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Abstract: Recent research has revealed that there exist large inter-driver differences in car-following 

behavior such that different car-following models may apply to different drivers. This study applies 

Bayesian techniques to the calibration of car-following models, where prior distributions on each model 

parameter are converted to posterior distributions. The priors and posteriors are then used to calculate the 

so-called ‘evidence’, which can be used to quantitatively assess how well different models explain one 

driver’s car-following behavior. When considered over multiple drivers, the evidence represents 

probabilities for different models as a whole. These model probabilities can be used in a micro 

simulation, where for each driver first a model is drawn according to these probabilities, after which 

parameters are drawn from the posterior distribution for each parameter of that model that were obtained 

when calibrating the model. In a test case on actual data the Bayesian evidence indeed reveals inter-driver 

differences and it is shown how these differences can quantitatively be assessed. 

Keywords: Calibration, car-following model, longitudinal driver behavior, Bayesian evidence, inter-

driver differences 

 

1. INTRODUCTION 

1.1  Inter- and intra-driver differences 

In recent microscopic traffic modeling research, a number of 

studies have revealed that there are large inter-driver 

differences in car-following behavior, such that different car-

following models may apply to different drivers (Brockfeld et 

al., 2004, Ossen et al., 2006, Hoogendoorn et al., 2007b). 

Additionally, intra-driver differences (the fact that individual 

drivers may change their behavior over the data collection 

period) can cause some car-following models to produce 

erroneous predictions during certain episodes of the driver’s 

car-following behavior (Hoogendoorn and Ossen, 2005, 

Hamdar et al., 2008). When microscopically modeling traffic, 

these inter- and intra-driver differences therefore need to be 

considered. 

Existing methods to deal with the inter-driver differences, by 

comparing and selecting one car-following model for each 

driver from a set of possible models, involve investigating the 

calibration error (Ossen et al., 2006) or the Likelihood-Ratio 

Test (LRT) (Hoogendoorn et al., 2007a, Hoogendoorn et al., 

2007b). The first approach does not take the model 

complexity into account, and therefore promotes over fitted 

models, always favoring more complex models over simpler 

models. The LRT approach does take model complexity into 

account and therefore prevents selecting over fitted models, 

but is only valid when used to compare hierarchically nested 

models, e.g. the simple model must be a special case of the 

more complex model by setting one or multiple parameters to 

zero. As there are many different types of car-following 

models (Brackstone and McDonald, 1999, Tampère, 2004), 

this will not be the case when a modeler is interested in trying 

many different car-following models. 

To remain focused, in this study the emphasis is on the inter-

driver differences and on choosing the appropriate model for 

the appropriate driver; the intra-driver differences will not be 

considered. However, the approach that is presented in this 

paper does enable a modeler to deal with these intra-driver 

differences. 

1.2  The Bayesian approach to calibrating car-following 

models 

Recently, a new approach was proposed to calibrate and 

compare several car-following models (Hoogendoorn et al., 

2007b). The main focus of the paper was to include prior 

information when calibrating the parameters of car-following 

models, to rule out unrealistic estimation results due to the 

fact that too little information is present within data. This 

prior information was included in a general Likelihood-

estimator. It was shown that this in fact can lead to improved 

prediction accuracy of the car-following models, as well as 

more realistic estimates of the parameter values to ensure for 

example model stability and a correctly shaped fundamental 

diagram resulting from the model. 

The approach of Hoogendoorn et al. used prior distributions 

and data to derive single (most likely) parameter values for 

each parameter. In this paper the approach of Hoogendoorn et 
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al. is extended, where the prior probabilities are transformed 

into posterior probabilities for each parameter in the car-

following model, for which Bayes’ rule is used. This 

approach allows for several things: (1) the most important 

feature is that it leads to a probabilistic approach to compare 

different models on the basis of the prior and posterior 

distributions of their parameters. This allows a modeler to 

select the model that most probably best describes a certain 

driver’s behavior, taking into account both the calibration 

error as well as the model complexity; any model that is 

differentiable to its parameters can be used; (2) prior 

information can easily be included in the analysis, yielding 

realistic parameter estimates even if the data does not provide 

information on a certain parameter; (3) it can be used to 

combine the predictions of several models in a so-called 

committee (or ensemble) of models in which different models 

predict the behavior of one single driver, which may lead to a 

decrease in the error due to the intra-driver differences; (4) 

error bars can be constructed on the predictions of the car-

following models. 

In this study, analytical expressions are derived, for which 

several assumptions will need to be made; in real-world 

applications, these assumptions could be relaxed and 

numerical approximations could be used. However, to 

illustrate the point of this paper, namely that the Bayesian 

approach can be used to select the most probable model for 

each driver in a dataset, and to show how this can be done, 

analytical solutions will be used. 

In the following section, the Bayesian approach to calibrate 

and choose car-following models is developed, after which it 

is applied to two relatively simple car-following models: the 

CHM model and the linear Helly model. Next, the result of 

the Bayesian ‘evidence’ as a selection mechanism is shown, 

after which a discussion, a conclusion and recommendations 

are presented. 

2. METHODOLOGY 

2.1  Bayesian Inference: From Prior to Posterior 

For the Bayesian analysis, the interest is in finding the 

posterior probability density function of a parameter vector 

θ=(θ1,…,θN)
T
 which contains all N parameters of a car-

following model under investigation after having used some 

data set D for calibration. This data set contains for example 

positions (lateral and longitudinal) and speeds of different 

vehicles, from which car-following models can be calibrated. 

This posterior probability is denoted by p(θ|D), e.g. the 

probability density function of the parameters θ given the 

data set D. Bayes’ rule can be applied to find an expression 

for this posterior: 

 ( | ) ( )
( | )

( )

p D p
p D

p D
=

θ θ
θ  (1) 

where p(D|θ) represents the distribution of noise on the data 

and corresponds to the likelihood function, p(θ) is a prior 

probability of the parameters, which represents our prior 

knowledge of possible values for each parameter in our 

model, and where p(D) is a normalization factor.  

Now define the prior probability as a multivariate Gaussian 

with mean θ  and covariance matrix Σ: 
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where N equals the number of parameters of the model. A 

Gaussian shape is chosen in this study because it simplifies 

the calculations and enables analytical expressions for the 

posterior distribution of the parameters. Note that this 

assumption can be relaxed and other shapes are possible. If it 

is assumed that the noise of the data is Gaussian distributed 

as well with mean zero and standard deviation σl, the 

likelihood function p(D|θ) can be defined as (Hoogendoorn et 

al., 2007b): 
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where vpred(k,θ) is the predicted vehicle speed at time instant 

k with the parameter set θ, vobs(k) is the observed (measured) 

vehicle speed at time instant k, and where K equals the 

number of observations of vehicle speed and position. Note 

that in this study the models are calibrated on speeds alone, 

but that other likelihood functions which incorporate for 

example the predicted positions of the vehicles are also 

possible. 

2.2  Description of the Posterior Distribution of the 

Parameters 

Substituting (2) and (3) into (1) results in an expression for 

the posterior distribution of the parameters: 
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where Zp is a constant that originates from p(D) and the ‘2π-

constants’ in (2) and (3). This posterior distribution of the 

parameters can be described by the most probable parameter 

vector θ
MP

 (the maximum of the posterior), and its 

covariance matrix Θ (the width of the posterior), with the 

knowledge that it has a Gaussian shape. 

The maximum of the posterior is denoted by the vector θ
MP

, 

which can be found by maximizing the logarithm of (4): 
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where E(θ) is defined as 

 ( )( ) ln ( ) ( )
l p l

E K E Eσ= + +θ θ θ  (6) 

with El and Ep defined by: 
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Notice that in (6) the expressions resulting from Zp and |Σ|
1/2

 

have been omitted, as these do not influence the solution of 

(5) and becomes zero for the derivatives that are defined next. 

For the maximization of (6) (so to find θ
MP

), there is the 

condition (Hoogendoorn et al., 2007b): 

 ( )1( ) ( ) 0
l

E E−∇ = Σ − + ∇ =
θ θ
θ θ θ θ  (9) 

which needs to be solved for the model under consideration. 

The covariance matrix Θ of the posterior distribution (not to 

be confused with the covariance matrix Σ of the prior) can be 

found using the Cramér-Rao lower bound: 

 ( )
1

( ) ( )MP MP
−

Θ = −θ A θ  (10) 

where A(θ) is the Hessian, given by: 

 2 1 2( ) ( ) ( )lE E
−= ∇ = Σ + ∇

θ θ
A θ θ θ . (11) 

Finally, for the description of the posterior a value for the 

standard deviation of the likelihood function σl needs to be 

found, for which the derivative ∂E/∂σl is set to zero, which 

leads to 
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2.3  The Bayesian Framework for Model Comparison 

Consider a certain car-following model m with a set of 

assumptions Hm, and another model n with a different set of 

assumptions Hn. To compare these two models in how well 

they describe the car-following behavior of a certain driver, 

the posterior probability of a model ( , )q m n∈  as a whole 

after it has been calibrated with data D for this driver, which 

we call P(Hq|D), can be derived by again applying Bayes’ 

rule: 
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( | )
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q
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P H D
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The term P(Hq) represents the prior probability of each 

model. If a priori there is no preference of one type of model 

over the other (so there is belief that the assumptions Hm are 

as likely as Hn), then the prior P(Hq) is equal for all q. As the 

denominator of (13) is independent of the models Hq, the 

posterior probabilities of the models m and n can be 

compared by only investigating the term p(D|Hq), which is 

termed the evidence for the model q (MacKay, 1995): 

 ( | ) ( | )q qP H D p D H∼  (14) 

This evidence can be recognized as the denominator of (1) if 

the conditional dependence on the model assumptions Hq is 

made explicit. The expressions used for deriving the posterior 

distribution for the parameters can therefore be used to 

derive expressions for the evidence for the entire model. First, 

from (1) the evidence can be written in the form 

 ( | ) ( | , ) ( | )
q q q

p D H p D H p H d= ∫ θ θ θ . (15) 

Since this term would require integration (marginalization) 

over the entire parameter space, calculating it analytically is 

only possible in case of very simple models, and even then 

requires elaborate calculations. Although a numerical 

approximation could be used, in this study an analytical 

approximation is chosen to be able to analytically describe 

the evidence. Assuming that the posterior distribution is 

sharply peaked around its maximum, the evidence is 

approximated as the value at this maximum times the width 

of the peak, which in the multivariate case leads to the 

expression (MacKay, 1995): 
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θ
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Together with (2), (3) and (11) a solution (approximation) is 

now found for the evidence. Note that values for the prior 

covariance matrix Σ and the prior mean θ  are needed for this; 

the way the prior is defined will be treated later. 

The evidence of (16) can be interpreted as consisting of two 

elements: 

        Evidence Best fit likelihood Occam factor= ×  (17) 

A higher best fit likelihood favors models that can explain the 

data well, i.e. that have a low prediction error Σ(vpred-vobs)
2
. 

However, the model’s performance is penalized by the 

Occam factor, which is always smaller than 1 and is named 

after Occam’s Razor (Blumer et al., 1987). A model which 

has more parameters, so which is more complicated, has a 

lower Occam factor and therefore receives lower evidence. 

The evidence thus naturally reflects the trade-off between a 

good fit and over fitting. Extensive literature is available on 

the importance of this trade-off and other features of the 

evidence (Thodberg, 1993, Bishop, 1995, MacKay, 1995, 

Sivia, 1996, MacKay, 2003, van Hinsbergen and van Lint, 

2008, van Hinsbergen et al., 2008). 

In the remainder of this contribution, the evidence is used to 

rank different car-following models for individual drivers. 
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This is achieved by determining the evidence after the 

posterior distribution of its parameters has been found, after 

which a conclusion can be drawn to which model probably 

describes which driver’s behavior best. The Bayesian 

analysis will be applied here to two simple car-following 

models, for which the evidence can be derived analytically. 

2.4  The Evidence for the CHM Model 

To illustrate the derivation of the evidence for a car-following 

model, consider the CHM model (Chandler et al., 1958). This 

stimulus-response model describes the delayed acceleration 

of a vehicle as a function of the relative speed with respect to 

its leading vehicle: 

 ( , ) ( )a t v tτ γ+ = ∆θ  (18) 

where a(t+τ, θ) is the acceleration of the following vehicle at 

time t+τ given the parameter set θ and ∆v(t) the speed 

difference between the leader and the follower at time t. In 

this study, one-step-ahead predictions are made, where the 

observed speeds of the follower and its leader in the previous 

time step are used in the calculations. An explicit time 

stepping scheme is used to solve the model, resulting in the 

following numerical scheme for the speed at time t: 

 ( , ) ( ) ( , )pred obsv t v t t a t t t= − ∆ + − ∆ ∆θ θ  (19) 

with vobs(t-∆t) the observed speed at time t-∆t, and ∆t the size 

of the time step which should be sufficiently small. The 

acceleration is in this scheme determined by: 

 ( , ) ( )obsa t t v t tγ τ− ∆ = ∆ − ∆ −θ  (20) 

The model has only one parameter that needs to be calibrated 

with data: 

 response parameter (1/s)γ  

For this model, the parameter vector is denoted as θ=γ. Note 

that for the sake of this example, the reaction time τ is chosen 

to be a constant with a value of τ=1s, and not as a parameter. 

This is done because in this case the partial derivative 

∂E(θ)/∂τ cannot be derived analytically. In a real world 

application, the reaction time τ does need to be calibrated 

with data, and numerical derivatives would be needed instead 

of analytical ones. 

To analytically derive the evidence for the CHM model, first 

the gradient of (9) needs to be computed: 
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where 
priorγ  is the mean of the prior distribution and 2

priorσ is 

the prior variance (previously θ  and Σ, but now for the one-

dimensional case), and where vq, vp and vs are defined by: 
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The Hessian of (11) is given by: 
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To calculate the evidence, the most probable parameter γ
MP 

is 

required, for which (9) needs to be solved. This is done 

numerically using standard Matlab optimization tools as the 

analytical solution becomes rather complex. Then σl
MP 

is 

calculated using (12), γ
MP

 and σl
MP

 are substituted in (2), (3) 

and (11), and the resulting equations into (16) together with 

priorγ  and 2

priorσ , resulting in the evidence for the model. 

2.5  The Evidence for the Helly Model 

As a second example of the derivation of the evidence for a 

car-following model, consider the Helly model (Helly, 1959), 

another stimulus-response model, which is defined by: 

 ( ){ }
0

( , ) ( ) ( ) ( )

( )

des

des

a t v t x t x v t

x v x Tv

τ α β+ = ∆ + ∆ − ∆

∆ = +
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where a(t+τ, θ) is the acceleration of the following vehicle at 

time t+τ given the parameter set θ, ∆v(t) the speed difference 

between the leader and the follower at time t, ∆x(t) the 

distance headway between the leader and the follower at time 

t and ∆x
des

(v(t)) the desired distance headway of driver when 

driving at speed v(t), the speed of the follower at time t. 

Again, one-step-ahead predictions are made, where the 

observed speeds and distances of the follower and its leader 

in the previous time step are used in the calculations. The 

same numerical scheme as in (19) is used, but with the 

acceleration now determined by: 
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obs obs

a t t v t t

x t t x v t t

α τ
β τ τ

− ∆ = ∆ − ∆ −
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θ
 (25) 

The model has the following four parameters that need to be 

estimated from data: 

 
2

0

response parameter (1/s)

response parameter (1/s )

stopping distance (m)

minimum time headway (s)

x

T

α

β  

For this model, the parameter vector is denoted as 

θ=(α,β,x0,T). Again, as with the CHM model, the reaction 

time is chosen to be a constant with a value of τ=1s, and not 

as a parameter. 

The gradient and Hessian for the Helly model are derived 

analytically again, the result of which will be omitted here as 

it involves quite lengthy equations. The most probable 

parameter vector θ
MP 

is estimated numerically using standard 

numerical tools in the Matlab software package, as the 
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condition (9) is not easily solvable analytically. Then, the 

same procedure as with the CHM model is used to calculate 

the evidence. 

2.6  Prior Distributions for the Parameters 

For both models, prior distributions need to be defined for all 

parameters in the model. The prior information can have 

various origins: it can be based on expert knowledge, a 

literature study or by restrictions such that the resulting 

model has specific desired properties such as model stability 

or a correct shape of the fundamental diagram. In this study, a 

brief literature review was conducted to find prior 

distributions for the parameters. 

2.6.1  Prior Distribution for the CHM Model Parameter 

The original work of Chandler, Herman and Montroll showed 

high variations between subjects for the constant γ, between 

0.17s
-1

 and 0.74s
-1

 with a mean of 0.37s
-1

 (Chandler et al., 

1958, Brackstone and McDonald, 1999). A benchmarking 

study (Ossen et al., 2006), conducted on a Dutch motorway 

using helicopter data, as is the case in this study, showed the 

distribution of parameter values for the CHM model as 

shown in Fig. 1, more or less confirming the spread of the 

original study of Chandler, Herman and Montroll. From the 

results of these studies, a prior distribution N(
priorγ , 2

priorσ ) = 

N(0.3,0.04) is chosen. 

 

 

Fig. 1. The cumulative distribution of the parameter γ 

(denoted by c1 in the figure) given by (Ossen et al., 

2006) 

2.6.1  Prior Distribution for the CHM Model Parameter 

Helly in his original work (Helly, 1959) estimated the mean 

parameter values α=0.5s
-1

, β=0.125s
-2

, x0=20m and T=1s. The 

earlier mentioned benchmarking study (Ossen et al., 2006) 

only presents CDFs for α and β, as shown in Fig. 2. Taking 

both these studies into account, the following prior mean and 

covariance matrix are chosen (not taking into account 

covariance between the different parameter). 
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Here, large variances are taken for x0 and T, as there is no 

reference study available for estimates of the variance of 

these two parameters. These broad priors represent the fact 

that little knowledge is available on the most probable values 

of these parameters. However, the variances are chosen in 

such a way that it is ensured that most of the mass (at least 

95%) of the CDF is for values >0, which is sensible in the 

light of the physical meaning of these two parameters. 

 

 

Fig. 2. The cumulative distribution functions of α (c1) and β 

(c3) given by (Ossen et al., 2006) 

3. EXPERIMENT 

To illustrate the workings of the Bayesian evidence, the two 

models described in the methodology section are applied to a 

vehicle trajectory data set of the A2 motorway in The 

Netherlands, near the city of Utrecht, which was collected 

using helicopter data (Hoogendoorn et al., 2003). The traffic 

state at the data collection period was congested, in which 

cars were mainly in car-following mode. The data covers 

approximately 500m of motorway stretch; the data interval is 

0.1s. 

For each trajectory (driver) in the dataset that was following 

one leader without any lane-changes of either follower or 

leader (222 drivers in total), the posterior distributions of the 

parameters of the two models were found after which the 

evidence was calculated for each model for each driver. Note 

that the log evidence is used, as the denominator of (3) is 

taken to the power of K, which means that the likelihood 

becomes very large if σl<1 and very small if σl>1 in case K»1. 

95



 

Given that the number of measurements and predictions is in 

the order of 100 to 400 for each driver, the log of the 

evidence is used to prevent numerical errors in the 

computations. 

4. RESULTS 

Fig. 3 shows the evidence for the two models for some of the 

222 drivers. It can be seen that in general, the differences 

between the two models are small, and that the Helly model 

is favored slightly in most cases. The small difference is to be 

expected, because the two models share equal basic 

assumptions.  

It can also be concluded that the added complexity (the 

additional set of parameters) of the Helly model in some 

cases does help in explaining the car-following behavior in 

the collected data set, as its log evidence is in those cases 

larger than the CHM’s log evidence, and that in other cases 

its additional parameters are useless for explaining a driver’s 

behavior, in which cases it receives a lower evidence. The 

number of occasions where each of the models had the 

largest log evidence is shown in Table 1.  

Table 1.  Results 

Model 
# largest log 

evidence 
P(H|D) 

Mean log 

evidence 

CHM 77 31.5% 206.7 

Helly 152 68.5% 216.4 
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Fig. 3. The log evidence for the two models for 14 drivers 

5. DISCUSSION AND CONCLUSION 

The Bayesian evidence that has been developed for the car-

following models in this paper is shown to be useful as a tool 

for quantitatively analyzing inter-driver differences. As can 

be seen from the experiment, these inter-driver differences 

indeed do exist: for some of the drivers the CHM model 

suffices and the additional parameters of the Helly model do 

not contribute to explaining their car-following behavior, in 

which cases the Helly model is punished for its higher 

complexity, while for others the additional parameters do 

lead to a better explanation of the car-following behavior in 

which cases the Helly model is rewarded for this. The 

Bayesian evidence thus acts as a natural selection mechanism 

when choosing between different car-following models. Note 

that for the two models chosen in this study, the Likelihood 

Ratio Test (LRT) could also be applied, but that the evidence 

is favorable over the LRT in the general case, because the 

evidence can be used for any model that is analytically or 

numerically differentiable to its parameters, while the LRT 

can only be applied to hierarchically nested models.  

The evidence, when normalized, represents a distribution of 

different models’ probabilities to describe one drivers’ 

behavior i, i.e. P(Hi|D)~p(D|Hi). If the evidence is integrated 

over all drivers i of a certain dataset, an approximation of 

P(H|D) for an entire population of drivers can be made, as is 

done in Table 1, indicated by P(H|D). This enables a modeler 

to use different car-following models with different 

probabilities in one single micro-simulation. In such a 

simulation, for each driver first a model is randomly drawn 

according to P(H|D), after which the parameters are drawn 

from p(θ|H,D); both P(H|D) and p(θ|H,D) follow from the 

Bayesian calibration procedure. 

Other benefits of the Bayesian approach that have not been 

illustrated in this study are the possibility of using the 

evidence to create a committee, and to construct error bars. A 

committee may improve the description of individual 

behavior (because it may deal with the intra-driver 

differences), while the error bars may become useful when 

predicting the trajectory of a single driver, in for example 

vehicle-to-vehicle or vehicle-to-roadside architectures. Future 

studies will need to investigate these benefits of the Bayesian 

calibration framework. 
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