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ABSTRACT 

 

Phosphate accumulating organisms (PAOs) perform a storage polymer metabolism 

within an anaerobic-aerobic cycle. Anaerobically, PAOs take up volatile fatty acids (VFA) 

and store them as poly-ẞ-hydroxyalkanoates (PHA). The energy (mainly ATP) necessary 

for the transport and storage of VFA (and general maintenance) is obtained through the 

cleavage of polyphosphate. While the reducing equivalents (e.g. NADH) for VFA storage 

are obtained through the cleavage of glycogen and/or from the anaerobic operation of 

the TCA cycle. Aerobically, PAOs replenish their reserves of polyphosphate and 

glycogen, resulting in P uptake, whilst degrading PHA  to obtain a carbon and energy 

supply for growth.  

PAOs have the metabolic flexibility to adapt the synthesis of each polymer according to 

the resources available in the environment, and thus affecting the growth of the 

organism. Hence, within a PAOs metabolism, there is a trade-off between the use of 

glycogen and polyphosphate. This trade-off is dependent on the cell's requirements to 

obtain ATP and NADH for PHA storage. In turn, ATP and NADH amounts can be 

obtained in different ratios depending on the active metabolic routes. This thesis aims to 

determine what is the mechanism controlling this trade-off and if there are limits to this 

relationship. 

To investigate this trade-off, a metabolic model for PAOs was created and simulated 

through a conditional flux balance analysis (cFBA) approach. The resulting amounts of 

the metabolites simulated with this approach were comparable to those obtained 

experimentally (figure 6). Additionally, this model was simulated to different sets of 

starting amounts of glycogen and polyphosphate at a constant acetate feed of 3.84 

mCmol/gdw, and the resulting growth was compared between each simulation. This led 

to an optimal range of initial polyphosphate amounts [2.1-23.5 mPmol/gdw] and initial 

glycogen amounts [0.3-1 mCmol/gdw]. In reality, these glycogen amounts were never 

observed experimentally and to the extent of our knowledge never have been reported 

in PAOs literature. This suggests a glycogen minimal limit amount (e.g. 1 mCmol/gdw), 

that might reveal a robustness mechanism employed by PAOs to guarantee survivability 

in uncertain environments. In parallel, a thermodynamic analysis was performed on the 

malate dehydrogenase reaction, which led to the conclusion that this reaction is not 

feasible in an anaerobic environment, potentially highlighting a control mechanism. 
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1 
INTRODUCTION 

 

Wastewater treatment is an essential sanitary service to society, that aims to remove 

contaminants from wastewater. This is done by a combination of biological, biochemical, 

chemical, and mechanical processes (van Loosdrecht et al., 2016).  

The biological process for the removal of contaminants is achieved through the 

interactions and growth of microbial communities. Wastewater treatment takes 

advantage of communities with specific metabolic capacities that lead to the removal of 

certain contaminants. These metabolic traits often use storage polymers. Polymers act 

as carbon and energy reserves, that can be used for growth when the external substrate 

is depleted. 

Storage polymers are particularly important in an Enhanced Biological Phosphorous 

Removal (EBPR) system, which relies on phosphate accumulating organisms (PAOs) 

and their polymer metabolism (Vargas et al., 2013). PAOs are able to take up phosphate 

and store it intercellularly as polyphosphate, take up carbon sources, such as Volatile 

fatty acids (VFAs), and store them intercellularly as poly-ẞ-hydroxyalkanoates (PHA), 

and are also able to use Glycogen as a reducing power source (Oehmen et al., 2007). 

As one might expect, the waste to be treated is not constant and experiences load 

fluctuations, especially in domestic wastewater treatment. These fluctuations can lead to 

unpredictable periods of substrate scarcity, which can affect the metabolism and growth 

of the bacteria present, especially on the intracellular levels of storage polymers (van 

Loosdrecht et al., 2016). To survive these everchanging environmental conditions, PAOs 

possess certain metabolic flexibility when it comes to polymers, where there is a trade-

off between the resources available in the environment, growth, and the synthesis of 

each polymer. 

In this work, we explored the energy trade-off in PAOs polymer metabolism. Namely, we 

analyzed the trade-off between polyphosphate and glycogen and its effect on growth. 

This was done through system biology modeling, more specifically using a conditional 

flux balance analysis (cFBA), with a combination of experimental work. The following 

subchapters will provide further information about PAOs, EBPR, cFBA, and the energy 

trade-off. 
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1.1-PHOSPHATE ACCUMULATING ORGANISMS (PAOS) IN WASTEWATER TREATMENT 

 

Eutrophication is caused by the growth of photosynthetic organisms, such as algae, and 

is stimulated by the presence of Phosphorus (P) in water bodies. Hence, there is a need 

to control and remove P from wastewater, in a way to avoid adverse effects on aquatic 

communities (Oehmen et al., 2007). Enhance Biological Phosphate removal (EBPR) is 

a process widely applied to P removal and is achieved by cycling activated sludge 

through anaerobic and aerobic phases, where carbon is only available anaerobically, 

creating simultaneous feast-famine cycles (Figure 1).  Alternating these two phases 

(anaerobic- feast; aerobic-famine) enriches for Phosphate accumulating organisms 

(PAOs) (Majed et al., 2012). 

Phosphate accumulating organisms (PAOs) are heterotrophic organisms with the 

distinctive capability of storing and using polyphosphate as a way to produce energy  

(ATP), leading to P removal from the bulk liquid phase via PAO cell removal in the waste 

activated sludge (van Loosdrecht et al., 2016). Anaerobically, PAOs take up volatile fatty 

acids (VFA), such as acetate (Ac) and propionate (Pr), and store them intercellularly as 

poly-ẞ-hydroxyalkanoates (PHA). The energy necessary for the transport and storage of 

VFA (and general maintenance) is obtained with the cleavage of polyphosphate (PolyP), 

while the reducing equivalents for these reactions are obtained with the cleavage of 

internally stored glycogen and/or from the anaerobic operation of the TCA cycle 

(Oyserman et al., 2016). Aerobically, PAOs replenish their reserves of polyphosphate 

and glycogen, resulting in P uptake, whilst degrading PHA  to obtain a carbon and energy 

supply for growth (Figure 1). The metabolism carried out by PAOs is also referred to as 

polyphosphate accumulating metabolism (PAM). Additionally, PHA in the PAO 

phenotype is mainly composed of poly-β-hydroxybutyrate (PHB), poly-β-hydroxyvalerate 

(PHV), and poly-β-hydroxy-2-methylvalerate (PH2MV) (Oehmen et al., 2007). Their 

relative weight and stored amounts depend on the VFA composition (Ac or Pr). For an 

enriched PAO culture where acetate is the main carbon source, PAOs store mostly VFA 

as PHB (up to 90%) (Smolders et al., 1994). In contrast, when propionate is the main 

carbon source PAOs store VFA as PHV and PH2MV up to 45% of the total PHA stored 

(Oehmen et al., 2007).  
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Figure 1 – (A) Schematic diagram of an EBPR process. Representing the three EBPR stages: 

anaerobic phase (left), aerobic phase (middle), and settling (right).  (B) Schematic diagram of the 

correspondent progression of polymer activity over the three EBPR stages. VFA: volatile fatty 

acids; PolyP: polyphosphate; PHA: poly-ẞ-hydroxyalkanoates; Glyc: glycogen; RAS: recycle 

active sludge; WAS: waste active sludge. Adapted from (van Loosdrecht et al., 2016). 

 

What ensures PAOs a competitive advantage within the EBPR environment, is their 

capability for rapid substrate uptake in the absence of an electron acceptor, making the 

carbon source unavailable later on for regular aerobic heterotrophs (da Silva et al., 

2019). Other organisms also can survive within this environment such as Glycogen 

accumulating organisms (GAOs). GAOs have similar behavior to PAOs with the key 

difference of not producing and consuming polyphosphate. Thus, anaerobically the 

energy and reducing power for VFA uptake and PHA generation both come from the 

cleavage of glycogen and/or from the anaerobic operation of the TCA cycle. While 

aerobically PHA is oxidized resulting in growth and glycogen replenishment (Oehmen et 

al., 2007). This behavior can also be referred as to Glycogen accumulating metabolism 

(GAM). 

Scientifically there has been a divide regarding the nature of PAOs and GAOs. Some 

scientific groups defend that GAOs and PAOs are entirely different organisms and 

perform different metabolic strategies. Whereas others defend that some PAOs and 

GAOs have the metabolic flexibility to either perform PAM or GAM depending on the 
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environmental conditions (Schuler & Jenkins, 2003). In this work, PAOs were modeled 

through a meta-network that both included PAM and GAM, and the predicted metabolism 

was the one with the best fitness for the environment defined in the model (da Silva et 

al., 2019). 

 

1.2 – STORAGE METABOLISM 

 

As it was mentioned before, polymers work as carbon and energy reserves, which in turn 

guarantee a certain level of robustness to the microorganism. Robustness can be 

defined as the resilience in face of uncertainty. It represents the expected loss of 

opportunity, which in this case is the opportunity for growth (McPhail et al., 2018). In 

contrast, efficiency is the best use of resources for a certain goal (growth). Hence, there 

is a trade-off in resources between directing them to growth (efficiency) or directing them 

into polymer synthesis (robustness). To guarantee robustness there is a need to 

synthesize higher amounts of polymers than the optimal (minimal amount necessary for 

growth). In truth, If PAOs only synthesized the optimal amounts of polymers, glycogen 

and polyphosphate would be completed degraded in the anaerobic-aerobic switch, and 

if some change happened, for example, the aerobic phase was longer than usual, PAOs 

would not have the resources to survive it. This shows that there is a clear balance 

between the polymers amounts available, survivability/fitness, and growth.  

Welles and colleagues tried to investigate this balance by studying the metabolism of an 

enriched PAOs culture adjusted to different phosphate concentrations in the feed 

(Laurens Welles et al., 2017). Here, the system was exposed to six increasing 

phosphate/carbon influent ratios, which led to an increase in polyphosphate and a 

decrease in glycogen (figure 2).  

 

Figure 2 – Experimental work from (Laurens Welles et al., 2017). Experimental polyphosphate 

and glycogen amount normalized to the amount of active biomass. Each polyphosphate amount 

was obtained with six increasing phosphate/carbon influent ratios. 

 

Firstly, this shows a clear relation between glycogen and polyphosphate, and that 

energetically they can be somewhat interchangeable depending on the environmental 

conditions. Secondly, the decrease in glycogen started stabilizing in the last data point 
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possibly suggesting a minimum limit for glycogen. A minimum limit for glycogen was also 

observed in (Zhou et al., 2009) work. In this work, a sludge sample from a PAO 

enrichment was introduced in a batch reactor and starved in intermittent aerobic-

anaerobic conditions. This resulted in a relatively slow phosphorus release and a fast 

depletion of glycogen. This depletion reached a stable level at approximately 1 mCmol/L, 

showing that glycogen was never fully depleted.  

In addition, Acevedo and colleagues also tried to see this relation between glycogen and 

polyphosphate and how it ultimately related to the metabolic shift from PAM to GAM 

(Acevedo et al., 2012). This metabolic shift is often observed when a PAO enrichment is 

introduced to P-limiting conditions as it was shown in (L. Welles et al., 2016) and (Zhou 

et al., 2008). Hence, in (Acevedo et al., 2012) work six different levels of polyphosphate 

were studied, these levels were obtained through starving the system of polyphosphate. 

Similarly, they showed that reducing the amount of polyphosphate led to the increase in 

the use of glycolytic reactions in a way to compensate energetically. The shift from PAM 

to GAM was also observed in the higher PHA production. The increase in the use of 

glycogen led to the increase in reducing equivalents and acetyl-CoA, which in turn can 

be reduced for PHA production. Hence, we can see there is a balance between all the 

internally stored polymers that are highly dependent on environmental conditions. 

Finally, da Silva and colleagues investigated this dependency on environmental 

conditions and how it correlated to metabolic flexibility, including the flexibility to switch 

from PAM to GAM (da Silva et al., 2020). In their research, they compiled several PAO 

and GAO literature information. These datasets were plotted against an optimal solution 

space delimited by three different optimum redox strategies (figure 3). The first redox 

strategy (figure 3A) used was when there is a little amount of glycogen and the system 

needs to use the glyoxylate shunt for reducing power; the second (figure 3B) was when 

all the reducing power is coming from glycogen degradation; the third (figure 3C) was 

when there is more glycogen than needed and the reductive branch of the TCA cycle is 

being used to sink electrons, a GAO behavior proposed by (Yagci et al., 2003). The 

objective of this graph was to see the balance between the amount of glycogen available 

(and consequently the reducing power available from it) for the reduction of acetate to 

PHA. Most of the experimental data were within the solution space. As a matter of fact, 

most of GAO's experimental work was near the third redox strategy delimitation 

corroborating (Yagci et al., 2003) work. However, there was some article information 

outside this area especially for PAOs information near the first redox strategy 

delimitation. This could show that the first redox strategy delimitation is incomplete, and 

the solution space should be bigger. In truth, in a scenario where there is a little amount 

of glycogen the system could also obtain reducing power from the partial anaerobic 

operation of the oxidative branch of the TCA cycle and not only from the operation of the 

glyoxylate shunt as supported by the works of (D. Brdjanovic et al., 1998);(Louie et al., 

2000) and (Yagci et al., 2003).  Additionally, this also shows that the balance between 

PHA and glycogen is not that straightforward and that other polymers are at play. As 

seen in previous articles, energetically glycogen is also dependent on polyphosphate, so 

the amount available also plays a role within this balance and in the definition of the 

solution space. This shows there is a complex balance between the three polymers 

available and the environment. 
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Figure 3 – Different optimum redox strategies for Accumulibacter in anaerobic conditions 

delimiting the solution space in (da Silva et al., 2020) work. The redox strategies are the following:  

A) when there is a little amount of glycogen, and the system needs to use the glyoxylate shunt 

for reducing power. B) all the reducing power is coming from glycogen degradation, C) when there 

is more glycogen than needed and the reductive branch of the TCA cycle is being used to sink 

electrons. 

 

1.3- METABOLIC MODELLING  

 

System biology applies the concepts of mathematical analysis and modeling to the study 

of metabolic networks. It applies a whole system approach to the interactions between 

metabolites and to the reactions that have been studied previously individually since the 

observed phenotype results from these interactions. With the rise of genome-scale 

reconstructions, mathematical systems have been developed to understand and test 

these reconstructions (Gianchandani et al., 2010). One of the most commonly used 

approaches is Flux Balance Analysis (FBA).  
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FBA is a constraint-based model with a linear program (LP) problem approach in which 

an objective function is maximized or minimized under the constraint of steady-state 

material balance. This model requires a stoichiometric matrix (S)  where the rows 

represent the metabolites in the model, and the columns the reactions; the reactants for 

the reactions are represented by a negative value, while the products are represented 

by a positive value (Gianchandani et al., 2010).  

Flux balance analysis has been previously applied to mixed microbial cultures. As matter 

of fact, Pardelha and colleagues developed a model with the PHA storage reactions and 

VFA uptake, to investigate the effects of VFA composition in PHA metabolism (Pardelha 

et al., 2012). This was performed at different time points during the enrichment for a 

given set of VFA uptake rates, and an accurate prediction of PHA fluxes and PHB/PHV 

composition was obtained. Additionally, Bordel and colleagues also applied the concepts 

of FBA to phosphate accumulating organisms (Bordel, 2011). In this work, a metabolic 

model for PAOs was reconstructed with the metagenomic information from (Martín et al., 

2006), and an FBA optimizing was performed for the production of PHA in the anaerobic 

period. Here it was concluded that the reducing power for PAM was likely to be supplied 

by glycogen degradation and by the anaerobic operation of the TCA cycle. It is important 

to highlight that both of these works were only applied to a specific phase of the 

phosphate accumulating organism cycle.  

Notably, a classical FBA works under the assumption of steady-state conditions. FBA 

provides estimated rates for the whole network under a certain environmental condition 

rather than time-dependent metabolite concentrations (Perez-Garcia et al., 2016).  This 

assumption of time-invariant metabolism provides a big constraint to this analysis, and it 

does not always hold. Almost all organisms have some type of variation to their 

metabolism through time. This is especially true, for organisms that thrive under cyclic 

environments like photosynthetic organisms (light-dark cycle) and PAOs (anaerobic-

aerobic cycle). Conditional flux balance analysis (cFBA) was developed in a way to 

answer this problem, creating a modeling technique that analyzes the temporal metabolic 

changes throughout a cycle (Rugen et al., 2015).  

This technique was initially developed for phototrophic organisms, more specifically for 

cyanobacteria. Rugen and colleagues developed this model in order to incorporate the 

diurnal cycle present in phototrophic metabolism (Rugen et al., 2015). The results 

obtained from this model were in accordance with the temporal organization of 

phototrophic metabolism. 

Four years later, da Silva and colleagues applied the concept of cFBA to a PAOs meta-

network in an anaerobic-feast/ aerobic-famine cycle (da Silva et al., 2019). In this work, 

the impact of selective pressures on the different storage metabolisms was explored. 

Different metabolic strategies were observed within the same meta-network by changing 

the selective pressures. With these results the authors show that certain characteristics 

are a selective advantage depending on the environment, for example, PAOs have the 

metabolic advantage of fast acetate uptake in an environment without an external 

acceptor. The different strategies were PAM, GAM, PHA-AM, and aerobic heterotrophs. 

These strategies showed a trade-off between robustness and efficiency, PAOs being the 

most robust and aerobic heterotrophs the most efficient. 
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 The model developed in this work functions as a base model that was further expanded 

in this thesis. This model is based on the metabolic network of one of the most well 

studied PAOs, “Candidatus Accumulibacter phosphatis”. The cFBA functions, the 

metabolic networks, and the model developed can be found in materials and methods 

(chapter 2.1). 

 

1.4- ENERGY TRADE-OFF IN PAOS POLYMER METABOLISM 

 

Polyphosphate and glycogen polymers work as energy reserves in PAOs metabolism. 

Where, polyphosphate works as an ATP source, and glycogen as a NADH (and ATP for 

GAM) source together with the anaerobic operation of the TCA cycle. Depending on the 

storage polymer amounts available, there is a trade-off between the use of glycogen and 

polyphosphate that will lead to optimal growth. Which in turn is dependent on the cell's 

requirements to obtain ATP and NADH for PHA storage. These requirements can be 

achieved in different amounts depending on the active metabolic routes. This is 

inherently connected to the fitness that PAM and GAM strategies offer in a  certain 

environment. This thesis aims to determine what is the mechanism controlling this trade-

off and if there are limits to this relationship. 

To study this concept the following points were explored in this work: 

• A phosphate accumulating organism model was constructed and used in a 

conditional flux balance analysis (cFBA) 

o Initial quotas for the polymers and acetate were calculated through 

experimental work. 

• The energy trade-off between glycogen, polyphosphate, and growth was 

explored. 

• Previous experimental work was compared with the model developed. 
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2 
MATERIALS AND METHODS 

 

2.1- CONDITIONAL FLUX BALANCE ANALYSIS (CFBA) APPROACH  

 

The conditional flux balance analysis (cFBA) assumes a time-variant metabolism. To 

simulate this, time is subdivided into discrete intervals, making distinct fluxes in each 

time interval (Rugen et al., 2015). This model includes four main concepts, which are the 

following: 

 

• Macromolecules are in a dynamic state whilst intermediates are assumed 

to be in a quasi-steady state. 

Macromolecules such as proteins and storage polymers were considered time-

dependent, whereas intermediates such as ATP and reducing equivalents (modeled 

here as NADH) were considered to be in a quasi-steady state. This was established 

under the assumption that transitions with intermediates occur much faster than 

transitions with macromolecules. So, in this model two groups of metabolites exist, 

the balanced ( in steady-state) and imbalanced metabolites ( in dynamic-state) 

(Rugen et al., 2015). This creates two subsets of the stoichiometric matrix (𝑺𝒃and 

𝑺𝒊), where the steady state constraint (1) applies to the 𝑺𝒃 matrix: 

 

 𝑺𝒃𝒗𝒌 = 𝟎 (1) 

   

𝑺𝒃  denotes the stoichiometric matrix for the balanced metabolites. While 𝒗𝒌 

represents the fluxes distribution in the kth time interval 𝑘 ∈ {1,2, … , 𝑛𝑡}. 

 

• Dynamic transitions are represented as stable cycles. 

In this model the dynamic conditions were considered a stable cycle, meaning the 

changes that occurred were consistent and predictable. Therefore, the biomass 

composition is the same at the beginning and end of the cycle. With this assumption, 

the final amounts can be defined as a multiple of the defined initial amounts: 

 𝑴(𝒕𝒆𝒏𝒅) =∝ 𝑴(𝒕𝒔𝒕𝒂𝒓𝒕) (2) 
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Where 𝑴 denotes the imbalanced compound amounts at the final time-step (𝒕𝒆𝒏𝒅) 

and at the start of the cycle (𝒕𝒔𝒕𝒂𝒓𝒕), and ∝ the foldchange. 

Growth can be defined by the foldchange (α) and the whole system can be optimized 

for the highest value of α.  

According to equation (2), the foldchange is highly affected by 𝑀(𝑡𝑠𝑡𝑎𝑟𝑡). To control 

this influence over α a weight matrix (𝒘𝑻 ) can be defined, where each position 

represents a weight for a specific metabolite over 𝑀(𝑡𝑖).  

 

 𝒘𝑻𝑴(𝒕𝒔𝒕𝒂𝒓𝒕) = 𝟏  (3) 

 

In this work, the weight matrix is used to normalize the system to 1 g of dry biomass. 

 

• Compounds can have an inherent quota. 

Quotas in this model are introduced in a way to constrain imbalanced metabolites 

over the cycle. These quotas are always applied to inert compounds, such as 

biomass precursors and non-catalytic proteins, in a way to ensure their synthesis. 

So, a minimum quota in all time-points  is introduced for these compounds:  

 

 𝑩𝒒𝒖𝒐𝒕𝒂
𝒌 𝑴𝒌 ≥ 𝑪𝒒𝒖𝒐𝒕𝒂

𝒌  (4) 

Where 𝐵𝑞𝑢𝑜𝑡𝑎
𝑘  is an index matrix and 𝐶𝑞𝑢𝑜𝑡𝑎

𝑘  is the quota value. This is applied for 

each time point for the compound amount matrix 𝑀𝑘   𝑘 ∈ {1,2, … , 𝑛𝑡}. 

 

Additionally, this quota feature can be used on other imbalanced metabolites to 

ensure specific behaviors. Therefore, other quota types were defined within this 

model, such as : 

 

Minimal initial quota  

 𝑩𝒒𝒖𝒐𝒕𝒂
𝒊 𝑴𝒊 ≥ 𝑪𝒒𝒖𝒐𝒕𝒂

𝒊  (5) 

   

Initial quota  

 𝑩𝒒𝒖𝒐𝒕𝒂
𝒊 𝑴𝒊 = 𝑪𝒒𝒖𝒐𝒕𝒂

𝒊  (6) 
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Maximal quota for a specific time point  

 

 𝑩𝒒𝒖𝒐𝒕𝒂
𝒙 𝑴𝒙 ≤ 𝑪𝒒𝒖𝒐𝒕𝒂

𝒙  (7) 

 

Where 𝑥 represents the specific time point. 

 

• Fluxes can be constrained by enzyme levels. 

In cFBA, the flux through a metabolic reaction can be constrained by the enzyme 

amount with its capacity constraint:  

 

 𝑨𝒄𝒂𝒑
𝒌 𝒗𝒌 ≤ 𝑩𝒄𝒂𝒑

𝒌 𝑴𝒌−𝟏 (8) 

Where 𝐴𝑐𝑎𝑝
𝑘  is a matrix with the enzyme capacity values (inverse kcats), 𝐵𝑐𝑎𝑝

𝑘  is the 

index matrix and 𝑣𝑘 is the flux distribution for 𝑘 ∈ {1,2, … , 𝑛𝑡}. 

 

It is important to note enzyme capacities were not introduced in the model developed 

in this work. 

 

In addition, this model also applies the constraint that compound amounts cannot be 

negative.  

 𝑴𝒌 ≥ 𝟎 (9) 

 

And it also constraints the fluxes to an upper and lower bound: 

 

 𝒃𝒍𝒐𝒘 ≤  𝒗𝒌  ≤  𝒃𝒖𝒑 (10) 

 

With all these constraints the model performs a global optimization for α through a  linear 

problem (LP). 
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2.2 – MODEL CONSTRUCTION AND IMPLEMENTATION  

 

All model simulations were implemented in  Python 3.7.3 in a Jupyter notebook 

environment as a linear optimization problem (figure 4). This optimization problem was 

solved with the support of the Python package optlang with the GLPK solver.  

 

Figure 4 – Linear optimization algorithm to identify the highest foldchange (α) with the precision 

of ϵ (Rugen et al., 2015). 

This model runs from 0 to 5 hours in time discretization of 1. The anaerobic time-span 

was of two hours and the anaerobic time-span was three hours. 

 

2.2.1 – METABOLIC NETWORK 

 

As it was mentioned before, the developed metabolic network was based on the 

metabolic model used in (da Silva et al., 2019) work. The key difference between the 

model developed in (da Silva et al., 2019) and the model developed in this work (figure 

5) is the expansion of the TCA cycle reactions. The introduced reactions were based on 

the following genome database (KEGG GENOME T00966, n.d.) for “Candidatus 

Accumulibacter phosphatis”. The original model can be found in the supplementary 

information (figure S9). It's important to note, that in this thesis enzyme capacities were 

not used, instead, general enzyme and ribosome synthesis reactions were implemented. 
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Figure 5 - Representation of the metabolic model. Meta-network for Phosphate accumulating 

organism developed in this work, based on the simplified metabolic network of “Candidatus 

Accumulibacter phosphatis”. Glyc D, S: glycogen degradation and synthesis reactions; BMP S: 

Biomass precursors synthesis reaction; Enzymes S: general enzymatic synthesis reaction; 

Ribosome S: general ribosome synthesis reaction; PDH 1,2: pyruvate dehydrogenase reactions; 

PEPC: Phosphoenolpyruvate formation reaction; PEPCK: Phosphoenolpyruvate carboxykinase 

reaction; PHB D, S: PHB degradation and synthesis reaction; Ac up: Acetate uptake reaction; 

TCA 7,5: glyoxylate shunt; TCA 1,2: oxidative branch of the TCA cycle; TCA 3,4,5: reductive 

branch of the TCA cycle; PH2MV D, S: PH2MV degradation and synthesis reaction; ETC: electron 

transport chain; CO2 exp: CO2 export reaction; PP D, S: polyphosphate degradation and 

synthesis; PR: conversion of pyruvate to malate reaction.   

 

In order to construct a stoichiometric matrix (S) for the model, a complete list of every 

reaction and respective stoichiometry in the system is needed (Table 1). In a cFBA 

system the stochiometric matrix (S) is further divided into a balanced stoichiometric 

matrix (𝑺𝒃) and an imbalanced stoichiometric matrix (𝑺𝒊). In this case, the balanced 

metabolites were Acetyl-CoA (AcCoA), Succinyl-CoA (SuccCoA), CO2, 

Phosphoenolpyruvate (PEP), Oxaloacetate (OAA), isocitrate (ICT), Succinate (SUC), 

malate (MAL), glyoxylate (GOX),  pyruvate (Pyr), ATP, and NADH. The imbalanced 

metabolites were Acetate (Ac), PHB, PH2MV, glycogen (Glyc), polyphosphate (PP), 

biomass precursors (BMP), Enzymes, and Ribosomes.  
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Table 1 – Complete reaction list used in the metabolic network; this information is used to 

construct a stoichiometric matrix (S). 

Reaction Stoichiometry Description  

Ac_upt 𝐴𝑐 + 1𝐴𝑇𝑃 → 𝐴𝑐𝐶𝑜𝐴 Uptake of external acetate. (11) 

Glyc S 2𝑃𝐸𝑃 + 2𝐴𝑇𝑃 + 2𝑁𝐴𝐷𝐻 → 𝐺𝑙𝑦𝑐 Glycogen synthesis. (12) 

Glyc D 𝐺𝑙𝑦𝑐 → 2𝑃𝐸𝑃 + 𝐴𝑇𝑃 + 2𝑁𝐴𝐷𝐻 Glycogen degradation. (13) 

PEPC 𝑃𝐸𝑃 + 𝐶𝑂2 → 𝑂𝐴𝐴 Phosphoenolpyruvate 
formation. 

(14) 

PEPCK 𝑂𝐴𝐴 + 𝐴𝑇𝑃 ↔ 𝑃𝐸𝑃 + 𝐶𝑂2  Phosphoenolpyruvate 
carboxykinase. 

(15) 

BMP S 0.635𝑃𝐸𝑃 + 1.065𝐴𝑇𝑃 
→ 𝐵𝑀𝑃 + 1.2075𝑁𝐴𝐷𝐻
+ 0.905𝐶𝑂2 

Biomass precursors 
synthesis 

(16) 

Enzyme S 15.48𝑃𝐸𝑃 + 124.45𝐴𝑇𝑃 + 65.768𝑁𝐴𝐷𝐻
→ 𝐸𝑛𝑧𝑦𝑚𝑒 + 1.483𝐶𝑂2 

General enzyme synthesis. (17) 

Ribosome S 11.604𝑃𝐸𝑃 + 44.038𝐴𝑇𝑃 + 51.657𝑁𝐴𝐷𝐻
→ 𝑅𝑖𝑏𝑜𝑠𝑠𝑜𝑚𝑒 

General ribosome 
synthesis. 

(18) 

PHB S 2𝐴𝑐𝐶𝑜𝐴 + 𝑁𝐴𝐷𝐻 → 𝑃𝐻𝐵 PHB synthesis. (19) 

PHB D 𝑃𝐻𝐵 + 2𝐴𝑇𝑃 → 2𝐴𝑐𝐶𝑜𝐴 + 𝑁𝐴𝐷𝐻 PHB degradation. (20) 

PH2MV S 2𝑆𝑢𝑐𝑐𝐶𝑜𝐴 + 𝑁𝐴𝐷𝐻 → 𝑃𝐻2𝑀𝑉 + 2𝐶𝑂2 PH2MV synthesis. (21) 

PH2MV D 𝑃𝐻2𝑀𝑉 + 2𝐶𝑂2 + 2𝐴𝑇𝑃
→ 2𝑆𝑢𝑐𝑐𝐶𝑜𝐴 + 𝑁𝐴𝐷𝐻 

PH2MV degradation. (22) 

PP S 1.26𝐴𝑇𝑃 → 𝑃𝑃 Polyphosphate synthesis. (23) 

PP D 𝑃𝑃 → 𝐴𝑇𝑃 Polyphosphate 
degradation. 

(24) 

ETC 𝑁𝐴𝐷𝐻 → 1.85𝐴𝑇𝑃 Electron transport chain. (25) 

CO2 exp 𝐶𝑂2 ↔ CO2 export. (26) 

Vcomp 𝐴𝑐 → Competition acetate uptake 
for “leftover” acetate. 

(27) 

Maintenance  𝐴𝑇𝑃 → Maintenance reactions (28) 

Ac feed → 𝐴𝑐 Fake replenishment 
acetate reaction to close 
the cycle. 

(29) 

TCA1 𝐴𝑐𝐶𝑜𝐴 + 𝑂𝐴𝐴 → 𝐼𝐶𝑇 Conversion of 
Oxaloacetate to Isocitrate in 
the TCA cycle. 

(30) 

TCA2 𝐼𝐶𝑇 → 𝑆𝑢𝑐𝑐𝐶𝑜𝐴 + 2𝑁𝐴𝐷𝐻 + 2𝐶𝑂2 Conversion of Isocitrate to 
Succinyl- CoA in the TCA 
cycle. 

(31) 

TCA3 𝑆𝑢𝑐𝑐𝐶𝑜𝐴 ↔ 𝐴𝑇𝑃 + 𝑆𝑈𝐶 Conversion of Succinyl-
CoA to succinate in the 
TCA cycle. 

(32) 

TCA4 𝑆𝑈𝐶 ↔ 𝑀𝐴𝐿 + 𝑁𝐴𝐷𝐻 Conversion of Succinate to 
Malate in the TCA cycle. 

(33) 

TCA5 𝑀𝐴𝐿 ↔ 𝑂𝐴𝐴 + 𝑁𝐴𝐷𝐻 Conversion of Malate to 
oxaloacetate in the TCA 
cycle. 

(34) 
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TCA6 𝐼𝐶𝑇 → 𝐺𝑂𝑋 + 𝑆𝑈𝐶 Conversion of isocitrate to 
succinate in the glyoxylate 
shunt. 

(35) 

TCA7 𝐴𝑐𝐶𝑜𝐴 + 𝐺𝑂𝑋 → 𝑀𝐴𝐿 Conversion of Acetyl-CoA 
to malate in the glyoxylate 
shunt. 

(36) 

PR 𝑃𝑦𝑟 + 𝑁𝐴𝐷𝐻 + 𝐶𝑂2 → 𝑀𝐴𝐿 Conversion of pyruvate to 
malate in pyruvate 
metabolism. 

(37) 

PDH1 𝑃𝐸𝑃 → 𝑃𝑦𝑟 + 𝐴𝑇𝑃 Pyruvate dehydrogenase. (38) 

PDH2 𝑃𝑦𝑟 → 𝐴𝑐𝐶𝑜𝐴 + 𝐶𝑂2 + 𝑁𝐴𝐷𝐻 Pyruvate dehydrogenase. (39) 

 

Reaction constrains  

In addition, reactions were further restricted by lower and upper bounds (Table 2). All 

reactions, with some exceptions, were restricted at all time points with an upper bound 

of 1000 mCmol/gdw/h, in a way to represent an infinite number, and a lower bound of 0 

mCmol/gdw/h. In the last time-point, all reactions had an upper bound of 0 mCmol/gdw/h  

except for Ac feed that had an upper bound of a 1000 mCmol/gdw/h (in the other time 

points this reaction had an upper bound of 0 mCmol/gdw/h), in a way to replenish the 

carbon pool. Reverse reactions such as TCA3,4,5, PEPCK, and CO2 export had a lower 

bound of -1000 mCmol/gdw/h.  

To represent the aerobic/ anaerobic cycle the ETC reaction was only active aerobically. 

Hence, the defined upper bound for this reaction was 1000 in the aerobic time-span and 

0 in the anaerobic time-span (table 2).  

Other reactions were also only active aerobically (marked in figure 5 by a star), such as 

TCA4 and in some simulations TCA5. The synthesis reactions for inert compounds 

(BMP, Enzyme, and Ribosome) were also only active anaerobically, in a way to limit 

growth to the anaerobic phase (table 2).  

In this network, the metabolites GTP and FADH2 were not represented and assumed to 

be comparable to ATP and NADH, respectively. The maintenance flux was set to a 

constant value of 0.03 mmol ATP/(gdwh) in both the upper and lower bound this was 

calculated based on experimental work (figure S1- chapter 7.1). 
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Table 2 – Summary table of the upper and lower bounds introduced to the metabolic reactions. 

In green it’s possible to see maximal upper bound applied (1000 mCmol/gdw/h), In grey the bound 

of 0 mCmol/gdw/h, in red the lowest lower bound applied (-1000 mCmol/gdw/h), and in yellow the 

fixed amount for maintenance. 

reaction fluxes 
(mCmol/gdw/h) 

bound Anaerobic  Aerobic  

1 h 2 h 3 h 4 h 5 h 

PEPCK, CO2 
export, TCA3, (and 

in some 
simulations TCA5) 

upper 1000 1000 1000 1000 0 

lower -1000 -1000 -1000 -1000 0 

TCA4 (and in some 
simulations TCA5) 

upper 0 0 1000 1000 0 

lower -1000 -1000 -1000 -1000 0 

ETC, BMP S, 
Enzyme S, 

Ribosome S 

upper 0 0 1000 1000 0 

lower 0 0 0 0 0 

maintenance upper 0.03 0.03 0.03 0.03 0 

lower 0.03 0.03 0.03 0.03 0 

Ac feed upper 0 0 0 0 1000 

lower 0 0 0 0 1000 

Other reactions upper 1000 1000 1000 1000 0 

lower 0 0 0 0 0 

 

Metabolite constrains  

Metabolites were also restricted with the use of quotas. To ensure the synthesis of inert 

compounds, BMP, enzymes, and ribosomes were given minimum quotas at all time 

points. Additionally, polymers (glycogen, polyphosphate, PHB, and PH2MV) and acetate 

were given initial quotas (table 3) following experimental work. Acetate was also given a 

quota of 0 mCmol/gdw at the switch between aerobic and anaerobic, in a way to guarantee 

that the carbon source is fully consumed anaerobically, and in turn, guarantee that the 

acetate uptake is representative of PAOs behavior. 
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2.2.3 - MODEL SIMULATIONS 

 

In this work, simulations were performed to study the influence of environmental changes 

in polymer metabolism in growth, especially in the energy trade-off between glycogen 

and polyphosphate. In order to simulate these changes in polymers, the concept of 

quotas was used.  

cFBA uses quotas in a way to constrain imbalance metabolites to a certain value over 

the cycle. Quotas are categorized in four different ways: minimal initial quotas, initial 

quotas, minimal quotas for all time points, and quotas for specific time points.  

All simulations had quotas for all time points for inert compounds (BMP, enzyme, and 

ribosome) with a value of 0.183 mCmol/gdw. This value was based on the work from (da 

Silva et al., 2019). Additionally, in every simulation acetate had an initial quota, that 

defined a certain feeding value, and a quota of 0 mCmol/gdw for the end of the anaerobic 

phase (t=2h), in a way to constrain the acetate uptake.  

Finally, simulations had polymer initial quotas (polyphosphate, glycogen, PHV, and 

PH2MV)  based on experimental work that could also vary between a range (table 3). In 

a way to create comparable results to experimental amounts and to simulate different 

environmental conditions. In the following table, is possible to see the initial quotas used 

in each simulation. 

 

Table 3 – Summary table of the initial quotas used in each simulation performed in this work. In 

all simulations, BMP, ribosomes, and enzymes had a set minimal quota of 0.183 mCmol/gDW at 

all time points; and acetate had a maximum quota of 0 mCmol/gDW at time point 2. 

 

 

Initial quotas 

mC(P)mol/gdw Ac PP Glyc PHB PH2MV 

Reference quotas 3.84 0.37 3.92 0.65 1.03 

Polyphosphate vs. Glycogen 
quotas 

3.84 from 0 to 
10  

0,0.25,0.5,0.75,1  0.65 1.03 

Acetate vs. Polyphosphate 
quotas 

Present in supplementary 
information chapter 7.3.2 

from 0 
to 10  

0,1,2,3  3.92 0.65 1.03 

Acetate vs. Glycogen quotas 

Presente in suplementar 
information chapter 7.3.3  

from 0 
to 10  

0.37 0,1,2,3  0.65 1.03 

 

The reference quotas were retrieved and calculated from experimental work described 

in chapters 2.3 and 7.1. These quotas were used to fix initial polymer amounts and 
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acetate to a certain value and were calculated experimentally through the SBR operation 

and polymer determination.  

 

2.3 – EXPERIMENTAL WORK  

 

2.3.1 – SBR OPERATION 

 

A PAO and GAO enrichment was obtained through the operation of a sequencing batch 

reactor (SBR). The SBR was operated and controlled by an Applikon controller using 

BioXpert software. The SBR was operated in the following cycle (table 4). 

Table 4 – SBR phases and time over a 6h EBPR cycle. 

Phase Time (min) 

Feed 30 

Anaerobic 105 

Aerobic 134 

Sludge 1 

Settling 70 

Effluent 20 

Cycle  360 

 

The reactor had a volume of 1.5 L and each cycle fed 0.750 L of the synthetic substrate. 

The pH was controlled by dosing 1 M HCL and 1 M NaOH and the anaerobic /aerobic 

phases were simulated by sparging nitrogen gas and compressed air, respectively. The 

reactor was mixed with an 800 rpm speed. The SBR was controlled at a biomass 

retention time (SRT) of 8 days and a hydraulic retention time (HRT) of 12 h. 

The concentrated medium was prepared with and diluted with demineralized water. Each 

cycle was fed with 600 ml of demineralized water and 75 ml of mineral solution and COD 

medium. The mineral medium contained per liter : 1.524 g/L NH4Cl, 1.586 g/L 

MgSO4·7H2O, 0.4 g/L CaCl2·2H2O, 0.48 g/L  KCL, 0.04 g/L N-allylthiourea, 2.22 g/L 

NaH2PO·H2O, 0.04 g/L yeast extract and  6 ml/L of trace elements. The COD medium 

contained per liter: 40.62 mM CH3COONa*3H2O, and 12.5 mM C3H5NaO2. 

 

2.3.2 – TSS AND VSS CALCULATIONS  

 

To determine TSS (total suspended solids) and VSS  (volatile suspended solids) from 

the bioreactor, samples were collected in situ into 15 ml falcon tubes. These samples 

were centrifuged for 5 minutes at 4000 g and then decanted. Tap water was added to 

the pellet and the samples were resuspended (vortex) and centrifuged and decanted 
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again with the same conditions. The centrifuged used was the multifuge 1 L-R model by 

Heraeus. 

To determine the TSS amount, the sampled biomass was added to a pre-dried aluminum 

tray. This tray was then added to a stove ( model function line by Heraeus) at 105 ºC the 

samples were dried overnight and afterward weighted. 

 
𝑻𝑺𝑺 =

𝑻𝒓𝒂𝒚 𝒂𝒇𝒕𝒆𝒓 𝒔𝒕𝒐𝒗𝒆 − 𝑬𝒎𝒑𝒕𝒚 𝒅𝒓𝒚 𝒕𝒓𝒂𝒚

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒔𝒂𝒎𝒑𝒍𝒆 𝒘𝒆𝒊𝒈𝒉𝒕
  

(40) 

 

To determine the VSS amount, the aluminum trays containing the samples were added 

into a furnace at 550 ºC (carbolite model) for 3h. Afterward, the tray was weighted.  

 

 
𝑽𝑺𝑺 =  

𝑻𝒓𝒂𝒚 𝒂𝒇𝒕𝒆𝒓 𝒔𝒕𝒐𝒗𝒆 − 𝒕𝒓𝒂𝒚 𝒂𝒇𝒕𝒆𝒓 𝒇𝒖𝒓𝒏𝒂𝒄𝒆

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒔𝒂𝒎𝒑𝒍𝒆 𝒘𝒆𝒊𝒈𝒉𝒕
 

(41) 

 

In this work, the resulting TSS was 1.7 ± 0.04 g/L while the VSS was 1.51 ± 0.005 g/L, 

samples were retrieved at the anaerobic-aerobic switch in duplicate form. 

 

2.2.3 – ORTHOPHOSPAHTE MEASUREMENT AND POLYPHOSPHATE DETERMINATION 

 

The polyphosphate amount was indirectly calculated through the orthophosphate (PO4) 

concentration in the reactor bulk liquid. This concentration was measured by in situ 

sampling. Each sample was filtered through 0.45 µm size pore filters and collected into 

2 ml Eppendorf. The orthophosphate concentration was determined using a discrete 

analyzer (DA) model gallery by thermo scientific. The polyphosphate amount was 

calculated each time point by subtracting the orthophosphate amount to the highest 

phosphate release with the sum of the TSS-VSS difference. 

 

 𝑷𝒐𝒍𝒚𝑷 = [𝑷𝑶𝟒 𝒎𝒂𝒙
− 𝑷𝑶𝟒 𝒊] + [𝑻𝑺𝑺 − 𝑽𝑺𝑺] (42) 

 

Where 𝑃𝑂4 𝑚𝑎𝑥
 represents the maximal orthophosphate concentration obtained 

(concentration at the aerobic-anaerobic switch) and 𝑃𝑂4 𝑖
 the orthophosphate 

concentration for a specific time point in the cycle ( 𝑖). 
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2.2.4 – PHA DETERMINATION 

 

Samples were collected in situ from the reactor into 15 ml falcon tubes. These tubes 

contained 4-5 drops of paraformaldehyde (37%) which were added before sampling in a 

fume hood, this was done to stop biomass activity in the sample. To remove the liquid 

phase, the samples were centrifuged for 15 minutes at 4500 rpm and the supernatant 

was removed by decanting. Then tap water was added and the samples were 

resuspended (vortex) and centrifuged and decanted again with the same conditions. 

Afterward, the samples were pre-frozen at -80 ºC for 2 hours and freeze-dried at -80 ºC 

at 0.1 mbar overnight. The centrifuged used was the multifuge 1 L-R model by Heraeus 

and the freeze drier used was model Alpha 1-4 LDplus, Crist.  

For PHB and PHV determination, 15 to 30 mg of freeze-dried sample was added to a  

glass tube together with 50 µl of PHB internal standard. The PHB internal standard 

consists of a dilution of 1 mg benzoic acid in 1-propanol. Then 1.5 ml of dichloroethane 

and 1.5 ml of concentrated HCL with 1-propanol (1:4 in volume) was added to each tube. 

Samples are digested and esterified for 3 hours at 100 ºC in a heat block (model 

SBH200D by Stuart). During these 3 hours, the tubes were vortexed every 30 min to 

ensure that the sample was homogeneous. After cooling to room temperature to extract 

the free acids 3 ml of milli-Q water was added and then the tubes were mixed with the 

vortex. After mixing, to separate the organic from the aqueous phase, the sample was 

centrifuged for 15 minutes at 2500 rpm. Afterward, using filtered tips 1 ml of the sample 

was removed and filtered into gas chromatography vials (GC vials). Finally, using a gas 

chromatography model 6890N, Agileny, U.S.A equipped with an FID, on an HP Innowax 

column the esters formed were analyzed, and the internal PHB and PHV concentrations 

were calculated. This protocol was based on (Smolders et al., 1994) work. 

 

2.2.5 – GLYCOGEN DETERMINATION 

 

Samples were collected in situ from the reactor into 15 ml falcon tubes. These tubes 

contained 4-5 drops of paraformaldehyde (37%) which were added before sampling in a 

fume hood, this was done to stop biomass activity in the sample. To remove the liquid 

phase, the samples were centrifuged for 10 minutes at 4500 rpm and the supernatant 

was removed by decanting. Then tap water was added and the samples were 

resuspended (vortex) and centrifuged and decanted again with the same conditions. 

Afterward, the samples were pre-frozen at -80 ºC for 2 hours and freeze-dried at -80 ºC 

at 0.1 mbar overnight.  

For glycogen determination, around 5 mg of biomass were measured into glass tubes 

and 5 ml of 0.9 M of HCL were added. These samples were vortexed and digested for 5 

hours at 100 ºC in a heating block (model SBH200D by Stuart). Every hour the tubes 

were vortexed to homogenize the samples. After cooling down to room temperature the 

samples were filtered using 0.45 µm pore size filters. Finally, the glucose concentration 

of each digested sample was analyzed through the Sigma Aldrich glucose (GO) assay 

kit, GAGO20-1KT. 
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3 
RESULTS  

 

3.1 – ANALYSIS OF THE METABOLIC MODEL 

 

3.1.1 -SIMULATION WITH REFERENCE INITIAL QUOTAS  

 

A typical EBPR cycle was simulated with the metabolic model described in chapter 2.2. 

The cycle ran for 5 h in time discretization of 1 hour, where the first 2h represent the 

anaerobic phase and the last 3 h the aerobic phase. In this model, growth is represented 

by foldchange (α), due to the assumption that the final amounts can be defined as a 

multiple (α) of the defined initial amounts, hence, at α =1 there is no growth. With the use 

of quotas, acetate was constrained to be consumed within 1 hour of the simulation, and 

polymers were constrained to specific initial amounts based on experimental data (table 

3 -reference quotas). With these constraints, an LP optimization was performed (figure 

6). In Addition, the model results were compared with the experimental data obtained 

through the reactor operation and polymer determination described in chapter 2.3. 

Additional information about the experimental amounts can be found in the 

supplementary information (chapter 7.1.2). 

We can see in figure 5, that the model simulation results (full lines) present a PAM-like 

behavior. The PHA polymers (PHB and PH2MV) are synthesized in the anaerobic phase 

functioning as a carbon storage polymer and are consumed in the aerobic phase for 

glycogen, polyphosphate, and biomass synthesis. In turn, glycogen and polyphosphate 

are consumed in the anaerobic phase functioning as energy and reducing power 

sources. This modeled behavior generates comparable amounts to the amounts 

observed experimentally (dotted lines), suggesting that the model created is comparable 

to reality. The observed experimental values were obtained through an SBR operation 

controlled with a sludge retention (SRT) time of 8 days. Taking into account that the 

foldchange obtained in the model simulation was 1.046 and that the model is normalized 

for 1 gdw/L of biomass it's possible to calculate a comparable SRT value of 10.8 days for 

the modeled results (assuming that the biomass produced is removed at the end of the 

cycle).  
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Figure 6 -  Metabolic concentrations of polymers through time in a cFBA simulation (model – full 

lines) and SBR operation (experimental – dotted lines) in an EBPR system. The first 2h represent 

the anaerobic time and the last 3h the aerobic time. For the model results, the initial quotas used 

can be found in table 3 (reference quotas) and the complete reactions and model restrictions can 

be found in chapter 2.2, the resulting foldchange was 1.046. For the experimental results, the 

reactor operation and polymer determination information can be found in chapter 2.3. 

 

3.1.2 – SIMULATION WITH VARIED INITIAL QUOTAS FOR POLYPHOSPHATE AND 

GLYCOGEN  

 

To understand the relationship between the use of glycogen and polyphosphate and how 

it relates to growth, multiple simulations were performed with the model created and 

validated by experimental work (Figure 6). In these simulations, polyphosphate and 

glycogen initial quotas were set to different amounts, whilst PHA and acetate initial 

quotas were set to the same amounts throughout all simulations ( polyphosphate vs. 

glycogen quotas – table 3). Each simulation was performed to a typical EBPR cycle with 

the metabolic model described in chapter 2.2, where the cycle ran for 5 h in time 

discretization of 1 hour, the first 2h represent the anaerobic phase, and the last 3 h the 

aerobic phase. The generated foldchange (α)  in each simulation was compared in figure 

7. In this model, growth is represented by foldchange (α), due to the assumption that the 

final amounts can be defined as a multiple (α) of the defined initial amounts. 
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Figure 7 – Variation of foldchange (α) vs. a range of fixed initial polyphosphate (PP) and glycogen 

(Gly) quotas. Achieved through the performance of multiple simulations in an EBPR system where 

the first 2h represent the anaerobic time and the last 3h the aerobic time. Each simulation was 

performed with different polyphosphate (PP) initial quotas [from 0 to 10 mPmol/gdw] at different 

fixed glycogen (Glyc) initial [0,0.25,0.5,0.75,1 mCmol/gdw in steps of 0.1] resulting in a specific 

foldchange. Other fixed quotas used in these simulations can be found in table 3 (polyphosphate 

vs. glycogen quotas).In each graph, the highest foldchange achieved is highlighted by a marker. 

 

The results indicate a relation between glycogen and polyphosphate for organisms living 

under the simulated conditions. All graphs have a similar profile, where the foldchange 

increases with the increase of polyphosphate initial quota, for each glycogen initial quota 

simulation (figure 7A, 7B, 7C, 7D, and 7E), until it reaches an upper limit and starts to 

slightly decline. In simulations, 7B, 7C, 7D, and 7E this increase is shaped in two stages, 

where the first stage is observed to have a sharper slope which is followed by a second 

stage with a slower increase until it reaches the upper limit.  

These two different stages represent a shift in the source of reducing power. To illustrate 

this shift, the specific metabolic fluxes for NADH production were plotted for two distinct 

points in these two stages for simulation 6B (figure 8). In the first stage (figure 8B), it’s 

possible to see that the source reducing power (NADH) is coming from glycogen 

degradation (Glyc_D) and the operation of the TCA2 reaction (Conversion of Isocitrate 

to Succinyl- CoA). Whilst, in the second stage the reducing power is coming from 

glycogen degradation, the TCA2 reaction, and the TCA5 reaction (conversion of malate 

to oxaloacetate) (figure 8C). The use of the TCA5 reaction for reducing power represents 

a shift in the metabolic routes used. With the increase of the initial polyphosphate 

amount, more ATP is being produced through polyphosphate degradation, in turn, 

glycogen degradation also produces ATP. Therefore, at a certain point, the organism 

starts to rely more on the TCA cycle to generate NADH than on glycogen degradation 

(switch between phases), In order to avoid overproducing ATP. Hence, the organism 

switches from using the reducing branch of the TCA cycle (figure 8D)  and starts using 

the glyoxylate shunt to produce NADH through TCA5 (figure 8E). At the same time, ATP 

is being consumed in the reverse reaction of TCA3 (Conversion of succinate to Succinyl-

CoA)  for both stages (ATP sink).  
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Figure 8 -  Investigation of the NADH sources for two simulations (1A, 2A) in the different 

increasing stages for a fixed glycogen initial quota of 0.25 mCmol/gdw (A), and a polyphosphate 

initial quota of 1.8 mPmol/gdw (1A) and 3.8  mPmol/gdw (2A), respectively. These simulations 

were performed in an EBPR system where the first 2h represent the anaerobic time and the last 

3h the aerobic time. Other polymer and acetate were fixed with quotas according to table 3.  B) 

Specific metabolic fluxes for NADH production in the anaerobic phase for simulation 1A. C) 

Specific metabolic fluxes for NADH production in the anaerobic phase for simulation 1B. D) 

Simplified metabolic route employed by simulation 1A in the anaerobic phase. Pathways 

highlighted in grey are not active and pathways highlighted in red are active. E) Simplified 

metabolic route employed by simulation 1B in the anaerobic phase. Pathways highlighted in grey 

are not active and pathways highlighted in red are active. Pathways that are highlighted in red 

with a smaller width, represent pathways that are less active in reference to the previous 

metabolic route (D). Glyc_D: glycogen degradation; TCA2: conversion isocitrate to Succinyl-CoA 

in the TCA cycle; TCA5: conversion of malate to oxaloacetate in the TCA cycle. 

 

The upper limits observed in each simulation in figure 7 represent optimal growth for the 

given glycogen initial quota. Hence, higher polyphosphate amounts from the optimal will 

lead to a slight decline in foldchange, due to resources being overspent towards the 

production of stored polyphosphate. In the first two graphs (7A and 7B), it is possible to 

observe an increase in this upper limit (a higher foldchange is achieved), whereas in the 

last three graphs (7C, 7D, and 7E) a decrease in the maximal foldchange achieved is 

observed. This indicates an optimal initial glycogen amount of 0.25 mCmol/gdw within this 

simulation.  

Simulation 7A indicates that it is possible to grow without glycogen. To the extent of our 

knowledge, growth with full depletion of glycogen has never been reported in PAOs 

literature. Therefore, growing without glycogen might not be a possible PAOs behavior. 

Glycogen together with the anaerobic operation of the TCA cycle represents a source of 

reducing power for PAOs. Knowing that simulation 7A shows growth without a source of 
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glycogen, the reducing power must come fully from the TCA cycle. This might suggest 

an overestimation of the TCA cycle in the developed model. To test this hypothesis the 

specific metabolic fluxes for NADH production for both a simulation of the maximal 

foldchange quotas at glycogen 0.25 mCmol/gdw  ( Figure 7B – orange marker) and with 

the maximal foldchange quotas at glycogen 0 mCmol/gdw ( Figure 7A – red marker) were 

plotted (figure 9). 

 

Figure 9 – Specific metabolic fluxes for NADH production in the anaerobic phase. These fluxes 

were obtained through the performance of two simulations for an EBPR system. The first 

simulation (left plot) used the quotas for the maximal foldchange at glycogen 0.25 mCmol/gdw, 

whilst the second simulation (right plot) used the quotas for the maximal foldchange at glycogen 

0 mCmol/gdw. The metabolic reactions used are represented in weight percentage and the total 

NADH flux amount divided by the foldchange is plotted underneath.  Glyc_D: glycogen 

degradation; TCA2: conversion isocitrate to Succinyl-CoA in the TCA cycle; TCA5: conversion of 

malate to oxaloacetate in the TCA cycle. 

 

Figure 9 corroborates with the hypothesis of an overestimation of the TCA cycle. At the 

maximal foldchange quotas for an initial quota of 0 mCmol/gdw, the reducing power is 

being generated fully from the TCA5 reaction. The TCA5 reaction represents the malate 

dehydrogenase reaction, the conversion of malate to oxaloacetate. To avoid this 

overestimation a new simulation was created where the TCA5 reaction was blocked 

anaerobically (chapter 3.1.3). A thermodynamic analysis of this reaction and its 

consequent blockage can be found in the discussion (chapter 4.2).  

In addition, the specific metabolic fluxes for NADH consumption for both a simulation of 

the maximal foldchange quotas at glycogen 0.25 mCmol/gdw  ( Figure 7B – orange 

marker) and a simulation of maximal foldchange quotas at glycogen 0 mCmol/gdw ( 

Figure 7A – red marker) were also plotted (figure 10). In figure 10, it is possible to see 

that at glycogen 0 mCmol/gdw the NADH generated solely from the TCA5 reaction is 

being equally divided into the PHB and PH2MV synthesis reactions. In turn, at glycogen 

0.25 mCmol/gdw, the NADH generated is not being equally divided. In fact, the NADH 

generated from the glycogen degradation is fully going into PHB synthesis. Resulting in 
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a higher NADH consumption flux for PHB synthesis at a glycogen quota of 0.25 

mCmol/gdw. 

 

Figure 10 – Specific metabolic fluxes for NADH consumption in the anaerobic phase. These 

fluxes were obtained through the performance of two simulations for an EBPR system. The first 

simulation (left plot) used the quotas for the maximal foldchange at glycogen 0.25 mCmol/gdw, 

whilst the second simulation (right plot) used the quotas for the maximal foldchange at glycogen 

0 mCmol/gdw. The metabolic reactions used are represented in weight percentage and the total 

NADH flux amount divided by the foldchange is plotted underneath. PHB_S: PHB synthesis; 

PH2MV_S: PH2MV synthesis. 

Finally, it is important to denote that at the maximal foldchange quotas for higher 

glycogen amounts [0.5 - 1 mCmol/gdw ] it is observed the same proportion in NADH 

fluxes, as observed for maximal foldchange quotas at glycogen 0.25 mCmol/gdw. The 

specific metabolic fluxes for NADH production and consumption for the maximal 

foldchange quotas at 0.75 mCmol/gdw can be found in the supplementary information 

(figure S2). 

 

3.1.3 – SIMULATION WITH THE ANAEROBIC BLOCKAGE OF THE MALATE  

DEHYDROGENASE REACTION 

 

To understand the relationship between the use of glycogen and polyphosphate and how 

it relates to growth in a model with the TCA5 reaction blocked anaerobically, multiple 

simulations were performed in a similar way to the previous model. In these simulations, 

polyphosphate and glycogen initial quotas were set to different amounts, whilst PHA and 

acetate initial quotas were set to the same amounts throughout all simulations ( 

polyphosphate vs. glycogen quotas – table 3). Each simulation was performed to a 

typical EBPR cycle with the metabolic model described in chapter 2.2, where the cycle 

ran for 5 h in time discretization of 1 hour, the first 2h represent the anaerobic phase, 

and the last 3 h the aerobic phase. The generated foldchange (α)  in each simulation 

was compared in figure 11. In addition, a comparison of the modeled results with the 

obtained experimental work can be found in the supplementary information (figure S3), 
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this comparison resulted in equivalent results to the ones obtained with the previous 

model (figure 6). 

 

 

Figure 11 – Variation of foldchange (α) vs. a range of fixed initial polyphosphate (PP) and 

glycogen (Gly) quotas. Achieved through the performance of multiple simulations for an EBPR 

system where the first 2h represent the anaerobic time and the last 3h the aerobic time. Each 

simulation was performed with different polyphosphate (PP) initial quotas [from 0 to 10 

mPmol/gdw] at different fixed glycogen (Glyc) initial [0,0.25,0.5,1 mCmol/gdw in steps of 0.1] 

resulting in a specific foldchange. Other fixed quotas used in these simulations can be found in 

table 3. In this simulation, reaction TCA5 was blocked anaerobically. In each graph, the highest 

foldchange achieved is highlighted by a marker. 

 

The results indicate a similar relationship to the one observed in figure 7 between 

glycogen and polyphosphate, where the foldchange increases with the increase of 

polyphosphate initial quota for each simulation (figure 11B, 11C, 11D, and 11E) until it 

reaches an upper limit. However, with the anaerobic blockage of TCA5, the second stage 

of increase is smaller. The switch to the use of the glyoxylate shunt still occurs for 

simulations 11C,11D, and 11E. In this case, because the TCA5 reaction is blocked the 

system uses the reverse reaction of TCA4 (conversion of malate to succinate) to avoid 

malate accumulation. Similar to the previous simulation, with the increase of the initial 

polyphosphate amount more ATP is being generated. Hence, to produce a 

corresponding NADH amount to this high amount of ATP, the system switches from 

using the reducing branch of the TCA cycle to using the glyoxylate shunt. The system 

switches from consuming NADH in both the reverse reactions of TCA5 and TCA4 to just 

consuming NADH in the TCA4 reaction. 

In simulations 11B and 11C the upper limit increases with the increase of the glycogen 

initial quota, while in simulations 11D and 11E  the upper limit decreases. Making the 

maximal foldchange achieved within this simulation at a glycogen initial quota of 0.5 

mCmol/gdw. This suggests that in this simulation optimally there is a need for glycogen, 

but a higher quota than the optimal will lead to a decrease in growth. This ultimately 

shows a complex balance between the glycogen and polyphosphate polymers available 

and the environment.  

It’s important to note, that in simulation 11B the simulated acetate feed amount (3.84 

mCmol/gdw) is not being fully consumed by the simulated organism, due to having a small 
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initial glycogen quota amount. The remaining acetate amount is being consumed through 

the established competition reaction. Comparatively to the model without the TCA5 

reaction blockage, this newly developed model has a higher necessity for glycogen, the 

highest foldchange achieved is at a glycogen quota of 0.5 mCmol/gdw and not at a 

glycogen quota of 0.25 mCmol/gdw. The system compensates for the lack of NADH being 

generated from the TCA5 reaction with a higher glycogen degradation, needing in turn a 

higher optimal glycogen amount. The respective NADH production and consumption 

fluxes for the maximal foldchange quotas at glycogen 0.25 and 0.5 mCmol/gdw can be 

found in the supplementary information (figure S6).  

In addition, at a glycogen initial quota of 0 mCmol/gdw. (figure 11A) organisms do not grow 

under the given simulated conditions. This behavior is following what was previously 

discussed, where growth with full depletion of glycogen has never been observed for 

PAO-type metabolism.  

To investigate further this relationship a bigger range of initial quotas for glycogen (from 

0 to 6 mCmol/gdw) and polyphosphate (from 0 to 25 mCmol/gdw) was simulated.  

 

Figure 12 – Contour plot. The color gradient represents the variation of foldchange (α), in the x-

axis a range of fixed initial polyphosphate (PP) is represented while in the y-axis a glycogen (Gly) 

initial quotas range is represented. This was achieved through the performance of multiple 

simulations in an EBPR system where the first 2h represent the anaerobic time and the last 3h 

the aerobic time. Each simulation was performed with different polyphosphate (PP) initial quotas 

[from 0 to 25 mPmol/gdw in steps of 0.25] at different fixed glycogen (Glyc) initial [from 0 to 6 

mCmol/gdw in steps of 0.25] resulting in a specific foldchange. Other fixed quotas used in these 

simulations can be found in table 3. In this simulation, TCA5 was blocked anaerobically. The red 

marker indicates the reference quotas present in table 3. 

 

This figure demonstrates an overall view of the relationship of polyphosphate and 

glycogen initial quotas, at specific acetate and PHA fixed quotas. Here it is possible to 

see an “optimal nucleus”, a range of polyphosphate initial quotas [2.1-23.5 mPmol/gdw at 

the highest and lowest level]  and glycogen quotas [0.3-1 mCmol/gdw at the highest and 

lowest level], where the foldchange is maximal. The quotas obtained experimentally 

(figure 11 -red marker) are not within this nucleus, suggesting that in reality, the organism 
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does not grow optimally. In actuality, values within the calculated optimal range for 

polyphosphate have been previously reported in literature. Both (Acevedo et al., 2012) 

and (Laurens Welles et al., 2017) reported values within this range. However, to the 

extent of our knowledge glycogen values within the indicated optimal range have not 

been reported. In fact, Zhou and colleagues observed a minimal limit for glycogen around 

1 mCmol/gdw (Zhou et al., 2009). Possibly making the “optimal nucleus” unachievable in 

reality. 

It is important to note that the PHA polymers are set to certain quotas in figure 12 (found 

in table 3). In supplementary information, it is possible to find simulations with different 

orders of magnitude for PHA polymer´s initial quotas (figure S8 and S9). In addition, the 

dynamic between acetate availability and the polymers glycogen (figure S5) and 

polyphosphate (figure S4) were also compared, and the respective graphs can be found 

in experimental information. 
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4 
DISCUSSION 

  

4.1 – CONDITIONAL FLUX BALANCE (CFBA) ASSUMPTIONS AND LIMITATIONS  

 

Conditional flux balance analysis (cFBA) was developed in a way to create a constraint-

base optimization that allows temporal metabolic changes throughout a cycle (Rugen et 

al., 2015). This was specially developed for organisms that grow in periodic 

environments, which need a modeling approach that incorporates a temporal 

organization into a metabolic description. In this work, this approach was applied to a 

PAO meta-network in a way to describe its metabolism throughout an EBPR cycle. This 

approach led to PAO/GAO behavior as a function of time in a specific environment 

defined by quotas.  

This model is defined under the assumption of cyclic growth. Dynamic conditions were 

considered a stable cycle, where changes are consistent and predictable. Hence, in a 

cFBA model, the final amounts are a multiple (α) of the initial amounts (eq. 1). This 

assumption allows for a simulation of a time-variant metabolism. However, it does not 

fully allow for the temporal simulation of unstable conditions and enforces the synthesis 

of a certain amount of metabolites that the system might not need. This behavior can be 

observed in figure 11 where above the optimal proportion between glycogen and 

polyphosphate there is a slight decline in growth, due to resources being overspent in 

the synthesis of polyphosphate. In reality, while the organism might have higher amounts 

than the optimal to guarantee robustness, at a certain point the organism will no longer 

synthesize polymers to the detriment of its growth so it can meet a consistent cyclic 

behavior (eq.1).  

Additionally, this approach has a quota feature where imbalanced metabolites can be 

constrained over the cycle. In this work, initial quotas were introduced to both stored 

polymers and acetate. These quotas set the initial metabolite amount for each simulation, 

making the system highly dependent on these amounts. Experimentally, polyphosphate 

amounts are indirectly calculated through the bulk liquid concentration of orthophosphate 

(eq. 42). Although the P release concentrations are consistent through experimental 

work, the absolute polyphosphate amount is dependent on the equation used to calculate 

it. In literature, there are different ways in how polyphosphate can be calculated from 

these concentrations, (Acevedo et al., 2012), and (Laurens Welles et al., 2017) have 

proposed different equations. Hence, the polyphosphate amounts indicated in this work 

represent an estimate that can vary with the polyphosphate equation used, making, in 

turn, the initial quota used for polyphosphate and the simulations performed dependent 

on this equation (eq. 42). 

Finally, most cFBA models developed use an enzymatic constrain, where each flux is 

constrained by the amount of the respective enzyme and each enzyme amount is 
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constrained by the amount of ribosomes. In this work, this feature was not used, and a 

general enzyme and ribosome synthesis reaction was created and fixed throughout all 

time points. In this thesis, multiple simulations are performed, which demand high 

computational power, introducing additional enzyme capacities constraints for all 

reactions would hinder the multiple simulations created. Additionally, looking at figure 8 

is possible to see that the model created generates comparable results to reality without 

enzymatic constrain. As a matter of fact, da Silva and colleagues investigated the effect 

of different enzyme capacities in a cFBA PAO meta-network through sensitivity analysis  

(da Silva et al., 2019). This sensitivity analysis indicated that most simulations were not 

sensitive to changes in 𝑘𝑐𝑎𝑡 across 3 orders of magnitude. However, the obtained trade-

offs in this thesis may be dependent on the unlimited fluxes used. Hence, further 

constraining reaction fluxes with enzyme capacities might change the resulting 

phenotype of the system (Wissel, 2021). 

 

4.2 –METABOLIC NETWORK ASSUMPTIONS AND LIMITATIONS  

 

The metabolic network created in this thesis was based on the meta-network developed 

in (da Silva et al., 2019). The key difference between the published model (figure S9)  

and the model developed in this work (figure 5)  is the expansion of the TCA cycle 

reactions. In actuality, (da Silva et al., 2019) model had three representative reactions 

for the TCA cycle, red TCA indicating the reductive branch of the TCA cycle, ox TCA  

indicating the oxidative branch of the TCA cycle, and Gox TCA indicating the glyoxylate 

shunt. These reactions were expanded in this thesis creating seven distinctive TCA 

reactions (TCA1-7). In this work, we want to explore the energy trade-off, and the TCA 

cycle together with glycogen represent the sources for reducing power in PAO 

metabolism. Hence, by expanding the TCA cycle is possible to pinpoint the working TCA 

reactions that generate reducing power in a PAO simulation. This is observed in figure 9 

where it was possible to pinpoint that the TCA5 reaction was being overestimated in this 

model. 

In addition, throughout this work, two TCA reactions were blocked anaerobically: TCA4 

and TCA5. TCA4 represents the conversion of succinate to malate (succinate 

dehydrogenase) and TCA5 represents the conversion of malate to oxaloacetate (malate 

dehydrogenase). TCA4 was assumed to be only active aerobically due to the succinate 

dehydrogenase reaction producing FADH2. Regeneration to the FAD form is deemed to 

be unlikely to happen in the absence of an electron acceptor (O2), so this reaction was 

blocked anaerobically in all simulations (Mino et al., 1998).  

TCA5 was blocked due to an overestimation of the reducing power being generated from 

the TCA cycle within the present model (figure 9). Based on the literature, (Wexler et al., 

2009) observed, through radiolabelling proteomics, that the malate dehydrogenase 

enzyme (MDH) was more prevalent aerobically. This might suggest that the TCA5 

reaction is not fully active or blocked in the anaerobic phase corroborating with the 

assumption made in this model.  
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To further investigate the feasibility of this reaction, a thermodynamic analysis was 

performed on TCA5. A reaction is thermodynamic feasible when it is in compliance with 

the second law of thermodynamics ∆𝒓𝐺 < 0. The Gibbs free energy of a reaction (∆𝒓𝐺) 

can be estimated through equation 43 (assuming the reaction 𝐴 + 𝐵 ↔ 𝐶 + 𝐷 ). 

 
∆𝒓𝑮 = [∆𝒇𝑮𝑪 + ∆𝒇𝑮𝑫 − ∆𝒇𝑮𝑨 − ∆𝒇𝑮𝑩] + 𝑹𝑻𝒍𝒏 (

[𝑪] ∙ [𝑫]

[𝑨] ∙ [𝑩]
) 

(43) 

Where ∆𝒇𝐺𝒙 denotes the standard Gibbs formation energy for each species,  𝑅 is the 

universal gas constant, 𝑇 is the absolute temperature (298.15 K)  and [𝑋] represents the 

species concentration. 

This equation (eq.43) was adapted to the malate dehydrogenase reaction (eq.34): 

 
∆𝒓𝑮 = 𝟐𝟔. 𝟓 ± 𝟎. 𝟎𝟔 +  𝑹𝑻𝒍𝒏 (

[𝑶𝑨𝑨] ∙ [𝑵𝑨𝑫𝑯]

[𝑴𝑨𝑳] ∙ [𝑵𝑨𝑫]
)  

(44) 

 

Equation 44 denotes that the sum of the Gibbs formation energy for all species is 

positive, making the thermodynamic viability of the reaction highly dependent on 

metabolite concentration. In turn, the NADH/NAD ratio is affected by the presence of 

oxygen (Sun et al., 2012). Hence, the resulting ∆𝒓𝐺  of TCA5 is dependent on the 

presence of oxygen. To study this dependence, the ∆𝒓𝐺 was plotted against different 

ratios of NADH/NAD (figure 13).  

In this plot, the ∆𝒇G of each species and the 𝐾𝑒𝑞 were retrieved from (Equilibrator, n.d.), 

the [𝑀𝐴𝐿] concentration was retrieved from (Bioblast, n.d.),the [𝑂𝐴𝐴] concentration was 

estimated from the 𝐾𝑒𝑞, and the aerobic/anaerobic literature NADH/NAD ranges were 

retrieved from (Bekers et al., 2015). 

 

Figure 13 – Variation of  ∆𝒓𝐺 of the malate dehydrogenase reaction with different NADH/NAD 

ratios. The ∆𝒓𝐺  was calculated through equation 44. Additionally, the figure indicates the 

experimentally observed range for NADH/NAD for aerobic (blue) and anaerobic (red) conditions. 
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Figure 13 indicates that for the observed NADH/NAD ranges in anaerobic conditions the 

∆𝒓𝐺 can be positive, demonstrating that in anaerobic conditions the TCA5 reaction is not 

thermodynamically viable. In contrast, for observed aerobic ranges the ∆𝒓𝐺 is negative 

demonstrating that in aerobic conditions the TCA5 reaction is thermodynamically viable. 

These observations are further validated by (Kiparissides & Hatzimanikatis, 2017) work, 

where a Thermodynamics-based metabolic sensitive analysis (TMSA)  was performed 

to a TCA cycle metabolic network. They observed that the MDH reaction exhibited a 

thermodynamic shift in response to metabolite concentrations and that in anaerobic 

conditions, perturbations in the metabolite concentrations altered the directionality of the 

reaction. 

4.3 – LITERATURE COMPARISON OF THE OBSERVED TRADE-OFF BETWEEN THE USE 

OF GLYCOGEN AND POLYPHOSPHATE 

 

As indicated in figure 2,  Welles and colleagues investigated the trade-off between 

glycogen and polyphosphate in a PAO culture by adjusting this culture to increase 

phosphate concentrations in the feed (Laurens Welles et al., 2017). This led to an 

increase in stored polyphosphate amount and a corresponding decline in stored 

glycogen amount (figure 2). These results demonstrate a decreasing tendency of a PAOs 

enrichment to move towards the “optimal nucleus” observed in figure 12. However, the 

last data point does not meet this decreasing profile, possibly indicating a start of a 

stabilizing behavior. As it was mentioned before, Zhou and colleagues reported a 

glycogen minimal limit around 1 mCmol/gdw making the “optimal nucleus” out of range 

(Zhou et al., 2009).  

This minimal limit could be a consequence of how glycogen is determined 

experimentally. Glycogen is quantified as glucose after acid digestion. Therefore, non-

glycogen glucose-containing biomass components are being quantified as glycogen 

through this method. Hence, the minimal limit observed could be a background glucose 

amount, and glycogen, in reality, is being fully consumed. However, Damir and 

colleagues calculated this non-glycogen glucose overestimation and reported a result of 

0.22 ± 0.03 mCmol/gdw(Damir Brdjanovic et al., 1998), thus this does not fully explain the 

minimal glycogen limit. This minimal glycogen amount could also be a safety precaution. 

In truth, having quotas within the “optimal nucleus” might present a risky behavior. Being 

within this nucleus might lead to optimal growth, however minimal changes in these 

quotas could lead to no growth at all. To easily observe this risk, the foldchange for a 

range of initial glycogen quotas [0-6 mCmol/gdw] at a fixed polyphosphate initial quota of 

6 mPmol/gdw was plotted (figure 14). In figure 14, the section highlighted in green 

represents the glycogen range in the “optimal nucleus observed in figure 11”. Here, it's 

possible to see that a minimal decrease in glycogen can lead to a fall in growth. 
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Figure 14 – Foldchange variation in multiple simulations in an EBPR system where the first 2h 

represent the anaerobic time and the last 3h the aerobic time. Each simulation was performed 

with a fixed polyphosphate (PP) initial quota of 6 mPmol/gdw at different fixed glycogen (Glyc) 

initial [from 0 to 6 mCmol/gdw] resulting in a specific foldchange. Other fixed quotas used in these 

simulations can be found in table 3. 

 

This “safety precaution” could show a robustness behavior on the organism’s part. As it 

was mentioned before, robustness can be defined as the resilience in face of uncertainty. 

It represents the expected loss of opportunity, which in this case is the opportunity for 

growth. If the organisms had glycogen amounts within the optimal range a minimal 

change in the environment could lead to no growth, thus the organism would not possess 

the resilience to uncertain changes in the environment. Hence, although having higher 

amounts of glycogen will lead to a smaller growth (loss of efficiency) it will also lead to a 

gain of robustness making the organism more fit to uncertain changes in the 

environment. 
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5 
CONCLUSION AND FUTURE WORK 

 

5.1- CONCLUSION 

 

Below is possible to see a list of the primary conclusions of this work. 

• There is a clear trade-off between the use of glycogen and polyphosphate in an 

EBPR cycle. Phosphate accumulating organisms have the metabolic flexibility to 

trade-off between the synthesis of each polymer according to the resources 

available in the environment and thus affecting the growth of the organism. 

 

• Optimal growth for PAOs in an EBPR environment was observed within a range 

of polyphosphate [2.1-23.5 mPmol/gdw] and glycogen [0.3-1 mCmol/gdw] initial 

amounts. 

 

• To the extent of our knowledge, growth with the optimal range of glycogen 

amounts observed and growth with full depletion of glycogen has never been 

reported in PAOs literature. This suggests a glycogen minimal limitation for PAOs 

in an EBPR cycle. 

 

• This glycogen minimal limit (e.g. 1 mCmol/gdw) suggests a robustness 

mechanism employed by PAOs. 

 

• A thermodynamic analysis was performed on the malate dehydrogenase reaction 

(TCA5), which led to the conclusion that TCA5 is not feasible in an anaerobic 

environment. 

5.2- FUTURE WORK 

 

• A thermodynamic analysis should be done to all the present reactions in the 

metabolic network and the model should be further constricted. Creating a 

combination between a cFBA model and TFBA (thermodynamic-based flux 

balance analysis) model.  

 

• The glycogen minimal limit should be further validated and investigated through 

experimental work. 

 

 

• To simulate unstable environments more closely related to reality, a new dynamic 

FBA model should be established that forgoes the assumption of cyclic growth. 
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LIST OF SYMBOLS AND ABBREVIATIONS  

 

Symbol/ Abbreviation Description 

P 

EBPR 

Phosphorus 

Enhanced biological phosphate removal 

PAOs 

VFA 

Ac 

Pr 

Phosphate accumulating organisms 

Volatile fatty acid 

Acetate 

Propionate 

PHA 

PolyP / PP 

Glyc 

PAM 

PHB 

PHV 

PH2MV 

GAOs 

GAM 

FBA 

LP 

S 

poly-ẞ-hydroxyalkanoates 

Polyphosphate 

Glycogen 

Phosphate accumulating metabolism 

Poly-β-hydroxybutyrate 

poly-β-hydroxyvalerate 

poly-β-hydroxy-2-methylvalerate 

Glycogen accumulating organisms  

Glycogen accumulating metabolism 

Flux balance analysis 

Linear programming  

Stoichiometric matrix  

  

cFBA approach 

cFBA 

Sb  

Si 

vk 

M(t) 

α 

wt 

Ckquota 

Bkquota 

blow 

bup 

 

Conditional flux balance analysis  

Stoichiometric matrix for balanced metabolites  

Stoichiometric matrix for imbalanced metabolites 

Flux distribution in the kth time-interval 

Imbalanced metabolite amounts at the t time-step 

Foldchange, the definition of growth in a cFBA approach 

Weight matrix 

Quota value for the kth time-point 

Index matrix for the corresponding Ckquota 

Lower bound 

Upper bound 

  

Metabolic network 

Ac_upt 

Glyc S 

Glyc D 

PEPC 

 

Uptake of external acetate. 

Glycogen synthesis. 

Glycogen degradation. 

Phosphoenolpyruvate formation. 
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PEPCK 

BMP S 

Enzymes S 

Ribosomes S 

PHB S 

PHB D 

PH2MV S 

PH2MV D 

PP S 

PP D 

ETC 

CO2 exp 

Vcomp 

Ac feed 

TCA1 

TCA2 

TCA3 

TCA4 

TCA5 

TCA6 

TCA7 

PR 

PDH1 

PDHD 

Phosphoenolpyruvate carboxykinase. 

Biomass precursors synthesis 

General enzyme synthesis. 

General ribosome synthesis. 

PHB synthesis. 

PHB degradation. 

PH2MV synthesis. 

PH2MV degradation. 

Polyphosphate Synthesis. 

Polyphosphate degradation. 

Electron transport chain  

CO2 export. 

Competition acetate uptake 

Fake replenishment of acetate reaction. 

Conversion of Oxaloacetate to Isocitrate in the TCA cycle. 

Conversion of Isocitrate to Succinyl- CoA in the TCA cycle. 

Conversion of Succinyl-CoA to succinate in the TCA cycle. 

Conversion of Succinate to Malate in the TCA cycle. 

Conversion of Malate to oxaloacetate in the TCA cycle. 

Conversion of isocitrate to succinate in the glyoxylate shunt. 

Conversion of Acetyl-CoA to malate in the glyoxylate shunt. 

Conversion of pyruvate to malate in pyruvate metabolism. 

Pyruvate dehydrogenase. 

Pyruvate dehydrogenase. 

Experimental work 

SBR 

TSS 

VSS 

GC 

 

Sequencing batch reactor 

Total suspended solids 

Volatile suspended solids 

Gas chromatography  

 

∆Gf 

∆Gr 

Keq 

Kcat 

Gibbs free energy of formation 

Gibbs free energy of the reaction 

Equilibrium constant  

Enzyme turnover number. 
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7 
SUPPLEMENTARY INFORMATION  

 

7.1 – EXPERIMENTAL INFORMATION  

7.1.1 – DETERMINATION OF THE MAINTENANCE FLUX 

 

To validate the developed model and calculate initial quotas for the respective 

simulations, an experimental EBPR system was created (figure 8). This experiment had 

a constant sludge retention time of 8 days, in which the external orthophosphate 

concentration and the internal PHA and glycogen amounts were being monitored.   

The maintenance coefficient was determined through the external orthophosphate profile 

(figure S1). In the anaerobic period, orthophosphate increases in the liquid bulk 

(polyphosphate is being consumed), this increase has two distinct phases (A and B). 

Where A represents the polyphosphate consumption that generates ATP for both 

maintenance and acetate uptake. Whilst B represents polyphosphate consumption that 

generates ATP for maintenance. Hence, the maintenance flux can calculate through the 

slope of the B phase (0.0241 mPmol/gdw.h),  resulting in a maintenance coefficient of 

0.03 mmol ATP/gdw.h. It's important to note that maintenance requirements shift with the 

changes in aeration (Pirt, 1987), however in this work they are assumed to be the same. 

 

 

Figure S1 – orthophosphate (PO4) profile through time in a PAO enrichment in an EBPR system. 

The reactor operation and polymer determination information can be found in chapter x. A) 

trendline for the first 3 time points in the anaerobic phase (𝑦 = 0.1158𝑥 + 0.3688; 𝑅2 = 0.99). B) 

trendline for the last 3 time points in the anaerobic phase (𝑦 = 0,0241𝑥 + 0,4895; 𝑅2 = 0,96). 
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7.1.2 – EXPERIMENTAL AMOUNTS 

 

The calculated experimental amounts determined through the methods described in 

chapter 2.3, can be found in the following table S1. Highlighted in grey are the amounts 

obtained in the anaerobic phase, and in blue are the amounts obtained in the aerobic 

phase. 

 

Table S1 – Metabolite amounts through time in a 6h SBR cycle for a PAO enrichment (chapter 

2.3.1). The determination methods for these amounts can be found in chapter 2.3. 

PHA 
(mCmol/gdw) 

Glycogen 
(mCmol/gdw) 

Poly-P 
(mCmol/gdw) 

PO4  
(mCmol/gdw) 

Acetate 
(mCmol/gdw) 

1.68 3.92 0.38 0.37 3.84 

3.36 3.24 0.29 0.46   

5.36 2.61 0.22 0.52   

6.00 2.22 0.20 0.54   

5.13 2.23 0.19 0.55 0.34 

2.56 4.17 0.28 0.47   

1.03 5.41 0.37 0.38   

 

Additionally, a carbon balance was performed to the determined amounts (table S2). 

As we know, it’s important to note that CO2 release was not measured. 

 

Table S2 – Carbon balance to the obtained experimental amounts (table S1). The amounts were 

obtained through time in a 6h SBR cycle for a PAO enrichment (chapter 2.3). 

Anaerobic (mCmol/gdw) Aerobic (mCmol/gdw) 

PHA produced 4.32 PHA consumed -4.10 

Glycogen consumed -1.69 Glycogen produced 3.17 

Acetate consumed -3.5 

C balance -0.87 C balance -0.92 
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7.2 – ADITIONAL INFORMATION FOR SIMULATION WITHOUT TCA5 BLOCKAGE 

 

7.2.1 - NADH CONSUMPTION  

 

The specific metabolic fluxes for NADH consumption for both a simulation with the 

maximal foldchange quotas at glycogen 0.25 mCmol/gdw ( Figure 7B – orange marker)  

and with the maximal foldchange quotas at glycogen 0 mCmol/gdw ( Figure 7A – red 

marker) were plotted (figure S2). 

 

Figure S2 – Specific metabolic fluxes for NADH production (left) and consumption (right) in the 

anaerobic phase. These fluxes were obtained through the performance of two simulations in an 

EBPR system. Both simulations used the maximal foldchange quotas at glycogen 0.75 

mCmol/gdw. The metabolic reactions used are represented in weight percentage and the total 

NADH flux amount divided by the foldchange is plotted underneath the pie plots.  
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7. 3 - ADDITIONAL INFORMATION  FOR SIMULATION WITH TCA5 BLOCKAGE 

 

7.3.1 – EXPERIMENTAL COMPARISON 

 

A simulation with the TCA5 reaction blocked anaerobically was generated in a typical 

EBPR cycle with the metabolic model described in chapter 2.2. The cycle ran for 5 h in 

time discretization of 1 hour, where the first 2h represent the anaerobic phase and the 

last 3 h the aerobic phase. An LP optimization was performed where each polymer was 

constrained to specific initial amounts based on experimental data (table 3 -reference 

quotas).  

 

Figure S3 -  Metabolic concentrations of polymers through time in a cFBA simulation (model – 

full lines) and SBR operation (experimental – dotted lines) in an EBPR system. The first 2h 

represent the anaerobic time and the last 3h the aerobic time. For the model results, the initial 

quotas used can be found in table 3 (reference quotas) and the complete reactions and model 

restrictions can be found in chapter 2.2, the resulting foldchange was 1.046. For the experimental 

results, the reactor operation and polymer determination information can be found in chapter 2.3. 
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7.3.2- ACETATE VS. POLYPHOSPHATE  

 

In the following figure S3, the behavior between the polyphosphate amount initially stored 

and Acetate availability is studied. 

 

 

Figure S4 – Variation of foldchange (α) vs. a range of fixed initial polyphosphate (PP) and acetate 

(Ac) quotas. Achieved through the performance of multiple PAO simulations in an EBPR system 

where the first 2h represent the anaerobic time and the last 3h the aerobic time. Each simulation 

was performed with different Acetate (Ac) initial quotas [from 0 to 10 mCmol/gdw] at different fixed 

polyphosphate (PP) initial quotas [0,0.25,0.5,0.75 mPmol/gdw]. resulting in a specific foldchange. 

Other fixed quotas used in these simulations can be found in table 3. In this simulation, TCA5 

was blocked anaerobically. In each simulation, the maximal foldchange is highlighted with a 

marker. 

 

The results indicate a relationship between polyphosphate and acetate for organisms 

living under the conditions tested (figure S3). The foldchange increases with the increase 

of Acetate initial quota for each simulation (A, B, C, D, E) until it reaches an upper limit 

and stabilizes. This upper limit represents the optimal proportion between Acetate and 

polyphosphate. At higher amounts of acetate, the organism doesn’t have the resources 

to fully uptake the acetate available, so acetate is further consumed by competition (table 

1 – vcomp). The observed upper limit increases with the increase of the polyphosphate 

initial quota, demonstrating that the highest foldchange achieved in this simulation was 

at a polyphosphate quota of 0.75 mCmol/gdw. Finally, simulation A demonstrates growth 

with the absence of polyphosphate indicating a GAO-type behavior. 
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7.3.3 - ACETATE VS. GLYCOGEN  

 

In the following figure S4, the behavior between the glycogen amount initially stored and 

Acetate availability is studied. 

 

 

Figure S5 – Variation of foldchange (α) vs. a range of fixed initial glycogen (Glyc) and acetate 

(Ac) quotas. Achieved through the performance of multiple PAO simulations in an EBPR system 

where the first 2h represent the anaerobic time and the last 3h the aerobic time. Each simulation 

was performed with different Acetate (Ac) initial quotas [from 0 to 10 mCmol/gdw] at different fixed 

glycogen (Glyc) initial quotas [0,1,2,3 mPmol/gdw]. resulting in a specific foldchange. Other fixed 

quotas used in these simulations can be found in table 3. In this simulation, TCA5 was blocked 

anaerobically. In each simulation, the maximal foldchange is highlighted with a marker. 

 

The results indicate a relationship between glycogen and acetate for organisms living 

under the conditions tested (figure S4). There is no growth observed in absence of 

glycogen (simulation A). The foldchange increases with the increase of Acetate initial 

quota for each simulation (B, C, D, E) until it reaches an upper limit and stabilizes. This 

upper limit represents the optimal proportion between Acetate and glycogen. At higher 

amounts of acetate, the organism doesn’t have the resources to fully uptake the acetate 

available, so acetate is further consumed by competition (table 1 – vcomp). The 

observed upper limit increases with the increase of the polyphosphate initial quota, 

demonstrating that the highest foldchange achieved in this simulation was at a glycogen 

quota of 0.75 mCmol/gdw. However, it is important to note that the slope decreases with 

each simulation. Hence, at lower amounts of acetate, a higher foldchange will be 

achieved at lower fixed glycogen quotas, whilst at higher acetate amounts higher 

foldchange will be achieved at higher fixed glycogen quotas. 
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7.3.4 - NADH PRODUCTION AND CONSUMPTION  

 

The specific metabolic fluxes for NADH production (left) and consumption(right) for a 

simulation with the fixed quotas were plotted (figure S5). 

 

 

Figure S6 – Specific metabolic fluxes for NADH production (left) and consumption (right) in the 

anaerobic phase. These fluxes were obtained through the performance of four simulations in an 

EBPR system. A) Simulations that used the maximal foldchange quotas at glycogen 0.25 

mCmol/gdw. B) A) Simulations that used the maximal foldchange quotas at glycogen 0.5 

mCmol/gdw. The metabolic reactions used are represented in weight percentage and the total 

NADH flux amount is plotted underneath the pie plots. In this simulation, TCA5 was blocked 

anaerobically. 
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7.3.5- SENSITIVE ANALYSIS FOR PHA QUOTAS  

 

10 times higher  

 

Figure S7 – Contour plot where the color gradient represents the variation of foldchange (α), in 

the x-axis a range of fixed initial polyphosphate (PP) is represented while in the y-axis a glycogen 

(Gly) initial quotas range is represented. This was achieved through the performance of multiple 

PAO simulations in an EBPR system where the first 2h represent the anaerobic time and the last 

3h the aerobic time. Each simulation was performed with different polyphosphate (PP) initial 

quotas [from 0 to 10 mPmol/gdw] at different fixed glycogen (Glyc) initial [from 0 to 5 mCmol/gdw] 

resulting in a specific foldchange. Other fixed quotas used in these simulations can be found in 

table 3, PHA quotas were fixed 10 times higher than the amount indicated in Table 3. In this 

simulation, TCA5 was blocked anaerobically.  

10 times lower  

 

Figure S8 – Contour plot where the color gradient represents the variation of foldchange (α), in 

the x-axis a range of fixed initial polyphosphate (PP) is represented while in the y-axis a glycogen 

(Gly) initial quotas range is represented. This was achieved through the performance of multiple 

PAO simulations in an EBPR system where the first 2h represent the anaerobic time and the last 

3h the aerobic time. Each simulation was performed with different polyphosphate (PP) initial 
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quotas [from 0 to 10 mPmol/gdw] at different fixed glycogen (Glyc) initial [from 0 to 5 mCmol/gdw] 

resulting in a specific foldchange. Other fixed quotas used in these simulations can be found in 

table 3, PHA quotas were fixed 10 times lower than the amount indicated in Table 3. In this 

simulation, TCA5 was blocked anaerobically.  

 

Figures S6 and S7 indicate that higher fixed PHA quotas will lead to a lower achieved 

foldchange (α) and vice-versa. Resources that were previously being used towards 

growth are now being used towards PHA synthesis, resulting in a decrease in growth. 

 

7.4 – ADDITIONAL INFORMATION FOR THE METABOLIC NETWORK AND ITS 

IMPLEMENTATION 

 

7.4.1 – ORIGINAL METABOLIC MODEL 

 

 

 

Figure S9 –  Representation of the (da Silva et al., 2019) model. Meta-network for Phosphate 

accumulating organism. Glyc D, S: glycogen degradation and synthesis reactions; BMP S: 

Biomass precursors synthesis reaction; Enzymes S: general enzymatic synthesis reaction; 

Ribosome S: general ribosome synthesis reaction; PDH: pyruvate dehydrogenase reaction; 

PEPC: Phosphoenolpyruvate formation reaction; PEPCK: Phosphoenolpyruvate carboxykinase 

reaction; PHB D, S: PHB degradation and synthesis reaction; Ac up: Acetate uptake reaction; 

GOX: glyoxylate shunt; Ox TCA: oxidative branch of the TCA cycle; red TCA: reductive branch of 

the TCA cycle; PH2MV D, S: PH2MV degradation and synthesis reaction; ETC: electron transport 

chain; CO2 exp: CO2 export reaction; PP D, S: polyphosphate degradation and synthesis.   
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7.4.2 – EXCEL FILES 

 

Stochiometric matrix (S_mat) 
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Balanced metabolites (Balanced_mets) 

 

Imbalanced metabolites 

(Imbalanced_mets) 

 

 

Lower Bound (lb_var) 
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Upper bound (ub_var) 

 

 

 

 

 

 

 

 

 

 


