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Abstract

Offshore monopile installation campaigns frequently face delays due to environmental loads during dy-
namic lifting operations. This problem is especially acute in the lift-off phase, when the monopile is
suspended and the vessel is exposed to wave-induced motion. The goal of this thesis is to investigate
whether optimization of the rigging geometry can reduce such downtime by mitigating dynamic amplifi-
cation effects.

A planar, linearized Lagrangian model was developed to simulate the dynamic response of the rigging
system suspended from a vessel-mounted crane. The model includes multiple pendulum bodies and uses
a frequency-domain formulation to calculate the transfer function from crane tip motion to resulting
sideloads. This transfer function is used to compute the most probable maximum (MPM) sideloads
across a range of sea states. A grid-based workability analysis links these loads to operational thresholds,
and a numerical optimization was implemented to tune the rigging geometry for maximum uptime.

The analysis identified a dominant resonance near 7, = 8.16s — the second natural mode of the suspended
system — as the primary driver of limit exceedance. By modifying the lengths of the rigging elements, the
natural frequencies could be shifted away from this critical range. The optimized configuration improved
workability by 10-20 percentage points, depending on the metocean conditions.

Although the simplified model underestimates absolute load levels compared to a detailed OrcaFlex
simulation, the relative response behavior is well captured. A conservative threshold correction was
applied to enable consistent limit checking. The study shows that dynamic rigging optimization is a viable,
low-effort strategy for reducing downtime in offshore monopile installation, and should be considered
during project engineering.
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1 Introduction

The rapid expansion of offshore wind energy is reshaping the future of sustainable electricity generation
in Europe and beyond. As countries work to meet increasingly ambitious climate targets, the role of
offshore wind farms is growing in both scale and strategic importance. This transition presents a wide
range of engineering challenges, particularly in the installation phase of wind turbine foundations. This
thesis explores one of these challenges — the operational bottlenecks during monopile installation — and
proposes a method to mitigate associated downtime through dynamic modeling and rigging optimization.

1.1 Background of Offshore Wind Energy

The transition towards a low-carbon energy system is one of the major engineering and policy challenges
of the coming decades. Offshore wind energy is expected to play a pivotal role in this transition, offering
large-scale renewable electricity generation in regions with limited land availability. Offshore wind farms
benefit from higher and more consistent wind speeds compared to onshore locations, as well as reduced
spatial and visual constraints (IEA, 2019).

The Netherlands is well positioned to accelerate offshore wind deployment, thanks to its favourable North
Sea conditions, strong maritime industry, and established offshore infrastructure. According to the Dutch
national roadmap, the government aims to achieve 21 GW of installed offshore wind capacity by 2030
(Noordzeeloket, 2020). This ambition aligns with broader European climate targets and is supported by
an increasingly mature and cost-competitive offshore wind market (WindEurope, 2020).

At a global level, technological progress has led to significant cost reductions and scaling-up of offshore
wind systems. Turbine capacities now exceed 15 MW, and developments are pushing towards rotor
diameters of 250 meters (IEA, 2019; World Forum Offshore Wind, 2024) as shown in Figure 1. These
trends open the door to large-scale offshore energy hubs, but also introduce new engineering challenges
related to foundation design, logistics, and marine operations.
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Figure 1: Evolution of offshore wind turbine capacity over time, including forecasted trends. Further
technology improvements through to 2030 could see bigger turbines sizes of 15-20 MW. Adapted from
(IEA, 2019).

Monopile foundations remain the dominant support structure for fixed-bottom offshore wind turbines,
particularly in water depths up to 50 meters (IEA, 2019). As turbine size and hub heights continue to
grow, the requirements for safe and efficient installation processes become more demanding. As a result,
there is growing interest in optimizing these operations to reduce downtime and improve workability.

1.2 Monopile Installation and Operational Challenges

Monopile installation offshore is a highly coordinated operation involving transport, lifting, upending,
and driving of large steel foundations into the seabed. Heavy lift vessels (HLVs), such as the Bokalift
2, play a central role in this process by handling monopiles that can exceed 100 meters in length and
weigh upwards of 1,500 tonnes (DNV, 2024). Once lifted from a barge or transport deck, the pile is
typically upended into a vertical position and lowered into a gripper or template before being driven
using a hydraulic hammer.

Each step in this sequence must be executed within strict operational limits, many of which are governed
by environmental conditions. Even moderate wave heights can induce vessel motions that disrupt the
relative alignment between the crane tip and the suspended pile. These dynamic interactions are especially



critical during the lift-off and vertical stabbing phases, where excessive sideloads or uncontrolled contact
can compromise both safety and equipment integrity (WindEurope, 2020).

The sensitivity of these operations to sea state conditions results in narrow weather windows — par-
ticularly during the North Sea winter and shoulder seasons — and contributes to frequent operational
delays. Crane lifts are generally suspended when motion or load thresholds are exceeded, leading to
costly standby periods. This challenge has only grown with the trend toward larger turbines and deeper
sites, which demand longer and heavier monopiles and stretch the capacity limits of existing equipment
(IEA, 2019).

As a result, improving the workability of offshore installation operations has become a priority. Even
modest gains in allowable wave conditions can yield significant reductions in project risk and cost. This
motivates ongoing efforts in dynamic modeling, motion prediction, and rigging optimization to minimize
downtime and expand safe operational windows.

1.3 Motivation and Relevance for Boskalis

During discussions with the Marine Engineering team at Boskalis, the issue of pendulum-like motion
during monopile lift-off was identified as a recurring operational bottleneck. This problem was particularly
evident during the installation of the Revolution Wind Farm off the east coast of the United States in
2024. At this site, dynamic loading in the rigging — especially during the transfer and initial lift-off from
the feeder barge as shown in Figure 2 — frequently approached or exceeded allowable limits, leading to
unplanned operational delays.

Figure 2: Feedering operation during monopile installation: the Bokalift 2 lifts monopiles from a feeder
barge.

A contributing factor to this bottleneck lies in the regulatory environment of U.S. offshore wind projects.
Under the Jones Act, offshore transport between U.S. ports must be carried out by vessels that are U.S.-
built, U.S.-owned, and U.S.-crewed (U.S. Customs and Border Protection, 2024). Since European heavy
lift vessels (HLVs) like the Bokalift 2 do not meet these requirements, a feedering approach is typically
used. In this process, monopiles are transported to the offshore site using Jones Act—compliant feeder
barges or from Canadian ports, after which the HLV lifts them onboard for installation (McLean, 2023).

While feedering provides a viable legal workaround, it introduces operational complexity. The relative
motion between the HLV and feeder barge is highly sensitive to wave conditions, especially during the
lift-off phase. This motion not only amplifies side loads in the rigging, but also narrows the weather
window for safe operations — contributing to increased downtime and elevated project costs.

From Boskalis’ perspective, improving the workability of HLV-based monopile installation under these
constraints is of both technical and economic relevance. Small changes in rigging configuration or dy-
namic behavior that reduce peak loads can lead to meaningful gains in project efficiency. Reducing
unnecessary dynamic amplification helps avoid operational interruptions, preserves equipment longevity,
and expands the operable sea state envelope — all of which support more competitive and predictable
offshore construction planning.



1.4 Research Objectives and Questions

This thesis investigates how the configuration of a crane rigging system can be optimized to reduce
weather-related downtime during offshore monopile installation. The focus is placed on the lift-off phase,
where the suspended monopile exhibits pendulum-like motion that may lead to sideload exceedances and
halted operations.

The study is motivated by operational challenges encountered aboard the Bokalift 2 vessel, where
resonance-induced amplifications were observed to cause frequent constraint violations. These events
highlight the need for improved understanding of the system’s dynamic response — and whether its
configuration can be tuned to improve uptime.

The central research question guiding this work is:

How can the rigging configuration of an offshore heavy lift vessel be optimized to reduce down-
time during offshore monopile lift-off operations?

To answer this question, the research addresses the following sub-questions:

1. Which operational constraint contributes most to weather-related downtime, and is suitable for
optimization?

2. Can a simplified dynamic model accurately capture the behavior of the crane-rigging—monopile
system?

3. Can this model be used to optimize the rigging geometry for improved workability?
4. Does this optimization result in meaningful operational improvement?

By combining dynamic modeling, workability evaluation, and parameter optimization, this thesis aims to
demonstrate that even minor changes to the rigging setup can significantly improve offshore installation
efficiency — with minimal engineering or hardware effort.

1.5 Thesis Outline

The structure of this thesis reflects the step-by-step approach taken to analyze, model, and optimize
the dynamic rigging system used during offshore monopile installation. Following the introduction, the
report begins with a detailed analysis of operational constraints based on simulation data, identifying the
key bottlenecks contributing to downtime (Section 2: Problem Analysis). This forms the foundation
for the theoretical background, which reviews the relevant dynamics and workability concepts needed to
build a suitable model (Section 3: Theoretical Background).

The methodology chapter presents the development of a simplified Lagrangian rigging model and its
integration into a frequency-domain framework for sideload prediction (Section 4: Model Description
and Methodology). The model is then validated against an OrcaFlex simulation to assess its accuracy
and limitations (Section 5: Model Validation). The subsequent results chapter applies this model to
evaluate operational workability and explores how rigging parameters can be tuned to reduce downtime
(Section 6: Results).

Finally, the discussion and conclusion chapter reflects on the implications of the findings, addresses model
limitations, and offers recommendations for practical implementation and future research (Section 7:
Discussion and Conclusion).

Note on Al-assisted tools. In preparing this thesis, I made limited use of Al-based assistants to
improve efficiency and clarity. Specifically, I used them (i) as a writing aide to refine phrasing and
consistency, (ii) to accelerate literature discovery by surfacing potentially relevant sources for me to
review, and (iii) as a coding assistant and debugger to propose implementations, explain error traces,
and suggest fixes. All modelling choices, equations, parameter values, and interpretations are my own; all
results and figures were produced from my verified scripts and, where applicable, cross-checked against
OrcaFlex simulations. No text, data, or citations were included without my review, and any sources
identified with AT assistance were consulted directly and are cited in the references.



2 Problem Analysis

Offshore installation campaigns are often hindered by weather-related downtime, especially during critical
lifting operations. For the Bokalift 2 vessel, this downtime is governed by the exceedance of various op-
erational limits related to motions, forces, and clearances. These conditions are systematically evaluated
using so-called Unity Check (UC) values. The UC for a given parameter is calculated by normalizing the
predicted operational load against its allowable threshold:

Predicted Load

ve = Allowable Limit

(1)
If this dimensionless ratio exceeds 1.0, the operational limit is considered breached, and the operation
cannot proceed safely.

To better understand which constraints most critically impact operational uptime, an extensive analysis
was performed on time-domain simulation data. This analysis identifies which UC values are most
frequently violated, how they interact, and where targeted improvements could yield the largest reductions
in downtime. The findings form the foundation for the modeling and optimization strategies presented
in later chapters.

This chapter introduces the methodology used for analyzing UC exceedance patterns, presents the most
critical bottlenecks, and discusses their relevance to the dynamic rigging model developed in this thesis.

2.1 Methodology

To systematically identify the main contributors to weather-related downtime, a structured analysis was
performed on UC exceedance data. The methodology consisted of five main steps:

1. Data Collection: The analysis uses a dataset containing UC values for a wide range of operational
parameters. A value above 1.0 indicates that the corresponding operational limit has been exceeded.

2. Visualization of Exceedance Frequencies: Bar charts were created to visualize how often each
UC was exceeded. One chart presents all exceedances, while another filters out rarely exceeded
limits and highlights those surpassed more than 100 times (see Figure 3).

3. Simultaneous Exceedances: A heatmap was constructed to visualize patterns of simultaneous
exceedances, indicating which UC values tend to be exceeded together. This helps identify interde-
pendent constraints that may shift when others are relieved (see Figure 4).

4. Exceedance Magnitude Analysis: To evaluate how severely the UC values are violated, ex-
ceedance values were binned and statistically assessed. This provides insight into how close most
operations are to the threshold and whether small reductions could yield significant improvements.

5. Load Case Attribution: Finally, the data was segmented by operational load case to determine
which scenarios are most prone to UC exceedance. This supports targeted mitigation strategies
aligned with actual operational phases.

The UC dataset was generated through unweighted time-domain simulations provided by Boskalis, based
on predefined environmental and operational conditions for the Revolution site.

2.2 Results
2.2.1 Exceedance Frequency

The filtered UC exceedance frequencies (Figure 3) narrow down the analysis to limits exceeded more
than 100 times. This allows the focus to shift toward the most critical constraints affecting workability.
Notably, the top contributors include Crane Sideload UC, both SlingA and SlingB Tension UC:s,
MP Declination UC, and HTV Roll UC:

e Crane Sideload UC: This UC was exceeded over 800 times, making it the most frequent contrib-
utor to downtime.

e SlingA and SlingB Tension UC: These UCs occupy the second and third places, respectively.
The high frequency reflects how the load dynamically shifts between slings as the rigging oscillates
during operation.



e MP Declination UC: Ranked fourth, this UC indicates that the monopile undergoes significant
angular displacements, pointing to pronounced pendulum-like swinging under certain conditions.

e HTV Roll UC: In fifth place, this UC highlights roll motions of the Heavy Transport Vessel
(HTV), particularly relevant in beam seas or energetic swell conditions.

UC Limits with More than 100 Exceedances (Sorted)
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Figure 3: Exceedance Frequency of UC Limits (Filtered to Show > 100 Events)

2.2.2 Simultaneous Exceedances

The heatmap of simultaneous exceedances ( Figure 4) reveals clear patterns of interdependence between
various UC’s. Several constraints are frequently violated together, highlighting the presence of coupled
dynamic behavior in the system.

e Limits such as HLV Roll UC and AntiHeel Delta UC often co-exceed with others, indicating
that they are part of broader system-wide motions. Improvements here may have limited standalone
effect unless addressed in conjunction with related constraints.

e Of particular interest is the Crane Sideload UC, which frequently co-exceeds with motion and
tension-related limits. This aligns with physical expectations: excessive side loading on the crane
typically results from swinging of the suspended load, which simultaneously increases sling tensions
and monopile orientation deviations.

10



Simplified Simultaneous Exceedances of UC Limits
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Figure 4: Simultaneous Exceedances of UC’s

A more detailed co-occurrence analysis focused specifically on Crane Sideload UC is presented in the

following subsection.

2.2.3 Simultaneous Exceedances with Crane Sideload UC

A focused co-occurrence analysis was conducted to identify which UC’s are most commonly exceeded at
the same time as the Crane Sideload UC. The results confirm a consistent dynamic pattern:

e SlingA and SlingB Tension UCs are exceeded in over 75% of the cases, reflecting the increased

forces induced in the rigging system during swinging.

e Bellysling Tension UCs also show significant co-exceedance, particularly BellyslingB at 66%,
further confirming that pendulum motion drives uneven load distribution across slings.

e MP Declination UC is exceeded in nearly 68% of the cases, suggesting large angular displacements

of the monopile during side load exceedance events.

e Other motion-related constraints, including MP Azimuth UC and Crane OffLoad UC, also

appear prominently.

These results confirm that the exceedances are not isolated incidents but stem from a common underlying
cause: excessive dynamic motion of the suspended monopile. As expected, side load peaks coincide with
increases in sling tension and pile inclination, reflecting the coupled nature of the system’s response. This
suggests that addressing the root cause — the pendulum-like swinging motion — could reduce multiple
constraint violations simultaneously. By mitigating this dynamic behavior, not only the sideload UC
but also related motion and tension-based UCs may fall below their thresholds, offering a compounding

benefit in terms of operational workability.
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UucC Percentage of Simultaneous Exceedances
HLV _roll_UC 14.35%
HTV _roll.UC 19.48%
AntiHeel_delta_UC 0.34%
Crane_OffLoad _UC 24.94%
Crane_Offlead_UC 15.26%
Crane_Sidelead _UC 1.71%
SlingA _Tension_UC 75.51%
SlingB_Tension UC 78.13%
BellyslingA _Tension UC 53.08%
BellyslingB_Tension_UC 65.72%
Spreader_Motion_UC 1.25%
MP _Motion_UC 10.02%
MP_Azimuth_UC 41.12%
MP _Declination_UC 67.99%
Clearance_BL2_UC 9.45%

Table 1: Percentage of Simultaneous Exceedances with Crane Sideload UC
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Figure 5: Percentage of Simultaneous Exceedances with Crane Sideload UC

2.2.4 Crane Sideload UC Exceedance Magnitude

Beyond frequency, it is valuable to understand how much the Crane Sideload UC is typically exceeded.
Figure 6 shows the distribution of exceedances binned in 0.1 intervals from 1.0 to 3.0. The majority of
exceedance cases are concentrated in the range between 1.0 and 1.5, with a steep drop-off beyond 1.6.
The average exceedance value is 1.58. This implies that, on average, the sideload during exceedance
events exceeds its allowable threshold by 58%.

12



Crane Sideload UC Exceedances (Unique vs Simultaneous)
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Figure 6: Distribution of Crane Sideload UC Exceedances by Magnitude

This concentration around low exceedance levels suggests that many events fall just above the allowable
threshold. In practical terms, a modest reduction in dynamic sideload—through improved rigging layout
or resonance avoidance—could shift a significant portion of these cases back within acceptable limits.

The figure also supports the earlier conclusion that exceedances are not isolated events: they arise in
coupled motion states involving swinging, tension peaks, and pile orientation. While this is not the focus
of this specific plot, the dominance of simultaneous exceedances (orange bars) is visible and expected.

In conclusion, the narrow margin by which most sideload exceedances occur reinforces the potential
impact of even small optimizations. A reduction of 10-15% in peak side loading could eliminate a large
number of downtime-driving violations.

2.2.5 Load Case Contributions and Exceedance Levels

To understand when sideload exceedances are most critical, we analyzed their distribution across indi-
vidual load cases. Figure 7 shows that Load Case LC3b is responsible for 37% of all Crane Sideload UC
exceedances, followed closely by LC3a at 32%. Together, these two load cases account for nearly 70% of
all sideload-related downtime events.
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Percentage of Crane Sideload UC Exceedances by Load Case
LCS

laty

LC3b

Figure 7: Crane Sideload UC Exceedances by Load Case

This trend is reflected in the broader dataset as well, where LC3a and LC3b also dominate total UC
exceedances (see Figure 8).

Percentage of All UC Limit Exceedances by Load Case
LCZa LCS

LC3b

LC1lb

Figure 8: Total UC Exceedances by Load Case

Across all critical load cases, the majority of sideload exceedances occur in the 1.0 to 1.5 UC range, con-
firming the earlier finding that many violations are marginal. This strengthens the case for optimization
efforts aimed at small reductions in dynamic loads, particularly in LC3a and LC3b scenarios.

2.2.6 Environmental Resonance and Dynamic Amplification

To investigate the environmental conditions under which sideload exceedances occur, a heatmap analysis
was conducted for Crane Sideload UC values as a function of significant wave height (Hy) and peak
wave period (T,). The resulting heatmap in Figure 9 reveals a clear concentration of exceedances in the
T, = 7-9 s range.
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Combined Heatmap of Crane Sideload UC (All Directions)
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Figure 9: Crane Sideload UC as a Function of H, and T}, (All Directions)

This clustering around 7}, = 7-9 s is particularly relevant in light of the dynamic characteristics of Load
Case LC3a. The second natural frequency of the system for LC3a, which corresponds to a dominant
pendulum mode involving sidelead motion of the suspended monopile, has a period of T;, = 8.16 s. The
proximity between this natural period and the peak of the exceedance envelope in the heatmap suggests

that dynamic amplification due to resonance is a key contributor to the sideload limit violations observed
in LC3a.

Figure 10: Illustration of the double pendulum sidelead motion in the crane rigging system
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Figure 10 visualizes the double pendulum behavior responsible for this motion. As sea states with
T, ~ 8 s excite this mode, large oscillations of the rigging occur, increasing both sideload and sling tension
demands. The geometry shown here highlights the sensitivity of the system to dynamic excitation.

This resonance hypothesis highlights a potentially problematic interaction between the crane rigging
system and the offshore environment. Although the time-domain UC simulations are unweighted and
systematically cover a broad range of conditions, the historical scatter diagram ( Figure 11) shows that
wave periods around T}, = 8 s occur frequently at the project location.

Scatter client/orsted at 71.11399841°W, 41.08399963°N
Depth: -999m Period: Jan'79-Dec'18

12 1

-

10 - -

Hmo (m)

Tp (s)

Figure 11: Historical Scatter Diagram of Project Site (South Fork)

This environmental clustering around the system’s second natural period (8.16 s for LC3a) implies that
resonance is not just a theoretical risk, but a realistic and recurring operational concern. As such,
mitigation of resonance effects should be a central goal in future optimization efforts—either by shifting
the natural frequency away from this range or introducing damping mechanisms to reduce dynamic
amplification.

The optimization strategy developed in the following chapter builds directly on these findings, with a
specific focus on Load Case LC3a and the avoidance of resonance near 1), = 8.16 s.
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3 Theoretical Background
3.1 Modal Analysis

Modal analysis is a fundamental process in structural dynamics used to determine the inherent dynamic
characteristics of a system in the form of natural frequencies and mode shapes. In essence, it describes
how a structure or system tends to vibrate if it is disturbed from its rest position (Chopra, 2017).

For offshore heavy lifting, understanding these properties is critical. The suspended monopile and rigging
form a complex multi-body pendulum system with a set of distinct natural periods of oscillation. If the
period of an external excitation—such as the vessel motion induced by ocean waves—matches one of
these natural periods, a state of resonance can occur. This condition leads to a dramatic amplification
of motion and internal loads, which can compromise the safety and feasibility of the operation (Faltinsen,
1990). Therefore, modal analysis is the first and most critical step in predicting and mitigating such
adverse dynamic behaviour.

3.1.1 Derivation of Natural Frequencies

The dynamic behaviour of the undamped pendulum system is described by the linearized matrix equation
of motion for free vibration:

M(t) + Kq(t) = 0 (2)

Where:
e M is the system’s mass matrix, which accounts for the inertial properties of the components.
e K is the stiffness matrix, which represents the gravitational and geometric restoring forces.
e ¢(t) is the vector of generalized coordinates representing the system’s degrees of freedom.

To find the natural frequencies, a harmonic solution is assumed, of the form q(t) = ¢ei“!. Substituting
this into the equation of motion yields the generalized eigenvalue problem (Clough & Penzien, 1993):

(K —w?M)p=0 or K¢=w>Mo (3)

Solving this problem yields a set of eigenvalues, \; = w?, and corresponding eigenvectors, ¢;.

e The eigenvalues (w?) are the squares of the system’s natural angular frequencies (w). The natural

frequencies (f,,) and periods (7},) are then calculated as f,, = w,/(27) and T,, = 1/ f,.

e The eigenvectors (¢;) are the mode shapes, which describe the characteristic pattern of physical
displacement for each natural frequency.

In this thesis, this eigenvalue problem is solved numerically using the mass and stiffness matrices derived
from the Lagrangian model. While this problem can be solved analytically by finding the roots of the
characteristic equation, det(K —w?M) = 0, this approach is computationally impractical for multi-degree-
of-freedom systems.

Instead, a robust numerical solver from the SciPy library is used. The implementation directly solves the
generalized eigenvalue problem using the following command:

w2, Phi = LA.eigh(K, M)

Here, LA.eigh is a highly optimized function from the scipy.linalg module designed to solve the
eigenvalue problem for real symmetric or complex Hermitian matrices (The SciPy community, 2024a).
The function takes the stiffness matrix K and mass matrix M as input and returns:

e w2: A vector containing the eigenvalues (\; = w?) of the system.
e Phi: A matrix whose columns are the corresponding normalized eigenvectors (¢;), or mode shapes.
The natural angular frequencies are then obtained by taking the square root of the eigenvalues:
wn = np.sqrt(w2)

This numerical approach provides an efficient and accurate solution for the system’s modal properties.
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3.2 Lagrangian Mechanics

Lagrangian mechanics is a formulation of classical mechanics that provides a powerful and systematic
procedure for deriving the equations of motion for a system. Unlike the Newtonian approach, which
focuses on forces and vector quantities, the Lagrangian method is based on a scalar quantity known as
the Lagrangian, which characterizes the system’s dynamics in terms of its kinetic and potential energies
(Goldstein, Poole, & Safko, 2002). This approach is particularly advantageous for complex systems with
multiple interconnected bodies and mechanical constraints, such as the pendulum model used in this
thesis (Hand & Finch, 1998).

The primary advantage of this method is its use of generalized coordinates.

3.2.1 Generalized Coordinates and the Lagrangian

A set of generalized coordinates, denoted as g;, is any collection of parameters that uniquely defines the
configuration of a system at any instant in time. For the monopile rigging, these coordinates are the
angles of the various sling elements (Chopra, 2017). The key benefit of this approach is that it implicitly
incorporates kinematic constraints. For example, by defining the system’s geometry with angles, the fixed
lengths of the rigging cables are automatically satisfied, eliminating the need to solve for the internal
tension forces that maintain these constraints (Goldstein et al., 2002). This significantly simplifies the
derivation of the equations of motion.

The central function in this method is the Lagrangian (L), defined as the difference between the total
kinetic energy (T') and the total potential energy (V') of the system:

‘C(qa q'v t) = T(Q7 q'a t) - V(Qa t) (4)

where ¢ represents the time derivatives of the generalized coordinates (generalized velocities).

3.2.2 The Euler-Lagrange Equation

The equations of motion are derived from the Lagrangian using the Euler-Lagrange equation. For
each generalized coordinate g;, the equation is given by:

d (0L oL
a4 ( 8%) - (5)

where Q; represents the generalized non-conservative forces (such as friction, damping, or external actu-
ation) associated with the coordinate ¢;. For a conservative system, @); = 0 for all coordinates (Hand &
Finch, 1998).

In this thesis, this framework is applied to derive the equations of motion for the multi-body pendulum
system. The kinetic energy (7T') is formulated from the translational and rotational velocities of the masses,
while the potential energy (V') arises from the change in vertical position of the masses in the Earth’s
gravitational field. Applying the Euler-Lagrange equation for each angular coordinate systematically
yields the coupled second-order differential equations that govern the system’s dynamics. This derivation
is performed symbolically in Python, which facilitates the automatic generation of the mass (M) and
stiffness (K) matrices used for the subsequent dynamic analysis.

3.3 JONSWAP Wave Spectrum

Ocean waves are inherently irregular and are best described as a random process. To analyze the effect of
such an environment on an offshore structure, the sea state is characterized by a wave energy spectrum,
or Power Spectral Density (PSD). A wave spectrum, S(w), describes how the total energy of the sea state
is distributed across different wave frequencies (w) (Faltinsen, 1990). The area under the spectrum is
related to the significant wave height (Hy), while the frequency at which the spectrum has its maximum
value corresponds to the peak period (T},).

While several mathematical models for wave spectra exist, the JONSWAP spectrum is widely adopted
in offshore engineering for its realistic representation of wind-generated seas and is used by Boskalis for
their analyses. It is an empirical spectrum, developed based on extensive data collected during the Joint
North Sea Wave Project in 1973 (Hasselmann et al., 1973).

The JONSWAP spectrum is fundamentally a modification of the earlier Pierson-Moskowitz (PM)
spectrum. The PM spectrum describes a ”fully developed sea,” a theoretical equilibrium state where
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the waves have received the maximum possible energy from a wind that has been blowing at a constant
speed over an infinite fetch (distance) and duration (DNV GL, 2019). However, many real-world sea
states, particularly in locations like the North Sea, are ”fetch-limited,” meaning they are still developing
and have not reached this equilibrium.

In such developing seas, the wave energy is concentrated more sharply around the peak frequency than
predicted by the PM spectrum. The key innovation of the JONSWAP formulation is the inclusion of a
peak enhancement factor (v) to account for this. This factor creates a sharper, more pronounced
spectral peak, which is critical for the resonance analysis central to this thesis. A higher value of
indicates that a larger proportion of the wave energy is concentrated near the peak period, increasing the
likelihood of exciting a structural mode if its natural period is close to T}, (Faltinsen, 1990).

Due to its ability to model these peaked, developing sea states, the JONSWAP spectrum provides a
more realistic and often more conservative basis for the dynamic analysis of offshore structures than the
broader PM spectrum. The complete mathematical formulation used in this thesis is detailed in Section
4.7.1.

3.4 Frequency-Domain Analysis

While time-domain analysis simulates a system’s response step-by-step, which can be computationally
prohibitive for assessing long-term operational statistics, frequency-domain analysis offers an efficient
alternative. This approach is exceptionally well-suited for determining the statistical response of a linear
system subjected to a stationary random process, such as a floating structure in a given sea state (Journée
& Massie, 2008). Instead of a detailed time history, this method yields a statistical description of the
response, such as its variance and expected peak values, by analysing how the system behaves across a
spectrum of frequencies.

3.4.1 Transfer Functions and RAOs

The foundation of frequency-domain analysis for a linear system is the Transfer Function, denoted
H(w). For a system that responds linearly, a transfer function is a complex-valued mathematical repre-
sentation that describes how it modifies a sinusoidal input of a given frequency (w) to produce a sinusoidal
output. Its magnitude, |H (w)]|, represents the ratio of the output amplitude to the input amplitude, while
its argument, arg(H (w)), represents the phase shift between the input and output signals. The transfer
function thus completely characterizes the dynamic response of a linear system (Journée & Massie, 2008).

In naval architecture and offshore engineering, a specific and widely used form of transfer function is the
Response Amplitude Operator (RAQO). The RAO of a vessel quantifies the amplitude and phase of
its motion in each of the six degrees of freedom (surge, sway, heave, roll, pitch, and yaw) as a response
to a unit-amplitude ocean wave of a specific frequency and direction (Faltinsen, 1990).

In this thesis, transfer functions are used in two key stages:

1. Vessel RAOs are used to translate the incident wave field into the motion experienced at the
crane tip, as detailed in Section 4.7.2.

2. A dynamically derived motion-to-load transfer function, H¢;,—1004(w), is calculated to describe
how the motion of the crane tip is converted into a horizontal side load by the pendulum dynamics
of the rigging, as derived in Section 5.3.

3.4.2 Spectral Analysis

Spectral analysis provides the framework for applying the transfer function concept to random processes
like ocean waves. The core principle for a linear system is that the Power Spectral Density (PSD) of
the response can be calculated directly from the PSD of the input and the system’s transfer function
(Journée & Massie, 2008). This fundamental relationship is expressed as:

Sresponse(w) - |H(w)|2Sinput(W) (6)
In this thesis, this principle is applied to determine the side-load response spectrum (Sr(w)) from the

wave spectrum (S,(w)) through a series of transformations involving the vessel and rigging dynamics.
The complete formulation for this calculation is detailed in Section 4.7.
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The resulting side-load spectrum contains all the necessary information to describe the load as a statistical
process. From it, key statistical properties are calculated via its spectral moments, defined as

My = /OOO w"Sp(w)dw (7)

The zeroth moment (myg) is particularly important, as it represents the variance (02) of the side-load
response. This variance is fundamental for estimating the expected maximum loads required for the
workability assessment (DNV GL, 2019).

3.5 Optimization with Differential Evolution

To improve the workability, a numerical optimization routine is used to find the best possible rigging
geometry. The goal is to find the set of design parameters (the rigging lengths) that maximizes an
objective function (workability) while satisfying a series of physical and operational constraints.

Given the complex, non-linear, and potentially multi-modal relationship between rigging geometry and
workability, a global optimization algorithm known as Differential Evolution (DE) was selected.
DE is a powerful and widely used evolutionary algorithm that is particularly effective for continuous
optimization problems and does not require gradient information, making it robust against finding false
solutions in local minima (Storn & Price, 1997).

The algorithm works by maintaining a population of candidate solutions and iteratively improving them
through a process analogous to natural evolution:

e Initialization: A population of parameter vectors is randomly initialized within the feasible solu-
tion space.

e Mutation: For each "target” vector in the population, a mutant” vector is generated by taking
the difference between two other randomly chosen vectors and adding it to a third. This use of
vector differences is the signature feature of DE.

e Crossover: A new "trial” vector is created by mixing the parameters of the mutant vector with
the original target vector, which helps to explore the search space effectively.

e Selection: The objective function is evaluated for the trial vector. If the trial vector yields a
better result than the original target vector, it replaces the target in the population for the next
generation.

This cycle is repeated for a set number of generations, allowing the population to converge towards the
global optimum.

In this thesis, the implementation of this algorithm is handled by the differential_evolution function
from Python’s scipy.optimize library (The SciPy community, 2024b). The solver requires the user to
provide an objective function to be minimized, along with the bounds that define the search space for
the input parameters. The function then executes the DE algorithm internally, iteratively calling the
objective function to evaluate new candidate solutions until it converges or reaches a maximum number
of iterations.
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4 Model Description and Methodology

4.1 Analytical Model Overview
4.1.1 System of units

In this model, all the calculations are performed in SI units; special attention has been given to the
conversion of units in Hertz and Rad/s as they are both used throughout the model.

4.1.2 Simulation Time

A simulation duration of 3 hours for the most probable maximum was chosen. This is a standard duration
for short-term statistical analysis in offshore engineering, representing a period over which a sea state can
be considered stationary (DNV, 2021). It also reflects a realistic and conservative window for completing
the lifting operation.

4.1.3 Coordinate system and vessel motions

The model is formulated in a right-handed, vessel-fixed coordinate system. The origin is located at the
stern of the vessel, on the centerline and at keel level. Axes are defined as:

e The x-axis points forward along the vessel’s longitudinal direction (towards the bow),
e The y-axis points port-side (transverse to the left),
e The z-axis points vertically upward, normal to the main deck.

This local frame is used to describe the vessel’s motions, as well as the position and dynamics of the
crane.

The vessel’s motion response due to wave excitation is modeled using all six degrees of freedom (DOF),
defined according to standard marine terminology:

Surge (z) — translational motion along the x-axis,

Sway (y) — translational motion along the y-axis,

Heave (z) — translational motion along the z-axis,

Roll (¢) — rotation about the x-axis,

Pitch (0) — rotation about the y-axis,

Yaw (1)) — rotation about the z-axis.

These motions are visualized in Figure 12. The frequency-dependent response amplitude operators
(RAOs) for each DOF are used in the model to reconstruct crane tip motions and, ultimately, to compute
the resulting side-load spectra.

“h

W

¢ b

Figure 12: Definition of vessel motions in six degrees of freedom (DOF).

Adapted from (Journée & Massie, 2008).
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The wave direction is expressed through the angle of attack -y, which is defined as the angle between the
vessel’s x-axis (bow direction) and the principal wave direction. An angle of v = 180° corresponds to
head seas, while v = 0° corresponds to following seas. This convention is illustrated in Figure 13.

Port
" 180°
g Stern ~|— Bow
Starboard
Following Head

Sea Sea

" Quartering / " Beam \ Bow .
Sea Sea Sea
4 60° 120° \ 150°

Figure 13: Top view of vessel showing heading and wave approach angle ~.

Adapted from (Ishihara € Kashiwagi, 2018).

In addition to the vessel-fixed reference frame, a secondary coordinate system is defined at the crane tip.
This local frame is used to evaluate motions and loads at the connection point between the crane and the
suspended monopile. The origin of this system lies at the crane tip. Its orientation rotates along with
the crane boom, such that a change in crane slewing angle directly reorients the local frame. The local
z-axis points in the offlead direction of the crane (along the boom), the y-axis in the sidelead direction,
and the z-axis aligns vertically with the hoist line.

For the load case considered in this study, the crane is rotated 90° with respect to the vessel-fixed z-axis.
This coordinate setup is illustrated in Figure 14.

Figure 14: Definition of crane tip—fixed coordinate system, rotated 90° relative to vessel-fixed x-axis.

4.2 Considered Load Case

Several operational phases can be distinguished during the monopile installation sequence, each with
its own dynamic characteristics and load exposure on the crane and rigging system. Lifting from the
transport grillage, upending, and pile stabbing each involve different load distributions, rigging geome-
tries, and motion constraints. For this thesis, the focus is placed on the lift-off phase — the moment the
monopile is lifted from the heavy transport vessel (HTV) and becomes fully suspended in the rigging.

This decision is based on the findings from the problem analysis, where the lift-off phase was identified as
a dominant contributor to operational downtime. During this phase, the suspended monopile is subject
to the full range of relative vessel motions between the HTV and heavy lift vessel (HLV). The dynamic
amplification of side loads on the crane tip, combined with a narrow allowable motion envelope near the
HTYV grillage, makes this phase particularly sensitive to wave direction, period, and amplitude.

The full sequence of considered load cases is summarised below, with the lift-off condition marked as the
focus of this study:

e Empty spreader: Spreader bar suspended approximately 10 m above the monopile; belly slings
not yet connected.
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e Pre-tension: Rigging attached to the monopile; spreader approximately 5 m above the pile; 50%
of the monopile’s weight in the hook.

e Lift-off (focus case): Monopile lifted 3 m above the HTV grillage; 100% of the weight is sus-
pended; full dynamic loading applies.

e Storage lane: Monopile lifted from the storage lane on the HLV deck; again, approximately 3 m
above the grillage.

e Upend hinge: Monopile positioned above the hinge before lowering; 3 m above the upending
support structure.

A depiction of the load case and relative positioning of the HTV and HLV, is shown in Figure 15.

Figure 15: Illustration of the lift-off load case considered in this study.

4.3 Objects

The main objects considered in this study are the Bokalift 2 and the B10 Monopile. Their characteristics
are presented here. The nominal values, used in the dynamic analysis, can be found in Table 2.

4.3.1 Vessel

The vessel in this model represents a generic heavy lift vessel (HLV) used for offshore monopile installation.
It is modeled as a rigid body with six degrees of freedom (DOF), excited by wave motions defined through
frequency-dependent response amplitude operators (RAOs). These RAOs are used to reconstruct the
crane tip motion as input to the dynamic model.

Nonlinear damping effects (e.g. in roll) are not explicitly included. The vessel is assumed to maintain
zero heel and trim, and mean drift forces are compensated by the dynamic positioning (DP) system.

Representative vessel characteristics:
e Length overall: 237 m
e Beam: 49 m

e Operational draft: 10 m
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e DP system: Kongsberg DP-2

Figure 16: Side view of the Bokalift 2 heavy lift vessel with crane configuration.

4.3.2 Monopile

The monopile is suspended through a rigging system of slings and a spreader bar. The monopile is
modeled as a rigid mass with its center of gravity located below the spreader. No hydrodynamic loads
are considered, as the monopile remains fully above the waterline during lift-off.

Representative monopile characteristics:
e Monopile mass: [1868,3] t
e Monopile length: [107] m

Figure 17: Illustration of the monopile.

The dynamic behavior of the monopile is further described in the next section using a Lagrangian multi-
body framework.
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4.4 Lagrangian Approach

This section presents the derivation of the equations of motion using a Lagrangian formulation. The
system is modeled as a four-body planar pendulum, suspended from a crane tip that moves horizontally
due to vessel-induced excitation. The generalized coordinates include both the crane tip displacement
and the internal angular motion of each body in the system:

q(t) = [0:(t), 62(2), O3(t), 6a(t), R(t),]"

The inclusion of R(t) as a generalized coordinate allows direct coupling between the base excitation and
the internal dynamics of the system. This not only enables the derivation of inertial coupling terms
between horizontal motion and pendulum swing, but also allows direct computation of the crane side
load from the Lagrangian formulation — the critical parameter targeted for reduction in this study.

4.4.1 Motivation for the Lagrangian Method

The Lagrangian formulation was chosen due to the hierarchical structure of the multibody system and
the presence of both translational and rotational degrees of freedom. While Newtonian force balances
would require complex vector constraint handling at each joint, the Lagrangian approach enables a scalar
energy-based formulation where constraints are implicitly satisfied by the generalized coordinate choice.
This makes the model compact, symbolically tractable, and easier to linearize.

In this implementation, symbolic derivation of the mass and stiffness matrices in Python enables automa-
tion of eigenmode analysis and integration into the optimization routine.

4.4.2 Generalized Coordinates and Position Definitions

The five generalized coordinates are:

t):
t):

t): angle of the spreader bar,
t):

R(t): horizontal motion of the crane tip (driven by vessel).

° angle of the upper slings,

01 (

02(t): angle of the lower slings,
o O5(

04(

° angle of the monopile,

These coordinates correspond to the motion of four suspended rigid bodies forming a serial pendulum
system below the crane tip. The associated masses are:

e m;y: crane hook,
e msy: quick connect element,
e mg: spreader bar,

e my: monopile.

25



Figure 18: Generalized coordinates and mass positions in the pendulum system.

The model assumes small angular displacements of all elements, using the linearized trigonometric ap-
proximations:

o[

sin(6;) ~ 6;, cos(f;) = 1— (8)

Modeling Assumptions The physical setup and mathematical formulation are based on the following
simplifying assumptions:

e Planar motion: All movement is confined to a vertical plane defined by the crane boom and
gravity vector. Out-of-plane motions (e.g., torsion or yaw) are neglected.

e Small-angle approximation: Angular displacements are assumed to remain small, enabling lin-
earization of trigonometric functions (sin(f) ~ 6 and cos(d) ~ 1 — #%/2). This assumption is
well-justified by the operational constraints of the system. The maximum allowable sidelead angle
for the crane is 2.0 degrees; any greater angle would cause other Unity Checks (UCs) to be exceeded,
halting the operation. For an angle of 2.0 degrees (or 0.035 radians), the error introduced by the
approximation sin(f) = 6 is less than 0.02% (Taylor, 2005). Therefore, within the entire workable
envelope of the operation, the small-angle approximation holds with very high accuracy, ensuring
the validity of the linearized system matrices.

e Rigid body assumption: All suspended components — including slings, spreader, and monopile
— are treated as rigid and undeformable.

e Tensioned system: All cables remain taut and are modeled as inextensible and massless, with
effectively infinite axial stiffness (~ 700 x 109 kN).

e Symmetric geometry: The mass distribution and rigging configuration are symmetric about
the vertical plane of motion. This ensures that sidelead dynamics dominate and simplifies the
formulation.
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Under the small-angle assumption, the horizontal positions of the mass centers are defined recursively as:

£1(1) = R() + Lun (1)

22(t) = R(t) + L1601 (t) + Laba(t)

z3(t) = R(t) + L161(t) + L262(t) + db3(1)

24(t) = R(t) + L161(t) + L202(t) + db3(t) + Laba(t)

with corresponding velocities: ) )
1 =R+ L1601
d9 = R+ L16) + LB,
i3 = R+ L1601 + Loy + dbs
4 = R+ L1601 + LBy + df3 + Lab4

Vertical positions are constant under small-angle assumptions, hence 2; ~ 0. The recursive formulation
introduces strong coupling in the mass matrix, particularly between the crane base excitation and the
suspended bodies. Note that the entire dynamic response is driven by the combined motion of R(t) and
the angular displacements of the rigging and monopile.

It is important to note that dynamic coupling from the suspended monopile back to the vessel is neglected
in this model. In other words, the mass of the monopile does not influence the vessel motion. This
simplification is justified by the relatively small mass of the payload compared to the total displacement
of the vessel, making its feedback effect on vessel dynamics negligible in the context of side load prediction.

However, during the development of this model, indications of vessel-monopile coupling were observed
near resonance frequencies. While this phenomenon could be captured by extending the model to include
bidirectional coupling, it was considered beyond the scope of this work. Since the optimization approach
is aimed at averting resonance by shifting natural frequencies away from dominant wave energy, the
practical impact of the coupling is mitigated. This point is revisited in the validation section, where
differences between the analytical and OrcaFlex models are discussed.

4.4.3 Kinetic Energy Formulation

The total kinetic energy consists of translational terms for each mass and rotational contributions from
the suspended bodies:

=1

The kinetic energy of each mass m; includes its horizontal velocity #;, derived previously under small-
angle assumptions. The terms I;67 represent the rotational energy around each body’s center of mass.

It is important to note that the rotational energy contribution of the fourth mass (the monopile) is treated
differently. Rather than using its own angle 6y, its rotation is assumed to be governed by 63, the rotation
of the spreader bar. This modeling choice reflects the assumption that both belly slings remain taut at
all times — i.e., no line slackening is allowed.

Under this assumption, the monopile remains effectively parallel to the spreader bar throughout the

motion. As a result, its angular motion is fully captured by the spreader bar rotation 63, and its
rotational kinetic energy is expressed as:

1. .
51—40%

4.4.4 Potential Energy Formulation

The potential energy is based on the vertical displacement of each mass from its equilibrium height:

4
V=g Z m;z; (10)
i=1
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Using the small-angle approximation introduced in Equation (8), the vertical positions can be written as:

2
~ 7
Zi 20 — Li?

which yields:

4
1
=1

Here, Vj is the constant potential energy at equilibrium, and the remaining terms form a quadratic
expression in the generalized coordinates 6;. While the potential energy function itself is quadratic in
0;, its second derivative with respect to the coordinates — which defines the stiffness matrix K — is
constant. This is what makes the resulting system linear in ¢(t), as it leads to a constant matrix in the
linearized equations of motion:

0*v

K=—
dq

Hence, the use of small-angle approximations transforms the trigonometric potential into a quadratic
polynomial, from which a linear restoring force model can be directly obtained.

4.4.5 Linearized System and Matrix Form

the Lagrangian is linearized around the equilibrium configuration ¢ = 0, leading to the classical linear
second-order system:

M (t) + Kq(t) =0 (11)

Here, g = [0y, 02,603,604, R(t)]" is the generalized coordinate vector. The system matrices are obtained as
second derivatives of the energy terms. In matrix notation:

o*T 0*v
M=— K=— 12
G 5o (12)
In index notation, this reads:
0T 0%V

This formulation enables symbolic derivation of the system matrices in Python, allowing for automated
analysis, modal decomposition, and parametric optimization.

4.5 Constants and Initial Parameters

After the symbolic derivation of the system dynamics using the Lagrangian formulation, numerical values
were assigned to all physical parameters to perform simulations and evaluate modal behavior. These
constants represent the offshore monopile installation configuration used in the Revolution offshore wind
project in the US completed by Boskalis in 2025

The physical meaning and layout of these parameters are illustrated in Figure 18, which was introduced
in the Lagrangian model subsection. It shows the mass locations, segment lengths, and generalized
coordinates used throughout the model.

The numerical values used in the implementation are summarized in Table 2.
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Table 2: Nominal model parameters used in the pendulum system.

Parameter Description Value
mq Mass of crane hook 226,790 kg
Ly Length of upper slings 43.1m
I Inertia of the crane hook 529,800 kg-m?
mo Mass of quick connect 39,000 kg
Lo Length of lower slings 5.0 m
I Inertia of quick connect 58,240 kg-m?
ms Mass of spreader bar 170,000 kg
L3 Length of the diagonal spreader bar cables 40.0 m
w3 Width of spreader bar 42.0 m
I3 Inertia of spreader bar 16,920,000 kg-m?
my Mass of monopile 1,868,300 kg
Ly Length of the bellyslings 15.5 m
n Inertia of monopile 1,789,000,000 kg-m?
g Gravitational acceleration 9.81 m/s?

The vertical distance d between the quick connect and the center of mass of the spreader is calculated
using geometric relations:

ws 2
=15~ (5) (14)
These parameter values are used in the evaluation of the mass and stiffness matrices, natural frequencies,
and subsequent frequency-domain analysis.

4.6 Rayleigh Damping and Modal Response

To capture energy dissipation in the dynamic model, proportional (Rayleigh) damping is applied. This
approach assumes the damping matrix C' is a linear combination of the mass and stiffness matrices:

C=aM+ K (15)

Here, a and 8 are Rayleigh damping coefficients, calibrated such that the first two natural frequencies
of the system exhibit a target damping ratio of ( = 2%. These modes dominate the dynamic response
of the crane-rigging—monopile system in the frequency range relevant for operational sea states. Higher
modes typically lie outside the bandwidth of wave excitation and contribute less to overall motion and
side loads.

The damping ratio of 2% is chosen to reflect realistic total damping levels observed in offshore lifting,
which include structural damping, hydrodynamic energy dissipation, and control-induced effects. This
value is consistent with industry practice and modeling assumptions used in tools such as OrcaFlex and
(DNV, 2021).

The Rayleigh coefficients are computed from the closed-form expressions:

1
o Wil |of _ 1

5 2 ][]

w2

where w; and ws are the angular natural frequencies of the first and second modes, obtained from the
modal analysis.

=

Once the coefficients are determined, the damping matrix C' is constructed and projected back into modal
space to calculate the damping ratios for all modes:

_ 7 Cos

Zwi

Gi
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Figure 19 shows the resulting damping ratio as a function of response frequency. As expected, the modal
damping closely matches the target near modes 1 and 2, while it increases for higher-frequency modes.
This frequency-dependent damping behavior is a known characteristic of Rayleigh damping.

Damping Ratio vs Response Frequency

251 — Rayleigh T(f)
® ModalT
20 1
5
©
=
G
° 151
o
=
°
2
£ 10+
£
©
[=]
5
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Response frequency [Hz]

Figure 19: Frequency-dependent damping ratios resulting from Rayleigh damping. Target damping of
2% is matched at the first two modes.

In the context of this model, the use of Rayleigh damping ensures a physically realistic and numerically
stable representation of dynamic behavior. Its inclusion is essential, especially given the resonance-
sensitive nature of the system: without damping, frequency-domain response peaks would grow unreal-
istically large, diverging toward infinity near natural frequencies. The damping provides a bounded and
interpretable response that better reflects real offshore dynamics.

4.7 Side-load Spectrum Formulation

The side-load power spectral density spectrum (PSD), Sg(w), represents the frequency-dependent distri-
bution of lateral dynamic loading at the crane tip due to wave-induced vessel motion. It quantifies how
much load energy is expected to occur at each frequency and forms the basis for estimating peak loads
in a probabilistic sense.

This spectral representation is particularly suited for analyzing offshore lifting operations in irregular
seas. Instead of computing time-domain forces for every sea state, the frequency-domain approach allows
direct calculation of the expected load statistics using a known wave spectrum and linear system response.

The side-load spectrum is defined as:

Sr(w) = Sn(w) ) |utip,w(w) : ]—Lfipﬁload(“”)|2

(16)
Where:

e Sp(w) is the side-load PSD [N2/Hz],

e S,(w) is the wave elevation spectrum (JONSWAP) [m?/Hz],

® w, (w) is the horizontal crane tip RAO [m/m],

® Hiipioad(w) is the frequency-dependent transfer function from tip motion to side-load [N/m].

By integrating this spectrum, the most probable maximum side-load F;,,,; can be estimated for a given sea
state and rigging configuration. This is then used to determine whether operational limits are exceeded.
Repeating this evaluation across a range of wave conditions enables calculation of workability — the
percentage of time a lift can be safely executed.

The components of Equation (16) are detailed in the following subsections:

e The JONSWAP wave spectrum S, (w),
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e The crane tip motion response amplitude operator uy . (w),

e The motion-to-force transfer function Hepyioad(w).

4.7.1 JONSWAP Spectrum

The wave energy spectrum is modeled using the JONSWAP formulation:

2 4
S(f)=a: (297T)4.f_5.eXp<_Z (f;qb) )"Yb

With:

1

fm:?p

(peak frequency)

v = peak enhancement factor

b = exp <_(2fa;ff?m)2> (peak sharpness)

{0.07 it < fin
O':

0.09 if f> fn
H2
«a is chosen such that /S(f) df = 15

The JONSWAP spectrum is widely used in offshore engineering to model wind-generated sea states with
a pronounced spectral peak, typical of fetch-limited environments like the North Sea. Compared to the
Pierson-Moskowitz spectrum, JONSWAP introduces a peak enhancement factor  that better captures
the sharp energy concentration observed in real sea conditions. Its parametric simplicity and empirical
foundation make it a practical and physically meaningful choice for evaluating operational response in
offshore installation scenarios.

This spectrum S(f) describes the distribution of wave energy across frequencies and forms the basis of
the input excitation in the side-load spectrum. A typical example is shown in Figure 20, using H; = 1 m
and T}, = 8 s.

o8 JONSWAP Spectrum (Hs=1.00 m, Tp=8.00 s)
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Figure 20: Example JONSWAP spectrum with H, =1 m and 7}, = 8 s.
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4.7.2 Crane Tip Motion

The second term in the side-load spectrum formulation is the frequency response of the crane tip to wave
excitation. This response is obtained using a linear RAO-based method, where the vessel’s 6-degree-of-
freedom (6DOF) response to unit wave amplitude is defined in the frequency domain for each degree of
freedom. These RAOs were precomputed using the hydromechanical software AQWA for the Bokalift 2
vessel and stored in complex form.

Each complex RAO G (w) is defined as:

i(w) = A(w) - e ")

where A(w) is the amplitude and ¢(w) is the phase (in radians). These complex RAOs are interpolated
over the relevant frequency range using the recorded data for the six global degrees of freedom: Surge,
Sway, Heave, Roll, Pitch, and Yaw.

To compute the motion at the crane tip rather than at the vessel center of gravity (CoG), a coordinate

transformation is applied. This transformation accounts for the position vector P between the vessel
reference point and the crane tip:

Ax
P = |Ay| = Cranetip — RAO origin
Az

The transformation matrix T maps rigid-body vessel motion to local motion at the crane tip:

100 0 P -P,
T={0 10 -P. 0 P,
001 P, —P, 0

Applying this transformation to the 6DOF vessel RAO vector gives the tip RAO:

ﬁtip(w) =T Qyesset (W)
Since the side-load calculation only requires the horizontal motion of the crane tip, the z-component is
extracted:
Gtip,z (W) = [Qeip(w)]a

This function is complex-valued and varies with frequency. The modulus |ty - (w)| represents the am-
plitude of horizontal crane tip motion per unit wave amplitude. A typical RAO curve for the Bokalift 2
with wave direction 0° is shown in Figure 21, both in frequency and period representation.

N Crane-Tip RAO vs Frequency L Crane-Tip RAO vs Period
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Figure 21: Crane-tip RAO for horizontal () motion of the Bokalift 2 with wave direction 0°.

The horizontal tip RAO encapsulates the vessel’s dynamic amplification due to wave-structure interac-
tion, and is critical in shaping the resulting side-load spectrum.
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4.7.3 Hiipioada Transfer Function

The final element in the side-load spectrum expression is the transfer function Hiip—oad (w), which maps
horizontal motion at the crane tip to the resulting horizontal force in the rigging. This relationship is
derived from the full equations of motion using Lagrangian dynamics, treating the horizontal crane base
motion R(t) as a generalized coordinate.

The generalized coordinates are:

g=1[0, 0, 63 0, R]

Kinetic Energy T' The total kinetic energy includes both translational and rotational components for
all masses:

T = %MbbRQ + R(My101 + Myas + My30s + Myaby)
1
2
+ 1120105 + 1130103 + 1140104 + T230505 + 124020, + 1346030, (17)

1 . 1 . 1 . .
+ 5 In 0% + 5 Inb3 + 5 Ts03 + S Tpa6

Potential Energy V' The potential energy is purely gravitational and quadratic under the small-angle
approximation:

1
V= ig(mlLﬁf + ma(L107 + L263) + m3(L107 + Lo63 + db3)
+ ma(L163 + Lo03 + 6 + La3)) (18)

Lagrangian L=T -V
L(g,q) =T -V

This Lagrangian forms the basis for deriving the equations of motion via the Euler-Lagrange equations.

Definitions of Mass and Inertia Terms The compact expressions above make use of the following
definitions:

e Total suspended mass:

My = my + mg +m3z + my

e Base—angle coupling terms:

My = (m1 +my +m3z +my) Ly
My = (mg + mg + my) Lo

My = (m3 + my)d

Mpy = myLy

¢ Effective rotational inertias (including mass distribution):

Iy =1 + (m1 + mo +m3 + m4)L§
Ip2 = IQ + (mg + ms + m4)L§
Iz = I3 + Iy + (mg + ma)d?

2
Ip4 = m4L4

e Cross-coupling inertias (off-diagonal):

Iio = L1 Ly(mg + mg +my), I3 = Lid(ms+my), I1a=LiLymy
Ing = Lad(ms +mya), Iaa = LoLymy, I3a = dLymy
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These terms emerge from a careful grouping of kinetic energy terms involving products of angular veloc-
ities and their coupling through geometry and mass distribution.

The resulting Lagrangian £ is used to derive the full set of coupled second-order equations of motion
using the Euler-Lagrange equation for each coordinate:

d(ocy oL _
dt qu qu B

This yields the following coupled second-order equations of motion:

01: RMy + 1,16, + LoOy + L1303 + by + gL161(my 4 my + ma +my) = 0 (19)
0o 0 RMyy + L1201 + IoOo + 2303 + Ioafs + gLo02(m2 + m3 +my) = 0 (20)
03 RMys + L1301 + T30z + L3603 + I3404 + gdf3(ms +my) = 0 (21)
0s: RMyy + 11401 + Ioafo + I3405 + Ip4é4 +gLs04my =0 (22)

Equation of Motion for the Base Coordinate R(t) Unlike the angular coordinates 6;, the gener-
alized coordinate R(t) is externally actuated via the crane base motion. It contributes to the system’s
kinetic energy, but does not appear in the potential energy due to the small-angle approximation. As a
result, the Euler—Lagrange equation for R includes a nonzero generalized force:

d (oL oL
— =) - ==Fy 2
dt <8R> oR P (23)
Evaluating the left-hand side yields:
My, R + My 0) + Myobo + Mysfs + Mysfy = Fisp (24)

This result can also be interpreted using D’Alembert’s principle, where the external force balances the
total inertial response of the multibody system projected along the horizontal base direction. Both
derivations lead to the same expression.

4.7.4 Frequency-Domain Representation

To obtain the transfer function from crane base motion R(t) to horizontal rigging force Fi;,, the system
of equations derived from the Lagrangian formulation is translated into the frequency domain using a
unilateral Laplace transform with s = iw.

The generalized coordinates 6;(t) and R(t) become 6;(s) and R(s), with second time derivatives mapping
as:

0:(t) — s%0;(s), R(t) — s*R(s)
Applying this to the time-domain equations yields the following system:
01 . Mb1$2R + Ip15201 + 1128292 =+ 1135203 + 1145294 4+ gL101 (m1 =+ mo =+ ms + m4) = O ( )
O 0 Myas® R+ Lyps*0 + 1195201 + I235%03 + I245204 + gLaO2(ma +m3z +my) =0 (26)
03 : Myzs>R+ I,35%03 + I135%0) + I235%09 + I345%04 + gdOs(ms +my) =0 (27)
(28)
(29)

04 : Mb482R + Ip48294 + 1148291 + 1248292 + 1348293 + gL494(m4) =0
R: MbbS2R + Mbls201 + Mb28292 + Mb38203 + Mb48294 — Ftip(s) =0
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4.7.5 Matrix Formulation and Transfer Function Derivation

The five Laplace-transformed equations from the previous step are now collected into matrix form. We
define a dynamic stiffness matrix D(s) such that:

61(s) My,
92 (S) Mbg
03(s) | =D(s)" - | —s* M3 ‘R(s) (30)
94(8) Mb4
Fiip(s) My
—_—— —_——
State vector Base motion coupling vector
The system matrix D(s) is defined as:
L1 + gL1(m1 +ma + mg + my) I1552 I138? I148?
11282 Ip252 + ng(mg + ms3 + TI’L4) 12382 12482
D(S) = 11382 12382 Ip3$2 + gd(m3 + m4) 13482
11482 12482 13482 Ip482 + gL4m4
My 8* Myss* Mys3s* Myy8*

(31)

This formulation allows solving for both the modal displacements 0;(s) and the resulting tip force Fiip(s)
directly from any given base motion spectrum R(s).
From this, we isolate the bottom row of the state vector to define the transfer function:

Ftip(s)
R(s)

Hiip—load(8) = =—s*[My My My My My -D(s)™"- (32)

_ o O O O

This transfer function can now be used to compute the force spectrum Sr(w) resulting from an arbitrary
wave-induced motion spectrum S, (w), as described in the next subsection.

4.8 Most Probable Maximum Side Load

Once the side-load spectrum Sp(w) as defined in 16 is computed, we are interested in estimating the
most probable maximum horizontal load experienced during a sea state of given duration. This is a
crucial metric for evaluating whether a given lifting configuration remains within allowable limits under
operational conditions.

The spectral moment of order zero is defined as:

mo = /000 Sr(w) dw (33)

This moment represents the variance of the side load in the time domain. Assuming the side load can be
approximated as a zero-mean Gaussian stationary random process, the most probable maximum (MPM)
value during a sea state of duration T is estimated as:

T
Fmax = 2In (T) © /Mo (34)

Here:
e T is the total simulation time (e.g., 3 hours),

e T, is the mean zero-crossing period, approximated as:
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where ms is the second spectral moment:

my = /000 wSr(w) dw (36)

The final result Fi,.x gives the statistically most likely peak force observed over the duration 7', not
necessarily the absolute maximum. This value can be compared directly to the allowable side load limits
for the crane and rigging system.

The MPM method is widely used in offshore engineering for operability assessments and aligns with DNV
guidelines for short-term extreme value analysis.

4.9 Grid-Based Optimization

To assess and optimize the dynamic behavior of different rigging configurations under realistic offshore
conditions, a grid-based approach is used. This method evaluates the maximum dynamic side load for a
discrete set of sea states defined by combinations of significant wave height (H,) and peak period (T},).

Each cell in the (Hy, T},) grid represents a unique sea state for which the side-load spectrum is computed
using the full dynamic model described previously. From this spectrum, the most probable maximum
(MPM) side load is calculated. By comparing this value to a user-defined limit load (Fjiy, ), the operability
of the lifting setup can be assessed.

The grid-based format enables systematic evaluation of lifting performance across a representative range
of environmental conditions. The grid resolution was chosen based on the available metocean data,
specifically the format of wave scatter diagrams commonly used in offshore site assessments. For this
study, the grid consists of:

o H, €10.0,4.25] m with 0.25 m increments (up to 17 bins),
e T, €[2.0,23.0] s with 1.0 s increments (21 bins).

To reduce computational load and focus on practically relevant conditions, the wave height range is
optionally truncated to Hy < 2.5 m, reflecting common operational limits for monopile lifting activities.

For each sea state:

1. The side-load spectrum is computed from the JONSWAP wave spectrum, vessel RAO, and dynamic
transfer function Hiip—i0ad-

2. The most probable maximum side load is calculated over a fixed duration (e.g., 3 hours).
3. This load is compared to a threshold value Fjiy, to determine operability.

4. The binary result is weighted by the probability of occurrence for the given sea state (from a
monthly scatter diagram).

The total workability is then expressed as the sum of weighted operable states in the grid. This workability
score serves as the objective function in the rigging optimization procedure, which seeks to maximize
operational uptime by tuning geometric parameters in the rigging layout.

4.9.1 MPM Calculation

For each sea state combination (Hy, T)), the most probable maximum (MPM) side load Fax is computed
from the side-load spectrum Sg(f), using the statistical formulation introduced in Section 4.8.

This process relies on the spectral moments mg and ma, defined in Equations (33) and (36). From these,
the zero-crossing period T, is derived using Equation (35), and the MPM is computed using Equation (34).

This calculation is performed for all sea states in the (H,,T),) grid, resulting in a matrix of expected peak
loads across the relevant offshore conditions.
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0.00-0.25 | 0.25-0.50

144,0874 185,2553 215,9224
172,298 287,1633 402,0286 516,894 631,7593
251,7058 419,5097 587,3136 7551175 922,9214
277,5021 462,5035 647,5049 832,5063 1017,508
270,1811 450,3019 630,4227 810,5434 990,6642
249,1505 415,2509 581,3512 747,4515 913,5519
225,428 3757134 5259987 676,2841 826,5695
204,6683 341,1138 477,5593 614,0048 750,4503 886,8958 1023,341 1159,787 1296,232
190,5007 317,5012 444,5017 571,5022 698,5027 825,5032 952,5037 1079,504 1206,505
185,4633 309,1055 432,7477 556,3899 680,0322 803,6744 927,3166 1050,959 1174,601
189,0397 315,0661 441,0926 567,119 693,1455 819,1719 945,1984 1071,225 1197,251
197,3505 328,9175 460,4846 592,0516 723,6186 855,1856 986,7526 1118,32 1249,387
206,0338 343,3896 480,7455 618,1013 7554572 892,813 1030,169 1167,525 1304,881
212,3646 353,941 4955174 637,0938 778,6703 920,2467 1061,823 1203,399 1344,976
215,3528 358,9213 502,4899 646,0584 789,6269 933,1955 1076,764 1220,333 1363,301
215,0806 358,4677 501,8547 645,2418 788,6289 932,016 1075403 1218,79 1362,177
212,1109 353,5181 494,9254 636,3327 777,7399 919,1472 1060,554 1201,962 1343,369
207,1318 345,2197 483,3076 621,3955 759,4834 897,5713 1035,659 1173,747 1311,835

Figure 22: Grid of most probable maximum side loads Fyax [KN] for the nominal rigging configuration.

The resulting grid illustrates how the dynamic side load increases with significant wave height H, and
varies with peak period T}, highlighting the sensitivity of the suspended system to sea state characteristics.
This matrix forms the input for the limit-checking step.

4.9.2 Limit Check

After computing the matrix of most probable maximum (MPM) side loads, each value F,.x is evaluated
against a threshold limit load Fjim. This threshold determines whether a given sea state in the (Hs,T))
grid is considered operationally safe for lifting.

In this study, the threshold is defined as:

Fiim = 0.57 - 1200 kN = 684 kN (37)

The nominal sideload capacity of the crane and rigging system is specified as 1200 kN in the opera-
tional documentation of the Bokalift 2. However, the analytical model consistently underestimates peak
side loads when compared to high-fidelity frequency-domain simulations performed in OrcaFlex. These
OrcaFlex simulations include fully detailed rigging elements such as grommets, stretchable slings, and
realistic damping behavior.

To illustrate this discrepancy, two OrcaFlex models were constructed:
e An advanced model featuring detailed rigging elements,
e A simplified model using inextensible cables and assumptions aligned with the analytical model.

The difference in predicted MPM loads between these models is shown in Figure 24, where each cell
denotes the percentage difference across the same (H,,T),) grid. On average, the simplified model under-
estimates loads by approximately 43%.
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(a) Simplified OrcaFlex model (b) Advanced OrcaFlex model

Figure 23: Comparison of sideload prediction between simplified and advanced OrcaFlex models.

Hs/Tp 0125 | 0375 | 0625 | 0875 | 1125 | 1375 | 1625 | 1,875 | 2125 | 2375
25
35
45
55 20% 20% 20% 20% 20%
6,5
15 8% 48% 48% 48% 48% 8% 48% 48% 48%
85 6% 46% 46% 46% 46% 6% 46% 46% 46% 46%
95 44% 44% 44% 44% 44% 44% 44% 44% 44% 44%
10,5 43% 43% 43% 43% 43% 43% 43% 43% 43% 43%
115 42% 42% 42% 42% 42% 42% 42% 42% 42% 42%
125 42% 42% 42% 42% 42% 42% 42% 42% 42% 42%
135 41% 41% 41% 41% 41% 41% 41% 41% 41% 41%
145 0% 40% 40% 40% 40% 0% 40% 40% 40% 40%
15,5 39% 39% 39% 39% 39% 39% 39% 39% 39% 39%
16,5 11% 41% 41% 41% 41% 11% 41% 41% 41% 41%
17,5 42% 42% 42% 42% 42% 42% 42% 42% 42% 42%
185 43% 43% 43% 43% 43% 43% 43% 43% 43% 43%
195 43% 43% 43% 43% 43% 43% 43% 43% 43% 43%
20,5 3% 43% 43% 43% 43% 3% 43% 43% 43% 43%
215 43% 43% 43% 43% 43% 43% 43% 43% 43% 43%
225 43% 43% 43% 43% 43% 43% 43% 43% 43% 43%

Figure 24: Relative difference between simplified and advanced OrcaFlex models, showing consistent
underprediction by the simplified model.

The discrepancy is primarily attributed to differences in damping and stiffness modeling between the
analytical approach and OrcaFlex:

e Damping treatment: OrcaFlex applies damping only to Line objects (Orcina Ltd, 2024). In the
advanced model, only the hoisting cable L; is modeled as a Line, while the remaining rigging
elements (L2, L3, L4) are modeled as grommets and slings without damping. In contrast, the
simplified model uses Line objects for all rigging connections, so damping is applied throughout
the system — more in line with the Rayleigh damping approach used in the analytical model.

e Cable stiffness: In the advanced model, rigging elements have finite stiffness values based on
their actual construction (e.g., braided grommets), which introduces flexibility into the system.
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The simplified OrcaFlex model, like the analytical model, uses effectively infinite stiffness for all
cables, removing elastic deformation from the response.

To reconcile the difference while maintaining the computational efficiency of the analytical model, the
threshold limit was conservatively reduced by 43%. This scaling ensures that workability predictions from
the simplified model remain consistent with safety margins implied by the advanced simulations.

While this adjustment is empirical and not derived from design codes (e.g., DNV-RP-C205), it offers
a pragmatic compromise. The choice allows meaningful optimization and comparison of rigging config-
urations, while acknowledging the limitations of the simplified model. A more rigorous treatment —
e.g., based on full nonlinear time-domain simulations or physical measurements — is recommended for
detailed engineering assessments beyond the scope of this thesis.

Each grid cell is assigned a binary value according to:

Unit ]-7 if Fmax(Hsia ij) S -Flim
1ty. . =
Yig 0, otherwise

This produces a binary operability matrix, shown in Figure 25. Green cells indicate acceptable sea states
where the side load remains below the limit, while red cells represent conditions where the load threshold
is exceeded and operations must be postponed.

0.00-0.25 | 0.25-0.50 | 0.50-0.75 | 0.75-1.00 [ 1.00-1.25 | 1.25-1.50 | 1.50-1.75 | 1.75-2.00 | 2.00-2.25 | 2.25-2.50

Figure 25: Binary limit-check result for all sea states. A value of 1 (green) indicates operational feasibility,
0 (red) indicates exceedance of the load limit.

This matrix forms the basis for the weighted workability calculation in the next stage.

4.9.3 Weighting and Summation

Once the binary operability matrix is constructed, each cell is weighted by the probability of occurrence
of its corresponding sea state. These probabilities are obtained from metocean scatter diagrams specific
to the offshore site and time of year. In this study, the month of August is used as an illustrative example.

The wave climate is characterized by a joint probability distribution over H, and 7},, with each bin
associated with a midpoint probability P,;;. The binary feasibility value u;; € {0,1} indicates whether
the operation is allowed for that sea state. The weighted operability for each cell is given by:

Wij = uij - Py (38)

Summing over the full matrix yields the total expected workability:

39



Workability = >~ W; (39)

(]

For the nominal rigging configuration and wave statistics for August, the overall workability evaluates to:

Workability = 79.92%

Hs/Tp |0.0-0.25|0.25-0.5]0.5-0.75 | 0.75-1.0 | 1.0-1.25 | 1.25-1.5 | 1.5-1.75 | 1.75-2.0| 2.0-2.25 | 2.25-2.5 | total |
2030 000% 0,02% 007% 000% 000% 000% 000% 000% 000% 000% 0,09%
3.040 | 000% 035% 248% 1,75% 0,12% 000% 000% 000% 000% 000% 471%
4050 | 000% 0713% 245% 4,93% 3,76% 091% 015% 002% 000% 0,00% 12,34%
5.0-60 | 0,00% 044% 3,89% 4% 3,62% 2,58% 1,30% 043% 012% 0,04% 16,85%
6070 | 000% o070%| 593% 559% 3,31% 193% 1,38% 1,00% 0,58% 0,30%| 20,71%
7080 | 000% 0,62% 403% 516% 3,14% 133% 0,66% 050% 036% 0,29% 16,09%
8000 | 001% 086% 1,91% 1,70% 194% 1,08% 050% 031% 013% 0,06% 851%
9.0-10.0| 000% 0,85% 2,31% 1,07% 081% 048% 022% 016% 004% 0,03% 596%
10.0-11.0 0,00% 043% 217% 105% 051% 032% 023% 013% 008% 0,08%  4,96%
1.0-12.00 000% 007% 055% 0,33% 018% 0,10% 005% 008% 006% 0,04% 1,5%
12.0-13.00 000% 026% 0,69% 0,62% 025% 0,12% 005% 010% 012% 0,05% 2,27%
13.0-14.0 000% 0,13% 032% 0,15% 0,18% 0,11% 0,02% 001% 002% 0,02% 0,97%
14.0-15.0 000% 022% 0,59% 0,29% 0,23% 0,04% 005% 004% 003% 0,06% 1,58%
15.0-16.0) 000% 0,02% 0,06% 0,06% 007% 002% 004% 007% 004% 0,00% 0,38%
16.0-17.00 0,00% 0,03% 0,23% 0,22% 005% 0,02% 004% 003% 005% 0,02% 0,70%
17.0-18.0) 0,00% 0,01% 0,02% 0,04% 000% 002% 001% 001% 000% 003% 0,13%
18.0-19.0 0,00% 0,07% 008% 0,08% 000% 000% 002% 003% 001% 001% 0,31%
19.0-20.0 000% 0,00% 0,02% 0,02% 000% 000% 000% 000% 000% 000% 0,04%
20.0-21.00 0,00% 0,00% 0,01% 0,00% 000% 000% 000% 000% 000% 0,00% 0,01%
21.0-22.00 0,00% 0,00% 0,04% 0,03% 000% 0,00% 000% 000% 000% 0,00% 0,08%
22.0-23.00 000% 0,00% 0,01% 0,00% 000% 000% 000% 000% 000% 0,00% 0,01%
total | 0,01% 5.20%[JB7860000750% 18,19% 9,07% 4,73% 2,30% 165%  0,98% 100,00%

(a) Joint wave probability distribution for August.

Hs/Tp  |0.00-0.25 | 0.25-0.50 | 0.50-0.75 | 0.75-1.00 | 1.00-1.25 | 1.25-1.50| 1.50-1.75 | 1.75-2.00| 2.00-2.25 | 2.25-2.50| total

2.0-3.0 0 0,023522 0,070565 o o o o o o 0 0,094086
3.0-4.0 0 0,345462 2,483199 1,754032 0,124328 o o o o 0 4,711022
4.0-5.0 0 0,127688 2,446237 4,932796 3,75672 0,910618 0,147849 0,016801 o 0 12,33871
5.0-6.0 0 0443548 3,887769 4,438844 3,618952 2,580645 1,297043 0,430108 0,120968 0,036962| 16,85484
6.0-7.0 0 0,695565| 5,927419 5,588038 3,313172 1,928763 ] o 1] 0 17,45296
7.0-8.0 0 0,62164| 4,028898 5,16129 0 0 ] o 1] 0 5,811828
8.0-9.0 0,00672 0,863575 1,911962 1,703629 0 0 ] o 1] 0 4,485887
9.0-10.0 0 0,850134 2,308468 1,065188 0 0 o 0 0 0 4,22379
10.0-11.0 0 0430108 2,174059 1,051747 0 0 o 0 0 0 3,655914
11.0-12.0 0 0,070565 0,554435 0,325%941 0,181452 0 o 0 0 0 1,132392
12.0-13.0 0 0,258737 0,688844 0,61828 0,252016 0 o 0 0 0 1,817876
13.0-14.0 0 0,134409 0,31922 0,15457 0,181452 0 o 0 0 0 0,789651
14.0-15.0 0 0,221774 0,591398 0,292339 0,231855 0,040323 o 0 0 0 1,377688
15.0-16.0 0 0,023522 0,063844 0,057124 0,070565 0 o 0 0 0 0,215054
16.0-17.0 0 0,026882 0,225134 0,221774 0,053763 0 ] 1] 1] 0 0,527554
17.0-18.0 0 0,00672 0,020161 0,036962 0 0 ] 1] 1] 0 0,063844
18.0-19.0 0 0,070565 0,034005 0,080645 0,00336 0 ] 1] 1] 0 0,238575
19.0-20.0 0 0 0,016801 0,023522 0 0 ] 1] 1] 0 0,040323
20.0-21.0 o 0 0,00672 o o o o o o 0 0,00672
21.0-22.0 o 0 0,043683 0,033602 o o o o o 0 0,077285
22.0-23.0 o 0 0,00672 4] o o o o o 0 0,00672

total 0,00672 5,218414| 27,85954 27,54032 11,78763 5,460349 1,444892 (,446909 0,120968 0,036862 79,92272

(b) Resulting weighted workability matrix.

Figure 26: The joint probability (a) is multiplied by the binary operability matrix to obtain the weighted
workability grid (b).

This formulation integrates both physical feasibility and environmental likelihood, enabling robust com-
parisons of different rigging configurations based on expected operational uptime.

4.10 Optimization Method

To maximize the offshore workability of the lifting configuration, we use a numerical optimization method
to adjust the rigging geometry. The goal is to find the optimal combination of lengths L, Lo, Ls (and
consequently L,) that yields the highest weighted uptime, while satisfying geometric and operational
constraints.

Chosen Variables and Fixed Quantities The optimization considers only the rigging lengths as free
variables. Physical properties such as mass and inertia are held constant for each element. This decision
reflects both practical and modeling reasons:
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e The masses and inertias are tied to specific rigging hardware and load configuration, and are not
easily altered in practice.

e Variations in dynamic response due to geometry (lever arms, coupling) are much more significant
than marginal effects from mass variation.

e The inertia terms appear linearly in the equations of motion and are recalculated symbolically based
on geometry, making the length parameters sufficient for dynamic tuning.

The spreader bar width ws is kept fixed during the optimization. This decision is grounded in engi-
neering practicality: modifying the spreader geometry would require the design and fabrication of a new
structural element, introducing additional complexity and cost. Furthermore, internal testing has shown
that variations in ws lead to only marginal improvements in total workability—gains that can largely
be achieved through adjustment of cable lengths instead. This makes the spreader width a logical and
effective parameter to constrain.

Constant Total Rigging Length Rather than allowing all lengths to vary independently, the total
vertical rigging length Liota) is held constant throughout the optimization:

Ligtal = L1 + Lo +d + Ly

where d = /L% — (w3/2)? is the horizontal offset below the lower sling triangle. The remaining degree
of freedom L, is then determined implicitly.

This constraint reflects the operational reality that lifting height requirements are fixed by the vessel and
pile positions at lift-off. In this research, the focus is on the lift-off phase of the operation — a known
bottleneck based on the problem analysis — and the total geometry must remain compatible with that
load case. The constraint also has a practical side effect: it allows optimization across different lift heights
by treating Liota as a parameter to sweep externally, without altering the optimization mechanism.

Rigging Angle Constraint To ensure a physically feasible and structurally sound configuration, the
optimization enforces a constraint on the included rigging angle ¢, which is defined as the angle between
the two lower slings of length Ls. This is illustrated in Figure 18, where the horizontal spreader bar and
its connection to the lower slings form the characteristic sling triangle.

. ws
6 — . 2
= 2 - arcsin ( 3)

Extremely flat or steep angles are undesirable in offshore lifting operations. Flat slings result in high
tensile forces and increased risk of sling overload, while steep slings reduce horizontal stiffness and lateral
control. To maintain operational reliability, we impose a constraint:

This angle ¢ is computed as:

§ € [60°,90°]

This is enforced in the optimizer by constraining the geometric ratio 2% to lie between sin(30°) and

2L
sin(45°), ensuring that ¢ remains within acceptable physical bounds. ’

Optimization Method: Differential Evolution To navigate the complex, nonlinear landscape of
the objective function, we use differential evolution (DE) from the scipy package. DE is a global,
population-based evolutionary algorithm that does not require gradient information and is robust against
local minima — making it well-suited for problems involving discontinuities, coupling, and multi-modal
behavior.

The objective function is defined as the negative total workability:
Objective(x) = —Workability (40)
Each candidate solution is evaluated by:
1. Updating the rigging geometry and recalculating mass and stiffness matrices M, K,

2. Recomputing the damping matrix C,

3. Generating the transfer function Hiip—load,
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4. Evaluating the MPM loads for all (Hj,T},) combinations,
5. Applying the limit check and weighting by the monthly wave scatter data,
6. Summing all contributions to obtain the total workability.

A population size of 20, 50 iterations, and a fixed seed ensure repeatability. The optimizer converges
reliably for this problem, and post-optimization results are cross-validated by rerunning the full model
on the optimal configuration.

All intermediate results, including updated modal frequencies, optimized load grids, and workability
improvements, are stored and exported for comparison.
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5 Model Validation

To ensure the correctness and applicability of the developed dynamic model, a series of validation steps are
performed. These aim to compare the output of the analytical Python-based formulation with reference
results obtained from Boskalis’ industry-standard simulation software, OrcaFlex. By validating multiple
aspects of the model, confidence is gained in its ability to accurately capture the key dynamic phenomena
involved in offshore monopile lifting.

All validation steps are performed using the nominal rigging parameters, as currently used in operations
and defined in Section 4.5. The wave spectrum follows a standard JONSWAP formulation with wave
direction 3 = 180°, significant wave height H; = 1.0 m, and peak period T, = 8.0 s.

The following elements of the model are validated:
e Natural frequencies (modal analysis),
e Crane tip response amplitude operator (RAO),
e Motion-to-load transfer function Hyip—yioad (W),
e Frequency-domain side-load spectrum,
e Grid representation based on most probable maximum load estimates.

Each validation step compares model outputs quantitatively and visually where possible, with explanation
of any observed deviations and their physical or numerical origins. The goal is not perfect matching, but
confirmation that the model reliably captures the dominant behaviors and dynamic sensitivities relevant
for lifting performance analysis.

5.1 Modal Analysis

The first step in validating the dynamic model is a comparison of its natural frequencies with those
produced by OrcaFlex. This step is critical because the modal periods in the Python model result directly
from the structure and values of the mass and stiffness matrices derived via the Lagrangian formulation.
A mismatch in these periods would indicate an error in the foundational equations of motion or in the
physical parameterization of the system.

Modal periods in the Python model are computed by solving the generalized eigenvalue problem:

2
Ko = w?Mey, Ti=—

wj

The same rigging configuration is modeled in OrcaFlex using the static calculation feature, and the modal
periods of the rigging are extracted. The results are presented in Table 3.

Table 3: Comparison of modal periods between Python model and OrcaFlex (nominal configuration).

Mode Python Model [s] OrcaFlex [s]

Mode 1 20.57 20.55
Mode 2 8.16 8.16
Mode 3 3.00 3.05
Mode 4 1.01 1.02

The excellent agreement between the two sets of results confirms the correctness of the derived mass (M)
and stiffness (K) matrices. This gives confidence in the structural fidelity of the analytical model and
forms a solid basis for the subsequent dynamic simulations.

5.2 Crane Tip RAO

To further validate the implementation of vessel motion input into the analytical model, the horizontal
crane tip RAO is compared between the Python implementation and the OrcaFlex frequency-domain
simulation.

The calculation of the tip RAO in Python is described in Section 4.7.2. In short, the 6DOF RAOs for
the vessel’s center of gravity are loaded from AQWA output and translated to the crane tip location
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via rigid-body transformation. This transformation uses the position vector between the vessel reference
point and the crane tip, ensuring that the rotational effects are properly included in the local motion.

The horizontal tip RAO component u;p, ,(w) is extracted and plotted over frequency.

In OrcaFlex, a dynamic frequency-domain simulation is used to extract the RAO of the crane tip in the
vessel-fixed frame. Specifically, the response component MH Crane Tip In-frame X (m/m) is used as
the horizontal motion of interest. This response is exported and compared directly to the Python result.

Crane tip RAO (u_tip,x)

= Python O Orcaflex

0,8

0,6

u_tip,x (m/m)

0,4

0,2

0 0,05 0,1 0,15 0,2 0,25 0,3
Frequency (Hz)

Figure 27: Comparison of horizontal crane tip RAO ugip o (w) between Python model and OrcaFlex.

As shown in Figure 27, the Python and OrcaFlex results align nearly perfectly across the full frequency
range. This confirms the correct interpolation of RAO data, the rigid-body transformation, and the
extraction of the correct horizontal response component in the Python implementation.

It can also be observed that for frequencies higher than approximately 0.15 Hz, the crane tip motion
becomes negligible. This is consistent with physical expectations: at these higher frequencies, the inertia
of the Bokalift 2 dominates the response, and wave excitations are unable to induce significant motion at
the crane tip.

5.3 Transfer Function Hiip i0ad

The third validation step compares the dynamic transfer function from crane tip motion to side load,
denoted Hiip—ioad(w), between the Python implementation and the OrcaFlex model.

This function is central to the frequency-domain formulation of the side-load spectrum, as described
in Section 5.3. It quantifies the frequency-dependent force response at the crane tip due to horizontal
excitation R(t), and incorporates full dynamic coupling between the pendulum bodies.

Python Implementation In Python, this transfer function is defined explicitly from the Lagrangian
system via:

Fi x\$ —
Htip%load(s) = tRpisg) = —52 [Mbl Myo Mz My Mbb] D(s) !

_— o O o O

with s = iw and D(s) the dynamic matrix of the coupled system as is shown in 5.3. The function is
evaluated in Python for a frequency range up to 1.0 Hz.
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OrcaFlex Evaluation In OrcaFlex, the transfer function is derived by extracting the RAO for hori-
zontal force at the crane tip and dividing it by the RAO for horizontal motion:

RAOForce (UJ)
Htip%load (W) = RAOMotion (w)

Specifically, we use:

e MH Crane Tip In-frame connection Ly force (kN/m) — corresponding to horizontal side force
in the local crane tip frame.

e MH Crane Tip In-frame X (m/m) — corresponding to horizontal tip motion.

This ratio directly provides the frequency-domain amplification factor from motion to force.

H_tip,load

1,00E+04

1,00E+03

1 ‘.\7-5——:::

Amplitude (kN/m)

—@— Htip Python

1,00E+02 —@— Htip OrcaFlex

1,00E+01
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Frequency (Hz)

Figure 28: Comparison of transfer function Hyip—sioad(w) between Python and OrcaFlex.

Comparison and Observations As shown in Figure 28, both models exhibit peaks at identical fre-
quencies, confirming that the dynamic coupling and natural frequencies are correctly captured. However,
there is a noticeable discrepancy in the amplitude of the transfer function between the two implementa-
tions.

Several explanations may contribute to this difference:

e Structural flexibility present in OrcaFlex but not included in the simplified analytical model. The
analytical model is based on constraints built into the Lagrangian; there is no axial stiffness or
cable weight. In Orcaflex the axial stiffness is chosen to be as high as possible, but model stability
prevents the use of massless, infinitely stiff cables.
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H_tip,load

1,00E+04

—e—Python

—e—Htip OrcaFlex

—e—Simplified orcaflex, low weight

1,00E+03

Amplitude (KN/m)

1,00E402

1,00E+01
0 01 02 03 04 05 06 07 08 09 1
Frequency (Hz)

Figure 29: OrcaFlex transferfunction with low weigth

When the mass the cables is decreased heavily to 100e-6 te/m (0 is not possible in OrcaFlex) and
the axial stiffness is increased, we can observe that the impact on the transferfunction is limited
but the resonant frequencies shift slightly. This is mainly due to the stretching of the cables that
influence the total length of the system

e The local axis system at the crane tip exhibits 3D motion due to vessel motions; this effect is very
small but discrepancies between the global horizontal crane load and the local horizontal crane load
have been observed. These effects are captured in the transfer function produced by OrcaFlex, but
not by the transfer function produced by Python due to the assumption of planar motion.

H_tip,load

1,00E+04

—e—Python

—e—Htip OrcaFlex

—e—Simplified orcaflex, low weight, Global X-load

1,00E+03

Amplitude (kN/m)

1,00E+02

1,00E+01
0 0,1 0,2 0,3 04 0,5 0,6 0,7 08 0,9 1
Frequency (Hz)

Figure 30: OrcaFlex transferfunction analyzing the side load in global X-direction

e The last difference between the OrcaFlex model and the python model that is responsible for the
transferfunction discrepancy is the attachment of the cables to the massblocks. In Python, the
model is build up by point masses with inertia that are connected through constraints fundamental
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to the Lagrangian approach. In Python however it is impossible to connect the the cables exactly
to the CoG of the massblocks due to the stability of the model. There needs to be a distance
between connections for it to reach an equilibrium and run a stable dynamic analysis. This problem
acculumates at the L2 connection the model gets highly unstable if not give a significant spacing
between the CoG and the cable attachment. For this reason the choice has been made to increase
the L2 length in Python (from L2= 55m to L2 = 9,5m)to account for this spacing in OrcaFlex,
which is 2 m at mass block 2 and 2m and mass block 3. This results in the transferfunction in

H_tip,load

1,00E+04

—e—Python with L2=9.5m

—e—Simplified orcaflex, low weight, Global X-load

1,00E+03

Amplitude (kN/m)

1,00E+02

1,00E+01
0 01 0,2 03 0,4 0,5 0,6 0,7 08 0,9 1

Frequency (Hz)

Figure 31: Python transferfunction with adapted L2

5.4 Side-load Spectrum Comparison

To further validate the dynamic model, the predicted crane side-load power spectral density (PSD) is
compared between the Python and OrcaFlex implementations. This spectrum quantifies how the lateral
loading at the crane tip is distributed across frequency, based on a representative sea state with Hy = 1.0 m
and T, = 8.0 s.

Python Calculation In Python, the side-load spectrum is computed using the formulation introduced
in Equation (16):

SF(W) = S’r](w) . |utip,w(w) : }Itip—>load((«‘-})|2

where:
e S,(w) is the JONSWAP wave spectrum for the selected sea state,
® w, (w) is the horizontal RAO of the crane tip, validated in Section 4.7.2,
® Hiipioad(w) is the motion-to-force transfer function, discussed in Section 5.3.

This spectrum is evaluated across a frequency range from 0.00 to 1.00 Hz. The amplitude above 0.25 Hz
is approaching 0, so it is left out in 33. The resulting PSD is expressed in kN2 /Hz.

OrcaFlex Calculation In OrcaFlex, the spectral response for the GX-direction force at the crane tip
is directly computed in the frequency domain using the built-in spectral response analysis. This provides
the PSD of the in-frame connection force, aligned with the vessel’s transverse axis (local Ly), which
corresponds to the global x-direction in this simulation setup.
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Validation Across Multiple Sea States To assess robustness across different dynamic regimes, the
sideload spectrum was computed for three distinct peak periods:

o T, = 6.0 s: A sea state, with its significant wave height below the primary resonance range. See
Figure 32

e T}, = 8.0 s: Near the system’s second natural frequency, expected to show peak amplification. See
Figure 33

e T, = 10.0 s: A longer-period state, where the most of the excitation lies beyond the dominant
resonant mode. See Figure 34

Figures 32, 33, and 34 compare the PSD outputs from Python and OrcaFlex for each respective case.
Across all scenarios, the models show good agreement in spectral shape and peak location.

Crane Side Load Spectra (Hs= 1.00m, Tp= 6s)

1,00E+06

1,00E+05

1,00E+04 = Python

——Orcaflex

1,00E+03

PSD (kN2/Hz)

1,00E+02
1,00E+01

1,00E+00
0 0,05 0,1 0,15 0,2 0,25 0,3

Frequency (Hz)

Figure 32: Side-load PSD comparison for 1, = 6.0 s, H, = 1.0 m.

Crane Side Load Spectra (Hs= 1.00m, Tp= 8s)
1,00E+07

1,00E+06

1,00E+05
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Figure 33: Side-load PSD comparison for 7, = 8.0 s, H, = 1.0 m.
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Crane Side Load Spectra (Hs= 1.00m, Tp= 10s)
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Figure 34: Side-load PSD comparison for 7}, = 10.0 s, H; = 1.0 m.

Interpretation The sideload spectra from Python and OrcaFlex show strong agreement across all
three sea states. Peak locations align well, and the overall spectral shapes are consistent, validating the
accuracy between the OrcaFlex and the analytical model.

This close alignment is primarily due to the fact that the same modeling simplifications were explicitly
implemented in the OrcaFlex setup used for this comparison. These simplifications — documented in
Section 5.3 — ensure that both models are evaluated on equivalent assumptions, allowing for a meaningful
one-to-one comparison of the transfer function and spectral output.

In the next subsection, we perform a grid-based comparison between the analytical model and the full
advanced OrcaFlex model, without adjusting for these simplifications. While small differences emerge
in that case, they remain within acceptable bounds and do not compromise the model’s ability to guide
optimization decisions.

5.5 Grid-Based Validation of Most Probable Maximum Loads

To validate the complete pipeline of the Python-based model, a comparison is made between the computed
most probable maximum (MPM) side-loads and those obtained using the OrcaFlex frequency-domain
model. This is done for a representative range of sea states, covering the same (H,,T,) domain used in
the workability evaluation.

Python Implementation The Python-based MPM grid is generated using the methodology described
in Section 4.9. For each wave height and peak period combination, the side-load spectrum Sg(f) is cal-
culated, the spectral moments mg and my are evaluated, and the corresponding most probable maximum
load Finax is computed using Equation (34). The result is visualized in Figure 35.
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Hs/Tp 0,125 | 02375 | 0,625 | 0875 | 1,125 | 1,375 | 1,625 | 1,875 | 2,125 | 2,375
25
35
45 3039163 9,117489 15,19582
55  20,58392 61,75175 102,9196 1440874 1852553
65 | 57,43266 172,298 287,1633 402,0286 516,894 631,7593 746,6246
7,5 | 8390194 2517058 4195097 587,3136 755,1175 922,9214 1090,725 1258529 1426333
8,5 92,5007 277,5021 462,5035 647,5049 832,5063 1017,508 1202,509 1387,511 1572,512 1757,513
95 | 90,06038 270,1811 450,3019 630,4227 10,5434 990,6642 1170,785 1350,906 1531,026 1711147
10,5 | 83,05017 249,1505 4152509 581,3512 747,4515 913,5519 1079,652 1245753 1411,853 1577,953
11,5 | 7514268 225428 3757134 5259987 676,2841 B26,5695 976,8548 1127,14 1277,426 1427,711
12,5 | 68,22276 204,6683 341,1138 477,5593 614,0048 7504503 886,8958 1023,341 1159,787 1296,232
13,5 | 63,50024 190,5007 317,5012 4445017 5715022 698,5027 825,5032 952,5037 1079,504 1206,505
14,5 61,8211 1854633 309,1055 432,7477 556,3899 680,0322 803,6744 927,3166 1050,959 1174,601
155 | 63,01323 189,0397 3150661 4410926 567,119 693,1455 819,1719 945,1984 1071,225 1197,251
16,5 | 65,78351 197,3505 3280175 460,4846 592,0516 723,6186 B855,1856 986,7526 1118,32 1249,887
17,5 | 68,67792 206,0338 343,3896 480,7455 618,1013 7554572 892,813 1030,169 1167,525 1304,881
18,5 | 70,78821 212,3646 353941 4955174 637,0938 778,6703 920,2467 1061,823 1203,399 1344,976
19,5 | 71,78427 2153528 358,9213 502,4899 646,0584 789,6269 933,1955 1076,764 1220,333 1363,901
20,5 | 71,69353 2150806 3584677 501,8547 6452418 788,6289 932,016 1075403 1218,79 1362,177
21,5 | 70,70363 212,1109 353,5181 494,9254 636,3327 777,7399 919,1472 1060,554 1201,962 1343,369
225 | 69,04394 207,1318 3452197 4833076 621,3055 759,4834 897,5713 1035,659 1173,747 1311835

Figure 35: MPM load grid generated by the Python model.

OrcaFlex Implementation In OrcaFlex, the spectral response of the crane tip Ly-force (aligned
with the global z-direction) is computed for each peak period T),. Since the load response is linearly
proportional to wave height Hj, the full grid can be constructed by scaling results accordingly. The same
MPM estimation method is then applied, yielding the result in Figure 36.

Hs/Tp 0,425 | 0375 | 0625 | 0875 | 1,125 | 1,375 | 1625 | 1,875 | 2,025 | 2375 |
25
35
45 | 1462651 4387952 7,313253
55 | 145712 4371359 72,85509 101,9984 131,1408
65 | 50,69897 152,0969 253,948 354,8928 456,2907 557,6686 659,0866
75 | 8086723 242,6017 404,3362 566,0706 727,8051 B89,5395 1051,274 1213,008 1374,743
85 | 932714 2798142 466,357 652,8098 839,4426 1025985 1212,528 1399,071 1585,614 1772157
95 | 9313587 2794076 4656794 651,951 B838,2229 1024,495 1210,766 1397,036 158331 1769,562
10,5 | 87,01939 261,0582 4350969 609,1357 783,1745 957,2133 1131,252 1305291 1479,33 1653368
11,5 | 7884574 2365372 3942287 5519202 709,6117 867,3032 1024,995 1162,686 1340,376 1498,069
12,5 | 7050559 2115168 352,508 493,5392 634,5503 775,5615 916,5727 1057,584 1198,595 1339,606
13,5 | 63,09102 189,2731 3154551 4416371 567,8192 694,0012 820,1832 946,3653 1072,547 1198,729
14,5 | 58,00368 174,011 2900184 406,0258 522,0331 638,0405 754,0478 870,0552 986,0626 1102,07
155 | 57,72107 173,1632 288,6053 404,0475 5194896 634,9317 750,3739 865,816 981,2581 10967
16,5 | 61,1275 183,3382 3055637 427,7892 550,0147 672,2402 794,4657 916,6912 1038,917 1161,142
17,5 | 6664916 199,9475 3332458 4665441 539,6425 733,1408 B866,4391 999,7374 1133,036 1266,334
18,5 | 72,2084 2166252 361,042 5054588 649,8756 794,2024 938,7092 1083,126 127,543 1371,96
195 | 7660541 2298162 383,027 5362379 689,447 842,6595 9958703 1149,081 1302,292 1455,503
20,5 | 7943529 2383059 297,1764 556,047 7149176 873,7881 1032650 1191,529 13504 150927
21,5 | 80,73449 2422035 403,6725 565,1414 726,6104 886,0794 1049,548 1211,017 1372,486 1533,955
225 | 80,7302 242,906 403,651 5651114 7265718 886,0322 1049,493 1210,953 1372,413 1533874

Figure 36: MPM load grid generated by the OrcaFlex model.

Comparison and Interpretation Figure 37 presents the difference between both models, and Fig-
ure 38 shows the relative deviation as a percentage of the OrcaFlex result.
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Hs/Tp 0125 | 0375 | 0625 | 0875 | 1,125 | 1375 | 1,625 | 1875 | 2125 | 2,375
2,5
3,5
45 | -157651 -472954 -7,88256
55 | -6,01272 -18,0382 -30,0636 42,089 -54,1145
6,5 -6,7337 20,2011 -33,6685 -47,1350 -60,6033 -74,0707 87,538
75 | -303471 910413 151736 21243 27,3124 -333818 -394512 -455207 -51,5901
85 | 0770893 2,31208 3,853467 5394854 6936241 8477627 10,01901 11,5604 13,0179 1464317
95 | 3,075493 9226479 1537747 21,52845 27,67944 33,83042 3998141 46,1324 52,7833 58,43437
105 | 3969217 1190765 19,84608 27,78452 3572295 4366138 51,50982 59,53825 67,47668 75,41512
115 | 3703063 11,10919 1851532 2592144 3332757 40,7337 48,13982 5554505 62,95208 70,3582
12,5 | 2,282835 6,848506 1141418 1597985 20,54552 25,11119 2967686 34,24253 38,8082 43,37387
135 | -040922 -129767 -2,04612 -2,86457 -3,68302 -4,50147 -531992 -6,13837 -6.95682 -7.77527
145 | -3,81742 -114523 -19,0871 -26,722 -34,3568 -419917 -496265 -57,2614 64,8962 72,5311
155 | -520216 -158765 -26,4608 -37,0451 -47,6294 -582137 -68,7981 -79,3824
16,5 | -467076 -140123 23,3538 -32,6953 -42,0369 -51,3784 -60,7199 -70,0614 -79,403
175 | -2,02876 -6,08628 -10,1438 -142013 -182588 -223164 -26,3730 -304314 344889 -38,5464
18,5 | 1420197 426059 7,100984 9941377 12,78177 1562216 1846256 21,30295 24,14334 26,98374
195 | 4821142 1446343 2410571 33,748 43,39028 53,03256 62,67485 72,31713 8195942 91,6017
205 | 7741751 2322525 38,70875 54,19226 69,67576 85,15926 100,6428 116,1763 1316098 147.0933
215 | 10,03086 30,09250 50,15431 7021603 90,27776 110,3395 1304012 1504629 1705247
225 | 11,68626 35,0877 58,43128 81,80379 105,1763 128,5488 151,9213 1752938

Figure 37: Absolute difference in MPM load values between Python and OrcaFlex models [kN].

Hs/Tp 0425 | 0375 [ 0625 | 0875 | 1,125 | 1375 | 1625 | 1875 | 2,125 | 2375
25
35

Tes ] wm am am
55 20%  29%  29%  29%  29%

6,5 12% 12% 12% 12% 12% 12% 12%
75 4% 4% 4% 4% 4% 4% 4% 4% 4%

85 | 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%
9,5 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
10,5 5% 5% 5% 5% 5% 5% 5% 50 5% 5%
11,5 5% 5% 5% 5% 5% 5% 5% 50 5% 5%
12,5 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%

_m5 | % 1% 1% 1% 1% 1% 1% 1% 1% 1%
14,5 6% 6% 6% 6% 6% 6% 6% 6% 6% 6%
15,5 8% 8% 8% 8% 8% 8% 8% 8% 8% 8%
16,5 7% 7% 7% 7% 7% 7% 7% 7% 7% 7%
17,5 3% 3% 3% 3% 3% 3% 3% 3% 3% 3%
18,5 2% 2% 2% 2% 2% 2% 2% 2% 2% 2%
19,5 7% 7% 7% 7% 7% 7% 7% 7% 7% 7%
20,5 11% 11% 11% 11% 11% 11% 11% 11% 11% 11%
215 14% 14% 14% 14% 14% 14% 14% 14% 14% 14%
225 17% 17% 17% 17% 17% 17% 17% 17% 17% 17%

Figure 38: Relative difference in MPM load values as percentage of OrcaFlex reference.

While minor differences occur — particularly at high T, and low T}, (due to very small absolute values)
— the overall structure and trend of the grid are highly consistent. The shape of the solution surface
is preserved, which is essential for the intended optimization process. Since the model aims to identify
limiting configurations that reduce operational uptime, the ability to capture relative trends across the
sea state space is more critical than the exact matching of individual load values.

The consistency across the grid validates the use of the Python model as a reliable tool for optimizing
rigging configurations with respect to downtime risk.



6 Results

This section presents the outcomes of the optimization process aimed at improving offshore lifting worka-
bility through rigging geometry adjustments. Using the model and methodology described in the previous
chapters, the Differential Evolution (DE) algorithm was applied to maximize the expected uptime over
the August sea state distribution.

All results are based on the nominal crane, payload, and vessel properties as outlined earlier, with only
the rigging lengths Ly, Lo, L3, L4 allowed to vary. The spreader width w3 was fixed, and the total rigging
length was constrained as discussed in Section 4.10.

The following subsections provide a detailed comparison between the nominal and optimized rigging se-
tups for the month of August. Key performance indicators such as modal behavior, transfer function
characteristics, and resulting workability are evaluated to quantify the gains achieved through optimiza-
tion.

6.1 Optimization Outcomes for August

The optimization procedure described in Section 4.10 was applied to the August sea state distribution,
resulting in a notable improvement in overall workability. This subsection compares the nominal and
optimized rigging configurations and interprets the effects on system dynamics.

6.1.1 Nominal vs. Optimized Rigging Parameters

Table 4 presents the nominal and optimized values of the rigging parameters. The optimization led to a
significant redistribution of the segment lengths while maintaining the total rigging length and satisfying
the imposed angle constraint on §. Notably:

e The upper sling L; increased from 43.1 m to 56.6 m.
e The lower sling L, was extended moderately.

e The diagonal slings L3 shortened from 40.0 m to 31.2 m, increasing the included sling angle ¢ from
63.3° to 84.5°.

e The final leg L4 shortened to preserve the total geometry constraint.

These changes reflect a strategic reshaping of the pendulum system: the increased angle § stiffens the
rigging horizontally and shifts dynamic coupling patterns.

Table 4: Nominal vs. optimized rigging parameters for August.

Parameter Nominal Optimized
Ly [m)] 43.10 56.62
Lo [m] 5.50 7.01
Lj [m] 40.00 31.24
Ly [m] 15.50 11.39
ws [m] (fixed) 42.00 42.00
0[] 63.34 84.48

6.1.2 Modal Behavior

The modal periods of the pendulum system provide further insight into the effect of the optimized layout.
Table 5 shows the natural periods before and after optimization. Most notably, the second mode — which
was originally located at 8.16 seconds — shifted upward to 10.47 seconds. This change was one of the
key mechanisms for increasing workability.

The August sea state distribution features a peak wave period around 8 seconds, meaning that resonant
amplification around this frequency range is particularly undesirable. By shifting the second mode above
this critical band, the system avoids resonance and reduces dynamic loading in the most probable sea
conditions.
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Table 5: Modal periods before and after optimization.

Mode Thom [s] Topt [s]

1 20.57 20.74
2 8.16 10.47
3 3.00 2.81
4 1.01 1.11

This upward modal shift illustrates how subtle changes in geometry can be used to tune the system’s
dynamic response to the offshore wave climate. The remaining modes remain relatively unchanged,
ensuring that the structural behavior is not fundamentally altered outside of the target range.

6.1.3 Effect on Transfer Function

The shift in modal behavior is directly reflected in the motion-to-load transfer function Hiip—ioad(w),
previously defined in Section 5.3. In the optimized case, the peak in Hyip—10aq moves to a lower frequency
and flattens slightly. This reshaping reduces the amplification of dynamic loads at frequencies dominant
in the August wave climate.

Figure 39 presents the transfer functions for both the nominal and optimized configurations. The
reduction in magnitude around 0.12-0.13 Hz, corresponding to 8-second waves, confirms the effectiveness
of the optimization.

H_tip_load: Nominal vs Optimized
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Figure 39: Comparison of transfer function Hiip—10aa for nominal and optimized rigging.

6.1.4 Side Load Grid and Workability

The improvement in dynamic behavior due to the optimized rigging layout is reflected in the grid of most
probable maximum (MPM) side loads across all (Hj,T),) sea states. Figure 40 shows the resulting load
matrix after applying the optimization. Compared to the nominal case ( Figure 22), substantial load
reductions are observed in the critical range around 7T, = 8 seconds, where resonance originally occurred.
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0.00-0.25 | 0.25-0.50| 0.50-0.75 1.75-2.00| 2.00-2.25 | 2.25-2.50

169,519 200,3407 225,8032 248,367 270,0311
171,1401 239,5961 308,0521 376,5082 444,9642 513,4202 581,8763 643,0929
278,4123 389,7773 501,1422 612,5071 723,872 835,237 946,6019 1057,967
350,4299 490,6019 630,7738 770,9458 911,1178

379,5145 531,3203 683,1262 834,932
379,1476 530,8066 682,4656 834,1247
364,3347 510,0685 655,8024 B01,5362
346,7036 485,385 624,0665 762,7479
334,4711 468,2595 602,0479 735,8364
331,0435 463,4609 595,8783 728,2958
3344064 468,1689 601,9315 735,694
339,9977 475,9967 611,9958 747,9948
344,028 481,6392 619,2504 756,8616
344,6234 482,4727 620,3221 758,1715
341,4398 478,0157 614,5916 751,1675
3349598 468,9437 602,9276 736,9115
325,971 456,3593 586,7477 717,1361

Figure 40: MPM load grid for August after optimization [kIN].

This reduction in peak loads enables a larger portion of the grid to remain below the side-load limit. The
resulting binary operability map is multiplied by the wave scatter probabilities, yielding the optimized
workability distribution shown in Figure 41.

Hs/Tp  |0.00-0.25]0.25-0.50]0.50-0.75] 0.75-1.00 1.00-1.25 [ 1.25-1.50 | 1.50-1.75 | 1.75-2.00 | 2.00-2.25 | 2.25-2.50
2.0-3.0 0 0,023522 0,070565 0 0 0 0 0 0 0
3.0-4.0 0 0,349462 2,483199 1,754032 0,124328 0 0 0 0 0
4.0-5.0 0 0,127688 2,446237 3,75672 0,910618 0,147849 0,016801 0 0
5.0-6.0 0 0,443543 3,887769 4,438844 3,618952 2,580645 1,297043 0,430108 0,120968 0,036962
6.0-7.0 0 0,695565 3,313172 1,928763 1,381048 0,997984 0,581317 0,299059
7.0-8.0 0 062164 4, 3,141801 1,327285 0,658602 0,500672 0,356183 0,292339
8.0-9.0 | 0,00672 0,863575 1,911962 1,703629 1,342204 1,081989 0 0 0 0
9.0-10.0 0 0,850134 2,308468 1,065188 0,806452 0 0 0 0 0
10.0-11.0 0 0,430108 2,174059 1,051747 0,510753 0 0 0 0 0
11.0-12.0 0 0,070565 0,554435 0,325941 0,181452 0 0 0 0 0
12.0-13.0 0 0,258737 0,688844 0,61828 0,252016 0 0 0 0 0
13.0-14.0 0 0,134409 0,31922 0,15457 0,181452 0 0 0 0 0
14.0-15.0 0 0,221774 0,591398 0,292339 0,231855 0 0 0 0 0
15.0-16.0 0 0,023522 0,063844 0,057124 0,070565 0 0 0 0 0
16.0-17.0 0 0,026882 0,225134 0,221774 0,053763 0 0 0 0 0
17.0-18.0 0 0,00672 0,020161 0,036962 0 0 0 0 0 0
18.0-19.0 0 0,070565 0,084005 0,080645 0,00336 0 0 0 0 0
19.0-20.0 0 0 0,016801 0,023522 0 0 0 0 0 0
20.0-21.0 0 0 0,00672 0 0 0 0 0 0 0
21.0-22.0 0 0 0,043683 0,033602 0 0 0 0 0 0
22.0-23.0 0 0 0,00672 0 0 0 0 0 0 0

Figure 41: Workability map for August after optimization.

The total expected workability for August improves from 79.92% in the nominal case to 93.76% after
optimization. This gain is achieved purely through geometric rigging changes, without altering the
crane, vessel, or payload parameters. The results confirm the effectiveness of the optimization method in
minimizing dynamic side loads and increasing allowable weather windows.
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Table 6: Total expected workability for August before and after optimization.

Configuration Workability [%] Change [p.p.]
Nominal 79.92 -
Optimized 93.76 +13.84

It is important to note that this workability improvement is based solely on the dynamic side load at
the crane tip. Other operational constraints — such as vertical load limits, vessel motions, or clearance
requirements — have not been considered in the optimization process. As such, the presented gain
represents the theoretical maximum improvement in allowable conditions with respect to this specific
limit state.

6.2 New Design Proposal
6.3 Monthly Optimization Summary

For completeness and to assess the robustness and consistency of the optimization approach, the same
method was applied across all months of the year. This section summarizes the improvement in expected
workability, the corresponding changes in rigging geometry, and the resulting shifts in the system’s modal
behavior.

Table 7: Workability before and after optimization per month.

Month Nominal Workability [%] Optimized Workability [%]

Jan 54.02 71.09
Feb 56.50 73.42
Mar 55.77 71.73
Apr 57.01 77.86
May 68.41 90.31
Jun 74.81 95.06
Jul 75.46 95.47
Aug 79.92 93.76
Sep 67.09 82.66
Oct 66.06 82.98
Nov 60.57 77.10
Dec 55.53 73.52

Workability Improvement Across all months, the optimization consistently improves the expected
uptime by approximately 15-20%. August is used as the reference month throughout this thesis, but
similar performance gains are observed year-round.

Table 8: Nominal and optimized rigging geometry per month. All values in meters.

Month L1 L2 L3 L4

Nominal 43.10 5.50 40.00 15.50
Jan 57.01 6.06 31.51 11.58
Feb 57.44 6.26 31.43 11.05
Mar 56.62 7.01 31.24 11.39
Apr 56.56 9.76  30.23  10.09
May 56.56 9.76  30.23  10.08
Jun 56.74 5.43 30.21 14.26
Jul 56.56  9.76  30.23  10.09
Aug 56.62 7.01 31.24 11.39
Sep 57.61 6.39 31.56 10.58
Oct 56.08 5.88 3140 12.85
Nov 57.44 6.26 31.43 11.05
Dec 56.56  9.76  30.23  10.09
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Rigging Parameter Adjustments The optimized rigging layouts show similar trends each month:
the upper sling L is extended, the diagonal slings L3 shortened, and the final leg L4 adjusted to maintain
the total geometry constraint. This recurring adjustment strategy confirms the optimizer’s tendency to
decouple the second mode from the dominant wave energy band.

Table 9: Second natural period before and after optimization.

Month Tgo™ [s] T9P* [3]

Jan 8.16 10.40
Feb 8.16 10.43
Mar 8.16 10.46
Apr 8.16 10.44
May 8.16 10.39
Jun 8.16 10.33
Jul 8.16 10.35
Aug 8.16 10.47
Sep 8.16 10.36
Oct 8.16 10.38
Nov 8.16 10.37
Dec 8.16 10.39

Modal Behavior After Optimization The most consistent dynamic effect of the optimization is the
upward shift of the second natural period, moving it away from the critical 8-second region dominant in
the North Atlantic wave climate. This decoupling strategy effectively reduces dynamic amplification.

6.4 New Design Proposal

The analysis of the monthly optimization outcomes reveals a clear trend in the parameter adaptations
that lead to improved workability. Most notably, the upper sling length L; consistently increases across
all months, typically reaching values above 56 m. This elongation is especially effective in shifting the
second natural period away from the dominant wave energy region (around 8 seconds), which reduces
resonance and improves dynamic performance.

The parameter changes are not arbitrary but follow a recognizable pattern:
e [ increases significantly to decouple the second mode from critical sea states.
e [3 is consistently reduced, resulting in a steeper sling angle §, which enhances lateral stiffness.

e [, and Lo are adjusted to satisfy the total length and angle constraints while supporting the
dynamic reshaping.

This consistency across months raises an important design consideration. Rather than implementing
different rigging setups per month, a practical alternative is to adopt a single, optimized configuration
that performs well year-round. The August-optimized configuration offers a compelling baseline, as it
lies close to the annual average and achieves excellent performance under typical summer sea states.

The proposed new rigging design, based on the August configuration in Table 8, is therefore:

Ly =56.62m, Ly=70lm, L3=3124m, L;=1139m

This setup adheres to all constraints introduced earlier and results in a predicted workability of 93.76%
for August, compared to 79.92% for the nominal rigging. A visual representation of the proposed rigging
design is shown in Figure 42.
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Figure 42: Visualization of the proposed new rigging configuration, based on the August-optimized
geometry.

Although this research focused exclusively on side-load limitation as the critical constraint, it is important
to note that other structural or operational limits may become relevant with the new design. Any
implementation should therefore be supported by a comprehensive structural and procedural review
beyond the scope of this study.

Future extensions could also explore season-dependent or forecast-driven reconfiguration strategies. The
same evaluation framework can be directly applied to weather forecasts, enabling dynamic selection of
the best rigging layout for upcoming sea states.
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7 Discussion and Conclusion

7.1 Summary of Key Findings

This thesis aimed to identify and mitigate the dominant drivers of weather-related downtime during
offshore monopile installation using the Bokalift 2 vessel. The focus was placed on the lift-off phase, where
dynamic amplification in the rigging system was suspected to cause frequent exceedance of operational
limits. The central research question was:

How can the rigging configuration of an offshore heavy lift vessel be optimized to reduce down-
time during offshore monopile lift-off operations?

To guide the investigation, the following sub-questions were addressed:

1. Which operational constraint contributes most to weather-related downtime, and is
suitable for optimization?
Exceedance analysis showed that the Crane Sideload UC was the most frequently violated limit
during critical phases (especially LC3a and LC3b). It co-exceeded with tension and motion-related
constraints, confirming the central role of excessive oscillation in downtime.

2. Can a simplified dynamic model accurately capture the behavior of the crane—rigging—monopile
system?
A linear Lagrangian model was developed and validated against OrcaFlex. It captured key dynamics
and proved reliable for predicting sideload spectra and natural frequencies.

3. Can this model be used to optimize the rigging geometry for improved workability?
Yes. The model enabled a frequency-domain framework that linked environmental conditions to
sideload exceedances and enabled geometry-based tuning of system response.

4. Does this optimization result in meaningful operational improvement?
Optimization of rigging lengths to shift resonance away from the dominant wave period (around 8 s)
yielded 10-20 percentage points improvement in monthly workability, with limited structural
changes to the lifting hardware.

These conclusions are supported by the following key findings:

e Crane Sideload UC was identified as the dominant limiting criterion, often exceeded in lift-off
conditions and strongly correlated with pendulum-induced dynamics.

¢ Resonance around 7T, = 8.16 s — matching the second natural mode of the system — was the
main cause of exceedances in critical load cases.

e A linearized Lagrangian multi-body model was developed and used to derive a frequency-
domain transfer function from crane tip motion to sideload.

e A grid-based workability framework was implemented, combining spectral load prediction with
environmental probability weighting.

e Differential evolution optimization allowed targeted reduction of sideload response by tuning
cable lengths, leading to a measurable improvement in operational uptime.

Taken together, the results show that modal tuning of the rigging layout can reduce the operational
impact of resonance and meaningfully improve offshore lifting workability.

7.2 Limitations and Critical Reflection

While this study presents a structured approach to identifying and mitigating dynamic overloads during
offshore monopile installation, it is important to critically reflect on the assumptions, limitations, and
implications of the methodology used.

Validation Discrepancies A comparison was performed between the simplified dynamic model and
frequency-domain simulations from OrcaFlex. While both models show similar trends — notably the
location and shape of resonant peaks — the predicted side load magnitudes differ consistently. The
analytical model underpredicts the peak side loads compared to the OrcaFlex results. These differences
are especially apparent in the frequency-domain transfer function Hyip—10ad, which shows lower amplitude
in the analytical model across most of the excitation range.
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Despite this discrepancy in absolute values, the analytical model captures the correct modal structure and
accurately identifies the dominant second mode near 7}, = 8.16s. This alignment in resonance location
— and the consistent shape of the response — supports the model’s use for optimization purposes,
where relative performance across different rigging configurations is more important than precise force
prediction.

Threshold Definition The decision to reduce the sideload threshold to 684 kN (0.57-1200) was made to
align the analytical model results with those of a more similar OrcaFlex simulation. While this adjustment
introduces some uncertainty, it reflects a practical compromise given the consistent differences observed
between the simplified and advanced models. These differences are primarily attributed to modeling
assumptions, including damping distribution and cable stiffness as referred to in 4.9.2.

It is important to note that the objective of this thesis was not to evaluate OrcaFlex or to benchmark
various OrcaFlex configurations against each other. Rather, OrcaFlex served as a reference tool to validate
the dynamic response predicted by the analytical model. In that context, the threshold adjustment helps
maintain a consistent and conservative limit when using the simplified model for parametric studies and
optimization.

The approach used here prioritizes relative comparisons and trends over absolute accuracy. While the
threshold shift is empirical, it enables meaningful insight into how rigging configurations influence system
dynamics and operational feasibility. The results indicate that optimization of rigging parameters can
significantly improve workability and should be considered in future projects.

Modeling Assumptions Several modeling simplifications were made to enable symbolic derivation,
fast simulation, and tractable optimization. These include:

e Planar dynamics: Only side-swing motion in a vertical plane is considered. Real offshore lifting
involves 3D behavior including yaw, out-of-plane pendulum effects, and crane slew corrections.

e Small-angle approximation: The Lagrangian formulation assumes small oscillations around
equilibrium.

e Idealized slings: All cables are assumed to be inextensible, massless, and always under tension.
This excludes effects such as elastic stretch, tension fluctuation, or line slack.

e No feedback to vessel: The model assumes that vessel motion is unaffected by the dynamics of
the suspended rigging system. This simplification is justified by the large mass difference between
the monopile and the vessel. However, small deviations were observed near resonance frequencies,
indicating that inertial coupling may become non-negligible under specific conditions.

e Simplified damping: Rayleigh damping is used with a uniform 2% critical damping ratio for the
first two modes. This approximation does not capture all physical sources of dissipation, such as
vortex shedding, spreader friction, or nonlinear joint damping.

e Deterministic inputs: The excitation is modeled using predefined JONSWAP spectra and RAOs,
assuming steady-state conditions. Human factors, crane control, and short-term variability are
excluded.

Interpretation and Scope These assumptions limit the model’s applicability to detailed design or
certification-level calculations. However, for early-stage optimization and sensitivity exploration, the
approach remains highly valuable. It enables fast evaluation of design changes and offers physical insight
into the system’s modal behavior, which would be difficult to extract from full 3D nonlinear models.

Nonetheless, caution is warranted in generalizing results. The optimization results should be interpreted
as directionally correct rather than quantitatively precise. Future validation with measurement data or
higher-fidelity simulation would be required to confirm load margins and refine the safety envelope.

7.3 Recommendations
7.3.1 Practical Recommendations for Boskalis

The findings of this study suggest that dynamic optimization of the rigging configuration can offer mean-
ingful reductions in weather-related downtime during monopile lift-off operations. Based on these results,
the following practical recommendations are proposed:
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Pay closer attention to rigging modal alignment during project planning: Although
modal analysis is already included in engineering workflows, this study highlights the importance
of evaluating rigging-induced resonance modes specifically in relation to local wave climates. Addi-
tional scrutiny may be warranted in the early design stages, especially when new rigging geometries
are introduced.

Use rigging length tuning as a low-effort mitigation strategy: Adjusting sling and ca-
ble lengths is relatively simple from both an engineering and logistical perspective, yet can offer
meaningful gains in workability by shifting resonance frequencies away from critical sea states.

Explore the use of damping elements in rigging design: The sensitivity of predicted side
loads to damping assumptions suggests that introducing physical damping — whether passive (e.g.,
friction elements, viscoelastic inserts) or active — could be an effective way to reduce dynamic
amplification. While not explored in this thesis, the concept shows promise and warrants further
investigation in future projects.

7.3.2 Recommendations for Future Research

This thesis focused on a linear, planar rigging model and its application to a specific lift-off load case.
Future research could broaden the impact and applicability of this work by exploring the following
directions:

Extend to full 3D dynamic modeling: Incorporating out-of-plane motion and 3D coupling
would enable realistic simulation of skewed sea states and arbitrary crane headings.

Calibrate against offshore measurements: Validation using motion sensors and load cells from
offshore lifts would build confidence in the model’s predictive value and refine its input assumptions.

Evaluate damping technologies: Investigate the effectiveness of passive or active damping
systems integrated into the rigging. These could provide a practical method for reducing resonance-
driven overloads.

Integrate economic decision-making: Assess the operational and financial impact of rigging
design changes using cost—benefit or risk-based frameworks.

Incorporate additional UC constraints into the optimization: This study focused on crane
sideload limits. A natural extension is to simultaneously evaluate the other UC’s for holistic work-
ability assessment.

7.3.3 Further Model and Methodological Improvements

To enhance accuracy and robustness, several technical aspects of the current modeling approach could
be improved in future work:

Refine damping formulation: Rayleigh damping was used for its simplicity, but future im-
plementations could explore experimentally derived damping to better reflect real offshore energy
dissipation.

Include flexible rigging and structural elasticity: Current rigid-body assumptions can be
relaxed by incorporating elasticity in slings and spreader bars, which becomes increasingly relevant
at higher loads or during transient events.

Expand beyond lift-off operations: Although lift-off was the most critical phase identified,
extending the framework to cover Empty spreader, Pre-tension, Storage lane and Upend hinge
would improve overall operational planning.
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A Python Script

A.1 Workability Calculation Script

1| #

2| # 0. Imports and Plotting helpers
3| #

1| import numpy as np

5| import sympy as sp

6| import pandas as pd

7| import matplotlib.pyplot as plt

s| from matplotlib.ticker import FuncFormatter, ScalarFormatter
o| import scipy.linalg as LA

10| from scipy.interpolate import interpld

11| from scipy.linalg import solve, eigh

def zoom_ylim(ax, y):

14 y_pos = yly > 0]

15 if len(y_pos) == O0:

16 return

17 ymin = max(y_pos.min()*1le-2, le-4*y_pos.max())
18 ymax = y_pos.max()*1.2

19 ax.set_ylim(ymin, ymax)

def sci_formatter(x, pos):

[SEN)
[

if x == 0: return
23 exponent = int(np.floor(np.loglO(np.abs(x))))
24 coeff = x / (10 ** exponent)
25 return .format (coeff, exponent)
26
27| sci_fmt = FuncFormatter (sci_formatter)

[CEEY)
© ®

#

30/# 1. Nominal parameters
31| #

32\ml, L1, I1, m2, L2, I2, m3, I3, w3, L3, m4, I4, L4, g = \
33 sp.symbols ( , real=True)

35| #Nominal parameters

36| params_const = {

37 ml: 226_790.0,

38 Li: 43.1,

39 I1: 529_.800.0,

10 m2: 39_000.0,

11 L2: 5.5,

42 I2: 58_240.0,

43 m3: 170_000.0,

14 I3: 16_.920_000.0,
45 w3: 42.0,

16 L3: 40.0,

17 m4: 1_868_300.0,
18 I4: 1_.789_000_000.0,
49 L4: 15.5,

50 g : 9.81

51| }

params_syms = (ml1, L1, I1, m2, L2, I2, m3, I3, w3, L3, m4, I4, L4, g)

def _vals(pdict):
56 """Return a tuple of parameter values in the order params_syms.
57 return tuple(pdict[s] for s in params_syms)

nwnn

6o # Unpack all numeric parameters into plain Python names
61| #
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91

93
94
95

96

# _vals returns the tuple in the order (ml, L1, I1, m2, L2, I2, m3,
L4, g)
mi_, Li_, I1_, m2_, L2_, I2_, m3_, I3_, w3_, L3_, m4_, I4_, L4_, g_

#

# 2. Lagrange model M, K (lambdified)

#

t = sp.symbols(’t’)

R = sp.Function(’R’) (t)

Rdot = sp.diff (R, t)

d = sp.sqrt (L3*x2 - (w3/2)*%2) # distance between m2 and m3
g_val = params_const[g]

# smallangle substitution dict

1, 2, 3, 4 = [sp.Function(f’ {i}’)(t) for i in range(l, 5)]
sin_small = {sp.sin( ): for in (1, 2, 3, 4)}
cos_small = {sp.cos( ): 1 - *x2/2 for in (1, 2, 3, 4)}
subs_small = {**sin_small, **cos_small}

# positions using full sin/cos
x1 = R + Li*sp.sin( 1 )
z1 = -Li*sp.cos( 1 )

x2 = x1 + L2*sp.sin( 2 )
z2 = z1 - L2*sp.cos( 2 )

x3 = x2 + dx*sp.sin( 3 )
z3 = z2 - d*sp.cos( 3 )

x4 = x3 + L4x*sp.sin( 4 )
z4 = 2z3 - L4x*sp.cos( 4 )

¢1r, 2, 3, 4)

d tuple(sp.diff(q, t) for q in )

# kinetic + potential energies in exact form
T_exact = (

mi*(sp.diff (x1,t)**2 + sp.diff(zl,t)**2) + Ilx d [0]*x2
+ m2*(sp.diff (x2,t)**2 + sp.diff (z2,t)**2) + I2*x d [1]xx2
+ m3*(sp.diff (x3,t)**2 + sp.diff (z3,t)**2) + I3* d [2]**2
+ méx(sp.diff(x4,t)**2 + sp.diff(z4,t)**x2) + I4*x d [2]xx2
) /2
V_exact = gx(
mix(z1 - (-L1))
+ m2%(z2 - (-L1 - L2))
+ m3*%(z3 - (-L1 - L2 - d))
+ méd*(z4 - (-L1 - L2 - 4 - L4))
)
# apply small angle approximation
T = sp.simplify(T_exact.subs(subs_small))
3|V = sp.simplify(V_exact.subs(subs_small))
# Eul e r Lagrange linear M + K =0

theta_zero = {1 : 0, 2 : 0, 3 : 0, 4 : 0}
M_sym = sp.hessian(T, d ).subs(theta_zero)
K_sym = sp.hessian(V, ) .subs(theta_zero)
#sp.pprint (M_sym, use_unicode=True)
#sp.pprint (K_sym, use_unicode=True)

# lambdify for speed
f_M = sp.lambdify(params_syms, sp.simplify(M_sym), ’numpy’)
f_K = sp.lambdify(params_syms, sp.simplify(K_sym), ’numpy’)

# numerical M, K
M = np.asarray(f_M(*_vals(params_const)), float)
K

= np.asarray(f_K(*_vals(params_const)), float)

# validate d is positive
d_val = float(d.subs(params_const))
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156
157
158
159
160
161
162
163
164
165
166
167
168
169

170

179

180

185
186
187
188
189
190
191
192
193
194
195
196
197
198

199

if d_val <= O0:
raise ValueError (f"Invalid geometry: computed d = {d_val:
"Require L3 > (w3/2) D)

#Build base-coupling M_b and total mass M_bb
M_bb_sym = ml + m2 + m3 + m4

Mbl = (m1 + m2 + m3 + m4)=*L1

Mb2 = (m2 + m3 + m4)*L2

Mb3 = (m3 + m4)=*d

Mb4 (m4)*L4

M_b_sym = sp.Matrix([Mbl, Mb2, Mb3, Mb4])
M_bb_sym = ml + m2 + m3 + m4

# lambdify them

f_Mb = sp.lambdify(params_syms, M_b_sym, ’numpy’)

f_Mbb = sp.lambdify(params_syms, M_bb_sym, ’numpy’)
#Evaluate numerically

Mb = np.asarray(f_Mb(*_vals(params_const)), float).flatten()

Mbb = float (f_Mbb(*_vals(params_const)))

# 3. Rayleigh damping
#

# Modal analysis (after M, K defined)
2, = LA.eigh(K, M)

n = np.sqrt( 2 )

T_modes = 2*np.pi/ n

# Target 27 on modes 1 & 2
_target = 0.02
s = LA.solve (
[[1/ n [O0], n [0]1],
[1/ n [1], n [1]]],
2% _target *np.omnes(2)

)
# Build damping matrix
C = *M  + *K

_modal = np.array ([

( [:,il.conj().T @ (C @ [:,i1)) / (2% n [i])
for i in range(len( n ))
1) .real

.4g}. "

# shape

# 4. Excitation / output vectors (with damping + F_tip via D Alembert

def H_tip_load(omega):

d_ = np.sqrt(L3_#**2 - (w3_/2)*%*2)

# Ensure omega is array-like
w = np.atleast_1d(omega)
H = np.zeros_like(w, dtype=complex)

# Effective inertias (Ip) and coupling inertias (Iij)
Ipl = I1_ + (mi1_ + m2_ + m3_ + m4_) * L1_#*x%2

Ip2 = I2_ + (m2_ + m3_ + m4_) * L2_xx2
Ip3 = I3_ + I4_ + (m3_ + md_) *x d_x**2
Ip4 = mé4_ * L4_*x2

I12 = L1_ * L2_ * (m2_ + m3_ + m4_)
I13 = L1_ * d_ * (m3_ + m4_)

I14 = m4_ *x L1_ *x L4_

I23 = L2_ * d_ * (m3_ + m4_)
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200 I24 = m4_ *x L2_ *x L4_

201 134 = md4_ * d_ * L4_

202

203 # Gravitational stiffness terms

204 Ki = g_ * L1_ * (ml_ + m2_ + m3_ + m4_)

205 K2 = g_ * L2_ * (m2_ + m3_ + m4_)

206 K3 = g_ * d_ * (m3_ + mé_)

207 K4 = g_ * L4_ * mé_

208

209 # Rayleigh damping matrix

210 C_local = *M + *K # 4 4

211

212 for i, wi in enumerate(w):

213 s = 1j * wi

214

215 # Dynamic stiffness matrix D = s M+ s C+ K (4 4)
216 D = s**¥2 * M + s * C_local + K

217

218 # Assemble augmented dynamic system (5 5 ):

219 D_dyn = np.zeros((5, 5), dtype=complex)

220 D_dyn[:4, :4] = D

221 D_dyn[4, :4] = s*x*x2 *x Mb

222 D_dyn[4, 4] = -1.0

223

224 # Right -hand side vector from base acceleration input
225 # RHS = -s * [Mb; Mbb] * R(s), where R(s) =1
226 rhs = -s**2 * np.append(Mb, Mbb)

227

228 # Solve system output is: [ 1 , 2, 3, 4 , F_tip]
229 sol = np.linalg.solve(D_dyn, rhs)

230

231 # Store only transfer function H = F_tip(s) / R(s)
232 H[i] = sol[4]

233

234 return H[0] if np.isscalar (omega) else H

235

236 | #

237|# 5. Vessel motion RAO (waves vessel CoG) + tip transform
238| #

239| raopath = r"C:\Users\olla\OneDrive - Boskalis\Thesis 0livier Lagas\BL2RAOS.xlsx"
240| raosheet = "0"

241

242 df = pd.read_excel (raopath, sheet_name=raosheet, header=[0, 1])
243| df . columns = [" ".join(c).strip() for c in df.columns]

244| _tab = 2xnp.pi / df [df.columns[0]].values

245

246| dofs = ["Surge", "Sway", "Heave", "Roll", "Pitch", "Yaw"]
247 def cpx(d):

248 if d in ("Roll","Pitch","Yaw"):

249 amp_col = £"{d} ampl (deg/m)"

250 phase_col = f"{d} Phase (deg)"

251 # read in deg/m, convert to rad/m

252 amp = np.deg2rad(df [amp_col].values)

253 else:

254 amp_col = £"{d} ampl (m/m)"

255 phase_col = f"{d} Phase (deg)"

256 amp = df [amp_col].values

257

258 phs = np.deg2rad(df [phase_col].values) # phase always in d e g rad
259

260 return interpld( _tab , amp * np.exp(-1j*phs),

261 bounds_error=False, fill_value=0.0)

262

263| # frequency grid

264| f_min, f_max = 1/60, 1.0 # Hz

265 = np.linspace (2*np.pi*f_min, 2*np.pi*f_max, 900)

266| £ = /(2%np.pi)

27| T = 1/fF

268| 1idxT = np.argsort (T)

269

270/ vRAO = np.vstack([cpx(d)( ) for d in dofs])

271
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# CoG boom-tip transform (vector P)
Rao_origin = np.array([95.44, 0, 14.69]1)
274 Cranetip_loc = np.array([73.75, -50, 131.09])

NN
NN
w N

275\ P = Cranetip_loc - Rao_origin

276| Tip = np.array([[1,0,0, o, P[2], -P[1]1],

277 [0,1,0, -P[2], o, P[0I],

278 [0,0,1, P[1], -P[0], 0 11)

279

2s0| tip_RAO = Tip @ vRAO

2s1| u_tip_x = tip_RAO[0] # horizontal tip motion
282

283| #

284 # 6. Wave spectrum
285 #

28| def jonswap(f, Hs, Tp):

288 g = 9.81

289 fm = 1.0 / Tp

290

291 = Tp/np.sqrt (Hs)

292 if <= 3.6: = 5.0

203 elif < 5.0: = np.exp(5.75 - 1.16x )
204 else: = 1.0

295

296 = np.where(f <= fm, 0.07, 0.09)

297

298 # P ier s on Moskowitz base

299 S_pm = (g**2) /(16 * np.pi**4) * fxx(-5) * np.exp(-5/4 * (fm/f)*x*4)
300

301 # JONSWAP hump exponent b

302 b = np.exp(- (f - fm)**x2 / (2 * *%x2 ok fm*k*2))
303

304 # un-normalized JONSWAP

305 S_raw = S_pm * **xb

306

307 # normalize so that S_raw df = Hs /16

308 mO_raw = np.trapz(S_raw, f)

309 _corr = (Hs**2/16) / mO_raw

310 return _corr * S_raw # [m /Hz]

311

312| #

313| # 7. Crane Side-load Spectrum

314 #

315

s316| Hs_demo, Tp_demo = 1 , 8 # demo sea-state
17| £_xlim = (0.00, 0.3) # frequency [Hz]
318| Sf_ylim = (1, 5e8) # PSD [kN /Hz]
19| T_xlim = (1, 30.0) # period [s]

320/ ST_ylim = (1, 5e8) # PSD [kN s ]
321

322l H_tip = np.vectorize(H_tip_load)( ) # [N/m]

323) H_tot = u_tip_x * H_tip # [N]

324

325/ S_f = jonswap(f, Hs_demo, Tp_demo)

327| S_Ff = S_f * np.abs(H_tot)*x*2 # [N /Hz]
s28| S_Ff_k = S_Ff / 1le6 # [kN /Hz]
320 S_LFT_k = S_Ff_k / (T*%2) # [kN s ]
330

331 #

332|# 8. Final Results Summary Single Jonswap wave

333| #
334| # convert ordinary frequency f [Hz]
335 £ = / (2 % np.pi)
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336
337| # Spectral moments & =z e r o crossing

335 m0 = np.trapz (S_Ff, f)

330/ m2 = np.trapz ((f**2) x S_Ff, f)

320/ Tz = np.sqrt(m0 / m2)

341| sig = 2 * np.sqrt(m0) # 2 significant load
342| mO_kN2 mO / 1e6 # [kN"2/Hz]

313) m2_kN2 = m2 / 1le6 # [Hz"2 kN ~2]

344
345| # M o s t probable m a x load estimates

346| D_demo = 0.5 * 3600 # 0.5 h

347 D_full = 3.0 * 3600 # 3.0 h

314s| def most_probable_max (D) :

349 return sig * np.sqrt (0.5 * np.log(D / Tz))
350
351| Fmax_demo = most_probable_max (D_demo)
352 Fmax_full most_probable_max (D_full)

353
354| # 4) Peak PSD in frequency domain
355| idx_pf = np.argmax (S_Ff_k)
356| peak_pf_val = S_Ff_k[idx_pf]

357| peak_pf_freq = f[idx_pf]

358
350| # 5) Spectrum at the 2nd mode frequency
360 T2 = T_modes [1]

61| £2 = 1.0 / T2

362/ 82 = np.interp(£f2, £, S_Ff_k)

363

364| # —-—-- print everything ---

365| print ("\n=== SIDE-LOAD RESULTS SUMMARY ===")

366 print (£"m0 (variance) = {mO_kN2:.3e} kN /Hz")

367| print (£"m2 (2nd moment) = {m2_kN2:.3e} Hz kKN ")
368| print (£"Zero-crossing period Tz = {Tz:.3f} s")

360| print (£"Significant load (2 ) = {sig/1e3:.3f} kN\n")

370
371| print (" M o s t probable max loads:")

372| print (£" Demo (D={D_demo/3600:.1f} h) = {Fmax_demo/1e3:.3f} kN")
373 print (£" Full (D={D_full/3600:.1f} h) = {Fmax_full/1e3:.3f} kN\n")

375 print ("Modal periods:")

376 for i, Tn in enumerate (T_modes, 1):

377 print (f" Mode {i}: T = {Tn:5.2f} s (f = {1/Tn:4.3f} Hz)")
378
379
380 #

381| # Here we move from single spectrum evaluation to grid evaluation
382 #

383
384| #

385|# 9. Build full library of side-load spectra over given Hs/Tp bins
386 #

ss7| H_tip = np.vectorize (H_tip_load)( ) # [N/m per m]
sss| H_tot = u_tip_x * H_tip # [N]

389

s00| Hs_edges = [

391 (0.0,0.25) ,(0.25,0.5) ,(0.5,0.75) ,(0.75,1.0),

392 (1.0,1.25),(1.25,1.5) ,(1.5,1.75) ,(1.75,2.0),

393 (2.0,2.25) ,(2.25,2.5) ,(2.5,2.75) ,(2.75,3.0),

394 (3.0,3.25),(3.25,3.5) ,(3.5,3.75) ,(3.75,4.0),

395 (4.0,4.25)

306 ]

307| Hs_vals = np.array ([0.5%(hO+hl) for hO,hl in Hs_edges])
398
s00| Tp_edges = [(t, t+1.0) for t in np.arange(2.0, 23.0, 1)]
100| Tp_vals = np.array ([0.5*x(t0+t1) for tO,tl1 in Tp_edges])
401
102|n_Tp, n_Hs, n_ = len(Tp_vals), len(Hs_vals), .size
103| S_Ff_grid = np.zeros((n_Tp, n_Hs, n_ ))
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mask_Hs = Hs_vals <= 2.5
Hs_vals = Hs_vals[mask_Hs]
S_Ff_grid S_Ff_grid[:, mask_Hs, :]

for i, Tp in enumerate(Tp_vals):
for j, Hs in enumerate(Hs_vals):
S_f = jonswap(f, Hs, Tp)
S_Ff_grid[i, j, :] = S_f * np.abs(H_tot)**2

Hs_labels = [f"{hO:.2f}-{hi:. 2f}"
for (hO, hil), keep in zip(Hs_edges, mask_Hs) if keep]
Tp_labels = [£"{t0:.1f}-{tl1:.1f}" for t0, tl in Tp_edges]

np.save("Tp_vals.npy", Tp_vals)
np.save ("Hs_vals.npy", Hs_vals)
np.save("omega.npy", )

np.save ("S_Ff_grid.npy", S_Ff_grid)

# 10. Compute m o s t probable max load over duration D_hours
#

3.0
D_hours * 3600

D_hours
D

# Containers
n_Tp, n_Hs, _ = S_Ff_grid.shape
F_max_grid = np.zeros((n_Tp, n_Hs))

# Loop over grid
for i in range(n_Tp):
for j in range(n_Hs):
S_Ff = S_Ff_grid[i, j, :]

m0 = np.trapz(S_Ff, f)
m2 = np.trapz ((£**2) x S_Ff, f)
Tz = np.sqrt(m0 / m2)

sig = 2 * np.sqrt(m0)

Ncross = D / Tz

F_max = sig * np.sqrt(0.5 * np.log(Ncross))
F_max_grid[i, j] = F_max / 1e3 # kN

df _Fmax = pd.DataFrame(F_max_grid,
index=Tp_labels,
columns=Hs_labels)

df _Fmax.to_excel("F_max_grid.xlsx", sheet_name="F_max")
print("Wrote full matrix to F_max_grid.xlsx")

#

# 11. Unity check: mark workable (1) or not (0)
#

limit_kN = 0.57 * 1200

unity_grid = (F_max_grid <= limit_kN).astype(int)

df _unity = pd.DataFrame(
unity_grid,
index=Tp_labels, #
columns=Hs_labels #

2.0-3.0", "3.0-4.0", ]
"0.0-0.25", "0.25-0.5", ]

df _unity.to_excel("Workability_ unity_check.xlsx")
print ("Wrote unity-check matrix to Workability_unity_check.xlsx\n")
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# 12. Load Hs/Tp occurrence probabilities from Excel
#

prob_path = r"C:\Users\olla\OneDrive - Boskalis\Thesis 0Olivier Lagas)\
USA_EastCoast_distributions_SFWO1l_IPformat_02011979.xlsx"

sheet_name = "August'

df _prob = pd.read_excel (prob_path, sheet_name=sheet_name, index_col=0)

#

# 13. Build a numericmidpoint probability map
#

import re
BIN_RE = re.compile(r"\s*([\d\.]+)\s*[~ IN\s*([\d\.I1+)\s*")
def parse_bin(1lbl):
m = BIN_RE.match(str(1lbl).strip())
if not m:
raise ValueError
return float(m.group (1)), float(m.group(2))

prob_map = {}
for tp_1lbl in df_prob.index:
try:
t0, tl = parse_bin(tp_1lbl)
except ValueError:
continue
tm = 0.5%x(t0 + t1)
for hs_1bl in df_prob.columns:
try:
hO, hl = parse_bin(hs_1bl)
except ValueError:
continue
hm = 0.5%x(h0O + hi)
p = df _prob.at[tp_1bl, hs_1bl]
if isinstance(p, str) and p.strip().endswith(’7%’):
p = float(p.strip().rstrip(’%’))/100
else:
p = float(p)
prob_map [(tm, hm)] = p

# 14. Compute weighted workability via numericmidpoint lookup
#

nTp, nHs = unity_grid.shape
weighted = np.zeros_like(unity_grid, dtype=float)

for i, tp_lbl in enumerate(Tp_labels):

t0, t1 = parse_bin(tp_1bl)

tm = 0.5%(t0+t1)

for j, hs_1lbl in enumerate (Hs_labels):
hO, hl = parse_bin(hs_1bl)
hm = 0.5%x(hO+h1)
p = prob_map.get((tm, hm), 0.0)
weighted[i,j] = unity_grid[i,j] * p

workability = weighted.sum()
print (£"0Overall workability: {workability*100:.2f3}%")
df _weighted = pd.DataFrame(

weighted,

index=Tp_labels,
columns=Hs_labels
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598
599
600
601
602
603
604

605

)
df _weighted.to_excel( )
print ( )

df _workability_pct = df_weighted * 100.0
out_path =

with pd.ExcelWriter (out_path, engine= ) as writer:
# 1) Max load
df _Fmax.to_excel (writer,
sheet_name= .
index=True)
# 2) Unity check
df _unity.to_excel(writer,
sheet_name= .
index=True)
# 3) Workability per bin [%]
df __workability_pct.to_excel(writer,
sheet_name= s
index=True)

print (£ )

# 15. Optimisation through Differential Evolution
#

import numpy as np

import pandas as pd

from scipy.optimize import differential_evolution
from scipy.linalg import eigh

nominal_params = { :L1_, :L2_, :L3_, tw3_, :L4_}

ratio_nom (w3_/2) / L3_

nominal_delta 2*np.rad2deg(np.arcsin(np.clip(ratio_nom,0,1))) \
if O<=ratio_nom<=1 else np.nan

nominal_ 2 = 2 .copy(Q

nominal _workability = workability
nom_Fmax = pd.DataFrame (F_max_grid, index=Tp_labels, columns=Hs_labels)
nom_unity = pd.DataFrame (unity_grid, index=Tp_labels, columns=Hs_labels)

nom_work_pct = pd.DataFrame(weighted*100.0, index=Tp_labels, columns=Hs_labels)

d_nom np.sqrt (L3_**2 - (w3_/2) *%*2)
L_total = L1_ + L2_ + d_nom + L4_

bnds = [(30.0,60.0), (5.0,10.0), (30.0,50.0), (42.0,42.0)] # Li,L2,L3,w3

L4_min, L4_max = 10.0, 20.0
min_delta_deg, max_delta_deg = 60.0, 90.0
sin_min = np.sin(np.deg2rad(min_delta_deg/2))
sin_max = np.sin(np.deg2rad(max_delta_deg/2))

def compute_workability(params):
global L1_,L2_,L3_,w3_,L4_,M,K,C,Mb,Mbdb

L1i_,L2_,L3_,w3_,L4_ = (params|[ 1,params[ 1,
params [ ],params [ 1,
params [ iD)

params_const [L1] ,params_const [L2],params_const [L3],\
params_const [w3],params_const[L4] = (L1_,L2_,L3_,w3_,L4_)
= _vals(params_const)

M = np.asarray (f_M(*_vals(params_const)), float)

K = np.asarray (f_K(*_vals(params_const)), float)

¢ = *M + *K

Mb = np.asarray(f_Mb(*_vals(params_const)), float).flatten()

Mbb = float( f_Mbb(*_vals(params_const)) )

H_tip = np.vectorize (H_tip_load)( )
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606 H_tot = u_tip_x * H_tip
607
608 D = D_hours * 3600

609 work = 0.0

610 for i, Tp in enumerate(Tp_vals):

611 for j, Hs in enumerate (Hs_vals):

612 S_f = jonswap(f, Hs, Tp)

613 S_Ff = S_f * np.abs(H_tot)**2

614 mO = np.trapz(S_Ff, f)

615 m2 = np.trapz ((f**2)*S_Ff, f)

616 Tz = np.sqrt (m0/m2)

617 sig = 2*np.sqrt(m0)

618 Fmax = sig * np.sqrt(0.5*np.log(D/Tz)) / 1e3

619 if Fmax <= limit_kN:

620 tm = 0.5 * sum(map(float, Tp_labels[i].split(’-7)))
621 hm = 0.5 * sum(map(float, Hs_labels[j].split(’-’)))
622 work += prob_map.get((tm,hm), 0.0)

623 return work

624

625| w_nom_via_fun = compute_workability(nominal_params)

626| print (£" [CHECK] Nominale workability via functie: {w_nom_via_fun*100:.2f3}J "\
627 f"(origineel: {nominal_workability*100:.2£f2}%)")

629 # Objective for DE
630| def obj_de(x):

631 Li_val,L2_val,L3_val,w3_val = x

632 d_val = np.sqrt(max(0.0, L3_val#**2 - (w3_val/2)*%2))
633 L4_val = L_total - (L1l_val+L2_val+d_val)

634 ratio = (w3_val/2) / L3_val

635 if not (L4_min<=L4_val<=L4_max and sin_min<=ratio<=sin_max):
636 return 1.0

637 return -compute_workability ({

638 ’L17:L1_val,’L2’:L2_val,

639 ’L37:L3_val,’w3’:w3_val,’L4’:L4_val

640 1)

641

642| # --- Run DE with seed for reproducablity ---
643| print ("Start differential_evolution...")

644| result = differential_evolution(

645 obj_de, bnds,
646 strategy=’bestlbin’,

647 maxiter=50, popsize=20,

648 tol=1e-3, disp=True,

649 polish=True,

650 seed=42

651 )

652

653 Xx_opt = result.x

654| best_w = -result.fun

655| L1_val ,L2_val,L3_val,w3_val = x_opt

656 _d_val = np.sqrt(max (0.0, L3_val#**2 - (w3_val/2)*%*2))
657| L4_val = L_total - (Li_val+L2_val+_d_val)

(w3_val/2) / L3_val
2*np.rad2deg(np.arcsin(np.clip(ratio_opt ,0,1)))

658l ratio_opt
650| best_delta

660| best_params = {

661 L17:L1_val,’L2’:L2_val,

662 ’L37:L3_val,’w3’:w3_val,’L4’:L4_val

663| ¥

664

665| w_opt_via_fun = compute_workability(best_params)

666| print (f" [CHECK] Optimized workability via func: {w_opt_via_fun*100:.2f}% "\
667 f"(DE-result: {best_w*100:.2f}%)")

660| df _params = pd.DataFrame ({

670 ’Nominaal’: list(nominal_params.values()) + [nominal_deltal,
671 ’Optimized’: list(best_params.values()) + [best_delta]

672| }, index=[’L1’,’L27,°L3°,’w3’, L4, delta ( )’]1)

673| print ("\n=== Parameter Vergelijking ===")

674| print (df _params.to_string())

676| print (£"\n=== Workability ===")

677| print (f"Nominaal via origineel : {nominal_workability*100:.2f3}%")
67s| print (£"Nominaal via functie : {w_nom_via_fun*100:.2f}%")

679| print (£"Optimized via DE : {best_w*x100:.2f3}%")

680| print (£"Optimized via functie : {w_opt_via_funx*100:.2f}%")
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62| for sym,val in best_params.items():

683 params_const [globals () [sym]] = val

6s4| _ = _vals(params_const)

6s5| 2_opt , _opt = eigh(

656 np.asarray (f_K(*_vals(params_const)), float),
687 np.asarray (f_M(*_vals (params_const)), float)
688 )

680 mn_opt = np.sqrt( 2_opt )

600| df _modes = pd.DataFrame ({

691 : 2%np.pi/np.sqrt(nominal_ 2),

692 : 2%np.pi/ n_opt

693| ¥, index=[f for i in range(len( n_opt ))1])
6o4| print ( )

605| print (df _modes.to_string())

696
07| Mb = np.asarray(f_Mb(*_vals(params_const)), float).flatten()
6os| Mbb = float( f_Mbb(*_vals(params_const)) )

00| H_tip = np.vectorize(H_tip_load) ( )

700l H_tot = u_tip_x * H_tip

701
702| print ( )

703/ nT ,nH,D = len(Tp_vals), len(Hs_vals), D_hours*3600

704| Fmax_opt, weighted_opt = np.zeros((nT,nH)), np.zeros ((nT,nH))
705| for i,Tp in enumerate(Tp_vals):

706 for j,Hs in enumerate (Hs_vals):

707 S_f = jonswap (f,Hs,Tp)

708 S_Ff = S_f * np.abs(H_tot)**2

709 m0,m2 = np.trapz(S_Ff,f), np.trapz((f**2)*S_Ff,f)
710 Tz = np.sqrt(m0/m2)

711 sig 2*np.sqrt (m0)

712 Fmax_opt[i,j] = sig*np.sqrt(0.5%np.log(D/Tz))/1e3

713 if Fmax_opt[i,j] <= limit_kN:

714 tm = 0.5*sum(map(float,Tp_labels[i].split( )))
715 hm = 0.5%sum(map(float,Hs_labels[j].split( )))
716 weighted_opt[i,j] = prob_map.get((tm,hm),0.0)

71| df _Fmax_opt = pd.DataFrame (Fmax_opt, index=Tp_labels, columns=Hs_labels)
719| df _unity_opt = pd.DataFrame ((Fmax_opt<=1limit_kN).astype(int),

720 index=Tp_labels, columns=Hs_labels)

721| df _work_pct_opt = pd.DataFrame (weighted_opt#*100.0,

722 index=Tp_labels, columns=Hs_labels)

724 with pd.ExcelWriter (out_path, engine= , mode= ) as writer:
725 df _Fmax_opt .to_excel(writer, sheet_name= )

726 df _unity_opt .to_excel(writer, sheet_name= )

727 df _work_pct_opt.to_excel(writer, sheet_name= )

23| print (£ )

30| from scipy.signal import find_peaks

# buiten de functie, vlak boven het plot/ exportblok
3| v = np.linspace (2*np.pi*0.01, 2*np.pi*1.0, 2000)
34| f _export = v / (2%np.pi)

738 # 16. Compare nominal vs optimized and export data
739| #

1| v = np.linspace(2*np.pi*0.01, 2*np.pi*x1.0, 2000)
2| f_export = v / (2%np.pi)

4.

11| def recalc_Htip(params):

745 for sym, val in params.items():

746 params_const [globals () [sym]] = val
747 _ = _vals(params_const)

749 global M, K, C, Mb, Mbb

750 M = np.asarray (f_M(*_vals(params_const)), float)
751 K = np.asarray (f_K(*_vals(params_const)), float)
752 ¢ = *M + *K
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Mb = np.asarray(f_Mb(*_vals(params_const)), float).flatten()
Mbb float( f_Mbb(*_vals(params_const)) )

H = np.abs(np.vectorize(H_tip_load)( v )) / 1e3 # kN/m
return H

H_nom = recalc_Htip(nominal_params)

peaks_nom,_ = find_peaks (H_nom)

print ( , np.round(f_export[peaks_nom],3))
H_opt = recalc_Htip(best_params)

peaks_opt,_ = find_peaks (H_opt)

print ( , np.round(f_export[peaks_opt],3))

| plt.figure(figsize=(8,4))

plt.semilogy (f_export, H_nom, label= )
plt.semilogy (f_export, H_opt, label= )
plt.xlabel( )

plt.ylabel( )

plt.title( )

plt.legend ()
plt.tight_layout ()
plt.show ()

df _Htip = pd.DataFrame ({

f_export,
H_nom,
H_opt
b
with pd.ExcelWriter (out_path, engine= , mode= ) as writer:
df _Htip.to_excel(writer, sheet_name= , index=False)
print (£

Listing 1: Workability Calculating Script
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