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Various contact mechanics theories have been developed in recent years. The most popular are
the statistical asperity theories of the type of Greenwood and Williamson [1] and Persson’s theory
[22], which treats self affine rough surfaces. The latter theory includes roughness at all length
scales as well as long range elastic interactions. However, it is exact only at full contact conditions,
which are often met by rubbers but not by metals. With metals in mind, we here use Green’s
function molecular dynamics (GFMD) simulations to assess the validity of Persson’s theory at
small loads, therefore small contact areas. GFMD is a boundary-value method which allows for
ultra fine discretization of rough surfaces since it is computationally very efficient, and treats
interfacial contact using interatomic potentials. To date, the GFMD method was only used in 3-D
for modelling the normal loading of rough elastic semi-infinite incompressible (ν = 0.5) solids [3].
In this work we extend GFMD in order to model both normal and tangential loading of rough solids
with finite height and generic elastic properties. GFMD is then used to numerically calculate the
proportionality constant κ between the area of real contact ar and nominal pressure p̄ for the contact
between a compressible linear elastic solid and a rough rigid punch. The numerically calculated
value of the proportionality constant κ is then extrapolated to the thermodynamic, fractal and
continuum (TFC) limit. Results are then compared with that of the other analytical models.
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Chapter 1

Introduction
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Understanding the contact response of solids with rough surfaces has always been a challenge, it
is due to the fact that the solids have self affine rough surfaces with roughness scaling over many
decades in length scales. Because of the roughness, when two elastic solids are squeezed together,
they do not make contact everywhere in the apparent contact area, but only at a distribution of
asperity contact spots. The three physical quantities which characterizes contact mechanics are
the contact area fraction ar, the interfacial separation, and the stress distribution in the contact
regions. Determining the area of real contact is a problem of practical importance, as it influences
a large number of physical properties namely friction, wear and heat transfer at the interface. It is
well known from experiments that there exists a linear relationship between the contact area frac-
tion ar and the applied nominal pressure p̄ for small contact area fractions [4]. Various analytical
and numerical models which attempts to predict the relationship between ar and p̄ are discussed
below.

The first model of the rough surface contact was too simple for this. It involved the elastic contact
between non-interacting uniform spherical asperities with different radii of curvatures on either
sides [5]. Using the Hertzian solution for the contact between each asperity, and ignoring friction

and adhesion at the interface leads to ar ∝ p̄
2
3 , in disagreement with the experimental linearity.

The first model which incorporated surface statistics was that of Greenwood and willamson (G-W).
They represented the rough surface as non interacting uniform spherical asperities having a random
distribution of heights [6]. Bush et al. extended the G-W theory to include distribution of both
heights and radii of curvature (BGT theory) [7].

Figure 1.1: Three different models of a rough surface by Hertz [5], Greenwood and Williamson
(GW) [1], and Bush et al. [7].

The statistical description of the roughness by the above two theories i.e., BGT and G-W lead to
the prediction of the linearity between contact area fraction and nominal pressure. However, the
lack of the long range elastic interactions lead to the breakdown of the above theories for moderate
and high nominal pressures. This lack of long range elastic interactions not only leads to erroneous
results but also wrongly predicts that the gap distribution remains Gaussian under loading when
it is in-fact exponential.

All the above multiasperity contact theories assumed that the area of real contact has to be much
smaller than the nominal contact area. Where as Persson’s theory [2] starts from the opposite
limit of full contact. Persson derives the analytical expressions for the normal traction probability
distribution P (σ, ζ) in the contact area for all the length scales of roughness present at the interface

(
2π

qL
≤ 2π

q
≤ 2π

qa
) where qL and qa are the wave-vectors corresponding to the interface width and
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atomistic lattice parameter. P (σ, ζ) is expressed as the solution to a diffusion like equation, where
the time is replaced by magnification (ζ) and the spatial coordinate by the normal traction σ,

∂P

∂ζ
= f(ζ)

∂2P

∂σ2
(1.1)

The function f(ζ) carries information about the power spectrum C(q) of the rough surface, the
elastic property E and ν of the solids in contact. The physical meaning of the equation for the
contact between a rough rigid block and an elastic substrate is as follows: at the lowest magni-
fication (ζ = 1) of the interface, no surface roughness is included at the interface and the block
makes an apparent contact with the substrate everywhere in the nominal contact area. Thus the
stress distribution for the case is a delta function. Increasing the magnification or adding more and
more surface roughness at the interface causes the stress distribution to broaden. Persson’s theory

predicts a value of κ =

√
8

π
and is exact for complete contact conditions which are often met by

rubbers and not metals. It is also independent of Hurst exponent H, the quantity which is used to
characterize the self affinity.

For the contact between elastic semi-infinite solids with non-adhesive interactions, the proportion-
ality constant κ is expressed as,

κ =
arḡE

∗

p̄
(1.2)

where E∗ is the effective modulus and ḡ is the root mean square gradient and is predicted to be in

the range

√
π

8
≤ κ ≤

√
2π.

Over the past decade several numerical contact models of 3-D rough surfaces were developed. The
first exhaustive numerical study was performed by Hyun et al. [8]. This was a FEM based study
on the frictionless contact between elastic solids with self affine rough surfaces. The value of κ
is close to Perssons theory for surfaces with H = 1. According to Hyun et al. [8] the value of κ
rises nearly linearly with the Poissons ratio ν and saturates as ν approaches the limiting value of
0.5. The increase in κ with ν is attributed to the increased interactions between nearby asperities.
However, the numerical model of Hyun et al. [8] has the limitation that it includes only one node
per asperity, and according to Yestrabov et al. [9], the dependency on the H and overestimation
of contact area was due to the poor discretization of the surface (coarser mesh).

More recently a FFT based technique known as the Green’s function molecular dynamics (GFMD)
was developed which has the advantage of capturing the contact down to the scale of inter-atomic
spacing a. Discretizing a surface to such fine scales in FEM simulations will make it computation-
ally expensive. GFMD is a boundary-value method which allows one to simulate the linear-elastic
response of a solid to an external load by modeling explicitly only the surface making use of the
damped dynamic energy minimization in the Fourier space.

Prodanov et al. [3] used the GFMD method to numerically determine κ (κsim) of rough elas-
tic semi-infinite incompressible (ν = 0.5) solids. As the simulations were performed for a finite size
surface with finite discretization the numerically calculated κsim value was then extrapolated to the
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continuum mechanical value κTFC after introducing the thermodynamic, fractal and continuum
corrections. The authors reported a κTFC value of around 2 and also found a lack of dependency
of the Hurst exponent H and thermodynamic corrections.

Previously [3], the GFMD was only used for modelling the normal loading of rough elastic semi-
infinite incompressible (ν = 0.5) solids. GFMD was then extended by Venugopalan et al. [10]
to include shear loading, generic Poisson’s ratio and heights. Following this, GFMD was used to
rigorously determine the effect of sample heights zm, Poisson’s ratio and Hurst exponent on the
value of κTFC [11]. κTFC was found to be independent of elastic properties and surface topography
i.e., E, ν, zm ,ḡ and was reported to be around ≈ 1.45. κTFC for the semi-infinite solid was found
to be around half of the previously reported value by Prodanov et al. [3]. as the latter did not
account for the scaling factor introduced by the DFFT [12].

For modelling the contact of rough surfaces GFMD has a significant computational advantage
over FEM or BEM [13], as the latter methods typically require several iterations as well as incre-
mental updating of the boundary conditions in order to converge to the final contact area. GFMD
also has the possibility of the usage of more realistic interaction potentials to model the frictional
behaviour at the interface. Currently, however the GFMD is limited to modelling the contact re-
sponse of solids with 1-D rough surfaces (i.e the surface topography is extended into the depth).
As the realistic rough surfaces are self affine in 2-D, GFMD must therefore be extended to 3-D in
order to model the contact response of solids more realistically.

In this work I adopt the methodology of Venugopalan et al. [10] to extend the GFMD. It will
be shown in chapter 2 that the GFMD uses the damped dynamics technique to find the equilib-
rium solution to a mixed boundary value problem and this technique requires the calculation of the
elastic restoring force acting on the harmonic modes of the surface layer at each time step. With
this in mind, we start with the derivation of the analytical solutions to the displacement fields
(in Fourier domain) of a body which is subjected to a displacement prescribed problem. We then
calculate the corresponding stress fields inside the body from the well known stress strain relations
of linear elastic isotropic solids. The respective analytical solutions are then verified for a sinusoidal
displacement prescribed problem.

From the stress and strain fields, the areal elastic energy density of the GFMD layer is analyt-
ically derived by calculating the amount of work per unit area needed to deform the elastic slab
with surface obeying the small slope approximation. The elastic restoring force in a particular
direction is then calculated by taking the derivative of the areal elastic energy density with respect
to the displacement in that direction. The correctness of the Green’s function matrix which relates
the elastic restoring force to the displacement, is then verified by comparing it’s limits with the 2-D
Green’s function matrix derived by Venugopalan et al. [10].

Because of the complexity associated in monitoring the equilibration of each and every harmonic
mode separately, the equilibration will be collectively verified by validating the GFMD simulation
results with that of the FEM for the indentation problem of an elastic slab by a periodic array of
flat rigid punches.

Once the GFMD simulation results are validated for the indendation problem, we numerically
calculate the κsim value for the contact between a compressible linear elastic solid (ν = 0.33) and
a rough rigid punch with a self-affine roughness of RMS gradient ḡ = 0.01 and Hurst exponent

7



H = 0. We use a surface with H = 0 in order to study the effect of a purely Gaussian surface,
which is generated by the power spectral density method in Fourier space. For a Gaussian surface
the roughness is characterized by short wavelengths and with the chosen relatively higher value of
the continuum discretization (εc = 4), the surface is not adequately discretized to capture the fine
undulations. Hence, the determined κ value is the maximum limit value.

Prodanov et al. [3] and Dokkum et al. [11] reported a lack of dependency of κTFC on the ther-
modynamic correction. Therefore, it was decided to only implement the fractal and continuum
corrections to the numerically calculated κsim value and then extrapolate it to the continuum me-
chanical limit. We minimize the computational expenses by critically damping the slowest mode.
For this we use the critical damping factor derived by Dokkum et al. [11].

The remainder of this thesis is organized as follows: In Chapter 2, an in depth introduction to
the GFMD method is given. Detailed analytical derivation of the Green’s function matrix is shown
in Chapter 3. Subsequently, in chapter 4 the GFMD simulation results is validated by comparing
them with the FEM. In chapter 5, the proportionality constant κ is determined and compared with
the earlier predicted values [6, 7, 2, 14, 15] and numerical simulations [8, 16, 3]. Finally, we give a
conclusion of this work in Chapter 6.
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Chapter 2

Green’s function molecular dynamics
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2.1 Introduction

Green’s function molecular dynamics (GFMD) is a boundary value method which can be used for
simulating the elastic response of a cubic symmetric linear elastic isotropic solid which is subjected
to external loading by modelling only the surface. GFMD incorporates the full elastic response of
a 3-D solid onto a single surface layer (GFMD layer) so that only the bilinearly coupled surface
degrees of freedom interacting via the effective renormalized spring constants have to be considered
in the simulations. This greatly increases the computational efficiency as the three dimensional
boundary value problem is reduced to a two dimensional problem as shown in the Figure 2.1.

Z
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Z

(b)

Figure 2.1: Schematics of the indentation by a flat rigid punch acting on the area Lp
xL

p
y of a) 3-D

solid, b) the corresponding GFMD layer .

For a complete traction (displacement) prescribed problem the solution to the displacement (trac-
tion) can be obtained by solving the following integral equation

ui(r) =

∫
Gij(r− r′)σzj(r

′)dr′, (2.1)

where r is the position vector lying in the surface layer, Gij represents the renormalized effective
interactions between the normal and tangential displacements. σzj(r

′) is the traction on the surface
layer in the jth direction [10]. However, due to the non-local nature of the above integral equation
(2.1), using it to solve mixed boundary value problems as the one shown in the Figure (2.1) is
computationally expensive. It can be shown that for a nx × ny discretized surface where nx and
ny are the number of discretization points taken at the surface in the x and y directions respectively,
it is required to solve nx × ny equations. The non local nature of the real displacement field can
be eliminated by applying Fourier transform to both sides of equation (2.1)

ũi(q) =
∑
j

[G̃(q)]ijσzj(q), (2.2)

where G̃ij(q) are the Fourier transform of the components of the Green’s function matrix. ũi(q)
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and σ̃zj(q) are the Fourier transforms of ui(r) and σzi(r) respectively with q = {qx, qy}

qx = nq(0)
x q(0)

x =
2π

nx
,

qy = mq(0)
y q(0)

y =
2π

ny
,

(2.3)

q
(0)
x , q

(0)
y are the fundamental modes in the x, y directions respectively and n, m are the nth, mth

harmonic modes in the x, y directions respectively.

However in the case of a mixed boundary value problem, which is defined as the one where in
a part of the surface is traction prescribed and rest is displacement prescribed (Fig. 2.1), the
Fourier transformed displacements (tractions) are not known apriori. Thus the solution to the
displacement is numerically obtained by damped dynamics equilibration.

2.2 Methodology of GFMD

The working methodology of the GFMD technique is explained via the following analogy with the
simple harmonic oscillator. A simple spring mass system which is held up by a force f is shown
in the Fig. 2.2. Once the force f is released the system oscillates back and forth according to the
equation

m
d2u(t)

dt2
+ ku(t) + ηv(t) = mg, (2.4)

where m corresponds to the mass of the block, k to the spring constant, η to the damping factor
of the hydraulic cylinder, v(t) to the velocity of the solid block and g to the acceleration of gravity.
The oscillation continues until the energy of the system is minimized, this minimization occurs at
the equilibrium position where the weight of the block is balanced by the elastic restoring force
ku(t). The rate of convergence to equilibrium is dependent on the damping factor of the system.
The equilibrium position of the system can be found by analytically solving the above partial
differential equation.

Figure 2.2: Schematic representation of a simple harmonic oscillator.

GFMD models the harmonic modes of the surface layer upon loading to satisfy the following
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equation of motion

P̃
net

(q) = m
d2ũ(q, t)

dt2
= P̃

if
(q, t) + P̃

el
(q, t) + P̃

damp
(q, t), (2.5)

where P̃
el

(q) is the elastic restoring force acting in response to the boundary condition imposed

on the surface layer. P̃
el

(q) can be calculated using the relation

P̃ i
el

(q) =
dUel(q)

dui(q)
=
∑
j

[G̃−1(q)]ij ũj(q). (2.6)

P̃
if

(q) is the interfacial force which is the implicit force exerted by the punch on the surface of

the solid and G̃−1(q) is the inverse of the Fourier space Green’s function matrix. P̃
damp

(q) is the
damping force, which enables the system to reach equilibrium. The speed with which a system
reaches equilibrium is dependent on whether the system is critically damped or under damped.

Solving a boundary value problem begins with prescribing the boundary conditions onto the dis-
cretized surface layer, in the case of a indentation problem this is implicitly done by applying
hard-wall interaction condition at the contact of the punch and the surface

zpunch(x) ≤ z(super-)atoms(x), (2.7)

where zpunch(x) and z(super-)atoms are the z coordinates of the punch bottom and substrate top re-
spectively. The applied indentation causes the grid points in contact with the punch to be displaced
from their initial position to a new configuration. This causes an increase in the areal elastic energy
of the system. The numerical minimization of the areal elastic energy is done using the position
(Störmer) Verlet (pSV) method [17]. Wherein, the oscillation of the damped harmonic modes is
discretized into time steps ∆t over the sampling sequence ntot (dimensionless). From displacements
ũn(q) and accelerations ãn(q) of a harmonic mode at the nth time step, the displacement ũn+1(q)
is estimated using the relation

ãn(q) =

ũn+1(q)− ũn(q)

∆t
− ũn(q)− ũn−1(q)

∆t
∆t

. (2.8)

Assuming the mass is set to unity, the above equation can be rewritten as

ũn+1(q) = 2ũn(q)− ũn−1(q) + ãn(q)∆t2. (2.9)

The net force acting on each harmonic mode at the (n + 1)th time step is then calculated from
equations 2.5 and 2.6. The hard-wall condition is verified at the end of each iteration step and
whenever it is violated, the (super-)atoms are moved back to the punch surface. The above steps
are looped until equilibrium is reached. Once equilibrium is reached, the damping force goes to
zero because the displacements ũn+1(q) and ũn(q) are equal. It is necessary to make the system
critically damped or under-damped in order to converge to the correct solution.

It will be shown in Sec. 5.2 that the determination of proportionality constant κ between the
area fraction and load requires a wide range of simulations involving the indentation of a flat
surface by a rough rigid indenter. A 2048×2048 discretized GFMD layer with the ũx(0, 0) mode
critically damped takes nearly 5 hrs to equilibrate. To minimize the computation time we use
the appropriate critical damping factor for each mode. Recently a mode dependent critical vector
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damping factor η̃cr,i(q) was derived analytically by Dokkum et al. [11]. The authors start with
writing the explicit velocity and position forms of the pSV equations

ṽn+1(q) = P̃
el
n (∆t)− ṽn(1− η(∆t2)) (2.10)

ũn+1(q) = ũn(q) + P̃
el
n (∆t)2 − ṽn(∆t− η(∆t3)) (2.11)

as a matrix difference equation in general form[
ũn+1 (q)
ṽn+1 (q)

]
=
[
ϑ
] [ ũn (q)

ṽn (q)

]
. (2.12)

The different dynamic characteristic regimes of the damped harmonic oscillator in the velocity
Verlet method are determined through the eigen values of the matrix ϑ. The authors showed that
for a critically damped system, the eigen values of the matrix must be equal and also found the
damping factor to be a function of elastic modulus E, poisson’s ratio ν, dimensions of the unit cell
and discrete time step ∆t. It was analytically proven by them that the slowest mode is the first
mode. Therefore they used the damping factor η̃cr,i(q) of the first mode to damp all other modes

η1,cr(q = 0, zm) = 2

√
κ1

∆t
− κ1, (2.13)

where,

κ1(q = 0, zm) =
C44

zm
. (2.14)

Using the above scalar damping factor resulted in the first mode being critically damped and all
other modes being under damped.

Note, the GFMD technique is not only limited to hard-wall interaction but also offers the possibility
of including a broader range of potentials. Herein, we briefly discuss about various potentials which
are so far only used to model the delamination phenomena as one of the many possible candidates
to describe the friction behaviour. The most commonly implemented mixed mode cohesive zone
interaction potential was developed by Xu and Needleman [18]. This potential is physically real-
istic only for the case where in the ratio of tangential to normal work of indentation (separation)

(
φt
φn

) is set to unity, however the above assumption is in total disagreement with the experimental

results [19]. The BSG model which is a non-potential based extension of the above model with
(φt 6= φn) is physically realistic for mixed mode separation problems [20]. However the model
predicts physically unrealistic mixed mode coupling behaviour for indentation problems i.e it pre-
dicts repulsive tangential tractions for significant over-closure, thus making it unsuitable for the
prediction of proportionality constant κ. The latest non-potential model developed by Mcgarry
et al. [21] correctly predicts the mixed mode coupling between tangential and normal tractions for
both indentation and separation problems. Note, that the current work is restricted to the usage of
hard-wall boundary condition mainly because of the inherent simplicity associated with estimating
the contact area fraction.

2.3 Pseudo code

1. Setup rigid punch with surface topography h(x).
2. Determine damping factor vector ηcr such that all modes are critically and/or under-damped,
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and calculate the dimensionless equilibrium time tequil.
3. Give the rigid punch initial displacement in normal direction, i.e., zpunch = h(x)− δx, where δx
is the finite indentation depth.
4. Loop over dimensionless time-step ∆t till the equilibrium time tequil is reached.

• Discretize the surface layer in the real space with nx× ny nodes.

• Discrete fast Fourier transform (DFFT) the surface displacement ui(r) using the FFTW3
library, F (ui(r)) = ũi(q), where r is the position vector of the surface nodes.

• Calculate the elastic restoring force P el(q) (refer equation 2.6).

• Calculate the damping force term P̃
damp

(q) and add it to the elastic restoring force,

P̃
damp

(q) = η(ũn(q)− ũn−1(q)), (2.15)

P̃ (q) = P̃
el

(q) + P̃
damp

(q) (2.16)

• Use pSV to numerically solve the equation of motion (equation 2.5),

ũn+1(q) = 2ũn(q)− ũn−1(q) + P̃ (q)∆t2 (2.17)

• Converted the displacements back to the real space and implemented the boundary condition
through the hard-wall rule given by

un+1(r)← max{un+1(r), zpunch}, (2.18)

• Iterate the above steps until equilibrium is reached.
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Chapter 3

Analytical derivation of the 3-D
Green’s function matrix for finite
height linear elastic solid
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3.1 Introduction

The elastic energy density of the GFMD layer is analytically derived by calculating the amount of
work per unit area needed to deform the elastic slab with small-slope at the surface. The elastic
restoring force in a particular direction is then calculated by taking the derivative of the areal
elastic energy density with respect to the displacement in that direction

P el
i (q) =

dUel(q)

dui(q)
=
∑
j

[G̃−1(q)]ij ũj(q). (3.1)

The work presented in this chapter is organized as follows: we report the methodology used by
Venugopalan et al. [10] to find the analytical solution of the areal elastic energy of a 2-D elastic
slab. We start with the derivation of the analytical solutions to the displacement fields (in Fourier
domain) in 3-D. We then calculate the corresponding stress fields from the well known stress strain
relations of a linear isotropic solid and the respective analytical solutions are then verified for
a sinusoidal displacement prescribed problem. The areal elastic energy density and thereby the
Green’s function matrix which relates the elastic restoring force to the displacement is derived and
the components of the 3-D Green’s function matrix are verified by comparing it’s limits with that
of the 2-D Green’s function matrix derived by Venugopalan et al. [10].

3.2 2-D areal elastic energy density

Figure 3.1: Deformation by a single mode displacement.

Here, we firstly report the derivation of the areal elastic energy density of an elastic slab with
generic elastic properties following the methodology of Venugopalan et al. [10]. Assuming that a
single mode loading is prescribed in the z direction at the surface of a slab (Fig. 3.1) with fixed
bottom ui(x, z = 0) = 0. The analytical solution to the displacements ux(x, z) and uz(x, z) is
obtained through solving the equilibrium equation of forces[

C44

(
∂2

3

)
+ C11∂

2
1

]
ux(x, z) + (C12 + C44) ∂3∂1uz(x, z) = 0,[

C44C11∂
2
3

]
uz(x, z) + (C12 + C44) ∂3∂1ux(x, z) = 0,

(3.2)
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in the Fourier space

s

[
(iqx)

∂ũz(qx, z)

∂z
+
∂2ũx(qx, z)

∂z2

]
+ (1− 2s)

[
(iqx)

∂ũz(qx, z)

∂z

]
+ (iqx)2ũx(qx, z),

s

[
(iqx)2ũz(qx, z) + (iqx)

∂ũx(qx, z)

∂z

]
+
∂2ũz(qx, z)

∂z2
+ (1− 2s)

[
(iqx)

∂ũx(qx, z)

∂z

]
.

(3.3)

Here, ũx(qx, z), ũy(qx, z), ũz(qx, z) are the amplitudes of the Fourier transforms of ux(x, z), uy(x,

z), uz(x, z) respectively at the position (qx) in the Fourier domain. s =
C44

C11
and Cij are the

coefficients of the elastic tensor.
Solution to the above ordinary differential equations is as follows,[

ũx(q, z)
ũz(q, z)

]
=

[
f1(qx, qy, z) −if3(qx, qy, z)
if3(qx, qy, z) f6(qx, qy, z)

] [
a1

a2

]
, (3.4)

Detailed expressions of the matrix components fi can be found in the work of Venugopalan et al.
[10]. Once the solution to the displacement is known, the areal elastic energy density Uel(q) is
found by calculating the amount of work per unit area needed to deform the surface

Uel(q) =
1

L

∫ L

0
σzx(x, zm){ũx(q, zm)eiqx + ũx(−q, zm)e−iqx}dx

+
1

L

∫ L

0
σzz(x, zm){ũz(q, zm)eiqx + ũz(−q, zm)e−iqx}dx.

(3.5)

Substituting for the stresses σzx(x, zm), σzz(x, zm) and integrating the above equation within the
limits [0,1], the expression for the areal elastic energy density reads

Uel(q) =
[
ũx(−q, zm) ũz(−q, zm)

] [ Mxx (q, zm) iMxz (q, zm)
−iMxz (q, zm) Mzz (q, zm)

] [
ũx(q, zm)
ũz(q, zm)

]
(3.6)

here

Mxx =
C11q[1− r] [sinh (qzm) cosh (qzm)− rqzm]

2
[
−r2qz2

m + cosh2 (qzm)− 1
] ,

Mxz =
C11q[1− r]

[
(1− r) sinh2 (qzm)− 2r2qz2

m

]
2[r + 1]

[
−r2qz2

m + cosh2 (qzm)− 1
] ,

Mzz =
C11q[1− r] [rqzm + sinh (qzm) cosh (qzm)]

2
[
−r2qz2

m + cosh2 (qzm)− 1
] .

(3.7)

Applying the concept of Fourier transform, any arbitrary displacement uz(x, zm) could be broken
down into a wide range of single modes with varying frequencies

uz(x, zm) =
∑
q

ũz(q, zm)eiqx + ũz(−q, zm)e−iqx,

ũz(q, zm) =
ũc0
z (q, zm)− iũs0

z (q, zm)

2
, ũz(−q, zm) =

ũc0
z (q, zm) + iũs0

z (q, zm)

2

(3.8)

here, ũc0
z (q, zm) is the maximum amplitude of the cosine part of the prescribed displacement,

ũs0
z (q, zm) is the maximum amplitude of the sine part of the prescribed displacement. Using the
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above relation for ũz(q, zm) and ũz(−q, zm) i.e the amplitudes of the Fourier transform of uz(x, zm)
at frequencies q and −q respectively, the prescribed displacement uz(x, zm) reduces to the following
form

uz(x, zm) =
∑
q

ũc0

z (q, zm)cos(qx) + ũs0

z (q, zm)sin(qx). (3.9)

Similar to the case of the displacement, the areal elastic energy density (equation 3.6) can then be
expressed as a summation over different modes.

3.3 3-D analytical solution of the displacement

a sin(2πx+2πy) + a sin(2πx-2πy)

a cos(2πx+2πy) + a cos(2πx-2πy)

surface zm

Figure 3.2: Deformation by a single mode displacement.

Following the methodology mentioned in the previous section 3.2, the analytical solution to the dis-
placements ux(x, y, z), uy(x, y, z) and uz(x, y, z) when a single modal 2-D displacement is prescribed
at the surface (Fig. 3.2) can be obtained by solving the equilibrium equation[
C44

(
∂2

3 + ∂2
2

)
+ C11∂

2
1

]
ux(x, y, z) + (C12 + C44) ∂1∂2 uy(x, y, z) + (C12 + C44) ∂3∂1uz(x, y, z) = 0,[

C44

(
∂2

1 + ∂2
3

)
+ C11∂

2
2

]
uy(x, y, z) + (C12 + C44) ∂1∂2ux(x, y, z) + (C12 + C44) ∂3∂2uz(x, y, z) = 0,[

C44

(
∂2

1 + ∂2
2

)
+ C11∂

2
3

]
uz(x, y, z) + (C12 + C44) ∂3∂2uy(x, y, z) + (C12 + C44) ∂3∂1ux(x, y, z) = 0,

(3.10)
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in Fourier domain,

s

[
(iqy)

2ũx(q, z) + (iqx)(iqy)ũy(q, z) + (iqx)
∂ũz(q, z)

∂z
+
∂2ũx(q, z)

∂z2

]
+(1− 2s)

[
(iqx)(iqy)ũy(q, z) + (iqx)

∂ũz(q, z)

∂z

]
+ (iqx)2ũx(q, z),

s

[
(iqx)2ũy(q, z) + (iqy)(iqx)ũx(q, z) + (iqy)

∂ũz(q, z)

∂z
+
∂2ũy(q, z)

∂z2

]
+(1− 2s)

[
(iqx)(iqy)ũx(q, z) + (iqy)

∂ũz(q, z)

∂z

]
+ (iqy)

2ũy(q, z),

s

[
(iqx)2ũz(q, z) + (iqy)

2ũz(q, z) + (iqx)
∂ũx(q, z)

∂z
+ (iqy)

∂ũy(q, z)

∂z

]
+
∂2ũz(q, z)

∂z2

+ (1− 2s)

[
(iqx)

∂ũx(q, z)

∂z
+ (iqy)

∂ũy(q, z)

∂z

]
,

(3.11)

here ũx(q, z), ũy(q, z), ũz(q, z) are the amplitudes of the Fourier transforms of ux(x, y, z), uy(x,
y, z), uz(x, y, z) respectively at the position (qx, qy) in the Fourier domain. Solution to the above
ordinary differential equations with the constraint ui(x, y, 0) = 0 is as follows, ũx(q, z)

ũy(q, z)
ũz(q, z)

 =

 f1(qx, qy, z) f2(qx, qy, z) f3(qx, qy, z)
f2(qx, qy, z) f4(qx, qy, z) f5(qx, qy, z)
f3(qx, qy, z) f5(qx, qy, z) f6(qx, qy, z)

 a1

a2

a3

 ,
here

f1(qx, qy, z) =
q2
x [(s+ 1) sinh (qrz)− qr(s− 1)z cosh (qrz)] + q2

y cosh (qrz)

2
(
q2
x + q2

y

)
3/2

,

f2(qx, qy, z) =
qxqy[s− 1] [sinh (qrz)− qrz cosh (qrz)]

2
(
q2
x + q2

y

)
3/2

,

f3(qx, qy, z) =
[iqx(s− 1)z sinh (qrz)]

2qr
,

f4(qx, qy, z) =
q2
y [(s+ 1) sinh (qrz)− qr(s− 1)z cosh (qrz)] + 2q2

x sinh (qrz)

2
(
q2
x + q2

y

)
3/2

,

f5(qx, qy, z) =
[iqy(s− 1)z sinh (qrz)]

2qr
,

f6(qx, qy, z) =
[(s+ 1) sinh (qrz) + qr(s− 1)z cosh (qrz)]

2qr
.

(3.12)

Here qr =
√
q2
x + q2

y , the terms a1, a2 and a3 can be obtained by substituting in equation 4.10 the

Fourier space amplitudes of the prescribed boundary condition ui(x, y, z).
A single modal 2-D displacement uz(x, y, zm) that is prescribed at the surface is given as,

uz(x, y, zm) = ũz (qx, qy, zm) ei(qxx+qyy) + ũz (−qx,−qy, zm) e−i(qxx+qyy)

+ũz (qx,−qy, zm) ei(qxx−qyy) + ũz (−qx, qy, zm) e−i(qxx−qyy).
(3.13)
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substituting the above boundary condition in equation 4.10, the Fourier space displacements at any
arbitrary height can be calculated. Once the displacements are known the stresses and strains can
be calculated using the stress strain relationships of a linear elastic solid

σ̃x(q, z)
σ̃y(q, z)
σ̃z(q, z)
σ̃xy(q, z)
σ̃yz(q, z)
σ̃zx(q, z)

 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





ε̃xx(q, z)
ε̃yy(q, z)
ε̃zz(q, z)
ε̃xy
ε̃yz
ε̃zx

 ,



ε̃xx(q, z)
ε̃yy(q, z)
ε̃zz(q, z)
ε̃xy
ε̃yz
ε̃zx

 =



(iqx)ũx(q, z)
(iqy)ũy(q, z)
∂uz(q, z)

∂z
(iqy)ũx(q, z) + (iqx)ũy(q, z)
∂ux(q, z)

∂z
+ (iqx)ũz(q, z)

∂uy(q, z)

∂z
+ (iqy)ũz(q, z)



(3.14)

The analytical solutions of stress, strain and displacement are verified by comparing the body
fields for a displacement prescribed problem with known solution. When a sinusoidal displacement
is prescribed in the normal direction at the surface of a 3-D solid with restricted tangential dis-
placements i.e (uz(x, y, zm) = u0 and ux(x, y, zm) = 0, uy(x, y, zm) = 0), it is well known that the
in-plane cosine transform of the tangential displacements ux(x, y, z) and uy(x, y, z) couples with the
in-plane sine transform of the normal displacement uz(x, y, z). Figures 3.3, 3.4 and 3.5 show the
analytical solution of the displacement fields. Figures 3.6, 3.8 and 3.7 show the analytical solution
of the corresponding strain fields. The inherent periodicity of the problem is well evident with the
body fields repeating in both the x and y directions. Additionally the symmetry of the problem
is also well evident in these body fields, one example is the rotational symmetry of the lateral
displacement fields ux(x, y, z) and uy(x, y, z).
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3.4 3-D areal elastic energy density

The areal elastic energy density Uel is obtained by finding the amount of work per unit area needed
to deform the elastic slab assuming that the indenter satisfies the small slope approximation

Uel(q) =
2C44

2LxLy

∫ Ly

0

∫ Lx

0
ε̃xz (x, y, zm)

 ∑
qx,−qx

∑
qy ,−qy

ũx (qx, qy, zm) ei(qxx+qyy)

 dxdy
+

2C44

2LxLy

∫ Ly

0

∫ Lx

0
ε̃yz (x, y, zm)

 ∑
qx,−qx

∑
qy ,−qy

ũy (qx, qy, zm) ei(qxx+qyy)

 dxdy
+

C12

2LxLy

∫ Ly

0

∫ Lx

0
ε̃xx (x, y, zm)

 ∑
qx,−qx

∑
qy ,−qy

ũz (qx, qy, zm) ei(qxx+qyy)

 dxdy
+

C12

2LxLy

∫ Ly

0

∫ Lx

0
ε̃yy (x, y, zm)

 ∑
qx,−qx

∑
qy ,−qy

ũz (qx, qy, zm) ei(qxx+qyy)

 dxdy
+

C11

2LxLy

∫ Ly

0

∫ Lx

0
ε̃zz (x, y, zm)

 ∑
qx,−qx

∑
qy ,−qy

ũz (qx, qy, zm) ei(qxx+qyy)

 dxdy

(3.15)

Solving the above equation in a similar manner to the 2-D case mentioned in the section 3.2, we
arrive at the following expression

Uel(q) =
∑
q

[
ũx (−qx,−qy, zm) ũy (−qx,−qy, zm) ũz (−qx,−qy, zm)

] [
M

(1)
ij

] ũx (qx, qy, zm)
ũy (qx, qy, zm)
ũz (qx, qy, zm)


+
[
ũx (−qx, qy, zm) ũy (−qx, qy, zm) ũz (−qx, qy, zm)

] [
M

(2)
ij

] ũx (qx,−qy, zm)
ũy (qx,−qy, zm)
ũz (qx,−qy, zm)

,

(3.16)

Where, M1
ij and M2

ij are the inverse of the Green’s function matrices, and have the following form

M
(1)
ij =

 Mxx (qx, qy, zm) Mxy (qx, qy, zm) iMxz (qx, qy, zm)
Mxy (qx, qy, zm) Myy (qx, qy, zm) iMyz (qx, qy, zm)
−iMxz (qx, qy, zm) −iMyz (qx, qy, zm) Mzz (qx, qy, zm)

 ,
M

(2)
ij =

 Mxx (qx, qy, zm) −Mxy (qx, qy, zm) Mxz (qx, qy, zm)
−Mxy (qx, qy, zm) Myy (qx, qy, zm) −iMyz (qx, qy, zm)
−iMxz (qx, qy, zm) iMyz (qx, qy, zm) Mzz (qx, qy, zm)

 ,
(3.17)

24



Here,

Mxx(qx, qy, zm) =
2C44

[
4q4
x(s− 1)zm + qrq

2
y coth (qrzm)

[
2(s+ 1)2 sinh2 (qrzm)− 2q2

y(s− 1)2z2
m

]][
q2
x + q2

y

] [
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
+

4C44q
2
x

[
qr(s+ 1) sinh (2qrzm)− q2

y(s− 1)zm [qr(s− 1)zm coth (qrzm)− 2]
][

q2
x + q2

y

] [
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
Mxy(qx, qy, zm) =

2C44qxqy[1− s] [2qrzm(qr(s− 1)zm coth (qrzm) + 2)− (s+ 1) sinh (2qrzm)]

8qr

[
q2

r (s− 1)2z2
m − (s+ 1)2 sinh2 (qrzm)

]
Mxz(qx, qy, zm) = −

i2qx
[
(C11 − C12 + 2C44)q2

r (s− 1)2z2
m

]
8
[
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
+

[
(s+ 1)(C11(s− 1) + C12(s+ 1)− 2C44s) sinh2 (qrzm)

]
8
[
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]

Myy(qx, qy, zm) = −
2C44

[
2q4
xqr(s− 1)2z2

m coth (qrzm)− 2q2
y(2q

2
y(s− 1)zm + qr(s+ 1) sinh (2qrzm))

][
q2
x + q2

y

] [
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
−

2C44q
2
x

[
2q2
y(s− 1)zm(qr(s− 1)zm coth (qrzm)− 2)− qr(s+ 1)2 sinh (2qrzm)

][
q2
x + q2

y

] [
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
Myz(qx, qy, zm) = −

i2qy
[
(C11 − C12 + 2C44) q2

r (s− 1)2z2
m

]
8
[
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
+

[
(s+ 1) (C11(s− 1) + C12(s+ 1)− 2C44s) sinh2 (qrzm)

]
8
[
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
Mzz(qx, qy, zm) = −

C11

[
8q2

r (s− 1)szm − 4qrs(s+ 1) sinh (2qrzm)
]

8
[
(s+ 1)2 sinh2 (qrzm)− q2

r (s− 1)2z2
m

]
(3.18)

3.5 Asymptotic analysis

This section gives the components of the Green’s function matrix for two limiting cases namely for
the long wavevector limit and for short wavevector limit. Here, we verify the correctness of the
3-D Green’s function matrix by comparing it with that of the 2-D case. As u(x, y, z) reduces to a
constant when qx = 0 and qy = 0 (Tab. 3.1), the short wavevector limit (qxzm << 0, qyzm << 0)
corresponds to the case of uniform loading. It can be seen from Table 3.1 that there exists a one-
to-one correspondence between the components of the 2-D and 3-D cases. The long wavevector
limit (qxzm >> 0 ,qyzm >> 0) corresponds to the case of seminfinite elastic solid. It can be seen
from Table 3.3 that the components of the Green’s function matrix for a 3-D case reduces to that
of a 2-D case when one of the wavevectors is eliminated.
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Table 3.1: Components of the Green’s function matrix for the short wavevector limit

Short wave vector limit(qxzm << 0, qyzm << 0)

Mij 3D 2D

Mxx
C44

2zm

C44

2zm
Mxy 0 0

Mxz 0 0

Myy
C44

2zm
0

Myz 0 0

Mzz
C11

2zm

C11

2zm

Table 3.2: Components of the Green’s function matrix for the case of long wavevector limit

Long wave vector limit(qxzm >> 0, qyzm >> 0)

Mij 3D 2D

Mxx

C44

(
q2
y(s+ 1) + 2q2

x

)
2
√
q2
x + q2

y(s+ 1)

qC44

1 + s

Mxy − C44qxqy(s− 1)

2
√
q2
x + q2

y(s+ 1)
0

Mxz
C44qxs

(s+ 1)

qsC44

1 + s

Myy

C44

(
q2
x(s+ 1) + 2q2

y

)
2
√
q2
x + q2

y(s+ 1)
0

Myz
C44qys

s+ 1
0

Mzz

C11

√
q2
x + q2

ys

s+ 1

qC44

1 + s

As expected, when one of the wavevectors is made equal to zero, the analytical solution of the
displacement for a 3-D boundary value problem given by equation 4.10 reduces to that of the
corresponding 2-D plane strain boundary value problem. Fig. 3.9 shows the schematic of the above
described boundary value problem. Figures 3.10 and 3.11 compare the displacement fields of the
3-D and 2-D cases. It can be seen that there exists a one-to-one correspondence between the two.

26



a cos(2πx)

surface zm=1

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x/Lx

0.2

0.4

0.6

0.8

1.0

1.2

1.4
z/zm

a cos(2πx)

surface zm=1

(b)

Figure 3.9: Cosinusoidal loading on a) 3-D solid, b) 2-D solid.
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Figure 3.10: Normal displacement Calculated using a) 3-D analytical solution, b) 2-D analytical
solution.
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Figure 3.11: Lateral displacement Calculated using a) 3-D analytical solution, b) 2-D analytical
solution.
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Table 3.3: Components of the Green’s function matrix

Mij 3D when qy = 0 2D

Mxx
C11q[1− r] [sinh (qzm) cosh (qzm)− rqzm]

2
[
−r2qz2

m + cosh2 (qzm)− 1
] C11q[1− r] [sinh (qzm) cosh (qzm)− rqzm]

2
[
−r2qz2

m + cosh2 (qzm)− 1
]

Mxy 0 0

Mxz
C11q[1− r]

[
(1− r) sinh2 (qzm)− 2r2qz2

m

]
2[r + 1]

[
−r2qz2

m + cosh2 (qzm)− 1
] C11q[1− r]

[
(1− r) sinh2 (qzm)− 2r2qz2

m

]
2[r + 1]

[
−r2qz2

m + cosh2 (qzm)− 1
]

Myy

C44

√
q2
x coth

(√
q2
xzm

)
2

0

Myz 0 0

Mzz
C11q[1− r] [rqzm + sinh (qzm) cosh (qzm)]

2
[
−r2qz2

m + cosh2 (qzm)− 1
] C11q[1− r] [rqzm + sinh (qzm) cosh (qzm)]

2
[
−r2qz2

m + cosh2 (qzm)− 1
]
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Chapter 4

Indentation by an array of flat rigid
punches
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4.1 Introduction

In the previous chapter we derived the analytical solution to the Green’s function matrix. We
verified the correctness of the Green’s function matrix by comparing its limits with the 2-D Green’s
function matrix under special cases. Here, in this chapter we verify the dynamically equilibrated
solution by comparing the GFMD results with FEM results for the indentation of an elastic slab
by a periodic array of flat rigid punches.

The damping factor used in the dynamics for the hardwall interaction strongly influences the
time taken for the system to equilibrate. This effect can be seen in the numerical results of the
simulation involving the indentation of a 3-D linear elastic solid by a flat rigid punch. Fig. 4.1
shows the dynamic Fourier amplitude of the slowest mode as a function of the iteration step and it
can be seen that for the same number of total iteration steps (ntot), the system which is critically
damped converges faster to the exact solution. To obtain a fast equilibration we used the critical
damping factor of the slowest mode to damp all the harmonic modes in the GFMD simulations.
Recently mode dependent critical damping factors were derived analytically by Dokkum et al. [11]
and as described in the following section.

(a) (b)

Figure 4.1: Convergence of the solution as a function of damping factors a) ũx(0, 0), b)
ux
zm

(
x

Lx
,
y

Ly
=

0.5,
z

zm
).

4.2 Determination of the critical damping factor

Here, we adopt the methodology used by Dokkum et al. [11] to determine the damping factors
corresponding to the different characteristic dynamic regimes of a damped harmonic oscillator. We
start with writing the pSV equations in its velocity explicit and position explicit scheme

ṽn+1(q) = P̃
el
n (∆t)− ṽn(1− η(∆t2)) (4.1)

ũn+1(q) = ũn(q) + P̃
el
n (∆t)2 − ṽn(∆t− η(∆t3)) (4.2)
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as a matrix difference equation in general form[
ũn+1 (q)
ṽn+1 (q)

]
=
[
ϑ
] [ ũn (q)

ṽn (q)

]
. (4.3)

Extending to the 3-D case results in the following matrix ϑ

ϑ =



1 +M11(∆t)2 M12(∆t)2 M13(∆t)2 ∆t− η1(∆t3)0 0
M12(∆t)2 1 +M22(∆t)2 M23(∆t)2 0 ∆t− η2(∆t3) 0
M13(∆t)2 M23(∆t)2 1 +M33(∆t)2 0 0 ∆t− η3(∆t3)
M11(∆t) M12(∆t) M13(∆t) 1− η1(∆t2) 0 0
M12(∆t) M22(∆t) M23(∆t) 0 1− η2(∆t2) 0
M13(∆t) M23(∆t) M33(∆t) 0 0 1− η3(∆t2)

 .
(4.4)

where Mij correspond to the components of the Green’s function matrix derived in Sec. 3.4. ηi is
the direction specific damping factor. The different dynamic characteristic regimes of the damped
harmonic oscillator are given by the eigen values of the matrix. The critical damping factor for each
of the modes can be obtained by equating the eigen values of the matrix to each other. Moreover, it
was shown by Dokkum et al. that the first harmonic mode ũ(0, 0) is the slowest mode and applying
the results of the limits of the Green’s function matrix as given in the Sec. 3.5, we get the following

ηi,cr(q = 0, zm) = 2

√
κi

∆t
− κi, (4.5)

κ1(q = 0, zm) =
C44

zm
, κ2(q = 0, zm) =

C44

zm
, κ3(q = 0, zm) =

C11

zm
(4.6)

Dependency of the critical damping factor on the material properties, substrate geometry, interfacial
properties and the discrete time−step ∆t can be seen from the above equations. We use the damping
factor of the slowest mode to damp all the other modes. The equilibration of the harmonic modes
are collectively verified by validating the GFMD simulation results with the FEM results.

4.3 Numerical simulation of the indentation problems

Z

Y X
XY

Z

Lx

Lx

Ly

Ly
PP

Figure 4.2: Schematic representation of the indentation of a unit cell by a flat rigid punch.
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The boundary value problem shown in the Fig. 4.2 is solved by the GFMD technique using the
3-D Green’s function matrix derived in Sec. 3.4. The GFMD simulation is performed in a periodic
unit cell with fixed bottom, where Lx and Ly are the length and width of the unit cell being equal
to 1.27 µm. The ratio Lp

x/Lx = Lp
y/Ly of the slab to punch is 0.25, where Lp

x and Lp
y are the length

and width of the punch respectively. Contact between the flat rigid punch and the slab is assumed
to be fully sticking with the following constraints imposed:

uz(x, y, zm) = u0
z,

uy(x, y, zm) = 0,
ux(x, y, zm) = 0,

for
Lx − Lp

x

2
< x <

Lx + Lp
x

2
and

Ly − Lp
y

2
< y <

Ly + Lp
y

2
, (4.7)

where u0
z the displacement prescribed at the top surface is 0.005 µm. Outside the contact region,

the surface is assumed to be traction free. The slab is assumed to have the elastic properties of

aluminum with young’s modulus E= 70 GPa, Poisson’s ratio ν = 0.33 and s =
C44

C11
= 0.25. For

the GFMD simulation the surface is discretized using nx×ny equispaced grid points, with nx=128
and ny=128. Contact between the rigid indenters and the slab is modeled through a hard-wall
condition. The damping factor η1,cr used in the simulations is given by

η1,cr(q = 0, zm) = 2

√
κ1

∆t
− κ1, (4.8)

κ1(q = 0, zm) =
C44

zm
, (4.9)

where ∆t the time step = 0.25.

Fig. 4.3a, 4.4a, 4.5a shows the displacement fields at the surface ux, uy ,uz which are obtained by
the damped dynamic energy minimization. The corresponding displacement fields calculated by
FEM are shown in the Fig. 4.3b, 4.4b and 4.5b. Both the above methods have the same discretiza-
tion nodes of the surface layer.

The variation of the displacements ux, uy ,uz along the height of the solid as shown in Fig. 4.7a,
4.8a, 4.9a is obtained from the analytical solution to Fourier space displacement fields derived in
Sec.3.3  ũx(q, z)

ũy(q, z)
ũz(q, z)

 =

 f1(qx, qy, z) f2(qx, qy, z) f3(qx, qy, z)
f2(qx, qy, z) f4(qx, qy, z) f5(qx, qy, z)
f3(qx, qy, z) f5(qx, qy, z) f6(qx, qy, z)

 a1

a2

a3

 (4.10)

Detailed expressions of the components fi are given in Sec.3.3. We later obtain the real space
displacement fields using the definition of the inverse Fourier transform

uz(x, y, zm) =
∑
qx,qy

ũz (qx, qy, zm) ei(qxx+qyy) + ũz (−qx,−qy, zm) e−i(qxx+qyy)

+ũz (qx,−qy, zm) ei(qxx−qyy) + ũz (−qx, qy, zm) e−i(qxx−qyy).

(4.11)
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(a) (b)

Figure 4.3: Displacement
ux
zm

(
x

Lx
,
y

Ly
,
z

zm
= 1) calculated by GFMD a) calculated by FEM.

(a) (b)

Figure 4.4: Displacement
uy
zm

(
x

Lx
,
y

Ly
,
z

zm
= 1) calculated by GFMD a) calculated by FEM.

(a) (b)

Figure 4.5: Displacement
uz
zm

(
x

Lx
,
y

Ly
,
z

zm
= 1) calculated by GFMD a) calculated by FEM.
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From the Fourier space displacements we can calculate the Fourier space stress fields from the
corresponding stress-strain relations of a linear elastic solid

σ̃x(q, z)
σ̃y(q, z)
σ̃z(q, z)
σ̃xy(q, z)
σ̃yz(q, z)
σ̃zx(q, z)

 =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44





ε̃xx(q, z)
ε̃yy(q, z)
ε̃zz(q, z)
ε̃xy
ε̃yz
ε̃zx

 ,



ε̃xx(q, z)
ε̃yy(q, z)
ε̃zz(q, z)
ε̃xy
ε̃yz
ε̃zx

 =



(iqx)ũx(q, z)
(iqy)ũy(q, z)
∂uz(q, z)

∂z
(iqy)ũx(q, z) + (iqx)ũy(q, z)
∂ux(q, z)

∂z
+ (iqx)ũz(q, z)

∂uy(q, z)

∂z
+ (iqy)ũz(q, z)



(4.12)

The real space stress fields shown in the Figure are then obtained by a similar manner shown in
the equation 4.11.

The error between the two numerical results (FEM and GFMD),

errGFMD =

√
< (uFEM

x − uGFMD
x )2 >

u0
z

(4.13)

in Fig. 4.6 is ≈ 0.00196. This error can be minimized with mesh refinements in the case of both
GFMD and FEM.
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Figure 4.6: Comparison of the displacements obtained by GFMD and FEM
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)
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(a) (b)

Figure 4.7: Displacement
ux
zm

(
x

Lx
= 0.5,

y

Ly
,
z

zm
) calculated by a) GFMD, b) FEM.

(a) (b)

Figure 4.8: Displacement
uy
zm

(
x

Lx
,
y

Ly
= 0.5,

z

zm
) calculated by a) GFMD, b) FEM.
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Figure 4.9: Displacement
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(
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Lx
= 0.5,

y

Ly
,
z

zm
) calculated by a) GFMD, b) FEM.
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(a) (b)

Figure 4.10: Stress σxx(
x

Lx
= 0.5,

y

Ly
,
z

zm
) calculated by a) GFMD, b) FEM.

(a) (b)

Figure 4.11: Stress σxz(
x

Lx
= 0.5,

y

Ly
,
z

zm
) calculated by a) GFMD, b) FEM.
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Chapter 5

Estimation of the proportionality
between area and load
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5.1 Introduction

In this chapter we analyse the numerically determined the proportionality constant κ for the in-
dentation of an elastic slab with a flat surface by a rough rigid indenter having self affine rough
surface, through comparison with other analytical models.

Previous studies on κ determination by various authors are summarized in the following Table

Authors H κ ε−1
c ε−1

f ε−1
t a κ = f(x)

Bush et al. [7] 0...1
√

8/π...
√

2π 0 ≈ 1 0 ∞ H

Persson [22] 0...1
√

8/π 0 0 0 ∞ -
Hyun et al. [8] 0.3...0.9 2.2...1.8 2 ≈ 1000 1 1 ν,H

Campañá et al. [16] 0.2...0.8 2.09...1.98 ext. ≈ 1000 1 ∞ H
Prodanov et al. [3] 0...0.8 2.16...1.93 ext. ext. ext. ∞ -
Dokkum et al. [11] 0...0.8 1.45 ext. ext. ext. 0.5, 1, 4,∞ H,ν,a

Yastrebov et al. [23] 0...0.8 2.4...2.2 0 32...512 0 1 H

Table 5.1: The values of κ at p̄/E∗ ≈ 0.1 obtained by different authors. The term “κ = f(x)” indi-
cates the observed dependency of the value of κ, “ext.” means extrapolation to the corresponding
limit, i.e., εi → 0+.

Bush et al. [7] reported the value of κ in the continuum and thermodynamic limit. The authors
modelled the rough surface as uncorrelated individual non-spherical asperities having a statistical
distribution of heights and radii of curvature. Therefore, their theory is limited to the description
of roughness on a single length scale. Neglecting the interaction between the individual asperities
lead to a over estimation of κ in comparison to the other models.

Persson [22] in his theory computes the broadening of the pressure distribution through the Fourier
integral, thereby inherently preventing the finite thermodynamic, fractal and continuum discretiza-
tions of the system. The theory is accurate for full contact conditions as suggested by the experi-
ments and predicts that the κ is independent of the Hurst exponent.

Pradanov et al. [3] used the GFMD to numerically compute the (κsim) for the contact of an incom-
pressible semi-infinite linear elastic solid and rough rigid indenter with self affine rough surface.
The κsim value is then corrected for the effect of discretizing the system. The authors reported a
weak dependence of the κ value to the thermodynamic correction and also reported the κ value to
be independent of the Hurst exponent.

Dokkum et al. [11] used the extended GFMD by Venugopalan et al. [10] to determine the effect
of height zm and Poisson’s ratio on the κTFC value. The continuum limit κTFC was estimated by
adopting the same methodology of Pradanov et al. [3]. A negligible dependence of the κ value on
the elastic properties and surface topography i.e., E, ν and ḡ was reported.

Hyun et al. [8] used an FEM model in plane strain, and reported 1.8 ≤ κ ≤ 2.2 for the finite-
height slab with a = 1 and Poisson’s ratios 0 ≤ ν ≤ 0.5. They observe that the proportionality
coeffi- cient κ is dependent on the Hurst exponent H. Moreover, they report that the proportion-
ality coefficient has a higher-order dependency on the Poissons ratio ν. They choose ε−1

c and vary
ε−1
f ≤ 1000.
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Yastrebov et al. [23] focussed only on the continuum limit corrections and analysed the role of
roughness length scales (spectral width) on the elastic contact of rough surfaces. The authors re-
ported that the inclusion of small length scale roughness leads to the convergence of the κ value to
that of the Persson. Additionally they also found that this effect was more pronounced with the
decrease in Hurst exponent.

Among the various numerical studies done so far on the determination of the proportionality
constant κ, the work of Prodanov et al. [3] was the first to report the extrapolated continuum
mechanical proportionality constant κTFC. As the GFMD simulations can only be done in a finitely
discretized system, it leads to the discretization of smallest length-scale roughness by a finite lat-
tice parameter a. Therefore the authors recommended that in order to estimate the correct value
for κ it is necessary to remove the following numerical effects namely: finite sized repetitive cell
effects introduced by the DFFT used in GFMD (also known as thermodynamic correction) and
discretization cell effects, a result of discretizing the smallest length scale roughness by a finite
lattice parameter (continum correction). Moreover, the realistic rough surfaces are self affine to
atomistic length scales and therefore the effects of using only a finite number of wave-vectors to
describe a self affine rough surface was also corrected for. The thermodynamic εt, fractal εf and
continuum discretization εc of a system are expressed as

εt =
q0

ql
,

εf =
ql

qs,H
,

εc =
qs,H

qs

(5.1)

Where q0 is the wave-vector which corresponds to the length scale of the sample. ql , qs,H are the
wave-vectors which correspond to the roughness at the largest length scale and smallest length scale.
The qs is the wave-vector which corresponds to the lattice parameter of the system. The corrections
were done in the following manner: a reference value for the discretizations εi were chosen, these are
ε−1
c = 2, ε−1

f = 1024 and ε−1
t = 2. The continuum discretization is then independently varied over

the values ε−1
c = 1, 2, 4, 8 and the κsim was numerically estimated while maintaining the reference

values for fractal and thermodynamic discretizations constant. Subsequently the spectral width
was varied over the values ε−1

f = 512, 1024, 2048, 4096 maintaining the values of thermodynamic
and continuum discretizations. Finally the thermodynamic discretization is varied over the values
ε−1
t = 1, 2, 4, 8, keeping the other two values of the discretizations constant. The final κsim value of

a system which is discretized with εt, εf and εc is averaged out over N numerical simulations which
were performed with surfaces having different surface topographies but constant Hurst exponent.
The above average values of κsim are plotted separately as a function of individual discretizations
εi and a power law fit is performed.

5.2 Methodology

We adopted the same methodology of Pradanov et al. [3] and Dokkum et al. [11] in the determi-
nation of the κTFC of a compressible finite slab. From the previous studies of κTFC determination
done using the GFMD it was shown that the influence of the thermodynamic correction is very
minimal and hence we decided to account only for the continuum and fractal corrections. Thus
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equation 5.7 reduces to the following form,

κTFC (p̄/E∗ḡ, H) = κsim (p̄/E∗ḡ, εf, εc)− Cfε
αf
f − Ccε

αc
c . (5.2)

To this end, we chose the following reference values of discretization ε−1
c = 4, ε−1

f = 256 and
ε−1
t = 2. Moreover, we determine the values of the correction factors Ci and αi corresponding to

the individual discretizations εi by independently varying the ε−1
c over 2, 4, 8 and ε−1

f over 128,
256, 512 for the system with Hurst exponent H= 0, Poisson’s ratio ν = 0.33 and aspect ratio
a = 1. We used the Poisson’s ratio of aluminum ν = 0.33, as most of the engineering metals
have Poisson’s ratio in the range of 0.25 to 0.35, the aspect ratio a of the system was chosen to
be 1 in order to directly compare our numerical results with those of the Dokkum et al. [11], as
the latter used the 2D-GFMD. Intentionally, Hurst exponent was chosen to be zero in order to
have a Gaussian surface. For a Gaussian surface the roughness is usually characterized by shorter
wavelengths and the chosen reference value of the continuum discretization ε−1

c = 4 that is nearly
four times smaller than that suggested by Pradanov et al. [3] leads to a insufficient discretization
of the surface. Hence, the determined κ value is the maximum limit value.

In the work of Dokkum et al. [11], the desired nominal pressure p̄ which was calculated as the
traction of the first mode i.e., fz(q = 0) is iteratively reached. The author starts by imposing
arbitrary displacements onto the rigid punch. Depending on the sign of the difference between the
numerically estimated value of p̄ and its required value, the displacement is either scaled by a factor
of 2 or 0.5 and imposed again onto the system. The equilibrium position is then calculated again,
and the above steps are repeated until p̄ reaches the desired value. Adopting the same methodology
will be computationally expensive for our 3-D case.

All the above studies chose low values of p̄ ([3]) and estimate the κsim as the slope of the lin-
ear regime of the contact area fraction versus the nominal pressure curve (with linearity spanning
over the region of p̄ from 0.001 to 0.01). Therefore, we calculate the κsim value of a system in the
linearity regime of ar versus p̄ by applying five steps of displacements whose corresponding p̄ value
lies in the range of 0.001 to 0.01.

From the studies of Dokkum et al. [11] it was seen that the Power spectral density method (PSDM)
generates surfaces closer to the experimentally observed ones. It is also reported that the other
real space methods namely successive random addition (SRA) and random midpoint displacement
(RMD) are bound to spectral artefacts. The methodology used to generate the rough surface is
given here. First the minimum and maximum wave numbers corresponding to the smallest and
largest length scale roughness (spectral width) are specified. Subsequently, using the Box-Muller
transform random variables U1 and U2 are generated in the interval [0,1]. The real and imaginary
parts of the Fourier space Gaussian is calculated as

R{∆̃G}(q) = wR{∆̃G}
√
−2 ln (U1) cos(2πU2);

I{∆̃G}(q) = wI{∆̃G}
√
−2 ln (U1) sin(2πU2),

(5.3)

where real w2
R{∆̃G}

and imaginary parts w2
I{∆̃G}

of the Fourier space variance are

w2
R{∆̃G}

=
(1 + δq,0)

2nx
, w2
I{∆̃G}

=
(1− δq,0)

2nx
. (5.4)
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Where δq,0 is the Kronecker delta and nx is the discretization. The surface topography in Fourier
space is thereby calculated as

h̃(q) =
∆̃G(q)

(
√
q2
x + q2

y)
2(1+H)

(5.5)

5.3 Numerical results

c

(a)

f

s
im

(b)

Figure 5.1: Plot of the proportionality constant κ as a function of continuum discretization (αc =
1.468) a), fractal discretization (αf = 1.02) b)

The κsim is plotted as a function of the continuum discretization in the Fig.5.1 a) for three cases of
spectral width. The continuum limit (εc=0) κsim value reported in this work (henceforth referred
to as κcon) is closer to that estimated in the previous studies of Pradanov et al. [3] and Yastrebov
et al. [23]. Additionally, it can be seen that the κcon marginally scales with the chosen spectral
width and this behaviour is in accordance with the work by Yastrebov et al. [23]. They showed
that for smaller values of the spectral width (corresponding λs = 16), κcon converges to that of the
multi asperity contact theories. The dependency of the κcon value on the spectral width could be
attributed to the fact that inclusion of more and more surface roughness occurs for higher spectral
widths and these additional undulations at the interface leads to lesser values of the contact area
fraction. Though the present work only focusses on Hurst exponent H =0, the κcon is expected
to decrease with the increase in the H as reported in the previous works. This is due to the fact
that roughness lives more strongly on longer wavelengths for higher Hurst exponents and chosen
ε−1
c = 2, 4, 8 will be able to capture the finest undulations.

Fig.5.1 b) shows the plot of κsim as a function of fractal discretization, the results showed sim-
ilar fractal limit (i.e., at εf=0, κsim=κfrac) value to that estimated in the work of Pradanov et al.
[3]. It can be seen that for a finer discretization the κfrac is relatively smaller. It is due to the fact
that fine discretizations (ε−1

c ) are able to capture the smallest undulations as for smaller values
of H the roughness lives more strongly on shorter wavelengths. Similar to the previous case, we
expect the κfrac to scale with the Hurst exponent.
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A power law fit is performed to the above curves. The determined the coefficients Ci and ex-
ponential factors αi corresponding to the discretization are shown in the Tab. 5.2

Reference value Cc Cf αc αf

ε−1
f =256, ε−1

c =4 2.64009 10.24 0.991761 1

ε−1
f =256, ε−1

c =8 2.64009 9.31012 0.991761 0.965235

Table 5.2: Coefficients Ci and exponents αi for κ required to determined κTFC using Eq. (5.7) for
the aspect ratio a = 1 and Poisson’s ratio ν = 0.33.

The individual corrections to the thermodynamic et, fractal ef and continuum ec discretizations
expressed as

et = Ctε
αt
t ,

ef = Cfε
αf
f ,

ec = Ccε
αc
c

(5.6)

are applied to the κsim computed for the discretized system,

κTFC (p̄/E∗ḡ, H) = κsim (p̄/E∗ḡ, H, εt, εf, εc)− Ctε
αt
t − Cfε

αf
f − Ccε

αc
c . (5.7)

The κTFC formulated for the two different reference values of ε−1
c =4, 8 are respectively 2.2 and

2. It can be clearly seen that the choice of the parameter ε−1
c affects the κTFC. Thus we expect

the above κTFC value to converge to that of the Persson in the case of much finer continuum
discretization. Thus the observed dependency on the choice of discretizations leads us to conclude
for a surface topography with H =0, a reference system spectral width (ε−1

f ) equal to 256 and
continuum discretization (ε−1

c ) equal to 16 could lead to a convergence of ≈ 2 i.e., to the value
predicted by that of the Persson’s theory.
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Chapter 6

Conclusion
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In this we work we extended the GFMD technique to 3-D in order to understand the contact
mechanical behaviour of realistic self affine rough surfaces. To this end, the project is separated
into three phases namely: Derivation, Verification and Application.

6.1 Derivation

We adopted the methodology by Venugopalan et al. [10] to derive the analytical solution to the
displacement for an 3-D arbitrary boundary value problem. The coupling between the in-plane
cosine transform of the normal displacement and in-plane sine transform of the lateral displacements
was seen in the case of a sinusoidal displacement prescribed problem (Sec.3.3), this verified the
correctness of the analytical solution. From the displacements, we subsequently calculated the
areal elastic energy density and thereby the Green’s function matrix (Sec.3.4). Under the limiting
cases of qizm >> 0 and qizm << 0, the components of the Green’s function matrix reduced to that
of the 2-D case (Sec. 3.5).

6.2 Verification

The dynamically equilibrated solution for the indentation of a semi-infinite elastic slab by an array of
flat rigid punches is compared with the FEM solution. We adopted the methodology by Dokkum
et al. [11] to derive the damping factor of the slowest mode and equilibrated all the harmonic
modes of the system using the critical damping factor of the slowest mode (Sec.4.2). When same
discretization was given for the surface layer in both the numerical methods, the error between
GFMD and FEM results was found to be ≤ 0.2 % (Sec.4.3).

6.3 Application

Finally, we use the 3D-GFMD for the determination of the continuum mechanical proportionality
constant κTFC of a compressible finite slab. The following observations are made (Sec.5.3): The
continuum limit value κcon was found to be closer to that predicted in the work of Prodanov et al.
[3]. Additionally we saw a marginal scaling in the κcon value with fractal discretization.

The fractal limit value κfrac for a continuum discretization of 4 was found to be around 2.87,
this was closer to the value predicted in the work of Prodanov et al. [3]. Importantly, we saw
that the choice of continuum discretization strongly influences the κfrac value and thereby the κTFC

value. For two different continuum discretizations of 4 and 8 we predicted the κTFC to be around
2 and 2.2 respectively. We conclude that for a reference system having spectral width (ε−1

f ) equal
to 256 and continuum discretization (ε−1

c ) equal to 16 could lead to a convergence of ≈ 1.65 i.e., to
the value predicted by that of the Persson’s theory.
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Chapter 7

Recommendations
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Initially an attempt was made to extend GFMD to be able to model finite-strain problems. To this
end, it was therefore decided to break down the finite-strain problem into infinitesimal small-strain
problems. Thus as a first step it was decided to relax the small-slope approximations, however the
effect of Fourier transformation converted the generic partial differential equation (Sec.3.3) into a
flat boundary ordinary differential equation, which thereby currently limited the applicability of
this technique to finite-strain problems. Therefore, one of the recommendation will be to relax the
small-slope assumption in GFMD.

With the extension of the GFMD successfully made to solve 3-D boundary value problems with
single undulations (i.e bottom fixed), the immediate step will be to extend it to solve generic bound-
ary value problems where the bottom is also not fixed. Once extended GFMD can be merged with
DDP to obtain a 3-D GFDD (Green’s function discrete dislocation dynamics) model to be able to
study contact mechanics of rough metallic bodies [13].
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[10] S. P. Venugopalan, L. Nicola, and M. H. Müser, “Green’s function molecular dynamics: In-
cluding finite heights, shear, and body fields,” Modelling and Simulation in Materials Science
and Engineering, vol. 25, no. 3, p. 034001, 2017.

[11] J. V. Dokkum, “Contact between rough surfaces: A green’s function molecular dynamics
approach,” Unpublished master thesis, TU Delft, 2017.

[12] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proceedings of the
IEEE, vol. 93, no. 2, pp. 216–231, 2005.
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[16] C. Campañá and M. H. Müser, “Contact mechanics of real vs. randomly rough surfaces:
A Green’s function molecular dynamics study,” EPL (Europhysics Letters), vol. 77, no. 3,
p. 38005, 2007.

[17] L. Verlet, “Computer experiment of classical fluids. i. thermodynamical properties of Lennard-
Jones molecules,” Physical Review 159, 98, 1967.

[18] X.-P. Xu and A. Needleman, “Void nucleation by inclusion debonding in a crystal matrix,”
Modelling and Simulation in Materials Science and Engineering, vol. 1, no. 2, pp. 469–493,
2017.

[19] “Fracture mechanical characterisation of mixed-mode toughness of thermoplast/glass inter-
faces,” Computational Materials Science, vol. 19, no. 1, pp. 223 – 228, 2000.

[20] P. S. M.J. Van Den Bosch and M. Geers, “An improved description of the exponential xu and
needleman cohesive zone law for mixed- mode decohesion,” Engineering Fracture Mechanics,
vol. 1, no. 73, p. 12201234, 2006.
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