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XGBoost as a Surrogate Model for Testing Deep Reinforcement Learning
Agents

Abstract

Testing Deep Reinforcement Learning (DRL) agents is computationally expensive
and inefficient, especially when trying to identify environment configurations where
the agent fails to reach its objective. Recent work proposes the use of a Multi-Layer-
Perceptron (MLP) as a surrogate model to predict whether a given environment con-
figuration is likely to be a failing environment without running the tests. However, this
raises the question of whether different surrogate models can perform this task better
and whether we can improve the training of these models by fine-tuning their hyperpa-
rameters. In this work, we seek to understand how XGBoost performs as an alternative
to the MLP for predicting DRL failures, together with grid search as a hyperparameter
optimization technique. We evaluated our approach on the Parking environment from
the HighwayFEnv Simulator using a DRL agent trained using Hindsight Experience Re-
play (HER), where a failing environment is one in which the vehicle collides with a
parked vehicle or a timeout occurs. This evaluation is based on how well the model
can classify failing environments and how effective it can guide a Genetic Algorithm
(GA) to find failing environments (failure search). We compared the performance of
XGBoost with the MLP and found that XGBoost significantly outperforms the MLP
baseline across key classification metrics such as F1-score and AUC-ROC. Furthermore,
during failure search, the XGBoost-guided GA yields more failing environments with
greater coverage and entropy, indicating increased diversity and effectiveness. These
findings suggest that XGBoost is a strong candidate for surrogate modelling in DRL
testing and offers a more reliable alternative to an MLP-based approach.

1 Introduction

Deep Reinforcement Learning (DRL) has emerged as a powerful tool for training agents that
are capable of learning complex tasks by trial-and-error interaction with an environment.
These environments are simulation scenarios that define the initial conditions and param-
eters of a test case on which the DRL agent is run. Each environment represents a single
test case: the agent is run once in a specific configuration, and the outcome is observed.
DRL agents typically use deep neural networks to approximate policies or value functions
and have obtained exceptional results in a wide range of applications [28].

However, effective testing methods for these DRL agents remain underdeveloped. DRL
agents are often trained on randomised configurations [37], meaning environments where the
initial conditions are randomly sampled from a distribution, to improve generalisation and
avoid overfitting to specific scenarios.

However, this approach has two major issues. Firstly, random generation is unlikely
to expose failures, i.e. environments where the agent does not reach its objective, possibly
resulting in an overestimation of the agent’s capabilities. Secondly, finding even a challenging
environment is computationally expensive: each test requires us to fully execute a simulation
of the agent. In the case of HighwayEnv [21] for instance, the environment used in this study,
a single execution of a test typically takes about 40 seconds, reaching up to 5 minutes in some
cases [29]. Thorough testing requires hundreds or thousands of such test runs, substantially
increasing the cost.

Recent work by Biagiola et al. [8] presents a promising alternative: using surrogate
models to approximate whether the DRL agent will fail in a certain environment, with-



out actually running any tests. Their approach involves training a Multi-Layer Perceptron
(MLP) on the agent’s training data to predict whether a given environment configuration is
likely to be a failing environment. The output of the model is then used as a fitness function
in a Genetic Algorithm (GA), in order to guide it towards finding failing environment config-
urations. This method significantly reduces the cost of testing and provides a scalable way
to explore large configuration spaces to find failing environment configurations. Although
the results are promising, their study focuses exclusively on neural networks and performs
minimal hyperparameter tuning, leaving open the question whether other machine learning
models may perform better and whether hyperparameter optimisation techniques such as
grid search [23] could improve the performance of these models.

In this paper, we seek to understand how XGBoost [9] serves as a surrogate model
compared to the MLP. XGBoost works exceptionally well on tabular and structured data
and is often recommended for classification when dealing with such data [33]. Furthermore,
XGBoost has demonstrated strong predictive performance in modelling student learning
outcomes [16] and consistently achieves top performance in machine learning competitions
[6]. This makes it a strong candidate for the surrogate modelling task.

We aim to fill two specific gaps in prior work: (1) the lack of exploration beyond neu-
ral networks, and (2) the absence of extensive hyperparameter tuning in surrogate model
evaluation.

Thus, we investigate the following main research question:

RQ1: How effective is XGBoost as a surrogate model to identify failing envi-
ronments for a DRL agent compared to a baseline Multi- Layer-Perceptron?

We divide this research question into two sub-questions as follows:

e RQ1.1: What is the performance of XGBoost compared to the MLP in classifying
failing environments?

e RQ1.2: How effective is XGBoost compared to the MLP in guiding a Genetic Algo-
rithm to find failing environments?

To answer these questions, we develop an initial XGBoost model and perform grid search
to tune the hyperparameters. Afterwards, we obtain a final evaluation of the classification
performance of both XGBoost and the MLP baseline used by Biagiola et al. [8] and compare
them using five evaluation criteria: Accuracy, precision, recall, F1-Score and AUC-ROC
[30]. Subsequently, we use the best-performing XGBoost configuration to guide a Genetic
Algorithm (GA) to find environment configurations which the DRL agent is likely to fail on.
We then run the DRL agent on these environments and run a k-means clustering algorithm
[24] on the environments where the DRL agent failed to reach its objective. Afterwards, we
compare their performance using three evaluation criteria: Number of failing environments
produced, coverage, and entropy.

Our approach is evaluated on the Parking environment from the HighwayEnv Simulator
[21] using a DRL agent trained using Hindsight Experience Replay (HER) [2], where a failing
environment is one in which the vehicle collides with a parked vehicle or a timeout occurs,
which means that it took too long for the agent to successfully park the car.

Our findings show that XGBoost significantly outperforms the baseline MLP in precision
(0.441 vs. 0.099) Fl-score (0.475 vs. 0.161), and AUC-ROC (0.820 vs. 0.687).

During failure search, the XGBoost-guided GA discovered more failing environments
(17.66 vs 14.98), with greater coverage of the configuration space (82.5% vs 43.5%) and
higher entropy (67.7% vs 32.1%) when comparing it with the MLP-guided GA, indicating
that more diverse and meaningful environment configurations were produced.



These findings suggest that XGBoost is a strong candidate for surrogate modelling in
DRL testing and offers a more reliable alternative to an MLP-based approach.
Our contributions can be summarized as follows.

e An evaluation of the performance of XGBoost in classifying failing environment con-
figurations.

e An evaluation of the effectiveness of using XGBoost to guide a GA to find failing
environment configurations.

e A comparison of the overall performance of XGBoost and MLP as a surrogate model
for testing DRL agents.

2 Background and Related Work

In this section, we describe the background information necessary to fully understand this
work and dive into relevant related work.

2.1 (Deep) Reinforcement Learning

Reinforcement Learning (RL) is a trial-and-error learning paradigm in which agents interact
with an environment to maximize cumulative reward signals over time, typically modelled
as a Markov Decision Process (MDP) [32], [35]. In this framework, the agent selects actions
based on its current state to maximize expected future rewards.

Deep Reinforcement Learning (DRL) integrates deep neural networks into RL, allowing
agents to learn from high-dimensional inputs such as images or sensor data [22], [IT]. Algo-
rithms such as Deep Q-Networks and policy gradients have demonstrated success in complex
domains, including games and robotics [11].

However, testing DRL agents is computationally intensive. Because the agent’s behaviour
emerges through stochastic interaction, identifying rare failure cases requires extensive sim-
ulation across diverse environments, which often fails to yield meaningful insights [22], [11],
[37].

2.2 Surrogate Modelling for Failure Prediction

Given the inefficiency of traditional DRL testing, where failures are found by running the
agent through many randomized environments [37], surrogate modelling has been proposed
as a solution to approximate agent behaviour [§]. In this context, a surrogate model is
a classifier, trained on data collected during the agent’s training, that estimates whether
a DRL agent will fail in a given environment configuration without executing the actual
simulation.

This approach allows for a more efficient exploration of the environment configuration
space, allowing for targeted generation of environment configurations on which the DRL
agent is likely to fail through guided search.

2.3 Models Used
2.3.1 Multi-Layer-Perceptron

A Multi-Layer Perceptron (MLP) is a type of feed-forward neural network consisting of
an input layer, one or more hidden layers, and an output layer, where each layer is fully
connected to the next. Non-linear activation functions such as ReLU or sigmoid are used to
allow the model to learn complex mappings between inputs and outputs [14].
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Figure 1: Overview of the XGBoost training process: At each iteration, a new tree is trained
on the residual errors of the combined predictions from previous trees. [27].

MLPs have been widely applied to a variety of supervised learning tasks and are par-
ticularly effective on unstructured data such as images, text, or audio [I7]. They are also
relatively simple to implement and commonly used as baseline models in neural network
research [I4].

However, MLPs tend to underperform on structured tabular data compared to tree-
based methods. This is mainly due to their sensitivity to feature scaling, initialization, and
hyperparameter settings, as well as their limited ability to model feature interactions without
substantial data or architectural tuning [33], [6]. This reduces their suitability in domains
such as DRL testing, where the input consists of structured environment configurations, and
the dataset is often imbalanced or small.

2.3.2 XGBoost

XGBoost (Extreme Gradient Boosting) is a machine learning algorithm based on the prin-
ciple of gradient boosting, which constructs an ensemble of decision trees in a sequential
manner. Figure [T]shows an overview of the XGBoost training process, where each boosting
step, a new tree is trained to predict the residual errors of the current model. The model
uses bootstrap samples from the training data and aggregates the predictions of all indi-
vidual trees to form the final output, typically by summation. What sets XGBoost apart
from traditional boosting methods is its use of first- and second-order derivatives during
optimization, allowing more accurate and efficient updates to the model during training [9].

XGBoost incorporates several techniques that enhance performance and generalization:

e Regularization: L1 (lasso) and L2 (ridge) regularization terms are included in the
objective function to penalize the complexity of the model, which helps to prevent
overfitting.

e Tree Pruning: Instead of growing trees greedily, XGBoost uses a depth-first approach
and prunes branches that do not significantly improve the loss.



e Handling Missing Data: XGBoost automatically learns the best direction to take
when encountering missing values in the data, improving its robustness in real-world
scenarios.

These features make XGBoost particularly powerful on structured, tabular datasets [33],
where it consistently achieves top performance in machine learning competitions [5]. There-
fore, we have chosen to use XGBoost in this study.

2.4 Genetic Algorithm in Failure Search

A Genetic Algorithm (GA) is a population-based optimization technique inspired by the
principles of natural selection. It generates an initial population of candidate solutions and
iteratively applies selection, crossover, and mutation to evolve better solutions over time
[39], [26]. In each generation, solutions are evaluated using a fitness function and the most
promising ones are used to produce the next generation.

In the context of failure search for Deep Reinforcement Learning (DRL), the above-
mentioned solutions are environment configurations on which the DRL agent is likely to
fail. GA’s are guided towards these solutions using a surrogate model as the fitness function,
which predicts whether a given configuration will lead to failure without having to run a full
simulation [g].

Saliency further improves this process. Saliency methods identify which input features
most influence the model’s predictions. In this case, the saliency maps generated by the
surrogate model highlight which environment parameters have the strongest effect on the
predicted probability of failure [3], [4]. By biasing mutations and crossover toward these
salient parameters, the GA can focus on parts of the search space where failures are more
likely, resulting in a more efficient and diverse exploration compared to purely random
search.

2.5 Related Work

Work by Bhatt et al. [7] proposed DSAGE, a framework that uses a deep surrogate model
to estimate the behaviour of the DRL agent in procedurally generated environments. The
surrogate model is used to guide the generation of diverse test cases without running the
agent. While their method focuses on behavioural diversity, it does not aim to identify
failure cases.

Altmann et al.’s work [I] proposed a method to select representative DRL trajectories
using surrogate-based metrics that prioritize behavioural diversity and certainty. Their goal
is to support interpretability by identifying trajectories that are useful to explain agent
behaviour. However, they do not generate new environments or evaluate the likelihood of
failure.

Sieusahai et al. [34] trained surrogate models to replicate the behavior of DRL agents
in Atari environments, with the aim of improving interpretability. Their models were de-
signed to explain the agent’s decisions by imitating its policy based on previously collected
data. However, they do not use the surrogate to guide testing or generate new environment
configurations.

The work by Biagiola et al. [§] is the most directly relevant to this study. They pro-
posed a search-based testing approach for DRL agents, implemented in a tool called Indago.
Their method involves training a Multi-Layer-Perceptron (MLP) on interaction data from
the training process of DRL agents. This classifier serves as a surrogate model that predicts
the likelihood of agent failure in unseen environment configurations, which is then used to
guide a search algorithm toward possibly failing environment configurations. Their approach
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Figure 3: Example environment configuration in the Parking environment. (A) Visual
layout of the environment, showing the ego vehicle, goal lane, and parked vehicles. (B)
Corresponding configuration file encoding initial conditions for the surrogate model [§].

demonstrated that the search-based method could uncover significantly more failures, and
more diverse ones, compared to random testing or baseline sampling approaches [37]. How-
ever, they focused solely on their MLP and performed minimal hyperparameter tuning. Our
work builds on these findings by investigating whether XGBoost can outperform MLPs in
this context, particularly when combined with a hyperparameter tuning technique like grid

search [23].
3 Proposed Methodology

In this work, we propose a methodology for testing Deep Reinforcement Learning (DRL)
agents that builds on the surrogate modelling approach introduced by Biagiola et al. [§].
Figure [2] presents the flow of this methodology.

3.1 Data Collection and Preprocessing

The foundation of our surrogate modelling approach is a dataset originally generated by Bi-
agiola et al. [8]. They derived this from the interaction history of a DRL agent trained using
Hindsight Experience Replay (HER) [2] with environments from the Parking environment
in the HighwayFEnv simulator [21].

Each datapoint consists of an environment configuration on which the DRL agent was
trained (see Figure [3)), and a binary label representing a failing or successful environment
configuration. In order to make this data easier to work with, it is pre-processed to a simple
array of numbers, where one-hot-encoding is used to represent free and taken parking spots.



The environment seen in Figurewould look as following: [0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0 (pvehicles one-hot-encoded), 20 (goal lane), 0.0 (head_ego), 0.0, 0.0
(pos_ego)

In the initial phases of training, the DRL agent performs poorly in nearly all environment
configurations due to the lack of a learned policy. These early failures are not particularly
informative for distinguishing failing from successful environment configurations and could
bias the surrogate model. We therefore omit the first x % of the training samples, where x
is a hyperparameter that will be tuned.

Since failures are much rarer than successes in later training stages, the dataset is im-
balanced. To mitigate the impact of this imbalance, we applied and compared two different
techniques. The first is weighted sampling, where the probability of a failing environment
being sampled during training is much higher than a successful one. The second is oversam-
pling, where the failing environments are duplicated such that the ratio of failing/successful
environments is equal to a specified input, which is a hyperparameter that will be tuned.

Finally, we split up the dataset into a training, validation, and test set.

3.2 XGBoost as Surrogate Model

The input features for XGBoost consist of the aforementioned array representation of an
environment configuration, chosen since it fully characterizes a single starting environment.
We use the training set to train our XGBoost model, using the validation set to calculate the
validation loss at each boosting step. This allows us to implement early stopping, i.e. stop
the training of the model when the validation loss does not improve for a certain amount of
iterations. The loss function used is logloss.

N
Log Loss = —% 2_4: [yi log(pi) + (1 — yi) log(1 — py)]
Where p; is the predicted probability of the positive class and y; € {0, 1} is the class label.

We use XGBoost as our surrogate model, based on how well it has been proven to perform
on tabular structured data [33], similar to our input.

Furthermore, XGBoost’s support for regularization and instance weighting allows us
to easily manage overfitting and to account for the rarity of failure cases during training,
without the need to perform extensive data augmentation techniques [9]. Furthermore,
XGBoost has demonstrated strong predictive performance in modelling student learning
outcomes [16] and consistently achieves top performance in machine learning competitions
[5], making it a strong candidate for the surrogate modelling task.

3.3 Grid Search

We extend the surrogate modelling pipeline with hyperparameter optimization: we use grid
search [23] to fine-tune XGBoost’s hyperparameters. The hyperparameters considered can
be found in table [l

Due to time constraints, it was not feasible to perform an exhaustive grid search over all
possible hyperparameter configurations. Instead, we opted for a round-based approach: the
hyperparameters were divided into several groups, indicated by a number, and grid search
was conducted within each group while keeping the remaining hyperparameters fixed. After
each round, we kept the best performing configuration, based on its Fl-score, from that
group and repeated the process for the next group. This procedure continued until all
hyperparameters were tuned. The performance of each configuration was averaged over 5



Hyperparameter Description Values Group

Test split Ratio of data split into | [0.1, 0.2, 0.3, 0.4, 0.5] 1
training and validation
sets

Learning rate Shrinking rate of feature | [0.1, 0.2, 0.3, 0.4, 0.5] 1
weights at each boosting
step

Max Depth Maximum depth of each | [1, 2, 5, 10, 20] 1
tree

Max Leaves Maximum number of | [0, 16, 32, 64, 128] 1
leaves per tree

Gamma Minimum loss reduction | [0, 0.1, 0.5, 1, 5] 2
to partition a leaf

Alpha L1 regularization term [0, 0.1, 0.5, 1, 5]

Lambda L2 regularization term [0, 0.1, 0.2, 0.5, 1]

Subsample Subsample ratio of train- | [0.6, 0.7, 0.8, 0.9, 1]
ing instances

Colsample By Tree Subsample ratio of | [0.6, 0.7, 0.8, 0.9, 1] 3
columns per tree

Training progress filter | Percentage of training | [0, 10, 20, 30, 40, 50, 60, 3
data omitted before train- | 70, 80, 90]
ing

Patience Trees added without im- | [1, 2, 5, 10, 20, 30] 3
provement before early
stopping

Minimum child weight | Minimum sum of instance | [1, 2, 4, 16, 32, 64, 128] 4
weight (Hessian) per child

Oversample Ratio of failing to success- | [0, 0.25, 0.5, 0.75, 1] 4
ful environments in over-
sampling

Weight Loss Whether to apply class | [True, False] 4
weights during training

Table 1: Grid search hyperparameters with descriptions, value ranges, and groupings.

different seeds to account for variance in the training and validation split. Grid search was
selected because it is simple to implement, easy to reproduce, and well-suited to problems
with a limited number of hyperparameters. It provides a clear and structured way to explore
different combinations of parameters and was appropriate for the scale and goals of this
study. Although more advanced methods such as random search [6] or Bayesian optimization
[I2] can be more efficient, grid search was a practical and appropriate choice given the
experimental constraints.

3.4 Guided Failure Search using Genetic Algorithms (GA)

Once trained, the surrogate model is integrated into a failure search algorithm. Similarly
to the approach by Biagiola et al. [8], we use the surrogate’s output as a fitness function in
a Genetic Algorithm (GA) to guide the generation of new environment configurations that



are likely to cause the DRL agent to fail. The GA evolves the environment parameters by
selecting, mutating, and crossing over candidate configurations, with XGBoost calculating
the failure likelihood for each environment. The DRL agent is then run on each environment
and the failure or success of the agent is recorded.

By prioritizing configurations that are likely to fail based on surrogate predictions, we
minimize expensive simulations with the actual DRL agent. This not only improves effi-
ciency, but also increases the likelihood of discovering rare or diverse failures.

4 Study Design

In this work, we investigate the following main research question:

RQ1: How effective is XGBoost as a surrogate model to identify failing envi-
ronments for a DRL agent compared to a baseline Multi- Layer-Perceptron?

We divide this research question into two sub-questions as follows:

e RQ1.1: What is the performance of XGBoost compared to the MLP in classifying
failing environments?

e RQ1.2: How effective is XGBoost compared to the MLP in guiding a Genetic Algo-
rithm to find failing environments?

To answer RQ1, we assess the classification performance of the XGBoost model in predict-
ing whether a given environment configuration results in a failure for the DRL agent. We
train the surrogate model on labelled environment data and evaluate it using standard clas-
sification metrics: accuracy, precision, recall, Fl-score, and AUC-ROC [30]. The model’s
hyperparameters are tuned using grid search, and the results are compared with a baseline
MLP-based classifier used by Biagiola et al. [§].

To answer RQ2, we integrate the trained XGBoost model into a Genetic Algorithm (GA)
to guide the generation of new environment configurations. The surrogate model serves as a
fitness function, scoring candidate configurations based on the likelihood that the DRL agent
fails on it. Subsequently, we run the DRL agent trained using Hindsight Experience Replay
(HER) [2] on each environment to see whether the agent actually fails in these environ-
ments. Finally, we apply a k-means clustering algorithm [24] to the generated environment
configurations that caused the agent to fail, using the silhouette score to find the optimal
number of clusters.

We then measure the model’s effectiveness during this process using three metrics: the
number of failing environments discovered, the coverage of the search space, and the entropy
of the produced configurations. Coverage measures how well the discovered environments
span the search space. It is defined as the percentage of unique clusters that contain at
least one failing environment produced by the GA. The diversity quantifies how uniformly
the failures are distributed across these clusters. It is calculated based on the proportion of
failures that fall into each cluster and normalized to range between 0% (all environments in
one cluster) and 100% (uniform distribution across clusters). These metrics help us not only
evaluate the amount of failures discovered, but also how effectively we explore the search
space.



Table 2: Selected hyperparameters for XGBoost based on grid search.

Hyperparameter Value
Test split 0.1
Learning rate 0.4
Max depth 5
Max leaves 0
Subsample 0.85
Colsample by tree 0.9
Training progress filter 25
Gamma 0
Lambda 0.1
Patience 2
Alpha 5
Oversample 0
Min child weight 1
Weight Loss True

4.1 Dataset

The dataset used consists of 8,790 data points of which approximately 2% are configurations
where the agent failed to reach its objective. Each datapoint consists of the following:

e Ego position: z € [-10,10], y € [-5, 5]

e Ego heading: a scalar in [0.0,1.0)

e Goal lane: integer € [1,20]

e Parked lane occupancy: one-hot-encoded array of size 20
e Outcome: binary label indicating success or failure

The dataset was first divided into two subsets, with 80% used for training and validation,
and the remaining 20% reserved for testing. This split is very common and often shows the
best results [I3]. Moreover, based on the small size of our data-set, any split higher than this
could have negative impact on the model’s performance. Within the training and validation
set, 90% was used for training and 10% for validation. This split was part of our grid search.

4.2 Parameter settings

Table 2] shows the parameters used to train our XGBoost model, selected through grid
search. We set the number of boosting iterations to 50, because we noticed that early
stopping consistently occurred before the 50th iteration.

To obtain the classification performance, we evaluated the performance of XGBoost and
a pre-trained MLP, whose parameters are described in the work by Biagiola et al. [§]. We
evaluated the performance of both models five different times, with seeds 15 through 19 used
to create the held-out set, and obtained the mean and standard deviation of the results.

To obtain the performance of the models during failure search, we ran the Genetic
Algorithm using XGBoost and a pre-trained MLP from Biagiola et al. 50 times with a
randomised seed, each run generating 50 different environment configurations.
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4.3 Evaluation Criteria
For RQ1, we evaluate the performance of the model using five commonly used classification
metrics: Accuracy, Precision, Recall, F1-score, and AUC-ROC [30].
e Accuracy measures the proportion of correctly classified instances among all predic-
tions

e Precision measures the proportion of positive identifications that were actually cor-
rect

e Recall measures the proportion of actual positives that were correctly identified

e Fl-score is the harmonic mean of precision and recall

e AUC-ROC measures the model’s ability to distinguish between classes. A higher
AUC indicates better discrimination.

For RQ2, we evaluate the performance of the model using the following metrics.

e Amount of failing environments produced
e Coverage: How well the produced environment configurations span the search space.

k
Coverage = —— x 100
|Ctota1‘

Where k is the number of unique clusters that contain at least one environment con-
figuration generated by the model being evaluated and Clots is the total number of
clusters created.

e Entropy: The diversity of the produced environment configurations.

k
Entropy — — (Zpi 1og2<pi>) /Toga(k) x 100
=1

Where p; is the proportion of the model’s produced environment configurations that
fall into cluster 1.

To measure the statistical significance of the difference between the evaluation metrics of
both models, we compute the Mann-Whitney U test [25]. To measure the effect size, we
compute the Vargha-Delaney metric A;o [38].

5 Results

In this section, we discuss the results of our research questions separately.

5.1 XGBoost classification performance

Table [3] shows the comparative performance between XGBoost and the MLP for accuracy,
precision, recall, F1-score, and AUC-ROC.

XGBoost achieves a much higher precision (0.441+0.063) than the MLP (0.099+0.015),
with a statistically significant p-value (p = 0.0079) and a maximum effect size (Alz =1).
This indicates that XGBoost produces substantially fewer false positives.

Recall is slightly higher for XGBoost (0.525 £ 0.036) than for the MLP (0.424 + 0.070),
but the difference is not statistically significant (p = 0.0749, Ay = 0.860). This suggests a
comparable ability to detect actual failing environments, although XGBoost still performs
marginally better.
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Table 3: Comparison between the classification performance of XGBoost and the baseline
MLP. For each evaluation metric, the mean over 5 different seeds is shown together with the
standard deviation.

Metric XGB MLP p-value Effect Size (A;2)
Accuracy 0.944 + 0.010 0.788 + 0.027  0.0119 1
Precision 0.441 £ 0.063 0.099 & 0.015  0.0079 1
Recall 0.525 £ 0.036 0.424 + 0.070  0.0749 0.860
F1-score 0.475 £+ 0.034 0.161 &= 0.022  0.0079 1
AUC-ROC 0.820 4+ 0.021 0.687 £+ 0.023  0.0079 1
Precision Recall Fl-score AUC-ROC
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Figure 4: Boxplots comparing XGBoost and MLP accross 4 different evaluation metrics for
classification

The Fl-score is significantly higher for XGBoost (0.475 & 0.034) compared to MLP
(0.161 £ 0.022), with p = 0.0079 and Ay = 1. This indicates a stronger and more reliable
classification performance overall.

In terms of AUC-ROC, XGBoost also outperforms the MLP (0.820 #+ 0.021 vs. 0.687 +
0.023), with p = 0.0079 and Ayy = 1. This shows that the classifier is more effective at
separating the two classes across all thresholds.

Accuracy is higher for XGBoost (0.944 £ 0.010) than for MLP (0.788 £ 0.027), with
p=0.0119 and A, =1, although this metric is less informative due to the class imbalance.

Figure [4] displays boxplots for precision, recall, F1-score and AUC-ROC. Although XG-
Boost outperforms the MLP across all metrics on average, it shows greater variability be-
tween runs. This is particularly evident in the wider interquartile ranges for precision and
Fl-score. These results indicate that, while XGBoost provides better predictive perfor-
mance, it may be more sensitive to changes in the test split.
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Table 4: Mean and standard deviation of the number of failing environments produced,
amount of clusters produced, the coverage of the search space and the entropy for the
baseline MLLP and XGBoost model across 50 runs.

Metric XGB MLP p-value Effect Size (A;2)
Failing environments  17.66 +3.37  14.98 4+ 3.24 0.003 0.709
Coverage 82.52 +£16.63 43.494+9.03 7.03 x 10717 0.9784
Entropy 67.69 +18.59 32.12+£26.94 2.10 x 10719 0.8676

5.2 XGBoost failure search performance

Table[d]shows the comparative performance between XGBoost and MLP in guiding a Genetic
Algorithm to discover failing environment configurations.

On average, XGBoost finds more failing environments (17.66 & 3.37) than MLP (14.98 +
3.24), with a statistically significant difference (p = 0.003) and a moderate effect size (A5 =
0.709). This suggests that the surrogate model is more effective in directing the search
toward likely failures.

Coverage of the configuration space is also substantially higher with XGBoost (82.52% +
16.63) than with MLP (43.49% + 9.03), with p < 0.00001 and a very large effect size
(12112 = 0.9784). This indicates that the failures discovered by XGBoost span a much wider
range of clusters, resulting in better exploration.

Entropy is also higher for XGBoost (67.69% =+ 18.59 vs. 32.12% =+ 26.94), with strong
statistical significance (p < 0.00001) and a large effect size (A;2 = 0.8676). This suggests
that the generated failures are not only more widespread, but also more diverse.

Together, these findings show that XGBoost is not only capable of identifying more failure
cases, but also enables broader and more balanced coverage of the environment configuration
space during failure search.

6 Threats to Validity

Several threats to validity can be identified for our study. In the next subsections, we discuss
the threats and how we addressed them.

6.1 Internal Validity

Both surrogate models were trained on the same dataset and evaluated using identical
performance metrics and random seeds. However, a potential threat to internal validity
may arise from the difference in the extent of hyperparameter tuning. Although the pre-
trained MLP did undergo some tuning [8], such as filtering level and number of hidden
layers, this was relatively limited compared to the more thorough grid search applied to
XGBoost. As a result, the comparison may be biased in favour of XGBoost due to the more
extensive optimisation it received.

6.2 External Validity

The experiments were carried out in a single environment, using a single DRL agent and
a single Genetic Algorithm. As such, the generalizability of the findings to other DRL al-
gorithms, other search strategies, and other environments remains uncertain. Expanding
the evaluation to include multiple agents [I5] [20], other search strategies beyond Genetic
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Algorithms [19] [10], and other environments [36] would provide a stronger basis for gener-
alisation.

6.3 Construct Validity

A threat to construct validity may come from the definition of DRL agent failure. In this
study, failure is defined as the inability of the DRL agent to reach its objective within the
simulation environment, due to either a collision or a timeout. Although this is clear and
measurable, it may not capture all types of meaningful failures that could occur in real-world
deployments, such as unsafe behaviours that technically still achieve the objective.

6.4 Conclusion Validity

Similarly to the previously mentioned threat to internal validity, we cannot certainly con-
clude XGBoost is a better alternative than the baseline MLP, since the extent of the hyperpa-
rameter optimisation techniques applied to both models are not comparable. Furthermore,
we do not know how their performance will compare in any environment other than the
Parking environment in the HighwayEnv Simulator [2I] used in this study.

7 Conclusion and Future Work

This study explored the use of XGBoost as a surrogate model for identifying failure cases in
Deep Reinforcement Learning (DRL) agents. In contrast to previous work [§] using a Multi-
Layer Perceptron (MLP), we investigated whether XGBoost, combined with grid search,
could yield improved performance in both failure classification and guided failure search.

To address this, we evaluated XGBoost on three fronts: its performance in classifying
failing environments, its ability to guide a Genetic Algorithm to discover such environments,
and its effectiveness relative to the baseline MLP used by Biagiola et al. [g].

The results show that XGBoost consistently outperforms the baseline MLP across several
classification metrics such as precision, F1-score, and AUC-ROC, while maintaining a similar
recall. In the context of failure search, XGBoost guided the Genetic Algorithm to produce
more failing environments, with significantly better coverage and entropy, indicating greater
diversity and distribution in the discovered failures. Statistical tests confirm that these
differences are significant with large effect sizes.

Despite these promising results, there are several directions for future work. Firstly, while
this study focused exclusively on XGBoost, other tree-based models such as Light GBM [18]
or CatBoost [31] could be explored for potential improvements. Furthermore, the MLP
baseline was minimally subjected to hyperparameter tuning, which may have disadvantaged
it when comparing it to XGBoost. Incorporating a tuned MLP, as a result of an extensive
grid search, as a baseline would provide a more balanced comparison.

Future work could also expand the evaluation to multiple DRL agents, such as SAC [I5]
and TQC [20], and alternative search strategies beyond Genetic Algorithms, like simulated
annealing [19] or Particle Swarm Optimisation (PSO) [10], helping to assess the generaliz-
ability of the findings.

In conclusion, this work demonstrates that XGBoost is a strong candidate for surrogate
modelling in the context of DRL testing, offering a practical and effective alternative to
neural network-based approaches.
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8 Responsible Research

This section will discuss the ethical considerations that are relevant to this work and will
describe its reproducibility.

8.1 Ethical Considerations

This work aims to improve the efficiency of testing Deep Reinforcement Learning (DRL)
using surrogate models. Since DRL systems are increasingly being deployed in high-stakes
domains such as autonomous driving and robotics, enhancing their reliability is of clear
ethical importance. By helping to uncover potential failures more effectively, this research
contributes positively to the responsible development of Al technologies.

However, surrogate models are approximations and may mispredict rare or adversarial
failures. It is therefore important that such models are used to complement, not replace,
thorough testing methods. This research does not involve human participants, sensitive data,
or foreseeable environmental risks. All datasets were synthesized in simulation environments,
ensuring compliance with ethical standards.

8.2 Reproducibility

Reproducibility was a key design consideration in this research. The experiments were
carried out using publicly available tools and libraries. All datasets were generated from
controlled simulation environments using fixed seeds and configuration parameters.
Hyperparameters, training procedures, and evaluation metrics are clearly documented.
The codebase used for training and testing the surrogate models is publicly available on
Githulﬂ, allowing other researchers to reproduce and verify the results with minimal setup.

8.3 Use of Al

Large Language Models (LLMs) were used to improve the clarity and flow of the wording,
assist in locating sources, support layout formatting in Overleaf, and help with debugging
code.
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