
THE SMALL STELLATED DODECAHEDRON CODE

JOCHEM BROSHUIS

THE SMALL STELLATED DODECAHEDRON CODE

FINDING INTERLEAVED MEASUREMENT SCHEDULES

Bachelor Thesis

Technical University of Delft,
to be publicly defended on monday 18 november 2024

by

Jochem BROSHUIS

This dissertation has been reviewed by

Prof. B. M. Terhal Technical University of Delft
Prof. L. DiCarlo Technical University of Delft

Assessment committee:

Dr. J. L. A. Dubbel-
dam

Technical University of Delft

Dr. T. Taminiau, Technical University of Delft

Independent members:
Dr. M. F. Rimbach-
Russ,

Technical University of Delft

With the cooperation of

MSc. ir. M. Serra-
Peralta,

Technical University of Delft

CONTENTS

Abstract vii

Summary ix

1 Quantum Error Correction 1
1.1 Qubits. 2
1.2 Noise and Shor code . 4
1.3 Stabilizer code formalism . 5
1.4 Syndrome extraction circuits . 6

1.4.1 stabilizer measurements . 8
1.5 Distance-3 rotated surface code. 10
1.6 Small stellated dodecahedron. 10

1.6.1 Logical operators of the stellated dodecahedron 12
1.6.2 Measuring the stabilizers of the SSD code 15

2 Coloring the Small Stellated Dodecahedron 17
2.1 Length 5 coloring . 18
2.2 On properness of syndrome extraction schedules. 20

2.2.1 X and Z propagation through CNOT 21
2.3 Pairs of qubits for the SSD. 22

3 Algorithm for Finding Interleaved Schedules 25
3.1 Restrictions on the group based on the number of edges colored 27

3.1.1 0 edges have been colored . 27
3.1.2 1 edge has been colored . 27
3.1.3 2 edges have been colored . 27
3.1.4 3 or more edges have been colored. 28

3.2 Line graph conversion and coloring the edges 28
3.3 Improving the algorithm . 29
3.4 Length 6 proper coloring . 31
3.5 Length 5 proper coloring? . 31

3.5.1 The creation of 6th color . 32
3.5.2 Reducing the graph . 32
3.5.3 Ordering for the SSD . 33

4 Applying the algorithm to other codes 35
4.1 Distance-3 surface code. 35
4.2 Tetrahemihexahedron code . 37
4.3 Performance of improved algorithm . 37

v

vi CONTENTS

5 Verification of Fault Tolerance 39
5.1 Depolarizing noise model. 39
5.2 Error propagation . 40
5.3 Fault-tolerance of found syndrome extraction circuits 41

6 Logical performance of the circuits 43
6.1 Interleaved schedule for the SSD . 44
6.2 Sequential schedule for the SSD . 46
6.3 8 copies of the 17-qubit surface code . 46

7 Discussion and Further Ideas 49

8 Conclusion 53

A Appendix 59
A.1 Verification of results . 59
A.2 X and Z Pauli propagation. 60
A.3 Figures . 62
A.4 Tables . 64

B GitHub 73

ABSTRACT

Quantum computers hold the potential to revolutionize computation by harnessing the
unique properties of qubits. However, qubits are highly susceptible to errors, posing a
major challenge in building reliable quantum systems. To address this, the development
of quantum error correction codes is essential. The surface code has become a well-
known code, using a 2D square grid to encode qubits. However, its high qubit overhead
may be improved by alternative codes with more efficient encoding schemes.

This thesis focuses on the small stellated dodecahedron code, previously outper-
formed by the surface code, and proposes a new approach to optimize its performance
by developing an algorithm that finds interleaved measurement schedules. The devel-
oped algorithm is tested on both the surface code and a code based on the Tetrahemi-
hexahedron, correctly providing interleaved schedules for both. Applying the algorithm
to the small stellated dodecahedron reduces the number of time steps required from 10
to 6, significantly boosting error correction performance. Simulations under a depolar-
izing noise model confirm the fault tolerance of these new schedules and demonstrate
a 2.6x improvement in the code’s pseudo-threshold compared to the original sequential
schedule. While the surface code remains more effective at protecting against errors,
performing 1.26 times better, the stellated dodecahedron code offers a compelling alter-
native for near-term research, requiring fewer qubits while maintaining strong perfor-
mance.

vii

SUMMARY

Computers have become an essential part of modern life, performing tasks that were
once too time-consuming or complex for manual effort. They process and store infor-
mation in the form of binary digits, or bits, which are represented as strings of 0s and 1s.
This classical model of computing has enabled extraordinary advances in technology,
science, and industry, but it is fundamentally limited by the constraints of binary logic
and classical physics. In 1982, Richard Feynman proposed the concept of quantum com-
puters, a revolutionary idea that utilizes the principles of quantum mechanics to process
information in fundamentally new ways. Unlike classical bits, quantum computers use
quantum bits, or qubits, which can exist in a superposition of both 0 and 1 simulta-
neously. Chapter 1 will act as an introduction, starting with a brief explanation about
qubits, how to measure them, and will give a short introduction to operators. After the
required basics, 3 quantum error correction (QEC) codes will be explained. First, Shor’s
code, which bundles qubits in packages of 3 to provide protection to incoming errors.
By comparing mutual differences, it can be deduced what kind of errors have occurred
and what correction has to be applied. Shor’s code is an easy example of a class of codes
called stabilizer codes. A short description of stabilizer codes will be given, before look-
ing into how to develop syndrome extraction circuits. One well-known quantum error
correction code is the surface code, a type of stabilizer code. It places qubits on a 2D grid
and applies stabilizing plaquette operators, allowing for the correction of single errors.
However, the surface code is limited by spatial constraints, which affect scalability. Hy-
perbolic surface tiling codes, such as those based on the small stellated dodecahedron,
can correct single errors, and offer an alternative without these limitations. A previous
study [1] explored the small stellated dodecahedron code but showed that it failed to
outperform the surface code in terms of overall error protection. The study left open
the question of whether the measurement schedule for qubits was optimal. A sequential
schedule requiring 10 time steps was used, first measuring X -type stabilizers, then Z -
type stabilizers. This thesis presents a heuristic algorithm to find interleaved schedules,
where X and Z stabilizers are measured simultaneously, reducing the number of time
steps needed.

The finding of an interleaved schedule boils down to finding an edge coloring on the
Tanner graph of the SSD, which will be the main topic of Chapter 2. A normal edge color-
ing algorithm is made, and a length-5 coloring is found. By propagating Pauli’s through
CNOT’s, it can be seen that this length-5 schedule does not actually measure the stabiliz-
ers properly. In order to develop an algorithm that produces proper interleaved sched-
ules, a theorem is used which states that each pair of qubits sharing the same X and Z
stabilizers should both either first interact with the X or with the Z stabilizer. Based on
this restriction, the edge coloring has to be adjusted to return proper interleaved sched-
ules.

In Chapter 3, it will be explained how, by identifying all the overlapping groups of

ix

x SUMMARY

qubits, the constraints imposed by this theorem are addressed. This results in some
edges getting temporarily blocked and removed from the graph. The remaining graph
is converted into a line graph and a maximal independent set is chosen and assigned a
color. This set gets permanently removed from the graph, and the process of finding a
new colorable set starts again. An improvement is made to the algorithm by enabling
it to detect certain blocking sets; cycles of blocked edges which only can be restored by
the coloring of another blocked edge in the same cycle. This improvement decreases the
overall runtime of the algorithm by a factor 3.

The algorithm was used to develop 18 different proper interleaved schedules for the
SSD. The found schedules were of length 6, being 4 layers of CNOT’s shorter than the
sequential schedules used before. Besides the SSD, the algorithm also is tested on the
surface code and the Tetrahemihexahedron code, yielding proper interleaved schedules
for both. However, for these smaller codes, the detecting of blocking cycles poses no
improvements, as the additional runtime required to perform this check nullifies the
effect of prematurely halting the algorithm.

The newly found interleaved schedules are then simulated using Stim. A circuit-level
depolarizing noise model is used to simulate the random type of errors occurring on the
qubits. Using this noise model, Chapters 5 and 6, will focus on testing the schedules
to ensure single errors are detected, corrected, and do not spread. Simulations using a
circuit-level depolarizing noise model showed that the interleaved schedules of the stel-
lated dodecahedron provide a 2.6 times improvement over sequential schedules when
looking at logical error rates. While the distance-3 surface code still offers better protec-
tion, the interleaved schedules only perform 1.26 times worse. Since the surface code
requires 136 qubits, and the stellated dodecahedron uses only 54, the SSD proves to be a
promising overhead-reducing alternative for near-term experiments.

1
QUANTUM ERROR CORRECTION

The world has changed in many ways due to computers, which now play a major role in
our daily lives. From managing air traffic control to powering electric cars and enabling
electronic communication through the Internet, computers are present in almost every
aspect of life. While computers allow us to solve many problems that were simply impos-
sible before their invention, several problems require too much computational power
to be practical even for relatively simple inputs, even when using the most high-end
computers. The Church-Turing Thesis [2] states that every physical implementation of
universal computation can simulate any other implementation with only a polynomial
slowdown. This would imply that for classical computers the complexity and scaling of
problems would remain the same, despite the overall performance going up.

Feynman was the first to come up with the conjecture that a computer based on
quantum mechanics could intrinsically be more powerful than any classical computer
[3]. Whilst this might seem sensible when looking at the way quantum mechanics allows
ways to process information by entanglement and superposition, which are classically
impossible, it was in fact quite revolutionary as it suggests that the strong Church-Turing
Thesis could be inapplicable for quantum computers. Feynman’s conjecture suggests
that while certain problems are complex for classical computers, they may be efficiently
solved by quantum computers, potentially making some classically unsolvable problems
solvable. However, stating that a computer based on quantum mechanics could outper-
form a classical computer is of course still a long way from actually building one. Any
quantum computer needs a system with long-lived quantum states and ways to inter-
act with them. It has become the standard to consider systems comprised of several
two-state subsystems, which are called quantum bits, or in short qubits. Some possible
physical realizations of qubits are:

1. the ground and excited states of ions stored in a linear ion trap, with interactions
between ions provided through a joint vibrational mode [4],

2. nuclear spin states in polymers, with interactions provided by nuclear magnetic
resonance techniques [5],

1

1

2 1. QUANTUM ERROR CORRECTION

3. photons in either polarization, with interactions via cavity QED [6],

4. Superconducting qubits, which use superconducting circuits that create distinct
energy levels. [7]

All these suggested implementations of qubits share a higher susceptibility to errors
than normal bits, around 10−4 for qubits [8] and 10−14 for bits [9]. Especially the entan-
gled states are exceptionally susceptible to errors. So even when possible errors could
be reduced to some small probability per time step, the probability of surviving without
an error occurring would be exponentially decaying with the total amount of time. So
if an algorithm runs in polynomial time on an error-free computer, it will require expo-
nentially many runs on a noisy computer unless something can be done to control the
errors [10].

Now these problems also hold for classical computers, and error correction codes
have been developed to minimize corruption. However, these classic codes can not be
directly applied to the qubits of a quantum computer. This is partly because classical
codes assume all bits can be measured. All qubits can be measured too, but measuring
in the computational basis (0 and 1) would collapse the quantum state and destroy any
superposition or entanglement. This is why quantum error correction codes use specific
measurement strategies involving stabilizers or syndromes, which allow us to extract er-
ror information without measuring the actual qubit values. The main difference is the
fact that in classic computers only the bit values 0 and 1 had to be saved, but that for
quantum computers possible phase differences should also be taken into account. Thus
although quantum error correction codes are closely related to classical codes, a new
approach has to be taken when regarding superposition and entanglement [10].

A very common quantum error correction code is called the surface code. It is a sta-
bilizer code and uses a standard 2D grid with local stabilizers to store the logical qubits.
The surface code has proven to have a good error threshold p ≈ 1% and decent scalability
[11]. In this thesis, the small stellated dodecahedron code will serve as a central focus.
Previous research [1] made use of sequential syndrome extraction schedules, resulting
in an underwhelming performance. The main goal is to develop an algorithm that pro-
duces interleaved schedules, attempting to improve the overall performance of the code.
In this chapter, a basic summary is given of qubits and noise acting on them. Then sta-
bilizer codes and measuring circuits are explained, before looking into the distance-3
surface code. At last, we will look into the benefits coming from the use of pentagram-
mic faces and what questions have to be answered for the small stellated dodecahedron
(SSD) to work as a stable error correction code.

1.1. QUBITS
The bits in a classical computer are represented by a string of 0s and 1s, which corre-
spond to a vector of the finite field F2. Qubits in a quantum computer instead are repre-
sented by a vector in C. A classical computer with n bits has 2n possible states, but this
is only an n-dimensional vector space over F2. A quantum computer with n qubits is a
state in a 2n-dimensional complex vector space. For a single qubit, the standard com-
putational vectors are written as |0〉 and |1〉. An arbitrary single-qubit state can then be

1.1. QUBITS

1

3

written as
|Ψ〉 = a |0〉+b |1〉 , (1.1)

with a and b complex numbers and |a|2+|b|2 = 1. As a shorthand notation the states
|+〉 and |−〉 are used to denote

|+〉 = |0〉+ |1〉p
2

,

|−〉 = |0〉− |1〉p
2

.
(1.2)

It is also possible to create entangled states between multiple different qubits, which
cannot be expressed as the product of single-qubit states,

|Ψ〉 = |00〉+ |11〉p
2

. (1.3)

In order to measure the qubits one can project them onto any basis of our Hilbert
space. For example, measuring with respect to |0〉 , |1〉 will return outcome 0 with proba-
bility p(|0〉) = |〈0| (a |0〉+b |1〉)|2 = |a|2 and 1 with probability |b|2. However measuring it

in the basis |+〉 , |−〉 will return + with probability p(|+〉) = |(|0〉+|1〉 |2 = |a+b|2
2 and − with

probability |a−b|2
2 . Note that measuring any qubit of an entangled state will destroy the

entanglement. Throughout most of this thesis, I will write down unnormalized states as
they are shorter and easier to read. This does not lead to a loss of generality, as only the
relative phase between qubits is relevant.

Operators in quantum mechanics are mathematical entities used to represent phys-
ical processes that result in the change of the state vector of the system. A very common
basis of operators for single-qubit systems is the group P formed by the Pauli spin ma-
trices,

X =
(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
which can be used to change the state of single qubits. For example X |0〉 = |1〉, and

also X |1〉 = |0〉, where it can be see that the Pauli X exactly flips each bit, thus a Pauli X is
often called a bitflip. The Pauli Z has no effect on |0〉 as Z |0〉 = |0〉, but flips the phase of
|1〉, Z |1〉 =−|1〉. More interestingly, the Pauli Z works as a bitflip on the states |+〉and |−〉,
resulting in Z |+〉 = |−〉 and Z |−〉 = |+〉. Now the Pauli X operator takes over the function
of a phase shift,X |+〉 = |+〉 and X |−〉 = −|−〉 It can be seen that i X Z = Y , such that the
Pauli Y has the same effect of combining the Pauli X and Z, with the addition of a phase
factor i . Another important characteristic is that hermitian operators in quantum me-
chanics represent measurements. Specifically, they correspond to observable quantities
that can be measured in a quantum system. When a hermitian operator acts on a quan-
tum state, it relates to the possible outcomes of a measurement of that observable, with
the operator’s eigenvalues representing the potential measurement results. The Pauli’s
matrices form a basis for all hermitian matrices, enabling a code that protects against
the Pauli operators to protect against all hermitian errors.

The Pauli matrices satisfy an important algebraic property, they all pairwise anti-
commute. That is, ∀A,B ∈P with A ̸= B

1

4 1. QUANTUM ERROR CORRECTION

{A,B} = AB +B A = 0 (1.4)

Another useful property is that every Pauli operator satisfies X 2 = Z 2 = Y 2 = I , show-
ing that applying an even amount of a Pauli operator after another will not change the
original state. Pauli’s can also be used on multiple qubits, simply by using tensor prod-
ucts. X ⊗I ⊗Z = X I Z denotes a Pauli X on qubit 1, the identity on qubit 2 and Pauli Z on
qubit 3. The set of all tensor products of Pauli’s for a system with n qubits forms a group
Pn under multiplication [12].

1.2. NOISE AND SHOR CODE
The most general one-qubit error that can occur is a linear combination of X, Y, Z, and
I. As it has been shown that Y can also be expressed in X and Z by i X Z = Y and that
the Pauli’s form a basis for all unitary matrices, protecting qubits against Pauli X and Z
errors offers a protection against all other unitary single qubit-errors. To this end, Shor
[13] suggested encoding the logical qubits in different groups of data qubits, like

|0L〉 = (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
|1L〉 = (|000〉− |111〉)(|000〉− |111〉)(|000〉− |111〉) (1.5)

can offer a form of protection against incoming errors, since now the data isn’t stored
in a single qubit, but spread out over 9 different qubits. Suppose a Pauli X error acts on
the first qubit, flipping it from |0〉 to a |1〉. It is not possible to directly measure the first
qubit to find out which value it has, as this would destroy the superposition created by
collapsing it into a state corresponding to the outcome of the measurement. Instead by
measuring the parity of the first qubit with the second and third qubit, it can be deter-
mined if the first qubit had been flipped or not. I.e. first compare the first and second
qubits, see that they are different, and conclude that a Pauli X has worked on one of
them. By comparing qubits 2 and 3, see that they are the same, but comparing qubits
1 and 3 shows they are different. With the assumption only 1 error has occurred, the
conclusion is that qubit 1 was flipped.

Assume a Pauli Z error occurring on the first qubit. This would change the logical
qubits into,

|0L〉 = (|000〉− |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
|1L〉 = (|000〉+ |111〉)(|000〉− |111〉)(|000〉− |111〉) (1.6)

By comparing the sign of the first block of three with the second block of three, it can
be seen that a sign error has occurred in one of those blocks. Then by comparing the
signs of the first and third blocks of three, it is possible to narrow the sign error down to
the first block and flip the sign back to what it should be. This choice for logical 0 and 1
thus seems to protect against a single qubit error.

The code uses 9 data qubits to encode 1 logical qubit, but has poor scaling when
increasing the amount of encoded logical qubits and needs multiple rounds of parity
measuring [13]. A more structured and better encoding is to be found in other stabilizer
codes, which use fewer qubits and provide better error correction capabilities by using a
more comprehensive set of stabilizing operators.

1.3. STABILIZER CODE FORMALISM

1

5

1.3. STABILIZER CODE FORMALISM
The stabilizer subgroup S of the Pauli group Pn , is a specific abelian subgroup whose
elements, called stabilizers, define a subspace known as the codespace T. As S stabilizes
T, it must hold that T = {|ψ〉 s.t. M |ψ〉 = |ψ〉 ,∀M ∈ S}. S must be an abelian set for all
the stabilizers to commute, as only commuting operators can have simultaneous eigen-
vectors which are needed to form T. As described before, the code only has to protect
against all possible errors originating from Pn , as Pauli’s form a conventional basis.

In order for the code to correctly distinguish between two errors Ea and Eb , we must
always be able to distinguish error Ea acting on the first codeword |ψi 〉 ∈ T from error
Eb acting on a different codeword |ψ j 〉 ∈ T . This can only be true if Ea |ψi 〉 is orthogonal
to Eb |ψ j 〉; otherwise, there would be some overlap between the states, meaning that a
measurement designed to detect errors could lead to ambiguous results. So it must hold
that

〈ψi |E †
aEb |ψ j 〉 = 0 , for i ̸= j (1.7)

Let’s take M ∈ S, |ψi 〉 ∈ T and some error E with {M ,E } = ME − E M = 0. Then
ME |ψi 〉 =−E |ψi 〉, but moreover that

〈ψi |E |ψ j 〉 = 〈ψi |ME |ψ j 〉 =−〈ψi |E |ψ j 〉 = 0 (1.8)

when E = E †
aEb and E anti commutes with M for some M ∈ S. Therefore, if E †

aEb

anti commutes with some element of S for all errors Ea and Eb in some set, the code will
correct that set of errors by applying the inverse.

Now most of the time Pn will contain elements that commute with everything in
S, but are not in S. These elements form the centralizer C(S) of S in Pn , which in this
case actually is equal to the normalizer N(S) of S in Pn . The normalizer fixes S under
commutation. To see why this equals the centralizer, observe that for A ∈Pn and M ∈ S,

A†M A =±A† AM =±M (1.9)

As −I ∉ S, since −I |ψ〉 ̸= |ψ〉, the only way A can keep M in S is through commutation
A†M A = M , leading to the fact that N(S)=C(S).

Suppose there is an error E ∈ N (S)−S, then this error will change our codeword |ψ〉 ∈
T , but it will still remain in T. If M ∈ S and |ψ〉 ∈ T then M and E commute, so

ME |ψ〉 = E M |ψ〉 = E |ψ〉 (1.10)

showing that the state E |ψ〉 gets fixed by S, and thus also is in T. However as E ∉ S,
and thus is not a stabilizer of the whole space T, there must exist at least one |ψ〉 ∈ T
which does not get fixed by E. Errors from this set N (S)−S thus form an undetectable set
of errors.

Since the elements of N(S) move encoded states around within T, they have a natural
interpretation as encoded operations on the states. Since S fixes T, only N(S)-S acts on
T non-trivially. These elements are called logical operators, errors coming from this set
are called logical errors. The logical X and Z operators must commute with all M ∈ S by
being in the normal subgroup, but moreover there must hold that:

1

6 1. QUANTUM ERROR CORRECTION

[X i , X j] = 0

[Z i , Z j] = 0

[X i , Z j] = 0 , (i ̸= j)

{X i , Z i } = 0

(1.11)

The distance d of a stabilizer code refers to the minimum number of physical qubits
that are affected to result in a logical operator. It determines the code’s ability to detect
and correct errors. Specifically, a code can detect errors of weight up to d −1 qubits and
can correct errors affecting up to ⌊d−1

2 ⌋ qubits.
The notation [n,k,d] is commonly used to characterize quantum error-correcting

codes. Here, n represents the number of physical qubits employed to encode the in-
formation, while k indicates the number of logical qubits encoded. The parameter d
denotes the minimum distance of the code[10].

1.4. SYNDROME EXTRACTION CIRCUITS
To check whether noise has inflicted an error on one of the qubits, the stabilizers are
measured. We will start by looking at the basics of quantum circuits, and build up to
these stabilizer measurements. In a quantum circuit time proceeds from left to right,
wires represent qubits and single-qubit gates are represented by a rectangle, with the re-
spective operator written inside. Figure 1.1 shows a short list of the most used operators.

A two-qubit operation that will be heavily used is the controlled-NOT. As it is a two-
qubit gate, it takes two qubits as input, one known as the control qubit and the other as
the target qubit. It is drawn as shown in Figure 1.1. The action of the CNOT is given by
|c〉 |t〉→ |c〉 |c ⊕ t〉. That is, if the control qubit is set to |1〉 then the target qubit is flipped,
otherwise the target qubit is left alone. Qubit measurements are depicted with either a
box with a meter or a black box with the respective measurement basis written in it [14].

More generally, suppose U is an arbitrary single-qubit operation. A controlled-U op-
eration again is a two-qubit operation, with a control and a target qubit. If the control
qubit is set to 1, then U is applied to the target qubit; that is |1〉 |t〉 → |1〉U |t〉. When
the control qubit is set to 0, then I is applied to the target qubit |0〉 |t〉 → |0〉 I |t〉. The
controlled-U operation is represented by the circuit shown in Figure 1.2. Controlled op-
erations can be used to measure the occurrence of an error on a qubit, without directly
measuring the qubit itself. The following circuit uses an ancilla qubit to measure the
hermitian operator M on the bottom qubit.

Figure 1.3: Circuit for measuring a single qubit hermitian observable M. The top qubit is the ancilla used for
the measurement, and the bottom qubit is being measured.

1.4. SYNDROME EXTRACTION CIRCUITS

1

7

Figure 1.1: Names, symbols and matrices for the common single qubit gates [14].

Figure 1.2: Left: Circuit including a single CNOT and a measurement of the top qubit. The black dot represents
the control qubit, the ⊕ the target qubit. Right: Circuit including a single controlled-U . The black dot repre-
sents the control qubit, the square with U the action of applying U to the target qubit.

The working of the circuit in Figure 1.3 can be checked to follow Equation 1.12. Here
the first qubit denotes the top qubit, the second qubit the bottom qubit.

|0ψ〉 H1−−→ |0ψ〉+ |1ψ〉 C M−−→ |0ψ〉+ |1(Mψ)〉 H1−−→ |0ψ〉+ |1ψ〉+ |0(Mψ)〉− |1(Mψ)〉
= |0〉 (I +M) |ψ〉+ |1〉 (1−M) |ψ〉

(1.12)

Measuring the top qubit in the Z-basis will either result in measuring |0〉 or |1〉. By
measuring |0〉, the resulting state for the second qubit must be (1+M) |ψ〉, the +1 eigen-
state. Similarly, measuring |1〉 shows that the remaining state must be (1−M) |ψ〉, the −1
eigenstate. When protecting the qubits from noise-induced errors, our primary focus is
on detecting if a Pauli X or Pauli Z error has occurred.

Figure 1.4: Simplification of the circuit used to measure the Z operator into a circuit containing a single CNOT.

1

8 1. QUANTUM ERROR CORRECTION

Luckily, the measurement circuit for measuring a Pauli Z operator can be greatly
simplified to just using a single CNOT, see Figure 1.4. Again, we have an ancilla qubit
in |0〉 and an arbitrary state |ψ〉 = a |0〉+ |b〉. Working out the resultant state of the left
circuit, one will end up with the state |ψ〉 = a |00〉+b |11〉. However, this resultant state is
the same as entangling the ancilla qubit with an arbitrary qubit state via a single CNOT,
see Equation 1.13.

|0ψ〉 = |0〉 (a |0〉+b |1〉) C NOT−−−−→ a |00〉+b |11〉 (1.13)

A similar thing holds for the measurement of a Pauli X , where again the schedule can
be greatly reduced into a form where only a single CNOT is used.

Figure 1.5: Simplification of the circuit used to measure the X operator into a circuit containing a single CNOT.

Depending on the outcome of the measurement of the ancilla qubits, it can deduced
in what state the data qubit must be. For example, measuring with a Z stabilizer the
circuit ended up in the state a |00〉+b |11〉. If the measurement outcome of the ancilla is
+1, we know the data qubit must be in |0〉. Vice versa, if the outcome of the measurement
is −1, the data qubit must be in the state |1〉.

1.4.1. STABILIZER MEASUREMENTS
In the previous section, a circuit has been shown designed to measure the Pauli X and Z
using an ancilla qubit. These circuits also work for measuring multi-qubit Pauli strings.
For example, suppose a X stabilizer and Z stabilizer are working on qubits 1 and 2, as
in Figure 1.6. As the Pauli X and Z anticommute, X1X2 and Z1Z2 commute allowing
the arbitrary state of qubits 1 and 2 to be collapsed into simultaneous eigenvectors. The
circuit given in Figure 1.6 can be used the measure the X and Z operators on both qubits.

Figure 1.6: Circuit to measure both the X and Z stabilizer acting on two data qubits.

1.4. SYNDROME EXTRACTION CIRCUITS

1

9

It can be seen that taking any resultant state and remeasuring the stabilizers will re-
turn the same state, with the same measurement outcomes. For example, if measure-
ment outcomes indicate MZ = +1,MX = +1 the resultant state is |ψ〉 = |00〉 + |11〉 cor-
responding to a = 1,d = 1. If this state is remeasured, the state |ψ〉 = |00〉 + |11〉 gets
returned.

The stabilizers can be viewed as constraints that project the total quantum state into
a stabilized state. In this process, each stabilizer contributes to halving the dimension of
the space of states. So, after measuring the ancilla qubits for the first round we end up in
a quiescent state which (with no errors), will result in the same measurement outcomes
each round. Assume that now an error which anti commutes with one of the stabilizers
occurs, then this should in theory be possible to detect, see Equation 1.8. In this case,
there is a X1X2 stabilizer and a Z1Z2 stabilizer. As single Pauli’s anticommute with each
other, a single Z error on either of the qubits should signal disturb the measurement
outcome for X1X2. The same should hold for a single X error, disturbing the outcome of
measuring Z1Z2.

Figure 1.7: A single X error flips the measurement out-
come of the Z ancilla qubit.

Figure 1.8: A single Z error flips the measurement out-
come of the X ancilla qubit.

Taking an arbitrary stabilized state from, measuring the X and Z stabilizers again,
but now introducing an X error on the second qubit at the start of the second round,
see Figure 1.7. I.e. starting with a = 1 and d = 1, then the first round of measurements
returns {+1,+1}, however the state gets changed into

|ψ1,2〉 = X2(|00〉+ |11〉) = |01〉+ |10〉 , (1.14)

when performing the second round of measurements. Measuring this state will re-
turn {+1,−1}, where the Z stabilizer has now changed into −1 showing that an X error has
occurred on one of the qubits. Suppose that instead of an X error, a Z error would have
occurred on the qubits, then the X stabilizer’s measurement outcome would have been
flipped, indicating the occurrence of a Z error. The code now consists of a first-round
where the data qubits are put into a stabilized state, followed by subsequent measure-
ment rounds where each measurement outcome difference gets noted [14]. In the end,
a minimum weight decoder can effectively identify the errors that have occurred based
on the switches in measurement outcomes. By analyzing these switches, it determines
the shortest possible error path associated with the observed outcomes [15].

1

10 1. QUANTUM ERROR CORRECTION

1.5. DISTANCE-3 ROTATED SURFACE CODE
A simple example of a stabilizer code is the distance-3 surface code, here 9 data qubits
are located on the vertices of a 3x3 square grid, see Figure 1.9. There is a checkerboard
pattern of X and Z stabilizers, with weight 2 stabilizers along the edges. All X and Z sta-
bilizers have an overlap on 2 qubits, satisfying the restriction that stabilizers must com-
mute. The 9 qubits make the total state space 29 dimensional, however, each stabilizer
halves the space by factor 2. The dimension thus gets reduced to 29−8 = 21, showing that
this code encodes 1 logical qubit. To find the logical operators we must find a sequence
of Pauli X or Pauli Z , which commutes with all stabilizers but is not an element of the
stabilizer group itself. A vertical string of Pauli X ’s can be seen to commute with all sta-
bilizers it runs along, it has even overlaps with every Z stabilizer. The same thing holds
for a horizontal string of Pauli Z ’s. Thus, the logical X is chosen to be a vertical string of
Pauli X , i.e. X0X3X6 and the logical Z as a horizontal string of Pauli Z , i.e. Z6Z7Z8. To
measure the parities of the data qubits, ancilla are placed on the place of the stabilizers.
A total of 8 ancilla qubits are needed to measure all stabilizers, making the total amount
of needed qubits 17 [16].

Figure 1.9: Distance-three 17-qubit surface code. Orange circles represent data qubits; Green square and tri-
angle patches represent X stabilizers; yellow patches represent Z stabilizers. Ancilla qubits are placed at the
middle of each face.

1.6. SMALL STELLATED DODECAHEDRON
The surface code has become a well-known quantum error correction code thanks to its
simple use of a 2D square grid for the qubits. However, the surface code might not be op-
timal when protecting logical qubits against errors. Since it is a two-dimensional code
based on a 2D grid, it must follow the Bravyi-Terhal-Poulin bound [17]. For k logical
qubits encoded by n data qubits, it must hold that kd 2 ≤ cn for some constant c. Hy-
perbolic surface codes based on tilings of a hyperbolic surface are however not limited
by this bound, they instead follow k

n ≥ c1, while the distance of the code can be upper
bounded by c2log(n) for the constants c1 and c2. Thus these hyperbolic codes can have

1.6. SMALL STELLATED DODECAHEDRON

1

11

a more efficient ratio of logical to physical qubits, while their error-correcting distance
(which measures how well they correct errors) grows logarithmically with the number
of qubits. The downside of using these hyperbolic codes is that they need connections
between qubits that aren’t close together in a simple 2D space.

Looking at possible relatively small hyperbolic codes could lay a basis for the under-
standing of bigger hyperbolic codes, and successful results could foreshadow the possi-
ble success of other hyperbolic codes. To this end, we look at a regular dodecahedron,
which due to its high symmetry also forms a relatively simple basis for applying high-
order gates on its encoded logical qubits [18]. It has 12 faces, 20 vertices and 30 edges,
see Figure 1.10. To construct a code from the dodecahedron, a qubit is placed on each
of the edges. Z stabilizers act on each of the pentagrammic faces and thus have weight
5. A natural choice would seem to choose the weight 3 X stabilizers to act on each of the
20 vertices of the dodecahedron. The overlap of each X and Z stabilizer would be even,
and we would have a valid stabilizer code. However, in order to ensure the code actually
encodes logical qubits, all the edges are instead extended, creating new vertices where
they meet. Instead of the weight 3 X stabilizers, the X stabilizers work on the 5 edges
meeting at these newly created vertices. The created stellated dodecahedron now has 12
Z stabilizers and 12 X stabilizers, both having weight 5. It is visually easy to see that each
X stabilizer has even overlap with each Z stabilizer. At each location of a stabilizer an an-
cilla qubit is placed, used to measure the stabilizer of the involved data qubits. As every
qubit interacts with 2 X (or Z) stabilizers, resulting in X 2 = I , the product of all X stabiliz-
ers (or Z) is I. The 12th stabilizer is thus not linearly independent and thus imposes no
extra restriction on the state space of the qubits. The amount of logical qubits encoded
thus is 30−11−11 = 8. In the rest of this thesis, the 12th stabilizers are still taken into
consideration, even though it can be seen as a redundancy. Taking it into consideration
does make the stellated dodecahedron graph more symmetric and easier to work with.

Figure 1.10: Dodecahedron [19]. Figure 1.11: The small stellated dodecahedron [1].

A very helpful representation of the dodecahedron is its associated plane graph [20],
see Figure 1.12. Here the qubits are still located at the middle of each edge. Each Z-

1

12 1. QUANTUM ERROR CORRECTION

stabilizer is acting on each face of the graph, each X-stabilizer is acting on all edges going
into its respective face. The plane graph shows 11 faces, while we have defined 12 Z
stabilizers, suggesting that 1 Z stabilizer is missing. The 12th Z stabilizer can be imagined
as a face working on the outer 5 edges of the graph. In the same way, the 12th X stabilizer
is working on the 5 edges pointing to the outer edges of the graph. The labeling of the
qubits in this plane graph can be seen in Figure A.2.

Figure 1.12: Plane graph representation of the small stellated dodecahedron, with 30 edges, 20 vertices, and 11
faces. Qubits are located at the middle of every edge. An X stabilizer has support on the edges shown in red, an
Z stabilizer on the green edges. Likewise, for all other faces, there is a Z stabilizer working on the edges of the
face and an X stabilizer working on the edges going into the face.

1.6.1. LOGICAL OPERATORS OF THE STELLATED DODECAHEDRON

The set of logical operators {X i , Z i }, i = 1,2...k are Pauli operators that act on the en-
coded logical qubits. They are defined such that they commute with all stabilizers but
do not commute with each other, they also are not part of the stabilizer group. So to find
the X logical operators a string of X Pauli’s has to be found that have an even amount of
overlap with each Z. The reverse holds for the logical Z operators. It can be seen that each
vertex of the dodecahedron forms a weight 3 logical X operator. This logical X always has
an overlap of 2 with each Z stabilizer. I.e. (using the qubit notation as in Figure 1.11)
X(0,6)X(2,4)X(3,5) has support on the qubits (0,6) and (3,5) and thus commutes with its
neighboring Z stabilizer Z(0,6)Z(3,5)Z(3,7)Z(5,6)Z(0,7). Similarly, the logical Z operators can
be found, corresponding to the triangular faces created by the stellation process. Again,
these are weight 3, having even support on each X stabilizer. See Figure 1.13 for a visual
representation and Table A.1 for a table containing all logical operators.

To check the linear dependency of the logical Z operators, observe that one vertex of
the small stellated dodecahedron acts in 5 different logical Z operators. This vertex can
be seen as the tip of each triangular face. By putting all 5 operators together, only the
base of each one remains, as the other sides cancel out due to an even overlap. The 5
bases of the triangular faces however form a Z-check, suggesting that the 5 logical op-
erators are not linearly independent as they together can be reduced to the identity, see
Figure 1.14. That is, the 5 logical operators around vertex 0 together form the Z check on
plane spanned by qubits 6−7−8−9−10. Thus, instead of having 20 independent logical

1.6. SMALL STELLATED DODECAHEDRON

1

13

(a) Logical X operator of the SSD shown by the red egdes on
a dodecahedron.

(b) Logical Z operator of the SSD shown by the red
edges.

(c) Logical X shown in the plane graph representation of
the stellated dodecahedron (d) Logical Z shown in the plane graph representation of

the stellated dodecahedron

Figure 1.13: Figure (a) shows a logical X operator in red acting on a vertex of the Dodecahedron. Figure (b)
shows a logical Z operator working on a triangular face of the small stellated dodecahedron. Figures (c) and (d)
show the same logical X and Z but instead work on the associatedplanar graph.

Z operators, one of the operators has to be removed for each vertex, leading to a total of
20-12 = 8 different logical Z operators. A similar argument can be made about the logical
X operators, which also results in a total of 8 independent operators.

1

14 1. QUANTUM ERROR CORRECTION

Figure 1.14: The S11 Z stabilizer is shown in blue. A single logical operator is shown in green. Combining 5
logical operators around a single central qubit forms a stabilizer, proving they are not linearly independent.

The lowest-weight logical operator has weight 3, thus the code’s distance is 3. This
implies that all errors affecting at most 2 qubits can be detected and that all single-qubit
errors can be corrected. Figure 1.15 shows an example of this. Here 2 X errors have
occurred on adjacent qubits, triggering not their common ancilla Z qubit as this com-
muting error will not result in the stabilizer measurement to detect an error. Instead,
two adjacent ancilla qubits get triggered, suggesting a probable wrong correction when
using a minimum weight decoder. Single qubit errors correctly trigger its two associated
ancilla qubits, which suggest the right correction when using minimum weight perfect
matching [21].

Figure 1.15: Plane graph representation of the small stellated dodecahedron. Left shows two X errors occurring
on adjacent qubits. This results in the triggering of two ancilla qubits, which for minimum weight matching
ends up with the correction of the wrong qubit. Right shows a single X error, also triggering two ancilla qubits,
but this time ending up with the right correction.

1.6. SMALL STELLATED DODECAHEDRON

1

15

1.6.2. MEASURING THE STABILIZERS OF THE SSD CODE
Research has already been done on this code, yielding results showcasing some potential
[1], but high logical error rates. Unfortunately, the code seemed to get outperformed by
the surface code, undermining possible usage. A probable explanation for the less-than-
expected performance can be found in the stabilizer measurement order. The sequential
chosen measurement schedule in Table A.6 first performed all X stabilizer measurements
before performing Z stabilizer measurements. As each X and Z ancilla has support on 5
qubits, the total amount of CNOT layers needed to perform the whole circuit would be
T = 1+10+1 = 12, one layer for initializing all ancilla qubits, 10 CNOT layers for mea-
suring all data qubits and finally 1 layer of to measure the ancilla qubits. As each layer
represents a time step, only 12 of the 30 data qubits are measured at each timestep and
there is a lot of idling amongst the nonactive qubits, making them susceptible to er-
rors. The main goal of this project is to try and reduce the time steps needed to perform
all stabilizer measurements by finding an interleaved schedule where X and Z stabilizer
measurements are performed simultaneously. This problem will be tackled in Chapter 2
and Chapter 3 by developing an augmented edge coloring algorithm. The developed al-
gorithm will be tested on different codes in Chapter 4. In Chapter 5, the focus will be on
verifying the fault tolerance of the newly found schedules for the SSD. This analysis will
look into the possible spreading of single errors. In Chapter 6, the logical error rates asso-
ciated with these interleaved schedules will be examined, comparing their performance
to a sequential schedule and 8 pieces of the distance-3 surface code.

2
COLORING THE SMALL STELLATED

DODECAHEDRON

The small stellated dodecahedron code has 30 data qubits on its edges, 12 X ancilla
qubits in the middle of each face, representing the X stabilizer acting on the edges go-
ing into the respective face, and 12 Z ancilla qubits located on its faces acting on the
associated edges. A Tanner graph [22] can also represent this, Figure 2.1, with 24 nodes
representing the set of ancilla qubits and 30 nodes representing the data qubits. Each
edge between the ancilla qubits and data qubits represents a CNOT between the data
qubit and the ancilla qubit. Each Z and X ancilla qubit has support on 5 data qubits and
thus the graph has a total of 120 edges.

In this section, we assume that X-checks and Z-checks are measured through the
interaction of a single ancilla qubit with a data qubit using a CNOT gate. At any given
time, an ancilla qubit can only interact with one data qubit via a CNOT, and similarly,
any data qubit can only interact with one ancilla qubit. A key problem addressed in this
chapter is finding a schedule for these CNOT gates that minimizes the number of time
steps required to measure all parity checks.

This scheduling problem can be formulated as a minimal edge coloring problem on
the Tanner graph of the SSD 2.1, where each edge represents a CNOT interaction be-
tween an ancilla and a data qubit. The goal is to color the edges such that no two edges
incident on the same vertex share the same color, with each color corresponding to a dif-
ferent time step for the interaction [23]. Throughout the subsequent chapters, the qubit
labeling from Figure A.2 will be used to identify and distinguish the qubits.

17

2

18 2. COLORING THE SMALL STELLATED DODECAHEDRON

Figure 2.1: A Tanner graph of the small stellated dodecahedron code. On the left, there are 12 Z-ancilla qubits,
shown in green. Right, there are 12 X-ancilla qubits, shown in red. Each ancilla qubit has 5 edges going to 5
different of the 30 yellow data qubits. The labeling from Figure A.2 is used.

2.1. LENGTH 5 COLORING
The goal is to find an edge coloring of the SSD Tanner graph.To find a coloring for the
bipartite graph of the SSD, König’s Line Coloring Theorem [24] says that,

Theorem 1 For a regular bipartite graph G, where each vertex has degree d, the minimum
number of colors∆(G) needed to color the edges of G such that no two adjacent edges share
the same color is exactly d.

The Tanner graph G of the small stellated dodecahedron is not regular, as the nodes
do not all have the same degree, meaning they are connected to different numbers of
edges. The X-checks (and Z-checks) are connected to 5 data qubits, but each data qubit
is only connected to 4 checks. In a regular graph, every node must have the same amount
of edges, so the procedure described by Erdös in [25] is followed to make a general graph
regular, which consists of:

Let n denote the order of the graph G and let d denote its maximum degree. We
search a minimal set I of m points such that by adding edges between nodes in I or be-
tween nodes in I and G we obtain a regular graph bipartite H. Suppose H has been con-
structed from G and has order n+m. We denote the points in G to be u1,u2, ...un and the
points from I to be v1, v2, ...vm . We let the degree of node vi be di and the deficiency of
each node in G is ei = d −di . The deficiency of each node is the needed amount of edges
to increase its degree to the degree d . At last we take s =∑

i ei and e = max(ei).

2.1. LENGTH 5 COLORING

2

19

Then for the graph H, there are precisely s lines joining points from I to G. Since every
point in I is connected to at most d points in G, it follows that

md ≥ s (2.1)

That is, in order to make our graph G regular, s lines are needed from I to points in G,
and surely if every node from I is connected to d , this should be bigger than s.

Clearly, it should also be that,
m ≥ e (2.2)

Finally, the degree of every graph is even as every edge contributes 2 degrees. Thus

(m +n)d = 0 mod 2 (2.3)

Applying the above equation to the Tanner graph of the SSD says that m ·5 ≥ 30, that
m ≥ 1 and that (m +54) ·5 must be even. This boils down to m = 6, and thus the graph
can be made regular by adding 6 nodes, each with 5 edges going to the qubits, see 2.2. As
the Tanner graph of the SSD is now regular, König’s theorem states that the graph can be
colored using 5 colors.

Figure 2.2: A graph of the small stellated dodecahedron. It has been extended with 6 blue points to become
regular and bipartite. Each blue point goes to 5 different data qubits.

A numerical solution for the coloring of the small stellated dodecahedron using 5
colors has been found. This numeric solution was found by using a simple coloring al-

2

20 2. COLORING THE SMALL STELLATED DODECAHEDRON

gorithm, which checks for each edge if it can be colored, and if so assigns a certain color.
The code can be found at the GitHub page B. Figure 2.3 shows the plane graph of the
SSD with colors indicating at which timestep each qubit interacts via CNOT with the as-
sociated Z ancilla qubit lying in the middle of each face. Figure 2.3 also shows the plane
graph of the SSD, this time showing at which time step each qubit interacts with their
X-stabilizers. To check that this is a valid coloring, we notice that all Z and X-stabilizers
have 5 different colors. By overlapping the graphs for the Z and X-stabilizers, it becomes
clear that each qubit also has 4 different colors and that this is indeed a valid coloring.
The schedule can be found in Table A.2

Figure 2.3: A 5-color matching of the SSD. Different colored dots represent the interaction of a qubit with its
associated ancilla qubit at a certain time step. Left shows the interaction of the data qubits with the Z ancilla
qubits, right shows the interaction with the X ancilla qubits.

2.2. ON PROPERNESS OF SYNDROME EXTRACTION SCHEDULES

Operators and parities of multiple qubits can be measured via schedules given in Chap-
ter 1. However, problems can occur when multiple data qubits are measured in sequence
concerning the same ancilla qubit. For this, look back at Figure 1.6, where stabilizer mea-
surements were carried out on two data qubits using 2 ancilla qubits. The order in which
each data qubit interacted with the ancilla qubits might have seemed arbitrary, but look-
ing at schedules with different orderings makes it clear that the order does influence the
outcome of the measurements. A proper measurement schedule should give the correct
measurement outcomes and checking this for the schedule used in Figure 2.4, will show
that this is indeed the case:

2.2. ON PROPERNESS OF SYNDROME EXTRACTION SCHEDULES

2

21

Figure 2.4: Proper measurement schedule for mea-
suring 2 qubits using 2 ancilla qubits. The order is
X1 −X2 −Z1 −Z2

Figure 2.5: Improper measurement schedule for mea-
suring 2 qubits using 2 ancilla qubits. The order is
X1 −Z2 −Z1 −X2

|ψ〉 = |0 a b 0〉+ |1 a b 0〉
C NOT ′s−−−−−−→ |0 a b a +b〉+ |1 a b a +b〉

(2.4)

But that for the improper circuit in Figure 2.5,

|ψ〉 = |0 a b 0〉+ |1 a b 0〉
C NOT ′s−−−−−−→ |0 a b a +b〉+ |1 a b a +b〉

(2.5)

Where an overline denotes the negation of qubit a or b. The resultant state for both
circuits is nearly the same, except for the last qubit having an a instead of a normal a.
What has happened is that in the improper circuit, the final X measurement has become
dependent on the X measurement of our Z-ancilla qubit, resulting in that for any gen-
eral state, the measurement outcomes will be random. For example, assuming that the
qubits a and b are both prepared in |0〉. Then the improper circuit will result in

|ψ〉 = |0 0 0 0〉+ |1 0 0 0〉
→ |0 0 0 0〉+ |1 1 1 1〉 (2.6)

If we try to measure the Z-ancilla qubit we notice that we get a random outcome,
even though we would expect to measure |0〉 as both data qubits are prepared in |0〉.
When we look at the proper circuit we see we end up with the state |ψ〉 = |0000〉+ |1110〉
showing that measuring the Z-ancilla will always correctly return |0〉.

2.2.1. X AND Z PROPAGATION THROUGH CNOT
Looking at the propagation of a Pauli X through a CNOT, it becomes clear why certain
schedules are proper or improper. Starting with an arbitrary state |ψ〉 = |C〉⊗ |T 〉, with
|C〉 the control qubit and |T 〉 the target qubit, then by first applying an X-gate to the
control qubit, the state changes into |ψ〉 = (X ⊗ I)(|C〉⊗ |T 〉) and after applying a CNOT
|ψ〉 = CNOT(X ⊗ I)(|C〉⊗ |T 〉). However, this state can also be written as

CNOT(X ⊗ I) = (X ⊗X)CNOT, (2.7)

(see Section A.2),implying that the Pauli X has propagated ’down’ through the CNOT,
and now also acts on the target qubit. If the Pauli X initially worked on the target qubit

2

22 2. COLORING THE SMALL STELLATED DODECAHEDRON

Figure 2.6: The left 2 figures show the propagation of Pauli X through a CNOT. It can propagate downwards
through the control qubit, but cannot propagate upwards from the target qubit. The right 2 figures show the
propagation for Pauli Z, and the fact it propagates upwards yet not downwards.

instead of the control qubit, we can see that the Pauli X does not propagate upwards
through the CNOT. This can also be seen in Figure 2.6.

The same reasoning holds for the propagation of Pauli Z, except the propagation
is exactly the opposite. That is, instead of Z errors propagation downwards through
a CNOT, they instead propagate upwards, following CNOT(I ⊗ Z) = (Z ⊗ Z)CNOT and
CNOT(Z ⊗ I) = (Z ⊗ I)CNOT [26]. To make sure no Pauli X and Z propagate onto the an-
cilla qubits and randomize the measurement outcomes, the following theorem is used

Theorem 2 For each pair of overlapping X and Z-checks, S j (X),Sk (Z), let Q = {q1, q2, ..., q2n}
be the qubits in the overlap. For a qubit qi which is acted upon by checks S j (X) and Sk (Z),
let S j (X) < Sk (Z) denote an order where qi first interacts with the X-ancilla of S j (X) and
afterwards with the Z-ancilla of Sk (Z). In a proper schedule for any pair of overlapping
checks S j (X),Sk (Z), an even number of qi ∈Q must have S j (X) < Sk (Z).

To see why this is true, look back at Figure 2.6 where a Pauli X propagates through the
control of a CNOT. If an even number of these Paulis come together, they will pairwise
annihilate as X n = I , for even n (or Z n = I). If an even number of qubits first interact
with the X-ancilla, all the X propagations will cancel, resulting in a proper measurement
schedule. The same holds for the Z Pauli on the X ancilla qubit.

2.3. PAIRS OF QUBITS FOR THE SSD
In the case of the small stellated dodecahedron, start by looking at a single Z-check from
its plane graph. As each Z stabilizer is associated with a face and each X stabilizer with
a vertex, they overlap on either 2 edges (so 2 qubits) or none. See Figure 1.12. Theorem
2 thus reduces to the case where only q1, q2 ∈ Q. To have an even number of qi with
S j (X) < Sk (Z), either both qubits first interact with the X ancilla, and then the Z ancilla,
or the reverse where both qubits first interact with Z.

Theorem 2 makes the edge coloring with 5 colors as seen in Figure 2.3, not an actual
viable measurement schedule as it does not follow the proper ordering. It can be seen
that for overlapping X and Z checks the qubits do not always start by interacting with
the same ancilla qubit. It is obvious that a sequential measurement schedule, where first
all X stabilizers are measured and subsequently all Z stabilizers, satisfies the properness

2.3. PAIRS OF QUBITS FOR THE SSD

2

23

Figure 2.7: A single Z ancilla qubit is shown in green, working on the surrounding 5 edges. An X ancilla qubit
works on the edges shown in red, making it so these two stabilizers form an overlapping pair.

condition. However, as described in [1], this takes an unnecessary amount of extra time
steps. To find an interleaved measurement schedule, the edge coloring algorithm has to
be adapted to take into account the constraints coming from the properness condition.

3
ALGORITHM FOR FINDING

INTERLEAVED SCHEDULES

The goal is to create an algorithm that finds a proper measurement schedule, using the
least amount of CNOT layers. One starts by finding all overlapping groups of X and Z-
stabilizers. As for the SSD code each qi interacts with 2 Z ancilla qubits and is in 2 differ-
ent pairs per Z ancilla qubit, see Figure 2.7, and there are 4 different overlapping groups
per qubit. In each of these groups, we get 2 edges corresponding to the X and Z checks of
qi and 2 edges corresponding to the X and Z checks of qk in the group. That is, an over-
lapping pair X-Z group always looks like Figure 3.1. Here nodes represent qubits and
ancilla qubits, the edges represent the possibility of a qubit to interact with the respec-
tive ancilla qubit.

Figure 3.1: An overlapping group containing 2 qubits qi , qk , which both interact with the same X and Z ancilla
qubit.

In total, there are 60 different groups, see Table A.3 and Table A.4. By going over
all the overlapping groups, we count how many edges have been colored. There are in
total 5 different cases, corresponding to the coloring of {0,1,2,3,4} edges. As each case
implies different restrictions on the rest of the pair due to Theorem 2, the goal of this

25

3

26 3. ALGORITHM FOR FINDING INTERLEAVED SCHEDULES

section is to state the restrictions each case puts on the remaining edges and which edges
have to temporarily be blocked from being colored. The algorithm works by iteratively
applying these restrictions to the graph, performing one single coloring round, removing
the edges that got colored, and then updating said restrictions for the newly obtained
graph. First, for each amount of colored edges, the restrictions will be worked out, which
edges can be colored, and which edges have to be blocked. To conclude, the restrictions
on each group put every edge into one of four categories,

1. Normal edge: can be colored by the upcoming coloring round. In the following
chapter, it will be represented as a grey edge.

2. Blocked edge: based on the restrictions cannot get colored in the upcoming color-
ing round and gets temporarily removed from the graph. It only gets made avail-
able once its release edge has been colored. It will be represented by a red edge.

3. Release edge: once it gets colored unblocks a blocked edge. It will be represented
by a yellow border surrounding an edge.

4. Colored edge: has been colored in a previous round and thus gets permanently
removed from the graph in all subsequent rounds. It will be represented by a green
edge.

The complete algorithm will take a loop-like structure which can be seen in Figure
3.2. First, the restrictions will be checked and certain edges will get blocked. The graph is
then converted into a line graph and a maximal independent set is chosen. This maximal
independent set gets assigned a color and gets removed from the graph. Then, based on
which edges got colored the restrictions will be updated and new edges will be blocked
or released.

Figure 3.2: A schematic diagram of the algorithm. The algorithm starts with the whole SSD Tanner graph. Based
on the restrictions certain edges from this graph will get blocked and temporarily removed from the graph. The
graph then gets converted into a linegraph and a maximal independent set gets chosen. This independent set
gets assigned a color and gets permanently removed from the graph. This process is performed until there are
no edges left in the graph.

3.1. RESTRICTIONS ON THE GROUP BASED ON THE NUMBER OF EDGES COLORED

3

27

3.1. RESTRICTIONS ON THE GROUP BASED ON THE NUMBER OF

EDGES COLORED

3.1.1. 0 EDGES HAVE BEEN COLORED
When zero edges in the group have been colored, there are four edges available to be
colored. However, due to the constraint that qubits and ancilla qubits can only interact
with 1 CNOT at a time, adjacent edges in the group also cannot get the same color. It
can also be seen that nonadjacent edges can not get the same color, as in this case both
qubits from the pair interact with a different ancilla qubit first. That is, if the edge (qk , X)
gets color 1, then (qi , Z) cannot get color 1, as this would violate the restriction that both
qubits should start interacting with the same ancilla. A group with no colored edges thus
results in a group where only 1 edge can be given the upcoming color.

3.1.2. 1 EDGE HAS BEEN COLORED
Once one edge in the group has been colored, the non-adjacent edge to the colored edge
should temporarily be blocked to get colored. The interaction between the respective
qubit and ancilla qubit can only take place once the qubit has first interacted with the
right ancilla qubit. That is, when (qk , X) gets the first color in the group, (qi , Z) should be
blocked.(qi , Z) can only be put back once its release edge, (qi , X) has been colored. This
is to sustain that both qubits first interact with the same ancilla qubit. All other edges
stay the same and, unless blocked, can be colored.

Figure 3.3: A pair of qubits, if the green edge gets colored then the red edge has to be removed. The yellow
highlighted edge is the release of the red edge.

3.1.3. 2 EDGES HAVE BEEN COLORED
There are two different scenarios in which two edges of a group have been colored. Sup-
pose (qk , X) has been colored first, and (qk , Z) has been colored second. Now one qubit
qk has performed both interactions with both ancilla qubits, however the other qubit
qi has still to interact with X first, leading us to put no new restrictions on the group.
It can however also be the case that (qk , X) has been colored first, and (qi , X) has been
colored second. In this case, both qubits have interacted with the same ancilla qubit, en-
abling them both to also interact with the other ancilla qubit. All edges from the group
which were made blocked from being colored, can now potentially be made available to

3

28 3. ALGORITHM FOR FINDING INTERLEAVED SCHEDULES

get colored again. However, each edge is in two groups, group 1 could indicate that the
edge can be made available again, whilst group 2 does not allow the edge to be put back.
For every blocked edge that could be put back according to group 1, it also needs to be
checked whether it can be put back according to group 2. Suppose the edge (qi , Z) can
be put back due to group 1. Then there are 4 cases of colored edges in group 2 such that
it is allowed to make (qi , Z) available again.

1. Group 2 has only 1 colored edge which is not the non-adjacent edge of (qi , Z).

2. Group 2 has 2 colored edges, both interacting with the same ancilla qubit.

3. Group 2 has 2 colored edges. The edge which got colored first is not the non-
adjacent edge of (qi , Z).

4. Group 2 has 3 colored edges

3.1.4. 3 OR MORE EDGES HAVE BEEN COLORED
Once 3 colors have been colored there are 2 possible scenarios left. Either the last re-
maining edge has been blocked, or the edge has not been blocked and can be colored.
There is nothing to do for this overlapping pair group but wait until the last remaining
edge gets put back by the other group it is in, following the same 4 criteria as in Subsec-
tion 3.1.3.

If 4 edges of a group are colored, there is nothing left to do.

3.2. LINE GRAPH CONVERSION AND COLORING THE EDGES
Every group has been checked and it has been determined for its 4 edges in which cate-
gory they fall (normal, blocked, release, removed). Now the second step of the algorithm
is to change each of the groups into a line graph [27], where each edge becomes a node
and each node becomes an edge. In Subsection 3.1.1 it has been explained that for a pair
group where no edges have been (temporarily) removed, only 1 edge can be colored with
the upcoming color. To capture this constraint on groups with 4 available edges, 2 extra
edges are added between non-connected nodes, see Figure 3.4.

Figure 3.4: Conversion of a qubit pair into a linegraph. Nodes become edges and edges become nodes. 2
additional edges are added to capture the restriction from 3.1.1

It is however also a possibility that no edge has been matched in a group, but edges
have been blocked, and thus have temporarily been removed, thanks to their non-adjacent

3.3. IMPROVING THE ALGORITHM

3

29

edges in their other group getting colored. In this case, the pair has less than 4 edges, and
the resulting line graph has less than 4 nodes. The algorithm in these cases detects that
the converted pair group has less than 4 nodes, and adds no extra edges, see Figure 3.5
showcasing an example.

Figure 3.5: If one edge of the qubit pair has been removed, the algorithm converts the pair into a linegraph
taking into account that one edge is missing.

Once every overlapping pair group has been changed into a line graph, a maximal
independent set algorithm used from NetworkX [28] finds a maximal independent set
based on a random seed. A set S of vertices is called independent when it is chosen in a
way such that for every two vertices in S, there is no edge connecting the two. Such a set
S is called a maximal independent set when there are no vertices out of S that may join it
[29]. In the worst case, the used maximal independent set algorithm returns a set of size
O(|V |

(l og |V |)2) for a graph with |V | vertices. The small stellated dodecahedron graph has 54

nodes and 120 edges, by converting it into a line graph we thus end up with V = 120,
and in a worst-case scenario a coloring matching of size 120

log (120)2 = 6. In the best case,

the found maximal set is of size 24, as then every X and Z-check is matched to 1 qubit.
Because the used graph is highly symmetric, color matchings of such low size do luckily
not occur. Running the algorithm for 5 minutes returns 10.260 possible first matches,
averaging a length of 21 vertices, although returning merely 37 cases of a length 24.

After a maximal independent set has been chosen, the edges from this set get re-
moved from the original graph and assigned their associated color. For the new result-
ing graph, the restrictions again are checked as described before, blocking edges when
needed. The new updated graph again gets converted to a line graph and a new maximal
independent gets chosen and assigned a new color. This process gets iteratively repeated
until there a no edges left in the graph. The algorithm can be found at the GitHub page
B.

3.3. IMPROVING THE ALGORITHM
A problem with the described algorithm is that it terminates almost half of the time be-
cause the eventually found parity check schedule cannot add any more edges. As every
qubit interacts with 2 Z-stabilizers and 2 X-stabilizers, they can locally be viewed as lying
on a square lattice, with their corresponding pair qubits lying on the corners, see Figure
3.6.

Section 3.1.2 showed that properness imposes that the first colored edge in a pair

3

30 3. ALGORITHM FOR FINDING INTERLEAVED SCHEDULES

Figure 3.6: Each qubit is in 4 pair groups and can thus be shown as laying on a square grid (Left). A single edge
(q j , Z j) has been colored (green), resulting in the removal of a single other edge (qi , X j). This removed edge
can get put back once the edge (qi , Z j) has been colored (Middle). A cycle of removed edges that cannot be
broken up as each removed edge forms the release for another (Right).

results in the non-adjacent edge being blocked. This temporarily removed edge can be
released and assigned a color once its release edge has been colored. An example of a
blocked edge can be seen in Figure 3.3. Here the edge (q j , Z j) is the first edge to be col-
ored in the pair between q j and qi , and as a result the edge (qi , X j) has to be temporarily
removed. Now the (qi , X j) can only be added back once (qi , Z j) has been colored, as
this way both qubits in the pair [qi , q j] have both first been matched with Z , and subse-
quently with X .

Problems occur however when the edge(s), which form the release of blocked edges,
are removed in a loop-like structure, see Figure 3.6. In this case, four edges get removed
from one qubit, by the coloring of one nonadjacent edge from each pair. Explicitly,
the temporarily removed edge (qi , X j) can be released when (qi , Z j) has been colored.
(qi , Z j) itself however has also been removed and can be put back once (qi , Xi) has been
colored. Following this line of removed edges which form the release for a former edge,
we eventually end up at the first removed edge (qi , Z j) forming the release for the edge
(qi , X j). A loop structure thus results in a blocking set of edges that can never be released
and results in the failure of the algorithm. Bigger loops, where multiple qubits get sur-
rounded by a loop of first colored edges in pairs, pose no problem for the qubits as there
will always be an edge that has not been temporarily removed for each qubit.

Thus after each coloring round the algorithm checks if no such blocking sets have
occurred in the coloring. This is done by finding all the 4 pair groups associated with a
single qubit qi . Once each group has at least 1 edge colored, it is checked whether these
edges do not act on the center qubit qi and none of the edges share the same X or Z
stabilizer. If these requirements are met, the algorithm will stop and start a new attempt
to find another schedule. The updated algorithm either terminates due to a loop forming
or due to the found schedule being longer than the desired length. As the algorithm uses
a random seed the run times tend to fluctuate heavily. The improved algorithm seems
to be 3 times faster, having a runtime of (7.7± 5.4)102s versus the runtime of the old
algorithm (2.2±2.0)103s.

3.4. LENGTH 6 PROPER COLORING

3

31

3.4. LENGTH 6 PROPER COLORING
The improved algorithm was run multiple times, returning a total of 18 seemingly differ-
ent measurement schedules. No conclusive answer can be given as to whether these 18
schedules are all possible interleaved schedules. It is also not known whether new sched-
ules could have better performance when tested as in Chapter 5. All 18 found schedules
were of length 6, having 1 color more than the normal coloring of the Tanner graph as in
Figure 2.1. An example of the found measurement schedules can be seen in Figure 3.7
which is based on the schedule in Table A.7. It can be verified that the qubits from each
qubit pair either first interact with their X stabilizer or their Z stabilizer.

Figure 3.7: Interleaved proper schedule of length 6, shown in a planar graph of the SSD. The left figure shows
the Z stabilizers, and the right figure the X stabilizers. The order of colors is Red-Green-Yellow-Blue-Purple-
Black. Overlapping of both figures shows that no qubit has the same color twice, but now also that qubits that
form a pair also follow the properness condition.

In order to understand the resultant schedules, some work was put into finding a pat-
tern within the interleaved schedules. This was done to get a grasp of why the interleaved
schedules work, possibly giving insight into how to construct a length 5 schedule or how
to manually construct new length 6 schedules. Although there seemed to be some pe-
riodicity, where multiple Z stabilizers would take the same pattern in measuring the 5
qubits, no conclusive pattern could be found.

3.5. LENGTH 5 PROPER COLORING?
The fact that the normal bipartite graph of the dodecahedron could be colored in 5 colors
raises the question of whether this would also be possible when taking the properness
condition into account. The numerical results found by running the algorithm do not
give immediate insight if this could be possible. To this end, the algorithm was run for
a substantial amount of time, visiting approximately 2592000 different graph colorings.
Yet no 5-length coloring was found. Due to the permutations of possible colorings, it is
hard to rule out the possible existence of a length 5 coloring, although a sophisticated
brute force method could be applied. Instead, attempts were made to try and find a

3

32 3. ALGORITHM FOR FINDING INTERLEAVED SCHEDULES

proof or sketch of proof for the existence of a length 5 coloring. Several steps have been
made, yet no conclusive answer has been found.

3.5.1. THE CREATION OF 6TH COLOR
The normal coloring of the Tanner graph of the SSD used 5 colors. A 6th color occurs
once two qubits in a pair get the colors 1 and 5 with respect to the same measurement
(both X or both Z). See Figure 3.8, as 1 is the lowest color, qi must have a color >1 with X,
and qk must have a color >5 with X and thus a 6th color is needed.

Figure 3.8: A qubit pair. If the edges connected to the Z (or X) ancilla qubit get colored 1 and 5, then a 6th round
will be made.

In the representation of the plane graph of the dodecahedron, we get that for each
face, corresponding to a Z-check, the edges with colors 1 and 5 must be adjacent to one
another. Otherwise, the edges would be in the same pair, resulting in needing a 6th color,
see Figure 3.8 For the X stabilizers, the edges going into the face should be non-adjacent
for colors 1 and 5.

In order to try and rule out the possibility of a proper 5-coloring of the SSD, a brute
force method was used to find whether a coloring with every color 1 and color 5 following
Figure 3.9. which can be found on the GitHub B. All edges were grouped per Z and X
check, and one Z or X check was chosen as the starting edge. This edge got assigned
a permutation of (1,2,3,4,5), and based on this starting point other permutations were
chosen for the remaining checks. Due to the scale of the problem, the estimated total
runtime was O(12024), but a solution was found after merely 50s, which can be seen in
Table A.5.

3.5.2. REDUCING THE GRAPH
Multiple different reductions have been made to the graph to try and see which restric-
tions or combinations of restrictions lead to a length-6 coloring. Reductions include

1. Taking only 1 Z stabilizer with 5 X stabilizers acting on its edges

2. Taking a central Z stabilizer, surrounding it with 5 Z stabilizers

3.5. LENGTH 5 PROPER COLORING?

3

33

3. Leaving out a random number of stabilizers

yet every reduction resulted in the development of a length-5 schedule, showing no
hints as to why the 6th color was created. Leaving out the 12th X and Z stabilizers, re-
sulted in a length 6 coloring, following the fact that they are to some degree redundant
and pose no new restrictions on the graph. It seems that only the whole collection of
restrictions leads to the creation of a length-6 schedule, and reducing the graph does not
give more insight into why this happens.

3.5.3. ORDERING FOR THE SSD
In the literature [16], different codes such as the surface code, utilize a specific ordering
for measuring X and Z checks. This ordering is determined by the orientation of the sur-
face, where a vector orthogonal to the surface is used and the right-hand rule is applied
to establish the sequence of measurements (e.g., North-West-East-South). However, this
ordering does not directly translate to hyperbolic surface codes due to the non-trivial
parallel transport of a vector around a closed curve, which prevents it from returning to
its original configuration [30]. If we attempt to impose a periodic ordering on the SSD,
we could begin by coloring one Z-check. However, due to the different returning paths
along the dodecahedron, we would end up with inconsistencies in the orientation of the
coloring on the initial face. This suggests that achieving a ordered coloring of length 5
may not be feasible. Nonetheless, the question of whether the entire graph can be prop-
erly colored using 5 colors remains open.

Figure 3.9: If the edges with color 1 and 5 are next to one another in a Z stabilizer, a 6th color will not be created.
The edges must be non adjacent for a X stabilizer.

4
APPLYING THE ALGORITHM TO

OTHER CODES

The developed algorithm can produce interleaved schedules for the SSD whilst taking
the properness condition into account. The algorithm was built on the overlapping
groups existing out of 4 edges, see Figure 3.1, and the fact that each edge was present in
a total of 2 overlapping groups. These characteristics are such an intricate part of the al-
gorithm, that the algorithm cannot be used for codes having bigger overlapping groups.
This chapter explores the application of this algorithm to various quantum error correc-
tion codes that share the same overlapping group structure as the SSD. We will begin by
examining the distance-3 surface code (see Section 1.5), followed by the introduction of
a code based on the Tetrahemihexahedron polyhedron. All Tanner graphs of the codes
can be found at the GitHub B.

4.1. DISTANCE-3 SURFACE CODE

The distance-3 surface code uses a square tiling, putting 9 qubits on each of the vertices,
see Figure 4.1. X and Z stabilizers are plaquettes working on the surrounding qubits, and
logical X and Z operators are respectively vertical and horizontal strings of Pauli’s. Just
as for the SSD, the goal is to find an interleaved proper schedule by coloring the Tanner
graph. The overlapping pair groups can be seen to again have size 4, and each edge is
present in at most 2 overlapping groups, allowing the algorithm described in Chapter 2
to be used.

35

4

36 4. APPLYING THE ALGORITHM TO OTHER CODES

Figure 4.1: Left figure shows a distance-3 surface code, see Section 1.5. The right figure shows the Tanner graph
of the surface code. Green nodes represent X-checks, orange nodes represent data qubits and the red nodes
represent Z-checks.

The algorithm will return an interleaved schedule of length 4, see Table A.10, in corre-
spondence to the schedule found in [11]. It can be seen that the schedule takes a certain
ordering, where each X and Z stabilizer takes a Z -shape. To check that the found sched-
ule is proper, take two qubits with overlapping X and Z stabilizers, i.e. q1 and q4. Then
both qubits first interact with the X stabilizer before interacting with the Z stabilizer. This
measurement schedule will be used to benchmark the SSD code.

Figure 4.2: A proper and interleaved matching of the distance-3 surface code. Each stabilizer is measured
following a Z -shape, starting at the top right qubit and ending at the bottom left.

4.2. TETRAHEMIHEXAHEDRON CODE

4

37

4.2. TETRAHEMIHEXAHEDRON CODE
The Tetrahemihexahedron, a polyhedron, consists of 7 faces: 3 square planes and 8 tri-
angular faces. It has 12 edges and 6 vertices, which makes it an interesting simple candi-
date for quantum error correction codes due to its geometric properties [1]. Qubits can
be placed at the edges of the Tetrahemihexahedron. Each edge represents a data qubit,
while the faces of the polyhedron correspond to stabilizers, see Figure 4.3. Here, the red
triangular faces are associated with weight 3 Z stabilizers. The yellow square planes are
weight 4 Z stabilizers. X stabilizers are chosen to act on the edges surrounding a vertex,
which adds 6 weight 4 X stabilizers. As combining all X (or Z) stabilizers leads to the
identity, the total encoded logical qubits are 12−13+2 = 1. The qubits are labeled as in
Figure A.3.

Figure 4.3: Left figure shows a Tetrahemihexahedron. The right figure shows the Tanner graph of the Tetra-
hemihexahedron. Green nodes represent X-checks, orange nodes represent data qubits and the red nodes
represent Z-checks. [31]

Even though the code provides no way to correct errors, it is a good test to see whether
the algorithm can also find interleaved schedules for different weight X and Z stabilizers.
Running the algorithm on the Tanner graph seen in Figure 4.3, returns an interleaved
schedule of length 6. The schedule can be seen in Table A.11. The schedules show no
distinct pattern, even when comparing multiple schedules. Again, taking qubits from
the same overlapping pair group shows that both first interact with X- or with Z-, show-
ing that the schedule is proper. Also, the found interleaved schedule for the Tetrahemi-
hexahedron seems to be 2 longer than the coloring found by performing a normal edge
coloring.

4.3. PERFORMANCE OF IMPROVED ALGORITHM
Section 3.3 introduces an improvement to the algorithm by detecting cycles of removed
edges, as illustrated in Figure 3.6. This enhanced algorithm produced interleaved sched-
ules approximately three times faster for the small stellated dodecahedron (SSD) code
by prematurely detecting blocking cycles and restarting the algorithm when necessary.

4

38 4. APPLYING THE ALGORITHM TO OTHER CODES

To evaluate the performance gains, both the basic and improved versions of the algo-
rithm were tested on the distance-3 surface code and the Tetrahemihexahedron code.
The results are summarized in Table 4.1.

The improvement made to the algorithm did not significantly influence the runtime
for the surface code and only a bit for the Tetrahemihexahedron code. Prematurely stop-
ping the algorithm upon detecting a blocking cycle offers no significant advantage, as
finding a new schedule takes under 0.1 seconds due to the low amount of edges in their
respective Tanner graphs. The additional runtime gained by checking for blocking cy-
cles effectively nullifies any benefit from identifying them. The standard deviation for all
3 codes is high, being a result of each coloring round being chosen based on a random
seed.

Basic algorithm Improved algorithm
SSD (2.2±2.0)103 (7.7±5.4)102

Surface code (0.43±0.1) (0.28±0.1)
Tetrahemihexahedron (0.13±0.1) (0.12±0.1)

Table 4.1: Table containg the runtime in seconds of the basic and improved algorithm for the SSD, the surface
code and the Tetrahemihexahedron code.

5
VERIFICATION OF FAULT

TOLERANCE

A proper measurement schedule has been found, enabling us to correctly measure the
ancilla qubits in the case where no errors have yet to occur. Our noiseless syndrome
extraction circuit now takes the following form;

1. In the first time step we prepare 12 ancilla qubits in the |+〉 state, and 12 ancilla
qubits in |0〉.

2. A measurement schedule found by the algorithm is performed, putting our data
qubits in a quiescent stabilized state.

3. The ancilla qubits get measured in their respective basis and reset into their origi-
nal state and one EC cycle has been completed.

4. After two cycles, detectors are added to the ancilla qubits, comparing the mea-
surement outcomes of the current cycle with the outcomes of the previous cycle.
If the two measurements differ, the detector gets triggered, indicating that one of
the data qubits has been corrupted by an error.

The Stim package [32] is used to simulate the circuit from the found measurement
schedule. One cycle can be seen in Figure 5.1. The visual representation enables us to
quickly check whether the support of each ancilla qubit is correctly defined and gives a
sense of scale. The red dotted lines denote the beginning of a new time step. It can be
seen that the total amount of time steps T = 1+ 6+ 1 = 8, having 4 CNOT’s layers less
than the sequential measurement schedule. [1].

5.1. DEPOLARIZING NOISE MODEL
We consider the standard circuit-level depolarizing noise model [33], described by:

39

5

40 5. VERIFICATION OF FAULT TOLERANCE

Figure 5.1: Measurement schedule found by the algorithm described in Chapter 2. The top 12 qubits are the
X ancilla qubits, the 30 following qubits are the data qubits and the last 12 qubits are the Z ancilla qubits. The
red dotted lines mark the beginning of a new timestep.

1. Each CNOT gate is followed by a two-qubit Pauli error drawn from {I , X , Z ,Y }⊗2\{I⊗
I } with probability p.

2. Each qubit initialized in |0〉 gets replaced by X |0〉 = |1〉 with probability 2
3 p, . Simi-

larly, a qubit initiliazed in |+〉 turns into Z |+〉 = |−〉 with probability 2
3 p.

3. A measurement’s outcome gets flipped with probability 2
3 p.

4. Each idling qubit is followed by an error from {X , Z ,Y } with probability p.

A visualization of the circuit including noise can be found on GitHub B.

5.2. ERROR PROPAGATION
In Section 2.2 it was shown how Pauli X and Z could propagate through a CNOT and affect
the measurement outcome of an ancilla qubit. To fix this problem Theorem 2 was used
to make sure an even number of Pauli’s ended up at the ancilla qubits. However, with
the added noise in the circuit, it now also becomes possible that Pauli X and Z propagate
from the ancilla qubits onto the data qubits. Since the SSD code requires only three
data qubits to complete a logical error chain, the next round of stabilizer measurements
could incorrectly diagnose an error on the third qubit, possibly leading to a logical error
chain. See Figure 1.15, where a minimum weight decoder would correct the yellow qubit
by applying a Pauli X, but by doing this performs a logical operator.

5.3. FAULT-TOLERANCE OF FOUND SYNDROME EXTRACTION CIRCUITS

5

41

Figure 5.2: A single error on the ancilla qubit spreads into multiple errors on the data qubits.

5.3. FAULT-TOLERANCE OF FOUND SYNDROME EXTRACTION CIR-
CUITS

To check whether a single error does not harmfully spread into multiple errors, the cir-
cuit gets simulated again using STIM, this time including the depolarizing noise. In STIM
the logical operators are defined as observables, see Table A.1. The stabilizers of the code
are defined by measuring the data qubits and applying a detector between these results
and the associated ancilla qubit. It is possible to measure the data qubits directly since
maintaining the superposition or entanglement of the qubits is no longer a concern.
The focus shifts from maintaining coherence to detecting any missed errors. These final
measurements allow it to directly define the stabilizers using the data qubit outcomes,
and to construct detectors that reveal any errors that may have gone unnoticed during
the earlier QEC cycles.

The integrated function shortest graph-like error[32] is used to determine the small-
est number of errors needed to form a logical error. Now as the distance of our code is 3,
we expect the minimal amount of errors needed to form a logical error also to be 3. If the
circuit could result in a logical error coming from just two errors, it would indicate that
at least one of the errors spread in a harmful way. The algorithm described in Chapter
2 was used to find 18 possibly different measurement schedules. Out of the 18 sched-
ules, just 5 proved to be fault-tolerant. For all other schedules a logical X or Z error could
occur with only 2 errors occurring in the circuit, indicating harmful spreading [11].

6
LOGICAL PERFORMANCE OF THE

CIRCUITS

The previous chapter verified that the found circuits are fault-tolerant. We will now look
into finding a pseudo-threshold for the SSD code, which tells us at what error rate p
our encoded logical qubits are more susceptible to errors than if we were not to encode
our qubits at all. The code will be beneficial for all p lower than the pseudo-threshold.
The logical error rate pL of the SSD code scales as pL = cp2 +O(p3). The dependence
on p2 is justified by the fact the code has distance 3, meaning it can correct a single
error, but two errors can still lead to a logical error. The logical error rate is based on a
single logical error occurring on one of the 8 logical qubits. As there are 8 logical qubits,
the pseudo-threshold is chosen to be the intersection of the logical error rate with the
line pL(p) = 1− (1−p)8 ≈ 8p for small p, such that the intersection denotes the highest
error probability p at which the probability of an error occurring on at least one of the 8
unencoded qubits is higher than a logical error occurring on one of the logical qubits.

To sample the logical error probability, 6 rounds of noisy stabilizer measurements
are performed and afterward decoded with minimum weight perfect matching from Py-
matching [15]. The decoder determines whether a logical error has occurred based on
the detectors, which then gets compared to the actual logical observable outcomes of
the circuit. Any mismatches show that an undetected logical error has occurred at the
end of the 6 rounds.

First, the pseudo-threshold for all found schedules of the SSD code will be deter-
mined, comparing possible differences. Then, the best result will be compared against
the pseudo-threshold for the sequential measurement from [1]. At last, the best-performing
schedule will be compared to the performance of eight copies of distance-3 surface codes.

43

6

44 6. LOGICAL PERFORMANCE OF THE CIRCUITS

6.1. INTERLEAVED SCHEDULE FOR THE SSD
A total of 18 different interleaved measurement schedules have been found for the SSD
code, 5 of which were fault-tolerant. For these schedules, the circuit noise model de-
scribed in Chapter 5 was used. As the SSD code encodes 8 logical qubits, we define that
a logical error has occurred when a logical error has occurred on at least 1 logical qubit.

An interval of error probability p between 10−5 and 10−3 was used, in correspon-
dence to actual error probabilities of qubits [9]. In total 2 · 107 samples are taken of
the circuit, to then calculate the average logical error rate and deviation in the results.
The logical errors are estimated by bootstrap resampling, a technique where the original
dataset is repeatedly sampled with replacement to generate multiple simulated datasets
[34]. These samples are used to calculate the distribution of the error rates, and from
this, the standard deviation serves as an estimation of the variability in the results. The
logical X and logical Z error rates are determined separately, through separate X and Z
memory experiments, resulting in a logical error rate for both X and Z errors.

Figure 6.1: Logical X (left) and Z (right) error rate for the best-performing measurement schedule. Blue dots
represent the sampled data. The red line is fitted on the data, with c = 1.410 ·104 and c = 1.426 ·104, and the
line pL (p) = 8p is dotted yellow.

Best-performing schedule Worst-performing schedule

Fitted constant c
1.410 ·104

1.426 ·104
1.470 ·104

1.452 ·104

Pseudo-threshold
5.676 ·10−4

5.611 ·10−4
5.440 ·10−4

5.511 ·10−4

Table 6.1: Performance comparison between best-performing and worst-performing schedules. The top val-
ues in each cell correspond to parameters associated with the logical X error rate, while the bottom values
correspond to those associated with the logical Z error rate.

Figure 6.1 shows the fitted pL = cp2 on the best-performing fault-tolerant circuit, see
Table A.7. That is, the circuit with the lowest fitted constant c. The figure also shows
the line pL(p) = 8p, whose intersection with the fitted error rate determines the pseudo-
threshold. The worst fault-tolerant circuit A.8 is shown in Figure A.4. Table 6.1 shows the

6.1. INTERLEAVED SCHEDULE FOR THE SSD

6

45

fitted constant c and the pseudo-thresholds for the best- and worst-performing sched-
ules. The best-performing circuit has a constant c 4.3% lower for X errors and 2% lower
for Z errors. These are not huge margins, and the algorithm described in Chapter 2 thus
seems to return schedules with about the same performance, provided they are fault-
tolerant.

The above procedure was also performed for one non-fault-tolerant circuit to see
the difference between fault-tolerant and non-fault-tolerant circuits. The chosen circuit
was not X fault-tolerant. The graph seen in Figure 6.2 shows that the logical X error rate
pL instead scales with pL = cp at lower p, since now single errors can also lead to logi-
cal errors. The logical Z error rate is the same as for other fault-tolerant circuits, as the
schedule is fault-tolerant against logical Z errors, the graph can be seen in Figure A.5.

Figure 6.2: Logical X error rate for a non-fault-tolerant schedule, see Table A.9. Blue dots represent the sampled
data. It can be seen that for lower error rates p the data seems to follow more the pL (p) = 8p line at low p.

Figure 6.3: Logical X (left) and Z (right) error rate for a sequential measurement schedule, see Table A.6. Blue
dots represent the sampled data. The red line is fitted on the data, with c = 3.649 ·104 and c = 3.689 ·104, and
the line pL (p) = 8p is dotted yellow.

6

46 6. LOGICAL PERFORMANCE OF THE CIRCUITS

6.2. SEQUENTIAL SCHEDULE FOR THE SSD
One of the main questions to be answered was whether by finding an interleaved sched-
ule the performance of the SSD code could be improved. A fault-tolerant circuit with
sequential measurement of X and Z stabilizers was used from [1], where only the 12th X
and Z stabilizers were added in a way that the schedule still proved to be fault-tolerant.
Table A.6 shows the sequential measurement schedule. In Figure 6.3 the logical error
rate of a sequential measurement schedule is shown.

The interleaved schedule significantly outperforms a sequential measurement sched-
ule. For the logical X and Z error rate of the sequential schedule, the fitted constants are
respectively c = 3.649 · 104 and c = 3.689 · 104, which is about 2.6 times higher than for
the best-interleaved schedule. A big contribution to the worse performance of the se-
quential measurement circuit is the idling of the qubits. On average there are 10 idling
qubits at each time step for the interleaved schedule, while there are 18 idling qubits for
the sequential measurement schedule. Reducing the probability p of an error occurring
on idling qubit to p

10 , the sequential and interleaved schedules perform more similarly.
This is expected because reducing this idling error probability decreases the difference
between both circuits, and they start to act more the same. Consequently, completely re-
moving the idling noise results in the same performance. When taking p

10 , the sequential
circuit only performs 1.23 times worse compared to the interleaved schedule. Of course,
the pseudo-thresholds scale the same way.

Figure 6.4: Logical X error rate for the best interleaved (left) and sequential (right) measurement schedule. The
idling probability has been set to

p
10 Blue dots represent the sampled data. The red line is fitted on the data,

with c = 7.006 ·103 and c = 8.631 ·103. The circuits start to act more the same for this lower idling probability.

6.3. 8 COPIES OF THE 17-QUBIT SURFACE CODE
The procedure described in Section 6.1 is also performed for the distance-3 surface code.
As the SSD code encodes 8 logical qubits and the 17-qubit surface code only one, 8 pieces
of the surface code are used to make a fair comparison against the SSD. Again, a logical
error occurs when an error occurs on at least 1 of the logical qubits. Suppose p(1)

L is the
logical error rate of one copy of the surface code. In that case, the total logical error
rate of 8 copies is pL(p) = 1− (1−pL(p))8 ≈ 8p(1)

L (p), because errors in different copies
are independent between each other. The used measurement schedule can be found in

6.3. 8 COPIES OF THE 17-QUBIT SURFACE CODE

6

47

Table A.10.

Figure 6.5: The logical X (left) and Z (right) error rates for 8 independent pieces of the surface code. Data was
sampled using 2 ·107 samples, and the mean and deviation were found using bootstrapping. Data points are
shown in blue, the fitted pL = cp2 +O(p3) is shown in red, and the line pL (p) = 8p is dotted yellow.

It can be seen that the fitted constant c of the logical error rate for the found inter-
leaved schedule is only a factor 1.26 higher than for the logical error rate of 8 pieces of
the surface code. The surface code still seems to outperform the SSD code, even though
the interleaved schedules perform better than the sequential schedule by a factor of 2.6.
However, the SSD code only uses a total of 54 qubits, whereas 8 pieces of the distance-3
surface code use a total of 8∗ 17 = 136. Thus even though the SSD code has a higher
logical error rate, it uses only 0.4 times as many qubits. The SSD code can thus form
a very promising alternative for future research, particularly in situations where qubit
resources are limited. While the surface code remains a strong performer in terms of
minimizing logical error rates, the significantly lower qubit overhead of the SSD code
suggests that it may offer a good solution in constrained environments.

Moreover, the SSD code can serve as a strong candidate for testing transversal Clif-
ford gates [18], which help ensure that logical operations can be performed without com-
promising the code’s ability to correct errors. They are designed to minimize the creation
of logical errors while allowing for logical operations to be performed. The low amount
of qubits in the SSD code, combined with its interleaved schedule performance, provides
a more compact framework for exploring the performance of transversal Clifford gates.

6

48 6. LOGICAL PERFORMANCE OF THE CIRCUITS

Figure 6.6: The fitted logical error rates for 8 independent pieces of the surface code (green), the sequen-
tial schedule (orange) and the interleaved measurement schedule (blue). The performance of the interleaved
schedule is approximately 2.6 better than the sequential schedule. However, 8 pieces of the distance-3 surface
code still perform 1.26 better than the interleaved schedules.

7
DISCUSSION AND FURTHER IDEAS

The heuristic algorithm described in Chapter 3 proved to find interleaved schedules with
6 CNOT layers, achieving performance close to the performance of the distance-3 sur-
face code. Efforts have been made to find a proper schedule with 5 CNOT layers, yet no
conclusive answer could be given as to whether such a circuit exists. It has been shown
that such length 5 schedule could not follow a certain ordering, where a vector could
be transported along the stabilizers, but if it were to exist, it would have to take a non-
ordered form [30]. Determining the existence of a length-5 schedule remains an open
question, which a brute-force approach could perhaps answer.

Using the algorithm, 18 interleaved schedules were found, of which five were fault-
tolerant. Within these five schedules, variations in the measurement count at the sixth-
time step were observed: two schedules had 13 measurements, two had 11, and only
one schedule had 10 measurements. Notably, the circuit with the fewest measurements
at its final layer showed the best overall performance. This trend could suggest that re-
ducing the number of measurements at the last time step could perhaps lead to better-
performing circuits. Further investigation into last round’s measurement count and the
total length of the schedules could reveal methods for optimizing the development of
interleaved schedules.

Significant time was put into finding a pattern within the interleaved schedules. The
found schedules for the SSD showed some hints of a pattern, where certain stabilizers
had consistent qubit measurement orders across schedules, hinting at an underlying
structure that may explain why certain interleaved schedules succeed. However, due to
the scale and complexity of the graph, no definitive pattern could be found. Finding a
pattern could give more insight into the workings of the schedules, possibly showing how
to construct a length 5 schedule or how to manually design new length 6 schedules. Rec-
ognizing patterns within the interleaved schedules could serve as a valuable foundation
for future research, potentially guiding the development of even better schedules.

The algorithm now detects blocking cycles once they have already occurred, and
restarts once one is found. A better approach would be to integrate a way for the algo-
rithm to prematurely disable these blocking sets from forming, instead of only detecting

49

7

50 7. DISCUSSION AND FURTHER IDEAS

them once formed. An idea could be to not allow any alternating patterns of edges (see
Figure 3.6) to exist, and if 3 edges have been colored in an alternating way, to block the
4th edge, even though its own overlapping pair group does not specifically imply this
restriction.

The current algorithm produces interleaved scheduling at an acceptable rate. To
determine its efficiency, benchmarking it against a standard graph coloring algorithm
would be valuable. Comparisons between both methods could indicate how much faster
the developed algorithm is than random approaches and whether adjustments could
further enhance performance. Benchmarking results would be particularly valuable in
assessing the potential applicability of the algorithm for other (larger) codes.

Taking the maximal independent set is based on a random seed. A more determin-
istic or structured approach could ensure that a proper schedule could be produced ev-
ery single time, independent of seed randomness. Additionally, the algorithm does not
incorporate fault tolerance as a constraint, meaning fault-tolerant schedules are found
more by chance rather than by design. By adapting the algorithm to include fault toler-
ance as a constraint, the likelihood of finding fault-tolerant circuits could be improved.

For the simulations, a depolarizing noise model was used, which applies noise evenly
to all qubits and gates [33]. However, exploring other noise models could give a better
understanding of how well the algorithm performs in real-world scenarios. For instance,
testing models that simulate biased noise or uneven error rates could help us assess the
algorithm’s reliability and its relevance for quantum systems that experience different
types of noise.

The developed algorithm works for any code where the overlapping pair groups ex-
ist out of 4 edges, and where each edge is in 2 different overlapping groups. In Chapter
4 it was shown that the algorithm also correctly determines proper interleaved sched-
ules for the surface code and a code based on the Tetrahemihexahedron, whose qubits
satisfy these constraints. The algorithm is intrinsically built on the fact that the overlap-
ping pair groups exist out of 4 edges, and adapting it to codes where the overlapping pair
groups are bigger would require a different approach. However, the basic algorithm can
also be improved to work in the case where each single edge is in more than 2 overlap-
ping groups. For this, only the verification step described in Subsection 3.1.3 should be
expanded to account for all relevant groups beyond the second (e.g., third, fourth). Ex-
tending the improved algorithm, which detects blocking cycles (see Figure 3.6), would be
more complex, as the existing cycle-detection strategy may not apply to more intricate
codes. Further research on cycle detection in highly intertwined codes could support
adaptation for a wider range of quantum codes.

The performance of the SSD showed to come close to the performance of the surface
code, despite using only 40% of the amount of qubits. However, the physical implemen-
tation for the SSD might be difficult. For example, ion qubit traps [4] and superconduct-
ing qubits [7] are often held in a linear or planar trap, where qubits prefer interaction with
their nearest neighbors. Adapting the SSD into a linear array or plane of qubits will face
some problems. The planar graph, Figure 1.12, can suggest a layout where each Z-check
can work on its associated face, however the X-checks pose a problem by not working
on neighboring qubits. The surface code has an advantage, having easier connectivity
requirements. It is unknown how much this influences the performance of both codes,

7

51

but it could form a basis for further research to determine the exact shortcomings of the
SSD.

8
CONCLUSION

Previous research [1] on the Small Stellated Dodecahedron (SSD) code used measure-
ment circuits that sequentially measured all X stabilizers first, followed by all Z stabiliz-
ers. These sequential measurement circuits required 10 CNOT layers to measure all sta-
bilizers but were outperformed by the surface code. The research left an open question
regarding the potential existence of interleaved schedules, where both X and Z stabilizers
could be measured simultaneously. Deriving an interleaved measurement schedule for
the SSD was equivalent to solving an edge coloring problem on its corresponding Tan-
ner graph. An edge coloring algorithm yielded an interleaved schedule with only 5 CNOT
layers. However, propagating Pauli X and Z operators through the CNOT gates revealed
that this schedule did not correctly measure each stabilizer. For a valid measurement
schedule, any pair of qubits interacting with the same stabilizers must both first interact
with either the Z or X stabilizer consistently.

To enforce this properness constraint, a new edge coloring algorithm was developed.
The objective was to find valid interleaved schedules using fewer time steps than the se-
quential schedules. A loop-based structure was employed, where each iteration checked
qubit pairs for the properness condition and blocked certain edges accordingly. The re-
maining graph was transformed into a line graph, and a maximal independent set was
selected and assigned a color.

The heuristic algorithm discovered 18 interleaved schedules, each utilizing 6 CNOT
layers. Although this is an improvement over the 10 layers used in sequential schedules,
it remains greater than the 5 layers found in the non-proper schedule. To rule out the
existence of a valid 5-layer schedule, further research was conducted on the creation of
the 6th color. This additional color emerged when two adjacent edges in a Z stabilizer
or two non-adjacent edges in an X stabilizer were assigned colors 1 and 5. A brute-force
approach was used to determine whether such a 5-layer schedule could exist, disregard-
ing the properness constraint, and a solution was found. However, attempts to directly
derive a proper 5-layer circuit have yet to yield a conclusive answer. It has been demon-
strated that this schedule cannot follow a specific ordering—where a vector could be
transported along the stabilizers—but if it exists, it must assume a random configura-

53

8

54 8. CONCLUSION

tion. The primary unresolved question is whether such a random 5-layer exists.
The algorithm was tested on 2 additional codes, the distance-3 surface code and the

Tetrahemihexahedron code. In both cases, the algorithm proved to develop proper inter-
leaved schedules and can thus function as a good heuristic tool for finding interleaved
schedules. However, multiple improvements can still be made. For example, imple-
menting a more structured way of choosing independent sets, or verifying fault toler-
ance whilst the schedule is developed. The algorithm also only works for overlapping
groups of size 4, but a more general algorithm could be developed following nearly the
same heuristic method.

All 18 interleaved schedules were simulated with Stim, using a circuit-level depolar-
izing noise model. To maintain the requirement that single errors do not propagate, the
integrated function of the shortest graph-like function was employed to detect harm-
ful error spreading. Only 5 schedules proved to be fault-tolerant. The identified inter-
leaved schedules showed performance variability, with error thresholds differing by up
to 4.3%. However, the interleaved schedules outperformed the sequential schedules by
a factor 2.6. These new interleaved schedules also nearly match the performance of 8
independent distance-3 surface code instances, with the surface code pseudo-threshold
being only 1.26 times higher. Considering that the SSD encodes 8 logical qubits using
54 physical qubits, while the surface code requires 136 qubits, the SSD code presents
a promising alternative for near-term quantum experiments, particularly in scenarios
with limited qubit availability and for the implementation of transversal Clifford gates
on the logical qubits.

BIBLIOGRAPHY

[1] J. Conrad et al. The Small Stellated Dodecahedron Code and Friends. 2018. TuDelft:
https://pure.tudelft.nl/ws/portalfiles/portal/51491958/45787026_
rsta.2017.0323.pdf.

[2] Alan M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. URL: https : / / www . cs . virginia . edu / ~robins / Turing _
Paper_1936.pdf.

[3] Richard P. Feynman. Simulating Physics with Computers. URL: https://s2.smu.
edu/~mitch/class/5395/papers/feynman-quantum-1981.pdf.

[4] J. I. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions. Technical
report. URL: https://iontrap.umd.edu/wp-content/uploads/2013/10/
Quantum-computations-with-cold-trapped-ions.pdf.

[5] Neil Gershenfeld and Isaac L. Chuang. Bulk Spin-Resonance Quantum Computa-
tion. Technical report. URL: https://qudev.phys.ethz.ch/static/content/
courses/QSIT12/pdfs/Gershenfeld1997.pdf.

[6] Q. A. Turchette et al. Measurement of Conditional Phase Shifts for Quantum Logic.
URL: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.75.
4710.

[7] Beni Yoshida and Isaac H. Kim. Topological Quantum Error Correction Codes from
Hyperbolic and Other Regular Tessellations. URL: https : / / arxiv . org / pdf /
2209.06841.

[8] Aleksandar Lebl et al. Selected Papers of the Unitech 2019 International Scientific
Conference. URL: https://unitech- selectedpapers.tugab.bg/images/
papers/2019/s3/s3_p202.pdf.

[9] Chunxiao Xiong et al. Quantum computational advantage using photons. URL:
https://www.nature.com/articles/s41586-019-1666-5.

[10] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. arXiv: quant-
ph/9705052 [quant-ph].

[11] A. Kitaev and J. Preskill. Surface Codes: Towards Practical Large-Scale Quantum
Computation. arXiv: 1208.0928 [quant-ph].

[12] David J. Griffiths. Introduction to Quantum Mechanics. URL: https://www.fisica.
net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%
20mechanics.pdf.

[13] Peter W. Shor. Scheme for Reducing Decoherence in Quantum Computer Memory.
URL: https://doi.org/10.1103/PhysRevA.52.R2493.

55

https://pure.tudelft.nl/ws/portalfiles/portal/51491958/45787026_rsta.2017.0323.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/51491958/45787026_rsta.2017.0323.pdf
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://s2.smu.edu/~mitch/class/5395/papers/feynman-quantum-1981.pdf
https://s2.smu.edu/~mitch/class/5395/papers/feynman-quantum-1981.pdf
https://iontrap.umd.edu/wp-content/uploads/2013/10/Quantum-computations-with-cold-trapped-ions.pdf
https://iontrap.umd.edu/wp-content/uploads/2013/10/Quantum-computations-with-cold-trapped-ions.pdf
https://qudev.phys.ethz.ch/static/content/courses/QSIT12/pdfs/Gershenfeld1997.pdf
https://qudev.phys.ethz.ch/static/content/courses/QSIT12/pdfs/Gershenfeld1997.pdf
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.75.4710
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.75.4710
https://arxiv.org/pdf/2209.06841
https://arxiv.org/pdf/2209.06841
https://unitech-selectedpapers.tugab.bg/images/papers/2019/s3/s3_p202.pdf
https://unitech-selectedpapers.tugab.bg/images/papers/2019/s3/s3_p202.pdf
https://www.nature.com/articles/s41586-019-1666-5
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/1208.0928
https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%20mechanics.pdf
https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%20mechanics.pdf
https://www.fisica.net/mecanica-quantica/Griffiths%20-%20Introduction%20to%20quantum%20mechanics.pdf
https://doi.org/10.1103/PhysRevA.52.R2493

8

56 BIBLIOGRAPHY

[14] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation. URL: https://profmcruz.wordpress.com/wp-content/uploads/
2017/08/quantum- computation- and- quantum- information- nielsen-
chuang.pdf.

[15] Oscar Higgott. PyMatching: A Python package for decoding quantum error-correcting
codes. URL: https://github.com/oscarhiggott/PyMatching.

[16] Yu Tomita and Krysta M. Svore. Low-Distance Surface Codes under Realistic Quan-
tum Noise. arXiv: 1404.3747 [quant-ph].

[17] Nikolas P. Breuckmann et al. Hyperbolic and Semi-Hyperbolic Surface Codes for
Quantum Storage. arXiv: 1703.00590 [quant-ph].

[18] Nikolas P. Breuckmann and A. R. Burton. Pymatching: A fast implementation of
a matching-based decoder for quantum error-correcting codes. URL: https : / /
arxiv.org/pdf/2202.06647.

[19] Polyhedr.com. Dodecahedron Geometry and Symmetry. URL: https://polyhedr.
com/dodecahedron2.html.

[20] Wolfram Research. Dodecahedral Graph. URL: https://mathworld.wolfram.
com/DodecahedralGraph.html.

[21] Amanda Raymond. Assignment for Math 324. Washington University. URL: https:
//sites.math.washington.edu/~raymonda/assignment.pdf.

[22] Wikipedia. Tanner graph Wikipedia. URL: https://en.wikipedia.org/wiki/
Tanner_graph.

[23] Ajai Kapoor and Romeo Rizzi. Edge-Coloring Bipartite Graphs. URL: https : / /
pdf.sciencedirectassets.com/272497/1-s2.0-S0196677400X00156/1-
s2.0-S0196677499910581/main.pdf.

[24] Robert Green. Vizing’s Theorem and Edge-Chromatic Graph Theory. REU Paper.
URL: https://math.uchicago.edu/~may/REU2015/REUPapers/Green.pdf.

[25] Paul Erdős and Vera T. Sós. On the Coloring of Graphs. URL: https://users.
renyi.hu/~p_erdos/1967-26.pdf.

[26] Vedika Saravanan and Samah Mohamed Saeed. Pauli Error Propagation-Based
Gate Rescheduling for Quantum Circuit Error Mitigation. URL: https://arxiv.
org/pdf/2201.12946.

[27] Wikipedia. Line graph — Wikipedia, The Free Encyclopedia. URL: https://en.
wikipedia.org/wiki/Line_graph.

[28] NetworkX Developers. maximum_independent_set — NetworkX 3.0 documenta-
tion. URL: https : / / networkx . org / documentation / stable / reference /
algorithms/generated/networkx.algorithms.approximation.clique.
maximum_independent_set.html.

[29] Wikipedia. Maximal Independent Set. URL: https://en.wikipedia.org/wiki/
Maximal_independent_set.

[30] Laila K. Khayat and James Oxley. An Introduction to Extremal Graph Theory. URL:
https://www.math.lsu.edu/system/files/final%20draft.pdf.

https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computation-and-quantum-information-nielsen-chuang.pdf
https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computation-and-quantum-information-nielsen-chuang.pdf
https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computation-and-quantum-information-nielsen-chuang.pdf
https://github.com/oscarhiggott/PyMatching
https://arxiv.org/abs/1404.3747
https://arxiv.org/abs/1703.00590
https://arxiv.org/pdf/2202.06647
https://arxiv.org/pdf/2202.06647
https://polyhedr.com/dodecahedron2.html
https://polyhedr.com/dodecahedron2.html
https://mathworld.wolfram.com/DodecahedralGraph.html
https://mathworld.wolfram.com/DodecahedralGraph.html
https://sites.math.washington.edu/~raymonda/assignment.pdf
https://sites.math.washington.edu/~raymonda/assignment.pdf
https://en.wikipedia.org/wiki/Tanner_graph
https://en.wikipedia.org/wiki/Tanner_graph
https://pdf.sciencedirectassets.com/272497/1-s2.0-S0196677400X00156/1-s2.0-S0196677499910581/main.pdf
https://pdf.sciencedirectassets.com/272497/1-s2.0-S0196677400X00156/1-s2.0-S0196677499910581/main.pdf
https://pdf.sciencedirectassets.com/272497/1-s2.0-S0196677400X00156/1-s2.0-S0196677499910581/main.pdf
https://math.uchicago.edu/~may/REU2015/REUPapers/Green.pdf
https://users.renyi.hu/~p_erdos/1967-26.pdf
https://users.renyi.hu/~p_erdos/1967-26.pdf
https://arxiv.org/pdf/2201.12946
https://arxiv.org/pdf/2201.12946
https://en.wikipedia.org/wiki/Line_graph
https://en.wikipedia.org/wiki/Line_graph
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.clique.maximum_independent_set.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.clique.maximum_independent_set.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.clique.maximum_independent_set.html
https://en.wikipedia.org/wiki/Maximal_independent_set
https://en.wikipedia.org/wiki/Maximal_independent_set
https://www.math.lsu.edu/system/files/final%20draft.pdf

BIBLIOGRAPHY 57

[31] Wikipedia contributors. Tetrahemihexahedron. URL: https://en.wikipedia.
org/wiki/Tetrahemihexahedron.

[32] Quantum Computing Group. Stim Documentation. URL: https://github.com/
quantumlib/Stim/tree/main/doc.

[33] Daniel Gottesman and John Preskill. Fault-tolerant quantum computation with
constant overhead. URL: 10.1103/PhysRevA.78.012309.

[34] A. C. Davison and D. V. Hinkley. Bootstrap Methods: A Guide for Practitioners and
Researchers. URL: https://www.hms.harvard.edu/bss/neuro/bornlab/
nb204/statistics/bootstrap.pdf.

https://en.wikipedia.org/wiki/Tetrahemihexahedron
https://en.wikipedia.org/wiki/Tetrahemihexahedron
https://github.com/quantumlib/Stim/tree/main/doc
https://github.com/quantumlib/Stim/tree/main/doc
10.1103/PhysRevA.78.012309
https://www.hms.harvard.edu/bss/neuro/bornlab/nb204/statistics/bootstrap.pdf
https://www.hms.harvard.edu/bss/neuro/bornlab/nb204/statistics/bootstrap.pdf

A
APPENDIX

A.1. VERIFICATION OF RESULTS
Now that the schedules have been made into actual circuits using Stim, it is wise to take
a step back and verify that the results are correct. To verify that our schedules are indeed
proper, we initialize all our qubits in |0〉. For a proper and noiseless circuit, the stabi-
lizer Z measurements should all return the eigenvalue +1, as |0〉 is the +1 eigenstate. We
would expect random outcomes for the X stabilizers. The same should hold if we initial-
ize all qubits in |+〉 and measure the X stabilizers. When using the schedules that should
be proper, indeed all measurement outcomes return +1, and for non-proper schedules,
the measurements return random outcomes.

To verify that all stabilizers and logical operators are correctly defined, a detector
slice is created, illustrating the detector configurations at each time step. Qubits with
measurement outcomes that contribute to the detector are interconnected, forming a
detector region. In order to see the logical operators, we replace their logical observable
property with a detector in our circuit. A detector slice requires the coordinates of each
qubit to make a graph. To find the coordinates of each qubit, the graph seen in 1.12 was
used. Each qubit gets placed in the middle of an edge, an ancilla in the middle of each
face. STIM determines whether each detector represents a X or Z stabilizer, and colors
them respectively blue or red. In Figure A.1 2 stabilizers and 2 logical operators are given,
it has been verified for all other stabilizers and logical operators that they are correctly
defined too.

59

A

60 A. APPENDIX

(a) Z1 stabilizer represented as a detector region (b) X1 stabilizer represented as a detector region

(c) Logical Z 1 shown as detector region (d) Logical X 1 shown as detector region

Figure A.1: Four images of the detector slice showing the detector region of various X and Z operators. Z-type
detector region are shown in blue, X-type detector regions in red. Qubits are represented by the black dots.

A.2. X AND Z PAULI PROPAGATION

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , X ⊗ I =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



CNOT(X ⊗ I) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

=


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0



A.2. X AND Z PAULI PROPAGATION

A

61

But we can also see that

(X ⊗X) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


And that we get

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ·


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

= (X ⊗X)C NOT

Thus
CNOT(X ⊗ I) = (X ⊗X)CNOT, (A.1)

A

62 A. APPENDIX

A.3. FIGURES

Figure A.2: Labeling of the qubits, showed in a plane graph of the dodecahedron

A.3. FIGURES

A

63

Figure A.3: Labeling of the qubits, showed in a plane graph of the Tetrehemihexahedron. Red faces are shown
to denote the weight 3 Z stabilizers.

Figure A.4: Logical X (left) and Z (right) error rate for the worst performing measurement schedule. Blue dots
represent the sampled data. The red line is fitted on the data, with c = 1.378 ·104.

Figure A.5: Logical Z error rate for a non X fault-tolerant circuit, see Table A.9. Blue dots represent the sampled
data. The red line is fitted on the data, with c = 1.412 ·104.

A

64 A. APPENDIX

A.4. TABLES

Table A.1: Logical Z̄ ’s and X̄ ’s Table. In total 16 different logical operators are shown, using the notation of
Figure 1.11 to denote the locations of the qubits it has support on.

Index Logical Z Logical X
1 Z(0,6)Z(0,8)Z(6,8) X(0,6)X(2,4)X(3,5)

2 Z(0,7)Z(0,9)Z(7,9) X(0,7)X(1,4)X(3,5)

3 Z(0,8)Z(0,10)Z(8,10) X(0,10)X(1,3)X(2,4)

4 Z(1,7)Z(1,10)Z(7,10) X(1,7)X(4,8)X(5,11)

5 Z(2,5)Z(2,6)Z(5,6) X(2,6)X(3,11)X(4,10)

6 Z(3,7)Z(3,9)Z(7,9) X(2,4)X(3,5)X(3,7)X(4,10)

7 Z(5,6)Z(5,9)Z(6,9) X(1,11)X(2,8)X(5,9)

8 Z(0,8)Z(0,9)Z(6,8)Z(6,9) X(0,6)X(0,10)X(1,3)X(1,11)X(3,5)X(5,11)X(6,8)X(8,10)

A.4. TABLES

A

65

Edge + Color Edge + Color Edge + Color Edge + Color Edge + Color
(Z1, q0) 1 (Z1, q1) 2 (Z1, q2) 3 (Z1, q3) 4 (Z1, q4) 5
(Z2, q4) 1 (Z2, q5) 2 (Z2, q6) 3 (Z2, q7) 4 (Z2, q8) 5
(Z3, q7) 1 (Z3, q9) 2 (Z3, q10) 3 (Z3, q11) 4 (Z3, q12) 5
(Z4, q11) 1 (Z4, q13) 2 (Z4, q14) 3 (Z4, q15) 4 (Z4, q16) 5
(Z5, q15) 1 (Z5, q17) 2 (Z5, q18) 3 (Z5, q19) 4 (Z5, q1) 5
(Z6, q18) 1 (Z6, q2) 2 (Z6, q20) 3 (Z6, q24) 4 (Z6, q25) 5
(Z7, q20) 1 (Z7, q3) 2 (Z7, q5) 3 (Z7, q21) 4 (Z7, q26) 5
(Z8, q21) 1 (Z8, q6) 2 (Z8, q9) 3 (Z8, q27) 4 (Z8, q22) 5
(Z9, q22) 1 (Z9, q10) 2 (Z9, q13) 3 (Z9, q23) 4 (Z9, q28) 5
(Z10, q23) 1 (Z10, q14) 2 (Z10, q29) 3 (Z10, q24) 5 (Z10, q17) 4
(Z11, q29) 1 (Z11, q28) 2 (Z11, q27) 5 (Z11, q26) 3 (Z11, q25) 4
(Z12, q0) 2 (Z12, q8) 1 (Z12, q12) 3 (Z12, q16) 4 (Z12, q19) 5
(X1, q5) 1 (X1, q8) 2 (X1, q18) 4 (X1, q19) 3 (X1, q20) 5
(X2, q3) 1 (X2, q9) 4 (X2, q12) 2 (X2, q0) 3 (X2, q21) 5
(X3, q6) 1 (X3, q8) 3 (X3, q13) 5 (X3, q16) 2 (X3, q22) 4
(X4, q10) 1 (X4, q12) 4 (X4, q17) 5 (X4, q19) 2 (X4, q23) 3
(X5, q0) 4 (X5, q2) 1 (X5, q14) 5 (X5, q16) 3 (X5, q24) 2
(X6, q1) 3 (X6, q3) 5 (X6, q17) 1 (X6, q26) 2 (X6, q29) 4
(X7, q2) 4 (X7, q4) 2 (X7, q6) 5 (X7, q25) 1 (X7, q27) 3
(X8, q5) 4 (X8, q7) 2 (X8, q10) 5 (X8, q26) 1 (X8, q28) 3
(X9, q9) 1 (X9, q11) 3 (X9, q14) 4 (X9, q27) 2 (X9, q29) 5

(X10, q13) 1 (X10, q15) 2 (X10, q18) 5 (X10, q25) 3 (X10, q28) 4
(X11, q20) 4 (X11, q21) 2 (X11, q22) 3 (X11, q23) 5 (X11, q24) 1
(X12, q1) 1 (X12, q4) 4 (X12, q7) 3 (X12, q11) 2 (X12, q15) 5

Table A.2: Edges of the SSD Tanner graph and their associated colors. In total 5 colors are used.

A

66 A. APPENDIX

CNOT 1 CNOT 2 CNOT 3 CNOT 4
(X 1, q5) (X 1, q8) (Z 2, q5) (Z 2, q8)
(X 1, q19) (X 1, q18) (Z 5, q19) (Z 5, q18)
(X 1, q20) (X 1, q18) (Z 6, q20) (Z 6, q18)
(X 1, q20) (X 1, q5) (Z 7, q20) (Z 7, q5)
(X 1, q19) (X 1, q8) (Z 12, q19) (Z 12, q8)
(X 2, q0) (X 2, q3) (Z 1, q0) (Z 1, q3)
(X 2, q9) (X 2, q12) (Z 3, q9) (Z 3, q12)
(X 2, q3) (X 2, q21) (Z 7, q3) (Z 7, q21)
(X 2, q9) (X 2, q21) (Z 8, q9) (Z 8, q21)
(X 2, q0) (X 2, q12) (Z 12, q0) (Z 12, q12)
(X 3, q6) (X 3, q8) (Z 2, q6) (Z 2, q8)
(X 3, q16) (X 3, q13) (Z 4, q16) (Z 4, q13)
(X 3, q6) (X 3, q22) (Z 8, q6) (Z 8, q22)
(X 3, q22) (X 3, q13) (Z 9, q22) (Z 9, q13)
(X 3, q16) (X 3, q8) (Z 12, q16) (Z 12, q8)
(X 4, q10) (X 4, q12) (Z 3, q10) (Z 3, q12)
(X 4, q19) (X 4, q17) (Z 5, q19) (Z 5, q17)
(X 4, q10) (X 4, q23) (Z 9, q10) (Z 9, q23)
(X 4, q17) (X 4, q23) (Z 10, q17) (Z 10, q23)
(X 4, q19) (X 4, q12) (Z 12, q19) (Z 12, q12)
(X 5, q0) (X 5, q2) (Z 1, q0) (Z 1, q2)
(X 5, q16) (X 5, q14) (Z 4, q16) (Z 4, q14)
(X 5, q24) (X 5, q2) (Z 6, q24) (Z 6, q2)
(X 5, q14) (X 5, q24) (Z 10, q14) (Z 10, q24)
(X 5, q16) (X 5, q0) (Z 12, q16) (Z 12, q0)
(X 6, q1) (X 6, q3) (Z 1, q1) (Z 1, q3)
(X 6, q1) (X 6, q17) (Z 5, q1) (Z 5, q17)
(X 6, q26) (X 6, q3) (Z 7, q26) (Z 7, q3)
(X 6, q17) (X 6, q29) (Z 10, q17) (Z 10, q29)
(X 6, q26) (X 6, q29) (Z 11, q26) (Z 11, q29)

Table A.3: Pairs of qubits with stabilizers

A.4. TABLES

A

67

CNOT 1 CNOT 2 CNOT 3 CNOT 4
(X 7, q4) (X 7, q2) (Z 1, q4) (Z 1, q2)
(X 7, q6) (X 7, q4) (Z 2, q6) (Z 2, q4)
(X 7, q2) (X 7, q25) (Z 6, q2) (Z 6, q25)
(X 7, q27) (X 7, q6) (Z 8, q27) (Z 8, q6)
(X 7, q27) (X 7, q25) (Z 11, q27) (Z 11, q25)
(X 8, q5) (X 8, q7) (Z 2, q5) (Z 2, q7)
(X 8, q10) (X 8, q7) (Z 3, q10) (Z 3, q7)
(X 8, q26) (X 8, q5) (Z 7, q26) (Z 7, q5)
(X 8, q10) (X 8, q28) (Z 9, q10) (Z 9, q28)
(X 8, q26) (X 8, q28) (Z 11, q26) (Z 11, q28)
(X 9, q9) (X 9, q11) (Z 3, q9) (Z 3, q11)
(X 9, q14) (X 9, q11) (Z 4, q14) (Z 4, q11)
(X 9, q27) (X 9, q9) (Z 8, q27) (Z 8, q9)
(X 9, q14) (X 9, q29) (Z 10, q14) (Z 10, q29)
(X 9, q27) (X 9, q29) (Z 11, q27) (Z 11, q29)

(X 10, q13) (X 10, q15) (Z 4, q13) (Z 4, q15)
(X 10, q15) (X 10, q18) (Z 5, q15) (Z 5, q18)
(X 10, q25) (X 10, q18) (Z 6, q25) (Z 6, q18)
(X 10, q13) (X 10, q28) (Z 9, q13) (Z 9, q28)
(X 10, q28) (X 10, q25) (Z 11, q28) (Z 11, q25)
(X 11, q20) (X 11, q24) (Z 6, q20) (Z 6, q24)
(X 11, q20) (X 11, q21) (Z 7, q20) (Z 7, q21)
(X 11, q22) (X 11, q21) (Z 8, q22) (Z 8, q21)
(X 11, q22) (X 11, q23) (Z 9, q22) (Z 9, q23)
(X 11, q24) (X 11, q23) (Z 10, q24) (Z 10, q23)
(X 12, q1) (X 12, q4) (Z 1, q1) (Z 1, q4)
(X 12, q4) (X 12, q7) (Z 2, q4) (Z 2, q7)
(X 12, q7) (X 12, q11) (Z 3, q7) (Z 3, q11)
(X 12, q15) (X 12, q11) (Z 4, q15) (Z 4, q11)
(X 12, q1) (X 12, q15) (Z 5, q1) (Z 5, q15)

Table A.4: Pairs of qubits with stabilizers. Each row represents a pair.

A

68 A. APPENDIX

Stabilizer Qubits (Cycle)
Z 1 q0(1), q1(2), q2(3), q3(4), q4(5)
Z2 q4(1), q5(2), q6(3), q7(4), q8(5)
Z3 q7(1), q9(2), q10(3), q11(4), q12(5)
Z4 q11(1), q13(2), q14(3), q15(4), q16(5)
Z5 q15(1), q17(2), q18(3), q19(4), q1(5)
Z6 q18(1), q2(2), q20(3), q24(4), q25(5)
Z7 q20(1), q3(2), q5(3), q21(4), q26(5)
Z8 q21(1), q6(2), q9(3), q27(4), q22(5)
Z9 q22(1), q10(2), q13(3), q23(4), q28(5)

Z10 q23(1), q14(2), q29(3), q17(4), q24(5)
Z11 q29(1), q28(2), q27(5), q26(3), q25(4)
Z12 q12(1), q0(2), q19(5), q4(3), q16(4)
X1 q20(2), q8(1), q5(4), q19(3), q18(5)
X2 q0(3), q9(1), q12(2), q21(5), q6(4)
X3 q8(2), q6(1), q13(5), q16(3), q22(4)
X4 q12(3), q17(5), q10(4), q19(1), q23(2)
X5 q2(1), q0(4), q14(5), q24(3), q16(2)
X6 q1(3), q26(2), q29(4), q17(1), q3(5)
X7 q2(4), q6(5), q25(1), q27(3), q4(2)
X8 q5(1), q7(2), q26(4), q10(5), q28(3)
X9 q9(4), q27(2), q29(5), q14(1), q11(3)

X10 q13(1), q18(2), q25(3), q15(5), q28(4)
X11 q23(5), q24(1), q20(4), q21(2), q22(3)
X12 q1(1), q7(3), q11(5), q15(2), q4(4)

Table A.5: Qubit measurement per cycle for each ancilla qubit. Every qubit with cycle 1 does not form a pair
with the qubit with cycle 5.

A.4. TABLES

A

69

Timestep Measurement
0 (X3, q16), (X6, q26), (X10, q25), (X8, q5), (X1, q20), (X11, q21), (X5, q0), (X7, q27)

(X2, q9), (X4, q10), (X9, q29), (X12, q4)
1 (X3, q22), (X6, q29), (X10, q13), (X8, q28), (X1, q18), (X11, q20), (X5, q14), (X7, q2)

(X2, q21), (X4, q23), (X9, q27), (X12, q15)
2 (X3, q6), (X6, q3), (X10, q18), (X8, q26), (X1, q8), (X11, q22), (X5, q24), (X7, q25)

(X2, q0), (X4, q19), (X9, q14), (X12, q7)
3 (X3, q13), (X6, q1), (X10, q28), (X8, q10), (X1, q5), (X11, q24), (X5, q2), (X7, q6)

(X2, q12), (X4, q17), (X9, q9), (X12, q11)
4 (X3, q8), (X6, q17), (X10, q15), (X8, q7), (X1, q19), (X11, q23), (X5, q16), (X7, q4)

(X2, q3), (X4, q12), (X9, q11), (X12, q1)
5 (Z11, q28), (Z9, q10), (Z10, q29), (Z6, q18), (Z7, q20), (Z8, q9), (Z1, q3), (Z2, q5)

(Z3, q7), (Z4, q14), (Z5, q15), (Z12, q8)
6 (Z11, q29), (Z9, q22), (Z10, q23), (Z6, q25), (Z7, q26), (Z8, q21), (Z1, q1), (Z2, q6)

(Z3, q10), (Z4, q11), (Z5, q17), (Z12, q16)
7 (Z11, q26), (Z9, q13), (Z10, q14), (Z6, q24), (Z7, q5), (Z8, q27), (Z1, q2), (Z2, q7)

(Z3, q9), (Z4, q15), (Z5, q1), (Z12, q12)
8 (Z11, q27), (Z9, q23), (Z10, q24), (Z6, q2), (Z7, q3), (Z8, q6), (Z1, q0), (Z2, q4)

(Z3, q11), (Z4, q13), (Z5, q18), (Z12, q19)
9 (Z11, q25), (Z9, q28), (Z10, q17), (Z6, q20), (Z7, q21), (Z8, q22), (Z1, q4), (Z2, q8)

(Z3, q12), (Z4, q16), (Z5, q19), (Z12, q0)

Table A.6: Sequential measurement for the stellated dodecahedron. It is the same as seen in [1], except for the
12th Z and X stabilizers, which have been added in a way such that the schedule still is fault-tolerant.

Timestep Measurement
0 (Z11, q26), (X 3, q8), (X 7, q2), (X 5, q16), (X 1, q19), (Z 7, q5), (X 12, q15), (Z 1, q0)

(X4, q12), (Z 9, q10), (X 6, q3), (X 10, q25), (X 11, q23), (X 2, q9), (Z 2, q4), (X 9, q29)
(Z3, q11), (Z 8, q22), (Z 4, q13), (Z 6, q20), (X 8, q7), (Z 5, q17)

1 (Z4, q16), (Z 6, q2), (Z 3, q7), (Z 10, q23), (X 5, q0), (Z 8, q27), (X 3, q13), (X 4, q10)
(X1, q8), (X 2, q21), (X 12, q11), (Z 9, q28), (Z 11, q29), (X 10, q18), (X 7, q25), (X 11, q22)
(Z7, q20), (Z 5, q19), (X 9, q14), (X 6, q17), (Z 12, q12), (X 8, q5), (Z 1, q3)

2 (Z6, q24), (Z 2, q8), (X 10, q28), (X 1, q5), (X 3, q22), (X 2, q3), (Z 11, q25), (Z 7, q21)
(Z9, q23), (X 7, q4), (X 12, q1), (Z 1, q2), (X 9, q11), (Z 8, q6), (Z 3, q9), (Z 4, q15)
(X5, q14), (X 6, q26), (X 11, q20), (X 8, q10), (Z 12, q0), (Z 10, q17), (X 4, q19)

3 (X3, q6), (Z 9, q13), (Z 2, q7), (Z 4, q11), (X 11, q24), (X 9, q27), (Z 7, q3), (Z 11, q28)
(X10, q15), (Z 10, q14), (X 1, q20), (X 4, q17), (X 2, q0), (Z 12, q19), (Z 3, q10), (Z 5, q1)
(Z8, q9), (Z 6, q18), (X 6, q29), (X 5, q2), (X 12, q4)

4 (X1, q18), (Z 2, q6), (Z 8, q21), (X 2, q12), (X 5, q24), (X 8, q28), (X 7, q27), (X 3, q16)
(Z10, q29), (Z 9, q22), (Z 4, q14), (X 4, q23), (X 9, q9), (Z 7, q26), (X 10, q13), (Z 5, q15)
(Z6, q25), (X 6, q1), (X 12, q7), (Z 12, q8), (Z 1, q4)

5 (Z2, q5), (Z 1, q1), (X 11, q21), (Z 3, q12), (X 8, q26), (Z 10, q24), (Z 11, q27), (Z 12, q16)
(Z5, q18), (X 7, q6)

Table A.7: Best performing measurement schedule for the stellated dodecahedron

A

70 A. APPENDIX

Timestep Measurement
0 (Z12, q12), (X 2, q3), (X 3, q8), (X 7, q6), (Z 6, q2), (Z 7, q5), (Z 2, q7), (Z 10, q24)

(X1, q19), (Z 11, q26), (X 10, q13), (X 11, q21), (X 5, q0), (Z 5, q15), (X 9, q14), (Z 9, q22)
(X6, q17), (X 4, q10), (Z 1, q1), (Z 8, q9), (Z 3, q11), (Z 4, q16)

1 (Z2, q8), (Z 3, q9), (Z 1, q3), (X 11, q24), (Z 10, q14), (X 5, q16), (Z 6, q25), (X 7, q27)
(X6, q26), (Z 11, q28), (Z 5, q19), (X 4, q23), (Z 8, q6), (X 12, q11), (Z 9, q10), (X 10, q15)
(Z12, q0), (X 9, q29), (X 1, q18), (X 8, q7), (Z 4, q13)

2 (Z8, q21), (Z 11, q29), (Z 10, q23), (X 9, q9), (X 2, q0), (Z 4, q14), (X 5, q2), (Z 9, q13)
(X4, q12), (X 6, q1), (Z 1, q4), (X 7, q25), (Z 7, q26), (X 10, q28), (X 8, q10), (Z 2, q5)
(Z6, q18), (X 3, q6), (Z 3, q7), (X 12, q15), (Z 12, q19), (Z 5, q17), (X 1, q8), (X 11, q20)

3 (Z12, q8), (X 4, q17), (Z 1, q0), (X 9, q11), (Z 2, q6), (X 2, q21), (X 11, q22), (X 1, q5)
(Z3, q10), (Z 6, q24), (X 3, q16), (X 5, q14), (Z 5, q1), (X 7, q4), (Z 11, q25), (Z 4, q15)
(X8, q26), (Z 7, q20), (X 6, q3), (Z 9, q28), (X 12, q7), (Z 8, q27)

4 (X6, q29), (X 8, q28), (X 9, q27), (X 3, q13), (Z 7, q21), (X 12, q1), (Z 9, q23), (Z 8, q22)
(Z10, q17), (X 4, q19), (Z 3, q12), (X 1, q20), (Z 5, q18), (X 10, q25), (Z 1, q2), (Z 2, q4)
(X2, q9), (Z 4, q11), (X 5, q24), (Z 12, q16)

5 (Z10, q29), (Z 7, q3), (X 8, q5), (X 11, q23), (X 2, q12), (X 7, q2), (X 12, q4), (X 3, q22)
(Z6, q20), (X 10, q18), (Z 11, q27)

Table A.8: Worst performing measurement schedule for the stellated dodecahedron

Timestep Measurement
0 (Z2, q6), (X 12, q15), (X 9, q29), (X 6, q1), (Z 7, q20), (X 7, q25), (Z 6, q24), (Z 3, q9)

(X4, q10), (X 8, q5), (X 3, q13), (X 1, q8), (Z 1, q4), (X 10, q18), (X 2, q0), (Z 11, q26)
(Z8, q27), (X 11, q22), (Z 4, q14), (Z 5, q19), (Z 12, q16), (Z 10, q17), (Z 9, q28)

1 (Z11, q28), (Z 4, q15), (X 2, q9), (X 4, q12), (X 3, q16), (Z 3, q11), (X 8, q26), (Z 12, q0)
(X1, q19), (Z 1, q2), (X 11, q23), (Z 6, q18), (Z 9, q10), (X 7, q27), (Z 2, q4), (X 6, q3)
(Z10, q29), (Z 8, q6), (X 9, q14), (X 5, q24), (Z 7, q21)

2 (X12, q11), (X 9, q27), (Z 9, q13), (Z 2, q8), (Z 8, q22), (Z 11, q25), (X 10, q15), (X 7, q6)
(X8, q7), (Z 1, q1), (X 6, q26), (X 11, q24), (Z 3, q12), (X 2, q21), (Z 5, q18), (Z 7, q5)
(Z10, q23), (Z 4, q16), (X 5, q14), (X 4, q19), (Z 6, q20)

3 (X7, q2), (X 6, q17), (X 10, q25), (X 1, q20), (X 12, q4), (Z 12, q8), (X 3, q22), (Z 3, q7)
(Z10, q24), (Z 1, q0), (Z 7, q3), (Z 11, q29), (X 8, q28), (Z 8, q9), (X 5, q16), (Z 4, q11)
(Z5, q15), (X 2, q12), (X 4, q23), (X 11, q21)

4 (Z9, q23), (Z 8, q21), (Z 12, q19), (X 6, q29), (Z 6, q2), (Z 10, q14), (Z 4, q13), (X 1, q5)
(X11, q20), (X 9, q11), (X 12, q1), (X 2, q3), (X 8, q10), (Z 7, q26), (Z 11, q27), (X 7, q4)
(X3, q8), (X 5, q0), (X 10, q28), (Z 2, q7), (Z 5, q17)

5 (X9, q9), (X 1, q18), (X 3, q6), (X 4, q17), (Z 2, q5), (Z 6, q25), (Z 1, q3), (X 5, q2)
(Z12, q12), (Z 9, q22), (X 10, q13), (Z 3, q10), (X 12, q7), (Z 5, q1)

Table A.9: Non X fault-tolerant schedule for the stellated dodecahedron.

A.4. TABLES

A

71

Timestep Measurement
0 (Z1, q0), (Z 2, q2), (X 2, q1), (X 3, q5), (Z 3, q4), (X 4, q7)
1 (X2, q0), (X 3, q4), (X 4, q6), (Z 1, q3), (Z 2, q5), (Z 3, q7)
2 (X1, q2), (X 2, q4), (X 3, q8), (Z 2, q1), (Z 3, q3), (Z 4, q5)
3 (X1, q1), (X 2, q3), (X 3, q7), (Z 2, q4), (Z 3, q6), (Z 4, q8)

Table A.10: Measurement schedule 17-qubit Surface Code

Timestep Measurement
0 (Z6, q9), (X1, q11), (X2, q8), (X3, q6), (X5, q10), (Z2, q4), (X4, q1), (Z3, q7), (Z1, q2)
1 (Z6, q10), (X4, q0), (X5, q9), (X1, q3), (Z2, q5), (Z3, q6), (X2, q4), (Z4, q11), (Z5, q8), (X3, q1)
2 (X4, q6), (Z5, q1), (Z1, q0), (X1, q10), (Z6, q7), (Z2, q3), (X3, q5), (Z3, q8), (Z4, q9)
3 (X2, q0), (Z1, q1), (X5, q7), (X1, q2), (Z4, q10), (Z5, q6), (X4, q8)
4 (Z5, q0), (X5, q8), (X1, q7)
5 (Z6, q8), (X1, q9)

Table A.11: Measurement schedule for Tetrahemihexahedron

B
GITHUB

All of the relevant Python scripts and visualisations of the circuits can be found at the
GitHub page:

https://github.com/MarcSerraPeralta/ssd-scheduler/tree/dev

73

	Abstract
	Summary
	Quantum Error Correction
	Qubits
	Noise and Shor code
	Stabilizer code formalism
	Syndrome extraction circuits
	stabilizer measurements

	Distance-3 rotated surface code
	Small stellated dodecahedron
	Logical operators of the stellated dodecahedron
	Measuring the stabilizers of the SSD code

	Coloring the Small Stellated Dodecahedron
	Length 5 coloring
	On properness of syndrome extraction schedules
	X and Z propagation through CNOT

	Pairs of qubits for the SSD

	Algorithm for Finding Interleaved Schedules
	Restrictions on the group based on the number of edges colored
	0 edges have been colored
	1 edge has been colored
	2 edges have been colored
	3 or more edges have been colored

	Line graph conversion and coloring the edges
	Improving the algorithm
	Length 6 proper coloring
	Length 5 proper coloring?
	The creation of 6th color
	Reducing the graph
	Ordering for the SSD

	Applying the algorithm to other codes
	Distance-3 surface code
	Tetrahemihexahedron code
	Performance of improved algorithm

	Verification of Fault Tolerance
	Depolarizing noise model
	Error propagation
	Fault-tolerance of found syndrome extraction circuits

	Logical performance of the circuits
	Interleaved schedule for the SSD
	Sequential schedule for the SSD
	8 copies of the 17-qubit surface code

	Discussion and Further Ideas
	Conclusion
	Appendix
	Verification of results
	X and Z Pauli propagation
	Figures
	Tables

	GitHub

