of mixed fractional stable processes using high-frequency
data. Ann. Statist. 51 1946–1964. MR4678791 https://doi.org/10.1214/23-aos2312

[33] MIKOSCH, T., RESNICK, S., ROOTZÉN, H. and STEGEMAN, A. (2002). Is network traffic approximated by
stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12 23–68. MR1890056 https://
doi.org/10.1214/aoap/1015961155

[34] MISHURA, Y. S. (2008). Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lec-
ture Notes in Math. 1929. Springer, Berlin. MR2378138 https://doi.org/10.1007/978-3-540-75873-0

[35] MOLZ, F. J., LIU, H. H. and SZULGA, J. (1997). Fractional Brownian motion and fractional Gaussian noise in
subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resour.
Res. 33 2273–2286.

[36] NEWEY, W. K. and WEST, K. D. (1994). Automatic lag selection in covariance matrix estimation. Rev. Econ.
Stud. 61 631–653. MR1299308 https://doi.org/10.2307/2297912

[37] PANDEY, G., LOVEJOY, S. and SCHERTZER, D. (1998). Multifractal analysis of daily river flows including
extremes for basins of five to two million square kilometres, one day to 75 years. J. Hydrol. 208 62–81.

[38] ROSENBAUM, M. (2009). Integrated volatility and round-off error. Bernoulli 15 687–720. MR2555195
https://doi.org/10.3150/08-BEJ170

[39] SAMORODNITSKY, G. and TAQQU, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Mod-
els with Infinite Variance. Stochastic Modeling. CRC Press, New York. MR1280932

[40] TSYBAKOV, A. B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer,
New York. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.
MR2724359 https://doi.org/10.1007/b13794

https://mathscinet.ams.org/mathscinet-getitem?mr=4757488
https://doi.org/10.1214/23-aap2002
https://mathscinet.ams.org/mathscinet-getitem?mr=1645101
https://doi.org/10.1111/1467-9965.00057
https://mathscinet.ams.org/mathscinet-getitem?mr=3054536
https://doi.org/10.1016/j.spa.2013.03.011
https://mathscinet.ams.org/mathscinet-getitem?mr=1466543
https://doi.org/10.2307/3318650
https://doi.org/10.2307/3318650
https://mathscinet.ams.org/mathscinet-getitem?mr=3129949
https://doi.org/10.1093/restud/rdt008
https://doi.org/10.1093/restud/rdt008
https://mathscinet.ams.org/mathscinet-getitem?mr=3348583
https://doi.org/10.1007/s11203-014-9106-5
https://mathscinet.ams.org/mathscinet-getitem?mr=3805308
https://doi.org/10.1080/14697688.2017.1393551
https://mathscinet.ams.org/mathscinet-getitem?mr=2234447
https://doi.org/10.1198/073500106000000071
https://mathscinet.ams.org/mathscinet-getitem?mr=3681766
https://doi.org/10.3982/ECTA13085
https://mathscinet.ams.org/mathscinet-getitem?mr=2859096
https://doi.org/10.1007/978-3-642-24127-7
https://mathscinet.ams.org/mathscinet-getitem?mr=3824976
https://doi.org/10.1007/s11203-018-9178-8
https://mathscinet.ams.org/mathscinet-getitem?mr=3210995
https://doi.org/10.1214/14-AOS1213
https://mathscinet.ams.org/mathscinet-getitem?mr=3537165
https://doi.org/10.3982/ECTA12306
https://mathscinet.ams.org/mathscinet-getitem?mr=2913638
https://doi.org/10.1017/S0266466611000399
https://mathscinet.ams.org/mathscinet-getitem?mr=4678791
https://doi.org/10.1214/23-aos2312
https://mathscinet.ams.org/mathscinet-getitem?mr=1890056
https://doi.org/10.1214/aoap/1015961155
https://doi.org/10.1214/aoap/1015961155
https://mathscinet.ams.org/mathscinet-getitem?mr=2378138
https://doi.org/10.1007/978-3-540-75873-0
https://mathscinet.ams.org/mathscinet-getitem?mr=1299308
https://doi.org/10.2307/2297912
https://mathscinet.ams.org/mathscinet-getitem?mr=2555195
https://doi.org/10.3150/08-BEJ170
https://mathscinet.ams.org/mathscinet-getitem?mr=1280932
https://mathscinet.ams.org/mathscinet-getitem?mr=2724359
https://doi.org/10.1007/b13794


244 C. H. CHONG, T. DELERUE AND F. MIES

[41] VAN ZANTEN, H. (2007). When is a linear combination of independent fBm’s equivalent to a single fBm?
Stochastic Process. Appl. 117 57–70. MR2287103 https://doi.org/10.1016/j.spa.2006.05.013

[42] WILLIAMS, S. D., BOCK, Y., FANG, P., JAMASON, P., NIKOLAIDIS, R. M., PRAWIRODIRDJO, L.,
MILLER, M. and JOHNSON, D. J. (2004). Error analysis of continuous GPS position time series. J.
Geophys. Res. 109 B03412.

[43] XU, C. (2017). Detecting periodic oscillations in astronomy data: Revisiting wavelet analysis with coloured
and white noise. Mon. Not. R. Astron. Soc. 466 3827–3833.

https://mathscinet.ams.org/mathscinet-getitem?mr=2287103
https://doi.org/10.1016/j.spa.2006.05.013

	Introduction
	Central limit theorem for sample autocovariances
	Semiparametric estimation of mixed semimartingales
	Statistical lower bounds
	Simulation study
	Proof of Theorem 1.1, Theorem 3.1, Corollary 3.3 and Theorem 4.1
	Proof of Proposition 6.1
	Appendix A: Central limit theorem for general variation functionals
	Acknowledgments
	Funding
	Supplementary Material
	References

