<]
TUDelft

Delft University of Technology

Neuromorphic Autopilot for Drone Flight

Stroobants, S.

DOI
10.4233/uuid:4e8503ea-d09b-4554-b5a0-d6d68e2c6dfd

Publication date
2025

Document Version
Final published version

Citation (APA)
Stroobants, S. (2025). Neuromorphic Autopilot for Drone Flight. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:4e8503ea-d09b-4554-b5a0-d6d68e2c6dfd

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:4e8503ea-d09b-4554-b5a0-d6d68e2c6dfd
https://doi.org/10.4233/uuid:4e8503ea-d09b-4554-b5a0-d6d68e2c6dfd

Neuromorphic Autopilot for Drone
Flight

Neuromorphic Autopilot for Drone
Flight

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates
to be defended publicly on
Wednesday 3 December 2025 at 15:00 o’clock

by
Stein STROOBANTS

Master of Science in Systems and Control,
Delft University of Technology, The Netherlands,
born in Amsterdam, The Netherlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. G.C.H.E. de Croon, Delft University of Technology, promotor
Dr. ir. C. De Wagter, Delft University of Technology, copromotor

Independent members:

Prof. dr. L.L.A. Vermeersen, Delft University of Technology

Prof. dr.ir. T. Keviczky, Delft University of Technology

Prof. dr. Y. Sandamirskaya, Zirich University of Applied Sciences
dr. C.D. Schuman, University of Tennessee Knoxville

dr. G. Spigler, Tilburg University

Delft
e t University of
Technology

Keywords: Neuromorphic Computing, Artificial Neural Networks, Low-level
Control, Drones, Event-based Cameras, Spiking Neural Networks,
Supervised Learning, State Estimation

Printed by: Ipskamp Printing

Cover by: J.C. Steinhoff

Copyright © 2025 by S. Stroobants
ISBN 978-94-6384-870-1

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

The men of experiment are like the ant, they only collect and use; the reasoners
resemble spiders, who make cobwebs out of their own substance. But the bee
takes a middle course: it gathers its material from the flowers of the garden and
of the field, but transforms and digests it by a power of its own.

Sir Francis Bacon, Novum Organum

Every new discovery is just a reminder—we’re all small and stupid

Evelyn Wang, Everything Everywhere All at Once

Contents

Summary

1

2

6
7

Introduction

Attitude estimation using spiking networks
Learning Flight Attitude from Vision Alone
Control through fixed network connectivity
Threshold adaptation facilitates integration
Neuromorphic attitude estimation and control

Conclusion

Acknowledgements

Curriculum Vite

List of Publications

vii

1X

17
41
61
79
99
119
145
147

149

Summary

There exists a wide array of possible applications for small, safe,
cost-effective, and energy-efficient drones. However, their development is
hampered by limited payload capacity, which restricts both computational power
and flight time. Traditional control systems and sensor processing algorithms are
ill-suited for these resource-constrained platforms since they typically rely on
power-hungry processors and complex numerical methods.

This thesis investigates neuromorphic approaches to both state estimation and
control for small drones. Inspired by the energy-efficient and highly parallel
processing of biological neural systems, neuromorphic computing leverages
spiking neural networks (SNNs) that operate via discrete spikes, offering real-time,
low-power processing capabilities for micro aerial vehicles (MAVs). While
previous work has applied neuromorphic methods to high-level perception tasks,
their application to fundamental flight control - such as precise attitude
estimation and low-level control - remains largely unexplored.

Following a review of the current state of neuromorphic computing, the
research first explores its application to state estimation. A recurrent SNN is
designed to estimate the drone’s attitude from inertial measurement unit (IMU)
data, achieving performance comparable to conventional methods like the
complementary filter, despite employing a minimal network architecture. The
study then investigates event-based vision sensors by processing data from a
downward-facing event camera to estimate the attitude and angular rates,
enabling a quadrotor to achieve flight without inertial sensing - a pioneering
demonstration in the field.

Transitioning from estimation to control, the thesis uses neuromorphic
algorithms to perform low-level control tasks. A spiking PID controller is
developed using a fixed network architecture, demonstrating altitude control
using Intel’s Loihi neuromorphic processor. To address the challenge of precise
integration inherent in spiking systems, the Input-Weighted Threshold Adaptation
(IWTA) mechanism is introduced. This innovative approach allows for precise
integration of incoming signals and was used as the integral component of a

ix

X Summary

neuromorphic PID controller, mitigating steady-state errors and compensating for
sensor biases.

Ultimately, the work unifies estimation and control into a single end-to-end
neuromorphic system deployed on a tiny 27g Crazyflie quadrotor. Trained via
imitation learning on real flight data, the integrated network maps raw inertial
sensor inputs directly to motor commands at a control frequency of 500Hz,
achieving attitude tracking performance comparable to traditional controllers.

Overall, this thesis demonstrates that neuromorphic computing is a promising
approach for low-level state estimation and control in flying drones, while also
addressing the challenges of implementing such systems in real-world
environments with sensor biases and persistent disturbances.

xi

1

Introduction

\ s
A\

2 1. Introduction

The versatility of drones is unparalleled — they require minimal
infrastructure, can adapt to diverse and unstructured environments, and
perform an array of tasks on a single platform. Drones have demonstrated
the ability to address pressing challenges in fields as diverse as agriculture,
disaster response, infrastructure inspection, and environmental monitoring. For
instance, drones are used to survey crops with precision, inspect power lines
and railways, and even collect atmospheric data for climate studies (Mohsan
et al. [1]; Faical et al. [2]). At the heart of drone technology lies a vision to
enhance human society by extending human capabilities. Drones can reduce
risk by performing tasks in hazardous conditions, such as search-and-rescue
operations in disaster-stricken areas, monitoring active volcanoes, or delivering
medical supplies to remote locations (Lyu et al. [3]). Additionally, drones are
uniquely positioned to assume jobs that are monotonous, labor-intensive, or
undesirable, such as transporting medical supplies or large-scale inspection
tasks. For drones to become viable alternatives in these scenarios, however,
two key challenges must be addressed: autonomy and safety. Autonomous
drones must be capable of executing complex tasks without human intervention,
while safety requirements necessitate designs that prevent harm to both humans
and the environment.

1.1. The Case for Smaller Drones

Drones are often associated primarily with military applications, which can
obscure their vast potential for positive societal impact. In recent years, there
has been growing interest in the development of smaller drones, which offer
distinct advantages over their larger counterparts. Smaller drones are inherently
safer, as their low mass and small rotors reduce the risk of injury in the event
of a collision (Floreano et al. [4]. These characteristics make them suitable
for applications near humans, such as assisting in indoor tasks, surveying
sensitive environments, or exploring confined spaces. A potential use-case is
found in flapping-wing drones (de Croon [5], see Figure 1.1). Remarkably, these
bio-inspired robots can safely be deployed in greenhouses without the risk of
harm to farmers and crop’. Also, they are more energy efficient at smaller size
than drones with rotating propellors (Hawkes et al. [6]), and they can perform
agile maneuvers (Karasek et al. [7]).

'Flapper (www.flapper-drones.com) in a greenhouse:
www.youtube. com/watch?v=90Y8eRSLp7Q

www.flapper-drones.com
www.youtube.com/watch?v=90Y8eRSLp7Q

1.2. The Neuromorphic Paradigm 3

Economically, smaller drones are more cost-effective than their larger
counterparts. Their lower production costs allow for greater scalability, enabling
the deployment of swarms or fleets to perform collaborative tasks, such as
crop health monitoring or wildlife tracking (Zhou et al. [8]). The potential of
swarms of small-sized drones has already been demonstrated in use cases such
as search-and-rescue (McGuire et al. [9]) and gas detection (Duisterhof et al. [10],
see Figure 1.1). Furthermore, their affordability reduces the stakes associated
with failure, allowing dispensable drones to operate in high-risk scenarios that
might otherwise be prohibitive.

Figure 1.1: Small drones can operate in high-risk scenarios. A group of tiny quadrotors
(left) collaborating to find a gas source [10]. Flapping wing drones (right) can safely
operate around humans.

Despite these advantages, all small drones face several limitations. Their
small form factor restricts payload capacity, limiting the size and power of
sensors, processors, and batteries that can be integrated. This, in turn,
imposes constraints on their autonomy, as traditional computational approaches
and sensing technologies cannot be directly scaled down to match the size
and energy constraints of these platforms. To overcome these challenges, a
paradigm shift is required in how these drones process information and perform
tasks.

1.2. The Neuromorphic Paradigm

The increasing interest in autonomous small drones poses a fundamental
challenge: achieving real-time, adaptive control under the constraints of limited
computational resources, power efficiency, and environmental unpredictability.
Traditional control architectures rely on model-based approaches or machine
learning techniques that demand high-performance computation - often
impractical for embedded drone platforms. If we look at nature’s efficient

Ny

//'\

4 1. Introduction

designs, for instance in small flying insects such as honeybees, fruit flies,
and cicadas, we observe that biological systems outperform our engineered
solutions in energy expenditure, sensory processing, and robustness during flight.
Despite significant technological advances, we have yet to fully understand or
replicate these natural strategies. How can a bee perform complex behaviors
such as path-finding and communication in flight with far less power and weight
than an embedded system based on an STM32F4 microcontroller such as the
tiny Crazyflie, a 25 gram quadrotor designed by Bitcraze®? In this thesis, we
investigate methods to bridge this computational gap. Specifically, we study
neuromorphic computing, which moves away from synchronous and dense
processing in favor of biologically inspired asynchronous and sparse method
of information handling (Schuman et al. [11]; Davies et al. [12]). Nature has
evolved remarkably efficient solutions for processing information, and drawing
inspiration from these mechanisms may help achieve the efficiency required for
small autonomous drones.

At the core of this paradigm are spiking neural networks (SNNs), which
differ from conventional artificial neural networks by encoding information
through discrete spikes rather than continuous activations (Maass [13]). This
asynchronous, event-driven computation is particularly well suited to the
resource constraints of small drones, enabling efficient processing of sensory
data and significant reductions in energy consumption. In contrast to traditional
Al models that update continuously at fixed intervals, SNNs process information
only when significant changes occur, making them ideal for low-latency, real-time
control.

However, despite these advantages practical deployment remains a
considerable challenge. One of the key difficulties lies in the training of SNNs.
Standard artificial neural networks - including multilayer perceptrons (MLPs),
Recurrent Neural Networks (RNNs) and even the transformers that support
Large Language Models (LLMs) such as ChatGPT - mostly rely on
gradient-descent methods (such as backpropagation, or
backpropagation-through-time (BPTT) (Werbos [14]) for networks with temporal
dependencies) for training. Although their activation functions may exhibit
non-smooth behavior at certain points, they still enable a stable gradient flow
that facilitates effective optimization. In contrast, the spike function in an SNN
(often modeled as a Heaviside step function) has a zero gradient everywhere
except at its threshold, complicating the application of traditional
gradient-based techniques. To address this issue, researchers have developed

2n: . .
Bitcraze: www.bitcraze.io/

www.bitcraze.io/

1.2. The Neuromorphic Paradigm 5

Sensors Algorithms Hardware

w 'a N N\ [7
£ | Clock-driven perception Artificial neural networks - von-Neumann architecture
5 - continuous updates - general purpose
g' f() - no memory - synchronous design
s 2
o
®
c /\/\/\/\/L_\/
2
£ AN
o T
2 >
c T Lo \’\/\/\/\—\/‘
8 t

- AN
w N\ [N\ [2\
.E Event-driven perception Spiking neural networks - event-driven and distributed
g_ - sparse updates architecture
E | f()4 - implicit memory - task-optimized
8 — - asynchronous design
2
£ -
a /
° Ve
E
<]
° -
= >
[} t
z L J J J

Figure 1.2: Comparison between neuromorphic computing (bottom) and conventional
computing (top). The latter operate using continuous floating point values, while the
former use binary spikes to communicate. In this thesis, we have explored all three
components (sensors, algorithms & hardware) of neuromorphic computing for drones.

alternative strategies, such as surrogate gradient methods (Zenke et al.
[15]; Zenke et al. [16]) and biologically plausible local learning rules (e.g.
spike-timing-dependent plasticity, STDP; Caporale et al. [17], Diehl et al. [18]).
Nonetheless, training SNNs remains a difficult task (Tavanaei et al. [19]).
Moreover, the spike-based encoding of information poses a challenge for
regression tasks in particular. The majority of recent work on SNNs is focused
on solving slow, static classification tasks, often benchmarking performance on
image datasets like MNIST, CIFAR-10 or ImageNet (Nunes et al. [20]). However,
in robotic applications, these networks must handle dynamic, continuous
regression tasks, such as real-time perception and control for flying drones, as
explored in this thesis. Conventional neural networks represent continuous
values directly as floating point values, whereas SNNs must translate this
information into discrete events. Common encoding schemes - such as rate
coding, where information is represented by the frequency of spikes, temporal
coding, which leverages the precise timing of spikes and position coding that
uses specific (groups of) neurons to represent a value - each come with

6 1. Introduction

trade-offs in precision, latency, and energy efficiency. The choice of encoding
method can significantly impact the network’s ability to accurately perform
regression, adding another layer of complexity to the design and training of
SNNs (Schuman et al. [21]). Consequently, bridging the gap between these
promising theoretical models and their robust, scalable deployment in
real-world systems remains a central challenge.

1.2.1. Neuromorphic Hardware: Current Landscape and
Challenges

To fully harness the potential of neuromorphic computing, specialized hardware
is required to implement spiking computation efficiently. Conventional CPUs
and GPUs excel in dense, numerical processing but are not designed for the
sparse, event-driven nature of SNNs. Recent advancements in neuromorphic
hardware have sought to address this limitation, with several architectures
emerging as key contenders for real-time robotic control, such as 1. Intel’s Loihi:
One of the most advanced neuromorphic processors, Loihi incorporates 128
neuromorphic cores, enabling low-power, on-chip learning (Davies et al. [12]).
It has demonstrated promise in real-time robotics but remains limited in its
direct integration into flight control systems due to architectural constraints and
software compatibility issues. The chip was recently succeeded by the Loihi
2 (Orchard et al. [22]), which provides up to 10 times more neurons per chip,
enhanced programmability, and improved energy efficiency and speed, enabling
even more complex and efficient spiking neural network models, 2. SpiNNaker
(Spiking Neural Network Architecture): Designed for large-scale biological neural
simulations, SpiNNaker employs a massively parallel architecture capable of
modeling millions of spiking neurons (Furber et al. [23]). However, its power
consumption and hardware footprint make it less suitable for embedded aerial
platforms, 3. BrainScaleS: This mixed-signal neuromorphic system leverages
analog computation to efficiently simulate spiking activity (Schemmel et al
[24]). While it provides a biologically realistic model of neuromorphic
processing, its focus remains primarily on neuroscience research rather than
real-time embedded control. 4. Synsense’s Speck [25]: This system-on-chip
(SoC) combines an event-based vision sensor with a processor that can run
convolutional spiking neural networks. However, only simple Integrate-and-Fire
(IF) neurons are supported. From these, only the Kapoho Bay version of Intel’s
Loihi is a chip in a USB form factor that can be easily embedded onboard a flying
drone. Beyond computational processors, neuromorphic sensing technologies

1.2. The Neuromorphic Paradigm 7

are also advancing the field. Event-based vision sensors, such as dynamic
vision sensors (DVS), offer a promising alternative to conventional cameras by
operating asynchronously - detecting only changes in brightness rather than
capturing full image frames at fixed intervals (Gallego et al. [26]). This reduces
computational overhead and aligns well with neuromorphic principles, making
event-based sensing particularly valuable for high-speed drone navigation and
control.

1.2.2. Challenges in Neuromorphic Flight Control

However, several fundamental challenges must be addressed before widespread
adoption of neuromorphic systems on robots can be realized. One of the most
significant obstacles is the “reality gap” - the discrepancy between simulations
and real-world deployment, where sensor noise, aerodynamic disturbances,
and environmental uncertainty introduce additional complexities (Muratore et al.
[27]). Most existing state-of-the-art neuromorphic control models for drones
are either demonstrated in simulation (Qiu et al. [28]) or rely on simplifications
of the model that ensure stability (such as the seesaw structure in Stagsted
et al. [29]). Furthermore, integrating neuromorphic processors and controllers
into existing robotic architectures presents additional difficulties. Conventional
flight controllers operate using deterministic, time-stepped algorithms, whereas
neuromorphic systems function asynchronously and sparse. Achieving seamless
communication between neuromorphic estimators, control algorithms, and
low-level actuation systems remains an open problem. Additionally, the training
and optimization of SNNs for drone control remain largely underexplored,
particularly in tasks that require integrating sensor data across multiple
timescales. High-frequency inputs, such as IMU-based attitude estimation,
demand rapid, fine-grained processing, while lower-frequency tasks, like path
planning, rely on more abstract, long-term decision-making. Effectively training
SNNs to handle both remains an open challenge.

1.2.8. Future Directions for Neuromorphic Flight Control

A particularly promising avenue is the development of fully integrated
neuromorphic autopilots, where decision making, navigation, state estimation
and control are combined into a single (modular) spiking network, eliminating the
need for traditional microprocessors. Preliminary research has demonstrated
that event-based neuromorphic perception can be successfully applied to parts
of the control loop of a drone. Vitale et al. [30] have shown that event cameras

8 1. Introduction

can be directly connected to a neuromorphic chip to perform horizon tracking
on a bi-rotor with incredible speeds. Its application to low-level closed-loop
control onboard a flying robot remains an open research problem.

As neuromorphic technology and deep learning research progress, they may
enable drones to process sensory data more efficiently while also leveraging
advanced learning mechanisms to achieve responsiveness and adaptability akin
to biological intelligence.

1.3. Problem Statement and Research Questions

This thesis focuses on the application of neuromorphic systems to quadrotors.
As was described in the sections above, drone autonomy could benefit greatly
from having fully integrated neuromorphic solutions that act as autopilots. So
far in literature, there is little research towards using SNNs for regression tasks,
control and estimation in particular, and most was performed in simulation.
Therefore, our aim is to perform low-level control onboard a flying drone, which
culminates in the following research goal:

Research Goal

Design and train neuromorphic algorithms that perform low-level attitude
control

Low-level attitude control, as tackled in this thesis, consists of the commands
sent to the actuators that must simultaneously stabilize the drone and adhere
to higher-level attitude commands. These attitude commands might for instance
be produced by a navigation task, an obstacle avoidance algorithm kicking in or
simply commands send by a pilot via a remote. Before being able to control, it
is essential to have an accurate estimate of one’s state - those variables that
uniquely describe the future of a dynamical system given past behavior and
future inputs (Willems [31]). The most important states for flight control are
arguably those related to its attitude, how it is oriented in space. Due to the
effects of gravity, control of a drone becomes highly non-linear at larger angles.
In a fully neural pipeline, an accurate representation of the current state and an
internal model of how it will evolve are thus important.

1.3. Problem Statement and Research Questions 9

The first research question investigates how we can achieve this using
neuromorphic systems:

Research Question 1

How can we develop and train a neuromorphic system to estimate the
attitude of a flying drone?

We will look at this challenge from two perspectives; The first uses spiking
neurons to determine its attitude from Inertial-Measurement-Unit sensor data,
already exploring how to train SNNs using supervised learning for regression
tasks. The second focuses on neuromorphic hardware, especially event-based
cameras and how they can be used to determine a quadrotor’s attitude while in
flight.

After state estimation, we will shift our attention to the isolated case of
control. We assume full knowledge of the drone’s state and only look at how
spiking neurons can be employed to perform control. Attitude control poses
some significant issues, it has to deal with derivatives that contain very high
frequency information while at the same time dealing with integration, which has
very low frequency information. For supervised learning using BPTT, these are
already difficult tasks with regular recurrent networks, let alone SNNs.

Research Question 2

How can we design a network of spiking neurons to perform attitude
control of a flying drone?

In the scope of this question, design means both manually constructing and
learning controllers. The benefit of manually tweaking the parameters and
connections is that the potential advantages of neuromorphic systems are
obtained, while retaining the predictability and robustness of current techniques.
Current work on this topic lacks scalability and real-life demonstration. On
the other hand, reliably training controllers offers much flexibility and might
outperform state-of-the-art controllers (see Song et al. [32], for example). As
already mentioned, however, training SNNs is difficult.

10 1. Introduction

Finally, we address the integration challenge:

Research Question 3

How can we create an SNN to perform full attitude estimation and control
onboard?

This final question investigates how state estimation and control can be merged
into a single neuromorphic network, thereby realizing a fully integrated low-level
control pipeline.

1.4. Outline

Chapter 6
Chapters 4 & 5
Setpoint > Motor command
i Control *
7 N
State \ ,
;\/\J\;
Chapters 2 & 3
Estimation |« I

Sensor data

Figure 1.3: Outline of the thesis, with chapters 2 & 3 diving into Research Question 1,
chapters 4 & 5 into Research Question 2, and chapter 6 answering Research Question 3
by bringing everything together.

The remainder of this thesis is organized as follows. Chapter 2 explores
learning SNNs to perform attitude estimation from IMU data on a drone. This
directly delves into Research Question 1. We successfully demonstrate that
recurrent SNNs can estimate the attitude of a flying drone, learning from a
limited amount of data. The chapter investigates how these networks perform
this task and we also show that they can compete with state-of-the-art RNNs
in regression tasks. In Chapter 3 we look at using neuromorphic sensors to
perform attitude estimation, again looking at Research Question 1. We use an
event-based camera to estimate the attitude and angular velocity of a drone

1.4. Outline 11

during flight, and demonstrate it in the control loop of a drone with the entire
pipeline running onboard. Chapter 4 and 5 focus on Research Question 2,
both looking at different methods to perform control with SNNs. The former
investigates manually tuned networks that can perform PID control, while the
latter allows for training a network that behaves as a PID. A novel trainable
adaptation method is described in Chapter 5, where the threshold of a neuron
is adapted based on incoming signals. This way, a group of neurons was able
to accurately integrate errors over time. Also, Chapter 5 shows some initial
investigations in how neurons might perform differentiation. The final Research
Question is then tackled in Chapter 6, where we demonstrate a fully spiking
network that combines state estimation from IMU inputs with control. We show
that fixing certain parameters in the supervised learning pipeline is essential
when learning tasks like integrating errors. The performance is demonstrated
in real onboard flight on a tiny Crazyflie, attaining high performance with only
a limited number of neurons. To conclude, Chapter 7 answers the Research
Questions that were posed in the introduction and discusses its implications for
future work.

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

References

S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif and M. A. Khan.
‘Unmanned aerial vehicles (UAVs): Practical aspects, applications, open
challenges, security issues, and future trends’. In: Intelligent Service
Robotics 16.1 (2023), pp. 109-137.

B. S. Faigal, H. Freitas, P. H. Gomes, L. Y. Mano, G. Pessin, A. C. de
Carvalho, B. Krishnamachari and J. Ueyama. ‘An adaptive approach for
UAV-based pesticide spraying in dynamic environments’. In: Computers
and Electronics in Agriculture 138 (2017), pp. 210-223.

M. Lyu, Y. Zhao, C. Huang and H. Huang. ‘Unmanned aerial vehicles for
search and rescue: A survey’. In: Remote Sensing 15.13 (2023), p. 3266.
D. Floreano and R. J. Wood. ‘Science, technology and the future of small
autonomous drones’. In: Nature 521.7553 (2015), pp. 460-466.

G. de Croon. ‘Flapping wing drones show off their skills’. In: Science
Robotics 5.44 (2020), eabd0233.

E. W. Hawkes and D. Lentink. ‘Fruit fly scale robots can hover longer with
flapping wings than with spinning wings’. In: Journal of the Royal Society
Interface 13.123 (2016), p. 20160730.

M. Karasek, F. T. Muijres, C. De Wagter, B. D. Remes and G. C. De Croon.
‘A tailless aerial robotic flapper reveals that flies use torque coupling in
rapid banked turns’. In: Science 361.6407 (2018), pp. 1089-1094.

Y. Zhou, B. Rao and W. Wang. ‘UAV swarm intelligence: Recent advances
and future trends’. In: leee Access 8 (2020), pp. 183856-183878.

K. McGuire, C. De Wagter, K. Tuyls, H. Kappen and G. de Croon. ‘Minimal
navigation solution for a swarm of tiny flying robots to explore an
unknown environment’. In: Science Robotics 4.35 (2019), eaaw%710.

B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi and G. C. De Croon. ‘Sniffy
bug: A fully autonomous swarm of gas-seeking nano quadcopters in
cluttered environments’. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 9099-9106.

13

14

References

(1]

[12]

[13]
[14]

[18]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose and J. S. Plank. ‘A survey of neuromorphic computing and
neural networks in hardware’. In: arXiv preprint arXiv:1705.06963 (2017).
M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G.
Dimou, P. Joshi, N. Imam, S. Jain et al. ‘Loihi: A neuromorphic manycore
processor with on-chip learning’. In: leee Micro 38.1 (2018), pp. 82-99.
W. Maass. ‘Networks of spiking neurons: the third generation of neural
network models’. In: Neural Networks 10.9 (1997), pp. 1659-1671.

P. J. Werbos. ‘Backpropagation through time: what it does and how to do
it’. In: Proceedings of the IEEE 78.10 (1990), pp. 1550-1560.

F. Zenke and S. Ganguli. ‘SuperSpike: Supervised learning in multilayer
spiking neural networks’. In: Neural Computation 30 (6 June 2018),
pp. 1514-1541. ISSN: 1530888X. DOI: 10.1162/neco_a_01086.

F. Zenke and T. P. Vogels. ‘The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural networks’.
In: Neural Computation 33.4 (2021), pp. 899-925.

N. Caporale and Y. Dan. ‘Spike timing-dependent plasticity: a Hebbian
learning rule’. In: Annu. Rev. Neurosci. 31.1 (2008), pp. 25-46.

P. U. Diehl and M. Cook. ‘Unsupervised learning of digit recognition
using spike-timing-dependent plasticity’. In: Frontiers in computational
neuroscience 9 (2015), p. 99.

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier and A. Maida.
‘Deep learning in spiking neural networks’. In: Neural networks 111 (2019),
pp. 47-63.

J. D. Nunes, M. Carvalho, D. Carneiro and J. S. Cardoso. ‘Spiking neural
networks: A survey’. In: IEEE access 10 (2022), pp. 60738-60764.

C. Schuman, C. Rizzo, J. McDonald-Carmack, N. Skuda and J. Plank.
‘Evaluating encoding and decoding approaches for spiking neuromorphic
systems’. In: Proceedings of the international conference on neuromorphic
systems 2022. 2022, pp. 1-9.

G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha,
F. T. Sommer and M. Davies. ‘Efficient neuromorphic signal processing
with loihi 2'. In: 2021 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE. 2021, pp. 254-259.

S. B. Furber, F. Galluppi, S. Temple and L. A. Plana. ‘The spinnaker
project’. In: Proceedings of the IEEE 102.5 (2014), pp. 652-665.

https://doi.org/10.1162/neco_a_01086

References 15

(24]

(25]

(27]

(28]

[29]

J. Schemmel, D. Briderle, A. Griibl, M. Hock, K. Meier and S. Millner.
‘A wafer-scale neuromorphic hardware system for large-scale neural
modeling’. In: 2010 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE. 2010, pp. 1947-1950.

O. Richter, Y. Xing, M. De Marchi, C. Nielsen, M. Katsimpris, R. Cattaneo,
Y. Ren, Y. Hu, Q. Liu, S. Sheik et al. ‘Speck: A smart event-based vision
sensor with a low latency 327k neuron convolutional neuronal network
processing pipeline’. In: arXiv preprint arXiv:2304.06793 (2023).

G. Gallego, T. Delbriick, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al. ‘Event-based
vision: A survey’. In: [EEE transactions on pattern analysis and machine
intelligence 44.1 (2020), pp. 154-180.

F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger and J. Peters. ‘Robot
learning from randomized simulations: A review’. In: Frontiers in Robotics
and Al 9 (2022), p. 799893.

H. Qiu, M. Garratt, D. Howard and S. Anavatti. ‘Evolving spiking
neurocontrollers for UAVs’. In: 2020 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE. Canberra, ACT, Australia: |IEEE,
2020, pp. 1928-1935. DOI: 10.1109/SSCI47803.2020.9308275.

R. Stagsted, A. Vitale, J. Binz, A. Renner, L. B. Larsen and Y. Sandamirskaya.
‘Towards neuromorphic control: A spiking neural network based PID
controller for UAV'. In: Robotics: Science and Systems 2020, Virtual
Conference. RSS. Robotics: Science and Systems, June 2020. DOI:
10.15607/rss.2020.xvi.074.

A. Vitale, A. Renner, C. Nauer, D. Scaramuzza and Y. Sandamirskaya. ‘Event-
driven vision and control for UAVs on a neuromorphic chip’. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. Xi'an,
China: IEEE, 2021, pp. 103-109. DOI: 10.1109/ICRA48506.2021.9560881.
J. C. Willems. ‘Paradigms and puzzles in the theory of dynamical systems'.
In: IEEE Transactions on automatic control 36.3 (1991), pp. 259-294.

Y. Song, A. Romero, M. Miiller, V. Koltun and D. Scaramuzza.
‘Reaching the limit in autonomous racing: Optimal control versus
reinforcement learning’. In: Science Robotics 8.82 (2023), eadg1462. DOI:
10.1126/scirobotics.adgl462. URL: https://www.science.org/doi/
abs/10.1126/scirobotics.adgl462.

https://doi.org/10.1109/SSCI47803.2020.9308275
https://doi.org/10.15607/rss.2020.xvi.074
https://doi.org/10.1109/ICRA48506.2021.9560881
https://doi.org/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462

Attitude estimation using
spiking networks

In this work, we propose a spiking neural network (SNN) capable of estimating
the pitch and roll angles of a quadrotor in highly dynamic movements from
6-degree of freedom Inertial Measurement Unit (IMU) data. With only 150
neurons and a limited training dataset obtained using a quadrotor in a real world
setup, the network shows competitive results as compared to state-of-the-art,
non-neuromorphic attitude estimators.

The proposed architecture was successfully tested on the Loihi neuromorphic
processor on-board a quadrotor to estimate the attitude when flying. Our results
show the robustness of neuromorphic attitude estimation and pave the way
towards energy-efficient, fully autonomous control of quadrotors with dedicated
neuromorphic computing systems.

Parts of this chapter have been published in Neuromorphic Computing and Engineering [1]

17

18 2. Attitude estimation using spiking networks

2.1. Introduction

O ver the last two decades, efforts have been made to combine the
fields of Artificial Intelligence (Al) and Robotics with outstanding results [2].
Algorithms making use of Al techniques, such as deep neural networks, have been
proposed to achieve state estimation [3], object manipulation [4], localization [5]
and control [6-8]. For instance in [9], a quadrotor learns to fly by applying
Reinforcement Learning (RL) to a densely connected neural network. Aerial
vehicles are critical embedded systems, the constraints of which (e.g., size and
weight, battery autonomy, sensors, computing resources) hamper the
development and the performance of fully autonomous and robust on-board
control. In particular, Micro Air Vehicles (MAVs) are a class of aerial vehicles that
could strongly benefit from Al-powered solutions to handle their highly non-linear
dynamics, and allow for online adaptations to unpredictable changes occurring in
the real world (e.g., gusts of wind, sensor damage, communication failure, etc.).
Many of the complex tasks future MAVs will have to perform will be powered by
Al. One can think of deep neural networks that have to estimate optical flow [10]
and recognize objects [11], which can be used for vision-based autonomous
navigation in urban areas to deliver packages.

However, MAVs are now locked out from using large-scale neural networks
because of the great amount of energy required, as well as disproportionate need
for computing resources that only Graphics Processing Units (GPUs) can offer.
Additionally, standard Von Neumann architectures suffer from a relatively high
latency that restrict their use in extreme conditions such as drone racing and
aggressive flight maneuvers.

Alternatively to traditional Artificial Neural Networks (ANNs) where the
information is processed in a synchronous manner, Spiking Neural Networks
(SNNs) could represent the choice solution to bridge the gap between Al and
resource-restricted Robotics. In contrast to ANNs, SNNs encode the information
not by the intensity of the signal, but by a series of binary events, also called
spikes, and the relative time between them. Inspired by their biological
counterpart, spiking neurons accumulate incoming synaptic currents over time
and fire whenever their membrane potential exceeds a certain threshold. While a
wide range of neuron models have been proposed, the most commonly used are
the Integrate-and-Fire (IF) and Leaky-Integrate-and-Fire (LIF) [12]. The simpler
binary signals and sparse firing of SNNs hold the promise of orders of magnitude
more energy-efficient processing than ANNs [13].

The move towards SNNs requires a complete shift in the coding and processing

2.1. Introduction 19

of information that is not optimized for Von Neumann architectures. In this regard,
neuromorphic sensors and processors have been designed, arousing the
enthusiasm of roboticists to embed these new technologies onboard robots.
Examples of neuromorphic processors include HICANN [14], NeuroGrid [15],
IBM’s TrueNorth [16], APT’s SpiNNaker [17] which is part of the Human Brain
Project [18], and Intel’s Loihi [19]. In terms of neuromorphic sensing, most efforts
have been put to develop the neuromorphic equivalent to standard CMOS
cameras, namely, event-based cameras [20]. Neuromorphic tactile sensors have
also been proposed [21].

Tackling computationally expensive vision or navigation tasks with
neuromorphic sensing and processing will bring large energy and speed benefits.
However, to optimally reap the benefits of neuromorphic algorithms and
hardware, an end-to-end, fully neuromorphic solution needs to be designed.
Then a single neuromorphic processor could suffice. In literature, some of the
steps towards such a fully neuromorphic pipeline have been demonstrated.
In Vitale et al. [22], the authors introduced a neuromorphic PD controller that
outperforms state-of-the-art controllers in high-speed control thanks to the
synergy between the high update rates of the neuromorphic chip and the
event-camera. Also, autonomous thrust control of a flying quadrotor was
achieved by an SNN evolved in simulation, using optic flow to enact a
constant-divergence landing [23]. In [24], the authors show that SNNs are capable
of solving planning tasks, such as avoiding obstacles with a robotic arm.

This fully neuromorphic pipeline will also have to include “lower-level” tasks,
but these are not well studied until now. For example, autonomous control
onboard MAVs requires an accurate estimate of the states, such as attitude and
global lateral position and velocity, by combining sensor measurements. In this
article, we propose a neuromorphic solution for onboard attitude estimation of a
MAV using data from an inertial measurement unit (IMU), combining data from a
3-axes accelerometer and a 3-axes gyroscope. We compare the network to a
similarly sized and trained traditional Recurrent Neural Network (RNN) and
commonly used filters specific to this task. The proposed SNN is trained from
limited data obtained with a real MAV and can be employed as part of an
autonomous neuromorphic flight-controller pipeline for an MAV. Closest to our
work is the study in [25], which trains a traditional ANN with recurrency for
attitude estimation. Specifically, in [25] it is shown that a 2-layer Recurrent Neural
Network (RNN) can be trained to perform this task with outstanding results on
pre-gathered datasets. This network, however, is not spiking and has not been
applied in the control loop of MAVs in flight.

20 2. Attitude estimation using spiking networks

MAVs are usually equipped with an IMU and use the combination of the angular
velocities and the linear accelerations to estimate the current attitude. Angular
velocities show the rate of change, but induce integration errors over longer
time-windows while the linear acceleration shows the gravity vector over longer
stretches of time. The output pitch and roll estimates are necessary for the drone
to be able to control the position in the x-y plane by performing attitude control.

Our contributions are threefold. First, we propose an SNN architecture to
perform state estimation for dynamic systems such as quadrotors with limited
data obtained with a physical quadrotor and ground-truth. Then, we demonstrate
that the proposed neuromorphic state estimator exhibits competitive
performance when compared to widely used, non-neuromorphic solutions (i.e.,
Madgwick filter, Mahony filter, and complementary filter) and to a traditional RNN.
Lastly, we successfully test our solution onboard a quadrotor equipped with the
Loihi neuromorphic chip, thus paving the way for a fully neuromorphic
control-loop for quadrotors.

2.2. Methods
2.2.1. Spiking network definition

This section introduces the attitude estimation spiking neural network, called Att-
SNN. The different components that make up the network are shown in Figure 2.1.

Spiking neuron model

In this work, we use the Leaky-Integrate-and-Fire (LIF) neuron as the core of our
SNN. Widely used in the literature, the LIF model is available in most SNN simulators
a neuromorphic hardware, including the Loihi used for this study [19]. The discrete-
time difference equations governing the LIF neuron are given as follows:

Uq;(t + 1) = Timeml)i(t) + ’L,(t) (21)
Bi(t+ 1) = 70 () + Y wijs;(t) (2.2)

where v;(t) is the membrane potential at time ¢, 7™™ € [0,1] and 7,”" € [0,1] the
membrane and synaptic time constants, i(t) the synaptic current at time ¢, w;; the
synaptic weight between neurons i and j, and s; a binary value representing either
a spike or no spike coming from the pre-synaptic neuron j. To determine whether
a neuron emits a spike, the membrane potential is reduced with the neurons firing
threshold 6" and passed through the Heaviside step-function to determine the

2.2. Methods 21

IMU Input Layer € R® Encoding Layer € R®® Hidden Layer € R Output Layer € R?
S ol B N
\/ww S e f’“\/’“\ e\
W —= - = - [N
-~ - = o - \/
S B e
) Ppitch

O Roll

Figure 2.1: Topology of the attitude estimation network Att-SNN showing signals transported
between layers. In the encoding layer, the normalized IMU data is transformed into spikes.
The next layer is a fully connected recurrent layer that sends spikes to the Leaky-Integrator
(L) output layer, converting spikes back to attitude estimates.

output of the neuron:

0, v;(t)—0" <0
s(t) = Hioi(t) —gimy = { & 0700 = 23)
1, wvi(t) -6 >0
When the Heaviside-function resolves to 1 and the neuron emits a spike, the
membrane potential v;(t) is reset to zero.

Data encoding

Standard, off-the-shelf IMUs are not neuromorphic; the output data is formatted
as floating point values and streamed synchronously. As a result, the measured
angular rates and linear accelerations must be translated into spikes so that they
can be processed by the SNN.

Data encoding is a complex task. Spike coding algorithms can be divided into

22 2. Attitude estimation using spiking networks

three categories. Population coding uses set of distinct neurons to encode (or
decode) the signal by emitting a spike whenever the input signal falls within the
range distribution of one (or several) neuron. It has been successfully applied
in [23, 26]. Temporal coding algorithms encode the information with high timing
precision, by emitting a spike whenever the variation of the input signal exceeds a
threshold. Rate coding, which was used in [24], encodes the information into the
the firing frequency of a population of neurons.

In this work, the floating point values returned by the 6-DOF IMU are encoded
into spikes by means of a spiking layer densely connected to the 6 outputs of the
IMU sensor (Fig. 2.1). The synaptic weights, as well as the dynamics of the neurons
in this encoding layer were learned offline. Both the time-constants were trained for
each neuron seperately, resulting in 2N parameters, with IV the number of neurons
in the encoding layer. Before passing the IMU data to the network, a normalization
process is applied to ensure faster learning and convergence during training. This
normalization is achieved through min-max, mapping the input data to a range of
[—1, 1], according to the formula hereafter. The values of xmi, and zmax Were chosen
empirically to match the full range of possible inputs.

x(t) — Zmin

Tmax — Lmin

Lnorm (t) =2 -1 (2.4)

Decoding the global attitude

Decoding of the spiking activity to an estimate of the attitude in radians is
performed via a non-spiking decoding layer (Fig. 2.1), composed of two
Leaky-Integrate (LI) neurons. In this case, the membrane potential v;(t) in
Equation 2.1 of the neuron is directly used as the output of the layer, providing a
stateful decimal value representing the current pitch or roll attitude. In contrast
to the input-data, no further normalization is required for the attitude values. The
pitch and roll angles in the training data, expressed in radians, are already
distributed around a mean of zero with standard deviation of 0.25. Theoretically,
the limits go from —x to 7, but since we are targeting a quadrotor in a normal
flight regime around hover, these values will not be reached. Lastly, since the
pitch and roll axes of the MAV are symmetric (this is true in the case of a
standard, symmetric quadrotor), the neuron parameters of the decoding layer are
set equal during training. This results in training two parameters for this layer.

2.2. Methods 23

2.2.2. Training
Training setup

The proposed Att-SNN was trained both in simulation, using datasets created with
the RotorS simulator [27] (Fig. 2.2), and with data collected with a quadrotor flying
in the real world' (Fig. 2.2). The quadrotor is equipped with a Pixhawk 4 Mini flight
controller, which combines the measurement of two separate IMU’s for
redundancy. The IMU data are logged at 200Hz. For these experiments, the
ground truth was provided by a multi-camera motion capture system (OptiTrack).
This system provides sub-degree accuracy attitude estimates at the same rate as
the combined IMU measurements from the quadrotor. An overview of the
distribution of the IMU and OptiTrack data collected both in simulation and in the
real world is provided in Figure 2.3. In total, 35 datasets of 100 seconds were
gathered in simulation and 11 datasets of 100 seconds in our real-world tests.
This amounts to a total of 77 minutes of flight time. Both the simulation and
real-world data sets have been gathered in a way as to represent roll and pitch
angles between hover and swift flight, reaching relatively large angles up to 45
degrees. This covers a normal flight regime. An important challenge in IMU-based
attitude estimation is that the gyros and accelerometers have biases that can
change over time. For instance, accelerometers usually suffer from a turn-on bias
which shows as a constant offset of the measured acceleration. This bias is
especially visible in the z-axis of the PX4 accelerometer. It is also worth noting
that there is also a difference in the range of values in the gyro., which shows
that the quadrotor in simulation was rotating more around the z-axis than in the
real-world experiments. Since this rotation is only affecting the yaw angles
directly, the influence on the pitch and roll estimates is limited. The datasets were
split up in 70% train and 20% validation, and 10% test. The training datasets were
split into sequences of 10 seconds containing 2000 time steps. Furthermore, the
simulated data was augmented by adjusting the accelerometer turn-on bias and
both the accelerometer and gyroscope noise densities to reduce the reality gap.
The noise characteristics were determined using the steady-state error of the
real world data set.

The Att-SNN was implemented using the Norse [28] python library, based on
PyTorch. The Adam optimizer [29] was used with a learning rate of 0.005,
combined with the k-step ahead, 1 step back Lookahead [30] optimizer to speed
up learning. For the Lookahead optimizer, the value of o was set at 0.5 and k at 6.

'The dataset can be found in https://doi.org/10.4121/20464830.v1

https://doi.org/10.4121/20464830.v1

24 2. Attitude estimation using spiking networks

All code to reproduce the results can be found in °.

Since the Heaviside function used in the neuron dynamics (Eq. 2.1) is
non-differentiable, a surrogate-gradient (SG) was chosen to enable
backpropagation through time (BPTT). A summary of SGs can be found in [31]. In
this study, we used the SuperSpike [32] with a width of 20 as it is a suitable option
for supervised BPTT and is robust to changes in the input paradigm as is the case
with our current-based input [33].

The error between the output and the target was characterized by the
Mean-Squared-Error (MSE) loss function where both the pitch- and roll-error
were weighted evenly. The MSE for a sequence S is calculated as in Equation 2.5,
with 6, and Git the estimated and ground-truth pitch angles at timestep &, and b
and zj)it the estimated and ground-truth roll angles.

N=len(S) ,» _pgty2 2 gtya
MSEs = Y O —) J;(¢k %) (2.5)
k=0

The Att-SNN is trained with 100 neurons in the encoding layer and 100 in the
hidden layer. The thresholds were fixed at 0.5 for all neurons. This results in 600
weights and 200 neuron parameters for the encoding layer, 10.000 + 10.000
weights and 200 neuron parameters for the hidden layer and 200 weights and 2
neuron parameters for the output layer. In total, this adds up to training of 20.800
weights and 402 neuron parameters. Every epoch, 15 batches of 40 sequences
are randomly selected from all training data (including simulated and real-world
data) for a training iteration, and afterwards the error is calculated for all
validation sets. The training is stopped by a criterion based on a moving average
of the error on the validation dataset over the last 20 epochs. If the
moving-average of the error is higher than 110% of the lowest average validation
loss so far, training is aborted. Besides, if the lowest validation loss so far did not
change for at least 50 epochs, training is also aborted.

2.2.3. Implementation on neuromorphic hardware

To fully demonstrate the potential of SNNs for state estimation in MAV
applications, the proposed Att-SNN architecture has been implemented on Intel’s
Loihi processor [19]. The constraints of SNN design imposed by the Loihi requires
to adapt the SNN parameters, such as the synaptic weights and the neurons’
parameters. A naive solution to this would be to quantize the parameters after

training, but this would inevitably result in a loss in accuracy, and in the long run

Code is available in https://github.com/tudelft/neuromorphic_attitude_estimation

https://github.com/tudelft/neuromorphic_attitude_estimation

2.2. Methods 25

Figure 2.2: Quadrotors used in this research. The AscTec Hummingbird flying in open-source
RotorS quadrotor simulator [27], used to gather supplementary simulation data for training
on the left. The quadrotor used to gather real-world data and for the evaluation of our SNN
on the neuromorphic processor Loihi on the right.

could affect the overall performance of the state estimation (and control).
Alternatively, we have included the quantization in the training process by
replacing the full-resolution weights with their quantized equivalents before the
forward pass while propagating the gradients. By doing so, we ensure that the
network converges to a solution that is fully compatible with the specific features
of the Loihi chip. The quantization function is defined by:

Pq = I"OUﬂd(p/Aq)A% Pq € [Qmina Qmax} (2.6)

with p, the quantized version of parameter p, Aq the quantization step-size,
round(.) rounding of a floating point value to the closest integer and [gmin, gmax]
the quantization range. The threshold 6y, was fixed during training, while all other
parameters were not. The quantization ranges and step sizes used in this study
are:

step size: ;2=

- synaptic weights w;;, range: [-1,1 556

1
— T%]’

- synaptic decay Tgyn i, range: [0, 1], step size: s

_1

- membrane decay Tmem,, range [0, 1], step size: 54z

During implementation on the neuromorphic chip, the parameters can be
multiplied by the quantization range, resulting in integers compatible with the
constraints set by the neuromorphic processor.

26 2. Attitude estimation using spiking networks

0.04 e 0.04 I rotors
0.02 A 0.02 A
0.00 - 0.00 -
-50 =25 0 25 50 -50 =25 0 25 50
pitch [deg] roll [deg]
I Rotors I Rotors Il RotorS
. PX4 . PX4 PX4
5.0 5.0 10 4
2.5 A 2.5 A
0.0 __# 0'0 _* 0 __*_
-1 0 1 -1 0 1 -0.5 0.0 0.5
normalized gyro x normalized gyro y normalized gyro z
40 A B RotorS 40 1 I Rotors 10 - I RotorS
PX4 PX4 Pxa
20 - l 20 A l 5 4
0 T T O T T 0 T
—0.25 0.00 0.2 —0.25 0.00 0.2 0.0 0.5 1.0
normalized acc x normalized acc y normalized acc z

Figure 2.3: Distribution of the input-output data used for training the network. The top two
histograms depict the output angle variables. The inputs (lower six histograms) show sensor-
readings after applying normalization.

2.2.4. Models for comparison

The performance of the Att-SNN neuromorphic state estimator is compared to
the most widely-used non-neuromorphic algorithms: (i) the Madgwick filter [34], (i)
the Mahony filter [35], the Extended Kalman filter (EKF) [36, 37], and (iv) the
complementary filter [38]. These filters all adequately estimate the pitch and roll
angles of a quadrotor in flight. Since only data from a 6-DOF IMU is used, these
two are the only observable states out of a full non-linear model of a quadrotor.
For fairness of comparison, we implement a minimalistic EKF that uses the IMU
together with a quaternion-based random walk model to estimate pitch and roll.
Typically, EKFs are more extensive, as they can estimate more states such as
velocity or position, integrate other sensors like GPS, and can employ more
detailed motion models using known control inputs. However, such extensions
are out of the scope of the current study.

These filters all require some fine-tuning of their parameters with respect to the
dynamic motions captured in the datasets, the noise level measured in the IMU,

2.2. Methods 27

and a prior knowledge of the initial state. Tuning these parameters by hand is
quite common, but this may have resulted in unfair comparison with a neural
network that is automatically and thoroughly trained with dedicated algorithms
on the training dataset consisting of simulation and PX4 data. As a result, the
parameters of all filters were automatically determined for the same datasets
using the modified Particle Swarm Optimization (PSO) algorithm as described
in [39]. The optimization values were chosen as: w = 0.8, ¢; = 0.15 and ¢z = 0.05
and a total of 100 particles was used. The cost function was defined as the MSE
per timestamp, averaged over all training sequences plus a high cost of 10 for
parameters below 0 or above 1 to constrain the parameter to the corresponding
ranges. Using the PSO, the optimal parameters were estimated for both the
simulation and PX4 datasets, assuming that the filters had no knowledge of the
initial angle. The impact of this assumption will be further analyzed in
Section 2.3.1.

Additionally, we propose a traditional recurrent neural network, called Att-RNN
which is composed of gated recurrent units (GRUs). This network has a very
similar structure to our proposed Att-SNN, allowing to evaluate the difference in
performance caused by the introduction of the LIF model’s neural dynamics and
spiking.

The complementary filter

The complementary filter is a widely used filter for attitude estimation due to its
simplicity. The output of the filter is a weighted average between the angle 63
measured by the gravity vector measured with the accelerometer (when the
assumption of weak-acceleration relative to gravity holds), and the previous
estimated angle 01 propagated with the angular velocity w}%yr measured by the
gyroscopes. For a single axis this is defined as follows:

Ok = (01 + WP AL) + (1 — 7)62° (2.7)

Where v is the weighting factor, balancing between the accelerometer that
provides a solid baseline on a long time horizon and the gyroscope that is
accurate for updating the angle on short time-scale, but suffers from integration
errors on a longer scale.

The Mahony filter

Gyroscope measurements from low-cost IMUs can be biased, and the Mahony
filter is an extension of the complementary filter that counters this [35]. By adding

28 2. Attitude estimation using spiking networks

an integral term Ek to the filter, based on the error e, between the angle
measured by the accelerometer and the predicted angle, the gyroscope biases
can be effectively canceled without increasing the computationally cost too
much. The filter, in discrete quaternion form, can be written as:

. 1. .
Gk = qr—1+ (5%_1 ® p{wd" — by + kpey}) At (2.8)
b, = by — krepAt (2.9)

Where p{z} = [0 2|7 is a pure quaternion that relates to the rotation velocity of
the attitude and p ® ¢ is the Hamilton product between quaternion p and ¢. This
algorithm can be optimized for certain motions or sensors by adjusting the
proportional (kp) and integral (k) gain.

The Madgwick filter

Madgwick [34] defines attitude estimation as a minimization problem, solved with
a gradient descent algorithm. While the gyroscope is still used for integrating the
angle, the error with respect to measured gravity is represented as a cost function
f(q) describing the difference between the angle measured with the accelerometer
and the gravity vector rotated to the body-frame. This cost-function is minimized
by taking a single gradient descent step. This results in the following update step
in discrete quaternion form:

39ac(f(Gk-1))" f(dr—1)
1 $3ac(f(dk-1))T f(Gr—1)||

Where Jac(f(gx—1)) is the Jacobian matrix of the cost-function evaluated at g1
and (3 the optimization parameter. Although this filter can be used for 6-DOF IMU
data, it is typically used on 9-DOF IMUs that also have a tri-axial magnetometer.
The output quaternions of both the Madgwick and Mahony filters will be
transformed to Euler angles for comparison with the other methods.

R R 1,
Gk = Qr—1+ (5611@71 ® p{wd} — B JAt (2.10)

The Extended Kalman filter

The Extended Kalman Filter (EKF) is one of the most-used fusion algorithms for
non-linear systems and can also be applied to attitude estimation with a 6-DOF
IMU [40]. It uses a model of the system to predict the state at the next time-step
and corrects this prediction with measurements using a prediction of the estimate
covariance. This implementation uses the angular rate measured by the
gyroscope in the prediction step and the angle measured from the accelerometer
measurements in the correction step. Since noise on the dynamic model and

2.3. Results 29

sensor measurements is defined by covariance matrices, the balance between
the gyroscope and accelerometer can be optimized by changing these matrices.

A non-neuromorphic neural network

Itis not common to use ANNs for attitude estimation, although there is an increasing
interest in using ANNs for low-level estimation and control tasks. Here, we also
compare our neuromorphic algorithm with a more traditional neural network. As a
comparison to the Att-SNN, it was decided to implement a recurrent neural network
consisting of two layers with GRUs similar to the one proposed in [25]. However, in
our implementation the network has Euler-angles in radians as outputs, instead of
quaternions to keep it comparable to our Att-SNN, during training and evaluation.
The recurrency and memory in the GRUs allow the network to store and keep track
of the states in the network. This is something a regular feedforward ANN would
not be able to do, but that is important for integrating and filtering information over
time for state estimation. The network has the same number of neurons per layer
as the Att-SNN and is trained using the same optimizer and training strategy. The
differences lie in (i) the Att-ANN uses GRUs, while the Att-SNN does not, (ii) the neural
dynamics, where the Att-ANN sets its state directly based on all feedforward and
recurrent connections, and Att-SNN implements the LIF neuron model.

2.3. Results

In the following, we investigate the performance of the proposed Att-SNN. We
first compare the accuracy of the Att-SNN with state-of-the-art,
non-neuromorphic attitude estimation filters commonly in control of quadrotors.
The spike activity of the Att-SNN is then evaluated with respect to the maneuvers
performed by the quadrotor to better characterize the dynamic response of the
Att-SNN. Lastly, the neuromorphic state estimator is implemented within the
control loop to demonstrate the stability and robustness over time while
unknown disturbances are applied to the MAV.

2.3.1. Performance analysis

First, we look at the performance of the neural network methods during training,
where we compare three variants of the Att-SNN with the Att-RNN (Fig. 2.4). The
Att-SNN and the Att-RNN models differ in two aspects. The training of the Att-RNN
model results in a more important decrease of the loss function (MSE, Eq. 2.5)
than for the neuromorphic model. Moreover, the validation loss of the Att-SNN

30 2. Attitude estimation using spiking networks

model reveals a higher stochasticity (standard deviation of loss minus the moving
average of 1.7 x 1073 vs. 0.9 x 10~3) than that of the Att-RNN model, which can be
explained by the non-differentiability of the Heaviside function used in the LIF
model (Eq. 2.3). Both networks suffer to some extent from overfitting, since the
loss on the training data is lower than that on validation data. By using data with
a wide range of dynamic motions and early-stopping during training,
generalization can be improved. The influence of the dataset on the ability of the
networks to generalize over data samples never seen during training can be
identified by performing a k-fold test. We have split up all PX4 and simulation
datasets in 70% train, 20% validation and 10% test data in 5 different folds. We
have also included two folds where the network trained on simulation is tested on
the PX4 data and vice versa. These are depicted as sim and PX4. The mean error
and standard deviation (SD) (Table 2.1) for these folds on the corresponding test
sets show that the model is resilient to the motions observed in the training data,
and new motions in the test set. The error on the test dataset for the second fold
is even lower than on the training sets. This can be caused by less dynamic
maneuvers in the datasets that were kept apart for this specific fold. It also
shows that training on a single-source dataset results in extreme generalization
errors, indicating the importance of mixed-data.

Train error Test error

Fold | Mean SD | Mean SD
2.09 | 0.32 343 | 0.44
2.21 | 0.50 1.78 | 0.32
1.82 | 0.25 2.42 | 0.39
2.05 | 0.38 2.65 | 0.48
2.18 | 0.51 2.99 | 047
sim 1.97 | 0.23 4.86 | 0.80
PX4 2.20 | 0.41 5.40 | 0.65

OO N WON =

Table 2.1: Results of the k-fold cross-validation showing the mean and standard deviation
on the test- and training datasets.

To allow the comparison of performance between all filters, the average angle
error between the filter and the ground truth was determined for 40 sequences
spanning 50 seconds of real-world flight.

In Figure 2.5, we show the overall results of the two neural-based models
(Att-SNN and Att-RNN) along with the four filters (Madgwick, Mahony,

2.3. Results 31

Att-SNN Att-SNN (only weights trained) Att-SNN (Loihi quantization) Att-RNN

— Train — Train — Train . — Train
Validation Validation | Validation 1 Validation

| |

| | .

W efy \ \
R Al Bk St S ATAV T

MSE

Ak, :
da | 0 STUST IR BT g LH”\'

T LT,
Al A

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
epoch epoch epach epoch

Figure 2.4: Training loss curve of the Att-SNN vs. the similarly trained Att-RNN with gated
recurrent units (GRUs) on training and validation data.

Complementary, and EKF) with respect to the training PX4 datasets and the
validation PX4 datasets. Overall quantitative results are further detailed in
Table 2.2. The performance of the standard filters has been measured both with
and without prior knowledge of the initial state. The error distribution of the
Att-SNN model shows that the network is able to estimate the attitude of the
quadrotor with an error comparable to the common filters. The neural-based
methods perform better than the standard filters on the training set, when those
filters do not have access to the initial state of the quadrotor (i.e., ! in the table).
On the test set, all four filters perform slightly worse as compared to the results
obtained with the training set, showing that the test dataset poses certain
challenges that are more difficult for the traditional filters to handle. As expected,
the performance of the neural based solutions deteriorates slightly as they now
face unknown data. This overfitting may be caused by unknown motions or noise
characteristics in the test set and could be reduced by increasing the training
data. Adding data from different quadrotors that have different dynamic
properties and IMUs with different noise characteristics will increase the
generalization properties of the network. However, the average error still
remains stable, below 2.5° which is in the same range as the errors of the
common filters. In Figure 2.6, we further demonstrate the impact of the initial
attitude on the response of the filters. Due to the symmetry of the quadrotor
along the = and y axes, only the pitch results are presented. Whereas both the
Att-SNN and Att-RNN are able to converge to the real angle in less than a second
(200 samples), the three conventional filters have not fully converged after 7
seconds. Since the filters all balance between the accuracy on short time-scales
given by the gyroscopes and the long time-scale reference of the accelerometer,
a large offset at ¢ =0 can result in a long convergence. This balance is forged by
the optimization parameters that were found with the PSO, which remain equal
over the course of a sequence. These results suggest that the neural networks

32 2. Attitude estimation using spiking networks

have learned a way to perform this balance in an adaptive way, trusting the angle
6% more when they largely contradict the current 0, but rely less on these
estimates when the assumption of weak-acceleration does not hold. An
implementation of such an adaptive mechanism for attitude estimation with a
9-dof IMU with an adaptive EKF was shown in [41]. To support this hypothesis, the
plain complementary filter is adjusted by an adaptive law, trusting more on 67 if
the gyroscopes show low angular velocity. If |w#"|| <0.1, the complementary
gain ~ is increased by the difference between the estimated angle 6, and the
angle 07°¢ times a gain k, chosen as 0.01. The result, as seen in Fig. 2.6, is that the
complementary filter recovers faster from an initial offset. Although this does
improve the convergence, it is still slower than the neural-based solutions, and is
less responsive during aggressive maneuvers. However, it might give some insight
in the way the neural-based solutions handle this.

Training set Test set

Median | Mean SD | Median | Mean SD
Att-SNN (this work)' 1.90 1.56 | 0.24 2.79 2.79 | 0.37
Att-RNN? 1.53 1.91 | 0.28 2.45 245 | 0.35
Madgwick 2.79 2.81 | 0.36 2.89 2.92 | 0.41
Madgwick” 3.03 3.22 | 0.83 3.06 3.34 | 1.11
Mahony 2.56 2.57 | 0.36 2.53 2.54 | 0.33
Mahony?® 2.69 2.85 | 0.74 2.59 2.84 | 0.89
Complementary 242 246 | 0.42 2.13 213 | 0.35
Complementary? 260 | 298 | 1.24 236 | 271|136
EKF 2.67 2.75 | 0.52 2.36 240 | 0.44
EKF? 2.65 2.71 | 0.51 2.49 2.64 | 1.00

Table 2.2: Median, Mean, and Standard Deviation (SD) for the Training and Test sets.

2.3.2. Spiking activity

After training the Att-SNN model, we measured the overall spiking activity over the
datasets of both the encoding and the hidden layers to evaluate the sparsity of
the network. A histogram of the average spiking activity per neuron is given in
Figure 2.7. Results show that, out of all neurons, 27% of neurons in the encoding
layer and 10% of neurons in the recurrent layer do not spike at all, and that an

' This work.
2 No knowledge of initial state.

2.3. Results 33

Attitude error - train data Attitude error - px4 test data
5 5 ! |
4 4 ‘
3 | 3 “ l
2 i 2 ‘

4

Figure 2.5: Error distribution of the Att-SNN versus other filters for data obtained in flight for
training data (left) and test data (right). The diagonally hatched plots show the error when
the initial angle is not known. Both the Att-SNN and Att-RNN always start without knowledge
of the initial angle. Results are given in degrees and combine the results for both the pitch
and roll angles.

angle error [deg]
angle error [deg]

Att-SNN
Att-RNN
Madgwick
Mahony -
comp -

EKF
Att-SNN 4
Att-RNN
Madgwick
Mahony -
comp
EKF

— AU-SNN
. — Att-RNN
pitch —— Madgwick
. 20 —— Mahony
{'? ——— —— Complementary
s 4] N cewle et | — ¢
% P4 —— Complementary?
-0 = = groundtruth
T T T T T T
pitch error
.
< 20
=
g
5 10 4
£z
[=d
c i Andsm
® 0 T T T T T T T T
0 1 2 3 4 5 6 7
time [s]

Figure 2.6: Pitch response and error for different filters w.r.t. ground truth for initial offset of
~20°. In this case, all conventional filters are tested without any information about the initial
angle. Real world PX4 data was used for this comparison. The Complementary! shows the
result of the complementary filter with an adaptation law to allow for quicker convergence.

extra 7% and 8% respectively spike less than 0.5% of the time. To understand if
these sparsely spiking neurons have a significant effect, an ablation study has been
performed. By pruning all neurons that spike less than x% of the time for a subset

34 2. Attitude estimation using spiking networks

of data, the effect on the accuracy for the rest of the data can be established.
The results are shown in Figure 2.7. Pruning the neurons that do not exceed an
average spiking activity of 0.5% did not modify the performance of the network.
This corresponds to a total of approximately 25% of the neurons of the Att-SNN
model, which amounts to a reduction of almost half of the synapses while making
the network more efficient.

2.3.3. Input dataset manipulation

In order to obtain some preliminary understanding of the functioning of the SNN,
we have evaluated the fusion of sensory information by manipulating sensory
inputs. In particular, we compared the output of the Att-SNN model during a
constant velocity flight where the attitude is kept constant. In Figure 2.8, the
response of the network is provided for the pitch angle of the quadrotor obtained
in simulation and in the following conditions: (i) the gyroscope is removed, (ii) the
accelerometer is removed, (iii) the accelerometer data all point towards gravity in
the world frame (resulting in 67°¢ =0), and (iv) no manipulation (i.e., the initial
Att-SNN). We observe that removing the angular velocity information provided by
the gyroscope results in large errors during fast motion, but remains correct
when the motion follows a constant angle. This shows that the Att-SNN model
uses the accelerometer data for a long time scale estimation of the angle, similar
to how the common filters use it. When the accelerometer data is replaced by the
gravity vector in the world frame, effectively measuring a zero angle at all times,
this results in an estimate that is quite reliable during fast maneuvers. However,
during constant velocity flight the output of the estimator is approximately zero,
since it has no absolute measurement of the real angle. This shows that the
network uses the accelerometer as an absolute reference to the global attitude,
just like the comparison filters do.

2.3.4. Energy consumption and evaluation frequency on
neuromorphic hardware

To evaluate the potential of deploying these networks on neuromorphic
processors, the update frequency and energy consumption of the network were
examined. Since gathering energy benchmarks on the Kapoho Bay, used on our
quadrotor, is not possible, the results shown in Figure 2.9 are obtained with a
Nahuku board that has 32 Loihi chips by utilizing the energy and execution time
probes as provided in the NxSDK. The average execution time of the spiking
recurrent layer on hardware was only 10us, which corresponds to 100 000 Hz. As

2.3. Results 35

Spiking activity in percentages Ablation study of inactive neurons
4.0
35 encoding layer
recurrent layer 3.5 1 5%
30 4
3.0 4
g
251
g = 2.54
7] z 2%
= 204 =
5 = 2.04
e] 1%
ﬂl o - 0% Yo
-E 15 1 = 154
>
c
10 1.0 4
5 1 0.5 1
01— T T T 0.0 T T T T T T T
0 10 20 30 o] 10 20 30 40 50 60
spiking activity [%] neurons removed [%)]

Figure 2.7: Investigation in the spiking activity of all neurons in the Att-SNN and the effect
of removing sparsely spiking neurons. A histogram of the spiking activity, averaged over all
datasets, is shown on the left. The effect of removing sparsely spiking neurons on accuracy
to reduce the overall network-size and prospective energy consumption in an end-to-end
solution on the right.

40 4
o 20
@
=
o 07
2
£ 201
—40 1 4 = = groundtruth
T T T time [s] T —— gyro zero i
acc zero
pitch error —— acc gravity
—— no manipulation 7|
50 A P
& 40 1
=
S 30
&
w 20 1
2
£ 10 A
04

time [s]

Figure 2.8: Response of the SNN for different types of input manipulation. Both the pitch
estimation and error of the network is shown for (i) no data manipulation, (ii) all gyroscope
values zero, (iii) all accelerometer values zero, and (iv) all accelerometer values pointing
towards gravity in world-frame (65°° =0).

36 2. Attitude estimation using spiking networks

comparison, the execution time of the layer was also evaluated using a PyTorch
implementation on a laptop with a Nvidia GTX 1650Ti and a 12-core Intel
i7-10750H CPU. The average execution time for a single timestep of the Att-SNN
here was 555us, ~55x running the network on the neuromorphic processor. Also
the execution time of the Att-RNN was measured in the same way, and the
average execution time here was 150us, still an order of magnitude higher than on
the neuromorphic processor. Also the number of Floating-point Operations
(FLOPS) per method per timestep have been calculatd. The Att-SNN requires only
(M? + M N + 2M) FLOPS, with M the number of neurons in the hidden layer, and
N the amount of inputs to this layer. The Att-RNN with gated-recurrent units
requires approximately (3M2 + 3MN + 3M) FLOPS for a single hidden layer,
which is almost 3 times more. The average energy consumed per time step was
13.2pd. In our hardware architecture with the PX4 mini flight-computer connected
to an UP Squared computer using Fast-RTPS, we were able to run it at the
frequency of incoming IMU data, 200Hz. It should be noted this looprate is
dependent on the data transferring in the Von Neumann processors. In an
end-to-end neuromorphic pipeline, this could be orders of magnitude faster.
Since we run the Loihi at this frequency, the latency from input sample to
estimate is governed by the delays in the network. In our implementation, this
means an estimate is produced after three timesteps, resulting in a latency of
15ms.

92.4. Discussion

This work demonstrates that a small recurrent spiking neural network is able to
estimate the attitude of a quadrotor in flight. In terms of accuracy, it is
competitive with filters commonly used in flight-controllers, such as the
Mahony-filter. Our approach is not data hungry, as common Al algorithms are,
and only requires data obtained in simulation (easily accessible, and available
open-source) supplemented with short sequences obtained with a real quadrotor
(for our training, less than 20 minutes of real data was used). Our experiments
have shown that little data already suffices for successful attitude estimation in
nominal flight conditions. However, future work could consider larger datasets
with a larger variety of flight maneuvers, and naturally a larger range of sensor
biases. This would help to find out how well trained networks generalize to
unseen conditions.

These results are obtained with focus on achieving a small-scale network. By
increasing the size of the network, the training performance can be increased but

2.4. Discussion 37

w
o

204 159

N
wu
L

~
o
L

154
10 1

,_.
w
L

10 4

,,_.
o
L

execution energy [u]

execution time [u s]
execution time [u s]

w
L

T T T T T T T T T T T T T T T
1 2 3 4 5 0 500 1000 1500 2000 1 2 3 4 5
sequence timestep sequence

(@) Execution time for 5 (b) Execution times for an (c) Energy consumption for 5
sequences of 2000 time steps example sequence sequences of 2000 time steps

Figure 2.9: Energy and evaluation frequency of the Att-SNN on the Nahuku board that has
32 Loihi chips.

the network might suffer more from overfitting. Already in our limited sized
network, it was visible that training allowed for overfitting on the training data.
This effect might be limited by supplying the training with more samples from
different real world quadrotors or making the network more resilient to biases in
the input (such as constant offsets of the measured accelerations) by adding
parametrization. This parametrization could be obtained by adding adaptivity to
the synaptic connections, for which a suitable online learning rule could be
designed. Besides, minimizing size is in line with our goals of obtaining
miniature-scale robots, capable of performing autonomous missions. Increasing
the size too much will also constrain the learning, due to an increased
dimensionality, resulting in high memory usage and training time.

A main potential criticism on our work could be that the plain complementary
filter, achievable with only a couple lines of code in a microcontroller, is still a
valuable choice for performing the task of attitude estimation based on IMU-data.
Executed on a widely available and cheap micro-controller, it estimates states
fast and with little energy expenditure. However, we aim for a fully neuromorphic
pipeline, so that all processing, from very intensive visual processing to less
intensive state estimation and control, can happen on a single neuromorphic chip.
Hence, we also need to perform attitude estimation with an SNN. Moreover, from
a scientific viewpoint, we are interested in understanding how (spiking) neural
networks solve this task, potentially unveiling new strategies or delivering new
hypotheses on sensor fusion in flying animals like small insects. Already in this
study, the SNN showed the interesting property of converging quicker to the
attitude when not initialized at the ground-truth attitude. In future work, we plan

38 2. Attitude estimation using spiking networks

to delve deeper into the detailed workings of SNNs estimating attitude.

Currently, the work has the limitation that the Att-SNN only estimates the
angles necessary for position control, and excludes yaw. Synthesizing an
unbiased, non-diverging yaw-estimate using angular velocities and linear
accelerations exclusively is not possible, so extra sensors would need to be
included. A common option is the 3-dof magnetometer, measuring the Earth’s
magnetic field and therefore supplying the estimator with an absolute
measurement of the quadrotors heading. Although these sensors are very useful
in large drones flying at great altitudes in non-urban environments, the readings
are heavily influenced by disturbances in the magnetic field. these disturbances
can be caused by electronic appliances in the vicinity or even by the motors of
the quadrotor itself. In future work, adding data from other sensors or the output
of a controller will be studied to capture a full 3d model of a quadrotor in flight.
This will pose interesting new challenges such as dynamics changing over a flight
because of a draining battery that might be addressed by an SNN that features
adaptivity.

The frequency of the network in this study was chosen to be 200Hz, since this
matched the output of the sensor data from the PX4 flight-controller. In operation,
the input-data streamed to the network has to be of the same rate as during
training, because of the time-constants that characterize the neuron dynamics.
During this research, it was found that training on even higher data rates, further
reduced the estimation-error. Together with the promises of extremely high
update rates of neuromorphic hardware, this is encouraging for further research.

Considering the recurrent layer encodes the attitude (or rate of change of the
attitude) necessary for control, the decoding layer can be replaced by another
spiking layer that can be trained to perform control tasks, either by supervised
learning mimicking a baseline controller, or it can be trained in a RL framework, as
is discussed in [9]. These are the next steps that follow naturally from our research.

2.5. Conclusion

In this paper, we have presented an SNN model, called Att-SNN, that can be
employed as an attitude estimator in an end-to-end neuromorphic control
pipeline. This implementation builds upon three contributions. First, we have
shown that the Att-SNN can perform state estimation tasks in highly dynamic
systems such as MAVs, with competitive performance when compared to
state-of-the-art non-neuromorphic methods and conventional recurrent ANNs.
Second, we successfully implemented the Att-SNN on the Loihi neuromorphic

2.6. Acknowledgements 39

processor, showing outstanding energy and time efficiency, therefore paving the
way towards fully embedded neuromorphic control onboard MAVs. Third, this
study shows for the first time that these networks can be used as an estimator in
the control-loop, showing that small errors do not accumulate over time.
Furthermore, our work shows an efficient method of encoding floating point
sensor data into binary spikes without having to study the tuning curves of
rate-coded neurons or finding the optimal distribution of neurons in population
coding. Several prospective future research directions are recognized. This
includes extending the estimation with neuromorphic control and reducing the
effect of uncertainties due to sensor noise by employing online adaptivity. All
together, the Att-SNN neuromorphic attitude estimation model will help closing
the neuro-biologically-inspired control loop from sensor to actuator in critical
embedded systems such as MAVs.

2.6. Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA8655-20-1-7044. The authors also wish to
express their thanks to J. Hagenaars and F. Paredes-Valles for their fruitful
discussions regarding implementing a Loihi-ready quantized version of the
network.

2.7. Supplementary materials

All code used in this chapter is available at
https://github.com/tudelft/neuromorphic_attitude_estimation.
The data used for training can be found at
https://doi.org/10.4121/20464830.v1

Link to paper:

https://github.com/tudelft/neuromorphic_attitude_estimation
https://doi.org/10.4121/20464830.v1

Learning Flight Attitude
from Vision Alone

Vision is an essential part of attitude control for many flying animals, some of
which have no dedicated sense of gravity. Flying robots, on the other hand,
typically depend heavily on accelerometers and gyroscopes for attitude
stabilization. In this chapter, we present the first vision-only approach to flight
control for use in generic environments. We show that a quadrotor drone
equipped with a downward-facing event camera can estimate its attitude and
rotation rate from just the event stream, enabling flight control without inertial
sensors. Our approach uses a small recurrent convolutional neural network
trained through supervised learning. Real-world flight tests demonstrate that our
combination of event camera and low-latency neural network is capable of
replacing the inertial measurement unit in a traditional flight control loop.
Furthermore, we investigate the network’s generalization across different
environments, and the impact of memory and different fields of view. While
networks with memory and access to horizon-like visual cues achieve best
performance, variants with a narrower field of view achieve better relative
generalization. Our work showcases vision-only flight control as a promising
candidate for enabling autonomous, insect-scale flying robots.

Parts of this chapter were under review at time of writing this thesis [42]

41

42 3. Learning Flight Attitude from Vision Alone

3.1. Introduction

Attitude control is a fundamental challenge in aerial robotics. For drones to
execute their missions, they must precisely control their orientation relative to
gravity—a task traditionally addressed by IMUs (inertial measurement units) that
provide absolute acceleration and rotation rate measurements [43]. Yet, flying
insects exhibit remarkable flight agility without any known sensor dedicated to
measuring gravity [44]. Flying insects with four wings such as honeybees even
lack the halteres that provide two-winged flying insects with direct sensory
information on rotation rates [45]. Previous work has hypothesized that flying
insects can in principle rely on visual cues alone to estimate flight attitude [46].
Specifically, it was shown that optical flow can be combined with a motion model
to estimate and control flight attitude. Besides insect understanding, this insight
opens a pathway toward lighter and potentially more robust flying robots. By
eliminating the dependency on IMUs, ultra-lightweight sensor suites [47] could be
made even lighter, simpler, and more efficient. This work demonstrates a general
approach to flight control without IMU—Dbringing tiny autopilots and insect-scale
flying robots one step closer.

Vision-based attitude estimation for flying robots goes back to early work on
horizon-line detection methods, applied to fixed-wing drones flying high in wide
open environments [48, 49]. Later, methods have been developed that rely on the
specific structure of human-made environments. Assuming parallel lines in view,
vanishing points can be determined and used as attitude estimators [50, 51].
However, flying insects are also able to control their attitude in unstructured
environments where the sky is not visible, a property that is also of interest for
flying robots. Combining optical flow with a motion model enables attitude
estimation in such generic environments, only relying on sufficient visual texture.
De Croon et al. [46] show that attitude can be inferred from optical flow when
combined with a motion model that relates attitude to the direction of
acceleration. However, due to hardware-related update-rate limitations, their
real-world flight demonstrations still rely on gyroscope measurements.

Event-based cameras offer a promising solution to these limitations [20] with
their low latency, high temporal resolution, and robustness to motion blur.
Existing work on estimating rotation rates with event cameras [52-54] has so far
been limited to motions with little translation-rotation ambiguity (rotation-only or
restricted motion like driving). Furthermore, work on estimating flight attitude
from vision has been limited in environmental complexity (requiring a structured
environment with vanishing lines) [55] or still requires the use of gyroscopes for

43

3.1. Introduction

‘(jdomiau

1ednau e Aq pajoipald) sauo pajewi}sa sy} pue (1911043u0d sy ay} Agq painseaw se) sajed pue sajdue spnjijie jenjoe ay3 yjoq moys sjoid
9y "S}S9} 31 PlIOM-]ESI U] 10J3UOD PUE UOIIBW|}SS 9}eINdde Sa)eJdisuowap walsAs Sunnsad ay] :Jysdry "sejed uoljejol pue apniijie yioq
gunewnss ‘dooj 1043u02 Y314 JeUOIPEJ]} B U (JUN JUsWaINSEawW JenJaul) NIA| 8y} o aaed ayy saye} aunadid pasodoud unQ 497 "edawed
paseq-juana ue pue (NNYAUOD) 3JOMIBU 1EINBU JEUO[IN|OAUOD JUdJindal jjews e jo 3ufsisuod asunadid uojsia Aouaiel-moy e yum ajqissod
S| 1041u09 Y31} AJUo-UOISIA ‘paeog-uo AN} 1eyy aredisuowap apn “swidlsAs ulAy J91ydi sasiwouad 1043u0d Y3y AJUo-UOISIA LS a4ndi4

[s] swiny

8T 9T ¥I &I 0T 8 9 7 [4 0

T T T T T T T T T T >
=3
L]

3 05— £
o
o

| 0 &
o

- (UG
—~

LL| youd parewnsy |04 parewiisy K

M youd jendy |04 [en1dy

I \ 0c—
>
=3
L3
o

- 0 =
R

3 0¢

-—

NI "M J3]j013u00 Y34

sanb.oy
paJisaq

4

u:w\.‘_-u

-

eJawed judang

3

L

:n_u pappaqug

pajewnsy

|

J9|j0i3u0d
aey

S9led

pasissq |

pajewisy

h

J3||043u0d
3|8uy

—

_ummono‘_n_ %
sajed K s3|3ue

s3|3ue
paniseq —

44 3. Learning Flight Attitude from Vision Alone

low-level flight control [56-58]. Thus, a critical gap remains: achieving fully
on-board, IMU-free attitude control in realistic flight conditions.

In this paper, we address this gap by demonstrating—for the first time—a fully
on-board flight control system capable of estimating both attitude and rotation
rate solely from event-based visual inputs. Specifically, we develop a recurrent
convolutional neural network trained through supervised learning to map raw
event streams directly to accurate attitude and rotation rate estimates. Unlike
traditional approaches, which use IMU measurements in combination with a filter
to explicitly model the drone’s motion, we take a learning approach which trains
a neural network to implicitly acquire the relation between visual cues and the
vehicle’s state. Opting for learning a neural network means our estimator can
eventually be integrated in an autopilot which is learned end-to-end as a neural
network. This will be especially relevant if not only event-based vision but also
neuromorphic computing is used on the flying robot [59, 60].

We demonstrate, with real-world flight, that our combination of event camera
and low-latency neural network can replace the traditional IMU and filter
combination in the flight control loop. Furthermore, we investigate the learned
network’s generalization to different environments, and compare alternative
network inputs and architectures. We show that neural network memory and a
wide field of view are essential components for accurate estimation, but that
greatly reducing the field of view, and denying the network of most horizon-like
visual cues, leads to improved relative generalization across environments. While
this hints at the learning of an internal model for attitude from visual motion, it
comes at the cost of reduced absolute performance.

The contributions of this work can be summarized as follows:

1. Thefirst fully on-board, vision-only and IMU-free pipeline for control of a real-
world, unstable quadrotor.

2. A low-latency recurrent convolutional neural network capable of estimating
flight attitude and rotation rate from event camera data through supervised
learning.

3. An investigation into the approach’s performance, necessary components,
and generalization to different environments.

Our work promises extremely efficient, end-to-end-learned autopilots with
minimal sensors, capable of powering the next generation of insect-scale flying
robots.

3.2. Results 45

3.2. Results
3.2.1. In-the-loop flight tests

3.1 gives an overview of our proposed system. We integrate an event camera and
small recurrent convolutional neural network running on an on-board GPU into the
drone’s flight control loop. The network estimates attitude and rotation rates from
event camera data with low latency, acting as a stand-in replacement of a regular
IMU (inertial measurement unit), and allowing for accurate control. In traditional
flight control loops, IMUs measure linear accelerations and rotation rates at high
frequency (typically > 500 Hz). These measurements are subsequently integrated
in a Kalman or complementary filter running at a lower frequency (100-200 Hz) to
produce accurate attitude and rotation rate estimates while filtering out the high-
frequency noise produced by the sensors.

The proposed system instead uses data from an event camera in combination
with a learned estimator. Events are accumulated into frames of 5 ms, and fed to
a recurrent convolutional neural network that then estimates attitude and
rotation rate. These estimates are sent to the flight controller at 200 Hz, and used
by the regular angle and rate controller to control the drone. We train our
network through supervised learning on a dataset containing events, along with
attitude and rotation rates from the flight controller as labels. While these are not
absolute ground truth (they are estimated by the flight controller using the IMU),
they are typically reliable but can have bias (which is dealt with by subsequent
integrators).

The results from several flight tests with the trained network in the loop are
shown in Fig. 3.2. For these tests, the pilot commands the drone to hold its
position, which the flight controller translates to attitude setpoints with the help
of a higher-level position controller and a velocity sensor. These attitude
setpoints are subsequently compared against estimates provided by the neural
network. This results in desired rotation rates, which are also compared against
network estimates, resulting in desired torques sent to the motors. Fig. 3.2
contains flight tests in which the drone is commanded to stay in the same place.

The traces and histograms show that the network can accurately estimate both
attitude and rotation rate, with most errors within +3 deg and £18 deg/s for approx.
10 minutes of flight. The error plots for different attitude/rate combinations show
that most errors are due to underestimation by the network, which can also be seen
in the difference between network and ground truth during the transition phase.
Underestimation is most pronounced at high angles/rotation rates, which could be
explained by the inertia of the network’s memory. While this allows integration of

3. Learning Flight Attitude from Vision Alone

46

0 error Attitude error Time-lapse image

]
TUDelft

T % .wnoown
0 error Rate error

20°/s

10°/s

-10°/s

-20°/s

50°/s
25°/s

-25°/s

o /s b network
-50°/s > I l S
7 78 79 80 81 82

Time 3]

Figure 3.2: In-the-loop hover (position hold) tests with the network in control. The right-most time-lapse image shows the variation of the
drone during flight, demonstrating the controllability of the drone over a total of approx. 10 minutes of flight time. The other plots quantify
the errors of the estimated attitude and rotation rate for roll (rate) ¢ (¢) and pitch (rate) 6 (§). We consider the flight controller estimator as
ground truth (GT). The histograms give the error distribution of the network estimate compared to ground truth, with the biases of both
subtracted (to disregard biases in training data). The left-most plots show the network errors for different attitude/rate combinations.
These show that the network for both attitude and rate underestimates the real value. The bottom traces show the transition from IMU

to network control, with a reset of the flight controller’s integrator causing a short response of the drone before settling.

3.2. Results 47

information over time, it also limits the network in following fast maneuvers.

The error histograms further reveal axis-dependent asymmetries: attitude
estimates are more accurate for roll than for pitch, whereas the opposite holds
for rotation rate estimates. We attribute reduced accuracy in pitch attitude
estimation primarily to limited pitch-angle variability during training and minor
shifts in drone balance along the pitch axis (such as varying battery position).
Conversely, the decreased accuracy observed in roll rate predictions aligns with
the higher noise levels present in the ground-truth roll rate measurements coming
from the flight controller.

3.2.2. Comparison of models

We conducted an extensive comparison of neural network models with varying
network architecture, input modalities and input resolution. Table 3.1 lists the
performance of these variations in terms of RMSE (root mean square error) and
MASD (mean absolute successive difference) when tested on unseen data from
the training environment. While RMSE gives a good measure of the estimation
error, MASD quantifies prediction smoothness by looking at the difference
between subsequent predictions. A qualitative illustration of the estimation
performance of various neural networks is given in Fig. 3.3.

The baseline, Vision, receives only event frames as input and processes these
with a convolutional neural network with GRU (gated recurrent unit) memory
block. This variant was used for the in-control flight tests in Fig. 3.2. VisionMotor
additionally takes motor speeds as input. These can serve as a proxy for the
moment generated by the motors, (a prediction of) which was shown to be
necessary for the attitude to be observable [46]. In our learning setup, however,
the error difference with the vision-only model is small: only the estimation of
rotation rates is slightly better, which makes sense given that the forces produced
by the motors can be integrated to obtain rotational velocities. VisionGyro
receives gyro measurements (rotation rates) as additional inputs. This represents
the case in which a gyro would still be present in the system, and its performance
can give an idea of whether the network could integrate rotation rate to obtain
the attitude. As expected, this results in the lowest-error rotation rate estimates.
The accuracy of the attitude prediction, however, is not meaningfully better.
VisionFF replaces the recurrent memory block with a feedforward alternative,
and will therefore not be able to integrate information over time. While attitude
can be inferred from a single image by looking at horizon-like visual cues (such as
those indicated by the white arrows in Fig. 3.5), the increased attitude error of

48 3. Learning Flight Attitude from Vision Alone

VisionFF compared to Vision suggests that having memory is still beneficial.
Estimation of velocities such as rotation rate is very difficult without memory, and
this is reflected by the large increase in rotation rate error.

VisionSNN is a hybrid spiking neural network (SNN) where the encoder has binary
activations (stateless spiking neurons) and the recurrent memory block consists of
spiking LIF (leaky integrate-and-fire) neurons with a recurrent connection. While
the quantitative errors for VisionFF and VisionSNN are similar, Fig. 3.3 shows that
the SNN’s memory makes a difference for estimating rotation rates.

Attitude

Pitch angle
0

10 bt | | | | |
Rotation rate

30°/s
20°/s
10°/s

0°/s I

Pitch rate

-10°/s |

-20°/s |

1.0 1.5 2.0 2.5 3.0 3.5
Time [s]

—— VisionFF =—— VisionSNN —— Vision == GT

Figure 3.3: Qualitative comparison of attitude and rotation rate estimates for various neural
network architectures on unseen data from the training environment. The network variants
match those in 3.1.

Next, we investigate the impact of varying input resolution. Under rapid motion,
event cameras generate a large amount of events, which can lead to bandwidth
saturation and increased latency when working with on-board, constrained
hardware. The event camera used in this work, a DVXplorer Micro, allows

3.2. Results 49

Attitude Rotation rate
Network RMSE [deg] | MASD [deg] | RMSE [deg/s] | MASD [deg/s]
Vision 1.51 0.27 10.65 2.57
VisionMotor 1.64 0.31 9.57 247
VisionGyro 1.47 0.31 4.01 2.36
VisionFF 217 1.00 18.65 5.82
VisionSNN 2.17 0.52 15.03 4.04

Table 3.1: Performance of models with different network architectures and inputs on unseen
data from the training environment. Vision is the baseline model with ConvGRU memory
and vision-only input. VisionMotor additionally has motor commands as input. VisionGyro
receives gyro measurements as additional input. VisionFF has a memory-less architecture
(feedforward). VisionSNN is a hybrid spiking neural network. We quantify performance in
terms of RMSE (root mean square error) and MASD (mean absolute successive difference).

disabling pixels to limit the number of events generated by the camera. Fig. 3.4
analyzes the impact of using lower-resolution data on network performance
when training with otherwise identical settings. Apart from quantifying the
estimation error using RMSE, we also look at the prediction delay of the network.
When actively controlling a system, significant delays lead to oscillations and
potentially instability, and should therefore be avoided. We quantify the
prediction delay of each network by looking at the time shift for which the
Pearson correlation coefficient (PCC) is lowest. The results show that there is a
noticeable delay in predictions when using only a quarter of the camera’s pixels.
We attribute this to the fact that attitude changes might only be seen by any of
the enabled pixels once they become large enough, leading to a delayed
response. This delay is much less present for half and full-resolution networks.
Interestingly, the full-resolution network shows a slightly higher attitude RMSE
compared to the half-resolution network. This could be explained by the fact that
all networks were trained for the same number of epochs, whereas the larger
full-resolution network likely requires more training steps before achieving similar
convergence. The half-resolution network brings a good balance between
computational efficiency and estimation performance.

3.2.3. Generalization and internal motion model

Recent work [46] has shown that attitude can be inferred from optical flow when
combined with a motion model relating attitude to acceleration direction. While

3. Learning Flight Attitude from Vision Alone

50

Quarter resolution Half resolution Full resolution
/ AN / N\ / N
\\ // \\ // \\ //
1-PCC — Attitude 1-PCC — Rate RMSE — Attitude RMSE — Rate
0 m __ w 0 2 p W 1 1 1 1 1 1
Time shift Time shift 4 2 4 2

Figure 3.4: The impact of resolution on network performance after training under otherwise identical settings. Results were obtained by
enabling only a subset of event camera pixels: every fourth pixel (quarter resolution, blue), every other pixel (half resolution, orange) and
all pixels (full resolution, green). The bottom-left graphs show the PCC (Pearson correlation coefficient) for different time shifts of the
prediction targets. The minimum of each line indicates the shift with the highest correlation. Minima at larger shifts indicate a delay in
the network prediction. The bottom-right plots show the RMSE (root mean square error) on validation data. Networks trained on quarter-
resolution data show larger prediction delay and increased error compared to higher resolutions.

3.2. Results 51

the learning framework presented here does not explicitly represent such a
model internally, it would be interesting to investigate whether this can be
promoted during learning, and whether this affects generalization to different
scenes. In other words, we would like to steer the network towards using optical
flow for attitude estimation, instead of static visual cues such as horizon-like
straight lines on the edges of the field of view (indicated by white arrows on the
right in Fig. 3.5). We hypothesize that networks that rely mainly on motion
features generalize better across environments than networks that focus on
visual appearance, which is more scene-specific and may lead to overfitting on
the training scene.

To achieve this, we trained a network on the same dataset as before
(CyberZoo), but restricted its input to a small 160x120 center crop. This
eliminates most visual cues that contain absolute attitude information while
preserving motion cues. We refer to the original, unrestricted model as full FoV
(identical to Vision from Table 3.1) and the newly trained variant as center crop.
We evaluate these models on four unseen sequences, and show the results in
Fig. 3.5. The full-FoV network effectively makes use of the horizon-like cues
present in most sequences (white arrows for CyberZoo, Office and Outdoor),
generalizing well to other scenes and outperforming the center-crop model.
However, we also include a sequence from the event camera dataset ECD
poster_rotation recording [61]. Here, a camera (different from ours) looks at a
planar poster while undergoing rotations, without any visual cues related to the
camera’s attitude. On this sequence, the center-crop network achieved lower
attitude and rate errors than the full-FoV network. This indicates that the
center-crop network can effectively use motion information to infer attitude,
hinting at an internally acquired motion model. Furthermore, looking at the
relative error across environments, we see that relative error increases less for
the center-crop network when moving from the familiar training environment to
novel scenes. This presents a trade-off: while networks with access to the full
FoV have better absolute performance for scenes with horizon-like visual cues,
networks forced to infer attitude from motion through a reduced FoV relatively
generalize better across environments. If we remove memory from the network
(center crop + feedforward), it performs poorly for both attitude and rotation rate
estimation. Such a network has neither the field of view for static attitude
information, nor the ability to build it up through memory.

3. Learning Flight Attitude from Vision Alone

52

Attitude error Relative attitude error

CyberZoo

Office

10

Attitude RMSE [deg]
™ - B o
Relative to CyberZoo [-]

Rotation rate error Relative rotation rate error

Outdoor

ECD poster_rotation

10

Z 3

20

Rates RMSE [deg/s]
Relative to CyberZoo [-]
B 5 R B & B N

office box: 160x120 center crop

arrows: horizon-like featt

S

—@— Full FoV (baseline)

Figure 3.5: Comparison between a network with memory and full field-of-view (baseline), a network with memory that only sees a
center-cropped portion (indicated by the white rectangle), and a network without memory that only sees a center-cropped portion. We
compare estimation errors for four unseen sequences. CyberZoo is the same environment as trained on, but Office, Outdoor and ECD
poster_rotation (rotation only) [61] are unseen environments. While the full-FoV network performs better in scenes where horizon
information (indicated by white arrows) is available to provide an absolute indication of attitude (CyberZoo, Office, Outdoor), the center-
cropped network performs better when there are no visible horizon-like cues (as in ECD poster_rotation), hinting at the use of an internal
motion model. Additionally, the smaller relative increase in error in the case of the center-cropped network for scenes different from the
training location CyberZoo indicates improved generalization. A memory-less center-crop network is unable to aggregate information
internally into any kind of model, and hence performs poorly in terms of both attitude and rotation rate estimation.

3.3. Discussion and conclusion 53

3.3. Discussion and conclusion

In this work, we presented the first demonstration of stable low-level flight
control based purely on visual input, eliminating the need for an IMU (inertial
measurement unit). By combining an event camera with a compact recurrent
convolutional neural network, we achieved real-time attitude and rotation rate
estimation, enabling closed-loop control without inertial sensing. Leveraging the
event camera’s low latency and high temporal resolution, our vision pipeline
delivers the responsiveness required for agile flight, running entirely on-board at
200 Hz.

Removing the IMU simplifies hardware, reducing weight and complexity—both
critical considerations for small, bio-inspired flying robots—and our work shows
that it is possible to estimate and control flight attitude based on vision alone.
Such a vision-only control pipeline offers key advantages for aerial robotics:
insect-scale flying robots will already rely on visual inputs for navigation, so with
our proposed method no extra sensors would be necessary. Processing could
run on a tiny energy-efficient, possibly neuromorphic, processor. Our
experiments show that estimation performance generalizes to unseen and
visually distinct environments, and that this can potentially be improved further
by forcing the network to infer attitude from visual motion instead of horizon-like
appearance cues. Comparisons between network architectures further highlight
the importance of memory: while feedforward networks can infer static attitude
from scene appearance, recurrent models are crucial for accurately tracking
dynamic flight states, underlining the role of memory in enabling robust
vision-based control.

Several limitations remain. We observed systematic underestimation of both
attitude and rotation rates, with axis-dependent asymmetries. These can be
attributed to biases in training data distribution, particularly in pitch motions, and
to shifts in drone balance. Reducing these biases—through more diverse
datasets, improved calibration or higher-accuracy ground-truth (such as from a
motion capture system)—could improve overall performance. Additionally, we
found that lowering input resolution introduces prediction delays, while higher
resolutions impose greater computational demands without proportional gains in
performance. A half-resolution setting emerged as a practical trade-off for
real-time operation.

Future work should focus on increasing the robustness of learning and further
hardware integration. Making use of the contrast maximization framework for
self-supervised learning from events [62] would allow direct learning of a robust

54 3. Learning Flight Attitude from Vision Alone

and low-latency estimator of optical flow decomposed as rotation and
translation [59], which could be integrated with a learned visual attitude estimator
to give the most robust estimate. Hardware could further be integrated through a
combined event camera and neuromorphic processor setup, such as the
SynSense Speck [63], to achieve lower power consumption, weight and latency.
Furthermore, a deeper investigation into the internal motion model developed by
networks may yield deeper insights into the mechanisms they use to solve the
task at hand. We have shown that parts of the network generalize across scenes,
but also that the networks can exploit scene-specific features that resemble
horizon-like lines to get an estimate of the attitude. Such insights could enable the
design of more robust and autonomous robotic systems that rely heavily on
environmental perception.

Overall, our results demonstrate that vision-only attitude estimation and control
is a viable alternative to traditional inertial sensing. By simplifying the sensor suite
and removing the dependency on IMUs, our approach paves the way for the next
generation of lightweight, agile, and bio-inspired flying robots.

3.4. Methods

3.4.1. Estimating attitude and rotation rate from events

The analysis by De Croon et al. [46] shows that a drone’s flight attitude can be
extracted from optical flow when combined with a motion model. Many conditions
are analyzed. In the simplest case, they derive local observability from the ventral
optical flow component w,, for roll ¢ and a simple motion model that relates attitude
angles to acceleration direction:

cos?(¢p)v

wy = 7% +p (3.1)
z';.y gtan(¢)
fleu)=1¢| = p (3.2)
P 0

where state = [v,, ¢, 2]T, control input u = p, z represents the height above
ground, vy is the velocity in the body frame’s y-direction, and p denotes the roll
rate. This relationship holds for ¢ € (—90°,90°), and the same derivation can
be made for w, and pitch §. Although this model assumes constant height, they
show extensions for changing height and uneven/sloped environments. In those,
the divergence of the optical flow field can be used to observe variation in height,
maintaining the partial observability of the system. The system is only partially

3.4. Methods 55

observable, since attitude becomes unobservable at angles and rates close to zero,
for instance when the drone is hovering in place. Nevertheless, the parts of the
state space that make the system unobservable are inherently unstable and drive
the system to observable states, thus closing the loop.

While Eq. 3.1 and Eq. 3.2 treat the rotation rate p as a known control input (from
gyro measurements), this is theoretically not necessary, and a prediction of the
moments M resulting from control inputs suffices [46]:

Oy gtan(¢)
2 p
f(z,u) = ol = g (3.3)
z 0

where I is the moment of inertia around the relevant axis. In our approach, motor
speeds as input could replace M and the network could learn an internal motion
model to obtain attitude. However, this is not guaranteed, and as the successful
flight tests with a vision-only network show, not necessary either when using a
machine learning approach. Learned models exploit other factors, as may insects.
We explore one of these factors (a large field of view) in this article. A large field of
view enables proper separation of translational and rotational flow, which allows
more accurate extraction of control inputs from vision. As described above, these
control inputs allow for the system to be observable.

Training and network details

We train a small recurrent convolutional network to estimate flight attitude and
rotation rate from events. Training is done in a supervised manner, with
ground-truth attitude and rate coming from the flight controller’s state estimation.
We collect training data containing diverse motions and attitudes in our indoor
flight arena. We make use of two-channel event count frames as input to the
network, with each frame containing 5 ms of events. For training, we take random
slices of 100 frames from a sequence, and use truncated backpropagation
through time on windows of 10 frames without resetting the network’s memory.
This is done to get a network that (i) accumulates temporal information internally
for proper rate estimation, and (ii) can keep estimating stably beyond the length
of the window it was trained on. We train until convergence using an MSE (mean
squared error) loss, Adam optimizer and a learning rate of 1e-4. We add a weight
of 10 to the attitude loss to make it similar in magnitude to the rate loss. Data
augmentation consists of taking random slices of frames, randomly flipping event
frames (and labels accordingly) in the channel dimension (polarity flips), height

56 3. Learning Flight Attitude from Vision Alone

¥ ¥
Image Attitude, rate Image
> E M/F D P > E M D
AN
v Attitude, rate
Auxilary input —
—> FM

Figure 3.6: Schematic overview of network architectures. Left: baseline vision-only network.
Right: network with vision and an auxiliary input (motor speeds, rotation rates). Encoder
(E), memory (M) and decoder (D) are convolutional. Flattening to attitude and rotation rate
estimates happens in the predictor (P). We swap the memory for a feedforward (F) block
to get a network without recurrency. For the auxiliary input, we use fully connected (FM)
instead of convolutional memory.

(up-down flips) and width (left-right flips). For evaluation, we run networks on full
sequences without resetting, and we evaluate in terms of RMSE (root mean
square error) and MASD (mean absolute successive difference):

1 & R
RMSE = |~ > (yi — §:)° (3.4)
=1
1 n—1
MASD = —— D lwigr — il (3.5)

=1

The baseline network consists of an 8 x-downsampling encoder followed by a
GRU (gated recurrent unit) memory block and a decoder transforming the memory
into angle and rate predictions. The encoder and memory are convolutional to
stimulate the learning of local motion-related features that generalize well, and to
prevent overfitting to scene-specific appearance (which we observed when using
a fully connected GRU). We experiment with different network variants in terms of
receiving extra inputs (drone motor speeds, rotation rates) or having a feedforward
instead of recurrent block (no memory). Schematic illustrations of these are shown
in fig. 3.6. Apart from the GRU blocks and final output, we use ELU (exponential
linear unit) [64] activations throughout the network.

3.4.2. Using estimates for real-world robot control

We use the two-layered control architecture illustrated in fig. 3.1. While it closely
follows the implementation in our flight controller, it is running on a separate on-
board computer. This allows us to use the control gains from the flight controller

3.4. Methods 57

as-is, with only minor tweaking to account for the delay added by communication
between the on-board computer and the flight controller.

The first layer consists of a proportional controller that compares commanded
attitude and estimated attitude to generate rotation rate setpoints. The second
layer is implemented as a PID (proportional-integral-derivative) controller,
translating these rotation rate setpoints—combined with estimated rotation
rates—into torque commands. These are then sent to the motor mixer running on
the flight controller. The motor mixer converts these torque commands, along
with a single thrust command, into individual motor commands. The mixing
process involves a linear transformation based on the specific geometric layout
of the drone.

For our flight tests, we have a human pilot controlling the drone. While stable
flight is possible with the pilot immediately commanding the attitude of the drone
(angle or stabilized mode), we make use of an outer-loop position controller
running on the flight controller (position mode). An additional optical flow sensor
provides velocity estimates, allowing the pilot to control position instead of
attitude. This greatly simplifies flight testing, and makes individual tests more
repeatable. Furthermore, because our training data inherently contains biases,
some kind of outer-loop controller (whether a human pilot or a software position
controller) is necessary to mitigate these biases during testing.

Robot setup

We use a custom 5-inch quadrotor (shown in fig. 3.1) to perform real-world flight
tests. The drone has a total weight of approximately 800 g, including sensors,
actuators, on-board compute and battery. All algorithms are implemented to run
entirely on board, using an NVIDIA Jetson Orin NX embedded GPU to receive data
from the event camera, estimate flight attitude and rotation rate, and calculate
control commands in real time. Body torque commands based on the estimated
attitude and rotation rate are sent to the flight controller, which is a Kakute H7
mini running the open-source autopilot software PX4. Communication between
the flight controller and the embedded GPU is done using ROS2 [65]. An MTF-01
optical flow sensor and rangefinder enables pilot control in position mode. We
record ground-truth flight trajectories (for plotting) using a motion capture system.

We use a downward-looking DVXplorer Micro event camera in combination
with a 140°-field-of-view lens to capture as much of the environment as possible.
To prevent bandwidth saturation while keeping good estimation performance, we
only enable every other pixel on the sensor, resulting in a 320x240 stream

58 3. Learning Flight Attitude from Vision Alone

(instead of 640x480) for the same field-of-view. These events are accumulated
into 5 ms frames for the network. The entire events-to-attitude pipeline is running
at approximately 200 Hz, with the embedded GPU consuming around 9 W on
average. While the pipeline can run at frequencies as high as 1000 Hz,
communication limited real-world flight tests to 500 Hz without any logging, and
200 Hz with logging.

3.5. Data and code availability

Datasets, code and hardware setup instructions are publicly available (upon
publication) via the project’s webpage:
https://mavlab.tudelft.nl/attitude_from_events.

3.6. Acknowledgements

We would like to thank the participants of the 2024 Capo Caccia Neuromorphic
Workshop for their discussions and insights. This work was supported by funding
from the Air Force Office of Scientific Research (award no. FA8655-20-1-7044) and
the Dutch Research Council (NWO, NWA.1292.19.298).

3.7. Author contributions

All authors contributed to the conception of the project and to the analysis and
interpretation of the results. J.H. and S.S. built the drone and integrated hardware
and software into a stably flying platform. J.H. developed the software for
training networks and running them on board the drone. S.S. developed the
software for converting network estimates to low-level control commands on the
drone. J.H. and S.S. collected datasets for training and performed flight tests to
gather results. J.H. and S.S. wrote the first draft of the article. All authors
contributed to the reviewing of draft versions and gave final approval for
publication.

.-:-.. o d

Link to paper: *h.

https://mavlab.tudelft.nl/attitude_from_events

3.7. Author contributions 59

Control through fixed
network connectivity

Using spiking neural networks, neuromorphic hardware can be leveraged for
outstanding update rates and high energy efficiency for robotic control tasks.
Yet, low-level controllers are often neglected and remain outside of the
neuromorphic loop. Designing low-level neuromorphic controllers is crucial to
remove these traditional controllers, and therefore benefit from all the
advantages of closing the neuromorphic loop.

In this chapter, we propose a parsimonious and adjustable neuromorphic PID
controller, endowed with a minimal number of 93 neurons sparsely connected to
achieve autonomous, onboard altitude control of a quadrotor equipped with
Intel’s Loihi neuromorphic chip. We successfully demonstrate the robustness of
our proposed network in a set of experiments where the quadrotor is
commanded to reach a target altitude from take-off. Our results confirm the
suitability of such low-level neuromorphic controllers, ultimately with a very high
update frequency.

Parts of this chapter have been published in The Proceedings of the International Conference on
Neuromorphic Systems (ICONS) 2022 [66]

61

62 4. Control through fixed network connectivity

4.1. Introduction

I n the coming years, autonomous drones are expected to perform a wide range
of complex tasks in unknown environments. These tasks include autonomous
take-off and landing, dynamic obstacle detection and avoidance, long-range
navigation, etc [67]. In spite of all the major accomplishments over the last
decades in aerial robotics research, drones still cannot compete with their
biological counterparts such as flying insects and birds. Indeed, these animals
perform similar tasks using less computational power at a higher energy
efficiency while being more robust to disturbances like wind gusts. For instance,
despite their mere 100,000 neurons, fruit flies nimbly perform aggressive flight
maneuvers and chase for mates while avoiding obstacles in complex, cluttered
environments [68]. Similarly, desert ants Cataglyphis are indisputably champions
at long-range navigation in the desert, yet they only have 250,000 neurons to
ensure such impressive performance [69]. In contrast, state-of-the-art quadrotors
are often equipped with heavy, energy-consuming computing units like Graphics
Processing Units (GPU) to enable Artificial Intelligence (Al) based solutions for
in-flight autonomy such as vision-based obstacle avoidance in racing tasks [70,
71]. As a matter of fact, the application of conventional neural networks for
Micro Air Vehicles (MAVs) is limited by the energy consumption, weight and
synchronous nature of the available hardware. This is particularly true in the
context of vision-based control where the use of deep Convolutional Neural
Networks (CNNs) severely hampers MAVs’ flight duration. In addition, the forecast
of the end of Moore’s law in the coming decades suggests that the pressure on
embedded processing will increase with drones’ autonomy [72, 73].

This analysis has driven researchers to put efforts in developing novel forms of
information representation and processing, such as asynchronous Spiking Neural
Networks (SNNs) to more closely model natural neurons and synapses and
benefit from their overall performance [74, 75]. These networks offer ample
opportunity for a higher energy efficiency and faster computation but require
dedicated neuromorphic hardware that can deal with the analog nature of the
neuron membrane dynamics. Over the last decade, efforts have been made to
develop the first neuromorphic processors to run SNNs, such as HICANN [14],
NeuroGrid [15], IBM’s TrueNorth [16], APT’s SpiNNaker [17] and Intel’s Loihi [19].
This new generation of processors yields great opportunities for the application
of SNNs in aerial robotics, especially for MAVs where energy, payload and
processing time are crucial. Autonomous control for quadrotors requires low
latency and high computational power at low energy cost. Such performance can

4.1. Introduction 63

Figure 4.1: Quadrotor used in this research equipped with a neuromorphic processor to
perform altitude control.

be achieved by means of neuromorphic algorithms like SNNs running on
neuromorphic hardware.

In previous work, we introduced an evolved SNN to control the landing of a
MAV equipped with the Loihi chip [23]. Made of only 35 spiking neurons, this
model used the divergence of the ventral optic flow to determine the thrust
set-point to send to a low-level PID controller running on the von Neuman CPU. In
order to make the whole processing neuromorphic and therefore increase the
control loop frequency, neuromorphic low-level controllers are required.
Examples of such systems have been proposed and include controllers for open-
and closed-loop controllers for DC motors [76, 77], robot manipulators [78],
optic-flow based landing and neuromorphic implementations of standard PID
controllers [26, 79]. The computational and logical simplicity of PID controllers
makes them an interesting choice for many control tasks.

In Stagsted et al. [26], the mathematical operations of the conventional PID
were implemented in a position-coded SNN by utilizing operation arrays. Using
such a position-coding, the precision of the controller corresponds to the number
of neurons used for the encoding. To obtain an error precision of NNV, these arrays
contain N x N neurons. Combining these arrays, a controller for a 1-DOF birotor
fixed to a frame was designed and executed on Intel’s Loihi chip to control the roll

64 4. Control through fixed network connectivity

angle by inputting measurements of both the angle and the angular velocity.
However, the influence of the derivative term in the response of the controller
was not as important as for the proportional and integral terms, thus explaining
the oscillations observed at zero-roll angles. In [22], the output of an event-based
attitude estimate based on the Hough-transform was combined with this
controller to perform attitude control. For both implementations, the amount of
necessary neurons for a single controller scales quadratically with the resolution.
Limits on the amount of neurons imposed by neuromorphic processors were
restricting the precision of the representation of error and command values. To
allow for smooth control the change in output command should have a large
precision. Autonomous control with a cascaded-PID controller of a MAV in
mid-air requires a bare-minimum of 6 PID controllers (but preferably more to
include velocity control as well). Alternatively, in [79], a neuromorphic PID was
designed to calculate the three terms of the controller using rate-coded signals,
and further tested on-board the Loihi chip. Interestingly, rate-coding allowed to
improve the derivative term by means of a set of different time scales for the
synapses. However, such a solution remains hard to implement on the Loihi as
the chip currently does not support high synaptic time constants.

These pioneer studies demonstrated the feasibility of using neuromorphic PIDs
to control robots using neuromorphic processors such as the Loihi. Yet, having
such systems working online to control a free-flying robot remains a great
challenge, especially in the context of aerial vehicles where the robustness,
reliability and execution speed of controllers is crucial. In this work, a different
method of performing the mathematical adding (and subtracting) operations is
suggested that reduces the number of necessary neurons by an order of
magnitude as compared to the proposed method in [26], while also allowing for a
non-linear distribution of the position-coded spikes that represent both the input,
error and output floating point values. This simultaneously allows for full control
of a MAV with a higher precision while keeping a smaller distribution, and thus
more precision of the control output around zero. Furthermore, we successfully
demonstrate the performance of our neuromorphic PID controller running
on-board the Loihi neuromorphic chip for the altitude control of a free-flying MAV.

4.2. Methods

In the following, we introduce the standard cascaded PID controller and the
neuromorphic PID (N-PID) for a quadrotor. The cascaded PID is hereafter
considered as the baseline for comparison with the neuromorphic PID.

4.2. Methods 65

4.2.1. Cascaded PID controller

The cascaded PID controller used in quadrotors consists of multiple
interconnected PIDs that produce rotor-speed commands for all four rotors. The
design of the controller can be seen in Fig. 4.2, where each PID block represents a
set of multiple PID controllers running in parallel to process the commands for
the three axes (z, y, z). The continuous-time definition of a given PID controller is
provided by the following set of equations:

u(t) = Kp (@(t) + Ti /Ot e(r)dr +Tp de(t))

T dt (4.1)

where u(t) is the control signal at time ¢, Kp the proportional gain, 77 and Tp
the integral and derivative time-constants respectively and e(t) the error signal
between the target r(¢) and the measurement y(¢). This can be transformed into a
discrete-time PID controller where the signals are defined as follows:

€k =Tk — Yk

I = ip—1 + ep At

er — ep_1 (4.2)
At

K
ur = Kpep + Tjik + KpTpdy

di, =

Asillustratedin Fig. 4.2, the inputs to the first layer of the controller are position set-

Pd | pos pd‘ Vel Hd\ Att éd\ Rate éd\ .
> PID ”| PID ”| PID ”| PID »Mixer

Quadrotor

Figure 4.2: Cascaded PID for multirotor control where p is the position (z, y, and z) and ¢
are attitudes (6, ¢, and v), a dot (@) represents the time-derivative whereas a hat (a) stands
for the measurement. w, are desired rotor speeds, calculated in the control mixer from the
torque/thrust values.

points, which produce velocity set-points and so on. The outputs of the last PID are
the thrust and torque commands that are translated into rotor speed commands
in the control mixer based on the model parameters of the quadrotor.

66 4. Control through fixed network connectivity

4.2.2. Neuromorphic PID

The neuromorphic PID, referred to as the N-PID, is achieved by using populations
of neurons to perform mathematical operations (i.e., additions and subtractions)
necessary for computing the output command of the controller.

Input neurons population

We propose to use a set of IV input neurons to encode the floating-point values
using a standard position-coding scheme: each neuron will fire whenever the input
value falls within a predefined range. The distribution of those sensitivity ranges
can either be uniform, meaning that all neurons will have the same sensitivity, or
non-uniform. In the latest, for instance, a quadratic distribution can be used to
increase the neurons’ sensitivity around a certain point of interest. Using such non-
uniform, arbitrary distributions opens the opportunity for more accurate control
around a certain set-point. To encode a floating-point value as a position-coded
value, the distance from the floating-point value to all the N values represented by
the encoded distribution is calculated. The neuron for giving the lowest error will
then fire, while the other neurons will stay inactive (winner-takes-all).

Aggregate population layer

In the proposed N-PID, a population of neurons performs either an addition or a
subtraction with two layers (Fig. 4.3): an aggregate layer performing the
mathematical operation, then followed by a reduce layer that implements a
position-coded winner-takes-all. The aggregate layer consists of two
sub-populations of neurons, one for positive and one for negative outputs . The
aggregate layer is densely connected to a set of input layers. For instance, if we
aim at adding two input signals, there will be two populations of input neurons as
represented in Fig. 4.3. To ensure the mathematical operation, the corresponding
synaptic weights are linearly proportional to the inputs. However, connections to
the negative sub-layer in the aggregate layer are multiplied by —1. This way, the
negative values are represented by their absolute and the use of negative
thresholds is bypassed. The thresholds of the aggregate neurons are
proportional to the absolute of the values in the output range. This way, all
neurons with a threshold lower than the sum of the input values in the correct
sub-population will fire.

4.2. Methods 67

Figure 4.3: Adder neuron population for two input ranges of [-2, -1, 0, 1, 2] and an output of
[4,-3, ..., 3, 4]. This example shows the addition of the values 2 and 1. The green and red
arrows represent excitatory and inhibitory synapses respectively. The membrane potential
of all neurons in the positive group in the aggregate layer (upper five neurons) sums to 3,
and in the negative group (lower five neurons) to -3. All neurons in the positive group (with
thresholds indicated by the values inside the neurons) will now fire and in the reduce layer
only the neuron representing the value 3 will fire.

Reduce population layer

The connection between neurons in the aggregate layer and neurons in the
reduce layer is designed as follows (Fig. 4.3): first, an excitatory synapse connects
the two neurons representing the same value, and second, an inhibitory synapse
connects the same input neuron (aggregate) to the adjacent neuron in the reduce
layer. Only the highest firing neuron in the aggregate layer will spike in the reduce

68 4. Control through fixed network connectivity

layer. Changing from addition to subtraction simply requires flipping the sign of
the weights of the input to be subtracted. This brings the total amount of neurons
necessary for performing an addition 2N + 1 where N is the resolution.

Combining into a single N-PID unit

By combining these populations of neurons performing additions and subtractions,
the N-PID can be implemented, as shown in Fig. 4.4. Since this design requires
three of the previously described neuron populations (cf. Fig 4.3), the total amount
of neurons necessary for the entire N-PID is 6 N + 3 if all sub-units have the same
resolution, and excluding the input neurons ensuring the position encoding of the

information.

19 Q @
}i il
£ o/l N
EIOL—1] | ”9'{)8“ O ©
2 | OO | | Control
: © N

®) ‘ | 1010
Ao o O]
E | Error @ @

Q Integral

Figure 4.4: Overall structure of a single PID unit as implemented on the neuromorphic chip.
Green layers stand for aggregate populations of neurons, and blue layers represent the
reduce populations (cf. Fig. 4.3).

Integral wind-up

Integral wind-up is a well-known problem in PID design [80]. By taking the integral
over time, error accumulates and the system might experience overshoot. One of
two integral wind-up solutions is to bound the size of the integral, so it will not grow
too large. Because of the nature of position-coding, this is already inherent to our
N-PID. Another solution is to add a decay factor to the integral, “forgetting” errors
that lay further in the past. This can be implemented in this N-PID by multiplying
the weights of the previous integral signal by a decay factor, that ensures faster

4.2. Methods 69

decay of the integral term when the set-point is crossed and will be used in our
experiments.

4.2.3. Simulation setup

Both the cascaded PID and the N-PID were tested in simulation. An AscTec
Hummingbird quadrotor was simulated in RotorS, a ROS/Gazebo physics
simulator that enables quick testing of ROS packages before implementing in a
real system [27]. State estimation was achieved by utilizing the MSF framework,
providing 6-DOF state estimates based on an Extended Kalman Filter (EKF) [81].
The simulator runs on a Dell XPS 17 (Intel i7-10750H 12-core 2.6GHz CPU and
16GB RAM) running Ubuntu 18.04 LTS. The cascaded PID was implemented as a
ROS package in Python (version 3.6), while the N-PID has been implemented for
height control.

To make sure that the N-PID can run on the Loihi chip, a transformation from
floating point weights is necessary. Loihi weights supports 8-bit resolution, with 1
bit reserved for the sign. This means the weights have to be between -256 and 254,
with steps of 2. Due to the discretization inherent to this type of network, the first-
order derivative suffers largely from jumps in the input bins, especially with lower
precision. To counter that, the error derivative is directly fed to the control-layer
of the N-PID.

Besides, it is essential to have an accurate error term in the controller of an
unstable non-linear system such as a quadrotor. This controller receives set-points
and state estimates and produces thrust and torque commands. These commands
are then transformed into rotor velocity commands, which are then sent to the
quadrotor model implemented in RotorS. In this simulation, the step responses of
the quadrotor to a change in the height set-point are simulated between 1 and 3
meters.

4.2.4. Hardware setup

The performance of the neuromorphic controller in the real-world has been
assessed. The controller was implemented to control the height of a quadrotor.
The proposed architecture features a custom made 5-inch MAV equipped with (i)
the Kakute F7 flight controller running the iNav 2.6.0 open-source firmware
equiped with a TFmini Micro-Lidar for altitude measurements, (i) the Intel UP
board (1.92GHz 64bit Atom processor with 4GB RAM) running Ubuntu 18.04 LTS,
and (iii) the Intel Kapoho Bay neuromorphic computing unit incorporating two
Loihi chips (Fig. 4.5). The entire project has been developed within the ROS

70 4. Control through fixed network connectivity

framework (Robot Operating System) running onboard the UP board. The
communication between the flight controller and the UP board is ensured by
serial communication utilizing the MultiWii Serial Protocol (MSP). On the other
side, the communication between the UP board and the Kapoho Bay is performed
by means of Intel’'s NxSDK API [82] with ROS-compatible modules, and physically
achieved via the USB interface available on the Kapoho Bay.

- Intel Up Board 4GB RAM
- NxSDK ROS -

rKapoho Bay

1‘ Send |-—-| Encoder }
L% Receive |»+| Decoder }
T| '
Roll, pitch, yaw|[[0P,Y [Serial communication
PID Controller protocol
ROS -
Host Telemetryz=» | 09V, T commands
l
'Position Tracker | i

iNav Autopilot :
| SW|tch —{ Autopilot |-|
-mODtitrack- L Kakute F7 Tekko (v1.5) Holybro _ﬂ

Figure 4.5: Overview of the hardware architecture of the MAV equipped with the Kapoho Bay.

In the context of this study, the neuromorphic PID for height control runs on the Kapoho Bay
(thrust T'), while the roll (9), pitch (¢) and yaw (1) controller is done on the host machine which
communicates with the quadrotor via a wireless UDP protocol. In this graph, the colored
boxes (Up board, Kakute, and Kapoho Bay) indicate indicate that these elements are on-
board the drone, while the black boxes (host and OptiTrack) remain outside the drone.

The altitude sensor (Micro-LiDAR) provides height measurements sent to the UP
board, where the N-PID calculates the desired thrust and sends this information
back to the flight controller. The attitude commands are sent from a base station
based on the position measurements provided by the Optitrack motion tracking
system.

4.3. Results

4.3.1. Simulation results

The step response of the N-PID controller was first compared to the standard PID
in the context of altitude control of a quadrotor for varying altitude set-points

4.3. Results 71

ranging from 1.0 to 3.0 meters with a step of 0.5 meters. The N-PID provides the
thrust-offset T" from hover-thrust. An initial estimate of hover-thrust is obtained
by multiplying the weight of the quadrotor with g = 9.81, further adjusted by hand
to account for uncertainties in the model. The gains of both PIDs were tuned by
hand (Kp = 0.87, 177 = 0.17, Tp = 2.76). The target and measured value ranges
were both chosen within [0, ..., 4] meters and the derivative of the error ranged
from -0.5 to 0.5 meters. The range of the output control T" was chosen within
r = [—1.25,...,1.25] (offset for the hover-thrust).

PID Neuromorphic PID

! ’
)
2 -
-
1 —/
T T T

Altitude [m]

Thrust [N]

T T T T T T T T T T T T

10 0 2 4 6 8 10
Time [s]

(=]
LS
=3
(=2
[==]

Figure 4.6: Step response of the N-PID with a population of 151 output neurons, compared
to the standard PID for different height set-points (1.0, 1.5, 2.0, 2.5, and 3.0 meters). These
results were obtained in simulation.

In Fig. 4.6, we provide the step response of the conventional PID and the N-PID,
provided with an overall precision of 0.017N (151 output neurons uniformly
distributed). For each altitude set-point we ran 5 distinct simulations. Although
both systems manage to reach the target, we notice that the N-PID exhibits a
slower dynamic than its conventional counterpart, with higher overshoot for high
altitude set-points. Where the conventional PID has a similar settling behaviour
for all heights, the N-PID has undershoot at lower heights, but overshoot at higher
ones.

We further investigated the effect of the control precision (i.e., the number N of

72 4. Control through fixed network connectivity

Step response N-PID [N=151] Step response N-PID [N=63] Step response N-PID [N=15]

w

NN

y

Height [m]
-
?

o

©

Thrust [N]
~

o

Time [s] Time [s] Time [s]

Figure 4.7: Step responses of the simulated neuromorphic PID (N-PID) applied to height
control of the MAV and for varying precision (i.e., 151, 63, and 15 neurons). The target
altitudes are 1.0, 1.5, 2.0, 2.5 and 3.0 meters.

output neurons) on the step response of the N-PID. The results are shown in Fig. 4.7
for a number of output neurons N € [151,63, 15]. For the two first tests (N = 151
and N = 63), the population of output neurons obeys a linear distribution, thus
ensuring all neurons contribute to the exact same control resolution. Results show
that the size of the population of output neurons does not have a significant impact
on the overall dynamics of the N-PID.

In case of a population of only 15 neurons, the control range was changed to a
quadratic distribution as follows: sign(r) - 72. This way, the control around
hover-thrust is more precise than far from it, hence compensating for the very
low resolution that a uniformly distributed population of 15 neurons would have
led to (0.17N). In simulation, we observed that the N-PID does not exactly reach
the set-point because of the discretization in the target (and measured) position.
This means that, because the range of sensitivity of each neuron is quite large, the
error has a higher chance to be equal to zero while the target altitude has not
been reached yet. Nevertheless, the results obtained with the N-PID endowed
with a population of only 15 neurons to represent the control command with a
quadratic sensitivity distribution are promising and suggest that this setup should
be reliable enough to be further applied on the MAV.

As the final goal is to have the N-PID running on-board the Loihi chip mounted
on the MAYV, a thorough comparison of the spiking activity of the network has
been performed to compare the simulated N-PID to the network implemented on
the Loihi. This analysis resulted in a perfect match between the two setups, thus
ensuring that the switch from conventional to neuromorphic hardware is not
increasing the reality gap. An overview of the spiking activity recorded on the

4.3. Results 73

Loihi is provided in Fig. 4.8 for a target altitude of 1.5 meters. In order to simplify
the visualization, only the output layers of sub-units (error, integral, motor
command) are shown. The sparsity of the spiking activity contributes to the
parsimony of the proposed N-PID. The average execution time per time step of
the entire network has been assessed on the Loihi, showing a total of 2us per
time-step, thus resulting in an average update frequency of 500kHz, which is far
beyond what we need for online applications.

e ™ Input height
(5] —-—
el —
g I - L] L] - - -
o
o 7
=
é —— Measurement
ol—— Target
w 14 Error Integral|, Derivative
(%] []
= TN
- VINNERE O DA NRE (N W
g 7 [z Lunme K una Runue e
= L i L] 1 I I Il o
LS I
: - I
] " |
Z = |
w14 Motor command
[
'U L] 1
.E LI} - . L] - - -
g 7 - -- LI L0 I g | |} .11 L1 1] —
S:-; - - L} in1 ! ' LI B an nn 1
- - - - L |
%] 1
Z '
0 p
Z, 04 Decoded thrust
=
GVJ} 0.2
]
)
17
& 02
=
04
Time

Figure 4.8: Overview of the spiking activity on-board the Loihi chip running the N-PID height
controller in simulation (offline data). In this case, the target altitude is 1.5 meters. The thrust
offset corresponds to the offset to be added to the hovering thrust command.

4.3.2. Real-world results

In the following, we implemented the N-PID for altitude control on the Kapoho Bay
neuromorphic device mounted on-board a MAV. Based on the results obtained in
simulation, we decided to test the small network with a population of 15 output
neurons with a quadratic distribution of the control precision. Therefore, the
N-PID features only 93 neurons (6N + 3), plus 45 input neurons for the encoding
of the altitude measurement and target, along with the derivative of the error.

74 4. Control through fixed network connectivity

Two different altitude set-points were tested (1.0m and 1.5m) over 5 trials each.
The altitude ground truth over time was given by the OptiTrack motion capture
system, and the results are shown in Fig. 4.9. The shaded colored areas show the
target bins, caused by the precision of the altitude discretization. Inside the
shaded area, the error between the measured and target altitude is zero, which
means the MAV is flying at hover-thrust. For some flights it can be seen that the
drone is not able to maintain altitude. On the real drone, the hover thrust PWM
level depends largely on the battery level. Even though it is visible that the
integrator is able to compensate for a voltage drop over multiple runs, the
integral output will be saturated and the MAV will lose altitude with a low battery.
During the tests, the control loop update frequency of the system was set to 70Hz
to be consistent with the height sensor.

2

Altitude [m]

Time [s]

Figure 4.9: Real-world tests for take-off altitude control with neuromorphic hardware for
N = 15. Different set-points are shown in different colors. The shaded bands around the
set-point represent the bin around the set-point altitude

In Fig. 4.10 the I/O spiking activity of the N-PID running on the neuromorphic chip
is shown for one of the tests performed with the MAV. Compared to the simulation
results, there is more noise around the thrust command. This is caused by the
derivative that is based on the measured altitude and has a resolution of 1 cm.

4.4. Conclusion

We presented a neuromorphic implementation of the PID to control the altitude
of a MAV equipped with the Loihi neuromorphic processor. Using a very low
number of neurons, the network demonstrated its capability of achieving robust
and stable control, with the potential of reaching extremely high control loop
frequencies. The proposed neural network does not require any training as its
circuitry inherently captures the desired dynamics - only the weights of the
synapses need to be tuned to fit with the aerodynamic properties of the MAV. In

4.4. Conclusion 75

P——— .
Bo14 . Input height
=]
= []
o— []
o
E -—
a —— Measurement
Z ol Target
a 1 . Motor command
=] 1
E] 1] nrmn u
o 1 | | n 1 1
n | | [N} i 1
) .II -uam (BTN 1 1
— - L] L EIIININEE NI
: L] mmn L1 [IRIN NN] mummn n
Q 1 1 - I EEN Nl noaEm muan n
Z o e—te i ! !
s
=
= Decoded thrust
w025
w
Bl
S 0.00
17
5 —0.25 1
—
=
[_|

0 100 200 300 400 500 600 700 800
Time step

Figure 4.10: Overview of the Loihi input/output spike activity during an online test with the
MAV (target altitude: 2.0m), as well as the decoded thrust offset (in Newtons). The controller
generates a slight overshoot for high targets, but quickly converges to the desired set-point.

practice, the tuning of the input, error and control ranges, can be difficult for
unstable systems with a low amount of neurons. Here, using non-linear
distributions for these ranges has proved to mimic the response of a controller
with a larger amount of neurons and is very promising for attitude control.

In both Stagsted et al. [26] and Zaidel et al. [79], it was observed that
implementing a proper derivative action on neuromorphic hardware is difficult
and remains an open problem. Future improvements of this algorithms include a
fully neuromorphic implementation of the N-PID for controlling all degrees of
freedom of the MAV, including attitude commands. This requires multiple PIDs to
run in parallel and series on the neuromorphic hardware.

Having a neuromorphic controller like a PID that is easily implementable on
available hardware contributes to closing the neuromorphic loop for control in
robotics. These controllers can be easily implemented in pipelines making use of
event-based algorithms.

Lastly, the very high execution frequency of the N-PID on the Loihi chip (around
500kHz) strengthens the fact that conventional hardware (including communication
protocols) must be improved to meet the promise of neuromorphic computing to

76 4. Control through fixed network connectivity

target very fast control in tasks such as drone racing and aggressive maneuvers
with MAVs.

Supplementary information

The code and data collected during this study are publicly available online at the
following address: https://github.com/tudelft/neuro_pid.

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA8655-20-1-7044. This work has also received
funding from the ECSEL Joint Undertaking (JU) under grant agreement No.
826610. The JU receives support from the European Union’s Horizon 2020
research and innovation program and Spain, Austria, Belgium, Czech Republic,
France, Italy, Latvia, Netherlands.

Link to paper:

https://github.com/tudelft/neuro_pid

4.4. Conclusion 77

Threshold adaptation
facilitates integration

As previously discussed in this thesis, it is currently still challenging to replicate
even basic low-level controllers such as proportional-integral-derivative (PID)
controllers. Specifically, it is difficult to incorporate the integral and derivative
parts. To address this problem, we propose a neuromorphic controller that
incorporates proportional, integral, and derivative pathways during learning.
Our approach includes a novel input threshold adaptation mechanism for the
integral pathway. This Input-Weighted Threshold Adaptation (IWTA) introduces
an additional weight per synaptic connection, which is used to adapt the
threshold of the post-synaptic neuron. We tackle the derivative term by
employing neurons with different time constants. We first analyze the
performance and limits of the proposed mechanisms and then put our controller
to the test by implementing it on a microcontroller connected to the open-source
tiny Crazyflie quadrotor, replacing the innermost rate controller. We
demonstrate the stability of our bio-inspired algorithm with flights in the
presence of disturbances. Integration is an important part of any temporal task,
so the proposed Input-Weighted Threshold Adaptation (IWTA) mechanism may
have implications well beyond control tasks.

Parts of this chapter have been published in The Proceedings of the International Conference on
Neuromorphic Systems (ICONS) 2023 [83]

79

80 5. Threshold adaptation facilitates integration

5.1. Introduction

Autonomous drones are envisaged for a wide range of applications [84].
Many of these applications require a high computational capability, which
enables them to accomplish tasks solely based on data acquired from their
onboard sensors, such as cameras and GPS-sensors. Currently, this is out of
reach for many drones, since they are very limited in terms of size, weight, and
processing [85]. Deep neural networks require heavy, power-hungry processors.
That is why there is a surge of interest in bio-inspired, neuromorphic processing,
which carries the promise of low-latency, energy-efficient processing of deep
neural networks [86]. Although there is a lot of focus on complex neural networks
for high-level visual perception [87], a fully neuromorphic solution needs to
encompass low-level control [88]. Remarkably, it is currently still highly
challenging to replicate even simple low-level controllers such as PID controllers
with spiking neural networks. An example of such a low-level controller is the
fascinatingly elegant biological system that affects the haltere reflexes of the
drosophila melanogaster [89].

Recently, an increasing amount of robotics research has been focused on

Figure 5.1: We propose a novel spiking neural network mechanism for realizing the integral
term in a spiking PID controller and analyze the use of different time constants for the
derivative term. For the integral term, we introduce Input-Weighted Threshold Adaptation,
leading to a second weight per synapse. These mechanisms are demonstrated with onboard
attitude rate control of a tiny Crazyflie drone.

5.1. Introduction 81

developing spiking neural networks (SNNs) for control. Specifically for controlling
flying robots, examples include Clawson et al. [90], which uses reward-modulated
synaptic plasticity to track a Linear-Quadratic Regulator (LQR) for a flapping wing
drone. In Qiu et al. [91], a neuro-evolution strategy is utilized to learn a controller
for a drone and is shown to outperform a PID in simulation. Closer to our work
are studies that mimic the behavior of conventional controllers with SNNs.
Among those, the benefits of a spiking end-to-end control pipeline are especially
clear in Vitale et al. [22]. In this work, the rotation of a bi-rotor was controlled by
combining a neuromorphic implementation of the Hough transform with a
population-coded spiking implementation of the conventional PID controller.
They showed that due to the high update rates and asynchronous data flow from
the event camera and neuromorphic chip, much faster responses could be
obtained than with a conventional control setup. The accuracy of this network
scaled quadratically with the number of neurons, putting a limit on the resolution.
In our previous work, the complexity of such a PID network was reduced to make
it scale linearly with the number of neurons, and the network was used to control
the altitude of a free-flying drone in a real-world test [66]. However, the integral
and derivative paths in both these works showed clear limitations, imposed by
the number of neurons used to represent the signals.

Besides population coding, also rate coding was used to recreate conventional
control. For example, in Zaidel et al. [79] the joints of a 6-DOF robotic arm were
controlled by a rate-encoded PID controller, creating the integral pathway by
having self-recurrent connections and the derivative by adopting different time
constants. Despite using this self-recurrency in the integral pathway, there still
remained a steady-state error, showing the incapability of error integration over
time.

In all these examples the seemingly simple tasks of calculating the integral and
derivative over time have proven to be difficult for the current-based Leaky
Integrate-and-Fire (LIF) model. This may be due to the simplicity of the LIF neuron
used in most robotics research. Popular for its simplicity, it fails to deal with the
phasic-tonic response exhibited by biological neurons [92]. Lastly, although all
these works show clear steps toward a full end-to-end neuromorphic pipeline,
none of them has demonstrated the ability to control the lowermost loop of a
real, free-flying drone.

We present a neuromorphic controller that can more closely mimic PID
controllers. We make the following contributions: (1) We introduce
Input-Weighted Threshold Adaptation (IWTA) to achieve more accurate
integration. (2) We systematically study the capabilities and limitations of neurons

82 5. Threshold adaptation facilitates integration

with slow and fast time constants for obtaining the derivative term. (3) We
analyze the advantages and limitations of the introduced mechanisms. (4) We
demonstrate the novel neuromorphic controller with the onboard attitude rate
control of a tiny (=30 gram) flying Crazyflie robot (shown in Figure 5.1). Using only
320 neurons and 800 synapses per PID ling, it is designed to take advantage of
the unique characteristics of neuromorphic computing, such as high processing
speed and fault tolerance, while maintaining the promise of low power
consumption when implemented in specialized hardware. The network is
automatically trained to closely track the output of a conventional PID using
backpropagation-through-time (BPTT), removing the necessity for manual tuning
of network parameters.

5.2. Methods

The entire SNN consists of multiple groups of LIF neurons, each resembling one of
the separate parts of a conventional PID controller. All groups consist of an
encoding layer, transforming floating point inputs to rate encoded spike-trains
representing positive and negative values. These spikes propagate to neurons
that respond proportionally to the input, to the accumulated signal over time or
to the rate of change of the input. These independent systems are discussed in
detail below.

5.2.1. Encoding - floating points to spikes

For our network, a rate encoding scheme has been chosen that has separate
channels for positive and negative values. To ensure a certain spiking frequency
at an input stimulus, encoding is done according to two (symmetrical) tuning
curves. These tuning curves represent the spike probability of an encoding
neuron to a given stimulus, and by comparing this to a random-generated number,
either a spike (1) or not (0) is produced by the neuron. Although more complex
functions can be chosen for these tuning curves, in this work a linear relation
between spiking frequency and stimulus was chosen. This linear relation between
input i(¢) and output spike probability P(s(t)) at time t is dictated by the

5.2. Methods 83

Tuning curves of positive and negative neuron

1.0

0.8

0.6

0.4

firing prob.

0.2

0.0 1 1 1 1 1 1
—-1.00 -0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

input floating point value

Typical (encoded) gyroscope sequence

avg. spike rate [%)]
rotational rate [deg/s]

0.0 0.2 0.4 0.6 0.8 1.0
time 3]

Figure 5.2: Overview of the encoding layer. The top graph shows the firing probability for
a certain stimulus for positive and negative encoding neurons. The bottom graph depicts
a typical sequence of encoded gyroscope measurements. The average spike rate of the
encoded positive and negative spikes is shown in blue and red and the input sequence is
shown in dashed green.

parameters o« and (as follows:

0 rBi(t) +a <0
P(s(t)) = rBi(t)+a 0<rBi(t) +a <1 (5.1)
1 rBi(t) +a>1

1 positive neuron

—1 negative neuron

ﬁ

84 5. Threshold adaptation facilitates integration

The value of r depends on whether the encoding neuron is positive or negative.
This is visualized in Figure 5.2 where the set of tuning curves used in this work and
the resulting output spikes are shown for a typical input sequence measured with
gyroscopes.

5.2.2. Proportional - steering towards setpoint

The output of the proportional layer should drive the system from its current state
to a setpoint by responding linearly to the error. In this network, this is done by
feeding the output of an encoding group, as described above, to two current-based
Leaky Integrate-and-Fire (LIF) neurons, again each representing either positive or
negative control commands (see Section S5.5.1 for the model used). The spikes
from this layer are sent to an output leaky integrator, acting as an exponential filter
to smooth the response. To ensure a balanced response, the synaptic weights in
the network must be symmetrical for the positive and negative inputs. By using
more than one group, the stochastic effects induced by the encoding layer can be
reduced and the accuracy increased.

+
7\ w1

GP(S) L1l

\ wi

PEW] | |

N

error command

Figure 5.3: Structure of the proportional neuron groups. The value is encoded into "positive”
and "negative” spikes and sent via symmetrical weights to a layer of Leaky Integrate and Fire
neurons. The spikes emitted by these neurons are sent to a Leaky Integrate output neuron,
resulting in an exponential filtered output.

5.2.3. Integral - ensuring zero steady-state error

The integral neurons should remove the steady-state error, unresolved by the
proportional control. Initially, one may think that LIF neurons could integrate by

5.2. Methods 85

setting the decay parameter to one (no decay). However, as soon as a spike
occurs the integrated membrane potential is reset. Hence, if the membrane
potential is not read out directly and the integrator has to be encoded by spikes,
a different mechanism is required. We propose a different solution in this work
inspired by threshold adaptation mechanisms and the modulatory effects certain
receptors exhibit. There is a synaptic connection between the positive and
negative encoding neurons to both neurons, as opposed to the proportional
connections where there is only a connection between the positive neurons on
the one hand and between the negative neurons on the other. Besides the
synaptic weights, there is also a signal flowing from the encoding neurons to the
thresholds of the neurons in the integration layer, increasing or decreasing the
threshold based on the sign. Previous work has studied various mechanisms for
adapting the threshold based on inputs, often to prevent spike saturation. For
example, the regular Adaptive LIF (ALIF), adapts its threshold based on its own
spike activity [93]. As a variation of the ALIF, Paredes-Vallés et al. [94] proposes
to deduct the pre-synaptic spike trace from incoming spikes, to discern features
under varying input statistics, such as the per-pixel firing rate of event camera
data. In our method, however, the threshold is regulated based on weighing the
incoming activity. A spike in the positive integration neuron coming from the
positive encoding neuron decreases the threshold with a weight of 0,44 (therefore
increasing the spiking rate), while the negative encoding neuron causes an
increase with 60,49 (thus decreasing the spiking rate), and vice-versa for the
negative integration neuron. This results in the following update rule for the
threshold:

0" (t 4 1) = 6" (£) + Baga (s (t) — s4(1)), (5.3)
thr(t + 1) _ Tthrezhr(t) + wthrsi(t) (54)
N
O (t + 1) = 7O (1) + Z w}hrsj (t) (5.9)
j=0

with s_(¢) and s, (¢) the negative and positive incoming spikes, respectively.
Now, the encoding neurons act as a constant driving synaptic signal to maintain a
certain activity in the integration layer, while the actual spiking rate is governed
by the variation in the threshold. A common problem with PID regulators is
integral windup, where actuator saturation or large changes in setpoint might lead
to large amounts of accumulated error [95]. In our LIF model, we solve this by
limiting the amount of change in the threshold, keeping the threshold in the range

86 5. Threshold adaptation facilitates integration

of [0,26""] where 6™ is the base threshold. If the threshold is zero, the integrator
will spike with the maximal spiking frequency, which is determined by the time
step and refractory period. It could be noted that multiple changes to this model

<W1, _gadd> +
PEIYL 1l v
w2
<W1, 04>
~——
W1, 0.5 / "
4
Q) N ¥
error command
<W1, _gadd>

Figure 5.4: Structure of the integral neuron groups, bearing the Input-Weighted Threshold
Adaptation (IWTA) mechanism. Next to the regular synapses, additional connections have
been added that adapt the threshold of the LIF neurons according to their weights.

are imaginable. For instance, if a decay term is added to the threshold it more
closely resembles the ALIF, where the threshold converges back to a base value.
In biology, this kind of input adaptation is similar to certain neurotransmitters
with modulatory effects [96]. Also, every input group now uses only a single
positive and negative encoding neuron, with one update parameter 6,44. One
could imagine using a larger group of encoding neurons, separate update weights
044 per input connection and including these weights in the training procedure. In
this work, this remains unexplored since it focused on the task of integrating
errors for which the proposed set of connections was sufficient.

5.2.4. Derivative - decreasing overshoot

The derivative action should be proportional to the change over time, countering
any potential overshoot. To obtain this, a similar structure to the proportional
groups is used (as in Figure 5.3), but now two of these groups are used in unison,
instead of one. One of these groups has very fast time constants (higher weights,
but faster decay), allowing it to react quickly proportionally to the input. The
other has slower time constants (lower weights, but slow decay), resulting in an
output that is a slightly delayed version of the input. By taking the difference

5.2. Methods 87

between these two groups, we get a measure of the change over time which can
be used as the derivative term in our PID controller. Using multiple of these
derivative groups again increases the accuracy of the overall estimate. For the
derivative, this is especially important, as the derivative is usually already quite
noisy due to noisy sensor measurements.

5.2.5. Training and tuning of the network

Since the network has a substantial number of parameters that all influence the
performance of the controller (such as synaptic weights, decay parameters and
encoding parameters) and the parameters all depend on the time constants and
gains of a specific controller, manual tuning is undesirable. Therefore, it was
chosen to use the architecture of the network as described above as a starting
point and fine-tune the parameters using Backpropagation-Through-Time (BPTT).
Because the LIF threshold function is non-differentiable, it was chosen to apply a
surrogate gradient in the backwards-pass of BPTT [97]. Specifically, the surrogate
gradient used in this work is the derivative of the arc-tangent as was proposed
in [98].

To force a response that is close to that of the target, the Mean Squared Error
(MSE) was used as the dominant term in the cost function. Since during training,
especially the derivative term was very sensitive to converging to local minima, it
was chosen to add a second cost term for the derivative based on the Pearson
correlation coefficient p(x, Z) [99]. Since we have a minimization problem and the
perfect coefficient p is 1, we use 1 — p(x, &) as the cost, further referring to it as
the Pearson loss. For derivative control, it is very important that the control action
is at least of the correct sign because failing so might mean instabilities can arise.
The Pearson loss promotes a linear relationship between both inputs and therefore
supports the network to produce the correct sign. Finally, the parameters of the
network need to stay within certain bounds, decay parameters for instance cannot
be larger than 1 or smaller than 0. To force parameters to stay within these bounds,
a linear exterior penalty function p,,.(¢) is added to the cost function equal to the
distance to the boundary. This results in the following cost function used in the
BPTT training algorithm:

J(¢) = MSE(z, %) + (1 — p(, &)) + Perr (). (5.6)

In this cost function, x and z are the measured- and estimated values respectively,
1 — p(z, &) the Pearson loss. p,,,(¢) is the error based on the parameters ¢, which
is zero for all values of ¢ inside their specific range but of size |¢| for those outside.

88 5. Threshold adaptation facilitates integration

A table of all parameters included in the training, together with their valid ranges,
can be found in the supplementary information.

The data used for training was accumulated by logging the PID values of the
regular Crazyflie controller on an onboard pSD card during manual flight. Care
was taken to excite the system enough to gather a broad range of possible values
a controller might encounter.

5.3. Analysis SNN controller

First, we look at the suitability of the multiple time constants for differentiation and
afterward, we evaluate the IWTA mechanism for integral control.

5.3.1. Derivative

To assess the ability of a network of LIFs with different time constants to estimate
the derivative we start by looking at the response of both the fast and slow
groups to an illustrational gyroscope sequence, obtained with the Crazyflie, after
training. As can be seen in Figure 5.5, the average spiking rate of the slow groups
is approximately a delayed version of the fast groups. By subtracting the delayed
version we obtain a result similar to first-order backward difference, usually used
in robotics to calculate the derivative of sensor data. We noticed, however, that a
particular set of time constants fits chiefly to the data it was trained upon. To
further investigate this behavior, the response to sine waves with different
frequencies was studied. Figure 5.6 shows the MSE and Pearson loss for a range
of sine waves with different frequencies after training on two sets of frequencies.
The network was trained on a smaller range of sine waves between 5 and 7Hz,
and also on a much wider range of 2 to 10Hz. Afterwards, the response to the
entire frequency range was compared for both trained networks. Although the
network can accurately determine the derivative for the middle frequencies (B), it
is too fast for lower frequencies (A), where the network in blue rises to its peak
faster than the real derivative in red, and too slow for higher ones (C) where the
network reaches its tipping point later. It is also visible that even with the larger
range of input frequencies during training, the different time constants cannot
correctly represent the entire band. Although the overall error gets reduced
when training on the large band, the response for the lower and higher
frequencies is still inaccurate. This suggests that a different mechanism would
need to be introduced in order to obtain perfect differentiation independent of
input frequency.

5.8. Analysis SNN controller 89

Derivative groups: fast versus slow

0.1
0.0 \ j :
-0} 2

delay — d/dt

0.10 [

Fast

—— Meas. d/dt
0.05 —— SNN d/dt

0.00

-0.05

-0.10 [1 1 1 1 1 1 1
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 O.TO
[sec

Figure 5.5: Example response to a common gyroscope input sequence recorded with the
Crazyflie of both derivative groups. The top graph shows the average spiking rate of the
fast and slow groups. As can be seen, the slow group is slightly delayed and the difference
between both can be seen as a measure of the rate of change over time. In the bottom
figure, this is visible as the derivative estimated with the SNN is compared to the measured
derivative.

The importance of both cost terms in the loss function is also visible; the MSE
cost for lower frequencies is relatively lower than the Pearson loss and for higher
frequencies vice versa. Also, the amplitude of the SNN does not scale with the
frequency, as is the case in the real derivative. This asserts the need for a reliable
training procedure to tune the network to the application used, as was done in this
work.

5.8.2. Integral

Furthermore, we have looked into the potential of the proposed Input-Weighted
Threshold Adaptation (IWTA) mechanism. To present the importance of a
functioning integrator, the classical control problem of the double integrator is
used as an example. We have implemented the discrete-time equations of the

90 5. Threshold adaptation facilitates integration

0.06

A: 2.4Hz B: 6Hz C: 9.6Hz L 0.8
0.05 4 L 0.7
- 0.6
0.04 4
)
~— IR . . MSE(e
/= 0.03 4 “:-A (©)
! = o Iple)
= o
0.02 1
0.01 A
’:'-‘, .B
N e
0.00 +— . " . —L 0.0
2 4 6 8 10

Sine freq. [Hz]

Figure 5.6: MSE and Pearson loss for a range of derivatives of sine waves after training on
two sets of frequencies, 5-7Hz and 2-10Hz. Green lines correspond to the smaller range, and
orange to the larger while the solid lines show MSE and dotted Pearson loss. The darker-
colored area depicts the range on which the smaller set was trained. Three sub-figures are
also included, demonstrating the response to a frequency A) below, B) inside and C) above
the smaller training range with the SNN response in green and orange and real derivative in
red.

double-integrator as

o(t + dt) = Ll) ‘ﬂ () + [2352] (u(t) — g), (5.7)
M@:ﬁ @ﬂm (5.8)

where u(t) is the control input and g is a constant input disturbance. In Figure 5.7
we show the response of this system to three different SNNs; the LIF SNN with
only PD components, an SNN with PD components and an integrator group that
has fully recurrent connections (as was used in [79]) and lastly our SNN with IWTA.
The system starts from an initial state of z0 = [0.3,0.0]" and gets a setpoint 0.0.
The constant disturbance force g was chosen to be 4.0. First, the SNN without any
integrating mechanism settles at a steady-state error of —0.1. Second, the SNN
with recurrent connections manages to reduce this steady-state offset, but not

5.4. Real-world experiments 91

remove it completely. Due to representation errors, the recurrent connections
cannot perfectly describe the integrated error. This means that the accumulated
error is either underrepresented or overrepresented. In the former case, the
integrator leaks information each time step and thus never completely removes
the steady-state error. The green lines in Figure 5.7 show this, since it clearly
reduces the steady-state error, but does not remove it completely. In the latter,
the feedback amplifies the error at each time step which makes the system
unstable and leads to all integrator neurons spiking at each step. Finally, the
network that uses IWTA reaches a zero steady-state error.

03 |
—— SNN

02 b —— SNN + Recurrency
—— SNN + IWTA

0.1 |

0.0

-0.1F

—0.2 b i i i i i i i i

Figure 5.7: Comparison of three controllers to a setpoint-control task with an unknown
input disturbance. The SNN with PD control only shows a constant offset from the setpoint
after converging. The SNN with recurrency is clearly able to reduce the steady-state error,
but due to representation error retains a small offset. The network equipped with Input-
Weighted Threshold Adaptation effectively removes the steady-state error.

5.4. Real-world experiments

After the components are evaluated separately in simulation on toy problems, the
use of the complete network was verified on a real-world problem.

5.4.1. Hardware implementation

To demonstrate the capabilities of our approach, we have implemented it as the
lowest control layer of the tiny open-source quadrotor Crazyflie [100] (See

92 5. Threshold adaptation facilitates integration

Figure 5.1). The Crazyflie was enriched with enough computational power by the
development of a deck module based on a Teensy 4.0 development board
allowing the SNN to run in real-time (500Hz) in C++ on the ARM Cortex-M7
microprocessor. For the real-world tests, two scenarios were discerned; 1)
manual flight and 2) position control. For manual control the Crazyflie receives
attitude (roll/pitch/yaw) commands from a (manually controlled) radio transmitter
and the higher-level attitude controller transforms these into rate setpoints. In
the case of position control, the Crazyflie receives position measurements
obtained with a Motion Capture system along with position commands via radio
and via the same high-level controller these are converted to rate setpoints.
These setpoints are sent, along with the gyroscope measurements from the
onboard Inertial Measurement Unit (IMU), via UART to the deck where the SNN
controller is evaluated at 500Hz. The torque command outputs of the neural
controller are in turn sent back to the Crazyflie via the same UART connection,
where they are inserted directly in the motor mixer. The total take-off weight of
the Crazyflie including the Teensy 4.0 is only 35 grams, allowing for approximately
5 minutes of flight time.

5.4.2. Flight tests

To demonstrate the capabilities of the network, a position-control test was
performed along with manual flight. First, the Crazyflie was ordered to take off at
its current position and after 2 seconds it was ordered to move to [0.5, 0.0] in 2
seconds. This test was repeated 10 times for both the SNN controller and the
regular PID controller as a benchmark. The results of all these 10 tests are shown
in Figure 5.8. In the top two plots, the response of the SNN controller is shown.
Among all ten tests, the controller remained stable and was able to follow the
setpoint. The trajectory followed is very similar to that of the regular PID
controller. However, on the y-results, as well as the inset axes for z, it is visible
that the SNN controller has slightly larger deviations around the setpoint. These
can be caused by the stochasticity in the encoder. Since the input floating point
value is reduced to a binary spiking input, the accuracy of the encoding is
influenced by the encoding parameters but mostly by the number of input groups
used. For this work, only 40 groups were chosen per P, | and D pathway for each
control axis. Since the P and | terms require 2 neurons per group and the D term
4, this sums up to a total of 320 neurons per controller. This small number of
neurons was chosen to showcase the possibilities of using small-scale systems
for neuromorphic control. However, increasing the number of input groups would

5.4. Real-world experiments 93

SNN controller results

X position y position

--0.04

0 2 4 6 8 10 12 0 2 4 6 8 10 12

Measured
~0.04
0-0 Target

0 2 4 el‘.T [s] & 10 12 0 2 4 67T [s] 8 10 12

Figure 5.8: Position setpoint responses of both the SNN controller (top) and the conventional
PID (bottom). For both, the positions as measured by the Motion Capture system are shown
in blue, and setpoints in red. Although the SNN controller has a slightly noisier response, its

trajectory is very similar to the PID.

make the spiking representation of the input signals more accurate.

Besides the position-control tests, the response to manual flight was performed
with which the response of the different parts of the controller on a real-world
system could be analyzed. In Figure 5.9, one second of such a test is shown. It
is evident that the proportional part is very accurate, and the integral pathway
is able to effectively deal with prolonged errors. The response of the derivative
pathway is less accurate. This is most likely caused by the mechanisms shown
in the derivative analysis, earlier in this work (Section 5.3.1), where it was shown
that the derivative pathway tunes to specific delays. Even though the network is
trained on real flight data, the range in delays might be too large which results in
larger errors for the lowest and highest frequencies. For control of the Crazyflie,
this is still acceptable since the derivative control path still effectively dampens
the response by countering large derivatives in the input.

94 5. Threshold adaptation facilitates integration

D.5—P

0.0

network

_os | target

0.2—1

0.1F

0.0

—0.1 &

0.00 measured ¢

——- target ¢ r

—0.25

—0.50

Figure 5.9: Output of the SNN controller in blue versus target values computed with a
conventional PID controller in red for a manually controlled flight. The three uppermost
figures depict the individual components of the controller. As can be seen, the SNN
controller produces very similar results to the reference controller. The lowermost figure
shows the input to the network; the target rotational rate ¢ and the rate measured by the

gyro.

5.5. Conclusion

In this work, we have proposed a novel input threshold adaptation mechanism,
Input-Weighted Threshold Adaptation (IWTA). This mechanism adds extra weights
per input connection that regulate the spiking threshold of the LIF neuron. By
doing so, it enhances the network with the ability to integrate information over
time, something the regular LIF model is unable to do.

5.5. Conclusion 95

Also, we have shown that neuromorphic controllers using rate-based encoding
can be used to control highly unstable underactuated systems. To demonstrate
this, we have shown control of the innermost loop of a real flying tiny quadrotor,
the Crazyflie. Using only 320 neurons per control axis, the network showed to be
capable of stable and robust control, with the potential of extremely low delays
due to the high inference speed of neuromorphic hardware. By a straightforward
training method using surrogate gradients and Backpropagation Through-Time, the
network can be fine-tuned to a very limited amount of data from a real-world flying
drone. Due to the sparse connections, the network is able to optimally benefit from
the advantages of neuromorphic hardware.

In future work, we intend to apply the IWTA mechanism to different tasks and
benchmarks to further establish its potential. Even though the different time
constants for the derivative neurons allow us to dampen the control response,
we have shown that they are limited to a specific frequency. We will also
investigate the application of IWTA on the derivative neurons to improve the
accuracy over a much broader range of frequencies. The availability of a
neuromorphic controller, such as a PID, that can be easily implemented on
neuromorphic hardware plays a crucial role in completing the neuromorphic
control loop in robotics. These controllers can be readily integrated into pipelines
utilizing event-based algorithms, like a vision-based control system using an event
camera as in [59]. Lastly, the fast-paced and unpredictable movements of drones
demand high-performance computing that traditional hardware struggles to
provide, making neuromorphic processing an attractive alternative.

Supplementary information

5.5.1. Current-based Leaky-Integrate-and-Fire neuron

The current-based Leaky-Integrate-and-Fire (CUBA-LIF) is widely used in literature,
available in most SNN simulators and commonly used in neuromorphic hardware,
such as Intel’s Loihi [19]. The discrete-time dynamic equations of the LIF neuron
are as follows:

Uit +1) =7 M0i(t) + 45(2), (5.9)
TN (E) + > wigs;(t), (5.10)

~
N
—~
~
+
—_
~
I

where v;(t) is the membrane potential at time ¢, 7™M € [0,1] and 7;”" € [0,1] the
membrane and synaptic time constants, i(¢) the synaptic current at time ¢, w;; the
synaptic weight between neurons i and j, and s; a binary value representing either

96 5. Threshold adaptation facilitates integration

a spike or no spike coming from the pre-synaptic neuron j. To determine whether
a neuron emits a spike, the membrane potential is reduced with the neurons firing
threshold 9?" and passed through the Heaviside step function to determine the
output of the neuron:

0, vit) =" <0

si(t) = H(vi(t) — 0]") =
1, vit) — 6t >0

(5.11)

When the Heaviside function resolves to 1 and the neuron emits a spike, the
membrane potential v;(¢) is reduced by the threshold value (in literature this is

known as a soft reset [101]).

5.5.2. Trained parameters and ranges

In Table 5.1, all the parameters used in the network are given, along with the

specified range and the number that was used in the Crazyflie application.

Parameter | Range | Count

P | 7 (current decay) [0, 1] 80
7, (voltage decay) [0, 1] 80

w; (input weight) | [0, co] 40

w, (output weight) | [0, co] 40

| 7; (current decay) [0, 1] 80
7, (voltage decay) [0, 1] 80

w; (input weight) | [0, co] 40

w, (output weight) | [0, oo] 40

D | 7; (current decay) [0, 1] 160
T, (voltage decay) [0, 1] 160

w; (input weight) | [0, oo] 80

w, (output weight) | [0, co] 80

Table 5.1: All parameters trained in the network, their given range, and how many are used

for the real-world tests.

Link to paper:

=
O

ot
¥
e

R

X

AT

=%
By

. "2 u'.':r;:

5.5. Conclusion 97

Neuromorphic attitude
estimation and control

To reap the maximal benefits from neuromorphic computing, it is necessary to
perform all autonomy functions end-to-end on a single neuromorphic chip, from
low-level attitude control to high-level navigation. This chapter presents the first
neuromorphic control system using a spiking neural network (SNN) to effectively
map a drone’s raw sensory input directly to motor commands. We apply this
method to low-level attitude estimation and control for a quadrotor, deploying
the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and
then merging estimation and control sub-networks. The SNN is trained with
imitation learning, using a flight dataset of sensory-motor pairs. Post-training,
the network is deployed on the Crazyflie, issuing control commands from sensor
inputs at 500Hz. Furthermore, for the training procedure we augmented training
data by flying a controller with additional excitation and time-shifting the target
data to enhance the predictive capabilities of the SNN. On the real drone, the
perception-to-control SNN tracks attitude commands with an average error of
3.0 degrees, compared to 2.7 degrees for the regular flight stack. We also show
the benefits of the proposed learning modifications for reducing the average
tracking error and reducing oscillations.

Parts of this chapter have been published as an |[EEE Robotics and Automation Letter (RA-L) 2025 [60]

99

100 6. Neuromorphic attitude estimation and control

6.1. Introduction

uadrotors have soared in popularity over the past decade, significantly

influencing the field of unmanned aerial vehicles (UAVs) with their unique
capabilities. These agile machines are applicable in a myriad of applications, such
as search and rescue operations [102], environmental monitoring [103] and
precision agriculture [104], owing to their ability to hover, perform vertical
take-offs and landings, and navigate through confined spaces with remarkable
precision.

The integration of Artificial Intelligence (Al) promises to extend the capabilities
of quadrotors even further [105, 106]. By leveraging advances in Al, we can
envision quadrotors that not only perform pre-programmed tasks but also adapt
to new challenges, achieving levels of flight performance and operational
robustness previously unattainable while solving tasks that are currently
performed post-flight or offboard. However, the current generation of quadrotors
is hindered by hardware that is often power-hungry and algorithms that fall short
in efficiency and adaptability [107].

A promising solution to these challenges lies in the emerging field of
neuromorphic hardware [108]. Neuromorphic systems, including processors and
sensors such as event-based cameras [20, 109], draw inspiration from neural
systems found in nature. These systems use sparse and asynchronous spikes to
transmit information that are both energy-efficient and enable high-speed
processing. Due to the low latency, this approach is particularly well-suited for
dynamic environments where rapid decision-making is crucial [110]. Central to
this neuromorphic paradigm are Spiking Neural Networks (SNNs) [111], which
emulate the brain’s information processing using neural spikes. SNNs have
demonstrated their potential in various robotic applications, yet their use in
controlling the full flight dynamics of quadrotors remains largely unexplored. By
adopting strategies seen in nature, such as the reflexive control and visual
processing used by the fruit fly [89], we can develop more integrated and efficient
control systems. This does, however, require a fully end-to-end neuromorphic
system.

Neuromorphic control is a nascent field at the intersection of neuroscience and
robotics control theory [112]. The benefits of neuromorphic hardware, such as
fast inference and high energy efficiency [86], harmonize with demanding control
and estimation tasks. While the output of rudimentary sensors for quadrotors,
such as Inertial-Measurement-Units, can already be processed at the high
frequencies necessary for agile and robust control, vision-based tasks are

6.1. Introduction 101

inputs perception control output
Y| network network commands
We
wp
Wy
ag /=7
ay IMU ¢est e
0,
a) .est Uy
"pest u¢
d)com
ocom .
attitude commands

'¢'c0m

Figure 6.1: We present an approach to training a spiking neural network for end-to-end
attitude estimation and control of tiny drones (deployed on a Crazyflie, top). The network
is a merging of a 2-layer attitude estimation sub-network with recurrency and a 1-layer
recurrent attitude control network (bottom). The network exhibits a spiking activity of 15%,
which is promising in terms of energy efficiency for future implementation on a neuromorphic
processor. The network currently runs at 500Hz on a Teensy microcontroller.

severely limited by processing power on a flying machine [113]. However,
Dimitrova et al. [114] have shown that using event-based cameras allows a
quadrotor to track the horizon at extremely high speeds. To further increase the
potential of such a system, the authors of [22] showed that integration of this
horizon tracker with a manually-tuned SNN controller on a single neuromorphic
processor leads to even faster control, benefiting from having all parts on the
same chip.

Despite significant advances in Al for quadrotors, limitations remain,
particularly in vision-based tasks constrained by onboard computational
resources. Falanga et al. [115] argue that regular frame-based cameras are

102 6. Neuromorphic attitude estimation and control

inadequate for avoiding obstacles due to their high latency, which can be
detrimental in fast-paced environments. Although event-based cameras address
these latency issues, the processing on non-neuromorphic hardware required
compromises in detection algorithms to favor speed over accuracy.

Recent breakthroughs in quadrotor research have achieved impressive results,
such as outperforming human pilots in drone races using only onboard
computations [116]. Also, Song et al. [105] show that for these tasks, optimal
control methods are no longer sufficient and are beaten by Reinforcement
Learning (RL) employing Deep Learning.

Despite these accomplishments, the reliance on slower frame-based vision
systems, typically operating at 30Hz or lower, highlights a significant gap where
neuromorphic solutions could offer substantial improvements. These examples
underscore the critical need for fully integrated neuromorphic systems capable
of high-speed data processing.

To allow such a unified system, the entire estimation and control loop needs to
be considered. Despite the promising results in partial implementations, a fully
integrated neuromorphic system connecting sensor inputs directly to motor
commands has not yet been realized in operational quadrotors. Results focusing
exclusively on lower-level SNN control have been obtained using manually tuned
networks [26, 66] or were limited to simulation [90, 91]. Moreover, even
state-of-the-art learned quadrotor controllers using regular Multilayer
Perceptrons (MLPs) as presented in [9, 117] and [118], that were learned with RL,
assume full state knowledge or need a lower-level controller to go from rate
commands to motor outputs. Zhang et al. [119] have demonstrated in simulation
that by using an expert privileged policy, an MLP can be trained to perform
end-to-end control. But also here the observation model, containing the
measurements, included a direct measurement of the drone’s attitude. However,
such privileged information - complete and accurate state information - is rarely
available in real-world scenarios. This limitation is further exacerbated by the
reality gap, that arises when algorithms trained or evaluated in simulation must
cope with real-world conditions characterized by imperfect measurements,
sensor noise, actuator delays, and unpredictable environmental influences.

Notable efforts towards a complete end-to-end neuromorphic system include
the use of Intel’s Loihi processor [19] in a quadrotor for velocity control based on
optical flow estimates from event-based cameras [59], which successfully
combined ego-motion estimation with a basic linear controller. The experimental
results confirmed the potential of neuromorphic technology, as the vision ran at
frequencies between 274-1600Hz, while only spending 7mW for network

6.1. Introduction 103

inference compared to 14-25Hz on a Jetson Nano that required 1-2W for
inference. The neuromorphic system was not only significantly faster, but also
required orders of magnitude less power. However, it still relied on a companion
computer for attitude control, introducing delays, increasing power consumption,
and adding weight to the drone. Moreover, the linear neuromorphic controller
lacked a mechanism to compensate for steady-state errors, such as those caused
by sensor biases like gyroscope drift. With our work, we want to demonstrate
how the pipeline of [59] could be extended to run on a single neuromorphic chip.
In [120] a closed-form spiking network was proposed that could do end-to-end
control and estimation for linear systems and was shown to perform well with a
small number of neurons in simulation. Since this approach needs to be able to
read out a floating point “firing rate” of neurons in the hidden layer, it is not
trivially implemented on commonly available neuromorphic hardware where the
input and outputs are limited to vectors of binary spikes.

The main contribution of this article is that we design, train, and implement the
first fully neuromorphic system for attitude estimation and control of quadrotors.
The proposed method involves real-time processing from sensors to actuators
and does not require traditional computing hardware. Our approach is to train
two separate sub-networks, one for state estimation and one for control, and to
merge them after training. For both parts of the network, we employ supervised /
imitation learning. In our creation of the training scheme we had to overcome
substantial challenges, as the spiking neural network needs to cope with (i) sensor
bias, (ii) delays due to the progressive updates of spiking neural networks, (iii) the
reality gap and (iv) converting binary spikes to a motor command that leads to
smooth control. Additional contributions of our work concern how we tackled
these challenges. For the sensor bias, we find that constraining the parameters of
a small subgroup of neurons to function as integrators is necessary for successful
training results. These integrator neurons can now operate analogously to the
integral component of a standard PID controller, effectively mitigating persistent
sensor biases. For the delays in the SNN, we propose to time-shift the targets for
learning, so that the SNN predicts future outputs of the traditional controller. This
brings substantial performance improvement. For the reality gap, we first add
noise to the motor outputs of the traditional controller to sufficiently excite the
system and avoid biases in learning. Subsequently, we gather more training data
with a first version of the SNN, so that relevant off-target attitudes and rates are
explored. Finally, we evaluate system performance in real-world conditions,
comparing the trained SNN with traditional control methods.

The remainder of the article is structured as follows. Section 6.2 details our

104 6. Neuromorphic attitude estimation and control

methodology, covering attitude control from sensor data, the network
architecture, training procedures, and the hardware used for real-world testing.
In Section 6.3, we present the test results, including position control, attitude
control, and an analysis of power consumption. Finally, Section 6.4 summarizes
our key findings and outlines potential directions for future work in neuromorphic
control systems.

6.2. Methodology

This section discusses how an SNN used for attitude estimation and control of the
Crazyflie in real time, was constructed and trained.

6.2.1. Attitude control from IMU measurements

The attitude of a quadrotor, its orientation relative to gravity, can be estimated
using measurements from an Inertial Measurement Unit (IMU). These IMUs
commonly contain a 3 DOF (Degree of Freedom) gyroscope, measuring rotational
velocities and a 3 DOF accelerometer, measuring linear acceleration. The
gyroscope data offers high-frequency information about the rotation of the
quadrotor while the accelerometer measurements contain an absolute
measurement of the gravity vector [121]. Combined, these two form the
backbone of most quadrotor control algorithms. These 6 inputs are usually
combined into an estimate of the orientation of the drone, which in turn gets sent
to a controller together with a target orientation. This controller calculates the
necessary motor speeds for each four rotors.

6.2.2. Spiking neural network architecture
LIF neurons

In this work, we apply one of the most common spiking neuron models; the
current-based leaky-integrate-and-fire (CUBA-LIF) neuron. This model is chosen
since it captures temporal dynamics, is computationally efficient and is the
default model in current available neuromorphic platforms such as Intel's
Loihi [19]. Each neuron is connected to other neurons via synapses, connections
that carry a multiplicative weight. Every neuron keeps track of two hidden states
at each timestep; its membrane potential and synaptic current. The membrane
potential v and synaptic input current ¢ at timestep t as discrete functions of time

6.2. Methodology 105

are given as:

’Ui(t +].) = Timem’l)i(t) + Zl(t)7 (61)
Bi(t+ 1) =) + Y wigsi(t) + Y wiksk(t), 6.2)

where j and ¢ denote presynaptic (input) and postsynaptic (output) neurons within
a layer, k the neurons in the same layer as i, s € [0, 1] a neuron spike, and w* and
w'* feedforward and recurrent connections (if any), respectively. The leak values
of the two internal state variables are denoted by 7/"™ and 7;"". A neuron fires an
output spike if the membrane potential v; exceeds threshold 6; to all connected
neurons, resetting its membrane potential to zero at the same time.

The input of the networks during training is a linear layer that is directly inserted
into the current i of the first layer. This way, the encoding of floating point sensor
data to binary spikes is included in the training procedure. The output is decoded

similarly; the hidden spiking layer is connected via a weight matrix to the outputs.

Combination of networks

To facilitate learning of specific tasks and increase the debugability, the training is
split into two parts; estimation and control. By learning layers of spiking neurons
that have a certain function, there is more control over the stability of the final
solution, and it also reduces the search space. Since we define the input- and
output values of both sub-networks as a linear multiplication of the input- or output-
vector respectively, the networks can be easily combined. The output of the first
network can be written as y(t) = Wys(t), with s(¢) the spikes in the hidden layer,
and the input to the next network is z:(t) = Wiy(¢). We can now combine these
by multiplying the weight matrices of the output weights W, of the first network
and the input weights W; of the second, as introduced in [59], since these are both
linear transformations. The attitude part of the input to the second network can
therefore be written as

‘best
Oest | = WilWos(t). (6.3)

"/}est

Stacking the binary output spikes of the first network with the floating-point
command values that are passed (see Figure 6.1), the new set of weights to the
hidden layer of the second network can be written as

(6.4)

0 Wi
Wnew _ [i, command‘|)

WilW, 0

106 6. Neuromorphic attitude estimation and control

6.2.3. Training

The model is trained using imitation learning, cloning the behavior of an expert
policy. Data is gathered at 500Hz by flying manually with a Crazyflie for 20
minutes. During these tests, the Crazyflie uses a complementary filter for
estimating the attitude and a cascaded PID controller for control. In this work,
these function as the expert policy. The Crazyflie controller used the default
parameters as defined by the Bitcraze firmware [100]. This data was split into
sequences of 2000 timesteps and normalized according to total training set
statistics. From every sequence the integrator value at the beginning of this
sequence was subtracted, since this value is not contained in the input data so
would not be possible to learn. All of the parameters p of the network (7™, 7>/,
wi;, w;r and 0;) were then trained using supervised backpropagation-through-time
(BPTT). The loss was defined as a weighted sum of the Mean Squared Error (MSE)
and the Pearson Correlation Loss;

J(p) = MSE(z,) + %(1 ~ oz,), (6.5)

with = and & the target- and network response values respectively and p(z,) the
Pearson Coefficient [99]. One major step in training SNNs using regular BPTT
despite the non-differentiability of the spiking threshold function is replacing the
Heaviside step-function in the backwards pass with a surrogate function that
represents a smooth approximation of the real gradient [97]. In this work, the
derivative of a scaled arctangent was used, like in [98];

% <i arctan(sm)) = Tlsx)?’ (6.6)
where s is the slope of the surrogate. A higher slope results in a more accurate
proxy of the real gradient, but can lead to vanishing gradients for neurons with a
very low or high membrane potential. A shallow slope, on the other hand, is less
accurate but leads to less “dead” neurons that have no contribution to the output.
Among alternatives for the surrogate gradient is the derivative of the Sigmoid, but
research has shown that the exact shape does not matter [33]. The slope s of the
derivative, however, does have a large influence on the training speed and final
results. For this work, the slope s has been setto 7.

Multiple challenges were observed during the training/deployment iterations.
These are discussed here.

6.2. Methodology 107

Delay in SNN, training with time-shifted data

During training-implementation iterations, oscillations were observed on the real
quadrotor. After investigation, these were attributed to a delay in the output of
the network versus the target control signal. Due to the nature of the SNN with
the implicit memory due to the leaking voltage and current, the output was
delayed. This can be observed in Figure 6.2. In the top part of the figure, the
Pearson Correlation between the output of the SNN and the regular PID is
compared for different shifts in time on the entire data set. In the bottom part of
the figure, a small time sequence is shown that clearly shows the lag. The
correlation is highest for 5-6 timesteps shift, indicating that this is indeed a
problem when one trains SNNs for highly dynamic tasks that require a quick
response to fast changes. In the case of a controller, a small delay in the
derivative command will induce oscillations. To reduce this delay, and improve

o
© 0.80 -
b= —— SNN delay
o) . .
g
3075 F
o
]
g
d‘: 0.70 I [l [i
0 2 4 6 8 10 12
%103 Timeshift d [timesteps]
<
g
<
g
g
o
O
-
2
]
=
1 1 1 1 1 1 1
1100 1120 1140 1160 1180 1200 1220 1240
ref d=0 - d=6 === d=12
Time [ms]

Figure 6.2: Pearson Correlation between the output of the trained SNN and the regular PID
output for different time shifts d. The bottom graph shows the output of the network for
time shifts d = 0, d = 6 and d = 12 compared to the target, further demonstrating that a
delay is present in the network.

flight characteristics, we trained the control network on a time-shifted version of
the target data. Specifically, we used the target signals of ~ 6 steps in the future.
Consequently, the SNN needs to predict the reference control output in the

108 6. Neuromorphic attitude estimation and control

future, which in turn results to less delay in the implemented controller.

Imitation learning; reducing the reality gap

The reality gap is a significant challenge in imitation learning particularly, since
the reference controller only explores a limited portion of the state space around
its stable behavior. This leads to a dataset that does not fully represent the full
range of potential flight conditions or disturbances the SNN controller may
encounter when deployed [122, 123]. Consequently, when the trained controller
operates in real-world conditions, it can encounter "unseen” states or
disturbances not present in the training data, resulting in unpredictable and
unstable behavior.

To address this, we expanded the training data to include a broader, more
realistic range of states. Initially, the SNN controller was trained on data
generated with the reference controller in the loop, as described in Section 6.2.3.
We then conducted additional data collection in two steps to diversify the training
set: (1) flying the quadrotor with the initially trained SNN controller in the loop,
while simultaneously logging the outputs the reference controller would have
provided. This approach exposed the SNN to a set of states it is likely to
encounter, fine-tuning the network around these points. (2) Introducing random
disturbances to the regular PID controller’s outputs to simulate unexpected
environmental or system changes. Specifically, disturbances were applied to
pitch, roll, and yaw commands at a 1% probability per timestep (at 500Hz), lasting
0.2 seconds each, with disturbance size X ~ U(0,50)% of the absolute maximum
command.

This additional data, including both the reference controller outputs and the
effects of random disturbances, was incorporated into the training set. Retraining
the SNN controller on this expanded dataset improved its robustness, enabling it
to generalize across a wider range of states and disturbances, thereby reducing
the likelihood of instability during real-world deployment.

Splitting estimation and control

As discussed in the section on architecture (see Figure 6.1), the network was split
into an estimation and control part. If the network learning attitude estimation
also has access to the control command, training is prone to end up at a local
minimum. The network will then learn a function between control command and
attitude; since the reference controller was in the loop this will be an easy function
to learn. It can then completely disregard the sensor data, or only use it to slightly

6.2. Methodology 109

optimize the estimation. When this estimator is then used in the loop, the function
between input command and attitude will be different since the trained controller
is not perfect; this will further degrade flight performance. Hence, no connections
between the input command and the attitude estimation layer are established.

Integrator

In developing an integrator within the spiking neural network (SNN) architecture,
we faced challenges with parameter sensitivity, where small adjustments often
led to significant errors or instability, causing the network to either underestimate
the integral or diverge. This challenge is particularly acute in recurrent neural
networks (RNNs), where recurrent gains above 1 often destabilize the system,
while a recurrency lower than 1 produces a low-pass filter response. Orvieto et
al. [124] have shown that carefully structuring RNN network architecture before
training (e.g. by linearizing and diagonalizing the recurrency) is important to
obtain the superior results of deep State Space Models (SSMs) [125].

Another issue was the integrator signal’s dynamic: it shows large deviations at
the start of a flight test but stabilizes quickly under constant disturbance.
Effective integration through imitation learning required varying disturbances and
resetting the initial integral for each sequence. Additionally, the integral signal
changes more slowly than the proportional and derivative components,
complicating the extraction of integral information from the total signal in a
supervised-learning scheme.

To address these issues for SNNs, we propose fixing certain neuron parameters
within a small subgroup of neurons during training to ensure stability. Specifically,
we set the leak parameters 7,”" and "™ and threshold 6; of 10 neurons in the
control layer to 1. This allowed the neurons to integrate incoming signals without
decay. By training only the input and output weights and averaging spike outputs
on integral data alone, we achieved a spike rate approximating the cumulative
incoming signal, making the neuron responsive to transient and steady-state
inputs. This approach is validated in Figure 6.3, which compares training curves
for an integration task with fixed versus free neuron leak and threshold
parameters. The fixed-parameter integrator provided the necessary stability,
outperforming the fully unconstrained trained approach and satisfying the
SNN-based system’s control requirements.

110 6. Neuromorphic attitude estimation and control

Loss curves for fixed and free parameters

MSE

10—4 i 1

1
5 10 15 20 25

—— Fixed —— Free Epoch

Figure 6.3: Training loss curves comparing fixed versus free neuron leak and threshold
parameters. The proposed approach of fixing neuron parameters leads to stable
convergence during training. Allowing these parameters to remain free results in training
becoming trapped in local minima.

6.2.4. Hardware setup

To demonstrate the capabilities of our approach, we have implemented it in the
control loop of the tiny open-source quadrotor Crazyflie [100]. By adding a
Teensy 4.0 development board to the Crazyflie, the necessary computation
power for running an SNN on a processor was obtained. This allowed us to run
the complete SNN from input encoding to control commands at 500Hz in C++ on
the ARM Cortex-M7 microprocessor. To carry the extra weight of the Teensy, the
regular 16mm brushed motors of the Crazyflie are swapped with 20mm brushed
motors. To maximize the accuracy of the network while utilizing the Teensy to its
full extent, the network was optimized for speed by removing unnecessary
neurons. This was done by performing inference on a number of test sequences
and calculating the total contribution of a neuron on the output by calculating the
total number of spikes emitted multiplied by its weight to all outputs. Now the V
lowest contributing neurons can be removed from the implementation in C++ on
the Teensy. Although the network was trained with 150-150-130 neurons per
layer respectively, we reduced the size to 150, 100, and 80 per layer respectively.
By mainly pruning the neurons with recurrent connections this way, we almost
halve the number of mathematical operations while retaining over 99% of the
original MSE that was used as the loss function during training.

We send the attitude setpoints, along with the IMU measurements from the
gyroscope and accelerometer, via UART to the Teensy deck. The neural
controller’'s torque command outputs are transmitted back to the Crazyflie
through the same UART connection, where they are incorporated into the motor
mixer. The motor mixer is a linear transformation that converts torque

6.3. Results 111

commands into rotor velocities. As the network runs at 500Hz in the loop, the
maximum delay introduced in the system is 2 milliseconds. Even though this is
fast enough to keep up with the lower-level control-loop in the Crazyflie, it might
still influence the overall stability.

An OptiTrack motion capture system provides accurate position measurement
and an absolute heading. These are sent to the Crazyflie via a radio connection to
a ground station laptop, which also handles the sending of high-level commands.

The total take-off weight of the Crazyflie, including the Teensy 4.0 and upgraded
motors, is only 35 grams. This allows for approximately 5 minutes of flight time.

6.3. Results

6.3.1. Position control

To demonstrate the capabilities of the proposed SNN, we include it in a position
control task. The higher-level attitude commands together with the IMU values are
sent as inputs to the SNN, which produces pitch, roll and yaw torque commands.
After a short period of hovering at (z,y) = (0,0), the Crazyflie is commanded to
move 1 meter in z-direction after which it is commanded to move back to (0, 0).
For both the SNN and PID controller, these tests were performed ten times. In
Figure 6.4, the position control results are shown. The results show that performing
attitude estimation and control using an onboard SNN results in stable reference
tracking, comparable to the regular flight stack of the Crazyflie.

6.3.2. Impact of time-shifted and augmented training data
on SNN performance

During testing, it was quickly identified that training the fusion network without
augmenting the dataset does not produce a network that can be used in flight.
Therefore, it was necessary to augment the dataset for this sub-network.
However, to further investigate the behavior of the SNN and the influence of the
modifications to the training procedure, another test is performed. Since the
directly controlled variable is the attitude command, we compare the response
of differently trained networks to an attitude setpoint change. For these tests, the
Crazyflie received a roll setpoint of 0° for 2 seconds, followed by a setpoint of
+10° for 1.5 seconds, a setpoint of —10° for 1.5 seconds before returning to a 0°
setpoint for 2.5 seconds. Again, we performed ten tests per controller. The
combined results of these ten tests per controller are shown in Figure 6.5, with A)
the final SNN, B) the SNN that was trained on the augmented dataset, C) the SNN

112 6. Neuromorphic attitude estimation and control

SNN Fusion and Control
Lor Target
Measured
0.5
£00 ; i ;
=
2 Complementary filter and Cascaded PID
'a 1'0 -
g == Target
] Measured
0.5
00 1 1 1 1 1 1 1
8 10 12 14 16 18 20
Time [s]

Figure 6.4: Position step responses of the SNN system (top) and the regular PID flight stack
(bottom) for 10 individual test runs. The SNN can accurately track the attitude references
as given by the outer-loop position controller and maintain a stable flight path.

that was trained on time-shifted data, but without augmenting the dataset and D)
the regular attitude estimator and controller on the Crazyflie. The Root Mean
Square Error (RMSE) between the commanded roll setpoint and the resulting
(estimated) roll angle is given in Table 6.1, together with the average standard
deviation (SD) of the response with respect to the average of all tests with the
same controller. With a tracking error of only 3.03°, the network is able to
correctly estimate the attitude and also control it. Adding the suggested
modifications to the training procedure reduces the tracking error from 3.24° to
3.03° compared to 2.67° for the reference controller (please note that the
reference controller receives the estimated attitude directly, while the SNN needs
to internally calculate this). Also, training on time-shifted data significantly
reduces the oscillations as can be seen in Figure 6.5. This can also be inferred
from the average SD that is significantly lower for the fully-trained SNN, showing
that the controller performs more consistently across multiple tests. On the
other hand, training on time-shifted data very slightly increases the rise-time (see
Table 6.1). Since the increase is in the order of milli-seconds, it will not affect
tasks like obstacle avoidance that generally operate in the 20-40Hz range [126]
but it should be considered if it is used in super agile flight.

113

6.3. Results

'SI9AnauBW Jualaylp sy} 3ulnp anjAzead ayl moys doj uo sadewl syl yoeis 3y gid 4einsad sy (q pue eyep papiys-awi
Yrm pautedy NNS ay3 (O ‘uoijejuswidne ypm pautes} NNS a9y} (g ‘waisAs NNS paules-Ang ayy (v Jo sasuodsal dajs apnyupy G’ aindi4

[s] owry, — JUIOA1IG s PIINSLINN s s s e e [s] owmry,

8 9 4 Z 0 8 9 14 Z 0
; ; 1T ; : "

— J_ — :
— (9oudra501) QI (A - (ourpeseq) NNS (Q -
= = ﬁ = - — =
- éﬁr T .\j/— \hﬁ({ J.Lr ’ -

. (payrys-aum) NNS (O . (paruowidne) NNS (4
8 L 9 S € 14 T 0

(paymys-swm} % pajuswidne) NNS (V

01~

01

[8ap] o[8uy [0y

114 6. Neuromorphic attitude estimation and control

Controller RMSE | avg. SD | avg. RT
SNN (time-shifted & augm.) | 3.03° 0.77 | 145ms
SNN (augmented) 3.10° 0.95 | 130ms
SNN (time-shifted) 3.24° 0.92 | 145ms
SNN (baseline) 3.14° 1.16 | 135ms
PID 2.67° 0.23 | 125ms

Table 6.1: Root Mean Square Error (RMSE), Standard Deviation (SD) and rise-time (RT)
comparison between different controllers. Note that the PID receives the estimated attitude
as input, while the SNN needs to calculate this internally.

6.3.3. Power usage analysis

The main benefits of having an end-to-end attitude SNN mainly derive from its
combination with other autonomy functions such as computer vision on a single
neuromorphic chip. Given the elementary nature of attitude estimation and
control tasks, we do not expect any substantial performance or energy
improvements for attitude estimation and control by itself.

Still, we do think it is insightful to analyze the power usage of the current
solution. The SNN in this research runs on a conventional microprocessor, as
currently available neuromorphic chips (like Intel's Loihi [19, 127] or
SpiNNaker [17]) require supporting embedded systems that are too large for a
35-gram quadrotor or challenging to source. To explore potential power
advantages, we performed some estimative calculations. Spike propagation
through the network relies solely on additions rather than multiplications,
allowing us to calculate the necessary operations based on addition alone. For
the three-layer network used here, this would initially amount to approximately
42,500 additions per update. However, due to the 15-20% sparsity in neuron
activations at each timestep, the actual required operations reduce to around
7,500 additions. In contrast, the cascaded PID controller on the Crazyflie requires
about 28 additions and 52 multiplications per timestep. Moreover, a
straightforward complementary attitude estimation filter will have as most
expensive operation a non-linear atan2 function that requires in the order of
15-30 multiplications. Since a 32-bit floating-point multiplication uses roughly 37
times more energy than a 32-bit integer addition [128], we can roughly equate the
number of additions of a straightforward traditional pipeline with =~ 3,000
additions. Hence, on a conventional microcontroller, the SNN performs in the
same energy order of magnitude as a PID-based controller.

6.4. Conclusion 115

If small neuromorphic hardware becomes available that can natively support
IMU readings, while implementing the SNN in hardware, energy consumption can
be substantially reduced. Nonetheless, we maintain that the real gain would come
when expanding this network to handle image data for instance, as seen in other
neuromorphic works that show up to 100 x gains in efficiency (e.g. [59, 127]). This
would create larger disparities due to the high multiplication demands in image
processing tasks. Then, implementing all functionality in a single neuromorphic
chip would make conventional companion computers obsolete, massively reducing
energy consumption.

Finally, further benefits can be expected when moving to event-based control,
which has demonstrated potential for drastic reductions in computational load
(up to 80% for quadrotor attitude control [129]) by activating only when significant
events occur. A drone in hover should only need to interfere and adapt its
actuator commands when it starts to move, requiring no energy expenditure in
between control events. Current microprocessors can not optimally benefit,
because they still need to perform operations at a fixed frequency.

6.4. Conclusion

In this article, we have presented the first fully spiking attitude estimation and
control pipeline for a quadrotor. We show that by using imitation learning, it is
possible to train a fully end-to-end SNN to control a micro drone. We augmented
training data to further enhance the performance, using in-flight data. The
network was also taught to predict a k-step advance control action to mitigate
delays that are inherent to the SNN. These methods led to significant reductions
in RMSE relative to the target attitude and decreased oscillations, collectively
enhancing the drone’s flight stability. Furthermore, our findings indicate that
constraining parameters during training to function as integrators improves
training precision and information integration. For RNNs these parameters would
be the recurrent weights, and for SNNs the leak and threshold parameters. This
novel approach avoids local minima during training and allows for faster
convergence. Next to that, our methods of implicitely learning integration and
differentiation are not only applicable to attitude control for quadrotors, but
apply to perception and control for robotics in general (e.g. using integration with
rotary encoders or using differentiation to predict future states in model-based
control). By evaluating the system’s performance in real-world conditions and
comparing it with traditional control methods, we have laid the groundwork for
future developments in neuromorphic control strategies. The importance of a

116 6. Neuromorphic attitude estimation and control

working imitation learning pipeline, for instance, has been demonstrated in [57],
where the authors show that bootstrapping a RL pipeline with imitation learning
results in more reliable RL training while outperforming imitation learning only.
Our methods can thus be used to improve RL for SNNs.

Future research should aim to implement these algorithms on neuromorphic
hardware, which could yield substantial gains in energy efficiency and reduced
latency, potentially extending flight times and enabling neuromorphic UAVs in
energy-constrained scenarios. By advancing these techniques, we envision the
next generation of highly efficient, adaptive, and intelligent UAVs.

Supplementary materials

All code necessary to 1) train the SNN, 2) convert and run the SNN on a Teensy 4.0,
3) integrate in the Crazyflie firmware and 4) perform the tests can be found in:
https://github.com/tudelft/neuromorphic_att_est_and_control.

The data that was used for training can be found in:
https://doi.org/10.4121/f474ef0a-6efl-4eal-a958-4827c4eadf60.

Link to paper: : %

https://github.com/tudelft/neuromorphic_att_est_and_control
https://doi.org/10.4121/f474ef0a-6ef1-4ea1-a958-4827c4eadf60

6.4. Conclusion 117

Conclusion

T his thesis set out with the goal to investigate - and deal with - the issues that
arise with the implementation of SNNs and other neuromorphic algorithms in
the lower level control loop of flying vehicles. In this concluding chapter, we will
first look backwards before looking at the future of neuromorphics in the field of
flying robots.

7.1. Research goal and questions

We started by looking at state estimation, as was posed in Research Question 1 as
follows:

Research Question 1

How can we develop and train a neuromorphic system to estimate the
attitude of a flying drone?

This was answered by using recurrent networks of spiking neurons with
IMU-sensor data as input in Chapter 2 and by combining the outputs of a
downward facing event-camera in Chapter 3. In Chapter 2, we showed that a
recurrent SNN performs comparably to state-of-the-art attitude estimation
algorithms, such as the complementary filter or regular RNNs. By analyzing the
network’s response to manipulated sensor data, we found evidence that it
effectively internalizes the underlying physical dynamics. For instance, when we
replaced the accelerometer readings with a unit vector in the z-direction -
simulating a scenario where only gravitational acceleration is measured - the

119

120 7. Conclusion

network exhibited long-term biases in the attitude estimate, as expected.
Similarly, setting the gyroscope values to zero led to significantly slower
responses during high-speed rotations, underscoring the importance of dynamic
information in these measurements. Additionally, leveraging network sparsity
significantly reduced the number of neuronal connections while retaining
accuracy on the test data. Chapter 3 on the other hand, takes event-based vision
as a source of information for estimating the attitude of the drone. De Croon et al.
[46] showed that the combination of optical flow and a motion model allows for
the estimation of attitude. In our study, we trained a recurrent neural network
with camera events as inputs. Experiments with sensory data manipulations show
that the network generalizes better when training on a cropped part of the view.
Now, horizon-like appearance features along the periphery can no longer be
exploited, forcing the network to model motion.

With the second research question, we wanted to delve deeper into the
challenges that are introduced by including an SNN in the lower-level control loop
of a drone:

Research Question 2

How can we design a network of spiking neurons to perform attitude control
of a flying drone?

The term flying is important, since embedding neural controllers on a real
platform leads to numerous challenges such as the reality gap and delays from
hardware limitations. We demonstrated that networks of spiking neurons can be
designed in various ways for attitude control. In Chapter 4, we show how neuron
layers can be shaped for PID control using position-coding. This network was
deployed on the Loihi neuromorphic processor to perform altitude control.
Resolution remained an important challenge with this approach. Next, we trained
groups of rate-coded neurons to perform PID control in Chapter 5. Additionally,
we introduced a novel method for updating the threshold of neurons based on
incoming spikes. This mechanism performs integration, rejecting constant
disturbances and sensor bias. Learning the parameters that govern the
adaptation proved difficult however, and perfect integration still required a tight
connection between input encoding, network structure and neuron parameters.
We brought all of this together in Chapter 6 by answering Research Question 3:

7.2. Discussion 121

Research Question 3

How can we create an SNN to perform full attitude estimation and control
onboard?

Supervised learning of end-to-end control is extremely challenging. Neural
networks often exploit unintended shortcuts in training data (e.g., spurious
correlations) rather than learning the intended task structure (Geirhos et al. [130]).
To mitigate this, we split the training into modular networks that can be efficiently
connected through linear collapsing of their output and input weights. This was
first introduced by Paredes-Vallés et al. [59] for connecting the outputs of a
spiking optical flow estimator to a linear control layer, but also applies to
connecting multiple spiking networks. To address integration with spiking
neurons, in this chapter we proposed another method of integration: By fixing the
leak parameters of a subgroup of neurons to 1, integration is achieved in the
current that drives the membrane potential. Low-pass filtering the output spikes
of these neurons then represents the integral. Apart from the fixed parameters,
all the connections and neuron parameters could be learned via supervised
learning.

Given these findings, we can confidently state that our research goal has been
achieved:

Research Goal

Design and train neuromorphic algorithms that perform low-level flight
control

Our research demonstrates that SNNs can function effectively as both estimators
and controllers in real-world experiments, including successfully flying the
Crazyflie drone from IMU input to motor command. Most importantly, in our
efforts to achieve the research goal, we obtanied several insights into how SNNs
should be set up and trained for control tasks. We also identified main challenges,
which will be further discussed in Section 7.2.

7.2. Discussion

In this section, we will discuss some of the main challenges encountered and
lessons learned. We will also project our conclusions on the future of the
research field.

122 7. Conclusion

7.2.1. Fix parameters to fix gradient descent

One of the key challenges encountered during this work was the difficulty that
supervised learning using gradient descent faces when approximating
fundamental mathematical operations - such as integration and differentiation -
that are critical for implementing a classical PID controller. Although both
artificial neural networks (ANNs) and spiking neural networks (SNNs) are universal
function approximators (e.g., as demonstrated by Hornik et al. [131] for ANNs and
by Maass [132] and Zhang et al. [133] for SNNs), training them to perform these
elementary yet precise operations remains non-trivial.

A classical PID regulator requires a single-step memory operation, where
integration accumulates past error and differentiation calculates the rate of
change of error. In their naive implementations, both operations demand a
perfect retention of the previous time step’s data: the integrator must accurately
recall the accumulated error, while the differentiator must use the exact prior
error value. Such precision is critical - any deviation in the integrator may fail to
counteract constant disturbances or sensor biases, and errors in the
differentiator can lead to an amplification of noise.

Our investigations in Chapters 5 and 6 revealed that relying entirely on
standard architectures combined with gradient descent is insufficient. When
training the network as a black box, the gradient-descent algorithm struggled to
converge on the exact recurrent connections required to replicate the previous
state perfectly. Overestimation of these connections resulted in an uncontrolled
amplification of the hidden state, essentially pushing the recurrent gain above one
and leading to network instability. Conversely, underestimation caused the
system to behave merely as a low-pass filter, failing to capture the dynamics
needed for proper control. To mitigate these issues, we adopted a strategy of
fixing the parameters for specific subgroups of neurons. By constraining these
parameters, we effectively ensured that the network initialized with regions in the
search space that are critical for the precise replication of the previous time
step—regions that gradient descent alone is unlikely to explore. This approach
allowed the remainder of the network’s parameters to adjust and optimize other
aspects of the task, ultimately yielding improved performance in tasks such as
PID control. This strategy not only enhanced the performance of our SNN
implementations but also underscores a broader principle in deep learning:
incorporating structured priors or fixed parameters can be instrumental when
learning tasks that require precise mathematical operations. Physics-Informed

7.2. Discussion 123

Machine Learning or Physics-Informed Neural Networks (PINNs) have emerged as
a promising avenue, where embedding physical laws directly into the learning
process serves as a natural regularizer by effectively “fixing” network structure
to adhere to known dynamics (see Raissi et al. [134] and Karniadakis et al. [135]).
Recent work on Structured State-Space Models (S4s) by Gu et al. [136] reflects a
similar philosophy by demonstrating that treating a neural network as a
dynamical system - using the fundamental state space model (SSM) - enables the
accurate capture of long-range dependencies. Such an approach may be vital for
enabling online learning and real-time robotic control in future systems.

In future work on this topic, it might also be interesting to look at circuitry found in
nature to distill meaningful structure. Two examples of interesting neural circuitry
are 1. the ring attractor dynamics in the Drosophila brain that seem to maintain
a persistent and unique representation of its heading using local excitation and
global inhibition (Kim et al. [137]) or 2. disinhibition (Letzkus et al. [138]), where
transient reductions of inhibition might lead to long-lasting synaptic plasticity and
thus allow memory to be formed.

7.2.2. On training spiking neural networks: beyond
supervised learning

Although this thesis has primarily relied on supervised, surrogate gradient descent
for parameter updates during training, several alternative approaches exist that
may become highly relevant for future robotics applications. In fact, during this
work we also explored multiple additional training methods in collaboration with
fellow colleagues and Master’s students.

In our first alternative approach, together with Tim Burgers, we investigated the
use of evolutionary algorithms (EAs) to train spiking neural networks (SNNs) for
PID control, as presented at IMAV 2023 [139]. This work showed that the
parameters of IWTA and recurrent connections can be evolved from scratch to
reduce steady-state errors, which was difficult to achieve with gradient descent -
showcasing the potential of EAs to explore the solution space more effectively.
However, the EAs shared difficulties with gradient descent in minimizing errors
across multiple timescales simultaneously which was essential to enable fast
derivative responses while also integrating errors over time, and perfect
integration remained a challenge.

In the second approach, together with Korneel van den Berghe, we explored
reinforcement learning (RL) as a method for end-to-end training of SNNs [140]. RL
offers the benefit of eliminating the need for real-world data collection by using a

124 7. Conclusion

dynamic model of the robot during training. However, training recurrent networks
(such as SNNs) with RL is inherently more challenging than training feedforward
models due to temporal dependencies [141]. In SNNs, these dependencies arise
from the propagation of current and voltage over time - a feature that endows
them with temporal expressivity but also complicates the learning process. To
address these challenges, we modified standard state-of-the-art RL methods,
specifically the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm
as outlined by Fujimoto et al. [142] and looked at scheduling of the
surrogate-gradient slope. The modified RL was able to successfully learn how to
map IMU sensor measurements to motor controls in simulations, and even
allowed controlled flight of a real Crazyflie drone. However, the reality gap
remains a significant barrier to real-world deployment. For instance, although the
Crazyflie managed to fly with the RL-trained SNN, it still exhibited substantial
oscillations around the setpoints. Ultimately, we expect that RL may allow for
SNN-based control that outperforms classical control methods. In Song et al.
[105], RL was shown to outperform state-of-the-art optimal control methods,
thereby exposing some limitations of classical control approaches. Moreover, RL
may offer pathways to achieve performance levels comparable to
state-of-the-art controllers while requiring significantly less computational effort
(Ferede et al. [118]).

Last, but certainly not least, we have looked at self-supervised learning methods.
In two studies that | contributed to ([59] & [143]), we researched using contrast-
maximization to determine optical flow and depth from an event-based camera
respectively. The benefits of self-supervised learning are evident: No time- and
money-consuming labeling of datasets is necessary and learning might be carried
out while operating. In Paredes-Vallés et al. [59], an SNN is trained that estimates
optical flow from an event-based camera. This SNN is then deployed on Intel’s
Loihi [19], producing estimates of the (scaled) velocity of the drone at a rate of
200Hz - extremely high compared to state-of-the-art vision pipelines. This was
taken even further in Hagenaars et al. [143], where a depth image was learned from
a forward-facing monocular event camera onboard at about 30Hz while flying. In
the future, it would be valuable to explore the possibility for onboard, online self-
supervised learning of attitude estimation and control as well.

7.2. Discussion 125

7.2.3. The future of neuromorphic robotics: the chicken
and the egg

While our work has demonstrated that SNNs can effectively serve in the
lower-level control loop of a flying robot, advancements are still necessary
before these systems can be deployed in fully task-ready drones. Looking
forward, two intertwined fronts must be addressed: hardware development and
algorithmic innovation. Although neuromorphic hardware holds great promise for
enabling fully autonomous flight control, current systems face several significant
challenges. First, the available neuromorphic processors suffer from
communication bottlenecks: the limited number of input/output connections
restricts the precision and scalability of the implemented SNNs, thereby hindering
real-time performance. Moreover, most of these processors are still relatively
large and must be interfaced with companion computers in order to connect
them with sensors - which are also almost exclusively digital and synchronous.
For a truly integrated neuromorphic flight controller, it is imperative to
miniaturize these systems and eliminate external dependencies through better
component integration. Also, research should be put toward replacing common
flight sensors (such as the IMU) with neuromorphic alternatives. One example of
processors that might be especially suited for SNNs are analog processors such
as memristor crossbars (Li et al. [144]). Robotic innovation does not benefit from
the large and powerful GPUs that can be found in datacenters and are currently
the focus of massive tech-investments. Indeed, robotics will benefit from smaller,
lightweight processors and sensors that can be easily integrated in a robotic
system and satisfy very basic requirements. For example, in many navigational
applications, there is little need for high-resolution cameras. Although such
cameras can capture more detailed images, they typically generate significantly
more data and demand greater computational power - factors that may not
translate into tangible benefits for navigation tasks. In these scenarios, attributes
such as a wide field-of-view are far more critical (van Dijk et al. [145]). However,
developing specialized chips and sensors tailored for these applications is
extremely expensive, and the current lack of clearly demonstrated, cost-effective
applications limits industry incentives to invest in this area.

On the algorithmic front, we have already established that training SNNs
remains a considerable challenge. The inherent difficulty of training these
networks calls for new methods or improvements to existing ones. However, due
to a lack of suitable hardware it is often difficult to accurately assess the benefits
of the proposed methods. More often than not, a comparison is still made while

126 7. Conclusion

running on traditional synchronous hardware, which is always in favor of those
algorithms that are designed for it. In summary, the path toward fully
neuromorphic flight controllers hinges on simultaneous progress in both
hardware and algorithms. While hardware advancements should provide the
necessary platforms for efficient and compact neuromorphic systems,
corresponding algorithmic breakthroughs are essential to unlock their full
potential and demonstrate their transformative impact to industry. This mutual
dependency creates a classic chicken-and-egg dilemma - each component is
indispensable, yet progress in one area would propel advances in the other.
Nonetheless, there is ample reason for optimism, as there is an abundance of
both chickens and eggs all around us.

7.2.4. Concluding remarks

Our findings offer insights into integrating SNNs within broader hierarchical
navigation and control frameworks. This paves the way for fully neuromorphic
flight controllers operating on a single chip. In the near future, this could enable
smaller, more efficient autonomous robots.

7.2. Discussion 127

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

References

S. Stroobants, J. Dupeyroux and G. C. de Croon. ‘Neuromorphic computing
for attitude estimation onboard quadrotors’. In: Neuromorphic Computing
and Engineering 2.3 (2022), p. 034005.

K. Rajan and A. Saffiotti. ‘Towards a science of integrated Al and Robotics'.
In: Artificial Intelligence 247 (June 2017), pp. 1-9. ISSN: 00043702. DOI: 10.
1016/j.artint.2017.03.003.

D. Ha and J. Schmidhuber. ‘Recurrent world models facilitate policy
evolution’. In: Advances in neural information processing systems 31 (2018).
P. Agrawal, A. V. Nair, P. Abbeel, J. Malik and S. Levine. ‘Learning to poke
by poking: Experiential learning of intuitive physics’. In: Advances in neural
information processing systems 29 (2016).

A. Giusti, J. Guzzi, D. C. Ciresan, F. L. He, J. P. Rodriguez, F. Fontana, M.
Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza and L. M.
Gambardella. ‘A Machine Learning Approach to Visual Perception of Forest
Trails for Mobile Robots’. In: IEEE Robotics and Automation Letters 1 (2 July
2016), pp. 661-667. ISSN: 23773766. DOI: 10.1109/LRA.2015.2509024.

A. Loquercio, E. Kaufmann, R. Ranftl, M. Miiller, V. Koltun and D. Scaramuzza.
‘Learning high-speed flight in the wild’. In: Science Robotics 6.59 (2021),
eabgb810.

A. S. Poznyak, E. N. Sanchez and W. Yu. Differential neural networks for
robust nonlinear control: identification, state estimation and trajectory
tracking. World Scientific, 2001.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra. ‘Continuous control with deep reinforcement learning’. In:
CoRR abs/1509.02971 (2016).

J. Hwangbo, I. Sa, R. Siegwart and M. Hutter. ‘Control of a quadrotor with
reinforcement learning’. In: IEEE Robotics and Automation Letters 2.4(2017),
pp. 2096-2103.

E.llg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox. ‘Flownet 2.0:
Evolution of optical flow estimation with deep networks’. In: Proceedings

129

https://doi.org/10.1016/j.artint.2017.03.003
https://doi.org/10.1016/j.artint.2017.03.003
https://doi.org/10.1109/LRA.2015.2509024

130

References

[11]

[12]

[13]

[14]

[18]

[16]

[17]

(18]

[19]

[20]

[21]

of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 2462-2470.

J. Redmon, S. Divvala, R. Girshick and A. Farhadi. ‘You only look once:
Unified, real-time object detection’. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 779-788.

N. K. Kasabov. Time-Space, Spiking Neural Networks and Brain-Inspired
Artificial Intelligence. 2019. URL: http : / / www . springer . com/ series /
15821.

Y. Cao, Y. Chen and D. Khosla. ‘Spiking deep convolutional neural
networks for energy-efficient object recognition’. In: International Journal
of Computer Vision 113.1 (2015), pp. 54-66.

J. Schemmel, D. Briderle, A. Gribl, M. Hock, K. Meier and S. Millner.
‘A wafer-scale neuromorphic hardware system for large-scale neural
modeling’. In: 2010 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE. 2010, pp. 1947-1950.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J.-M. Bussat, R. Alvarez-lcaza, J. V. Arthur, P. A. Merolla and K. Boahen.
‘Neurogrid: A mixed-analog-digital multichip system for large-scale neural
simulations’. In: Proceedings of the IEEE 102.5 (2014), pp. 699-716.

P. A. Merolla, J. V. Arthur, R. Alvarez-lcaza, A. S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al. ‘A million
spiking-neuron integrated circuit with a scalable communication network
and interface’. In: Science 345.6197 (2014), pp. 668-673.

S. B. Furber, F. Galluppi, S. Temple and L. A. Plana. ‘The spinnaker project’.
In: Proceedings of the IEEE 102.5 (2014), pp. 652-665.

A. Calimera, E. Macii and M. Poncino. ‘The human brain project and
neuromorphic computing’. In: Functional neurology 28.3 (2013), p. 191.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al. ‘Loihi: A neuromorphic manycore processor
with on-chip learning’. In: leee Micro 38.1 (2018), pp. 82-99.

G. Gallego, T. Delbriick, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S.
Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al. ‘Event-based
vision: A survey’. In: IEEE transactions on pattern analysis and machine
intelligence 44.1 (2020), pp. 154-180.

S. Caviglia, L. Pinna, M. Valle and C. Bartolozzi. ‘An event-driven POSFET
taxel for sustained and transient sensing’. In: 2016 IEEE International

http://www.springer.com/series/15821
http://www.springer.com/series/15821

References 181

[22]

(26]

(27]

(28]

Symposium on Circuits and Systems (ISCAS). 2016, pp. 349-352. DOI: 10.
1109/ISCAS.2016.7527242.

A. Vitale, A. Renner, C. Nauer, D. Scaramuzza and Y. Sandamirskaya. ‘Event-
driven vision and control for UAVs on a neuromorphic chip’. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. Xi'an,
China: IEEE, 2021, pp. 103-109. DOI: 10.1109/ICRA48506.2021.9560881.
J. Dupeyroux, J. J. Hagenaars, F. Paredes-Vallés and G. C. de Croon.
‘Neuromorphic control for optic-flow-based landing of MAVs using the Loihi
processor’. In: ICRA 2021: IEEE International Conference on Robotics and
Automation. IEEE. 2021, pp. 96-102.

E. Rueckert, D. Kappel, D. Tanneberg, D. Pecevski and J. Peters. ‘Recurrent
Spiking Networks Solve Planning Tasks’. In: Scientific Reports 6 (Feb. 2016),
p.21142. DOI: 10.1038/srep21142.

D. Weber, C. Gihmann and T. Seel. ‘Neural networks versus conventional
filters for inertial-sensor-based attitude estimation’. In: 2020 I[EEE 23rd
International Conference on Information Fusion (FUSION). IEEE. 2020,
pp. 1-8.

R. Stagsted, A. Vitale, J. Binz, A. Renner, L. B. Larsen and Y. Sandamirskaya.
‘Towards neuromorphic control: A spiking neural network based PID
controller for UAV’. In: Robotics: Science and Systems 2020, Virtual
Conference. RSS. Robotics: Science and Systems, June 2020. DOI: 10 .
16607 /rss.2020.xvi.074.

F. Furrer, M. Burri, M. Achtelik and R. Siegwart. ‘RotorS—A modular gazebo
MAV simulator framework'’. In: Studies in Computational Intelligence 625
(Feb. 2016). Ed. by A. Koubaa, pp. 595-625. ISSN: 1860949X. DOI: 10.1007/
978-3-319-26054-9_23.

C. Pehle and J. E. Pedersen. Norse - A deep learning library for spiking
neural networks. Version 0.0.6. Documentation: https://norse.ai/docs/. Jan.
2021. DOI: 10.5281/zenodo . 4422025. URL: https://doi.org/10.5281/
zenodo .4422025.

D. Kingma and J. Ba. ‘Adam: A Method for Stochastic Optimization’. In:
International Conference on Learning Representations (Dec. 2014).

M. Zhang, J. Lucas, J. Ba and G. E. Hinton. ‘Lookahead optimizer: k steps
forward, 1 step back’. In: Advances in Neural Information Processing
Systems 32 (2019).

E. Neftci, H. Mostafa and F. Zenke. ‘Surrogate Gradient Learning in Spiking
Neural Networks: Bringing the Power of Gradient-Based Optimization to

https://doi.org/10.1109/ISCAS.2016.7527242
https://doi.org/10.1109/ISCAS.2016.7527242
https://doi.org/10.1109/ICRA48506.2021.9560881
https://doi.org/10.1038/srep21142
https://doi.org/10.15607/rss.2020.xvi.074
https://doi.org/10.15607/rss.2020.xvi.074
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025

132

References

[32]

[33]

[34]

[39]

[3¢]

[37]

[38]

[39]

40]

[41]

[42]

Spiking Neural Networks’. In: IEEE Signal Processing Magazine 36 (Nov.
2019), pp. 51-63. DOI: 10.1109/MSP.2019.2931595.

F. Zenke and S. Ganguli. ‘SuperSpike: Supervised learning in multilayer
spiking neural networks’. In: Neural Computation 30 (6 June 2018),
pp. 15614-1541. ISSN: 1530888X. DOI: 10.1162/neco_a_01086.

F.Zenke and T. P. Vogels. ‘The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks’. In:
Neural Computation 33.4 (2021), pp. 899-925.

S. O. Madgwick, A. J. Harrison and R. Vaidyanathan. ‘Estimation of IMU and
MARG orientation using a gradient descent algorithm’. In: IEEE International
Conference on Rehabilitation Robotics (2011), pp. 179-185.

R. Mahony, T. Hamel and J.-M. Pflimlin. ‘Nonlinear complementary filters on
the special orthogonal group’. In: IEEE Transactions on automatic control
53.5(2008), pp. 1203-1218.

R. E. Kalman. ‘A new approach to linear filtering and prediction problems’.
In: (1960).

M. I. Ribeiro. ‘Kalman and extended kalman filters: Concept, derivation and
properties’. In: Institute for Systems and Robotics 43 (2004), p. 46.

P. Gui, L. Tang and S. Mukhopadhyay. ‘'MEMS based IMU for tilting
measurement: Comparison of complementary and kalman filter based data
fusion’. In: Institute of Electrical and Electronics Engineers Inc., Nov. 2015,
pp. 2004-2009. ISBN: 9781467373173. DOI: 10.1109/ICIEA.2015.7334442.
Y. Shi and R. Eberhart. ‘A modified particle swarm optimizer’. In: 1998 IEEE
international conference on evolutionary computation proceedings. IEEE
world congress on computational intelligence (Cat. No. 98TH8360). IEEE.
1998, pp. 69-73.

A. M. Sabatini. ‘Kalman-filter-based orientation determination using
inertial/magnetic sensors: Observability analysis and performance
evaluation’. In: Sensors 11 (10 Oct. 2011), pp. 9182-9206. ISSN: 14248220.
DOI: 10.3390/s111009182.

T.-A. Johansen and R. Kristiansen. ‘Quadrotor attitude estimation using
adaptive fading multiplicative EKF'. In: 2017 American Control Conference
(ACC). IEEE. 2017, pp. 1227-1232.

J. J. Hagenaars, S. Stroobants, S. M. Bohte and G. C. De Croon. ‘All
Eyes, no IMU: Learning Flight Attitude from Vision Alone’. In: arXiv preprint
arXiv:2507.11302 (2025).

https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1109/ICIEA.2015.7334442
https://doi.org/10.3390/s111009182

References 133

(43]

R. Mahony, T. Hamel and J.-M. Pflimlin. ‘Nonlinear Complementary Filters on
the Special Orthogonal Group’. In: IEEE Transactions on Automatic Control
53 (2008), pp. 1203-1218. DOI: 10.1109/TAC.2008.923738.

G. K. Taylor and H. G. Krapp. ‘Sensory Systems and Flight Stability: What
Do Insects Measure and Why?’ In: Advances in Insect Physiology. Vol. 34.
Insect Mechanics and Control. London: Academic Press, 2007, pp. 231-316.
DOI: 10.1016/S0065-2806 (07) 34005-8.

M. V. Srinivasan, R. J. D. Moore, S. Thurrowgood, D. Soccol and D. Bland.
‘From Biology to Engineering: Insect Vision and Applications to Robotics’. In:
Frontiers in Sensing. Vienna: Springer, 2012, pp. 19-39. DOI: 10.1007/978-
3-211-99749-9_2.

G. C. De Croon, J. J. Dupeyroux, C. De Wagter, A. Chatterjee, D. A. Olejnik
and F. Ruffier. ‘"Accommodating unobservability to control flight attitude
with optic flow’. In: Nature 610.7932 (2022), pp. 485-490.

Z. Yu, J. Tran, C. Li, A. Weber, Y. P. Talwekar and S. Fuller. TinySense: A
Lighter Weight and More Power-efficient Avionics System for Flying Insect-
scale Robots. 2025. DOI: 10.48550/arXiv.2501.03416. arXiv: 2501.03416
[cs].

S. M. Ettinger, M. C. Nechyba, P. G. Ifju and M. Waszak. ‘Vision-guided flight
stability and control for micro air vehicles’. In: Advanced Robotics 17.7
(2003), pp. 617-640.

I. F. Mondragdén, M. A. Olivares-Méndez, P. Campoy, C. Martinez and L.
Mejias. ‘Unmanned aerial vehicles UAVs attitude, height, motion estimation
and control using visual systems’. In: Autonomous Robots 29 (2010), pp. 17-
34.

J.-C. Bazin, I. Kweon, C. Demonceaux and P. Vasseur. ‘UAV attitude
estimation by vanishing points in catadioptric images’. In: 2008 IEEE
International Conference on Robotics and Automation. |EEE. 2008,
pp. 2743-2749.

A. E. R. Shabayek, C. Demonceaux, O. Morel and D. Fofi. ‘Vision based
uav attitude estimation: Progress and insights’. In: Journal of Intelligent &
Robotic Systems 65 (2012), pp. 295-308.

G. Gallego and D. Scaramuzza. ‘Accurate angular velocity estimation with
an event camera’. In: IEEE Robotics and Automation Letters 2.2 (2017),
pp. 632-639.

M. Gehrig, S. B. Shrestha, D. Mouritzen and D. Scaramuzza. ‘Event-
based angular velocity regression with spiking networks’. In: 2020 IEEE

https://doi.org/10.1109/TAC.2008.923738
https://doi.org/10.1016/S0065-2806(07)34005-8
https://doi.org/10.1007/978-3-211-99749-9_2
https://doi.org/10.1007/978-3-211-99749-9_2
https://doi.org/10.48550/arXiv.2501.03416
https://arxiv.org/abs/2501.03416
https://arxiv.org/abs/2501.03416

134

References

[54]

(58]

[5¢]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

International Conference on Robotics and Automation (ICRA). IEEE. 2020,
pp. 4195-4202.

H. Greatorex, M. Mastella, M. Cotteret, O. Richter and E. Chicca. ‘Event-
based vision for egomotion estimation using precise event timing’. In: arXiv
preprint arXiv:2501.11554 (2025).

D. R. Da Costa, P. Vasseur and F. Morbidi. ‘Gyrevento: Event-based
Omnidirectional Visual Gyroscope in a Manhattan World'. In: IEEE Robotics
and Automation Letters (2025), pp. 1-8. DOI: 10.1109/LRA.2025.3527311.
I. Geles, L. Bauersfeld, A. Romero, J. Xing and D. Scaramuzza.
‘Demonstrating Agile Flight from Pixels without State Estimation’. In:
Robotics: Science and Systems XX. Vol. 20. 2024.

J. Xing, A. Romero, L. Bauersfeld and D. Scaramuzza. ‘Bootstrapping
reinforcement learning with imitation for vision-based agile flight'. In: arXiv
preprint arXiv:2403.12203 (2024).

A.Romero, A. Shenai, |. Geles, E. Aljalbout and D. Scaramuzza. Dream to Fly:
Model-Based Reinforcement Learning for Vision-Based Drone Flight. 2025.
DOI: 10.48550/arXiv.2501.14377. arXiv: 2501.14377 [cs].

F. Paredes-Vallés, J. Hagenaars, J. Dupeyroux, S. Stroobants, Y. Xu and G.
de Croon. ‘Fully neuromorphic vision and control for autonomous drone
flight’. In: arXiv preprint arXiv:2303.08778 9.90 (2023), eadi0591. DOI: 10.
1126/scirobotics.adi0591. URL: https://www.science.org/doi/abs/
10.1126/scirobotics.adi0591.

S. Stroobants, C. De Wagter and G. C. H. E. de Croon. ‘Neuromorphic
Attitude Estimation and Control’. In: [IEEE Robotics and Automation Letters
10 (2025), pp. 4858-4865. DOI: 10.1109/LRA.2025.3553418.

E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck and D. Scaramuzza. ‘The
event-camera dataset and simulator: Event-based data for pose estimation,
visual odometry, and SLAM'. In: The International journal of robotics
research 36.2 (2017), pp. 142-149.

G. Gallego, H. Rebecqg and D. Scaramuzza. ‘A Unifying Contrast
Maximization Framework for Event Cameras, With Applications to
Motion, Depth, and Optical Flow Estimation’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 3867-3876.

O. Richter, Y. Xing, M. De Marchi, C. Nielsen, M. Katsimpris, R. Cattaneo, Y.
Ren, Y. Hu, Q. Liu, S. Sheik et al. ‘Speck: A smart event-based vision sensor

https://doi.org/10.1109/LRA.2025.3527311
https://doi.org/10.48550/arXiv.2501.14377
https://arxiv.org/abs/2501.14377
https://doi.org/10.1126/scirobotics.adi0591
https://doi.org/10.1126/scirobotics.adi0591
https://www.science.org/doi/abs/10.1126/scirobotics.adi0591
https://www.science.org/doi/abs/10.1126/scirobotics.adi0591
https://doi.org/10.1109/LRA.2025.3553418

References 135

[64]

with a low latency 327k neuron convolutional neuronal network processing
pipeline’. In: arXiv preprint arXiv:2304.06793 (2023).

D.-A. Clevert, T. Unterthiner and S. Hochreiter. ‘Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs). In: International
Conference on Learning Representations. 2016. DOI: 10 . 48550 / arXiv .
1511.07289. eprint: 1511.07289 (cs).

S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall. ‘Robot
operating system 2: Design, architecture, and uses in the wild'. In: Science
robotics 7.66 (2022), eabmé6074.

S. Stroobants, J. Dupeyroux and G. De Croon. ‘Design and implementation
of a parsimonious neuromorphic PID for onboard altitude control
for MAVs using neuromorphic processors’. In: Proceedings of the
International Conference on Neuromorphic Systems 2022. Knoxville, TN,
USA: Association for Computing Machinery, 2022, pp. 1-7. DOI: 10. 1145/
3546790 .3546799.

D. Floreano and R. J. Wood. ‘Science, technology and the future of small
autonomous drones’. In: Nature 521.7553 (2015), pp. 460-466.

Z. Zheng, J. S. Lauritzen, E. Perlman, C. G. Robinson, M. Nichols, D. Milkie,
O. Torrens, J. Price, C. B. Fisher, N. Sharifi et al. ‘A complete electron
microscopy volume of the brain of adult Drosophila melanogaster’. In: Cell
174.3 (2018), pp. 730-743.

M. Miiller and R. Wehner. ‘Path integration in desert ants, Cataglyphis fortis’.
In: Proceedings of the National Academy of Sciences 85.14(1988), pp. 5287-
5290.

S. Jung, S. Hwang, H. Shin and D. H. Shim. ‘Perception, guidance, and
navigation for indoor autonomous drone racing using deep learning’. In:
IEEE Robotics and Automation Letters 3.3 (2018), pp. 2539-2544.

E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun and
D. Scaramuzza. ‘Beauty and the beast: Optimal methods meet learning
for drone racing’. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 690-696.

M. Lundstrom. ‘Moore’s law forever?’ In: Science 299.5604 (2003), pp. 210-
211.

T. N. Theis and H.-S. P. Wong. ‘The end of moore’s law: A new beginning
for information technology’. In: Computing in Science & Engineering 19.2
(2017), pp. 41-50.

https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/10.48550/arXiv.1511.07289
1511.07289
https://doi.org/10.1145/3546790.3546799
https://doi.org/10.1145/3546790.3546799

136

References

[74]
[79]

[76]

[77]

[78]

[79]

80]

(81]

(82]

(83]

[84]

M. Mahowald and R. Douglas. ‘A silicon neuron’. In: Nature 354.6354 (1991),
pp. 515-518.

S. Ghosh-Dastidar and H. Adeli. ‘Spiking neural networks’. In: International
journal of neural systems 19.04 (2009), pp. 295-308.

A. Jimenez-Fernandez, G. Jimenez-Moreno, A. Linares-Barranco, M. J.
Dominguez-Morales, R. Paz-Vicente and A. Civit-Balcells. ‘A Neuro-Inspired
Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost
FPGASs’. In: Sensors 12.4 (2012), pp. 3831-3856. ISSN: 1424-8220. DOI: 10.
3390/s5120403831. URL: https://www.mdpi.com/1424-8220/12/4/3831.

F. Perez-Pefia, A. Morgado-Estevez, A. Linares-Barranco, A. Jimenez-
Fernandez, F. Gomez-Rodriguez, G. Jimenez-Moreno and J. Lopez-
Coronado. ‘Neuro-Inspired Spike-Based Motion: From Dynamic Vision
Sensor to Robot Motor Open-Loop Control through Spike-VITE'. In: Sensors
13.11(2013), pp. 15805-15832. ISSN: 1424-8220. DOI: 10.3390/s131115805.
URL: https://www.mdpi.com/1424-8220/13/11/15805.

T. Dewolf, T. Stewart, J.-J. Slotine and C. Eliasmith. ‘A spiking neural model
of adaptive arm control'. In: Proceedings of the Royal Society of London B:
Biological Sciences 283 (Nov. 2016). DOI: 10.1098/rspb.2016.2134.

Y. Zaidel, A. Shalumov, A. Volinski, L. Supic and E. E. Tsur. ‘Neuromorphic
NEF-Based Inverse Kinematics and PID Control’. In: Frontiers in
Neurorobotics 15.631159 (Feb. 2021), p. 2. ISSN: 1662-5218. DOI:
10.3389/fnbot.2021.631159.

K. J. Astrém and B. Wittenmark. Computer-controlled systems: theory and
design. Courier Corporation, 2013.

S. Lynen, M. Achtelik, S. Weiss, M. Chli and R. Siegwart. ‘A Robust and
Modular Multi-Sensor Fusion Approach Applied to MAV Navigation’. In: Proc.
of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 2013.
C.-K. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery and H. Wang.
‘Programming spiking neural networks on Intel’s Loihi’. In: Computer 51.3
(2018), pp. 52-61.

S. Stroobants, C. De Wagter and G. De Croon. ‘Neuromorphic Control
using Input-Weighted Threshold Adaptation’. In: Proceedings of the 2023
International Conference on Neuromorphic Systems. 2023, pp. 1-8.

P. R. Wurman, R. D’Andrea and M. Mountz. ‘Coordinating hundreds of
cooperative, autonomous vehicles in warehouses’. In: Al magazine 29.1
(2008), pp. 9-9.

https://doi.org/10.3390/s120403831
https://doi.org/10.3390/s120403831
https://www.mdpi.com/1424-8220/12/4/3831
https://doi.org/10.3390/s131115805
https://www.mdpi.com/1424-8220/13/11/15805
https://doi.org/10.1098/rspb.2016.2134
https://doi.org/10.3389/fnbot.2021.631159

References 187

(85]

(90]

S. Sekander, H. Tabassum and E. Hossain. ‘Multi-tier drone architecture
for 5G/B5G cellular networks: Challenges, trends, and prospects’. In: IEEE
Communications Magazine 56.3 (2018), pp. 96-103.

C.D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose
and J. S. Plank. ‘A survey of neuromorphic computing and neural networks
in hardware’. In: arXiv preprint arXiv:1705.06963 (2017).

A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodriguez, F. Fontana, M.
Faessler, C. Forster, J. Schmidhuber, G. Di Caro et al. ‘A machine learning
approach to visual perception of forest trails for mobile robots’. In: IEEE
Robotics and Automation Letters 1.2 (2015), pp. 661-667.

I. Abadia, F. Naveros, E. Ros, R. R. Carrillo and N. R. Luque. ‘A cerebellar-
based solution to the nondeterministic time delay problem in robotic
control’. In: Science Robotics 6.58 (2021).

M. H. Dickinson. ‘Haltere-mediated equilibrium reflexes of the fruit fly,
Drosophila melanogaster’. In: Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences 354.1385 (1999), pp. 903-
916.

T. S. Clawson, S. Ferrari, S. B. Fuller and R. J. Wood. ‘Spiking neural
network (SNN) control of a flapping insect-scale robot’. In: 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE. Las Vegas, NV, USA: IEEE,
2016, pp. 3381-3388. DOI: 10.1109/CDC.2016.7798778.

H. Qiu, M. Garratt, D. Howard and S. Anavatti. ‘Evolving spiking
neurocontrollers for UAVs'. In: 2020 I|EEE Symposium Series on
Computational Intelligence (SSCI). IEEE. Canberra, ACT, Australia: IEEE,
2020, pp. 1928-1935. DOI: 10.1109/SSCI47803.2020.9308275.

M. Levakova, L. Kostal, C. Monsempeés, P. Lucas and R. Kobayashi. ‘Adaptive
integrate-and-fire model reproduces the dynamics of olfactory receptor
neuron responses in a moth’. In: Journal of The Royal Society Interface
16.157 (2019), p. 20190246. DOI: 10.1098/rsif . 2019.0246. URL: https:
//royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0246.

R. Brette and W. Gerstner. ‘Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity’. In: Journal of
neurophysiology 94.5 (2005), pp. 3637-3642.

F.Paredes-Vallés, K. Y. Scheper and G. C. De Croon. ‘Unsupervised learning
of a hierarchical spiking neural network for optical flow estimation: From
events to global motion perception’. In: IEEE transactions on pattern
analysis and machine intelligence 42.8 (2019), pp. 2051-2064.

https://doi.org/10.1109/CDC.2016.7798778
https://doi.org/10.1109/SSCI47803.2020.9308275
https://doi.org/10.1098/rsif.2019.0246
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0246
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0246

138

References

[99]

[9¢]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

K. J. Astrom and L. Rundqwist. ‘Integrator windup and how to avoid it'. In:
1989 American Control Conference. |EEE. Pittsburgh, PA, USA: IEEE, 1989,
pp. 1693-1698. DOI: 10.23919/ACC. 1989.4790464.

G. Di Chiara, M. Morelli and S. Consolo. ‘Modulatory functions of
neurotransmitters in the striatum: ACh/dopamine/NMDA interactions’. In:
Trends in neurosciences 17.6 (1994), pp. 228-233.

E. O. Neftci, H. Mostafa and F. Zenke. ‘Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to
spiking neural networks’. In: IEEE Signal Processing Magazine 36.6 (2019),
pp- 51-63.

W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang and Y. Tian. ‘Incorporating
learnable membrane time constant to enhance learning of spiking neural
networks’. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. Virutal: CVPR, 2021, pp. 2661-2671.

I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang and
I. Cohen. ‘Pearson Correlation Coefficient’. In: Noise Reduction in Speech
Processing. Berlin, Heidelberg: Springer, 2009, pp. 1-4. ISBN: 978-3-642-
00296-0. DOI: 10.1007/978-3-642-00296-0_5.

W. Giernacki, M. Skwierczynski, W. Witwicki, P. Wronski and P. Kozierski.
‘Crazyflie 2.0 quadrotor as a platform for research and education in
robotics and control engineering’. In: 2017 22nd International Conference
on Methods and Models in Automation and Robotics (MMAR). |EEE.
Miedzyzdroje, Poland: IEEE, 2017, pp. 37-42. DOI: 10 . 1109 /MVMAR . 2017 .
8046794.

B. Han, G. Srinivasan and K. Roy. ‘Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural
network’. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. Virtual: CVPR, 2020, pp. 13558-13567.

S. M. S. M. Daud, M. Y. P. M. Yusof, C. C. Heo, L. S. Khoo, M. K. C. Singh, M. S.
Mahmood and H. Nawawi. ‘Applications of drone in disaster management:
A scoping review’. In: Science & Justice 62.1(2022), pp. 30-42.

L. Tang and G. Shao. ‘Drone remote sensing for forestry research and
practices’. In: Journal of forestry research 26 (2015), pp. 791-797.

U. R. Mogili and B. Deepak. ‘Review on application of drone systems in
precision agriculture’. In: Procedia computer science 133 (2018), pp. 502-
509.

https://doi.org/10.23919/ACC.1989.4790464
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1109/MMAR.2017.8046794
https://doi.org/10.1109/MMAR.2017.8046794

References 139

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Y. Song, A. Romero, M. Milller, V. Koltun and D. Scaramuzza. ‘Reaching the
limit in autonomous racing: Optimal control versus reinforcement learning’.
In: Science Robotics 8.82 (2023), eadg1462. DOI: 10 . 1126/ scirobotics .
adg1462. URL: https : / / www . science . org / doi / abs / 10 . 1126 /
scirobotics.adgl462.

A. T. Azar, A. Koubaa, N. Ali Mohamed, H. A. Ibrahim, Z. F. Ibrahim, M.
Kazim, A. Ammar, B. Benjdira, A. M. Khamis, |. A. Hameed et al. ‘Drone deep
reinforcement learning: A review’. In: Electronics 10.9 (2021), p. 999.

N. Stinderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford et al. ‘The limits and potentials of deep
learning for robotics’. In: The International journal of robotics research 37.4-
5(2018), pp. 405-420.

Y. Sandamirskaya, M. Kaboli, J. Conradt and T. Celikel. ‘Neuromorphic
computing hardware and neural architectures for robotics’. In: Science
Robotics 7.67 (2022), eabl8419. DOI: 10.1126/scirobotics.abl8419. URL:
https://www.science.org/doi/abs/10.1126/scirobotics.abl8419.

P. Lichtsteiner, C. Posch and T. Delbruck. ‘A 128x128 120 dB 15us latency
asynchronous temporal contrast vision sensor’. In: [EEE Journal of Solid-
State Circuits 43.2 (2008), pp. 566-576.

G. Indiveri and R. Douglas. ‘Neuromorphic vision sensors’. In: Science
288.5469 (2000), pp. 1189-1190.

W. Maass. ‘Networks of spiking neurons: the third generation of neural
network models’. In: Neural Networks 10.9 (1997), pp. 1659-1671.

C. Bartolozzi, G. Indiveri and E. Donati. ‘Embodied neuromorphic
intelligence’. In: Nature Communications 13.1 (2022), p. 1024.

R. Pellerito, M. Cannici, D. Gehrig, J. Belhadj, O. Dubois-Matra, M. Casasco
and D. Scaramuzza. ‘End-to-End Learned Event-and Image-based Visual
Odometry’. In: arXiv preprint arXiv:2309.09947 (2023).

R. S. Dimitrova, M. Gehrig, D. Brescianini and D. Scaramuzza. ‘Towards
low-latency high-bandwidth control of quadrotors using event cameras’. In:
2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2020, pp. 4294-4300.

D. Falanga, K. Kleber and D. Scaramuzza. ‘Dynamic obstacle avoidance for
quadrotors with event cameras’. In: Science Robotics 5.40 (2020), eaaz9712.
DOI: 10.1126/scirobotics.aaz9712. URL: https://www.science. org/
doi/abs/10.1126/scirobotics.aaz9712.

https://doi.org/10.1126/scirobotics.adg1462
https://doi.org/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://www.science.org/doi/abs/10.1126/scirobotics.adg1462
https://doi.org/10.1126/scirobotics.abl8419
https://www.science.org/doi/abs/10.1126/scirobotics.abl8419
https://doi.org/10.1126/scirobotics.aaz9712
https://www.science.org/doi/abs/10.1126/scirobotics.aaz9712
https://www.science.org/doi/abs/10.1126/scirobotics.aaz9712

140

References

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun and
D. Scaramuzza. ‘Champion-level drone racing using deep reinforcement
learning’. In: Nature 620.7976 (2023), pp. 982-987.

E. Kaufmann, A. Loquercio, R. Ranftl, M. Milller, V. Koltun and D. Scaramuzza.
‘Deep Drone Acrobatics’. In: Proceedings of Robotics: Science and Systems.
Corvalis, Oregon, USA, July 2020. DOI: 10.15607/RSS.2020.XVI.040.

R. Ferede, C. De Wagter, D. Izzo and G. C. De Croon. ‘End-to-end
reinforcement learning for time-optimal quadcopter flight'. In: 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2024,
pp. 6172-6177.

T. Zhang, G. Kahn, S. Levine and P. Abbeel. ‘Learning deep control policies
for autonomous aerial vehicles with mpc-guided policy search’. In: 2016
IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2016, pp. 528-535.

F. S. Slijkhuis, S. W. Keemink and P. Lanillos. ‘Closed-form control with spike
coding networks'. In: IEEE Transactions on Cognitive and Developmental
Systems (2023).

P. Martin and E. Salaiin. ‘The true role of accelerometer feedback in
quadrotor control’. In: 2010 IEEE International Conference on Robotics and
Automation. IEEE. 2010, pp. 1623-1629.

S. Ross, G. Gordon and D. Bagnell. ‘A reduction of imitation learning and
structured prediction to no-regret online learning’. In: Proceedings of the
fourteenth International Conference on Artificial Intelligence and Statistics.
JMLR Workshop and Conference Proceedings. 2011, pp. 627-635.

S.Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell
and M. Hebert. ‘Learning monocular reactive uav control in cluttered
natural environments’. In: 2013 IEEE International Conference on Robotics
and Automation. |IEEE. 2013, pp. 1765-1772.

A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu and
S. De. ‘Resurrecting recurrent neural networks for long sequences’. In:
International Conference on Machine Learning. PMLR. 2023, pp. 26670-
26698.

S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang and T.
Januschowski. ‘Deep state space models for time series forecasting’. In:
Advances in neural information processing systems 31 (2018).

H. Yu, G. C. E. de Croon and C. De Wagter. ‘Avoidbench: A high-fidelity vision-
based obstacle avoidance benchmarking suite for multi-rotors’. In: 2023

https://doi.org/10.15607/RSS.2020.XVI.040

References 141

[127]

[128]

[129]

[130]

[131]
[132]

[133]

[134]

[135]

[136]

[137]

[138]

IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2023, pp. 9183-9189.

G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T.
Sommer and M. Davies. ‘Efficient neuromorphic signal processing with loihi
2'.In: 2021 IEEE Workshop on Signal Processing Systems (SiPS). IEEE. 2021,
pp. 254-259.

H. Luo and W. Sun. ‘Addition is All You Need for Energy-efficient Language
Models'. In: arXiv preprint arXiv:2410.00907 (2024).

J.-F. Guerrero-Castellanos, J. J. Téllez-Guzman, S. Durand, N. Marchand,
J. U. Alvarez-Mufioz and V. R. Gonzalez-Diaz. ‘Attitude stabilization of a
quadrotor by means of event-triggered nonlinear control’. In: Journal of
Intelligent & Robotic Systems 73 (2014), pp. 123-135.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge
and F. A. Wichmann. ‘Shortcut learning in deep neural networks’. In: Nature
Machine Intelligence 2.11 (2020), pp. 665-673.

K. Hornik, M. Stinchcombe and H. White. ‘Multilayer feedforward networks
are universal approximators’. In: Neural networks 2.5 (1989), pp. 359-366.

W. Maass. ‘Lower bounds for the computational power of networks of
spiking neurons’. In: Neural computation 8.1 (1996), pp. 1-40.

S--Q. Zhang and Z.-H. Zhou. ‘Theoretically provable spiking neural
networks’. In: Advances in Neural Information Processing Systems 35
(2022), pp. 19345-19356.

M. Raissi, P. Perdikaris and G. E. Karniadakis. ‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations’. In: Journal of
Computational physics 378 (2019), pp. 686-707.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang and L. Yang.
‘Physics-informed machine learning’. In: Nature Reviews Physics 3.6 (2021),
pp. 422-440.

A. Gu, K. Goel and C. Ré. ‘Efficiently modeling long sequences with
structured state spaces’. In: arXiv preprint arXiv:2111.00396 (2021).

S. S. Kim, H. Rouault, S. Druckmann and V. Jayaraman. ‘Ring attractor
dynamics in the Drosophila central brain’. In: Science 356.6340 (2017),
pp. 849-853.

J. J. Letzkus, S. B. Wolff and A. Lithi. ‘Disinhibition, a circuit mechanism for
associative learning and memory’. In: Neuron 88.2 (2015), pp. 264-276.

142

References

[139]

[140]

[141]

[142]

[143]

[144]

[145]

T. Burgers, S. Stroobants and G. de Croon. ‘Evolving Spiking Neural
Networks to Mimic PID Control for Autonomous Blimps'. In: arXiv preprint
arXiv:2309.12937 (2023).

K. Van den Berghe, S. Stroobants and G. De Croon. ‘Adaptive Surrogate
Gradients for Sequential Reinforcement Learning in Spiking Neural
Networks’. In: Advances in Neural Information Processing Systems 37
(2025).

S. Kapturowski, G. Ostrovski, J. Quan, R. Munos and W. Dabney. ‘Recurrent
experience replay in distributed reinforcement learning’. In: International
conference on learning representations. 2018.

S. Fujimoto, H. Hoof and D. Meger. ‘Addressing function approximation error
in actor-critic methods'. In: International conference on machine learning.
PMLR. 2018, pp. 1587-1596.

J. J. Hagenaars, Y. Wu, F. Paredes-Vallés, S. Stroobants and G. C. de
Croon. ‘On-Device Self-Supervised Learning of Low-Latency Monocular
Depth from Only Events’. In: Proceedings of the Computer Vision and
Pattern Recognition Conference. 2025, pp. 17114-17123.

C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N.
Davila, C. E. Graves et al. ‘Analogue signal and image processing with large
memristor crossbars’. In: Nature electronics 1.1 (2018), pp. 52-59.

T. van Dijk, C. De Wagter and G. C. de Croon. ‘Visual route following for tiny
autonomous robots’. In: Science Robotics 9.92 (2024), eadk0310.

References 143

Acknowledgements

Life becomes bearable only when one has come to terms with who one is, both in
one’s own eyes and in the eyes of the world.

Sandor Marai, Embers

The search for some kind of identity—internal or external—often takes hold of me.
| wonder who | am, who | want to be and who | should be, and often these three
collide or | mistake one for another. Life is full of so many intriguing things and
skills to dig into, but opening one door inevitably closes another. As those close
to me likely know well, this often draws me into uncertainty and doubt. Amid all
this, | am extremely lucky that | have you, Pauline, to support me. You show me the
direction that lies somewhere under all the chaos in my head and | am glad that we
can travel our path together.

| am thankful to Guido de Croon for pulling me back to university to further
explore robotics and Al (and myself), after working in industry for a little over a
year. | am impressed by how quickly you grasp the ideas and literature that | have
pushed unto you over the last couple of years and | will always remember how
much you care for the students under your supervision. Even though | often still
find the Dutch-proverbial ‘bears’ on my road, you have helped me successfully
identify and neutralize them. Whenever drones refused to behave, Christophe de
Wagter’s unparalleled insights in drone dynamics and electronics brought clarity,
and his no-nonsense approach kept me grounded. For that, | am deeply grateful.

Beyond my supervisors, the MAVLab as a whole provided the environment that
made this journey possible and | want to express how much | have loved working
with you all. We put collaboration over internal competition and that is what
leads to amazing results, in scientific achievements, international competitions
and personal connections. Please never change. Most of all, my office-mates
Jesse, Hang, and Yilun have shaped me and my scientific work. | have learned so
much from you three and am grateful that we ended up in the same office (even
when policies tried to separate us). It was humbling to share a room with people

145

146 Acknowledgements

that are as smart and ambitious as you guys, but that gave me the necessary
motivation to keep going.

| am a firm believer of the significance of nurture over nature, and see the
importance of sharing in the lives of those around me. You all have shaped me in
many ways.

| am really fortunate with my dear friends and old roommates from OD119.
Living with you all gave me great insights and | am glad | can still be a part of your
lives today. The monthly "Spellentafel”, TTRPG’s, New Year’s celebrations
(LOTR-marathon awaits us, again), festivals or random meet-ups have really
”geschept” a profound happiness in me. Also thank you, Paul,, for your amazing
help with the design of this thesis. Your eye for detail is indisputable and
unmatched.

The people | met at Laga have also brightened up my life, especially those from
the DSRVMG. | am glad that even after 2 “lustrums” we still manage to find time
for weekends away or a ski-trip. “Oh, ik ben rijker dan ik ooit heb durven dromen”.
And Joél; often melancholy seizes me when | pass "de Lelie” and | see other people
enjoying their ice-cream along the canal.

Tony and Paul,, thanks for listening to me rambling on about everything and
nothing and for shouting incomprehensibly at me from time to time. | would not
share my “diepvriespizza” with anyone else.

Kiefer, thank you for showing me what friendship means, for being so extremely
generous to anyone, defining the meaning of comfort food and for sometimes
pushing me over an edge when | need it. Along with Chun, Eric, Jair and everyone
else that identifies as a shark neck, you have ensured a perfect start to almost
every weekend over my PhD years by hosting Ristorante.

| want to thank my mother, Jacqueline, and father, Frank and my sister Bente.
Jullie zijn er altijd wanneer nodig, ondersteunen me, maar nooit dwingend. De
afgelopen jaren waren helaas ook erg zwaar en alle drie hebben jullie mij op eigen
manier laten zien hoe we hier mee om kunnen gaan. Het leven is kort, soms heel
pijnlijk, maar het zeker waard.

Frans, jij hebt me geleerd de oorsprong te vinden van mijn overtuigingen en
perspectief. Dat is soms een lastige, confronterende zoektocht, maar niet één die
men uit de weg moet gaan.

Now, reaching the end of this dissertation, it feels time to gently close this
door—thankful that the band-aid comes off in a steady way called a
“"PostDoc”—and curious about the doors waiting to open after winter.

21-03-1995

Education

2007-2013
2013-2016
2016-2017
2017-2019

2021-2025

Curriculum Vite

Stein Stroobants

Born in Amsterdam, The Netherlands.

Secondary School
Vossius Gymnasium, Amsterdam

BSc. Civil Engineering
Delft University of Technology

Bridging program Mechanical Engineering
Delft University of Technology

MSc. Control Theory
Delft University of Technology

PhD. Aerospace Engineering

Delft University of Technology

Thesis: Neuromorphic Autopilot for Drone Flight
Promotor: Prof. dr. G.C.H.E. De Croon

147

List of Publications

Journal Papers
4. S. Stroobants, J.J. Hagenaars, S. Bohté, G.C.H.E. de Croon (2025). All eyes,

no IMU: Learning Flight Attitude from Events Alone. Under Review.

3. S. Stroobants, C. de Wagter, and De Croon, G. C. (2025). Neuromorphic

Attitude Estimation and Control. Robotics and Automation Letters, vol. 10,
no. 5, pp. 4858-4865

. F. Paredes-Vallés, J.J. Hagenaars, J. Dupeyroux, S. Stroobants, Y. Xu and
G.C.H.E. de Croon (2024). Fully neuromorphic vision and control for
autonomous drone flight. Science Robotics, 9(90), eadi0591.

. S. Stroobants, J. Dupeyroux, and G.C.H.E. de Croon (2022). Neuromorphic
computing for attitude estimation onboard quadrotors. Neuromorphic
Computing and Engineering, 2(3), 034005.

Conference Papers
7. 'K. Van den Berghe, S. Stroobants, V.J. Reddi, G.C.H.E. de Croon (2025).

Adaptive Surrogate Gradients for Sequential Reinforcement Learning in
Spiking Neural Networks. Advances in Neural Information Processing
Systems (NeurlPS).

. 23.3. Hagenaars, Y. Wu, F. Paredes-Vallés, S. Stroobants and G.C.H.E. de
Croon (2025). On-Device Self-Supervised Learning of Low-Latency
Monocular Depth from Only Events. Proceedings of the Computer Vision
and Pattern Recognition Conference (CVPR), pp. 17114-17123.

5. T. Burgers, S. Stroobants and G.C.H.E. de Croon (2024). Evolving Spiking

Neural Networks to Mimic PID Control for Autonomous Blimps. 15" Annual

'Selected for Oral Presentation at NeurlPS 2025
2Awarded with Best Paper Award at the NeuRobots 2025 IROS Workshop

149

150

Curriculum Vitae

International Micro Air Vehicle Conference and Competition (IMAV), p.
73-79.

. S. Stroobants, C. De Wagter and G.C.H.E. De Croon (2023). Neuromorphic

Control using Input-Weighted Threshold Adaptation. In Proceedings of the
2023 International Conference on Neuromorphic Systems (ICONS) (pp. 1-8).

. J. Dupeyroux, S. Stroobants and G.C.H.E De Croon (2022). A toolbox for

neuromorphic perception in robotics. In 2022 8th International Conference
on Event-Based Control, Communication, and Signal Processing (EBCCSP)
(pp. 1-7). IEEE.

. °S. Stroobants, J. Dupeyroux and G.C.H.E De Croon (2022). Design and

implementation of a parsimonious neuromorphic PID for onboard altitude
control for MAVs using neuromorphic processors. In Proceedings of the
2022 International Conference on Neuromorphic Systems (ICONS) (pp. 1-7).

. D.A. Olejnik, S. Wang, J. Dupeyroux, S. Stroobants, M. Karasek, C. De

Wagter and G.C.H.E de Croon (2022). An experimental study of wind
resistance and power consumption in mavs with a low-speed multi-fan wind

system. In 2022 International Conference on Robotics and Automation
(ICRA) (pp. 2989-2994). IEEE.

®Awarded with Best Student Paper Award at ICONS 2025

151

About the cover

My mother is an amazing artist, and I’'m deeply honored that she designed the cover
for this thesis. She showed incredible patience with my many requests. You can
find her work at www. jacquelino.nl or on Instagram (@jacqsteinhoff). | especially
recommend her still lifes — she captures the essence of a scene beautifully with

just a few layers of color in her reduction prints.

One of my favorites on her website:

www.jacquelino.nl

e e
e T

	cover_design_updated_front
	thesisRepository
	Contents
	Summary
	Introduction
	Attitude estimation using spiking networks
	Learning Flight Attitude from Vision Alone
	Control through fixed network connectivity
	Threshold adaptation facilitates integration
	Neuromorphic attitude estimation and control
	Conclusion
	Acknowledgements
	Curriculum Vitæ
	List of Publications

	cover_design_updated_back

