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Abstract
Exposing intrusion campaigns has become a geopolitical tool, with
governments and commercial firms publishing threat intelligence
reports about hacking attempts and modus operandi. U.S. govern-
ment officials have explained this as not just a defensive practice
but also as a way to ‘impose cost’ on attackers by forcing them to
develop new infrastructure, tools, and techniques, consuming their
scarce resources. We empirically examine this claim by analyzing
attacker behavior before and after the publication of indicators of
compromise (IOCs). Using IOC feeds from two leading commercial
providers – deemed to best enable detection of sophisticated threats
– we matched IOCs against a large dataset of real-world network
traffic metadata. This enabled us to generate sightings retroactively,
capturing malicious activity up to 150 days before and after pub-
lication. Unlike prior work focused on post-publication malicious
activity, our method provides a more complete view over time. Our
results show that most IOCs point to resources that attackers had
already abandoned by the time of IOC publication, limiting their
utility for detecting ongoing attacks and undermining the idea of
‘imposing costs’. Statistical modeling further reveals that publica-
tion status has low explanatory power for sightings, suggesting that
confounding variables exist. We also observed a 30-day delay be-
tween the peak of threat actor activity and IOC publication for one
provider. This study is the first empirical assessment linking threat
intelligence publication to attacker behavior, bridging computer
science and international relations.
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1 Introduction
The US Department of Defense (DoD) strategy on countering state-
sponsored espionage has been heavily influenced by cyber persis-
tence theory, representing a shift towards a more active stance on
cybersecurity [17, 20]. A key element of this more active stance is
to frustrate adversaries’ operations, for example, by disrupting their
infrastructure, publicizing modus operandi, or indicting operators
[4, 26, 33, 34]. The concept of ‘imposing costs’ on threat actors is
now central to the US theory of victory for cyber operations: the
term occurs 27 times in the 2020 report of the Cyberspace Solarium
Committee on cybersecurity policy reform [50] and a 2023 White
House strategy document called on the US to “execute disruption
campaigns at scale” [21].

Publishing threat intelligence is one method of imposing costs.
US Cyber Command has been declassifying intelligence about
threat actors on VirusTotal since 2018 and later directly to its part-
ners, aiming “to impose costs on adversary nation-state [malicious
cyber actors] and increase the resiliency of vulnerable networks”
[24, 32]. Its former commander, General Paul Nakasone, has voiced
the ambition to provide “insights to domestic and foreign partners
to mitigate and respond to malign activity” [37]. The idea that better
intelligence leads to better detection and incurs ‘costs’ on attackers
is also embodied in the foundational ‘pyramid of pain’ model for
threat intelligence [6]. And indirectly, this idea is reflected by the
value of the commercial threat intelligence industry, now worth
hundreds of billions of dollars. One firm alone, Crowdstrike, had
a market capitalization of over $90B in April 2025 [14]. In short,
having access to threat intelligence is thought to improve intrusion
detection, thereby forcing the adversary to adapt tactics. Because
this occupies their scarce resources, high-quality threat intelligence
is believed to lead to a strategic advantage for defenders and perhaps
even be able to ultimately reduce the willingness of the adversary
to attempt future operations [20]. We refer to this as the ‘impose
costs’ mechanism. If this mechanism works as implied, it should, in
principle, be observable in network traffic that adversaries abandon
resources after those have been published as threat intelligence.

In this paper, we present the first attempt to measure an observ-
able relationship between publishing IOCs and adversary behavior.
We employed IOCs from two market-leading threat intelligence
vendors, which represent the best view on the resources of ad-
vanced persistent threats (APTs). Although US Cyber Command
also published IOCs, the size of this set was too small to enable
large-scale analysis. We matched the IOCs against a unique dataset
of 12 months of historical network traffic metadata from govern-
ment enterprise networks, containing IP addresses, domains, and
hashes for all traffic that passed through the intrusion detection
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systems (IDS) in the networks. The resulting dataset of 1 billion
matches – which we call ‘hits’ or ‘sightings’ of an IOC – allowed
us to analyze when threat actors were using the resources in the
period before and after the IOCs were published.

Earlier research with a similar methodology has focused on
malicious activity after IOCs publication and could therefore not
provide systematic insights into attacker behavior over time, nor
how discovery and publication of the IOC affects attacker behavior
(section 2). With our approach, we could test if publication is related
to sightings – where fewer sightings would indicate that attackers
were moving away from the resource once it was published, in line
with the ‘impose cost’ mechanism.

Since our telemetry is generated by large government networks
and high-end threat intelligence, our findings are indicative of
APT behavior, but it cannot capture the full range of APTs. We
assume these networks are high-value targets for espionage, rather
than for financially-motivated attacks. Hence, we would expect
state-affiliated threat actors to dominate the attack patterns we
discovered. Large organizations in other sectors, like the financial
industry, might be more attractive to cybercriminal actors – as
would be small and medium-sized businesses. Thus, the patterns
we observe might be different in those contexts.

We aim to answer the following main research question: Do
threat actors abandon resources after these have been published as
indicators of compromise in commercial threat intelligence? Our anal-
ysis bridges the empirical gap that exists between intrusion detec-
tion and the strategic notion of ‘imposing costs’ on threat actors.
We make the following contributions:

• We provide the first systematic study of threat actor activ-
ity on IOCs before and after their publication. For IOCs to
‘impose cost’ they must point defenders to resources that
attackers are actively using at publication time. We find that
for 81% of IOCs that caused sightings, attackers had already
stopped using the resources by the time that IOCs had been
published to the customer. This challenges the assumption
that IOCs could ‘impose cost’ by enabling intrusion detection
(section 4).

• Through statistical modeling with panel regression analy-
sis, we explore factors that determined when IOCs caused
sightings. We found a credible negative relationship with our
primary variable of interest: whether the IOC had been pub-
lished or not. For the same IOC, the likelihood of a sighting
occurring on a given day decreased by 3.2 percentage points
after publication, holding all other factors constant using
fixed effects. This statistically significant drop in sightings
provides empirical support for the ‘impose costs’ hypothesis,
although the effect is modest, with the model explaining just
8.2% of observed variance. We analyzed various covariates
but did not find other strong explanatory factors, pointing
to the existence of confounding variables (section 5).

• We provide two interpretations of our data. Most threat
intelligence IOCs we studied captured attacker behavior that
had already ended, making it unlikely that they imposed
direct costs on adversaries. For 81% of the IOCs that led to
sightings, the resources they pointed to were seemingly no
longer being used by attackers when customers received the

IOC. Another way to read our findings is that second-order
effects occurred. For example, it is possible that the broader
presence of threat intelligence industry imposes indirect or
anticipatory costs – e.g., by pushing threat actors to adopt
stronger operational security practices (section 6).

• We highlight a potential issue with timeliness of commercial
threat intelligence. For one of the market-leading providers
we observed a consistent 30-day lag between peak attacker
activity and IOC publication. This delay suggests that even
certain high-end providers feeds may not be able to enable
real-time detection and raises questions about their effective-
ness as instruments for imposing costs on adversaries. How-
ever, this finding varied between vendors, with our second
vendor showing different timing patterns (subsection 4.2).

Our findings establish new data about the relationship between
publishing information and threat actor behavior. While our results
have practical implications for network defenders, they also raise
important questions for policymakers relying on threat intelligence
sharing as a mechanism to impose costs on adversaries (section 6).
This article is structured as follows. After we explain our data and
method (§3), we explore IOCs and sightings with descriptive statis-
tics and measurements (§4). We then perform statistical modeling
of the relationship between IOC publication and sightings (§5) and
answer our research question.

2 Related work
Our measurement study is positioned between two fields: inter-
national relations and intrusion detection. To the former, we con-
tribute knowledge about the hypothesized ‘impose cost mechanism’,
while to the latter, we contribute insights into the ability of com-
mercial threat intelligence IOCs to enable detection.

2.1 Strategic studies
From a close reading of policy documents, speeches of key decision-
makers, and other primary sources, Healey [20] reconstructed how
the persistent engagement strategy is thought to lead to stability,
i.e., more overall security. One step in the implied chain of causality
entails for “the USA to observe adversary behavior and warn targets
of the details of coming (or ongoing) attacks, improving US defense”.
Doing so repeatedly is thought to reduce the ability of adversaries
to attack and, eventually, also their willingness to attack [20]. But
what evidence is this based on?

International relations scholars have studied the effects of public
exposure of cyber operations on threat actors. However, this re-
search has been primarily qualitative, e.g., based on case studies of
indictments. Buchanan summarizes that “in general, hackers from
democratic governments seem to fear exposure the most.” [11] A
Columbia University student report – not peer-reviewed – investi-
gated “the impact of leaks and information disclosures on adversary
operations” with interviews and a literature review. Based on this
qualitative work, the students concluded that public disclosures did
not cause any of the studied threat actors to cease operations alto-
gether, although they may have compelled some actors to become
more sophisticated [3].
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Strategic studies often take a broader qualitative approach than
our measurement-based study. Authors have pointed out that infras-
tructure is just one resource that an adversary can be denied use of,
with other examples being software vulnerabilities and competent
staff, which is why the US has pursued criminal charges against
foreign operators since 2013 [34]. Even just signaling capabilities
and credibility have been said to be able to impose costs [50], but
whether or not such steps, or even reciprocal attacks, could actually
deter attackers from consecutive operations has been hotly debated
over the years [44]. Our study provides new empirical data for
future theoretical work on such questions.

2.2 Threat intelligence
Signature-based intrusion detection rests on the idea that once
an adversary has been found in one network, he can be found in
all networks [22]. Threat intelligence uses practices from tradi-
tional counterintelligence to capture adversary behavior in order
to build such signatures and to inform other security controls [42].
In the technical cybersecurity community, ‘imposing costs’ appears
primarily when discussing security controls, e.g., controls that in-
troduce deception in defensive environments [5, 16].

Existing research has described threat intelligence IOCs from
open sources and commercial sources and measured them along
various quality dimensions [8, 19, 28, 52], also investigating the
ability to enable intrusion detection and to do so in a timely fashion
[2, 25, 49]. Some authors also measured the sightings that are gener-
ated from performing intrusion detection using threat intelligence.
Vermeer et al. used data from a managed security service provider
(MSSP) and found that its detection rules triggered most of the
alerts in the first week after they were created [51].

Our study is unique in that it systematically measures threat
intelligence sightings prior to IOC publication, comparing mea-
surements before and after publication to examine the ‘impose
cost’ mechanism. As far as we are aware, there exist only two
other studies that included any threat intelligence sightings prior
to IOC publication in their measurements, but neither attempted to
measure those systematically, nor did they compare measurements
before and after publication. Griffioen et al. measured the timeliness
of open source blocklists [19], which capture a different kind of
activity than commercial IOCs [8]. Tostes et al. performed survival
analysis to optimize the ‘shelf life’ of IOCs, i.e., determine how
long they generated relevant hits after they had been published
[49]. These last authors found just 10% of their IOCs to have led
to sightings ahead of publication, which is inconsistent with our
findings. The authors do not go into specifics about the logs used
to generate sightings and their retention period, although the focus
of their work was on the period after publication.

No study provides empirical data about the relationship between
publication of threat intelligence and behavior of targeted attack-
ers. The most approximate work to ours can be found in studies
of cybercrime, i.e., about threat actors who are primarily finan-
cially motivated [10, 48]. Relevant to our study is the recurring
finding from this work that criminals adapted to takedown actions
against their infrastructure – in this context, primarily IP addresses
and domains – by rapidly replacing these resources. A comprehen-
sive study into the spam ecosystem described how the constant

blocklisting of spammy servers led criminals to adopt a tactic of
rapidly cycling through infrastructure, using 66% of the abusive IPs
for just a single day [47]. These findings about cybercrime actors
are consistent with the ‘pyramid of pain’ model popular in threat
intelligence [6], which characterizes denying infrastructure to at-
tackers as inflicting little ‘pain’, as it is relatively simple to replace.
Although the takedowns did not prevent actors from consecutive
criminal activities, they did incur ‘costs’ on them in the sense of
‘friction’ as understood in persistent engagement.

Some measurements have been performed on the exploitation
of certain software vulnerabilities prior to publication. Symantec
researchers found in a 2012 study that threat actors exploited soft-
ware vulnerabilities on average 8 months before they were publicly
disclosed [7]. Such zero-day attacks are still the exception, however,
and most attack campaigns described in threat intelligence reports
make use of publicized software vulnerabilities [15].

3 Methodology
We take a quantitative approach to a theme that is normally dis-
cussed primarily using qualitative data, such as legal indictments.
Our dataset consists of two high-end feeds with indicators of com-
promise from two firms leading in the threat intelligence industry.
A partner organization matched these IOCs against their unique
dataset consisting of a year of real-world network traffic metadata
from multiple government enterprise networks. The resulting hits
form our dataset of ‘sightings’ of the respective IOCs.

With this approach, we could retroactively identify if and when
an IOC pointed to resources that threat actors were actively using,
also before that IOCwas published by the threat intelligence vendor.
The impose cost mechanism implies that the publication of an IOC
forces attackers to abandon the resource. We should be able to
observe a reduction in sightings of the IOC post-publication. We fit
a panel regression model to estimate whether this effect is visible
in the data.

3.1 Positionality and ethics
The dataset analyzed in this study consists of sightings of com-
mercial indicators of compromise (IOCs), generated by a partner
organization using logs from multiple government enterprise net-
works. These networks are used by government personnel in a
professional capacity. The partner organization requested us to not
name them nor the threat intelligence vendors they use, so as to
no publicly expose their security practices. The fact that logs are
derived from government enterprise networks, rather than e.g. cor-
porate, leads to a limitation in our ability to generalize our finding.
We discuss this and other limitations in section 7.

At the time of the study, all authors were employed at a pub-
lic university. They have expertise in cybersecurity measurement
and policy. The partnership enabled access to unique data while
maintaining the academic independence of the study. The partner
performed the matching of threat intelligence indicators to histori-
cal network metadata. The research team did not access raw traffic
content or personally identifiable information. The study design,
analysis, and interpretation were led exclusively by the authors. No
financial or editorial input was provided by the threat intelligence
vendors whose feeds were analyzed.
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The research team did not have access to any traffic content or
personally identifiable information (PII). Each sighting consisted
only of a timestamp, the triggering IOC, and a coarse log category
(e.g., inbound or outbound connection). As outlined in section 3, this
minimized data exposure and reduced risk to individuals. The study
design and data handling protocol were reviewed and approved by
the authors’ Institutional Review Board (IRB).

In line with our data-sharing agreement with the partner or-
ganization, and to minimize reputational or economic harm, we
deliberately avoided naming or identifying these firms. All refer-
ences to providers are made in general descriptive terms, and any
metadata or field names that could lead to their identification have
been excluded.

There are theoretical risks associated with this study. Threat
actors could use our findings to estimate typical delays between
attacker activity and IOC publication, potentially improving their
operational security and dwell time. However, this information
is already indirectly accessible to them by monitoring CTI feeds
against their infrastructure. We judge the overall risk to be limited.
Conversely, the potential benefits of this work are substantial: it
helps CTI consumers, researchers, and policymakers understand
the empirical limits of current threat intelligence and evaluate the
efficacy of the ‘impose cost’ doctrine in cyber operations.

The CTI providers included in this study were selected based
on publicly available rankings of market leaders in the industry
[18]. We have made good-faith efforts to hypothesize plausible
internal explanations for our findings based on publicly available
information about these firms. We have also disclosed our findings
to the CTI providers involved and invited them to respond to a
draft of this article. One firm responded but did not offer feedback,
nor did they answer our questions about their services and internal
processes. No changes were therefore made to the article based on
vendor response.

The dataset did not contain personal data as defined by applicable
privacy regulations. We believe this work serves the public interest
by contributing evidence-based insights into a widely adopted cy-
bersecurity strategy and the performance of a multi-billion-dollar
threat intelligence industry. In line with open science principles, we
recognize the importance of sharing research artifacts. However,
due to the sensitivity of the dataset and the risk of re-identifying
CTI providers through IOC publication dates or metadata fields, we
are unable to release the dataset or associated code. This decision
was made in accordance with our confidentiality agreement and
ethical obligations to our research subjects.

3.2 Network traffic metadata
The partner organization runs a passive network monitoring sys-
tem using well-known open-source tools on multiple government
enterprise networks. This system generates logs of network traffic
metadata that can be matched against IOCs, e.g., incoming and
outgoing connections, URLs in HTTP sessions, and domains on
TLS certificates. These logs spanned the period from 13-09-2023 to
02-09-2024 (356 days) which we refer to as our measurement period
in the rest of this paper. The retention period of the logs was one
year. This meant that the partner organization could match IOCs
against the logs retroactively for one year. The resulting dataset

consisted of the timestamp of each sighting, an identifier for the
IOC that caused it, and log category that the sighting was found in
(e.g., whether corresponding to an inbound or outbound connec-
tion). In other words, the IP addresses and other metadata from the
enterprise network were not included. This data minimization was
our way of reducing the potential for harm to users of the network.

3.3 Threat intelligence IOCs from two market
leaders

Indicators of compromise (IOCs) enable intrusion detection by cap-
turing artifacts of adversary behavior [22]. The IOCs in this study
were produced by two firms described by Gartner as leading the
threat intelligence industry [18]. The vendors provide feeds for au-
tomated ingestion of the IOCs. Some IOCs are provided alongside
reports that provide more context on the associated attacks and
advanced persistent threat (APT) actor, but we used all IOCs in the
feed, regardless of whether they had been mentioned in a report.
We had access to multiple years of the IOCs published by the two
vendors, but as we will describe next, only IOCs published in our
measurement period are used for collecting sightings.

Besides the date when a sighting took place, the publication date
of the respective IOC was a key variable in our study. We found that
the vendors sometimes re-published IOCs in their feeds. We took as
publication date the moment an IOC was first included in one of the
two vendor feeds. This is best aligned with our research question,
as the moment of feed inclusion is when customers were first able
to use the IOC for intrusion detection and also when the adversary
was first able to learn that the resource had been detected.

In our measurement period of nearly a year, the two commercial
vendors of cyber threat intelligence published a substantial number
of IOCs in their feeds: 12 million and 224 million for Vendor 1
and Vendor 2, respectively. Where Vendor 1 provided all types of
IOCs roughly evenly – including domain names, IP addresses, and
malware binary hashes – the IOCs that Vendor 2 provided were
in majority hashes. The vendors provided certain metadata with
all IOCs, like the type of IOC (IP, domain, etc.). A fraction of the
IOCs were also tagged by the vendors with metadata about the
actor involved, which we use in subsection 4.3 and subsection 5.2.

3.4 Measuring sightings
We speak of a hit or sighting when an IOC appears in the network
traffic metadata. This could be because of, e.g., an outgoing connec-
tion to the IP address of a phishing panel (IP IOC) or a malware
binary being transferred unencrypted (file hash IOC). In a security
monitoring context, such signals would be investigated in the Secu-
rity Operations Center. This triage process is labor intensive and,
even then, often remains unresolved [13]. In our research project,
we had no insight into whether such investigations took place or
what their outcomes were. This means we cannot verify whether a
sighting actually represents an intrusion attempt or that it might
be a false positive alert. Perhaps the IOC was incorrectly tied to a
campaign by the threat intelligence vendor. Perhaps the IOC was
correctly attributed, but at the moment when the sighting took
place, it was no longer associated with the campaign. There is a
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1 year of network traffic metadata
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Figure 1: Illustration of ourmethodology. In order to reduce
noise, we assumed sightings within a window of 𝑑 = 50 be-
fore or after publication of the respective IOC to be relevant,
so a total of 101 days (subsection 3.4). We performed sensi-
tivity analysis for different values of 𝑑 .

lively debate over how long threat intelligence IOCs lead to rele-
vant sightings [49]. This period is likely variable over time and over
different attackers.

Rather than attempting to triage sightings to determine if they
were true positives, we can be sure that we are measuring signal
because false positives would be uncorrelated with IOC publications
dates. In other words, the false positives add random noise to the
overall dataset. As long as a substantial portion of IOCs are true
positives, then we should be able to see a difference between before
and after IOC publication. This enables us to make meaningful
assessments about the relationship between IOC publication and
attacker behavior at a macro level. If we assume that the IOCs of
the market-leading vendors are of high quality, then the bulk of
them should be true positives. In this case, the overall pattern for
the true positives would outweigh those for the false positives. We
would still be able to see the effects of the publication on attacker
behavior.

We took three further steps to reduce the noise in our dataset.
First, to keep those sightings most likely to represent malicious
activity, we used only IOCs labeled by the vendors themselves as
being malicious with high confidence, eliminating roughly one-
third of IOCs with lower confidence.

Second, we dropped sightings corresponding to 194 IOCs that
had been labeled by GreyNoise as being ‘benign scanners’ in the
time period in which the sighting occurred.

Third, we kept only the sightings closest to IOC publication date.
We defined a parameter𝑑 that is the number of days before and after
the publication date of an IOC – a kind of ‘time-to-live’ value for the
IOC, except also before publication (see Figure 1). We only included
sightings that fall inside that window. So, for a window of 𝑑 = 50
days, we would include the sightings that occurred in the period
of 101 days. We conduct sensitivity analysis to assess the effects of
different values of 𝑑 on the results. Where vendors had reuploaded
IOCs multiple times in their feed (subsection 3.3) or the two vendors
had uploaded the same IOC, we used the first publication date for
this filtering process. This time-to-live window also means that we

exclude IOCs that were published within 𝑑 = 50 days of the start or
end of our measurement period, since for those IOCs the network
logs do not cover the full window, thus rendering them no longer
comparable to the other IOCs. To illustrate: the first and last IOCs in
Figure 1 are excluded. Simply put, if our experiment was repeated
in a SOC-setting, and researchers had – over the course of nearly a
year – generated sightings on logs of enterprise networks with a
retention period of 50 days and also stopped generating sightings
on IOCs 50 days after they were published, those researchers would
get a dataset similar to ours. Except that we were able to experiment
with optimal ‘retention period’ (value for 𝑑).

There is a lively debate over how long threat intelligence IOCs
lead to relevant sightings [49]. This is the reason for including the
parameter𝑑 . It allows us to conduct sensitivity analysis on if the size
of the window has any impact on our findings, which we discuss
in Section 4.2. The window you choose impacts what sightings you
observe. On our networks we found a peak of activity around 30
days before publication, which window 𝑑 = 50 properly captured,
and let us answer our research question. A shorter window would
have missed that. A longer window would come with more noise
and with more IOCs being excluded because their window would
fall partially outside of the measurement period. We performed
sensitivity analysis and fitted our models for the four values of 𝑑 ,
which did not lead to substantively different outcomes. We report
the regression tables in Appendix B.

The steps outlined above generated the final dataset. To attempt
to better capture signal with our measurements, we defined two
cohorts of IOCs that consisted of domains: new domains and es-
tablished domains, where we expected the first cohort to lead to
more true positive sightings than the second. As figure Figure 3
shows, the cohort of new domains does indeed to higher numbers
of sightings. Most domains fell somewhere in between and thus
were not included in either cohort. The cohort of established do-
mains were those domains: i) registered more than 50 days before
publication of the IOC, as asserted by DomainTools, and at the
same time ii) included in the Tranco 1M of popular domains at the
start of our measurement period1. This led to a cohort of 57 domain
IOCs that led to sightings. In our most commonly used window of
𝑑 = 50 days, 29 of these remained. Vice-versa, we defined the cohort
of new domains as those registered less than 50 days before IOC
publication and that were not included in the Tranco 1M list. This
cohort contained 156 domains, of which 92 remained in a window
of 𝑑 = 50. Cohort sighting counts are listed in Appendix A.

3.5 Statistical modeling
In section 5, we investigate the relationship between publication of
IOCs and the corresponding sightings by fitting two types of panel
data models. Panel data, also known as longitudinal data, consists
of repeated observations of the same entities (in our case, IOCs)
over time. This rich data structure allows us to control for unob-
served heterogeneity. Both models take as the dependent variable
if sightings occurred for an IOC on a given day, i.e., a binary vari-
able. We did not use a threshold because for our research question,
our goal was to measure if the resource was still being used by

1Tranco is a research-oriented top site ranking hardened against manipulation [27].
The list we used is available at https://tranco-list.eu/list/3VPNL/1000000
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the threat actor at all, no matter to what degree. This choice for
a binary dependent variable also addresses the outsize number of
sightings that around 20% of IOCs lead to (see Figure 3). As we
report in Appendix B, we also experimented with using another
dependent variable based on normalized sighting counts as part
of the sensitivity analysis. This did not lead to a different overall
outcome.

First, we fitted a fixed effects model to address our research ques-
tion directly. Fixed effects models are commonly used in panel data
analysis to control for omitted variable bias. This let us control for
time, meaning to eliminate bias arising from unobserved variables
that were constant across IOCs but which evolved over time, such
as global trends in the threat landscape or defender awareness. They
allowed us to eliminate bias arising from unobserved variables that,
conversely, varied across IOCs but did not change over time, like an
IOC’s type and detectability [45]. We operationalized this with the
Python library linearmodels.panel.PanelOLS. We confirmed
the that a fixed effects model was more suitable for our situation
than random effects – which assume that the entity-specific inter-
cepts are uncorrelated with the regressors – using theWu-Hausman
specification test for the different window sizes of 𝑑 , finding that
the unique error was uncorrelated with our regressors.

Second, simple ordinary least squares (OLS) regression in order to
also shed light on between-group variation (which fixed effects does
not allow). To shed light on between-group variation (which fixed
effects does not allow), we also fitted ordinary least squares (OLS)
models. These models allow us to investigate the impact of time-
invariant covariates, such as IOC type and vendor, on sightings.

We used linear rather than logistic regression models in order to
provide readily interpretable coefficients, something like to an effect
size. Logistic regression would ensure more internally consistent
estimates, at the cost of less intuitive interpretation. To be clear,
neither approach would allow us to make causal claims – that would
require randomized experiments where some IOCs are published
and others are not (section 7).

4 Measurements of sightings
We perform various measurements to understand when IOCs lead
to sightings, and discuss the implications for the ability of IOCs to
impose cost. Unless otherwise noted, all figures are for sightings
recorded using a window of𝑑 = 50 days before and after publication
of the respective IOC.

4.1 Sightings of IOCs
Our approach generated a dataset with a lot of sightings: 1.04 billion
to be precise. This is despite excluding sightings and IOCs that
did not meet specific criteria, as explained in the previous section.
Considering the work that SOC analysts perform triaging sightings
on a daily basis, we can only acknowledge that alert fatigue must
be a real and serious issue [2]. As Figure 2 shows, IP addresses from
Vendor 1 were the largest category of IOCs to cause sightings. From
the feed of 12 million IOCs, 248,000 led to sightings (2% of the total).
This stands in sharp contrast to Vendor 2, where the feed contained
224 million IOCs, so an order of magnitude larger, yet only 893
of these led to sightings (0.0004%). Part of the explanation of this
huge difference is that Vendor 1 provided many network-based
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Vendor 1

Sighted IOCs, by type
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IP address
Other
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Figure 2: Counts of IOCs in two commercial feeds that led to
sightings during ourmeasurement period of about 1 year, be-
fore filtering for themost relevant sightings (subsection 3.4).
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Figure 3: Empirical distribution function of sightings per
IOC in our dataset, after filtering for themost relevant sight-
ings (subsection 3.4). Around 20% of IOCs lead to more than
1,000 sightings. Our domain IOC cohorts receive fewer sight-
ings per IOC, especially the established domains cohort.

IOCs, and that our dataset was generated from logs from a network
monitoring system, whereas Vendor 2 provided more hashes, better
suited for workingwith host-based detection.Malware hashes cause
sightings in network monitoring logs only when the corresponding
files are transferred unencrypted, which seldom happens anymore
due to increased TLS usage. Figure 2 also shows the counts of
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Figure 4: Sightings and IOC publication dates over our measurement period of 356 days, for window 𝑑 = 50.
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Figure 5: Counts of IOCs sighted daily relative to their respective publication dates, for three windows of 𝑑 . A peak in sightings
can be observed around 30 days before IOC publication for windows 𝑑 = 50 and 𝑑 = 100, as well as for 𝑑 = 150 (not pictured).
This pattern is not visible in 𝑑 = 10, demonstrating that defenders need to retain network logs at least 30 days to observe this
activity (see subsection 4.2 and section 6). Sightings from Vendor 2’s IOCs did not reach the visualization threshold.

IOCs that were tagged by the vendors with information about the
related adversary and that we were able to map to a nation-state,
making these numbers more of a function of the research process
than representative data about threat actor activity. The number of
IOCs tagged with these metadata is nevertheless relevant to place
coefficients in subsection 5.2 into context.

Around 20% of IOCs caused disproportionately many sightings,
as the curve beyond 0.8 in Figure 3 shows. This is not dependent on
which window of 𝑑 days we use to filter. This skewed distribution
motivated the decision to binarize sightings – so whether an IOC
had any sighting on a specific day, rather than use the absolute
number of sightings – for use as a dependent variable in statistical
modeling (section 5). Otherwise, the number of sightings of this
20% of IOCs would overwhelm the whole dataset. Also visible in the
figure are our (small) domain IOC cohorts: new IOCs and established
IOCs, as defined in subsection 3.4. Both cohorts lead on average to

fewer sightings per IOC, which reflects that domains lead to fewer
overall sightings (Table 3). New domains are noisier than established
domains for all windows of 𝑑 , which aligns with our expectation
for these IOCs. In Figure 4, we plotted days with sightings over our
measurement period and used a sample so that the variations within
the figure would still be discernible. Most sightings occurred before
IOC publication, as the density of blue dots around the orange dots
shows. The figure also provides a histogram with a daily count
of unique IOCs that led to sightings, showing normal variations
over the measurement period with a slight overall increase over
the measurement period. The slopes at the start and end of the
histogram represent the sightings corresponding to increasing vs.
decreasing numbers of IOCs, as a result of the number of IOCs
meeting the criteria to be included in the dataset (see subsection 3.4).
The reason that the slope at the end takes a different shape is that
most sightings occurred before the IOC publication.
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Figure 6: Distributions and medians of first and last sight-
ings of IOCs, as days relative to the IOC’s publication, per
vendor. Note that plot area size between Vendor 1 and Ven-
dor 2 is not proportional to the number of observations.

4.2 Timeliness of commercial IOCs
For IOCs to ‘impose cost’, they must point defenders to resources
that attackers are actively using at publication time (section 1). This
was true for just 19.0% of the IOCs in our dataset, i.e., out of the
IOCs that led to sightings on the target networks, just 19.0% had
any sightings occur after publication (Table 1). Only this portion
could enable detection of potentially malicious activity that was
ongoing at time of IOC publication. In other words, for 81% of those
IOCs that pointed to relevant malicious activity, that activity had
already stopped by the that time that IOCs became available to the
customer. The inverse was true for a fraction of IOCs, 1.2% (2921
IOCs) which could be considered highly timely because they had all
activity occur after their publication, and thus enabled consumers
of the threat intelligence feeds to detect all the activity as it hap-
pened. In sum, despite significant timeliness differences between
providers shown in Table 1, IOCs from both vendors demonstrated
limited ability to detect ongoing threats at time of publication. This
challenges their ability to ‘impose cost’.

Figure 5 shows sightings on IOCs relative to their publication
date, for window 𝑑 = 50. The upper subplot shows a 1/100 sample
of all sightings in this window in a ‘calendar’ heatmap. And the
lower subplots provides the total daily sighted IOCs. The window
of 𝑑 = 50 days of relevant sightings that we included is visible in
these plots as the slope at the start and end in the lower subplot
(see subsection 3.4). The density of blue markers suggests a higher
density before publication. Recall that our methodology ensures
that IOCs have an equal probability of leading to sightings on each
day within the windows (section 3).

We further investigate sightings relative to IOC publication date
with Figure 6, which shows the first and last sighting of each IOC
for the various windows of 𝑑 . Table 2 provides the correspond-
ing mean and median values. Although the overall timeliness of
both providers was low, as we discussed, we observed large differ-
ences between the two vendors in how sightings were distributed.
For Vendor 1, there is a peak of activity around 30 days ahead of
IOC publication, which provided the vast majority of sighted IOCs
(86,596 vs. 743 from Vendor 2).

Table 1: Counts of IOCswith sightings after publication date

Metric Overall Vendor 1 Vendor 2

Total IOCs (𝑑 = 50) 248 261 247 368 893

With any sightings
after publication

47 110
(19.0%)

47 024
(19.0%)

86
(9.6%)

With first sighting
after publication

2 921
(1.2%)

2 886
(1.2%)

35
(3.9%)

Table 2: IOC timing statistics.Median andmeanfirst and last
sightings, in days relative to IOC publication.

d = 10 d = 50 d = 100 d = 150

Overall Median -7, 4 -34, -27 -41, -27 -44, -27
Mean -5, 3 -36, -15 -52, -10 -63, -1

Vendor 1 Median -7, 4 -34, -27 -42, -27 -44, -27
Mean -5, 3 -36, -15 -53, -10 -63, -1

Vendor 2 Median -2, -2 -3, -2 -2, -2 -2, -2
Mean -3, -2 -10, -5 -7, 0 -22, -7

The implication of these findings is that customers of Vendor 1
will miss the bulk of the adversarial activities associated with the
IOCs as they occur. Theywill detect most incidents only in historical
logs, provided they store them for at least 30 days. This effect was
less pronounced for Vendor 2 (Table 1 although the small number
of observations prevents us from drawing definite conclusions.

It is important to note that although Vendor 1’s 30-day delay
between the peak in potentially malicious activity and IOC publica-
tion was surprising to us, Vendor 1 made certain metadata about the
timeliness of its IOCs transparently available to its customers, for
example, pointing to open source blocklists and the time when IOC
had been observed there before inclusion in its feed. Comparing
that metadata to IOC publication dates revealed the same delay of
around 30 days. This could, for example, be explained by the vendor
performing its own research and validation (section 6).

4.3 Factors influencing sighting patterns
To understand which properties affect how sightings are distributed
relative to IOC publication, we qualitatively compare various sub-
sets of the total set of IOCs. This helps us understand potential
threat actor considerations related to abandoning resources. Note
that some subsets have very small sample sizes, so we do not treat
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these findings as generalizable results, but rather as informative for
future work. This is a result of IOC metadata being quite sparse,
where vendor reports are much richer in context [8]. In subsec-
tion 5.2 we perform statistical modeling using the same factors.

As Table 3 shows, different types of IOC show distinct sighting
patterns: domains persist longer than IP addresses, likely in part
because threat actors are known to use the two types of resources
jointly to rapidly rotate through IP addresses in a technique known
as fast flux [35]. Because a significant portion of domains leads to
sightings beyond publication date, they may prove more relevant
for intrusion detection and could also ‘impose cost’ more than other
types of IOCs. We attribute the differences in timing of hash-based
IOCs to vendor preferences and their sighting timing patterns –
vendor 1 only provided MD5 hashes and vendor 2 provided more
hashes overall (Figure 2, Figure 6). We note again that our mea-
surements are based on logs of network traffic metadata section 3.
This visibility is reflected by network-based IOCs having a higher
probability to lead to sightings.

The results by domain IOC cohort in Table 4 let us compare
established domains to new domains, as explained in subsection 3.4.
Here, we were interested in contrasting the two cohorts, rather
than producing generalizable measurements from either category
of domains. With that in mind, the median last seen date of new
domains is notable – 28 days after publication, compared to 14 days
before publication for established domains. On the one hand, this
suggests that the vendors had provided relevant threat intelligence
about these freshly registered domain names, which still generated
sightings after IOC publication – although not especially timely,
given the median first seen date 38 days before IOC publication. On
the other hand, it shows that actors did not abandon that infrastruc-
ture for quite a while after they had been published. Although the
number of observations (92 IOCs) is too small to draw conclusions
from, as compared to our overall dataset, this finding suggests that
newly registered malicious domain names could perhaps be a cate-
gory of threat intelligence where vendors excel in providing IOCs
that are suitable for real-time detection. Furthermore, because of
how we defined this cohort, these sightings were relatively likely to
reflect actual malicious events, as compared to the overall dataset.

Table 5 shows results for the small subset (0.21% of IOCs that
led to sightings) where the vendor had provided some information
about what the related threat actors motivation was.We coded IOCs
as belonging to threat actors that according to the vendor were
either financially motivated or motivated to perform espionage2
based on metadata the vendors had added, or where we could
deduce this using the vendors’ APT naming conventions [38, 41].

IOCs linked to espionage are observed much earlier than those
linked to financial motives. This is consistent with them being
more stealthy, so more time passes before they are discovered and
published, compared to the financially motivated attacks. They are
also abandoned earlier, well before publication. The median date of
abandonment is 28 days before publication. (We do see a small tail
of espionage IOCs that last after publication.) Perhaps surprisingly,
the attacks tagged as financial have much shorter lifespans: the
median first seen date is 16 days before publication, and the median

2We also classified actors as motivated by ideology (hacktivism) but the corresponding
IOCs did not result in sightings during our measurement period.

Table 3: Distributions of first and last sightings, in days rel-
ative to IOC publication, by IOC type and using 𝑑 = 50.

IOC Type Count Medians FS/LS distribution

IP address 246,275 -34, -27

Domain 1,034 -33, -19

Hash (MD5) 429 -4, -3

Hash (SHA1) 361 -2, -2

Other 162 -23, -23

Table 4: Distributions of first and last sightings, in days rel-
ative to IOC publication, by domain IOC cohort (as defined
in subsection 3.4) and using 𝑑 = 50.

Domain IOC cohorts Count Medians FS/LS distribution

New domains 92 -38, 28

Established domains 29 -26, -14

All domain IOCs 1034 -33, -19

last seen date is 12 days before publication. This might reflect the
fact that criminal operations are not as stealthy and anticipate being
blocklisted quickly. Thus, criminals have internalized the need to
proactively rotate through resources, rather than wait for detection.
This is consistent with prior research in cybercrime [1, 53].

Finally, we look at a very small subset of tags that attribute the
IOCs to the geography of the threat actor (Table 6) and that we were
also able to map to nation-states based on publicly available infor-
mation or the vendors’ actor naming conventions [38, 41]. Russian
actors have been thought to conduct relatively ‘noisy’ operations,
also as a form of signaling [30]. However, our sightings show these
IOCs are published later after the attacks than the IOCs associated
with Chinese threat actors. Just 0.02% of IOCs had this metadata
(using 𝑑 = 50), and this small sample size means that this data only
supports hypotheses that should be explored in future work.

In sum, while some patterns suggest reactive abandonment, the
majority of resources were abandoned well before publication. A
fraction continued to be used despite public disclosure, showing
that threat actor responses to IOC publication are more complex
than simple abandonment models suggest.

5 Statistical modeling
To characterize the relationship between IOC sightings and po-
tential covariates, we fitted four linear regression models on our
dataset, applying window 𝑑 = 50. The regression table provides
the resulting coefficients and model diagnostics (Table 7, on page
11). We provide descriptive statistics for our dependent variable
and covariates in Appendix A. Although our results are based on a
window of 𝑑 = 50 days around IOC publication date, as described
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Table 5: Distributions of first and last sightings, in days rel-
ative to IOC publication, by actor motivation (0.21% of IOCs
have this property) and using 𝑑 = 50.

Actor motivation Count Medians FS/LS distribution

Financial 516 -16, -12

Espionage 16 -48, -28

Untagged IOCs 247,729 -34, -27

Table 6: Distributions of first and last sightings, in days rel-
ative to IOC publication, by actor geography (0.02% of IOCs
have this property) and using 𝑑 = 50.

Actor geography Count Medians FS/LS distribution

China 43 -27, -17

Russia 14 -49, -28

Untagged IOCs 248,203 -34, -27

in subsection 3.4, we also fitted our models for the three other val-
ues of 𝑑 . This did not lead to substantively different outcomes. We
included these additional regression tables in Appendix B.

5.1 Relationship between IOC publication and
sightings, with fixed effects regression

Panel data analysis with fixed effects let us investigate within-group
variation, i.e., how sightings varied over time for each individual
IOC in our dataset. This approach allowed us to make claims about
our research question because it let us control for variations com-
mon to all IOCs in the dataset, like the slight increase in unique IOCs
observed daily over the measurement period (Figure 4). Statisticians
have emphasized that significant levels are not always informative
for large datasets, and so we focus on effect size [54].

As expected from the measurements in the earlier sections of
this paper, there is a negative coefficient, meaning that IOCs had
a lower probability of leading to sightings after their publication:
on average 3.2 percentage points, within the same IOC, holding
all time-invariant factors constant. The effect size is modest but
meaningful: publication explains 8.1% of the within-group variance.
(To compare, in policy analysis, the effects of a policy on an outcome
– say, the impact of minimum wage increases on employment rates
– in the range of 5-20% are seen as meaningful, given that there are
many other unobserved factors at play.) This is consistent with the
hypothesis that threat intelligence can impose costs.

However, as we also learned from the measurements, the peak of
sightings occurred around 30 days before publication. This suggests
that while the fixed effects model shows a statistically significant
negative effect on the occurrence of sightings, the exact publication
day might not capture the precise number of days from which the
decline in sightings begins. In fact, a downward trend in sightings

seems to have already been occurring well before the publication.
This raises the possibility that the publication date itself may not
be the primary driver of the observed decline. Instead, the decrease
in sightings could reflect an ongoing trend, with the publication
potentially coinciding with this natural decline rather than directly
causing it3. We explore some other possible covariates in the next
section, as the fixed effects model does not allow for time-invariant
covariates, like properties of IOCs (which are the same for all sight-
ings of that IOC). Note that we added as a covariate in the fixed
effects model whether the day was a weekday to allow for com-
parison of coefficients, but that this covariate was absorbed by the
model.

5.2 Relationship between other factors and
sightings, with OLS regression

Weused simple linear regression to explore between-group variation,
including properties of the respective IOCs. The main finding from
fitting three models (2, 3, 4) is that, despite including a host of
covariates, none of the models provides a higher explained variance
(Adjusted 𝑅2) than the fixed effects model (1) did for within-group
variation. In other words, there are many confounding factors that
all of these models don’t capture. We go deeper into limitations of
this study in section 7. The only properties of IOCs that stand out
are covariates indicating that the IOC was of the type IP address
or domain (the latter being the reference category). These were
included in model 2. As discussed in section 4, hash-type IOCs
leading to fewer sightings is a result of our dataset being generated
on logs from network monitoring software.

As covariates, we included in models 2-4 the factors that we
explored in subsection 4.3, based on our cohorts, vendor metadata
and naming conventions. We warn again that the sample size is
small for these factors. We therefore do not draw any conclusions
from the resulting coefficients or attempt to generalize. We observe
that in our dataset, IOCs tagged by the vendor to be related to
Russia-nexus actors were more likely to lead to sightings than
those related to China or DPRK – or other states that either weren’t
tagged as threat actors by the vendors, that we couldn’t map, or
that didn’t lead to any sightings. We speculate the small negative
coefficient in model 4 for IOCs belonging to financially motivated
adversaries, as compared to those we classified as being motivated
by espionage, to be a result of the shorter lifespan of the former
category of IOCs (subsection 4.3).

6 Discussion
We found modest evidence of a publication effect that would be in
line with the ‘impose cost’ mechanism: fewer days with sightings
occurred after IOC publication than before. Our panel regression
model also reflected this, indicating a negative relationship be-
tween IOC publication and sighting probability, capturing a small
but meaningful 8.1% of within-group variance in whether or not
sightings occurred on a given day.

On the other hand, the IOC feeds from two market-leading CTI
providers largely captured threats that occurred in the past. For the
IOCs that generated sightings, only 19% provided sightings after

3We do not evaluate 𝑅2 values against benchmarks because we are doing empirical
research and not building a predictive model.



Can IOCs Impose Cost? The Effects of Publishing Threat Intelligence on Adversary Behavior CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 7: Regression models for IOCs that led to sightings in a window of 𝑑 = 50 days around publication date. In subsection 5.1,
we address our research question directly, finding a small but meaningful effect size using the fixed effects model (model 1),
in which publication explains 8.1% of the within-group variance of sightings. In subsection 5.2, we analyze other covariates
using simple linear regression models (models 2, 3, 4). None of combinations of included covariates lead to a higher explained
variance than model 1.

Dependent variable: IOC led to sightings (binary, daily)

FE OLS OLS OLS

(1) (2) (3) (4)

Day was after IOC publication -0.032∗∗∗ -0.161∗∗∗ -0.161∗∗∗ -0.161∗∗∗
(0.000) (0.000) (0.000) (0.000)

Constant 0.207∗∗∗ 0.128∗∗∗ 0.129∗∗∗
(0.000) (0.006) (0.006)

Day was a weekday (ref. Weekend) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000)

Vendor 2 (ref. Vendor 1) -0.004∗ 0.003
(0.002) (0.003)

IOC type: IP adress (ref. Domain) 0.087∗∗∗ 0.087∗∗∗
(0.001) (0.001)

IOC type: MD5 hash (ref. Domain) -0.022∗∗∗ -0.021∗∗∗
(0.002) (0.002)

IOC type: SHA1 hash (ref. Domain) -0.021∗∗∗ -0.022∗∗∗
(0.003) (0.003)

IOC type: Other, e.g. regex (ref. Domain) 0.004 0.013∗∗∗
(0.004) (0.004)

Domain IOC cohort: None (ref. Established domains) -0.007 -0.008
(0.006) (0.006)

Domain IOC cohort: New domains (ref. Established domains) 0.029∗∗∗ 0.027∗∗∗
(0.007) (0.007)

Actor geography: Russia (ref. China) 0.133∗∗∗
(0.009)

Actor geography: DPRK (ref. China) -0.078∗∗
(0.032)

Actor motivation: Financial (ref. Espionage) -0.018∗∗∗
(0.002)

Included effects: Entity, Time - - -
Absorbed covariates: Weekday - - -

Observations 25079007 25079007 25079007 25079007
N. of groups 248261
𝑅2 0.001 0.059 0.059 0.059
Within 𝑅2 0.081
Adjusted 𝑅2 0.059 0.059 0.059
Residual Std. Error 0.008 0.323 0.323 0.323
F Statistic 21042.850∗∗∗ 781826.089∗∗∗ 175906.742∗∗∗ 131958.455∗∗∗

Note: Standard errors in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01.

their publication. The other 81% were only seen before publication.
Thus, their publication was unable to ‘impose cost’ by enabling
intrusion detection of ongoing threats. Furthermore, the peak in
the number of IOCs sighted was 30 days before their respective
publication dates, with a median last sighting 27 days before publi-
cation. Not to mention that over 98% of the total set of published

IOCs were never sighted at all. In the simplest terms, the answer
to our research question would therefore be: threat actors largely
abandon resources before these have been published as IOCs in
commercial threat intelligence.

Since we see that attacker resources are being abandoned before
the publication of the associated IOC, does this mean that the
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impact of the publication is at best modest and perhaps negligible?
Not necessarily. There are second-order effects of publication to
consider. If attackers know that their resources are going to be
detected and published at some point, and this point is earlier
rather than later, they have an incentive to invest in making their
infrastructure resilient to rapid detection and publication. Attackers
could choose to abandon infrastructure proactively rather than wait
for defenders to detect it. This also saves resources in not having
to do counter-detection – i.e., detecting the detection by defenders.

In other words, the pattern we are seeing is consistent with
threat actors having internalized the cost of publication into their
operations with improved operational security. Vendors have them-
selves described behaviors of certain threat actors that indeed seem
to point in this direction – raising the spectre of “IOC Extinction”
[40]. Such a dynamic is similar to what the security community has
previously observed in regular cybercrime. For example, spammers
have played a cat-and-mouse game with email service operators
since the ’90s, in which constant blocklisting of spammy servers led
criminals to adopt a tactic of rapidly cycling through infrastructure,
using 66% of abusive IPs for just a single day [47]. Other examples
are the short life span and rapid cycling of phishing sites [36] and
responses of cybercrime groups to takedowns [10, 48].

In strategic terms, ‘friction’ or costs are being imposed on at-
tackers at a macro level, rather than by the specific instances of
detection and publication. If the cost of publication is internalized
by attackers, then that has interesting implications. Everyone bene-
fits from higher costs for attackers since it raises the barriers for
conducting attacks. These benefits are not restricted to the paying
customers of high-end threat intelligence products. In economic
terms: these products have positive security externalities that are
basically a public good (non-excludable and non-rivalrous).

Our findings do raise three important implications for enterprise
customers of high-end threat intelligence. First, the value of threat
intelligence might be lower than what they are currently willing
to pay for it, if detection is a relevant use case for them. Some
portion of enterprises are spending six figure numbers on licenses
for commercial threat intelligence. In reality, the costs are likely
even higher, since enterprises report using 7 threat intelligence
sources on average [39]. These customers might want to re-evaluate
how much they are willing to spend on threat intelligence feeds, if
they intend to use them for real-time intrusion detection.

The second implication of our findings is that threat hunting,
i.e., retrospective-first detection models, will become even more
essential. Effective use of commercial CTI now depends far more on
retroactive hunting in stored telemetry than on real-time blocking.
This increases the value of good logging and might increasingly
collide with data retention and privacy laws.

A third implication is for all customers of commercial threat
intelligence. Our findings suggest the need for more comprehensive
benchmarking of IOC timeliness based on network logs. We found
that Vendor 1’s IOCs peak approximately 30 days before publication,
whereas Vendor 2 shows far fewer sightings but with a shorter
lag (subsection 4.2). If enterprises combine forces, for example via
an ISAC or CSIRT, they could generate a more comprehensive
evaluation of the vendors relevant for their sector.

Before we turn to the implications for the government strategy to
impose cost, we should ask: would analyzing government-published

IOCs, rather than through from commercial vendors, have led to
different results? The original aim of this research project was
to do just that, but the number of government-published IOCs
was nowhere near high enough to allow a similar quantitative
approach. We can, however, discuss similarities and differences.
Most importantly, the threat actors being tracked are APTs, and
therefore, the sightings that stem from either government-published
or industry-published IOCs would likely be similar.

One difference is that governments can draw on the use of special
investigative powers by, for example, the intelligence agencies. This
might enable them to deliver more timely IOCs than industry can.
On the other hand, to publish these indicators typically requires a
declassification process, which is likely to be time-consuming. So
it is not clear government would be able to move faster. Another
difference is that governments needn’t worry about a business
model and are free to release IOCs to the public at large, which
might cause adversaries to respond differently than releasing them
only to the customer base of threat intelligence vendors.

However, these considerations are made moot by what is hap-
pening in practice. Public releases by US Cyber Command on its
VirusTotal profile have faltered. According to a spokesperson, this is
because it got “additional [legal] authorities to share information di-
rectly with industry partners” [32]. However, according to the same
article, operators are reportedly still sharing threat intelligence on
the platform, just without “going out loud and proud.”.

Does it ultimately matter if there exists a quantitative empiri-
cal basis for the ‘impose cost’ mechanism? Should the policy be
changed because of our findings? In international relations, send-
ing signals to opponents is as much a matter of perception as it is
of hard, measurable impacts. Some authors have argued that the
popularity of the persistent engagement strategy may be driven
by institutional as well as strategic imperatives, as part of the bu-
reaucratic struggle for government resources [29] or simply by
decision-makers lacking better options [31].

A final implication for public policy has to do with cybersecu-
rity advice, which often encourages organizations to share threat
information with each other, for example, in sectoral platforms
like ISACs (Information Sharing and Analysis Centers) [23, 43]. If
the market leaders in threat intelligence publish IOCs that are in
the majority not capturing ongoing threats but past threats, can
individual organizations do better? A 2022 study suggests that, yes,
peer-to-peer sharing of threat intelligence might, in certain cases,
be able to report IOCs faster than corporations [9]. However, given
the cat-and-mouse dynamic described above, the shorter-lived mali-
cious resources will become, the more formidable the challenge will
be to capture and share relevant resources as threat intelligence.

A question to reflect on is why Vendor 1 shows a roughly 30-day
delay between the peak of malicious activity and the publication
of the IOCs, as opposed to Vendor 2. The firm is at least somewhat
transparent to its customers about the delay in IOC publication by
including metadata about the earlier publication of the IOC by third
parties, e.g., open-source blocklists (subsection 4.2). Vendors could
choose not to immediately publish IOCs because their products
are evaluated by metrics other than just timeliness [19]. In a 2020
study [8], when customers were asked what commercial threat
intelligence services are good for, more so than timeliness, many
of them mentioned ‘providing context’ and ‘curation’. Curation,
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i.e., providing only highly vetted IOCs, is directly tied to the fact
that customers need to avoid overwhelming their security opera-
tions analysts with false positive alerts. Curation takes time. As a
result, commercial IOCs are not as likely to lead to false-positive
alerts, contrary to open-source blocklists. The latter may be faster
to report IOCs, but they are often unsuitable for intrusion detec-
tion. Furthermore, subsection 4.3, we did identify freshly registered
domain names as a category of IOCs provided by the two vendors
that were able to lead to relevant sightings after IOC publication
date, suggesting that there are differences in IOC quality that our
quantitative approach does not fully capture. And lastly, we must
remember that threat intelligence firms are not simply IOC facto-
ries; rather, they track activity clusters – from world-famous ‘bears’
and ‘pandas’ to developing trends – tying observations together
and reporting about attribution as well as tools, techniques, and
procedures. We are optimistic that commercial threat intelligence
firms could be more open about their investigative process and
what customers may expect in terms of, e.g., timeliness, accuracy,
and coverage of certain threats. Until this happens, we can only
speculate about the explanation of the delay between sightings on
IOCs and their publication.

7 Limitations
The main limitation of our method is that we measure adversary
behavior indirectly, with sightings of IOCs as a proxy for adversary
behavior. This approach causes three problems. First, our sightings
highly likely include false positives, i.e., observations that were
actually legitimate traffic instead of threat actor behavior. It is hard
to say how large we should expect the portion of false positives
to be – there exists no ground truth of maliciousness of IOCs, as
this is bound to time and place of observation. A study on alert
fatigue in SOCs illustrates that the number of false positives could
well be substantial [2], though SOC alerts are generated by many
more detection rules than mere IOCs. In the end, we assume that
the IOCs of two market-leading firms contain some portion of false
positives but that they do not overwhelm the dataset. An additional
benefit of our approach is that it provided new insights into the
ability of commercial threat intelligence IOCs to enable detection.

Second, even if a sighting does capture actor behavior (i.e., true
positive), different classes of IOCs can lead to different security
outcomes: a sighting in our dataset might represent anything from
network reconnaissance to ransomware being deployed. In other
words, not all IOCs are created equal, yet in this quantitative study,
we do treat them as such.

And third, threat intelligence feeds provide only a partial cover-
age of actor behavior [8]. Threat actors act strategically to evade
detection, and even a hypothetical perfect IOC set would only lead
to sightings if intrusion detection controls happen to be set up on
the right network, and at the right place. In sum, our data reflects
the governmental enterprise networks where the logs were col-
lected. It might have failed to capture those attacks directed against,
say, financial institutions. Still, the networks where the sightings
occurred do form a typical and important use case – i.e., client base
– for these kinds of IOCs.

Another limitation exists in the fact that we used observational
data. While panel data models are powerful tools for inferring

causal relationships, the gold standard for causal inference is ran-
domized controlled trials, where the treatment (in our case, IOC
publication) is randomly assigned. The threat intelligence vendors
would be uniquely positioned to perform such measurements for
scientific benefit – although a true experimental setup would re-
quire that certain IOCs not be published, likely causing ethical (and
commercial) concerns. For observational data like ours, which the
vendors could also look to, future work could benefit from recent
developments in econometrics that better allow causal inference
[12, 46]. We see further opportunities for future work to explore
factors that contribute to sightings like those that we identified in
subsection 4.3, but that had too small a sample size to draw any
conclusions from, like domain IOC cohorts and actor motivation.
Given that it would require a serious number of observations to
be able to drill down into categories, threat intelligence vendors
would again be best positioned to study these factors. Alternatively,
they could label a larger portion of their IOCs with metadata.

Finally, we had to make assumptions in the interpretation of our
data. An especially relevant parameter is the number of days of
sightings to include before and after IOC publication (𝑑). We per-
formed sensitivity analysis on this variable to alleviate the impact
of this assumption. Similarly, we fitted multiple regression models,
which did not lead to substantially different outcomes. Nevertheless,
we were careful not to assert causality. We hypothesized potential
confounding factors that may have contributed to our results.

8 Conclusions
In this study, we found limited empirical evidence for the strategic
notion of ‘imposing costs’ on threat actors. We wanted to bridge
the gap between computer science and international relations and
asked: Do threat actors abandon resources after these have been pub-
lished as indicators of compromise in commercial threat intelligence?
We find that no, they largely abandoned resources earlier.

We described how sightings on commercial threat intelligence
are distributed: just 19% of IOCs that led to sightings still did so
after publication. In other words, for 81% of those IOCs that pointed
to relevant activity for our networks, threat actors had already
stopped using the resources by the time customers received the
IOCs – which would therefore have been unable to ‘impose costs’
(section 4).

To quantify the relationship between sightings and IOC publica-
tion, we fitted a panel regression model using fixed effects, finding a
negative relationship between IOC publication and the probability
of future sightings occurring on a given day. The model was able to
explain a small but meaningful 8.2% of variance in whether or not
an IOC was sighted (section 5). We raised questions about timeli-
ness of commercial threat intelligence, because the IOC feed of one
vendor captured malicious activity that occurred largely around 30
days before publication to the customer (section 4).

In sum, the commercial threat intelligence IOCs feeds that we
studied largely captured malicious activity that occurred before
customers were able to use them for intrusion detection. Does this
mean that threat intelligence cannot ‘impose cost’? Not necessarily.
Clearly, more sightings occurred before IOC publication than after,
as both the distribution of the data and statistical modeling show.
We provide various interpretations of our findings, one of which is
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that second-order effects may have occurred because threat actors
internalized a higher degree of operational security. This explana-
tion has interesting implications for network defenders as well as
policymakers (section 6). We are careful with claims of causality
and point to the challenges of trying to measure malicious activity
(section 7).
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A Covariate descriptive statistics

Table 8: Descriptive statistics of dependent variable and covariates in section 5.

Binary Variables

Variable Mean Frequency of 1s % of 1s % Units Ever 1 % Units Change

IOC seen 0.127 3,177,614 12.7 100.0 100.0
IOC published 0.505 12,663,657 50.5 100.0 100.0
Weekday 0.715 17,919,227 71.5 100.0 100.0

Categorical Variables

IOC Source

Category Frequency % % Units Ever in Category % Units Change

Vendor 1 24,984,168 99.6 99.6 0.0
Vendor 2 94,839 0.4 0.4 0.0

IOC Type

Category Frequency % % Units Ever in Category % Units Change

IP address 24,873,775 99.2 99.2 0.0
Domain 106,656 0.4 0.4 0.0
Hash (MD5) 44,541 0.2 0.2 0.0
Hash (SHA1) 37,673 0.2 0.1 0.0
Other 16,362 0.1 0.1 0.0

Domain IOC cohorts

Category Frequency % % Units Ever in Category % Units Change

New domains 713 0.0 0.0 0.0
Established domains 147 0.0 0.0 0.0
None 25,068,301 100.0 100.0 0.0

Actor Geography

Category Frequency % % Units Ever in Category % Units Change

China 4,343 0.0 0.0 0.0
Russia 1,414 0.0 0.0 0.0
DPRK 101 0.0 0.0 0.0

Actor Motivation

Category Frequency % % Units Ever in Category % Units Change

Financial 54,742 0.2 0.2 0.0
Espionage 1,616 0.0 0.0 0.0

Note: Number of observations: 25,079,007; Number of unique units: 248,261
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B Regression tables for sensitivity analysis
Analysis in the body of this article was instrumented using a win-
dow of sightings around 𝑑 = 50 days around IOC publication date,
as explained in the method section (see subsection 3.4).

As part of our sensitivity analysis, we also fitted regression mod-
els for other values of 𝑑 . Tables 9, 10 and 11 show regression models
for 𝑑 = 10, 𝑑 = 100, and 𝑑 = 150, respectively.

We furthermore ran our analysis for another unit of analysis
(using the standard window of 𝑑 = 50), and report the results in

Table 12. All regression models in this article so far had as depen-
dent variable the binarized daily sightings – i.e., 1 if any sightings
occurred for an IOC on a given day and 0 if there did not.

The dependent variable for Table 12 is the count of daily sight-
ings, normalized using the sum of sightings for the respective IOC
throughout the measurement period (only for that window, i.e., in
this case, 𝑑 = 50).

𝐷𝑉 =
𝑑𝑎𝑖𝑙𝑦 𝑠𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠 𝑜 𝑓 𝐼𝑂𝐶

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝑠 𝑜 𝑓 𝐼𝑂𝐶 (𝑓 𝑜𝑟 𝑡ℎ𝑖𝑠 𝑤𝑖𝑛𝑑𝑜𝑤) .
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Table 9: Regression models for IOCs that led to sightings in a window of 𝑑 = 10 days around publication date.

Dependent variable: IOC led to sightings (binary, daily)

FE OLS OLS OLS

(1) (2) (3) (4)

Day was after IOC publication -0.103∗∗∗ -0.099∗∗∗ -0.099∗∗∗ -0.099∗∗∗
(0.001) (0.001) (0.001) (0.001)

Constant 0.397∗∗∗ 0.158∗∗∗ 0.160∗∗∗
(0.001) (0.027) (0.027)

Day was a weekday (ref. Weekend) 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗
(0.001) (0.001) (0.001)

Vendor 2 (ref. Vendor 1) -0.026∗ -0.018
(0.015) (0.015)

IOC type: IP adress (ref. Domain) 0.251∗∗∗ 0.251∗∗∗
(0.006) (0.006)

IOC type: MD5 hash (ref. Domain) -0.023 -0.024
(0.015) (0.015)

IOC type: SHA1 hash (ref. Domain) -0.021 -0.023
(0.016) (0.016)

IOC type: Other, e.g. regex (ref. Domain) 0.417∗∗∗ 0.417∗∗∗
(0.029) (0.029)

Domain IOC cohort: None (ref. Established domains) -0.009 -0.011
(0.028) (0.028)

Domain IOC cohort: New domains (ref. Established domains) 0.032 0.030
(0.030) (0.030)

Actor geography: Russia (ref. China) 0.027
(0.017)

Actor geography: DPRK (ref. China) -0.290∗∗∗
(0.073)

Actor motivation: Financial (ref. Espionage) -0.018∗∗
(0.008)

Included effects: Entity, Time - - -
Absorbed covariates: Weekday - - -

Observations 1834455 1834455 1834455 1834455
N. of groups 87339
𝑅2 0.006 0.011 0.015 0.015
Within 𝑅2 0.018
Adjusted 𝑅2 0.011 0.015 0.015
Residual Std. Error 0.027 0.477 0.476 0.476
F Statistic 9709.255∗∗∗ 10248.144∗∗∗ 3191.585∗∗∗ 2395.690∗∗∗

Note: Standard errors in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 10: Regression models for IOCs that led to sightings in a window of 𝑑 = 100 days around publication date.

Dependent variable: IOC led to sightings (binary, daily)

FE OLS OLS OLS

(1) (2) (3) (4)

Day was after IOC publication -0.154∗∗∗ -0.121∗∗∗ -0.121∗∗∗ -0.121∗∗∗
(0.000) (0.000) (0.000) (0.000)

Constant 0.151∗∗∗ 0.091∗∗∗ 0.091∗∗∗
(0.000) (0.004) (0.004)

Day was a weekday (ref. Weekend) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗
(0.000) (0.000) (0.000)

Vendor 2 (ref. Vendor 1) 0.002 0.006∗∗∗
(0.002) (0.002)

IOC type: IP adress (ref. Domain) 0.071∗∗∗ 0.071∗∗∗
(0.001) (0.001)

IOC type: MD5 hash (ref. Domain) -0.013∗∗∗ -0.014∗∗∗
(0.002) (0.002)

IOC type: SHA1 hash (ref. Domain) -0.013∗∗∗ -0.014∗∗∗
(0.002) (0.002)

IOC type: Other, e.g. regex (ref. Domain) -0.019∗∗∗ -0.017∗∗
(0.007) (0.007)

Domain IOC cohort: None (ref. Established domains) -0.010∗∗∗ -0.010∗∗∗
(0.004) (0.004)

Domain IOC cohort: New domains (ref. Established domains) 0.028∗∗∗ 0.028∗∗∗
(0.004) (0.004)

Actor geography: Russia (ref. China) 0.068∗∗∗
(0.005)

Actor motivation: Financial (ref. Espionage) -0.009∗∗∗
(0.002)

Included effects: Entity, Time - - -
Absorbed covariates: Weekday - - -

Observations 31022139 31022139 31022139 31022139
N. of groups 154333
𝑅2 0.023 0.044 0.044 0.044
Within 𝑅2 0.058
Adjusted 𝑅2 0.044 0.044 0.044
Residual Std. Error 0.037 0.284 0.283 0.283
F Statistic 731733.953∗∗∗ 707022.086∗∗∗ 159628.265∗∗∗ 130622.606∗∗∗

Note: Standard errors in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 11: Regression models for IOCs that led to sightings in a window of 𝑑 = 150 days around publication date.

Dependent variable: IOC led to sightings (binary, daily)

FE OLS OLS OLS

(1) (2) (3) (4)

Day was after IOC publication -0.096∗∗∗ -0.096∗∗∗ -0.096∗∗∗ -0.096∗∗∗
(0.000) (0.000) (0.000) (0.000)

Constant 0.119∗∗∗ 0.062∗∗∗ 0.062∗∗∗
(0.000) (0.003) (0.003)

Day was a weekday (ref. Weekend) 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗
(0.000) (0.000) (0.000)

Vendor 2 (ref. Vendor 1) 0.019∗∗∗ 0.057∗∗∗
(0.004) (0.004)

IOC type: IP adress (ref. Domain) 0.057∗∗∗ 0.057∗∗∗
(0.001) (0.001)

IOC type: MD5 hash (ref. Domain) -0.012∗∗∗ -0.009∗∗∗
(0.003) (0.003)

IOC type: SHA1 hash (ref. Domain) -0.012∗∗∗ -0.010∗∗
(0.004) (0.004)

IOC type: Other, e.g. regex (ref. Domain) -0.030∗∗∗ -0.034∗∗∗
(0.006) (0.006)

Domain IOC cohort: None (ref. Established domains) 0.000 0.000
(0.003) (0.003)

Domain IOC cohort: New domains (ref. Established domains) 0.044∗∗∗ 0.044∗∗∗
(0.003) (0.003)

Actor geography: Russia (ref. China) 0.027∗∗∗
(0.008)

Actor motivation: Financial (ref. Espionage) -0.053∗∗∗
(0.003)

Included effects: Entity, Time - - -
Absorbed covariates: Weekday - - -

Observations 16463496 16463496 16463496 16463496
N. of groups 54696
𝑅2 0.005 0.034 0.035 0.035
Within 𝑅2 0.043
Adjusted 𝑅2 0.034 0.035 0.035
Residual Std. Error 0.016 0.255 0.255 0.255
F Statistic 80953.181∗∗∗ 292456.007∗∗∗ 66518.343∗∗∗ 54455.516∗∗∗

Note: Standard errors in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 12: Regression models for IOCs that led to sightings in a window of 𝑑 = 50 days around publication date, using another
dependent variable: normalized daily sightings.

Dependent variable: Normalized count of daily sighting

FE OLS OLS OLS

(1) (2) (3) (4)

Day was after IOC publication -0.005∗∗∗ -0.017∗∗∗ -0.017∗∗∗ -0.017∗∗∗
(0.000) (0.000) (0.000) (0.000)

Constant 0.019∗∗∗ 0.018∗∗∗ 0.018∗∗∗
(0.000) (0.001) (0.001)

Day was a weekday (ref. Weekend) 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
(0.000) (0.000) (0.000)

Vendor 2 (ref. Vendor 1) -0.001∗∗∗ -0.001∗∗∗
(0.000) (0.000)

IOC type: IP adress (ref. Domain) 0.000 0.000
(0.000) (0.000)

IOC type: MD5 hash (ref. Domain) 0.001∗ 0.001∗
(0.000) (0.000)

IOC type: SHA1 hash (ref. Domain) 0.001∗∗ 0.001∗∗
(0.001) (0.001)

IOC type: Other, e.g. regex (ref. Domain) 0.001∗∗ 0.002∗∗
(0.001) (0.001)

Domain IOC cohort: None (ref. Established domains) 0.000 0.000
(0.001) (0.001)

Domain IOC cohort: New domains (ref. Established domains) 0.000 0.000
(0.001) (0.001)

Actor geography: Russia (ref. China) -0.000
(0.002)

Actor geography: DPRK (ref. China) 0.000
(0.006)

Actor motivation: Financial (ref. Espionage) -0.000
(0.000)

Included effects: Entity, Time - - -
Absorbed covariates: Weekday - - -

Observations 25079007 25079007 25079007 25079007
N. of groups 248261
𝑅2 0.000 0.021 0.021 0.021
Within 𝑅2 0.021
Adjusted 𝑅2 0.021 0.021 0.021
Residual Std. Error 0.001 0.059 0.059 0.059
F Statistic 11183.947∗∗∗ 272792.168∗∗∗ 60621.943∗∗∗ 45466.484∗∗∗

Note: Standard errors in parentheses.
* p < 0.1; ** p < 0.05; *** p < 0.01.
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