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SUMMARY

Though field-programmable gate arrays (FPGAs) have been used to accelerate database
systems, they have not been widely adopted for the following reasons. As databases
have transitioned to higher bandwidth technology such as in-memory and NVMe, the
communication overhead associated with accelerators has become more of a burden.
Also, FPGAs are more difficult to program, and GPUs have emerged as an alternative
technology with better programming support. However, with the development of new
interconnect technology, memory technology, and improved FPGA design tool chains,
FPGAs again provide significant opportunities. Therefore, we believe that FPGAs can be
attractive again in the database field.

This thesis focuses on FPGAs as a high-performance compute platform, and explores
using FPGAs to accelerate database systems. It investigates the current challenges that
have held FPGAs back in the database field as well as the opportunities resulting from
recent technology developments. The investigation illustrates that FPGAs can provide
significant advantages for integration in database systems. However, to make further
progress, studies in a number of areas, including new database architectures, new types
of accelerators, deep performance analysis, and the development of the tool chains
are required. Our contributions focus on accelerators for databases implemented in
reconfigurable logic. We provide an overview of prior work and make contributions to
two specific types of accelerators: both a compute-intensive (decompression) and a
memory-intensive (hash join) accelerator.

For the decompression, we propose a “refine” technique and a “recycle” technique
to achieve high single-decompressor throughput by keeping only a single copy of the
history data in the internal block RAM (BRAM) memory of the FPGA, and operating on
each BRAM independently. We apply these two techniques to Snappy, a widely used
decompression algorithm in big data and database applications. The experimental
results show that the proposed Snappy decompressor achieves up to 7.2 GB/s through-
put per decompressor, which presents a significant speedup compared to the software
implementation. One such decompressor can easily keep pace with a non-volatile
memory express (NVMe) device (PCIe Gen3 x4) on a small FPGA. We also propose a
Parquet-to-Arrow converter on FPGAs to improve the efficiency of reading an Apache
Parquet file from the storage into the main memory presented in the Apache Arrow
format.

For hash joins, we first analyze the impact factors for hash join algorithms, and point out
that the granularity factor can significantly influence the throughput. Then, we build a
performance model based on these impact factors that considers both the computation
and data transfer. Our model can accurately predict the best performing designs be-
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viii SUMMARY

tween no-partitioning hash join and partitioning hash join. Adopting this performance
model, we study a no-partitioning hash join and a radix partitioning hash join algo-
rithm, and conclude that no-partitioning hash join should be more competitive than
the partitioning hash join when the tuple size is large and the granularity is small. Then
we focus on FPGA acceleration of hash joins, where we study the performance effect of
adding HBMs to the FPGA. We conclude that FPGAs with HBMs can improve the hash
join throughput, but requires resolving the challenge that random accesses to HBMs suf-
fer obvious performance drop, especially for the cases where the requests need to cross
different channels. To solve this problem, we present a hash join accelerator that stores
the hash table in the HBMs. In the proposed architecture, all the HBM channels can op-
erate independently. A pre-partition method is presented to drive the HBM traffic to the
appropriate channels, in order to reduce the traffic contention. The proposed method
should efficiently utilize the HBM bandwidth, and connecting the proposed hash join
engine to a host memory can process the data with a throughput that is only limited by
the host-to-accelerator interface bandwidth.



SAMENVATTING

Hoewel FPGAs (Field-Programmable Gate-Arrays) zijn gebruikt om databasesystemen
te versnellen, zijn ze om de volgende redenen niet breed toegepast. Met de overgang
naar hogere bandbreedte technologie zoals in-memory en NVMe, is de communi-
catieoverhead geassocieerd met versnellers zoals FPGAs meer een last geworden.
FPGAs zijn ook moeilijker te programmeren en GPUs zijn naar voren gekomen als een
alternatieve technologie met betere programmeerondersteuning. Met de ontwikkeling
van nieuwe interconnecttechnologie, betere geheugentechnologie en verbeterde FPGA-
ontwerptoolketens bieden FPGAs echter opnieuw interessante mogelijkheden. Wij zijn
van mening dat FPGAs weer aantrekkelijk kunnen zijn in het databaseveld.

Dit proefschrift richt zich op FPGAs als een krachtig rekenplatform en onderzoekt het
gebruik van FPGAs om database systemen te versnellen. Het onderzoekt de huidige
uitdagingen die het gebruik van FPGAs op het gebied van databases hebben tegenge-
houden, evenals de kansen die voortvloeien uit recente technologische ontwikkelingen.
Het onderzoek illustreert dat FPGAs voordelen kunnen bieden voor integratie in
databasesystemen. Om verdere vooruitgang te boeken, zijn echter studies op een
aantal gebieden, waaronder nieuwe database-architecturen, nieuwe ontwerpen van
versnellers, een diepgaande analyse van de prestaties en de ontwikkeling van betere
toolketens vereist. Onze bijdragen zijn gericht op versnellers voor databases geïmple-
menteerd in herconfigureerbare logica. We bieden een overzicht van eerder werk en
leveren bijdragen aan twee specifieke typen versnellers: zowel een rekenintensieve
(decompressie) als een geheugenintensieve (hash join) versneller.

Voor de decompressie stellen we een “verfijnings techniek” en een “recycle tech-
niek” voor om een hoge single-decompressor doorvoer te bereiken door slechts een
enkele kopie van de decompressie historie te bewaren in interne FPGA block RAM
(BRAM) geheugen en onafhankelijk op iedere BRAM te opereren. We passen deze
twee technieken toe op Snappy, een veelgebruikt decompressie-algoritme in big data-
en database-applicaties. Experimentele resultaten laten zien dat de voorgestelde
Snappy-decompressor tot 7,2 GB/s doorvoer per decompressor behaalt, wat een
aanzienlijke versnelling ten opzichte van de software-implementatie oplevert. Eén
decompressor kan gemakkelijk gelijke tred houden met een non-volatile memory
express (NVMe)-opslagelement (PCIe Gen3 x4) op een kleine FPGA. We stellen ook een
Parquet-naar-Arrow converter voor in FPGAs om de efficiëntie van het lezen van een
Apache Paquet bestand naar de opslag in het hoofdgeheugen, gepresenteerd in het
Apache Arrow-formaat, te verbeteren.

Voor hash joins analyseren we eerst de impactfactoren voor de hash-join-algoritmen en
wijzen we erop dat de granulariteitsfactor de doorvoer aanzienlijk kan beïnvloeden. Ver-
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volgens bouwen we een prestatiemodel op basis van deze impactfactoren die rekening
houden met zowel de berekening als de gegevensovergang. Ons model kan de best pres-
terende ontwerpen tussen "no-partitioning"hash join en "partitioning"hash join nauw-
keurig voorspellen. Door gebruik te maken van dit prestatiemodel bestuderen we een
no-partitioning hash-join en een radix-partitioning hash-join-algoritme en concluderen
we dat no-partitioning-hash-join beter zou moeten presteren dan de partitioning-hash-
join wanneer de tuple-grootte groot is en de ganulariteit klein is. Wat betreft de FPGA-
versnelling op hash joins bestuderen we het effect van het toevoegen van HBMs (High
Bandwidth Memories) aan de FPGA. We concluderen dat FPGAs met HBMs de hash join-
doorvoersnelheid kunnen verbeteren, maar het vereist het oplossen van de uitdaging
dat de willekeurige toegangen tot HBMs een duidelijke prestatieverlies vertonen, vooral
voor de gevallen waarin verschillende toegangs kanalen moeten worden overschreden.
Om dit probleem op te lossen presenteren we een hash join-versneller die de hashtabel
opslaat in de HBMs. In de voorgestelde architectuur kunnen alle HBM-kanalen onaf-
hankelijk werken. We presenteren een pre-partitiemethode om het HBM-verkeer naar
de juiste kanalen te sturen, om de toegangsconflicten te verminderen. De voorgestelde
methode moet de HBM-bandbreedte efficiënt gebruiken en het verbinden van de voor-
gestelde hash-join-engine met een host-geheugen kan de gegevens verwerken met een
doorvoer die wordt beperkt door de host-naar-versneller interface bandbreedte.
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1
INTRODUCTION

SUMMARY

Databases have now largely transitioned from hard-disk-drive-based (HDD-based) stor-
age to much higher-bandwidth technologies such as in-memory and NVMe (non-
volatile memory express), which causes database-related operations that used to be
communication bound to now be computation bound. CPUs do not improve at a fast
enough speed to keep pace with the computational requirements of database process-
ing, and this demands new solutions. Recently, field programmable gate arrays (FPGAs)
have proven to be successful accelerators in a number of fields such as security, ma-
chine learning, and high performance computing. In addition, new developments of in-
terconnect technology, memory technology, and improved FPGA design tool chains set
the stage for FPGAs to provide significant performance improvement for database oper-
ations. Therefore, we believe that FPGAs have great potential to accelerate in-memory
database applications. The work in this thesis aims to identify a number of these ap-
plications and to show the advantage of FPGAs to accelerate their computation. This
chapter of the thesis presents the motivation for the work, discusses the challenges in
this field and lists the contributions in this thesis to address these challenges.
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2 1. INTRODUCTION

1.1. BACKGROUND
This section provides an overview of the field of the research discussed in this thesis. It
also briefly introduces the background and related basic knowledge needed to under-
stand the context of the work. More details are provided in Chapter 2.

1.1.1. DATABASE SYSTEMS BACKGROUND

INTRODUCTION TO DATABASE SYSTEM

A database is a collection of data that is organized in a way for easy accessing, managing,
and processing. The data can be organized in different forms such as tables, graphs, doc-
uments, etc. Database management systems (DBMS) are systems that interact with the
applications or users and the databases, performing data management and data analy-
sis. We call it database system for short in the remainder of this thesis. The study in [1]
presents a comprehensive introduction to the architecture of the DBMS. In this thesis,
we explain it briefly. As shown in Fig. 1.1, a database system typically contains the fol-
lowing four components: the process manager, the query manager, the storage manager,
and the shared utilities.

The process manager is responsible for making decisions for the execution of con-
current user requests, as well as mapping the requests to processes or threads in the
operating system. Once the request is authorized to execute the query, the query man-
ager takes care of the query execution. The job of the storage manager is to control the
data fetching and updates to the storage for disk-based databases or the main memory
for in-memory databases. The shared utilities are a set of components that not all re-
quests need to touch, but can provide addition functionality such as memory allocation,
catalog management, and replication services, etc. This thesis focuses on the query exe-
cution which is conducted in the query manager.

Figure 1.1: Structure of Database Systems
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There are four main components in the query manager (Fig. 1.2): the parser, the
query rewrite, the optimizer, and the executor. Once a query is received, the parser first
checks whether the query is correctly specified, and converts it into an internal format
that can be used for the next steps. Then, the query rewrite will further simplify and nor-
malize the query, and will output an internal representation of the query. After that, the
optimizer takes this internal representation as input, and generates an efficient query
plan that contains a collection of operations for executing the query. The execution
of the query is conducted in the executor by fully executing the query plan. For large
data sets, executing the database operations significantly impacts the performance of
the query execution. Thus, it is important to study how to improve the performance
of executing the database operations. There are different types of database operations.
The basic ones are selections, projections, arithmetic, aggregation, sort, joins, compres-
sion and decompression. Different operations have different features such as different
memory access patterns, and different computation and memory access requirements.
The study in [2] discusses and covers the most frequently used operations. In this thesis,
we study two of the most time-consuming operations, including one compute-intensive
operation and one memory-intensive operation. They are the decompression and the
hash join, whose performance significantly impacts the performance of the database
system. We present more details about these two operations in the rest of this section,
and present further study in Chapter 3, 4, and 5

Figure 1.2: Internal Components in the Query Manager

SNAPPY (DE)COMPRESSION

Compression and decompression is one of the frequently used operations in database
applications. It reduces the data amount that needs to be transferred through network
or between the processor and the storage. The basic idea is to find repeated informa-
tion and use a smaller piece of data to represent it. A simple but widely used com-
pression algorithm is the run length encoding (RLE). It uses a pair that represents the
repeated character and the number of repeats to replace the repeated characters in a
sequence. For example, a data sequence of “RRRRRRRLLLLEE" after RLE encoding be-
comes “7R4L2E". Some other compression algorithms work on the word level instead of
the character level. A well-known example of the word level compression is the Lempel
Ziv 77 (LZ77) series [3] compression algorithm. In this class of compression algorithms,
the repeated byte sequence is converted to a pair of a back reference and a length, where
the back reference indicates where the previous sequence occurs and the length stands
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for how long this sequence is. If a sequence is not found to be replicated, the original
data is kept and no reference-length pair is used to replace this sequence. Generally,
the reference-length pairs are called copy tokens, while non-repeated sequences are re-
ferred to as literal tokens. This thesis focuses on LZ77-based compression algorithms
and chooses Snappy [4] as an example for further studies.

Snappy is an LZ77-based, byte-level (de)compression algorithm, which has been
used in many big data and database systems, especially in the Hadoop ecosystem. It
is supported by many data formats including Apache Parquet [5] and Apache ORC [6].
Similar to LZ77, a compressed Snappy file contains two types of tokens, including the
literal tokens and the copy tokens. Both types of tokens have different lengths and for-
mats. Fig. 1.3 and Fig. 1.4 illustrate the formats of the literal token and the copy token,
respectively. The first byte of a token is called the tag byte. It contains information of
the token type, the token length, and the size of extra bytes. If the last two bits of the tag
byte are detected to be “00", it means the token is a literal token, and the first six bits
stand for the length of the literal content. If this length is too large, it uses the succeed-
ing one byte or two bytes to represent the length of the literal content. Meanwhile, the
first six bits of the tag byte will be set to “111100" or “111101" depending on the length.
Thus, a literal token can be 1 to 3 bytes in size (without the literal content). Similarly, the
current Snappy implementation supports two different sizes of copy token, indicated by
the last two bits of the tag byte. If they are “01", the upcoming one byte is used as extra
information for the offset. If they are “10", the upcoming two bytes are used together to
represent the offset. The Snappy compression algorithm works on a 64KB block level,
which means every 64KB block in the original sequence is compressed independently
and combined together afterward.

Figure 1.3: Snappy Literal Token Format

Snappy decompression is the reverse process of the compression. It converts a
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Figure 1.4: Snappy Copy Token Format

stream consisting of different types of tokens into an uncompressed sequence. It main-
tains a 64KB-block history during the decompression. If a literal token is detected, it
copies the literal content to the history directly. Otherwise, it uses the “offset" to locate
the repeated sequence, and to copy a size of “length" sequence from the located position
to the history. Once a 64KB block is filled, decompression of this block is completed, and
a new history is started. Since there are many dependencies during parsing the token,
such as locating the token boundary and locating the block boundary, it is difficult to
parallelize the Snappy decompression. We discuss a potential solution to parallelize this
process and optimize the decompression performance in Chapter 3.

HASH JOINS

The join is a commonly used operation in table-based databases. It combines tuples
from different tables that meet specific conditions. In most cases, this means having a
common key. If a tuple in one table shares the same key with a tuple in the other table,
a match is found. The join finds all these matches and outputs the combination of these
matched tuple pairs. There are many different join algorithms including nested-loop
joins, sort-merge joins, and hash joins, etc. Among these join algorithms, the hash join
is understood to be one of the most efficient join algorithms since it is a linearly scalable
algorithm. The simplest hash join algorithm is the classical hash join [7]. As illustrated
in Fig. 1.5, the classical hash join builds a single hash table from one table which is used
to find matches for the other table. It contains two phases, including the build phase
and the probe phase. The build phase reads tuples from table R and generates a hash
table. During the probe phase, the hash table is used to find the potential matched tu-
ples in table S that is validated afterward. As we know, the complexity of this algorithm
is O(|R|+ |S|), where |R| stands for the number of tuples in table R, and |S| stands for the
number of tuples in table S. However, this can be improved by utilizing more proces-
sors or more processing elements. As demonstrated in Fig. 1.6, by dividing both input
tables into portions and assigning them to p different workers, an ideal speedup of p
can be achieved, compared with the classical hash join. However, this may still suffer a
large number of cache misses, which leads to longer latency and bad throughput perfor-
mance.
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Figure 1.5: Classical Hash Join

Figure 1.6: Classical Hash Join on Multiple Processors (Non-Partitioning Hash Join)

An efficient way to solve the cache miss problem is partitioning the tables to fit the
size of the cache [8]. This method is called the partitioning hash join. In contrast, the
classical hash join is called the non-partitioning hash join. Fig. 1.7 gives an overview of
this idea. The main idea of this algorithm is to add an extra phase to partition relations
into small chunks with each size fitting in the cache by hashing on their key values be-
fore the build phase. Consequently, tuples in one bucket of relation R can only match
tuples in one bucket with a same bucket number of relation S. Thus, the hash table of
one bucket can be stored in the cache, leading to reduce cache misses. An improved
algorithm, radix hash join [9], further splits the partition phase into multiple passes to
reduce the possibility of TLB (Translation Look-aside Buffer) misses introduced by the
partition phase.

1.1.2. DATABASE ACCELERATION
Databases have now moved from hard disk drives to DRAM memory and NVMe which
have much higher data access rates. These new technologies allow for two orders
of magnitude more bandwidth between the CPU and stored database compared to
traditional solutions. As a result, some database operations are transformed from
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Figure 1.7: Partitioning Hash Join

bandwidth-bound to compute-bound. As a result, new computational solutions are
needed to improve the performance of database processing in modern database
systems. To solve this problem, the community has shifted their attention to heteroge-
neous processors such as graphics processing units (GPUs) [10–12], field programmable
gate arrays (FPGAs) [13,14], etc. This thesis focuses on FPGA-based acceleration, and
explores using FPGAs to accelerate database systems.

An FPGA is a reconfigurable chip, where the internal functionality can be repro-
grammed. It consist of a large number of programmable logic blocks, a configurable
interconnect fabric, local memory, as well as small general purpose processing devices.
It intrinsically supports a high degree of parallelism, enabling effective utilization
of task-level parallelism, data-level parallelism, and pipelining techniques. It also
provides internal memory with low latency and high aggregate bandwidth. Recently,
new FPGA devices have been introduced that deploy an on-socket high-bandwidth
memory (HBM) [15] which provides up to 460GB/s bandwidth accessing a few GB
accelerator-side memory.

These features make FPGAs a suitable accelerator for database systems, especially for
streaming data processing and computation-heavy applications. Examples can be seen
from both industry and academia, an early one of which is the IBM Netezza [13] data an-
alytic appliance. In the Netezza system, an FPGA was placed between the CPU and the
storage, performing decompression and aggregation in each node. Thus, it only trans-
ferred the pre-processed data to the CPU, relieving the CPU pressure. Another example
from academia of database FPGA acceleration is DoppioDB [16], which extends Mon-
etDB [17] with user defined functions in FPGAs. In addition, it provides software APIs
using the Centaur framework [18] to bridge the gap between CPUs and FPGAs. Both
of these examples present speedup in throughput performance compared to CPU-only
solutions. There are also many existing studies focusing on accelerating a number of
database operators such as aggregation [19,20], filtering [21,22], sort [23–25], join [26,27],
etc. For more details about the background knowledge and related work, please see
Chapter 2
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1.2. MOTIVATION
Even though prior work shows significant performance gains in database systems by us-
ing FPGAs, both industry and academia are not showing large interest in integrating FP-
GAs into database systems due to the following three reasons. First, while FPGAs can
provide high data processing rates, the system performance is bounded by the limited
bandwidth from conventional IO technologies. Second, FPGAs are competing with a
strong alternative, GPUs, which can also provide high throughput and are much easier
to program. Last, programming FPGAs typically requires developers to have full stack
skills, from high-level algorithm design to low-level circuit implementation.
Fortunately, these challenges are being addressed by various technology innovations in
the field that improve the opportunity to create viable accelerated FPGA solutions for
database system in the coming years, evidence of which can be seen in current tech-
nology developments. One of them is that data interfacing technologies develop so fast
that the interconnection between memory and accelerators is expected to have main-
memory scale bandwidth, e.g. the OpenCAPI [28] from IBM and the Compute Express
Link [29] from Intel. In addition, FPGAs are incorporating new even higher-bandwidth
memory technologies such as HBM, giving FPGAs a chance to bring the highly parallel
computation capabilities of the FPGA together with a high-bandwidth large-capacity
local memory. Finally, emerging FPGA development tool chains including HLS (high-
level synthesis), new programming frameworks, and SQL-to-FPGA compilers, provide
developers with better programmability. Therefore, FPGAs are becoming attractive
again as database accelerators, making this a a good time to reconsider integrating
FPGAs in database systems.

1.3. RESEARCH QUESTIONS
Along with the development of new technologies, some new questions are raised, and
new challenges need to be addressed regarding database acceleration in the context of
FPGAs. The central hypothesis of this thesis is that FPGAs can be productively used to
accelerate in-memory database operations. This hypothesis can be divided into mul-
tiple research questions. In this thesis, we address four research questions related to the
following topics: surveying in-memory database acceleration on FPGAs, acceleration of
decompression operations, analysis of hash joins in software, and acceleration of hash
joins in hardware. In the following, we present the research questions addressed in this
thesis and identify in which chapter they are discussed.

• Can FPGAs be productively applied to in-memory database acceleration?

FPGA have been used to accelerate database system in the past, especially for
HDD-based database systems. It is believed that in-memory databases can be
accelerated by FPGAs as well, depending on the operations. Thus, investigations
should be carried out on identifying the current state of the art in this topic in both
academia and industry. The overview presented in Chapter 2 concludes that per-
formance of operations such as sort can be improved by adopting FPGAs. Subse-
quently, we implement our own hardware accelerator for such operations to make
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them more efficient.

• Can FPGAs accelerate compute-intensive operations given the newly available
bandwidth?

Since the speed of data interconnect has improved significantly in recent years,
previously proposed FPGA designs might not be able to fully consume the
newly available bandwidth, especially for compute-intensive applications. Con-
sequently, accelerator architectures of compute-intensive database operations
that can leverage such huge data bandwidth should be investigated. This the-
sis explores new accelerator architectures of compute-intensive operations in
databases and uses the Snappy decompressor as an example. The details are
shown in Chapter 3.

• What factors influence memory-intensive operations?

FPGAs are known to accelerate compute-intensive operations. In contrast, for
memory-intensive operations, it is not very clear to what degree an FPGA can help
to improve their performance. Thus, it is important to carry out performance anal-
ysis on the software operations to identify the most important factors that influ-
ence their performance and potential acceleration on hardware. This thesis uses
the hash join operation as an example and presents analysis on how its perfor-
mance is influenced by different factors, which is explained in Chapter 4.

• Can FPGAs accelerate memory-intensive operations?

Even after the impact factors of memory-intensive operations running on soft-
ware have been studied, it is not trivial to use this knowledge in designing their
corresponding accelerators on FPGAs. Therefore, accelerator design of memory-
intensive operations should be studied. This thesis studies the accelerator archi-
tecture of hash join as an example of memory-intensive operations that can bene-
fit from the software analysis mentioned above. See Chapter 5 for more details.

1.4. RESEARCH METHODS
To address the research questions discussed above, we use the following research
method. We first start with an analysis of the different classes of applications used in
the database domain. Next, we select example algorithms in each of these classes of
applications. This is followed by an analysis of the algorithms to identify the specific
bottlenecks in the application and model its potential acceleration. These algorithms
are then implemented in hardware, and their performance is measured and compared
with the expected performance in the model. This research method has been applied
throughout the thesis in the different chapters as discussed in the list below.

• First, we conduct a comprehensive study and survey on the topic of database ac-
celeration. We start by investigating the current developments for this topic and
review state-of-the-art research in the field, and summarize the reasons that held
FPGAs back in the context of database acceleration. We identify two classes of
operations that require a different acceleration approach: compute-intensive and
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memory-intensive operations. Then, we study the new technology trends that
bring new opportunities to FPGAs, followed by giving a qualitative analysis of the
topic and present preliminary conclusions.

• We choose Snappy decompression as a compute-intensive operation example,
and design and implement an accelerator and demonstrate that FPGAs are able to
perform compute-intensive operations at a throughput that satisfies the needed
performance requirements, thereby eliminating the computational bottleneck of
these operations. We first analyze the software algorithm and identify its limita-
tions in terms of parallelization. Then, we present a method to resolve these prob-
lems and implement the idea in an ADM-9V3 card integrated with a Xilinx VU3P
FPGA. The implementation is validated and measured using a wide range of input
files ranging from several MB to several GB in size, from highly compressed files to
almost non-compressed files, and from generated synthetic data to practical data.
The measurement on the hardware design is then compared with the software im-
plementation running on a Power9 CPU.

• For memory-intensive operations, we use hash joins as an example. We first theo-
retically analyze the important factors influencing the performance, which we use
to build a model to predict the performance. The performance model is evalu-
ated on two different hash join algorithms running on the Intel x86 processor and
an IBM Power 8 processor using a variety of data sets that range from several MB
to several GB in size. Using this performance model, we can optimize the perfor-
mance for different processor architectures.

• The knowledge learned from this analysis is then adopted to implement a hash
join accelerator in the FPGA to show that FPGAs are also able to improve the per-
formance of some memory-intensive operations. The targeted device is a Xilinx
VU37P FPGA integrated with 8GB HBMs on the ADM-9H7 card that can commu-
nicate with the host memory using the OpenCAPI interface. We evaluate the HBMs
performance by simulation using multiple data sets with different access patterns.
This simulated bandwidth performance is used to evaluate the performance of
the proposed hash join accelerator using a mathematical performance model to
demonstrate that the proposed methods can saturate the interface bandwidth.

1.5. CONTRIBUTIONS
We summarize our contributions in this thesis as follows.

• We present a comprehensive survey on using FPGAs to accelerate database sys-
tems. We analyze the pros and cons in current FPGA-accelerated database system
architecture alternatives. By studying the memory-related technology trends, we
conclude that FPGAs deserve to be reconsidered for integration in database sys-
tems. Also, we give an overview of the state-of-the-art studies on database oper-
ator acceleration as well as discuss some potential solutions to optimize and im-
prove them.
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• We propose a method to increase the decompression parallelism by refining the
tokens in a compressed file into independent BRAM commands. We propose a
recycle method to reduce the stalls caused by the read-after-write data depen-
dencies during the compression. We apply these two techniques to the Snappy
decompression algorithm and present a Snappy decompressor that can process
multiple tokens per cycle. We also present a proof-of-concept Parquet-to-Arrow
converter that can benefit from the proposed Snappy decompressor to improve
the conversion speed.

• We analyze the performance of main memory hash join in the CPU architecture.
We discuss factors that impact performance of hash joins and point out the impor-
tance of granularity. Based on these factors, we proposed a performance model
that considers both computation and memory accesses to estimate the hash join
performance. Finally, we study different hash join algorithms and validate the pro-
posed model in different processor architectures.

• We propose an accelerator architecture of the hash join that utilizes the HBMs to
store the hash table. The proposed method allows all HBM channels to operate
independently. A pre-partition method is presented to drive the HBM traffic to the
appropriate channels, in order to reduce the traffic contention, and thus improve
the bandwidth efficiency.

1.6. THESIS ORGANIZATION
The remainder of this thesis is organized as follows.

• In Chapter 2, we introduce the background and survey the related work of using
FPGAs to accelerate database systems.

• In Chapter 3, we present the implementation of the FPGA-based Snappy decom-
pressor, as well as the architecture of the Parquet-to-Arrow converter.

• In Chapter 4, we discuss the in-memory hash joins and explain the mathematical
performance model.

• In Chapter 5, we describe the architecture of the FPGA-based hash join accelerator
that utilizes the HBMs.

• In Chapter 6, we summarize and conclude our work, and recommend possible
directions for future work.
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SUMMARY

This chapter surveys using FPGAs to accelerate in-memory database systems target-
ing designs that can operate at the speed of main memory. We first introduce the
background and review the previous FPGA-based database system architectures. After
that we discuss the challenges of integrating FPGAs into database systems and study
a number of technology trends. We also summarize the state-of-the-art research on
FPGA-accelerated database operations. Based on the study and the summaries, we
present the major challenges and possible solutions for adopting accelerators for high
bandwidth in-memory databases.

The content of this chapter is based on the following paper:
J. Fang, Y.T.B. Mulder, J. Hidders, J. Lee, H.P. Hofstee, In-Memory Database Accelera-

tion on FPGAs: A Survey, International Journal on Very Large Data Bases (VLDBJ), 2019,
https://doi.org/10.1007/s00778-019-00581-w.
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Abstract
While FPGAs have seen prior use in database systems, in recent years interest in using FPGA to accelerate databases has
declined in both industry and academia for the following three reasons. First, specifically for in-memory databases, FPGAs
integrated with conventional I/O provide insufficient bandwidth, limiting performance. Second, GPUs, which can also provide
high throughput, and are easier to program, have emerged as a strong accelerator alternative. Third, programming FPGAs
required developers to have full-stack skills, from high-level algorithm design to low-level circuit implementations. The
good news is that these challenges are being addressed. New interface technologies connect FPGAs into the system at main-
memory bandwidth and the latest FPGAs provide local memory competitive in capacity and bandwidth with GPUs. Ease of
programming is improving through support of shared coherent virtual memory between the host and the accelerator, support
for higher-level languages, and domain-specific tools to generate FPGA designs automatically. Therefore, this paper surveys
using FPGAs to accelerate in-memory database systems targeting designs that can operate at the speed of main memory.
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1 Introduction

The computational capacity of the central processing unit
(CPU) is not improving as fast as in the past or growing
fast enough to handle the rapidly growing amount of data.
Even though CPU core-count continues to increase, power
per core from one technology generation to the next does
not decrease at the same rate and thus the “power wall”
[7] limits progress. These limits to the rate of improvement
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bring a demand for new processing methods to speed up
database systems, especially in-memory database systems.
One candidate is field-programmable gate arrays (FPGAs),
that havebeennotedby the database community for their high
parallelism, reconfigurability, and low power consumption,
and can be attached to the CPU as an IO device to acceler-
ate database analytics. A number of successful systems and
research cited throughout this paper have demonstrated the
potential of using FPGAs as accelerators in achieving high
throughput. A commercial example is IBM Netezza [41],
where (conceptually) an FPGA is deployed in the data path
between hard disk drives (HDDs) and the CPU, perform-
ing decompression and pre-processing. This way, the FPGA
mitigates the computational pressure in the CPU, indirectly
amplifying the HDD-bandwidth that often limited database
analytics performance.

While FPGAs have high intrinsic parallelism and very
high internal bandwidth to speed up kernel workloads, the
low interface bandwidth between the accelerator and the
rest of the system has now become a bottleneck in high-
bandwidth in-memory databases. Often, the cost of moving
data between main memory and the FPGA outweighs the
computational benefits of the FPGA. Consequently, it is a
challenge for FPGAs to provide obvious system speedup, and
only a few computation-intensive applications or those with
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data sets that are small enough to fit in the high-bandwidth
on-FPGA distributed memories can benefit.

Even with higher accelerator interface bandwidth, the
difficulty of designing FPGA-based accelerators presents
challenges. Typically, implementing efficient designs and
tuning them to have good performance requires developers
to have full-stack skills, from high-level algorithm design to
low-level circuit implementation, severely limiting the avail-
able set of people who can contribute.

While some of these challenges also apply toGPUs,GPUs
have become popular in database systems. As is the case for
FPGAs, GPUs can benefit from their massive parallelism and
provide high throughput performance, but also like FPGAs,
GPU to system memory bandwidth typically falls well short
of the bandwidth of the CPU to system memory. However,
compared to FPGAs GPUs support much larger on-device
memory (up to 32GB) that is accessible at bandwidths (more
than 800 GB/s) that exceed those of the CPU to systemmem-
ory. For these reasons, aGPU-accelerated systemcan provide
benefit in a larger number of cases.

Emerging technologies are making the situation better
for FPGAs. First, new interface technologies such as Open-
CAPI [123], Cache Coherent Interconnect for Accelerators
(CCIX) [13], and Compute Express Link (CXL) [112] can
bring aggregate accelerator bandwidth that can exceed the
available main-memory bandwidth. For example, an IBM
POWER9 SO processor can support 32 lanes of the Open-
CAPI interface, supplying up to 100 GB/s for each direction,
while the direct-attach DDR4 memory on the same proces-
sor provides up to 170 GB/s (2667MT/s ∗ 8 channels) in
total [129]. Another feature brought to FPGAs by the new
interfaces is shared memory. Compared to using FPGAs as
I/O devices where FPGAs are controlled by the CPU, in the
OpenCAPI architecture, the coherency is guaranteed by the
hardware. FPGAs are peers to the CPUs and share the same
memory space. With such a high-bandwidth interface, the
computational capability and the parallelism of the acceler-
ator can now be much more effectively utilized.

Apart from new interface technologies, high-bandwidth
on-accelerator memory is another enabler for FPGAs. Some
FPGAs now incorporate high bandwidth memory (HBM)
[138] and have larger local memory capacity as well as
much higher (local) memory bandwidth. Similar to theGPUs
with HBM, such high-bandwidth memory with large capac-
ity allows FPGAs to store substantial amounts of data locally
which can reduce the amount of host memory access, and
bring the potential to accelerate some of the data-intensive
applications that require memory to be accessed multiple
times.

In addition, FPGAdevelopment tool chains are improving.
These improvements range from high-level synthesis (HLS)
tools to domain-specific FPGA generation tools such as
query-to-hardware compilers. HLS tools such as Vivado

HLS [38] and OpenCL [115] allow software developers to
program in languages such as C/C++ but generate hard-
ware circuits automatically. Other frameworks such as SNAP
[136] further automate the designs of the CPU-FPGA inter-
face for developers. In this case, the hardware designer can
focus on the kernel implementation, and the software devel-
opers do not have to concern themselves with the underlying
technology. Domain-specific compilers such as query-to-
hardware compilers (e.g., Glacier [86]) can even compile
SQL queries directly into FPGA implementations.

Therefore, with these emerging technologies, we believe
that FPGAs can again become attractive as database acceler-
ators, and it is a good time to reexamine integrating FPGAs
into database systems. Our work builds on [127] which
has presented an introduction and a vision on the potential
for FPGA’s for database acceleration. Related recent work
includes [98] which draws similar conclusions with respect
to the improvements in interconnect bandwidth. We focus
specifically on databases,we include somemore recentwork,
and we emphasize the possibilities with the new interface
technologies.

In this paper, we explore the potential of using FPGAs
to accelerate in-memory database systems. Specifically, we
make the following contributions.

• We present the FPGA background and analyze FPGA-
accelerated database system architecture alternatives and
point out the bottlenecks in different system architec-
tures.

• We study the memory-related technology trends includ-
ing database trends, interconnection trends, FPGA devel-
opment trends, and conclude that FPGAs deserve to be
reconsidered for integration in database systems.

• We summarize the state-of-the-art research on a num-
ber of FPGA-accelerated database operators and discuss
some potential solutions to achieve high performance.

• Based on this survey, we present the major challenges
and possible future research directions.

The remainder of this paper is organized as follows:
In Sect. 2, we provide FPGA background information and
present the advantages of using FPGAs. Section 3 explains
the current database systems accelerated by FPGAs. We
discuss the challenges that hold back use of FPGAs for
database acceleration in Sect. 4. The database, intercon-
nect and memory-related technology trends are studied in
Sect. 5. Section 6 summarizes the state-of-the-art research
on using FPGAs to accelerate database operations. Section 7
presents the main challenges of using high-bandwidth inter-
face attached FPGAs to accelerate database systems. Finally,
we conclude our work in Sect. 8.

System designers may be interested in Sect. 3 for the
system architecture overview, Sect. 4 for the system limita-
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tions, and Sect. 5 for the technology trends that address these
limitations. FPGA designers might want to concentrate on
Sect. 6 that discusses the state of the art for high-bandwidth
operators relevant to database queries. For performance ana-
lysts, Sect. 4 gives a brief comparison between FPGAs and
GPUs, as well as the challenges of FPGA regarding database
acceleration. For the performance of each operator, a deeper
discussion is presented in Sect. 6. For software developers,
Sect. 2 provides an introduction to FPGAs, while FPGA pro-
gramming is discussed in Sect. 4 and 5. We also present
lessons learned and potential future research directions in
Sect. 7 addressing different groups of researchers.

2 FPGA background

This section gives an introduction to FPGAs, and pro-
vides software researchers and developers with background
knowledge of FPGAs including architecture, features, pro-
gramming, etc.

2.1 Architecture

An FPGA consists of a large number of programmable
logic blocks, interconnect fabric and local memory. Lookup
tables (LUTs) are the main component in programmable
logic. Each LUT is an n-input 1-output table,1 and it can
be configured to produce a desired output according to the
combination of the n inputs. Multiple LUTs together can be
connected by the configurable interconnect fabric, forming
a more complex module. Apart from the logic circuits, there
are small memory resources (registers or flip-flops) to store
states or intermediate results and larger blockmemory (Block
RAMs or BRAMs) to act as local memory. Recently, FPGA
chips are equipped with more powerful resources such as
built-in CPU cores, Digital Signal Processor (DSP) blocks,
UltraRAM (URAM), HBMs, preconfigured I/O blocks, and
memory-interface controllers.

2.2 Features

The FPGA is a programmable device that can be config-
ured to a customized circuit to perform specific tasks. It
intrinsically supports high degrees of parallelism. Concur-
rent execution can be supported inside an FPGA by adopting
multi-level parallelism techniques such as task-level par-
allelization, data-level parallelization, and pipelining. In
addition, unlike the CPU where the functionality is designed
for generic tasks that do not use all the resources efficiently

1 Multi-output LUTs are available now. See Figure 1-1 in https://www.
xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.
pdf.

for a specific application, the circuit in an FPGA is highly
customizable, with only the required functions implemented.
Even though building specific functions out of reconfigurable
logic is less efficient than building them out of customized
circuits, in many cases, the net effect is that space is saved
and more processing engines can be placed in an FPGA
chip to run multiple tasks in parallel. Also, the capability
of customizing hardware leads to significant power savings
compared to CPUs and GPUs, when the required function-
ality is not already directly available as an instruction. The
FPGA can also support data processing at low latency due
to the non-instruction architecture and the data flow design.
In CPUs, the instructions and data are stored in the memory.
Executing a task is defined as running a set of instructions,
which requires fetching instructions from memory. How-
ever, FPGAs define the function of the circuit at design-time,
where the latency is dependent on the signal propagation
time. Apart from that, the data flow design in FPGAs allows
forwarding the intermediate results directly to the next com-
ponents, and it is often not necessary to transfer the data back
to the memory.

2.3 FPGA-related bandwidth

As we focus on the bandwidth impact on this paper, we give
a brief introducing of FPGA-related bandwidth and present
the summary in Table 1. Similar to the CPU memory hier-
archy, the memory close to the FPGA kernel has the lowest
latency and highest bandwidth, but the smallest size. The
FPGA internal memory including BRAM and URAM typi-
cally can reachTB/s scale bandwidthwith a fewnanoseconds
latency. The on-board DDR device can provide tens GB/s
bandwidth, While the HBM that within the same socket with
the FPGA have hundreds of GB/s bandwidth, and both of
them require tens to hundreds nanoseconds latency to get
the data. The bandwidth to access the host memory typically
is the lowest one in this hierarchy. However, it provides the
largest memory capacity.

Hiding long memory latency is a challenge for FPGA
designs. Typically, applications with streaming memory
access patterns are less latency-sensitive: because the
requests are predictable it is easier to hide the latency. How-
ever, applications that require a large amount of random
access (e.g., as hash join) or unpredictable streaming access
(e.g., sort) could get stalls due to the long latency. In this
case, we might need to consider using memory with lower
latency or transform the algorithms to leverage streaming.We
discuss more details based on different operators in Sect. 6.

2.4 Programming

The user-defined logic in the FPGA is generally speci-
fied using a hardware description language (HDL), mostly
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Table 1 FPGA-related
bandwidth and latency (from
data source to FPGA kernels)

Mem source Mem type BW (GB/s) Latency (ns) Capacity (MB)

Internal BRAM ≥ 103 100 100

URAM ≥ 103 101 101

On-board HBM 102–103 101–102 103

DRAM 101–102 101–102 104

Host DRAM 101 ≥ 102 ≥ 105

VHDL or Verilog. Unlike software programming languages
such as C/C++ handling sequential instructions, HDLs
describe and define an arbitrary collection of digital circuits.
It requires the developers to have knowledge on digital elec-
tronics design, meaning understanding how the system is
structured, how components run in parallel, how to meet the
timing requirement, and how to trade off between different
resources. This is one of the main reasons that make the soft-
ware community reluctant to use FPGAs.

High-level synthesis (HLS) tools such as Vivado HLS
[38] and Altera OpenCL [115] overcome this problem by
supporting software programmers with the feasibility of
compiling standard languages such as C/C++ and higher-
level hardware-oriented languages like systemC into register-
transfer level (RTL) designs. In such a design procedure,HLS
users write C code and design the interface protocol, and the
HLS tools generate the microarchitecture. Apart from gen-
erating the circuit itself, programming frameworks such as
OpenCL [121] provide frameworks for designing programs
that run on heterogeneous platforms (e.g., CPU+FPGA).
These frameworks typically specify variants of standard
programming languages to program the kernels and define
application programming interfaces to control the platforms.
The corresponding software development kits (SDKs) are
now available for both Xilinx FPGAs [137] and Intel FPGAs
[56]. There are also some domain-specific compilers that can
compile SQL queries into circuits or generate the circuit by
setting a couple of parameters. An example is Glacier [86])
which provides a component library and can translate stream-
ing queries into hardware implementations.

3 FPGA-based database systems

How to deploy FPGAs in a system is a very important ques-
tion for system designers. There are many ways to integrate
FPGAs into database systems. The studies in [82,83] cate-
gorize the ways FPGAs can be integrated by either placing
it between the data source and CPU to act as a filter or by
using it as a co-processor to accelerate the workload by off-
loading tasks. Survey [57] presents another classification that
contains three categories including “on-the-side” where the
FPGA is connected to the host using interconnect such as

Fig. 1 FPGA as a bandwidth amplifier

PCIe, “in data path” where the FPGA is placed between the
storage/network and the CPUs, and “co-processor” where
the FPGA is integrated together with the CPU in the same
socket. In this section, we specify three possible database
architectures with FPGA accelerators in a logical view and
explain their shortcomings and advantages.

3.1 Bandwidth amplifier

In a storage-based database system, the bottleneck normally
comes form the data transmission to/from the storage, espe-
cially the HDD. Compared to hundreds of Gbit/s bandwidth
supported byDRAM, the data rate of anHDDdevice remains
at the 1 Gbit/s level, which limits the system performance.
In these systems, FPGAs can be used to amplify the storage
bandwidth.

As shown in Fig. 1, the FPGA is used as a decompress-
filter between the data source (disks, network, etc.) and the
CPU to improve the effective bandwidth. In this architec-
ture, the compressed data is stored on the disks, and would be
transferred to the FPGA, either directly through the interfaces
like SCSI, SATA, Fibrechannel, or NVMe or indirectly, for
network-attached storage or protocols likeNVMeover Infini-
band or Ethernet. In the FPGA, the data is decompressed and
filtered according to some specific conditions, after which
the data is sent to the CPU for further computation. As the
compressed data size is smaller than the original data size,
less data needs to be transferred from storage, improving the
effective storage bandwidth indirectly.

The idea has proven to be successful by commercial
products such as Netezza [41], or a few SmartNIC variants
[80,92]. In Netezza, an FPGA is placed next to the CPU
doing the decompression and aggregation in each node, and
only the data for post-processing is transferred to the CPU.
In a few SmartNIC products, an FPGA sits as a filter for the
network traffic. By applying compression/decompression or
deduplication, they greatly enhance the effective bandwidth
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of an network-to-storage applications. A similar idea is also
studied by prior research such as the ExtraV framework [72],
where the FPGA is integrated into the system in an implicit
way. The FPGA is inserted in the data path between the
storage and the host, performing graph decompression and
filtering. Some research [42,128,139] shows that even with-
out doing the decompression by only performingfiltering and
aggregation on the FPGA, one can significantly reduce the
amount of data sent to the CPU, as well as relieve the CPU
computational pressure. This is a good solution for latency-
sensitive applications with data stream processing, where the
FPGAcapability for the high throughput and low latency pro-
cessing is demonstrated.

3.2 IO-attached accelerator

Attaching FPGAs as an IO-attached accelerators is another
conventional way to deploy accelerators in the systems, espe-
cially for computational-intensive applications in which the
CPUs are the bottleneckof these systems. In this case, FPGAs
are used as IO devices performing data processingworkloads
offloaded by CPUs. Figure 2 illustrates the architecture of
using the FPGA as an IO-attached accelerator. In this archi-
tecture, the FPGA is connected to the CPU through buses
such as PCIe, and the FPGA and CPU have their own mem-
ory space. When the FPGA receives tasks from the CPU,
it first copies the data from the host memory to the device
memory. Then the FPGA fetches data from the memory and
writes the results back to the device memory after process-
ing it. After that, the results can be copied back to the host
memory.

This approach is illustrated by both industry and academic
solutions. Kickfire’s MySQL Analytic Appliance [63], for
example, connects theCPUwith aPCIe-attachedFPGAcard.
The offloaded queries can be processed in the FPGA with a
large amount of high-bandwidth on-board memory. Xtreme-
data’s dbX [106] offers an in-socket FPGAsolutionwhere the
FPGA is pin compatible with the CPU socket. Key database
operations including joins, sorts, groupbys, and aggregations
are accelerated with the FPGA. In recent academic research
on accelerating database operators such as sort [18] and join
[109], the data is placed in the device memory to avoid data
copies from/to the host. This architecture is also present in
GPU solutions such as Kinetica [66], MapD [81], and the
research work in [51]. A drawback of this architecture is that
it requires extra copies (from the host memory to the device
memory and the other way around) which leads to longer
processing latencies. Also the application must be carefully
partitioned, as the accelerator is unable to access memory
at-large. The separate address spaces also affect debug, and
performance tools. Even today, it is often difficult to get an
integrated viewof the performance of aGPU-accelerated sys-
tem for example. Placing the whole database in the device

Fig. 2 FPGA as an IO-attached accelerator

memory such as the design from [43] can reduce the impact of
the extra copies. However, since the device memory has lim-
ited capacity which is much smaller than the host memory, it
limits the size of the database and the size of the applications.

3.3 Co-processor

Recent technology allows FPGA to be deployed in a third
way where the FPGA acts as a co-processor. As shown in
Fig. 3, in this architecture, the FPGA can access the host
memory directly, and the communication between the CPU
and the FPGA is through shared memory. Unlike the IO-
attached deployment, this deployment provides the FPGA
full access to system memory, shared with the CPU, that is
much larger than the device memory. In addition, accessing
the host memory as shared memory can avoid copying the
data from/to the device memory. Recently, there have been
two physical ways to deploy FPGAs as co-processors. The
first way tightly couples the FPGA and the CPU in the same
die or socket, such as Intel Xeon+FPGA platform [48] and
ZYNQ [27]. The FPGAandCPU are connected through Intel
QuickPath Interconnect (QPI) for Intel platforms and Accel-
erator Coherency Port (ACP) for ZYNQ, and the coherency
is handle by the hardware itself. The secondmethod connects
the FPGAs to the host through coherent IO interfaces such
as IBMCoherent Accelerator Processor Interface (CAPI) or
OpenCAPI [123], which can provide high bandwidth access
to host memory. The coherency between the CPU and the
FPGA is guaranteed by extra hardware proxies. Recently,
Intel also announced a similar off-socket interconnect called
Compute Express Link (CXL) that enables a high-speed
shared-memorybased interaction between theCPU, platform
enhancements and workload accelerators.

DoppioDB [114] is a demonstrated systemof this architec-
ture from academia. It extends MonetDB with user-defined
functions in FPGAs, along with proposing a Centaur frame-
work [97] that provides software APIs to bridge the gap
between CPUs and FPGAs. Other research work studies
the acceleration of different operators including compression
[104], decompression [35], sort [146] and joins [49], etc.
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Fig. 3 FPGA as a co-processor

4 What has held FPGAs back?

In this section, we discuss three main challenges that have
reduced the interest in using FPGAs to accelerate in-memory
database systems in both industry and academia. System
designers and performance analysts might be interested in
Sects. 4.1 and 4.3 where the system performance limitation
and the comparison to GPUs are explained, while soft-
ware developers can focus on the FPGA programmability
in Sect. 4.2. In Sect. 5 we discuss the technology trends that
address the challenges discussed here.

4.1 Significant communication overhead

Afirst obvious challenge for using any accelerator is commu-
nication overhead.Whilemany FPGAaccelerators discussed
in Sect. 6 such as [49,61,125] have demonstrated that FPGAs
can achieve high (multi-) kernel throughput, the overall per-
formance is frequenty-limited by the low bandwidth between
the FPGA and the host memory (or CPU).Most recent accel-
erator designs access the host memory data through PCIe
Gen3, which provides a few GB/s bandwidth per channel or
a few tens of GB/s accumulated bandwidth. This bandwidth
is not always large enough compared to that between theCPU
and the main memory in the in-memory database systems,
and the cost of data transmission from/to the FPGA might
introduce significant overhead.

In addition, transferring data from the host to FPGAs that
are not in the same socket/die as the CPU increases latency.
When the FPGAoperates in a different address space, latency
is increased even more (a few microseconds is not uncom-
mon). This brings challenges to the accelerator designs,
especially for those have unpredictable memory access pat-
terns such as scatter, gather and even random access. To hide
the long latency, extra resources are required to buffer the
data [88] or to maintain the states of a massive number of
tasks or threads [49].

4.2 Weak programmability

Another big challenge is the difficulty of developing FPGA-
based accelerators and effectively using them, which has two
main reasons.

First, programming an FPGA presents a number of chal-
lenges and tradeoffs that software designers do not typically
have to contend with. We give a few examples. To produce
a highly-tuned piece of software, a software developer occa-
sionally might have to restructure their code to enable the
compiler to do sufficient loop unrolling (and interleaving)
to hide memory latencies. When doing so there is a trade-
off between the number of available (renamed) registers and
the amount of loop unrolling. On the FPGA, the equiva-
lent of loop unrolling is pipelining, but as the pipeline depth
of a circuit is increased, its hardware resources change, but
its operating frequency can also change, making navigating
the design space more complex. Even when we limit our
attention to the design of computational kernels, an aware-
ness of the different types of resources in an FPGA may be
required to make the right tradeoffs. The implementation in
an FPGA is either bound by the number of the computa-
tion resources (LUTs, DSP, etc.) or the size of the on-FPGA
memory (BRAM,URAM, etc.) or it can be constrained by the
available wiring resources. Which of these limits the design
informs how the design is best transformed. As can be seen
from this example, implementing an optimized FPGAdesign
typically requires developers to have skills across the stack to
gain performance While nowadays HLS tools can generate
the hardware circuits from software language automatically
by adopting techniques such as loop unrolling and array par-
titioning [26,28], manual intervention to generate efficient
circuits that can meet the timing requirements and sensi-
bly use the hardware resources is still required too often. In
many cases, the problem is outside the computational kernels
themselves. For example, a merge tree that can merge mul-
tiple streams into a sorted stream might require prefetching
and bufferring of data to hide the long latency. In this case,
rewriting the software algorithms to leverage the underlying
hardware or manually optimizing the hardware implementa-
tion based on the HLS output or even redesigning the circuit
is necessary.

Second, generating query plans that can be executed on
an FPGA-accelerated system demands a strong query com-
piler that can understand the underlying hardware, which is
still lacking today. The flipside of having highly specialized
circuits on an FPGA is that (parts of) the FPGA must be
reconfigured when a different set, or a different number of
instances of functions or kernels is needed, and FPGA recon-
figuration times exceed typical context switch penalties in
software by orders of magnitude. In software, the cost of
invoking a different function can usually be ignored. Unlike
the single-operator accelerators, we survey in Sect. 6, in real-
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ity, a query is typically a combination of multiple operators.
The query optimizer component in the query compiler opti-
mizes the query plan by reordering and reorganizing these
operators based on the hardware. While this field has been
well studied in the CPU architecture, it becomes more chal-
lenging when taking FPGAs into account. Because of the
long reconfiguration times, a query plan for a short running
query may look vastly different than an optimized query plan
for a long-running query, even if the queries are the same.
Thus query compilers need to map the query plan to meet
the query execution model in the FPGA. In addition, the
FPGA designs may not be optimized and implemented for
all required functions or operators. Thus, for some special
functions or operators that have not been implemented in
the FPGA or where FPGAs do not provide adequate perfor-
mance gain, the query compiler should drive the query plan
back to the pure CPU execution model. Without a shared
address space, and a commonmethod to access the data (e.g.,
the ability to lock memory), a requirement to flexibly move
components of a query between the CPU and accelerators is
significantly complicated.

4.3 Accelerator alternative: GPU

In recent years, the GPU has become the default accelerator
for database systems. There are many GPU-based database
systems from both industry and academia such as Kinet-
ica/GPUDB [66,143], MapD [81], Ocelot [53], OmniDB
[147], and GPUTx [52]. A comprehensive survey [15] sum-
marizes the key approaches to using GPUs to accelerate
database systems and presents the challenges.

Typically, GPUs achieve higher throughput performance
while FPGAs gain better power-efficiency [23]. TheGPUhas
a very large number of lightweight cores with fewer control
requirements and provides a high degree of data-level par-
allelism. This is an important feature to accelerate database
applications since many database operators are required to
perform the same instructions on a large amount of data.
Another important feature is that the GPU has large capac-
ity high-bandwidth on-device memory that is typically much
larger than the host main memory bandwidth and the CPU-
GPU interface bandwidth. Such large local memory allows
GPUs to keep a large block of hot data and can reduce the
communication overhead with the host, especially for appli-
cations that need to touch the memory multiple times such as
the partitioning sort [39] that achieves 28 GB/s throughput
on a four-GPU POWER9 node.

While FPGAs cannot beat the throughput ofGPUs in some
database applications, the result might change in power-
constrained scenarios. One of the reasons is that the data flow
design on FPGAs can avoid moving data between memories.
A study fromBaidu [96] shows that the XilinxKU115 FPGA
is 4x more power-efficient than the GTX Titan GPU when

running the sort benchmark. In addition, the customizable
memory controllers and processing engines in FPGAs allow
FPGAs to handle complex data types such as variable-length
strings and latency-sensitive applications such as network
processing that GPUs are not good at (we discuss more detail
in Sect. 7.3).

However, when considering programmability and the
availability of key libraries, FPGAs still have a long way
to go compared to GPUs, as mentioned in Sect. 4.2. Conse-
quently, engineersmight preferGPUswhich can also provide
high throughput but are much easier to program, debug, and
tune for performance. In other words, GPUs have raised the
bar for using FPGAs to accelerate database applications. For-
tunately, the technology trends in Sect. 5 show that some of
these barriers are being addressed, and thus it is worth it to
have another look ar FPGAs for in-memory database accel-
eration.

5 Technology trends

In recent years, various new technologies have changed the
landscape of system architecture. In this section, we study
multiple technology trends including database system trends,
system interconnect trends, FPGA development trends, and
FPGA usability trends, andwe introduce a systemmodel that
combines these technologies. We believe that these technol-
ogy trends can help system designers to design new database
system architectures, and help software developers to start
using FPGAs.

5.1 Database system trends

Databases traditionally were located on HDDs, but recently
the data is often held in-memory or on NVM storage.
This allows for two orders of magnitude more bandwidth
between the CPU and stored database compared to the
traditional solution. Some of the database operators now
become computation-bound in a pure CPU architecture,
which demands new and strong processors such as GPUs
and FPGAs.

However, the downside is that acceleration, or the offload-
ing of queries, becomes more difficult due to the low
FPGA-CPU interconnect bandwidth. When using FPGAs as
IO-attached accelerator, typically PCI Express (PCIe) Gen
3 is used as an IO interconnect. It provides limited band-
width compared to DRAM over DDRx, and may suffer
resource contention when sharing PCIe resources between
FPGA and NVM over NVMe, which may impact the per-
formance. While PCIe Gen 4 doubles the bandwidth, it does
not solve the communication protocol limitation that using
FPGAs as IO-attached accelerators requires to copy the data
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between the host memory and the device memory, resulting
in extra data transmission overhead and long latency.

These limitations result in a high cost of data movement
between the database and the FPGA. This limits the appli-
cability of FPGAs in the data center. In order to accelerate
databases with FPGAs (again), the interconnect has to over-
come these limitations in order to becomeaviable alternative.

5.2 System interconnect trends

The bandwidth of system interconnects plateaued for quite a
few years, after the introduction of PCIeGen3.More recently
the pace has increased, the PCI Express Consortium released
the specification of Gen 4 in 2017 and Gen 5 in 2019, respec-
tively [100], and is expected to release the specification of
Gen6 in 2021 [99].Because of the longwait for a newgenera-
tion, other initiatives had started, proposing new interconnect
standards to solve the bandwidth bottlenecks mentioned in
Sect. 4.

5.2.1 Increase in system interconnect bandwidth

Figure 4 shows collected data regarding DRAM, network
and storage bandwidth in 2019 [70] and predicts the future
until 2022 (indicated by the diamond-shaped markers). The
bandwidth of PCIe was added to act as a proxy for intercon-
nect bandwidth. For each generation of the PCIe standard,
the bandwidth of sixteen lanes is plotted, since this is typ-
ically the maximum number of lanes per PCIe device. The
DRAM data interface is inherently uni-directional and sev-
eral cycles are required to turn the channel around.Amemory
controller takes care of this by combining reads and writes
to limit the overhead cycles spent in configuring the channel.
Therefore, DRAM bandwidth should be interpreted as either
a read or write channel with the plotted bandwidth, while
attached devices such as network and storage typically have
a bi-directional link.

The slope of each of the fitted lines is important here.
Clearly, both network and storage bandwidths are increasing
at a much faster rate (steeper slope) than DRAM and PCIe.
The network and storage slopes are similar and double every
18 months. PCIe doubles every 48 months, while it takes
DRAM84months to double in bandwidth. A server typically
contains one or two network interfaces, but often contains a
dozenormore storagedevices, lifting the blue line by anorder
of magnitude. Thus, a shift in balance is expected for future
systems where DRAM, interconnect, network and storage
bandwidth are about the same.

The fitted straight lines for each of the four data sets shown
in Fig. 4 indicate exponential behavior. While it might look
like accelerators, such asGPUs andFPGAs,will have to com-
pete for interconnect bandwidth with network and storage,
one option is to scale memory and interconnect bandwidth

Fig. 4 Bandwidth trends at device-level. Data points were approxi-
mated from the referenced figures in order to add the PCI Express
standard bandwidth and represent all bandwidths in GB/s [70,88]

accordingly. While scaling is the trend, as becomes appar-
ent from the next paragraph, and works in the short-term, it
does not solve the fundamental problem of limited DRAM
bandwidth improvements.

The reason that DRAM bandwidth is not increasing at
a similar pace is twofold. To increase bandwidth, either
the number of channels or the channel frequency must be
increased. However, each solution has significant implica-
tions. Every additional channel requires a large number of
pins (order of 100) on the processor package (assuming an
integrated memory controller) that increases chip area cost.
Increasing channel frequency requires expensive logic to
solve signal integrity problems at the cost of area, and more
aggressive channel termination mechanisms at the cost of
power consumption [30,47]. If the bandwidth of the inter-
connect is increased to the same level as DRAM, the same
problems thatDRAMfaceswill be faced by attached devices.

5.2.2 Shared memory and coherency

Solely increasing bandwidth will not solve all of our prob-
lems, because the traditional IO-attached model will become
a bottleneck. Currently, the host processor has a sharedmem-
ory space across its cores with coherent caches. Attached
devices such as FPGAs, GPUs, network and storage con-
trollers are memory-mapped and use a DMA to transfer data
between local and system memory across an interconnect
such as PCIe. Attached devices can not see the entire system
memory, but only a part of it. Communication between the
host processor and attached devices requires an inefficient
software stack in comparison to the communication scheme
between CPU cores using shared memory. Especially when
DRAM memory bandwidth becomes a constraint, requir-
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ing extra memory-to-memory copies to move data from one
address space to another is cumbersome.

This forced the industry to push for coherency and shared
memory across CPU cores and attached devices. This way,
accelerators act as peers to the processor cores. The Cell
Broadband Engine architecture [59] introduced coherent
shared system memory access for its Synergistic Processor
Element accelerators. A coherent interface between a CPU
and GPU has also been adopted by AMD several years ago
with their Accelerated Processing Unit (APU) device family
[29]. Another example is the Cache Coherent Interconnect
for Accelerators (CCIX) [13] which builds on top of PCIe
and extends the coherency domain of the processor to het-
erogeneous accelerators such as FPGAs. OpenCAPI is also
a new interconnect standard that integrates coherency and
shared memory in their specification. This avoids having to
copy data in main memory, and coherency improves FPGA
programmability.

With shared memory, the system allows FPGAs to read
only a small portion of the data from the hostmemorywithout
copying the whole block of data to the device memory. This
can reduce the total amount of data transmission if the appli-
cation has a large number of small requests. With coherency
supported by hardware, programmers can save effort needed
to keep the data coherent through software means. In addi-
tion, the shared, coherent address space provided by the
coherent interface allows programmers to locally transform
a piece of code on the CPU to run on the FPGA, without
having to understand the full structure of the program and
without having to restructure all references to be local to
the FPGA. Especially for production code that tends to be
full of statements that are very infrequently executed, the
ability to focus on performance-critical code without having
to restructure everything is essential. The drawback of sup-
porting shared memory and coherency by hardware is that
it requires extra hardware resources and can introduce addi-
tional latency. Thus, for performance reasons, a developer
might need to optimize the memory controller for special
memory access patterns.

5.2.3 Concluding remarks

As discussed in this section, both identified bottlenecks will
soon belong to the past. This opens the door for FPGA accel-
eration again. FPGAs connected using a high bandwidth and
low latency interconnect, and ease of programming due to the
sharedmemory programmingmodel,make FPGAs attractive
again for database acceleration.

5.3 HBM in FPGAs

As shown in Fig. 4, DRAMbandwidth is not increasing at the
same rate as attached devices. Even though the latest DDR4

can provide 25 GB/s bandwidth per Dual In-line Memory
Module (DIMM), for high-bandwidth applications, a dozen
or more modules are required. This leads to a high price to
pay in Printed circuit board (PCB) complexity and power
consumption.

The new high-bandwidth memory technologies provide
potential solutions, one of which is high-bandwidth mem-
ory (HBM). HBM is a specification for 3D-stacked DRAM.
HBM has a smaller form factor compared to DDR4 and
GDDR5, while providing more bandwidth and lower power
consumption [65]. Because HBM is packaged with the
FPGA, it circumvents the use of a PCB to connect to DRAM.
The resulting package is capable of multi-terabit per second
bandwidth, with a raw latency similar to DDR4. This pro-
vides system designers with a significant improvement in
bandwidth. The latest generation of Xilinx FPGAs supports
HBMwithin the same package [138], providing FPGAs with
close to a half TB/s scale bandwidth (an order of magnitude
more bandwidth than the bandwidth to typical on-accelerator
DRAM). Thismakes FPGAs also applicable to data intensive
workloads.

Due to the area limitation and the higher cost of stacked
DRAMs, HBM integrated with the FPGA can not match the
capacity of conventional DRAM. Integration with FPGAs
results in a competitive advantage for workloads that require,
for example, multiple passes over the same data at high band-
width. Various examples of multi-pass database queries have
been studied in this paper. An example is the sort algorithm
presented in Sect. 6.3.

5.4 Systemwith accumulated high bandwidth

Today it is possible to have systems with large storage and
accelerator bandwidth. Accelerated database systems can
leverage these types of heterogeneous systems. A feasible
conceptual systemmodel is depicted in Fig. 5, which is based
on the IBM AC922 HPC server [55,89]. Note that the num-
bers shown in Fig. 5 are peak numbers.

This system consists of two nodes that connect to each
other via a Symmetric multiprocessing (SMP) interface with
64 GB/s bandwidth in each direction. Each node contains
one POWER9 CPU and two FPGAs. Each POWER9 CPU
has 170 GB/s bandwidth to DDR4 memory in the host side
and supports up to two FPGAs. Each FPGA is connected
at 100 GB/s rate through two OpenCAPI channels, meaning
in total 200 GB/s accelerator bandwidth is provided in each
node. The FPGA fabric would be the latest model VU37P
[142], where 8 GBHBM is integrated that supports 460GB/s
bandwidth. Each FPGA would have two OpenCAPI inter-
faces to the I/O that can be used to attach the NVMe storage.
In total, eight of these interfaces in a two-node system support
400 GB/s peak storage I/O bandwidth. FPGAs can be con-
nected to each other via 100 GB/s high-end interfaces. This
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Fig. 5 Proposed FPGA-intensive configuration of POWER9 system
(after [89])

example demonstrates that a system with all of the memory
bandwidth being available to the accelerators is feasible.

5.5 Programmability trends

Even though the FPGA programmability is a serious and
historical challenge that reduces the interest in accelerators
for databases from developers, the FPGA community has
made great progress and can be expected to keep the current
momentum. The number of HLS tools from industry and
academia is increasing, and examples include Vivado HLS
[38], Altera OpenCL [115], Bluespec System Verilog [93],
LegUp [17], DWARV [90], and Bambu [102], etc.

The first step that allowed compiling sequential code
in software programming language such as C/C++ into
hardware circuits by inserting HLS pragmas and adopting
techniques such as loop unrolling, array partitioning, and
pipeline mapping [26,28] have proved a milestone contri-
bution. Now these tools are leveraging new techniques to
further simplify the programming and enhance the perfor-
mance. One recent trend is that HLS tools are integrating
machine learning techniques to automatically set param-
eters for performance and controlling resource utilization
[75,120,144]. In addition, these techniques can reduce the
number of required HLS pragmas which further simplifies
FPGA programming in HLS. Another recent change is the
support of OpenMP [16,117,134]. OpenMP is one of the
most popular languages for parallel programming for shared
memory architecture. The support of OpenMP in HLS pro-
vides the potential of compiling parallel programs into FPGA
accelerators that support shared memory. Because HLS is a
big topic study by itself, we can not cover all the aspects. A
recent survey [91] comprehensively studies the current HLS
techniques and discusses the trends.

The emerging programming framework is another impor-
tant achievement that contributes to the FPGA programma-
bility, especially for hardware designers. These frameworks
help in two different ways. First, such a framework can gen-
erate the memory interface for the designers with optimized
memory controllers. An example is the SNAP [95] frame-
work for CAPI/OpenCAPI which can take care of the low
level communication protocol with the interface and abstract
a simple burst mode data request. Another example is the
Fletcher [101] framework which can generate interfaces for
the Apache Arrow [4] in-memory tabular data format. With
these program frameworks, the designer can save time from
interface design and focus on the kernel design and perfor-
mance tuning. Another benefit comes from the support of
APIs that can manage the accelerators. These APIs typically
wrap up the host accelerator management jobs and commu-
nication jobs into a package of software functions. The user
only needs to choose and call the right APIs to access the
hardware accelerators, which further improves ease of use.

Recently, the above techniques are being applied to
the database domain. The prior study in [24,25] gives an
overview of how software infrastructure can enable FPGA
acceleration in the data center, where the two main enablers
are the accelerator generation and the accelerator manage-
ment. Other work studies SQL-to-hardware compilation. An
example is Glacier [86], which can map streaming SQL
queries into hardware circuits on FPGAs. Other studies work
on the acceleration on database operators such as decom-
pression [73], sort [6], and partitioning [133]. As mentioned
before, the frameworks can support FPGA acceleration for
databases in two ways, managing the hardware and provide
APIs, the Centaur framework [97] is an example of leverag-
ing these ideas for the database domain.

6 Acceleration of query operators

Even though there is not yet a commercial FPGA-accelerated
in-memory database, a substantial body of prior work on
accelerating database operators or components is pushing
progress in this direction. In this section, we summarize
the prior work on database operator acceleration including
decompression, aggregation, arithmetic, sorts, joins, and oth-
ers. An overview of the prior work is summarized in Table 2,
where FPGA designers and performance analysts can have
a quick view on the prior work. We also discuss the poten-
tial improvement for operator acceleration, which might be
interesting for hardware designers. Most of this work shows
that FPGA implementations of the kernels are efficient to the
point where performance is limited by the bandwidth from
host memory to the FPGAs. In most conventional systems
this bandwidth is limited most by the PCIe connection to the
FPGA.
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6.1 Decompression

Decompression is widely used in database applications to
save storage and reduce the bandwidth requirement. The
decompressor works as a translator, reading a compressed
stream consisting of tokens, translating the tokens into
data itself, and outputting a decompressed stream. There
are many different (de)compression algorithms. Since in
database applications we do not want to lose any data, we
consider lossless (de)compression algorithms in this sur-
vey paper. The most popular two types of (de)compression
in database systems are the Run-Length Encoding (RLE)
[111] and the Lempel-Ziv (LZ) series. This paper focuses
on decompression algorithms instead of compression algo-
rithms, even though there are many studies [1,11,40] on
compression acceleration. An important reason is that in
database systems, the common case is to compress the data
once and to decompress it more frequently.

6.1.1 RLE

RLE is a simple form of a compression algorithm that records
a token with a single value and a counter indicating how
often the value is repeated instead of the values themselves.
For example, a data sequence “AAAAAAAABBBC” after RLE
compression is “8A3B1C”. In this case, instead of storing
12 bytes of raw data, we store 6 bytes, or 3 tokens with each
token in fixed size (1 byte counter and 1 byte value). The
RLE decompression works in reverse. The RLE decompres-
sor reads a fixed size token, translates it into a variable-length
byte sequence, and attaches this sequence to the decom-
pressed data buffer built from the previous tokens.

Themethodproposed in [33] shows that their FPGA-based
RLE implementation can help reduce the FPGA reconfigu-
ration time and achieves a throughput of 800 MB/s which
is limited by the Internal Configuration Access Port (ICAP)
bandwidth. It is not difficult to parallelize this translation pro-
cedure. As the token has a fixed size, the decompressor can
explicitly find out where a token starts without the acknowl-
edgement of the previous token, and multiple tokens can be
translated in parallel. The write address of each parallel pro-
cessed token can be provided in the same cycle by adopting
prefix-sum on the repeating counter. Thus, we can imagine
that a multi-engine version of this implementation can suffi-
ciently consume the latest interface bandwidth.

6.1.2 LZ77-based

Instead of working on the word level, LZ77 [149] compres-
sion algorithms leverage repetition on a byte sequence level.
A repeated byte sequence is replaced by a back reference
that indicates where the previous sequence occurs and how
long it is. For those sequenceswithout duplicates, the original
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data is stored. Thus, a compressed file consists of a sequence
of tokens including copy tokens (output the back reference)
and literal tokens (output the data itself). During the com-
pression, a history buffer is required to store the most recent
data for finding a matched sequence. Similarly, maintaining
this history buffer is a prerequisite for copy tokens to copy
context from during the decompression. Typically, the size of
history buffer is on the order of tens of KB level and depends
on the algorithms and their settings.

Decompression translates these two types of tokens into
the original data. For literal tokens, the decompressor selects
the original data stored in the tokens andwrites it into the his-
tory buffer. For copy tokens, the back referencedata including
the copied position and copied length is extracted, followed
by a read from the history buffer and a write to the history
buffer. There aremany extensions to this algorithm, e.g., LZ4
[22], LZSS [122], Gzip2 [32] and Snappy [44].

In an FPGA, the history buffers can be implemented using
shift registers [68] or BRAMs [54], and the token decoding
and the BRAM read/write can be placed in different pipeline
stages.While pipeline design can ensure continuous process-
ing of the compressed data, the throughput declines when
data dependencies occur. The LZ4 decompression proposed
in [77] uses separate hardware paths for sequence process-
ing and repeated byte copying/placement, so that the literal
tokens can always be executed since they contain the origi-
nal data and are independent of the other tokens. Separating
the paths ensures these tokens will not be stalled by the
copy tokens. A similar two-path method for LZ77-based
decompression is shown in [46], where a slow-path routine is
proposed to handle large literal tokens and long offset copy
tokens, while a fast-path routine is adopted for the remain-
ing cases. This method is further demonstrated at the system
level in [45] to hide the latency of slow operations and avoid
stalls in the pipeline.

Even though a single-engine FPGA implementation can
outperform a CPU core, it is not easy to exceed a throughput
of one token per cycle per engine. To saturate the bandwidth
from a high-bandwidth connection, we can either implement
multiple decompressor engines in an FPGA or implement a
strong engine that can process multiple tokens per cycle. A
challenge of implementing multiple engines is the require-
ment of a powerful scheduler that canmanage tens of engines,
which also drains resources and might limit the frequency.
In addition, the implementation of the LZ77-based decom-
pressor in FPGAs takes muchmorememory resources [141],
especially the BRAMs, limiting the number of engines we
can place in a single FPGA. Apart from that, the unpre-
dictable block boundaries in a compressed file also bring
challenges to decompressingmultiple blocks in parallel [58].
As an alternative, researchers also look for intra-block paral-

2 Gzip is an implementation of DEFLATE [62].

lelism. However, the demands of processing multiple tokens
in parallel pose challenges including handling the various
token sizes, resolving the data dependencies and BRAM
bank conflicts. A parallel variable length decoding technique
is proposed in [2] by exploring all possibilities of bit spill.
The correct decoded streams among all the possibilities are
selected in a pipelined fashion when all the possible bit spills
are calculated and the previous portion is correctly decoded.
A solution to the BRAM bank conflict problem is presented
in [105] by duplicating the history buffer, where the pro-
posed Snappy decompressor can process two tokens every
cycle with throughput of 1.96 GB/s. However, this method
can only process up to two tokens per cycle and is not easy
to scale up to process more tokens in parallel due to the
resource duplication requirement. To reduce the impact of
data dependencies during the execution of tokens, Sitaridi et
al. [116] proposed a multiround execution method that exe-
cutes all tokens immediately and recycles those copy tokens
that return with invalid data. The method proposed in [34]
improves this method to adopt the parallel array structure in
FPGAs by refining the tokens into BRAM commands which
achieve an output throughput of 5 GB/s.

For LZ-77-based decompression accelerators that need a
history buffer (e.g., 64 KB history for Snappy), a light engine
that processes one token per cycle would be BRAM lim-
ited, while a strong engine that processes multiple token per
cycle might be LUT limited. Even the design [34] with the
best throughput cited in this paper is not in perfect balance
between LUTs and BRAMs for the FPGA it uses, and there
is room for improvement.

6.1.3 Dictionary-based

Dictionary-based compression is another commonly used
class of compression algorithms in database systems, the
popular ones of which are the LZ78 [150] and its extension
LZW [135]. This class of compression algorithms maintains
a dictionary and encodes a sequence into tokens that consist
of a reference to the dictionary and the first non-matched
symbol. Building the dictionary lasts for the whole compres-
sion. When the longest string matches the current dictionary,
the next character in the sequence is appended to this string to
construct a new dictionary record. It is not necessary to store
the dictionary in the compressed file. Instead, the dictionary
is reconstructed during decompression.

A challenge to designing efficient decompression in
FPGAs is to handle the variety of string length in the dictio-
nary.When adopting fixed-width dictionaries, while setting a
large width for the string wastes a lot of memory space, using
a small string width suffers from throughput decrease since
multiple small entries must be inspected to find the match.
Thus, a good design for these decompression algorithms
demands explicit dictionary mechanisms that can efficiently

123

2

26 CHAPTER 2



J. Fang et al.

make use of the FPGA’s capability of bit-level processing. A
two-stage hardware decompressor is proposed in [74] which
combines a parallel dictionary LZW with an Adaptive Huff-
man algorithm in a VLSI, achieving 0.5 GB/s data rate for
decompression. The study in [148] presents an efficient LZW
by storing the variable-length strings in a pointer table and
a character table separately. The implementation of a single
instance of this algorithm consumes 13 18 Kb BRAMs and
307 LUTs in an XC7VX485T-2 FPGA, achieving 300 MHz
frequency and 280 MB/s throughput.

6.1.4 Discussion

Memory access patterns Table 3 compares the host mem-
ory access patterns of operators discussed in this survey,
assuming that the source data is initially stored in the host
memory. The decompression has a “sequential” memory
access pattern since it has streaming input and streaming
output. Typically the decompressor outputs more data then
the input.
Bandwidth efficiencyAswementioned before, the RLE algo-
rithms can easily achieve high throughput that can meet the
interface bandwidth bound, but the LZ77 and LZ78 series are
challenging due to the large number of data dependencies.
According to our summary, most of the prior work can not
reach the latest accelerator interface bandwidths, but some
designs [34] can. This depends onmany factors including the
algorithm itself, hardware design and its trade-offs, including
LUT-to-BRAM balance, and FPGA platforms. For a multi-
engine implementation, the throughput is defined by the
product of throughput per engine and the number of engines.
The challenge is that in an FPGA, we can either have strong
decompression engines but fewer of them or more less pow-
erful engines. Thus, a good trade-off during design time is
indispensable to match the accelerator interface bandwidth.

6.2 Streaming operators

6.2.1 Streaming operators

Streaming operators are database operations where data
arrives and can be processed in a continuous flow. These
operators might belong to different categories of database
operators such as selections [85,107,124,125,139], projec-
tions [85,107,124,126], aggregations (sum, max , min, etc.)
[31,84,86,97], and regular expression matching [113,131].
We place them together because they typically act as pre-
processing or post-processing inmost of the queries and have
similar memory access patterns.

Projections and selections are filtering operations that only
output the fields or records that match the conditions, while
the aggregations are performing arithmetic on all the inputs.
Due to the pipeline style design in FPGAs, these opera-

tions can be performed in a stream processing model in
the FPGA implementation, at high bandwidth and with low
overall latency. A multi-engine design of these operators, by
adopting parallelism at different levels, can easily achieve
throughput that may exceed the accelerator interface band-
width and even get close to the host memory bandwidth.
Regular expression matching can be used to find and replace
patterns in strings in databases, such as “REGEXP_LIKE”
in SQL. The performance of regular expression matching
is bounded by the computation in software due to the low
processing rate of software deterministic finite automaton.
However, it can be mapped to custom state machines in the
FPGA and gain performance from a pipelined design.

Even though the implementation of these kernels in
FPGAs is trivial, acceleration of the combination of these
operators and other operators is non-trivial. Typically, a query
is executed according to a query plan that consists of sev-
eral operators. In software, the operator order is decided and
optimized by the query compiler and the query optimizer.
Choosing an order of these operators can reduce the amount
of data running in the pipeline and avoid unnecessary loads
and stores of the intermediate results. Conversely, an irra-
tional query plan can cause extra data accesses and waste
the communication resources. Similarly, to achieve high
throughput, the consideration of combining different FPGA-
implementedoperators in a reasonable order is indispensable.
There are manymethodologies to optimize the query order, a
basic one of which is filtering data as early as possible. This
idea has been reported in many publications. For instance,
the implementation in [124] executes projections and selec-
tions before sorting. The compiler proposed in [85] supports
combinations of selections, projections, arithmetic compu-
tation, and unions. The method from [107] allows joins after
the selection and the projection.

6.2.2 Discussion

Memoryaccess patternThe streamingoperators have stream-
ing reads and streaming write or can only write a single value
(such as sum). They typically produce less output data com-
pared to the input, especially for aggregation operators that
perform the arithmetic. In other words, the streaming opera-
tors have sequential access patterns to the host memory.
Bandwidth efficiency A single engine of the streaming oper-
ators can easily reach GB/s or even tens of GB/s magnitude
throughput. For example, the sum operation proposed in [31]
shows a throughput of 1.13 GB/s per engine, which is lim-
ited by the connection bandwidth bound of their PCIe x4
Gen 2 connected platform. A combination of decompres-
sion, selection, and projection presented in [124] reports a
kernel processing rate of 19 million rows/s or 7.43 GB/s
(amplified by decompression) which exceeds the bandwidth
of PCIe used in their reported platform. Since these opera-
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tors do not require resource-intensive functions in FPGAs,
an instance of multiple engines can be easily implemented
in a single FPGA to achieve throughput that is close to the
interface bandwidth. Although multiple engines need to read
from and write to different streams, this won’t increase the
data access control since the streams are independent. Thus,
a theoretically achievable throughput upper bound of these
operators is the accelerator interface bandwidth.

6.3 Sort

Sorting is a frequently used operation in database systems
for ordering records. It is can be used in ORDER BY in SQL
and in a more complex query to improve the performance.
Large scale sort benchmarks are considered key metrics for
database performance.

In a CPU-based sort, the throughput is limited by the
CPU computation capacity, as well as the communication
between computational nodes. For the record holder for a
large multi-node sort the per node performance is about
2 GB/s [94]. Single-node sort throughput without the com-
munication overheadmay be somewhat larger, butwe believe
that the single-node performance would be within the same
order of magnitude. As network speed increases rapidly, and
storage is replaced with NVMe devices where storage band-
width grows rapidly, sort with CPUs is not going to keep
up. Therefore, accelerators are now required for this oper-
ation that historically was bandwidth-bound. To reach this
goal, many hardware algorithms have been presented using
FPGAs to improve performance. In this section, we give an
overview of the prior FPGA-based sort algorithms.

6.3.1 Sorting network

A sorting network is a high throughput parallel sort that can
sortN inputs at the same time. The compare-and-swap unit is
the core element in a sorting network. A compare-and-swap
unit compares two inputs and arranges them into a selected
order (either ascending or descending), guaranteed by swap-
ping them if they are not in the desired order. Using a set
of these compare-and-swap units and arranging them in a
specific order, we can sort multiple inputs in a desired order.

A simple way to generate a sorting network is based on
the bubble sort or insertion sort algorithm. Thus, these types
of sorting networks require O(N 2) compare-and-swap units
and O(N 2) compare stages to sort N inputs. More efficient
methods to construct the network include the bitonic sort-
ing network and the odd-even sorting network [12]. Figure 6
shows the architecture of the bitonic sorting network (Fig. 6a)
and the odd-even sorting network (Fig. 6b) with 8 inputs. We
can further pipeline the designs by inserting registers after
each stage. Knowing that it takes one cycle for a signal to
cross one stage in a pipeline design, both sorting networks

(a) Bitonic Sorting Network

(b) Odd-Even Sorting Network

Fig. 6 Architecture of sorting network

take O(log2 N ) cycles to sort N inputs, while the space com-
plexity is O(N log2 N ).

A sorting network can sort multiple data sets concurrently
by keeping different data sets in different stages. An N -input
sorting network is able to process N elements per FPGA
cycle. The sorting network proposed in [87] outputs 8 32-
bit elements per cycle at 267 MHz, meaning a throughput
of 7.9 GB/s. It is not difficult to increase the throughput
by scaling up the sorting network for a larger input num-
ber. A 64-input sorting network at 220 MHz based on the
implementation in [87] can consume data at 52.45 GB/s,
approximately equivalent to the bandwidth of twoOpenCAPI
channels (51.2 GB/s). However, the required reconfigurable
resources increase significantly with the increase in the num-
ber of inputs. Thus, a sorting network is generally used for the
early stages of a larger sort to generate small sorted streams
that can be used as input for the FIFO merge sort or merge
tree in the later stages.

6.3.2 FIFOmerge sorter

The first-in first-out FIFO merge sorter is a sorter that can
merge two pre-sorted streams into a large one. The key ele-
ment is the select-value unit. It selects and outputs the smaller
(or larger) value of two input streams. The basic FIFOmerge
sorter is illustrated in Fig. 7a. Both inputs are read from two
separate FIFOs that store the pre-sorted streams, and a larger
FIFO is connected to the output of the select-value unit. In
[78], an unbalanced FIFO merge sorter is proposed which
shares the output FIFO with one of the input FIFOs to save
FIFO-resources. The proposed architecture is able to sort
32K32-bit elements at 166MHz, consuming3036Kbblocks
(30 out of 132 from a Virtex-5 FPGA).

A drawback of the FIFOmerge sorter is that it takes many
passes to merge from small streams to the final sorted stream
since it only reduces the number of streams into half each
pass, especially when handling large data sets that have to
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(a) Basic FIFO Merge Sorter

(b) Cascading FIFO Merge Sorter

Fig. 7 Architecture of FIFO merge sorter

store into host memory. Sorting a data set with 1024 small
pre-sorted streams requires 10 passes, which means the data
needs to travel between the memory and the FPGA multiple
times. In this case, the overhead of the data transmission dom-
inates, and the overall performance is limited by the interface
bandwidth. This problem can be solved by cascading multi-
ple FIFO merge sorters. As shown in Fig. 7b, FIFO merge
sorters with smaller FIFOs are placed in the earlier stages,
while those with larger FIFOs are inserted at later stages. An
improved method is presented in [69] where the proposed
cascading FIFO merge sort can reduce the pipeline filling
time and emptying time by starting to process the merge as
long as the first element of the second FIFO has arrived. This
implementation can sort 344 KB of data at a throughput of
2 GB/s with a clock frequency of 252 MHz. However, in the
cascading FIFO merge sorter, the problem size is limited by
the FPGA internal memory size, since it needs to store all
the intermediate results of each merge sort stage.

6.3.3 Merge tree

For data sets that do not fit in the internal FPGAmemory, we
need merge trees. The merge tree can merge several sorted
streams into one larger stream in one pass.As shown in Fig. 8,
a merge tree is constructed by a set of select-value units
arranged in multiple levels. In each level, the smaller ele-
ments between two streams are selected which will be sent to
the next level to select the smallest among these four streams.
This process is iterated until the largest element among all
the input streams is selected. FIFOs are inserted between the
leaves of the tree and the external memory to hide the mem-
ory access latency. To pipeline the whole merge and reduce
the back pressure complexity from the root, small FIFOs are
placed between the adjacent levels. An M-input merge tree
merges N streams into N

M streams each pass. Compared to
a FIFO merge sorter, it reduces the number of host memory
accesses from log2 N to logM N . The merge tree implemen-
tation in [69] provides a throughput of 1 GB/s to sort 4.39

Fig. 8 Architecture of merge tree

million 64-bit elements. Partial reconfiguration was used to
configure a three-run sorter (one run of the FIFOmerge sorter
and two runs of the treemerge sorter) that can handle 3.58GB
of data and achieve an overall throughput of 667 MB/s.

For a multi-pass merge sort, even though we can place
multiple merge trees to increase the system throughput, the
final pass has to guarantee all the remaining streams are com-
bined into a single sorted stream. This demands a stronger
merge tree that can output multiple elements per cycle. The
study in [18] presents a multi-element merge unit. This unit
compares N elements from the selected stream with N feed-
back elements produced in the previous cycle and selects the
smallest N ones as output, while the remaining N elements
will be fed back for the next cycle comparison. The proposed
merge tree achieves a throughput of 8.7 GB/s for a two-pass
merging which reaches 89% utilization of the interface band-
width.

A. Srivastava et al. [119] proposed a multi-output merge
tree architecture by adopting increasing-in-size bitonic
merge units (BMUs). In this architecture, the BMU in the
leaf level compares the first element from both input streams
and outputs one element per cycle. The next level BMU com-
pares the first two elements from both streams and outputs
two elements per cycle. The size of the BMU doubles from
one level to the next level until it reaches the root. As a small
BMU is much more resource efficient than a large one, as it
saves hardware resources in the FPGA, bringing high scala-
bility. A drawback of this method is that the throughput for
skewed data drops. A similar architecture [118] where the
merge tree is able to output 32 64-bit elements in one cycle
reports a throughput of 24.6 GB/s. However, this paper uses
a wrapper to produce the input data instead of reading from
the external memory, where the control of feeding 32 input
streams would consume internal memory of the FPGA as
well as potentially reducing the clock frequency. A clock fre-
quency optimization method is illustrated in [79] by deeply
pipelining the multi-element merge unit. An instance of this
method with 32 outputs per cycle operates at 311 MHz. The
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method proposed in [108] further raises the frequency of the
merge tree to 500 MHz by breaking the feedback loop.

Based on the observation that it might consume all the
BRAMresources in anFPGA to hide the interconnect latency
in a wide merge tree, an alternative is presented [145] of
an “odd-even” merge sorter combined with a multi-stream
interface [88] that can deal with the data skew and supply a
stable throughput for any data distribution. The multi-stream
interface is constructed as a two-level buffer using both the
BRAM and URAM resources. The evaluation shows that
the “even-odd” merge sorter kernel can merge 32 streams,
providing a throughput of 26.72 GB/s. However, even with
the two-level buffer solution, the buffer and the associate
logic still require a majority of the FPGA resources.

Even though speedups are gained from the FPGA accel-
eration, we have to note that the maximum throughput is not
going to exceed the interface bandwidth divided by the passes
of memory accesses. Thus, a good way to design a sorter
needs to trade off between the number of sorting passes and
the throughput of each pass.

6.3.4 Discussion

Memory access pattern Different sort algorithms have dif-
ferent memory access patterns. An N -input sorting network
typically is used in an early stage of sorting to convert an
input stream into an output stream that is a sequence of N -
element sorted substreams. The FIFO merge sort has two
sorted streams as inputs that will be merged into a larger
sorted stream. However, the two inputs are not independent
from each other. This is because the next data to be read relies
on the comparison result of the current inputs. Since this
access pattern is similar with the pattern of “gather” (indexed
reads and sequential writes), but the next reads depend on the
current inputs, we refer to this as a streaming gather pattern.
Thus, the FIFO merge sort has dependent multi-streaming
read and streaming write memory access patterns. Similarly,
the merge tree has the same access pattern as FIFO merge
sort, with the next input might come from multiple streams
instead of two.
Bandwidth efficiency All three classes of sort methods men-
tioned above can sufficiently utilize the interface bandwidth
bymaking stronger engines or deployingmore engines.How-
ever, a large sort may require multiple passes that each
requires the host memory to be accessed. In this manner,
the overall throughput of an entire sort depends on both the
number of passes and the throughput of each pass, or the
overall throughput does not exceed the bandwidth divided by
the number of passes. The number of passes can be reduced
by a wider merger that merges more streams into one larger
stream. However, because each input stream requires buffer-
ing, building up a wider merge tree requires a lot of BRAMs,
which makes the design BRAM limited.

Buffer challenge Reducing the number of memory access
passes is a key point to improve the sort throughput. One
way to do this is to sort as much data as possible in one pass.
For example, use a wider merge tree to merge more streams.
However, in an FPGA, hiding the host memory latency for
multiple streams is a challenging problem, let alone for the
dependent multi-streaming accesses. In a merge tree, when
merging multiple streams, which stream is chosen next can-
not be predicted. Even though buffers can be placed at the
inputs of each stream, naively deploying buffers for each
input to hide the latency would consume all the BRAMs in
anFPGAor evenmore. In the case of a 64-to-1merge tree that
can output 8 16B elements each cycle, to hide the intercon-
nect latency (assume 512FPGAcycles in a 250MHzdesign),
4 MB of FPGA internal memory resources are demanded
(which is all the BRAM resources for a Xilinx KU15P).
HBM benefit HBMs on the FPGA card bring the potential
to reduce the number of host memory accesses for sort.
It provides accelerators with larger bandwidth and deliv-
ers comparable latency compared to the host memory. Thus,
instead of writing the intermediate results back to the host
memory, we can store them in the HBMs. For a data set that
fits in an HBM, the analysis from [145] illustrates that it only
demands one pass read from and write to the host memory
with the help of HBM (the read in the first pass and the write
in the final pass), while without HBM it requires five passes
access to the host memory. For data sets larger than the HBM
capacity, using HBMs for the first several passes of sorting
can reduce a remarkable number of host memory accesses.
Partitioning methods The number of host memory accesses
goes up fast once the data set size is larger than the HBM
capacity. For example, using a 32-to-1 merge tree to sort
256GB data in an FPGA equippedwith 8GBHBMdemands
two passes, including one pass to generate 8 GB sorted
streams and one pass to merge these 8 GB streams into the
final sorted stream. However, with every 32 times increase
in the data set size, an extra pass is required.

The partitioning method is a solution to reduce the host
memory accesses and to improve thememory bandwidth effi-
ciency. It was previously used to obtain more concurrency by
dividing a task intomultiple sub-tasks. Another benefit is that
it can enhance the bandwidth efficiency.

For sorting large data sets in GPUs, a common method
is the partitioning sort [39] where a partitioning phase is
executed to partition the data set into small partitions and
a follow-up sort phase to sort each of them. This method
only demands two passes of host memory accesses and can
achieve a throughput of up to one-fourth of the host memory
bandwidth (two reads and two writes). Experimental results
in [39] illustrate a throughput of 11 GB/s in a single GPU
node which is 65% of the interface bandwidth.

This method is feasible in FPGAs if the HBM is inte-
grated. In this way, to sort the whole data set, two passes
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accessing the host memory is sufficient. In the first pass,
the data is partitioned into small partitions that fit in HBM,
and write the partitions back to the host memory. The sec-
ond pass then reads and sorts each partition and writes the
sorted streams back. As this method needs fewer host mem-
ory accesses compared to the merge sort, it is interesting to
study the partitioning sort in FPGAs and compare it with the
multi-pass merge tree method. The partitioning methods are
also applicable to hash joins to enhance the memory band-
width efficiency. This is described in detail in Sect. 6.4.

6.4 Join

Joins are a frequently used operation in database systems, that
combine two or more tables into one compound table under
specific constraints. The most common one is the equi-join
that combines two tables by a commonfield. In the rest of this
paper,we refer to equi-joins as joins. There aremanydifferent
join algorithms including nested loop join, hash join (HJ),
and sort–merge join (SMJ). In this paper, we focus on the
HJ and SMJ since they are more interesting to the database
community due to their low algorithmic complexity.

6.4.1 Hash join

Hash join is a linear complexity join algorithm. It builds
a hash table from one of the two join tables and uses the
other table for probing to find matches. The probing time for
each element remains in constant time if a strong hash func-
tion is chosen. In CPUs, it is difficult for a hash function to
have both strong robustness and high speed. In FPGAs, this
trade-off is broken because FPGAs allow a complex algebra
function implemented in a circuit that calculates faster than
the CPU does. Kaan et al. [60] shows a murmur hash FPGA
implementation that achieves high performance as well as
strong robustness. Research from [67] points out that the
indexing takes up most of the time for index-based func-
tions, especially the walk time (traversal of the node list)
which accounts for 70%. To solve this problem, the Widx
ASIC, an index traversal accelerator tightly connected to the
CPU cores, is proposed to process the offloaded index-based
walker workloads. Widx decouples the hash unit and the
walker (the traversal unit) and shares the hash unit among
multiple walkers to reduce the latency and to save the hard-
ware resources.

One of the key points to design an FPGA-based hash
join algorithm is to have an efficient hash table structure.
On one hand, the hash table structure influences the perfor-
mance of the hash join engine. An inappropriate hash table
design might introduce stalls, reducing the throughput. On
the other hand, as there is a limited number of BRAMs inside
an FPGA, to ensure a multi-engine instance is feasible in one
FPGA, a hash table should not consume too many BRAMs.

The method in [130] makes use of most of the BRAMs in
an FPGA to construct a maximum size hash table. In this
method, the BRAMs are divided into groups. The hash table
connects the BRAM groups into a chain, and different hash
functions are adopted for different BRAMgroups. In the case
of hash collisions, conflicting elements will be assigned to
the next group until the hash table overflows. Even so, due
to the skewed data distribution, some of the memory may
be wasted. The hash join in [50] uses two separate tables to
construct the hash table, including one Bit Vector table stor-
ing the hash entries and one Address Table table maintaining
the linked lists. The proposed architecture allows probing
without stalls in the pipeline.

For data sets that are too large to store the hash table in the
FPGA’s internal memory, in-memory hash joins are needed.
As the BRAMs can only store part of the hash table, probing
tuples demands loading the hash tablemultiple times from the
main memory. However, the latency of accessingmain mem-
ory ismuch larger than that of accessingBRAMs.Oneway to
deal with this problem is to use the BRAMs as a cache [110].
However, to achieve high throughput, an efficient caching
mechanism is required. If the size of the hash table is much
larger than the BRAMs, the cache miss ratio might remain
too large to benefit from the cache system. Another way to
hide the memory latency is to use multi-tasking. As FPGAs
have a large amount of hardware resource for thread states,
we can keep hundreds of tasks in an FPGA. An example
is shown in [49] where the hash join runs against a Convey-
MX system and achieves a throughput of up to 12GB/s or 1.6
billion tuple/s. However, when applying this method to other
architectures, we need to avoid suffering from the granularity
effect [36]. Because each access to the main memory must
obey the access granularity that is defined by the cache line,
every read/write request always acquires the whole cache
line(s) of data. If a request does not ask data that covers
the whole cache line(s), part of the response data is useless,
meaning a waste of bandwidth. Thus, the hash table needs to
be properly constructed to reduce or avoid the occurrence of
this situation.

Another way to process in-memory hash joins is to parti-
tion the data before performing the joins.Both the input tables
are divided into non-intersecting partitions using a same par-
tition function. One partition from a table only needs to join
with the corresponding partition in the other table. If the hash
table of a partition is small enough to fit in the internal FPGA
memory, the hash table is required to be loaded only once.
The main challenge is how to design a high throughput par-
titioner. The study in [140] presents a hardware-accelerated
rangepartitioner.An input element is comparedwithmultiple
values to find a matched partition, after which this element is
sent to the corresponding buffer. In this work, deep pipelin-
ing is used to hide the latency of multiple value comparisons.
Kaan et al. [61] proposed a hash partitioner that can contin-
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1©RA

2©RB

3©WResult

(a) Hash join for small data sets

1©RA + WHT

2©RB + RHT

3©WResult

(b) In-memory hash join

1©RA + WA

RB + WB

2©RA + RB

3©WResult

(c) Partitioning hash join

Fig. 9 Data flow regarding main memory accesses in different hash
join algorithms. Rx stands for reading x , while Wx stands for writing
x . Note that the number of writes to the hash table (WHT ) is based on
the size of Table A, and the number of reads from the hash table (RHT )
is based on the size of Table B

uously output a 64B cache line in a 200 Mhz FPGA design.
Write combiners are used to construct a full cache line out-
put to avoid granularity effects [36]. To keep up with the
QPI bandwidth, the authors implement multiple engines in
anFPGA.Their end-to-end example shows around 3.83GB/s
for partitioning the data in an FPGA and 3 GB/s for a hybrid
partitioning hash join (partition in the FPGA and join in the
CPU). If the data set is too large and the partition size does
not fit in the FPGA’s internal memory, a multi-pass parti-
tioning can be adopted. An example is demonstrated in [21]
where LINQits is proposed to accelerate database algorithms
including the hash join and the group-by operator.

6.4.2 Sort–merge join

The sort–merge join is comparable to the hash join algorithm.
It first sorts both tables and does a merge step afterward. The
most challenging part of a hardware sort–merge join is the
sort itself which we have discussed in Sect. 6.3. To further
improve the sort–merge join performance, themerge step can
be started as long as the first sorted element from the second

table is output. The sort–merge join proposed in [18] adopts
a similar idea and achieves a throughput of 6.45 GB/s for the
join. Ren et al. [20] proposed a sort join in a heterogeneous
CPU-FPGA platform. It performs the first few sorting stages
in FPGAs and streams the partial results to the CPUs for a
later merge sort step, and the merge join afterward.

Others study the comparison between the hash join and
the sort–merge join. This topic has been well studied for the
CPU architecture [3,8,64], but not toomuch for FPGA-based
accelerators. The work in [130] studies the FPGA-based
hash join and the FPGA-based sort–merge join, and claims
that the sort–merge join outperforms the hash join when the
data sets become larger. However, the in-memory hash join
is not included in this comparison which is more suitable
for larger data sets. A detailed analysis and comparison is
explained in [8] on a multi-core CPU platform. According
to the experimental results, the optimized hash join is supe-
rior to the optimized sort–merge join, while for large data
sets the sort–merge join becomes more comparable. Even
though this analysis is based on the CPU architecture, we
believe that the principles of the analysis are similar and it
would be a good guideline for further analysis based on the
FPGA architecture.

6.4.3 Discussion

Memory access pattern Typically hash joins have a stream-
ing read pattern for reading both tables and a streaming
write pattern for writing the results back, but accessing the
hash table, including establishing the hash table and prob-
ing it, is random. If the data set is small enough that the
hash table can be stored in the accelerator memory, access-
ing the hash table becomes internal memory accesses. Thus,
from the host memory access aspect, hash joins for small
data sets only have streaming read and streaming write
patterns. Partitioning a large data set into small partitions
before doing the joins allows the hash table to be stored
in the accelerator memory, which can avoid the random
access to the host memory. The extra memory access passes
introduced by the partitioning phase hold scatter patterns
(read from sequential addresses and write to indexed/random
addresses).

For sort–merge join, the memory access pattern of
sorting the two tables is studied in Sect. 6.3.4. Similar
with the FIFO merge sorter, the join phase reads both
sorted tables in dependent streaming ways and writes
the results back as a single stream. Accordingly, the
sort–merge join has the same memory access pattern as
the sort, plus the streaming gather memory access pat-
tern.
Bandwidth efficiency The data flows of different types of
hash joins are illustrated in Fig. 9. The memory shown in the
figure is the host memory. However, the data flows can also
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be applied in the off-chip memory on the accelerator side.
Hash joins on small data sets are streaming-like operations.
Both tables are read from the host memory, while the hash
table is stored in the FPGA internal memory. Thus, a hash
join requires a pass reading the data and a pass writing the
results back. As hash joins are not highly computational, this
streaming read and streaming write can saturate the acceler-
ator interface bandwidth.

For large data set cases, the hash table needs to be stored
in host memory. During the build phase, each tuple in the
build table needs to write the hash table. Similarly, each
tuple in the probe table during the probe phase generates
at least one read to the hash table. Consequently, hash
joins on large data sets equivalently demand two passes
of host memory accesses for the original tables and the
hash table, and one pass writing the results back. How-
ever, accessing the hash table results in random access
patterns, which suffer performance decrease due to cache
misses [14], TLB misses [9,10], the Non-uniform mem-
ory access (NUMA) effect [71], and the granularity effect
[36], etc. The study in [36] shows that only 25% of the
memory bandwidth is effective during the access to the
hash table in a 64B cache line machine if the tuple size is
16B.

The partitioning hash join can avoid random access by
splitting the data into small partitions such that the hash table
for each can be stored in the FPGA memory. One drawback
of this method is that the partitioning phase introduces extra
memory accesses. The cost of partitioning even becomes
dominating if multi-pass partitioning is inevitable. However,
the partition can be implemented in a streaming processing
way, which has streaming read and multi-streaming write
patterns. For a one-pass partitioning hash join, two passes of
streaming read and streaming write to the host are required.
Thus, the throughput can reach up to one-fourth of the band-
width.
HBM benefit The HBM technology can be adopted in the
hash joins as well. For non-partitioning hash joins, HBM
can be used as caches or buffers, leveraging the locality and
hiding the latency of host memory accesses. It also allows
smaller granularity access than DRAM, and therefore can
reduce the granularity effect.

For partitioning hash joins, HBMs can help in two ways.
One way is to use HBMs to store the hash table of each
partition, which allows larger size partitions and can reduce
the required number of partitions. The other way is to use
HBMs as buffers to buffer the partitions during the partition-
ing phase, which provides the capability of dividing the data
into more partitions in a pass. Both methods can reduce the
number of partitioning passes, leading to fewer host memory
accesses.

7 Future research directions

In this sectionwe discuss future research directions aswell as
their challenges for different groups of researchers including
database architects, FPGA designers, performance analysts,
and software developers.

7.1 Database architecture

We believe that in-memory databases should be designed
to support multiple types of computational elements (CPU,
GPU, FPGA). This impactsmany aspects of database design:

– It makes it desirable to use a standard data layout
in memory ( e.g., Apache Arrow ) to avoid serializa-
tion/deserialization penalties and make it possible to
invest in libraries and accelerators that can be widely
used.

– It puts a premium on a shared coherent memory architec-
ture with accelerators as peers to the host that can each
interact with the in-memory data in the same way, thus
ensuring that accelerators are easily exchanged.

– It implies we need to develop a detailed understanding
of which tasks are best executed on what computational
element. This must include aspects of task size: which
computational element is best is likely to depend on both
task type and task size.

– As noted earlier in the paper, new query compilers will
be required that are based on this understanding that can
combine this understanding with the (dynamically vary-
ing) available resources.

This may seem like a momentous task, but if we assume
we are in a situation where all elements have equal access
to system memory, it may be possible to build some key
operations like data transformations in FPGAs and derive an
early benefit.

In addition to shared-memory-based acceleration, there
are additional opportunities for near-network and near-
(stored-)data acceleration for which the FPGAs are a good
match. So in building architectures for in-memory databases,
it is also important to keep this in mind.

7.2 Accelerator design

As new interfaces and other new hardware provide new fea-
tures that break the accelerator-based systems balance, more
opportunities arise for FPGAs to accelerate database systems.

As noted in this paper, for several key operators FPGA-
based implementation exist that can operate at the speed of
main memory. However, less work has been done on designs
that leverage both the CPU and FPGA or even a combination
of CPUs, FPGAs, and GPUs.
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Another opportunity brought to FPGAs is the emerging
machine learning workloads in databases. Database systems
are extending the support of machine learning operators [76].
In addition, the databases are integrating machine learning
methods for query optimization [132]. In both cases, the
heavy computation required poses computational challenges
to the database systems, and FPGAs can likely help. Thus,
new accelerators for these emerging workloads are worth
studying.

Lastly, from a system perspective, a single FPGA can only
provide limited performance enhancement, while a multi-
FPGA architecture should bring remarkable speedup. On the
one hand, different functions can be implemented in different
FPGAs to enable awider functionality andmore complicated
workloads. One the other hand, multiple FPGAs can work
together for a single job to enhance the performance. Using
FPGAs as a cloud resource can further increase the FPGA
utilization rate in both clouds and in distributed database
systems [19,103]. Important challenges related to this topic
include how to connect the FPGA with CPUs and other
FPGAs, and how to distribute the workloads.

7.3 Comparison with GPUs

GPUs have now become a serious accelerator for database
systems. This is because the GPU has thousands to ten
thousands of threads, which is a good choice for throughput-
optimized applications. Besides the high parallelism, being
equipped with HBM allowing large capacity internal mem-
ory and fast speed to access it is another enabler.While FPGA
now is also integrating HBM that makes it more powerful,
the parallelism in FPGAs does not typically provide the same
order of magnitude of threads in GPUs. Thus, a question we
would like to ask ourselves is what kinds of database appli-
cations can work better on FPGAs than GPUs.

The first possible answer is the latency-sensitive stream-
ing processing applications such as network processing. The
request of both high throughput and low latency in the stream-
ing processing presents challenges to GPUs. Since GPUs
need to process data in a batchmodewithwell-formatted data
for throughput gains, this formatting might introduce addi-
tional latency. However, this requirement can perfectly meet
the features of the FPGAwith data flowdesignswhere format
conversion is often free. The ability to do efficient format con-
version might also apply to near storage processing such as
Netezza [41] to relieve the pressure for CPUs and networks.
Further improvement can include new features to meet the
emerging workloads such as supporting format transforma-
tion between the standardized storage formats (e.g., Apache
Parquet [5]) and the standardized in-memory formats (e.g,
Apache Arrow [4]).

In addition, FPGAs may even beat GPUs in terms of
throughput in specific domains that require special func-

tions. For example, if one wants to build databases that
operate under an encryption layer, it might need to combine
encryption with other operators. FPGAs may be efficient
at implementing these special functions in hardware and
FPGAs often suffer only suffer negligible throughput impact
by combining two function components in a pipeline. These
special functions also include provisions for database relia-
bility, special data types like geo-location data processing, or
data types requiring regular expression matching.

We can also think about exploring more heterogeneity of
building a database system with a CPU-GPU-FPGA com-
bination. Different processors have different features and
different strong points. CPUs are good at complex control
and task scheduling, GPUs work well in a batch mode with
massive data-level parallelism, and FPGAs can provide high
throughput and low latency using data flow and pipeline
design. Combining these processors together in one system
and assigning the workloads to the processors that fit best
may well deliver an advantage. However, some challenges
need to be addressed to build this system including how to
divide tasks into software and hardware, how to manage the
computational resources in the system, and how to support
data coherency between different types of processors.

7.4 Compilation for FPGAs

The FPGA programmability is always one of the biggest
challenges to deploying FPGAs in database systems. To
reduce the development effort and the complexity for FPGA-
based database users, a hardware compiler that can map
queries into FPGA circuits is necessary. Even though there is
prior work [85,86,139] and proposed proof-of-concept solu-
tions, there is still a long way to go. The following three
directions may improve the hardware compiler, and thus
increase FPGA programmability.

One important feature of the recent interfaces such asQPI,
CXL, andOpenCAPI is that they support sharedmemory and
data coherency. This development allows leveraging FPGAs
more easily for a subset of a query or a portion of an operator
in collaboration with CPUs. This enablement is significantly
important for FPGA usability because not all the functional-
ity may fit in the FPGA, as the FPGA size may depend on
problem size, data types, or the function itself. Thus, a future
hardware compilermight take the sharedmemory feature into
account. A first step to start exploring this direction is to sup-
port OpenMP for hardware compilation [117,134]. OpenMP
has been a popular parallel computing programming lan-
guage for shared memory. It provides a few pragmas and
library functions to enable multi-thread processing in CPUs,
which eases multi-thread programming and is very similar
to the HLS languages. Some recent enhancements, like task
support, are an especially good fit for accelerators. Starting
from OpenMP in the hardware compiler allows leveraging
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the lessons learned from the study of OpenMP and might
be the easier path to prove the benefits of supporting shared
memory.

The second potential improvement comes from the sup-
port of standards for in-memory representation of data, such
as Apache Arrow for columnar-oriented in-memory data.
Taking Apache Arrow as an example, this standardized in-
memory format allows data exchanges between different
platform with zero-copy. Since it eliminates the serializa-
tion and deserialization overhead, it significantly enhances
performance for data analytics and big data applications.
Supporting such standards allows FPGA to be leveraged
across languages and frameworks, which also reduces total
amount of effort required.

Lastly, for FPGAdesigners thatwant to exercisemore con-
trol over the design of the FPGA kernels for database queries
or operators, the approaches that separate interface genera-
tion from computational kernel design can further increase
productivity. Different FPGA kernels have different memory
access patterns [37]. Some of them require gathering multi-
ple streams (e.g., the merge tree), while some others have a
randomaccess pattern (e.g., the hash join). Thus simply using
a DMA engine that is typically optimized for sequential data
cannot meet all requirements, and customized data feeding
logic is needed.While the ability to customizedmemory con-
trollers is a strengthof usingFPGAs, optimizing this interface
logic requires significant work. Thus, such interface gener-
ation frameworks can generate the interface automatically
and designers can focus on the design and the implementa-
tion of kernels themselves. An example of such frameworks
is shown in an initial work, the Fletcher framework [101].

8 Summary and conclusions

FPGAs have been recognized by the database community
for their ability to accelerateCPU-intensiveworkloads.How-
ever, both the industry and academia have shown less interest
in integratingFPGAs into database systems due to the follow-
ing three reasons. First, while FPGAs can provide high data
processing rates, the system performance is bounded by the
limited bandwidth from conventional IO technologies. Sec-
ond, FPGAs are competing with a strong alternative, GPUs,
which can also provide high throughput and are much easier
to program. Last, programming FPGAs typically requires a
developer to have full-stack skills, from high-level algorithm
design to low-level circuit implementation.

The goodnews is that these challenges are being addressed
as can be seen through the technology trends and even the
latest technologies. Interface technologies develop so fast
that the interconnection between memory and accelerators
can be expected to deliver main-memory scale bandwidth.
In addition, FPGAs are incorporating new higher-bandwidth

memory technologies such as the high-bandwidth memory,
giving FPGAs a chance to combine a high degree parallel
computationwith high-bandwidth large-capacity local mem-
ory. Finally, emerging FPGA tool chains including HLS,
new programming frameworks, and SQL-to-FPGA compil-
ers, provide developers with better ease of use. Therefore
FPGAs can become attractive again as a database accelera-
tor.

In this paper, we explore the potential of using FPGAs
to accelerate in-memory database systems. We reviewed
the architecture of FPGA-accelerated database systems, dis-
cussed the challenges of integrating FPGAs into database
systems, studied technology trends that address the chal-
lenges, and summarized the state-of-the-art research on
database operator acceleration. We observe that FPGAs are
capable of accelerating some of the database operators such
as streaming operators, sort, and regular expression match-
ing. In addition, emerging hardware compile tools further
increase the usability of FPGAs in databases. We anticipate
that the new technologies provide FPGAs with the oppor-
tunity to again deliver system-level speedup for database
applications. However, there is still a long way to go, and
future studies including new database architectures, new
types of accelerators, deep performance analysis, and the
development of the tool chains can push this progress a step
forward.
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3
ACCELERATING SNAPPY

DECOMPRESSION

SUMMARY

Recently, system interconnect has improved to such a level that the host-to-accelerator
interface bandwidth might reach and even exceed the bandwidth of the host memory. It
is unclear whether FPGAs can help computation-intensive database operations saturate
such a large bandwidth. Thus, new accelerator architectures should be developed to im-
prove the performance of the computation-intensive operations, e.g. (de)compression.
This chapter proposes an FPGA-based Snappy decompressor that can process multiple
tokens in parallel and operates on each FPGA block RAM (BRAM) that holds a portion
of the decompressed data, independently. A first stage efficiently refines the tokens into
commands that operate on a single BRAM and steers the commands to the appropriate
one. In a second stage, a relaxed execution model is used where each BRAM command
executes immediately and the ones that return with invalid data are recycled to avoid
stalls caused by a read-after-write dependency. The proposed method achieves up to 7.2
GB/s output throughput per engine on a CAPI2-attached Xilinx VU3P FPGA. A mid-sized
device, integrated on a host bridge adapter and instantiating multiple engines, can keep
pace with the full OpenCAPI 3.0 bandwidth of 25 GB/s.
We also propose a Parquet-to-Arrow converter implemented in an FPGA to allow a fast
conversion between the Parquet format common for storage of columnar data and the
column-oriented in-memory Apache Arrow standardized data format. The design is
modular and extendable to support different Parquet formats. Experimental results
show that the proposed architecture can achieve more than 7GB/s throughput per
stream which is limited by the bandwidth of the connection to device memory.

The content of this chapter is based on the following papers:
J. Fang, J. Chen, J. Lee, Z. Al-Ars, H.P. Hofstee, Refine and Recycle: A Method to Increase
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Abstract—Rapid increases in storage bandwidth, combined
with a desire for operating on large datasets interactively, drives
the need for improvements in high-bandwidth decompression.
Existing designs either process only one token per cycle or process
multiple tokens per cycle with low area efficiency and/or low clock
frequency.

We propose two techniques to achieve high single-decoder
throughput at improved efficiency by keeping only a single copy
of the history data across multiple BRAMs and operating on each
BRAM independently. A first stage efficiently refines the tokens
into commands that operate on a single BRAM and steers the
commands to the appropriate one. In the second stage, a relaxed
execution model is used where each BRAM command executes
immediately and those with invalid data are recycled to avoid
stalls caused by the read-after-write dependency.

We apply these techniques to Snappy decompression and
implement a Snappy decompression accelerator on a CAPI2-
attached FPGA platform equipped with a Xilinx VU3P FPGA.
Experimental results show that our proposed method achieves
up to 7.2 GB/s output throughput per decompressor, with each
decompressor using 14.2% of the logic and 7% of the BRAM
resources of the device. Therefore, a single decompressor can
easily keep pace with an NVMe device (PCIe Gen3 x4) on a
small FPGA, while a larger device, integrated on a host bridge
adapter and instantiating multiple decompressors, can keep pace
with the full OpenCAPI 3.0 bandwidth of 25 GB/s.

Index Terms—Snappy, decompression, FPGA, Acceleration

I. INTRODUCTION

While much prior work has studied how to improve the
compression speed of lossless data compression [1]–[3], the
common case is to compress the data once for storage and
decompress it multiple times whenever it is processed.

Recent studies [4]–[8] illustrate that FPGAs are a promising
platform for lossless data decompression. The customizable
capability, the feasibility of bit-level control, and high degrees
of parallelism of the FPGA allow designs to have many light-
weight customized cores, enhancing performance. Leveraging
these advantages, the pipelined FPGA designs of LZSS [4],
[5], LZW [6] and Zlib [7], [9] all achieve good decompression
throughput. However, these prior designs only process one
token per FPGA cycle, resulting in limited speedup compared
to software implementations. The studies [8] and [10] propose
solutions to handle multiple tokens per cycle. However, both
solutions require multiple copies of the history buffer and
require extra control logic to handle BRAM bank conflicts
caused by parallel reads/writes from different tokens, leading
to low area efficiency and/or a low clock frequency.

A compressed Snappy file consists of tokens, where a
token contains the original data itself (literal token) or a back
reference to previously written data (copy token). Even with
a large and fast FPGA fabric, decompression throughput is
degraded by stalls introduced by read-after-write (RAW) data
dependencies. When processing tokens in a pipeline, copy
tokens may need to stall and wait until the prior data is valid.
In this paper, we propose two techniques to achieve efficient
high single-decompressor throughput by keeping only a single
BRAM-banked copy of the history data and operating on
each BRAM independently. A first stage efficiently refines the
tokens into commands that operate on a single BRAM and
steers the commands to the appropriate one. In the second
stage, rather than spending a lot of logic on calculating the
dependencies and scheduling operations, a recycle method is
used where each BRAM command executes immediately and
those that return with invalid data are recycled to avoid stalls
caused by the RAW dependency. We apply these techniques
to Snappy [11] decompression and implement a Snappy de-
compression accelerator on a CAPI2-attached FPGA platform
equipped with a Xilinx VU3P FPGA. Experimental results
show that our proposed method achieves up to 7.2 GB/s
throughput per decompressor, with each decompressor using
14.2% of the logic and 7% of the BRAM resources of the
device. One decompressor keeps pace with an NVMe device
(PCIe Gen3 x4) on a small FPGA. Compared to the soft-
ware implementation, significant performance improvement is
achieved.

Specifically, this paper makes the following contributions.

• We increase decompression parallelism by breaking to-
kens into BRAM commands that operate independently.

• We propose a recycle method to reduce the stalls caused
by the intrinsic data dependencies in the compressed file.

• We apply these techniques to develop a Snappy decom-
pressor that can process multiple tokens per cycle.

• We evaluate end-to-end performance. Our decompressor
achieves up to 7.2 GB/s throughput.

In the remainder of this paper, Section II introduces Snappy
and summarizes related work. Section III discusses solutions
to address BRAM bank conflicts and RAW dependencies.
Section IV details the Snappy decompressor architecture. Sec-
tion V presents experimental results and Section VI contains
a summary and conclusions.
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II. BACKGROUND

A. Snappy (De)compression

Snappy is an LZ77-based [12] byte-level (de)compression
algorithm widely used in big data systems, especially in the
Hadoop ecosystem, and is supported by big data formats such
as Parquet [13] and ORC [14]. Snappy works with a fixed
uncompressed block size (64KB) without any delimiters to
imply the block boundary. Thus, a compressor can easily
partition the data into blocks and compress them in parallel,
but achieving concurrency in the decompressor is difficult
because block boundaries are not known due to the variable
compressed block size. Because the 64kB blocks are individu-
ally compressed, there is a fixed (64kB) history buffer during
decompression, unlike the sliding history buffers used in LZ77,
for example. Similar to the LZ77 compression algorithm, the
Snappy compression algorithm reads the incoming data and
compares it with the previous input. If a sequence of repeated
bytes is found, Snappy uses a (length, offset) tuple, copy token,
to replace this repeated sequence. The length indicates the
length of the repeated sequence, while the offset is the distance
from the current position back to the start of the repeated
sequence, limited to the 64kB block size. For those sequences
not found in the history, Snappy records the original data in
another type of token, the literal tokens.

TABLE I: Procedure of Snappy decompression

1 while (! eof) {
2 reset (&history ) ;
3 while (!end of block() ){
4 read tag byte(&ptr , &type, &extra len , & lit len , &copy len);
5 read extra bytes (&ptr , extra len , & lit len , &copy offset) ;
6 if ( type==copy){
7 read history ( history , copy offset , copy len, &buffer) ;
8 update history c (&history , buffer , copy len) ;
9 }

10 else // type==lit
11 update history l (&history , &ptr, lit len ) ;
12 }
13 output ( history ) ;
14 }

Snappy decompression is the reverse process of the com-
pression. It translates a stream with literal tokens and copy
tokens into uncompressed data. Even though Snappy de-
compression is less computationally intensive than Snappy
compression, the internal dependency limits the decompres-
sion parallelism. To the best of our knowledge, the highest
Snappy decompression throughput is reported in [15] using
the “lzbench” [16] benchmark, where the throughput reaches
1.8GB/s on a Core i7-6700K CPU running at 4.0GHz. Table I
shows the pseudo code of the Snappy decompression, which
can also be applied to other LZ-based decompression algo-
rithms. The first step is to parse the input stream (variable ptr)
into tokens (Line 4 & 5). During this step, as shown in Line 4
of Table I, the tag byte (the first byte of a token) is read and
parsed to obtain the information of the token, e.g. the token
type (type), the length of the literal string (lit len), the length
of copy string (copy len), and the length of extra bytes of this

token (extra len). Since the token length varies and might be
larger than one byte, if the token requires extra bytes (length
indicated by extra len in Line 5) to store the information,
it needs to read and parse these bytes to extract and update
the token information. For a literal token, as it contains the
uncompressed data that can be read directly from the token,
the uncompressed data is extracted and added to the history
buffer (Line 11). For a copy token, the repeated sequence can
be read according to the offset (variable copy offset) and
the length (variable copy len), after which the data will be
updated to the tail of the history (Line 7 & 8). When a block
is decompressed (Line 3), the decompressor outputs the history
buffer and resets it (Line 13 & 2) for the decompression of
the next block.

There are three data dependencies during decompression.
The first dependency occurs when locating the block boundary
(Line 3). As the size of a compressed block is a variable, a
block boundary cannot be located until the previous block is
decompressed, which brings challenges to leverage the block-
level parallelism. The second dependency occurs during the
generation of the token (Line 4 & 5). A Snappy compressed
file typically contains different sizes of tokens, where the
size of a token can be decoded from the first byte of this
token (known as the tag byte), exclusive the literal content.
Consequently, a token boundary cannot be recognized until
the previous token is decoded, which prevents the parallel
execution of multiple tokens. The third dependency is the
RAW data dependency between the reads from the copy token
and the writes from all tokens (between Line 7 and Line 8 &
11). During the execution of a copy token, it first reads the
repeated sequence from the history buffer that might be not
valid yet if multiple tokens are processed in parallel. In this
case, the execution of this copy token need to be stalled and
wait until the request data is valid. In this paper, we focus on
the latter two dependencies, and the solutions to reduce the
impact of these dependencies are explained in section IV-C
(second dependency) and section III-B (third dependency).

B. Related Work

Many recent studies consider improving the speed of loss-
less decompression. To address the block boundary prob-
lems, [17] explores the block-level parallelism by performing
pattern matching on the delimiters to predict the the block
boundaries. Unfortunately, this technique cannot be applied
to Snappy because Snappy uses a fixed uncompressed block
size (64KB) without any delimiters. Another way to utilize
the block-level parallelism is to add some constraints during
the compression, e.g adding padding to make fixed size
compressed blocks [18] or add some meta data to indicate the
boundary of the blocks [19]. A drawback of these methods
is that it is only applicable to the modified compression
algorithms (add padding) or even not compatible to the original
(de)compression algorithms (add meta data).

The idea of using FPGAs to accelerate decompression has
been studied for years. On the one hand, FPGAs provide
a high-degree of parallelism by adopting techniques such
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as task-level parallelization, data-level parallelization, and
pipelining. On the other hand, the parallel array structure
in an FPGA offers tremendous internal memory bandwidth.
One approach is to pipeline the design and separate the token
parsing and token execution stages [4]–[7]. However, these
methods only process one token each FPGA cycle, limiting
throughput.

Other works study the possibility of processing multiple
tokens in parallel. [20] proposes a parallel LZ4 decompression
engine that has separate hardware paths for literal tokens
and copy tokens. The idea builds on the observation that
the literal token is independent since it contains the original
data, while the copy token relies on the previous history.
A similar two-path method for LZ77-based decompression
is shown in [21], where a slow-path routine is proposed to
handle large literal tokens and long offset copy tokens, while
a fast-path routine is adopted for the remaining cases. [10]
introduces a method to decode variable length encoded data
streams that allows a decoder to decode a portion of the input
streams by exploring all possibilities of bit spill. The correct
decoded streams among all the possibilities are selected as
long as the bit spill is calculated and the previous portion is
correctly decoded. [8] proposes a token-level parallel Snappy
decompressor that can process two tokens every cycle. It uses a
similar method as [10] to parse an eight-byte input into tokens
in an earlier stage, while in the later stages, a conflict detector
is adopted to detect the type of conflict between two adjacent
tokens and only allow those two tokens without conflict to be
processed in parallel. However, these works cannot easily scale
up to process more tokens in parallel because it requires very
complex control logic and duplication of BRAM resources to
handle the BRAM bank conflicts and data dependencies.

The GPU solution proposed in [19] provides a multi-round
resolution method to handle the data dependency. In each
round, all the tokens with read data valid are executed, while
those with data invalid will be pending and wait for the next
round execution. This method allows out-of-order execution
and does not stall when a request needs to read the invalid
data. However, this method requires specific arrangement of
the tokens, and thus requires modification of the compression
algorithm.

This paper presents a new FPGA decompressor architecture
that can process multiple tokens in parallel and operate at a
high clock frequency without duplicating the history buffers.
It adopts a refine and recycle method to reduce the impact of
the BRAM conflicts and data dependencies, and increases the
decompression parallelism, while conforming to the Snappy
standard. This paper improves on our previous proof-of-
concept work [22] and integrates it in a CAPI 2.0-enabled
POWER 9 system.

III. THE REFINE AND RECYCLE METHOD

A. The Refine Method for BRAM Bank Conflict

Typically, in FPGAs, the large history buffers (e.g. 32KB
in GZIP and 64KB in Snappy) can be implemented using
BRAMs. Taking Snappy as an example, as shown in Fig. 1,

to construct a 64KB history buffer, a minimum number of
BRAMs are required: 16 4KB blocks for the Xilinx Ultrascale
Architecture [23]. These 16 BRAMs can be configured to
read/write independently, so that more parallelism can be
achieved. However, due to the structure of BRAMs, a BRAM
block supports limited parallel reads or writes, e.g. one read
and one write in the simple dual port configuration. Thus, if
more than one read or more than one write need to access
different lines in the same BRAM, a conflict occurs (e.g.
conflict on bank 2 between read R1 and read R2 in Fig. 1).
We call this conflict a BRAM bank conflict (BBC).

Fig. 1: An example of BRAM bank conflicts in Snappy

For Snappy specifically, the maximum literal length for a
literal token and the maximum copy length for copy tokens
in the current Snappy version is 64B. As the BRAM can only
be configured to a maximum 8B width, there is a significant
possibility that a BBC occurs when processing two tokens in
the same cycle, and processing more tokens in parallel further
increases the probability of a BBC. A naive way to deal with
the BBCs is to only process one of the conflicting tokens and
stall the others until the this token completes. For example,
in Fig. 1, when a read request from a copy token (R1) has
a BBC with another read request from another copy token
(R2), the execution of R2 stalls and waits until R1 is finished.
Obviously, this method sacrifices some parallelism and even
leads to a degradation from parallel processing to sequential
processing. Duplicating the history buffers can also relieve
the impact of BBCs. The previous work [8] uses a double
set of history buffers, where two parallel reads are assigned
to different set of history. So, the two reads from the two
tokens never have BBCs. However, this method only solves
the read BBCs but not the write BBCs, since the writes need
to update both sets of history to maintain the data consistency.
Moreover, to scale this method to process more tokens in
parallel, additional sets (linearly proportional to the number of
tokens being processed in parallel) of BRAMs are required.

To reduce the impact of BBCs, we present a refine method
to increase token execution parallelism without duplicating the
history buffers. The idea is to break the execution of tokens
into finer-grain operations, the BRAM copy/write commands,
and for each BRAM to execute its own reads and writes
independently. As illustrated in Fig. 1, R1 and R2 only have
a BBC in bank 2, while the other parts of these two reads
do not conflict. We refine the token into BRAM commands
operating on each bank independently. As a result, for the
reads in the non-conflicting banks of R2 (bank 0 & 1), we
allow the execution of the reads on these banks from R2.
For the conflicting bank 2, R1 and R2 cannot be processed
concurrently.
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Fig. 2: Architecture overview

The proposed method takes advantage of the parallelism of
the array structure in FPGAs by operating at a finer-grained
level, the single BRAM read/write level, compared with the
token-level. It supports partially executing multiple tokens in
parallel even when these tokens have BBCs. In the extreme
case, the proposed method can achieve up to 16 BRAM
operations in parallel, meaning generating the decompressed
blocks at a speed of 128B per cycle. This refine method can
also reduce the read-after-write dependency impact mentioned
in section III-B. If the read data of a read request from a copy
token is partially valid, this method allows this copy token to
only read the valid data and update the corresponding part of
the history, instead of waiting until all the bytes are valid.

B. The Recycle Method for RAW Dependency

The Read-After-Write (RAW) dependency between data
reads and writes on the history buffer is another challenge
for parallelization. If a read needs to fetch data from some
memory address that the data has not yet been written to, a
hazard occurs, and thus this read needs to wait until the data
is written. A straightforward solution [8] is to execute the
tokens sequentially and perform detection to decide whether
the tokens can be processed in parallel. If a RAW hazard
is detected between two tokens that are being processed in
the same cycle, it forces the latter token to stall until the

previous token is processed. Even though we can apply the
forwarding technique to reduce the stall penalty, detecting
multiple tokens and forwarding the data to the correct position
requires complicated control logic and significant hardware
resource.

Another solution is to allow out-of-order execution. That is
when a RAW hazard occurs between two tokens, the follow-
up tokens are allowed to be executed without waiting these
two tokens are finished, which is very similar to out-of-
order execution in the CPU architecture. Fortunately, in the
decompression case, this does not require a complex textbook
solution such “Tomasulo” or “Scoreboarding” to store the state
of the pending tokens. Instead, rerunning pending tokens after
the execution of all or some of the follow-up tokens guarantees
the correction of this out-of-order execution. This is because
there is no write-after-write or write-after-read dependency
during the decompression, or two different writes never write
the same place and the write data never changes after the data
is read. So, there is no need to record the write data states,
and thus a simpler out-of-order execution model can satisfy
the requirement, which saves logic resources.

In this paper, we present the recycle method to reduce the
impact of RAW dependency in a BRAM command granularity.
Specifically, when a command needs to read the history data
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that is not valid yet, the decompressor executes this command
immediately without checking if all the data is valid. If the
data that has been read is detected to be not entirely valid, this
command (invalid data part) should be recycled and stored in
a recycle buffer, where it will be executed again (likely after a
few other commands are executed). If the data is still invalid
in the next execution, this decompressor performs this recycle-
and-execute precedure repeatedly until the read data is valid.

This method executes the commands in a relaxed model and
allows continuous execution on the commands without stalling
the pipeline. The method provides more parallelism since it
does not need to be restricted to the degree of parallelism
calculated by dependency detection.

IV. SNAPPY DECOMPRESSOR ARCHITECTURE

A. Architecture Overview

Fig. 2 presents an overview of the proposed architecture.
It can be divided into two stages. The first stage parses the
input stream lines into tokens and refines these tokens into
BRAM commands that will be executed in the second stage.
It contains a slice parser to locate the boundary of the tokens,
multiple BRAM command parsers(BCPs) to refine the tokens
into BRAM commands, and an arbiter to drive the output of
the slice parser to one of the BCPs. In the second stage, the
BRAM commands are executed to generate the decompressed
data under the recycle method. The execution modules, in total
16 of them, are the main components in this stage, in which
recycle buffers are utilized to perform the recycle mechanism.

The procedure starts with receiving a 16B input line in the
slice parser. Together with the first 2B of the next input line,
this 18B is parsed into a “slice” that contains token boundary
information including which byte is a starting byte of a token,
whether any of the first 2B have been parsed in the previous
slice, and whether this slice starts with literal content, etc.
After that, an arbiter is used to distribute each slice to one
of the BCPs that work independently, and there the slice
is split into one or multiple BRAM commands. There are
two types of BRAM commands, write commands and copy
commands. The write command is generated from the literal
token, indicating a data write operation on the BRAM, while
the copy command is produced from the copy token which
leads to a read operation and a follow-up step to generate one
or two write commands to write the data in the appropriate
BRAM blocks.

In the next stage, write selectors and copy selectors are
used to steer the BRAM commands to the appropriate exe-
cution module. Once the execution module receives a write
command and/or a copy command, it executes the command
and performs BRAM read/write operations. As the BRAM
can perform both a read and a write in the same cycle,
each execution module can simultaneously process a write
command and one copy command (only the read operation) at
the same time. The write command will always be completed
successfully once the execution module receives it, which is
not the case for the copy command. After performing the
read operation of the copy command, the execution module

runs two optional extra tasks according to the read data,
including generating new write/copy commands and recycling
the copy command. If the read data contains some valid bytes,
new write commands are generated to write this data to its
destination. If some bytes are still invalid, the copy command
will be renewed (removing the completed portion from the
command) and collected by a recycle unit, and sent back for
the next round of execution. Once a 64KB history is built, this
64KB data is output as the decompressed data block. After
that, a new data block is read, and this procedure will be
repeated until all the data blocks are decompressed.

B. History Buffer Organization

The 64KB history buffer consists of 16 4KB BRAM blocks,
using the FPGA 36Kb BRAM primitives in the Xilinx Ultra-
Scale fabric. Each BRAM block is configured to have one
read port and one write port, with a line width of 72bits (8B
data and 8bits flags). Each bit from the 8bits flags indicates
whether the corresponding byte is valid. To access a BRAM
line, 4 bits of BRAM bank address, and 9 bits of BRAM line
address is required. The history data is stored in these BRAMs
in a striped manner to balance the BRAM read/write command
workload and to enhance parallelism.

C. Slice Parser

Fig. 3: Procedure of the slice parser and structure of the
Assumption Bit Map

The slice parser aims to decode the input data lines into
tokens in parallel. Due to the variety of token sizes, the starting
byte of a token needs to be calculated from the previous
token. This data dependency presents an obstacle for the
parallelization of the parsing process. To solve this problem,
we assume all 16 input bytes are starting bytes, and to parse
this input data line based on this assumption. The correct
branch will be chosen once the first token is recognized. To
achieve a high frequency for the implementation, we propose
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a bit map based byte-split detection algorithm by taking
advantage of bit-level control in FPGA designs.

A bit map is utilized to represent the assumption of starting
bytes, which is called the Assumption Bit Map (ABM) in the
remainder of this paper. For a N bytes input data line, we
need a N ∗N ABM. As shown in Fig 3, taking an 8B input
data line as an example, cell(i, j) being equal to ‘1’ in the
ABM means that if corresponding byte i is a starting byte of
one token, byte j is also a possible starting byte. If a cell has
a value ‘0’, it means if byte i is a starting byte, byte j cannot
be a starting byte.

This algorithm has three stages. In the first stage, an ABM
is initialized with all cells set to ‘1’. In the second stage, based
on the assumption, each row in the ABM is updated in parallel.
For row i, if the size of the token starts with the assumption
byte is L, the following L − 1 bits are set to be 0. The final
stage merges the whole ABM along with the slice flag from
the previous slice, and calculate a Position Vector (PV). The
PV is generated by following a cascading chain. First of all,
the slice flag from the previous slice points out which is the
starting byte of the first token in the current slice (e.g. byte 1
in Fig. 3). Then the corresponding row in the ABM is used
to find the first byte of the next token (byte 5 in Fig. 3), and
its row in the ABM is used for finding the next token. This
procedure is repeated (all within a single FPGA cycle) until all
the tokens in this slice are found. The PV is an N -bit vector
that its ith bit equal to ‘1’ means the ith byte in the current
slice is a starting byte of a token. Meanwhile, the slice flag
will be updated. In addition to the starting byte position of
the first token in the next slice, the slice flag contains other
informations such as whether the next slice starts with literal
content, the unprocessed length of the literal content, etc.

D. BRAM Command Parser

Fig. 4: Structure of BRAM command parser

The BRAM command parser refines the tokens and gener-
ates BRAM commands based on the parsed slice. The structure
of the BCP is demonstrated in Fig. 4. The first step is to
generate tokens based on the token boundary information that

is stored in the PV. Literal tokens and copy tokens output from
the token generator are assigned to different paths for further
refining in the BRAM command generator. In the literal token
path, the BRAM command generator calculates the token write
address and length, and splits this write operation into multiple
ones to map the write address to the BRAM address. Within
a slice, the maximum length of the literal token is 16B, i.e.
the largest write is 16B, which can generate up to 3 BRAM
write commands. In the copy token path, the BRAM command
generator performs a similar split operation but maps both the
read address and the write address to the BRAM address. A
copy token can copy up to 64B data. Hence, it generates up
to 9 BRAM copy commands.

Since multiple commands are generated each cycle, to
prevent stalling the pipeline, we use multiple sets of FIFOs
to store them before sending them to the corresponding
execution module. Specifically, 4 FIFOs are used to store
the literal commands which is enough to store all 3 BRAM
write commands generated in one cycle. Similarly, 16 copy
command FIFOs are used to handle the maximum 9 BRAM
copy commands. To keep up with the input stream rate (16B
per cycle), multiple BCPs can work in parallel to enhance the
parsing throughput.

E. Execution Module

The execution module performs BRAM command execution
and the recycle mechanism. Its structure is illustrated in Fig. 5.
It receives up to 1 write command from the write command
selector and 1 copy command from the copy command selec-
tor. Since each BRAM has one independent read port and
one independent write port, each BRAM can process one
read command and one copy command each clock cycle. For
the write command, the write control logic extracts the write
address from the write command and performs a BRAM write
operation. Similarly, the read control logic extracts the read
address from the read command and performs a BRAM read
operation.

While the write command can always be processed success-
fully, the copy command can fail when the target data is not
ready in the BRAM. So there should be a recycle mechanism
for failed copy commands. After reading the data, the unsolved
control logic checks whether the read data is valid. There are
three different kinds of results: 1) all the target data is ready
(hit); 2) only part of the target data are ready (partial hit);
3) none of the target data is ready (miss). In the hit case
and the partial hit case, the new command generator produces
one or two write commands to write the copy results to one
or two BRAMs, depending on the alignment of the write
data. In the partial hit case and the miss case, a new copy
command is generated and recycled, waiting for the next round
of execution.

F. Selector Selection Strategy

The BRAM write commands and copy commands are
placed in separate paths, and can work in parallel. The Write
Command Selector gives priority to recycled write commands.

3

48 CHAPTER 3



Fig. 5: Structure of execution module

Priority is next given to write commands from one of the BCPs
using a round robin method. The Copy Command Selector
gives priority to the copy commands from one of the BCPs
when there is a small number of copy commands residing
in the recycle FIFO. However, when this number reaches a
threshold, priority will be given back to the recycle commands.
This way, it not only provides enough commands to be issued
and executed, but also guarantees the recycle FIFO does not
overflow, and no deadlock occurs.

V. EVALUATION

A. Experimental Setup

To evaluate the proposed design, an implementation is
created targeting the Xilinx Virtex Ultrascale VU3P-2 device
on an AlphaData ADM-PCIE-9V3 board and integrated with
the POWER9 CAPI 2.0 [24] interface. The CAPI 2.0 interface
on this card supports the CAPI protocol at an effective
data rate of approximately 11 GB/s. The FPGA design is
compared with an optimized software Snappy decompression
implementation [16] compiled by gcc 7.3.0 with “O3” option
and running on a POWER9 CPU in little endian mode with
Ubuntu 18.04.1 LTS.

We test our Snappy decompressor for functionality and
performance on 6 different data sets. The features of the data
sets are listed in Table II. The first three data sets are from
the “lineitem” table of the TPC-H benchmarks in the database
domain. We use the whole table (Table) and two different
columns including a long integer column (Integer) and a string
column (String). The data set Wiki [25] is an XML file dump
from Wikipedia, while the Matrix is a sparse matrix from the
Matrix Market [26]. We also use a very high compression ratio
file (Geo) which stores geographic information.

TABLE II: Benchmarks used and throughput results

Files Original Compression Throughput (GB/s) Speedup

size (MB) ratio CPU FPGA

Integer 45.8 1.70 0.59 4.40 7.46
String 157.4 2.45 0.69 6.02 8.70
Table 724.7 2.07 0.59 6.11 10.35
Matrix 771.3 2.75 0.80 4.80 6.00
Wiki 953.7 1.97 0.56 5.72 10.21
Geo 128.0 5.50 1.41 7.21 5.11

B. Resource Utilization

Table III lists the resource utilization of our design timing
at 250MHz. The decompressor configured with 6 BCPs and
16 execution module takes around 14.2% of the LUTs, 7% of
the BRAMs, 4.7% of the Flip-Flops in the VU3P FPGA. The
recycle buffers, the components that are used to support out-of-
order execution, only take 0.3% of the LUTs and 1.2% of the
BRAMs. The CAPI 2.0 interface logic implementation takes
up around 20.8% of the LUTs and 33% of the BRAMs. Multi-
unit designs can share the CAPI 2.0 interface logic between
all the decompressors, and thus the (VU3P) device can support
up to 5 engines.

TABLE III: Resource utilization of design components

Resource LUTs BRAMs1 Flip-Flops

Recycle buffer 1.1K(0.3%) 8(1.2%) 1K(0.1%)
Decompressor 56K(14.2%) 50(7.0%) 37K(4.7%)
CAPI2 interface 82K(20.8%) 238(33.0%) 79K(10.0%)
Total 138K(35.0%) 288(40.0%) 116K(14.7%)
1 One 18kb BRAM is counted as a half of one 36kb BRAM.

C. End-to-end Throughput Performance

We measure the end-to-end decompression throughput read-
ing and writing from host memory. We compare our design
with the software implementation running on one POWER9
CPU core (remember that parallelizing Snappy decompression
is difficult due to unknown block boundaries).

Fig. 6 shows the end-to-end throughput performance of
the proposed architecture configured with 6 BCPs. The pro-
posed Snappy decompressor reaches up to 7.2 GB/s output
throughput or 31 bytes per cycle for the file (Geo) with high
compression ratio, while for the database application (Table)
and web application (Wiki) it achieves 6.1 GB/s and 5.7 GB/s,
which is 10 times faster than the software implementation.
One decompressor can easily keep pace with a (Gen3 PCIe
x4) NVMe device, and the throughput of an implementation
containing two of such engines can reach the CAPI 2.0
bandwidth upper bound.

Regarding the power efficiency, the 22-core POWER9 CPU
is running under 190 watts, and thus it can provide up to
0.16GB/s per watt. However, the whole ADM 9V3 card can
support 5 engines under 25 watts [27], which corresponds to
up to 1.44GB/s per watt. Consequently, our Snappy decom-
pressor is almost an order of magnitude more power efficient
than the software implementation.
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TABLE IV: FPGA decompression accelerator comparison

Design Frequency Throughput History Area Efficiency

(MHz) GB/s bytes/cycle Size(KB) LUTs BRAMs MB/s per 1K LUT MB/s per BRAM

ZLIB (CAST) [9] 165 0.495 3.2 32 5.4K 10.5 93.91 48.3
Snappy [8] 140 1.96 15 64 91K 32 22 62.7
This Work 250 7.20 30.9 64 56K 50 131.6 147.5
1 Please note that ZLIB is more complex than Snappy and takes more LUTs to obtain the same throughput performance in principle.

Fig. 6: Throughput of Snappy decompression

D. Design Trade-off with # of BCPs

As explained in section IV, the number of BCPs corresponds
to the number of tokens that can be refined into BRAM
commands per cycle. We compare the resource utilization
and throughput of different numbers of BCPs, and present
the results that are normalized by setting the resource usage
and throughput of one BCP as 1 in Fig 7. Increasing from
one BCP to two leads to 10% more LUT usage, but results
in around 90% more throughput and no changes in BRAM
usage. However, the increase of the throughput on Matrix
slows down after 3 BCPs and the throughput remains stable
after 5 BCPs. A similar trend can be seen in Wiki where
the throughput improvement drops after 7 BCPs. This is
because after increasing the number of BCPs, the bottleneck
moves to the stage of parsing the input line into tokens.
Generally, a 16B-input line contains 3-7 tokens depending on
the compressed file, while the maximum number of tokens is
8, thus explaining the limited benefits of adding more BCPs.
One way to achieve higher performance is to increase both the
input-line size and the number of BCPs. However, this might
bring new challenges to the resource utilization and clock
frequency, and even reach the upper bound of the independent
BRAM operations parallelism.

E. Comparison of Decompression Accelerators

We compare our design with state-of-the-art decompression
accelerators in Table IV. By using 6 BCPs, a single decom-
pressor of our design can output up to 31B per cycle at a clock
frequency of 250MHz. It is around 14.5x and 3.7x faster then
the prior work on ZLIB [9] and Snappy [8]. Even scaling
up the other designs to the same frequency, our design is
still around 10x and 2x faster, respectively. In addition, our
design is much more area-efficient, measured in MB/s per 1K
LUTs and MB/s per BRAM (36kb), which is 1.4x more LUT
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Fig. 7: Impact of number of BCPs

efficient than the ZLIB implementation in [9] and 2.4x more
BRAM efficient than the Snappy implementation in [8].

VI. SUMMARY AND CONCLUSION

The control and data dependencies intrinsic in the design
of a decompressor present an architectural challenge. Even in
situations where it is acceptable to achieve high throughput
performance by processing multiple streams, a design that
processes a single token or a single input byte each cycle
becomes severely BRAM limited for (de)compression proto-
cols that assume a sizable history buffer. Designs that decode
multiple tokens per cycle could use the BRAMs efficiently
in principle, but resolving the data dependencies leads to
either very complex control logic, or to duplication of BRAM
resources. Prior designs have therefore exhibited only limited
concurrency or required duplication of the history buffers.

This paper presented a refine and recycle method to address
this challenge and applies it to Snappy decompression to
make an FPGA-based Snappy decompressor. In an earlier
stage, the proposed design refines the tokens into commands
that operate on a single BRAM independently to reduce the
impact of the BRAM bank conflicts. In the second stage, a
recycle method is used where each BRAM command executes
immediately without dependency checking and those that
return with invalid data are recycled to avoid stalls caused
by the RAW dependency. For a single Snappy input stream
our design processes up to 16 input bytes per cycle. The end-
to-end evaluation shows that the design achieves up to 7.2
GB/s output throughput or about an order of magnitude faster
than the software implementation in the POWER9 CPU. This
bandwidth for a single-stream decompressor is sufficient for an
NVMe (PCIe x4) device. Two of these decompressor engines,
operating on independent streams, can saturate a PCIe Gen4
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or CAPI 2.0 x8 interface, and the design is efficient enough
to easily support data rates for an OpenCAPI 3.0 x8 interface.
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Abstract— Recently, persistent storage bandwidth has in-
creased tremendously due to the use of flash technology. In
the domain of big data analytics, the bottleneck of converting
storage focused file formats to in-memory data structures has
shifted from the storage technology to the software components
that are tasked with decompression and organization of the data
in memory. One commonly used file format is Apache Parquet,
and a recently developed in-memory format is Apache Arrow. In
order to improve the bandwidth at which such conversions take
place, we propose a Parquet-to-Arrow converter implemented
in an FPGA. The design is modular and extendable to support
different Parquet formats. The resource utilization of the Xilinx
XCVU9P device used for the prototype is 4.16% of CLBs and
1.78% BRAMs, leaving ample room to implement analytical
kernels that operate in tandem with the file conversion. The
prototype shows promising throughput for converting the basic
structure of Parquet files with large page sizes, with the
throughput being limited by the bandwidth of the connection
to device memory.

I. INTRODUCTION

With the arrival of NVMe SSD’s, the bandwidth associ-
ated with reading data from persistent storage is increasing
rapidly. If the bandwidth of persistent storage is no longer
a bottleneck, conversion of storage focused formats to data
structures usable in memory risks becoming a limiting factor
in database systems. In order to improve the performance of
database systems we propose performing this conversion on
an FPGA. We present a framework that takes Apache Parquet
[1] pages as input and creates Apache Arrow [2] format data
structures in memory using the Fletcher [3] framework.

II. BACKGROUND

Parquet is a columnar storage format that supports multiple
compression and encoding schemes for stored data [1].
With Parquet’s columns divided into individually compressed
and encoded pages, analytics applications can benefit from
columnar data while still allowing for smaller scale accesses
without having to decompress and decode the whole file.

Arrow is a columnar format that is focused on efficient in-
memory representation of data [2]. Like Parquet, its colum-
nar format allows fast vectorized operations with the aim
of preventing data copies or serialization between different
language run-times through shared memory pools.

Fletcher is the framework that allows FPGA’s access
to Arrow data with a fast and easy to use interface [3].
Instead of byte addresses only column indices are required
to read and write data in Arrow format. Fletcher hardware is

Fig. 1. High-level architecture of the hardware

generated based on a schema describing the data set stored
in Arrow format.

III. DESIGN

A. High-level architecture

With Parquet and Arrow both being columnar formats the
hardware can read consecutive Parquet pages from memory,
interpret the page headers, and perform decompression and
decoding steps on the page data without having to do
significant data reordering.

A Parquet page consists of four distinct, variable-length
blocks of data. The header, the repetition levels, the definition
levels, and the actual values. The header contains information
on (among other things) the size of the following three blocks
in the page and the number of entries in the page. The
repetition levels and definition levels encode the structure
(in case of nested data structures) and nulls in the page
respectively according to the algorithm described in Google’s
Dremel paper [4]. These levels are not encoded in the case
of non-nested or non-nullable data. Finally the compressed
and encoded values complete the page.

There are three requirements for the design. First, the
design should be modular and expandable to enable accelera-
tion of the many different schemes Parquet supports. Second,
the design should be area-efficient in order to fit many in-
stances on an FPGA for parallel workloads, or leave room for
analytical kernels. Third, the high-level architecture should
maximize throughput so any decompressors and decoders
can be fed data at a rate close to system bandwidth (e.g.
PCIe bandwidth).

The proposed high-level architecture is seen in Figure 1.
The aligner ensures that each of the modules responsible
for reading one of the four main blocks of data in a
Parquet page in turn receives their data correctly aligned. The
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aligner requires these modules to report back the amount of
bytes they used after they are finished. The rounded blocks
are replaceable or omissible modules to enable support for
different compression and encoding schemes.

Although Figure 1 shows the decoder directly streaming
the decoded values into Fletcher for immediate writing to
memory this does not have to be the case. Any hardware
supporting Fletcher style streams can be inserted in between
to allow for operations on the data (e.g. maps, filters, etc.)
before it is written to memory, allowing for optimal use
of the FPGA’s resources in accelerating any data analytics
application starting from a Parquet file.

B. Decompression

The first decompressor being integrated with the Parquet to
Arrow converter is a Snappy decompressor implemented in
previous work [5]. Preliminary benchmarks show a through-
put of 3GB/s input and 5GB/s output for Snappy compressed
files for a single instance of the decompressor. This is an
order of magnitude higher than a single thread on a Core i7
processor.

Fig. 2. Delta decoder

C. Decoding

In order to make the Parquet to Arrow converter usable
out of the box, decoders will be included that can decode at
least one encoding for floats, doubles, 32 and 64 bit integers,
and strings. Because of the prevalence of delta encoding
in Parquet (for integers and string lengths) a delta decoder
as seen in fig. 2 is proposed. In delta decoding the values
are encoded as variable-width bit-packed deltas with respect
to the previous value. After narrowing the bit-width of the
stream from the decompressor for easier manipulation using

a serializer, the bit-packed values will be correctly aligned
based on the bit-packing width and block header length
data. Hereafter, the values can be unpacked in a separate
shift and mask pipeline for each value in the aligned data.
These values will be added to the minimum delta received
from the BlockHeaderReader to create the final deltas that
can be added to the previously decoded integers in the
DeltaAccumulator.

A buffer for the character data can be added to make this
decoder work for strings as the raw character data directly
follows the encoded string lengths.

IV. PRELIMINARY RESULTS

Fig. 3. Throughput for different page sizes

To establish the overhead of processing the Parquet page
headers, an implementation was made to convert simple
(uncompressed, non-nullable, plainly encoded) Parquet files
containing only a column of 64 bit integers on an AWS
f1.2xlarge instance with a Xilinx Ultrascale+ FPGA. The
resulting throughput is seen in fig. 3. This implementation
required only 4.16% of CLB’s and 1.78% of BRAM while
timing at 250MHz. For files containing small Parquet pages
the conversion rate is limited by the latency of reading the
page headers. This effect stops being significant at 100kB
pages, after which it starts being limited by the bandwidth
of the connection to device memory. This suggests decom-
pression and decoding modules can make full use of the
read/write bandwidth of the FPGA if large enough pages are
used in the Parquet file.

V. CONCLUSION

Preliminary results show that the converter can process
the basic structure of a Parquet file at a high throughput.
Continuing work is focused on implementing decompression
and decoding modules that make full use of the strengths of
an FPGA to create Arrow format data from a Parquet file
significantly faster than a general processor. Through the use
of the proposed converter, big data analytics applications may
alleviate the software bottlenecks resulting from decompres-
sion and conversion overhead of the Parquet storage format.
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4
HASH JOIN ANALYSIS

SUMMARY

FPGAs are known to accelerate computation-intensive operations. However, for
memory-intensive operations, it is not clear to what degree an FPGA can help to improve
their performance. To arrive at an answer, performance analysis on memory-intensive
operations running on the CPU architecture is required. We investigate the main impact
factors and how they influence the performance of database operations. This chapter
takes the hash join as an example and analyzes its performance, which can then guide
designing FPGA-based hash join accelerators.
The hash join is a commonly used database operator and significantly impacts database
performance. Predicting the performance of join algorithms on modern hardware is
challenging. In this chapter, we focus on main-memory no-partitioning and parti-
tioning hash join algorithms executing on multi-core platforms. We discuss the main
parameters impacting performance, and present an effective performance model. This
model can be used to select the most appropriate algorithm for different input data
sets for current and future hardware configurations. We find that for modern systems
an optimized no-partition hash join often outperforms an optimized radix partitioning
hash join. The presented model can serve as a guideline for predicting how future
development in hardware platforms, such as increasing bandwidth, will impact the
performance of these algorithms and how they could be adapted.

The content of this chapter is based on the following paper:
J. Fang, J. Lee, H.P. Hofstee, J. Hidders, Analyzing In-Memory Hash Joins: Granularity

Matters, 2017 International Workshop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architectures (ADMS), Munich, Germany,
Sep 1, 2017
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ABSTRACT
Predicting the performance of join algorithms on modern
hardware is challenging. In this work, we focus on main-
memory no-partitioning and partitioning hash join algorithms
executing on multi-core platforms. We discuss the main pa-
rameters impacting performance, and present an effective
performance model. This model can be used to select the
most appropriate algorithm for different input data-sets for
current and future hardware configurations. We find that for
modern systems an optimized no-partition hash join often
outperforms an optimized radix partitioning hash join.

1. INTRODUCTION
In the past decades, as new computer architectures

emerged, the competition between different main-memory
hash join algorithms has become more interesting. Signifi-
cant research [1, 16, 12, 2, 3, 10, 9] has gone into develop-
ing algorithms that efficiently utilize the underlying hard-
ware and this has provided a guidance to choosing better
performing algorithms on modern hardware. However, the
hardware develops so fast that the best algorithm today is
probably not the best in the future. One obvious change
that may lead to this is increased memory bandwidth.

In the past few years, development of hash join algorithms
has been focused on partitioning the data to the size that
fits within the last-level cache. However in modern systems,
contrary to prior findings, we find that partitioning hash join
is not always better than no-partitioning hash join. In this
paper, we analyze the performance of hash join algorithms
by a bandwidth-driven model and provide a guideline for
choosing the right algorithm according to the dataset and
architecture characteristics.

The contributions of the paper are as follows:

• We analyze the impact factors for the hash join algo-
rithms. We discuss the importance of granularity.

• We build a performance model that considers both
computation and memory accesses.

• Based on the proposed model, we study a no-
partitioning hash join and a radix partitioning hash
join.

• We predict the performance changes along with the
changes of the data set and the hardware.

• We validate the model with hardware-based experi-
ments on two processor architectures.

2. BACKGROUND
See [6] for early work on in-memory databases and hash-

join.

2.1 Hash Join Algorithms
Classical hash join The classical hash join contains a

build phase and a probe phase. During the build phase,
tuples in the smaller relation R are scanned to build a hash
table, and assigned to the corresponding hash table bucket.
After the hash table is built, the probe phase scans the other
relation S. For each tuple in S, it probes the hash table and
validates the matches.

No-partitioning hash join No-partitioning hash join [4]
is a parallel version of classical hash join. Each relation is
equally divided into shares. In the build phase, each share in
the smaller relation R is scanned by a thread. Together the
threads build a shared hash table. Similarly, in the probe
phase, each thread gets a piece of data from relation S and
does the probe in parallel.

Partitioning hash join To limit cache misses, [16] intro-
duces the partitioning hash join. Before building the hash
table, both relations are divided into small partitions. Hash
tables are built separately for each partition of relation R.
After the hash table is built for one partition, the corre-
sponding partition in relation S is scanned to do the probe.
If the hash table for each partition is small enough to fit in
the cache, this reduces cache misses, at the cost of parti-
tioning overhead. The partitioning hash join can be further
optimized as the radix partitioning hash join [12] which uses
multiple partitioning passes to reduce the translation looka-
side buffer (TLB) misses.

2.2 Related Work
The discussion between no-partitioning hash join and par-

titioning hash join never stops since the underlying hard-
ware develops at a fast pace. Much research effort has been
made on tuning the algorithms to leverage the underlying
hardware platforms. Prior work [16, 9, 1, 5] shows how
to use cache in a more efficient way for partitioning hash
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join. Shatdal et al. [16] point out that if the hash table for
each partition is small enough to store in the last level cache
(LLC), the number of cache misses is reduced. Chen et al. [5]
use prefetch to reduce the cache misses. Based on the cache
optimization, Kim et al. [9] and Manegold et al. [12] further
focus on the TLB problem. They show that using multiple
passes partitioning can reduce the TLB misses caused by
accessing too many pages in a one pass. Lang et al. [10]
propose a NUMA-aware hash join algorithm based on their
finding on NUMA effect that unreasonably distributed data
in multiple NUMA nodes decreases performance.

Earlier research [2, 3, 4, 15] also makes comparisons be-
tween no-partition hash join and partitioning hash join.
Blanas et al. [4] evaluate both classes of algorithms on multi-
core platforms. They claim that no-partitioning hash join
is competitive because partitioning hash join introduces ex-
tra cost such as computation for partitioning and synchro-
nization which is higher than the penalty of cache misses
in no-partitioning hash join. In [2] and [3], partitioning
hash join, categorized as hardware-conscious algorithm, is
well configured to compare with no-partitioning hash join
which is hardware-oblivious. The authors argue that the
partition hash join runs fast in most of the cases, and the
hardware-oblivious hash join only performs well when the
ratio between the size of two relations is significantly differ-
ent. However, it is interesting to compare a well-configured
partitioning hash join with a optimized no-partitioning hash
join such as using prefetch. [15] compares 13 different join
algorithms including hash join and sort merge join. Even
though partitioning hash join performs better than no par-
titioning hash join, they point out that there is not a 100%
best algorithm.

Another way to compare the algorithms is to build a per-
formance model and use it for prediction. In [14, 13, 8, 7],
performance models are set up describing the main cost of
different hash join algorithms. These models consider both
processing and disk I/O cost. It is increasingly feasible to
store the entire database [6] in memory. For this organi-
zation, I/O cost is not the dominating part, but memory
accesses are. Prior work[11] presents a cost model based on
the cache lines transferred, but this work only covers the no-
partitioning hash join algorithms. In this paper, we focus
on in-memory processing and build a model to estimate the
performance of in-memory hash join algorithms with special
attention to granularity effects.

3. PERFORMANCE MODEL
In this section, we present a performance model to de-

scribe the cost of hash join algorithms. We first analyze
the factors that should be considered to estimate the per-
formance and how they influence the algorithms. Based
on these impact factors, we propose a general performance
model, followed by the study of two specific hash join al-
gorithms: the parallel no-partitioning hash join and radix
partitioning hash join.

3.1 Impact factors
Previous work has shown that there are many factors af-

fecting the performance of hash join algorithms [3, 10, 15].
We divide them into two categories, application character-
istics and hardware features. Some algorithms’ parameters
can be tuned according to these factors to gain better per-
formance.

3.1.1 Application Characteristics
Relation size Relation size depends on the tuple size

and the number of tuples. However, we can minimize the
size with some pre-processing operations such as filtering
and abstracting the payload of each tuple to a fixed size
pointer that points to the original tuple. In our performance
model, we assume that the relations have been pre-processed
by filtering and each tuple contains a key and a pointer-
style payload. When we compare hash-join algorithms we
do so for same-size inputs, but we need to be aware that
algorithms may scale differently with respect of each of the
input relations.

Distribution of dataset. Within a dataset the distri-
bution of values within a certain column can be even or
skewed. Building a hash table for skewed data causes more
hash collisions, while probing a hash table for skewed data
increases cache hits. In this paper, although we know the
data skew is important and interesting, we assume that the
dataset is evenly distributed, since it is easier to explain the
principle of our performance model. In the future, we plan
to work out a refinement of the model to describe the cost
of hash joins for skewed data.

3.1.2 Hardware Features
Granularity. Typical modern server processors have

cache line sizes of 64 or 128 bytes, and (cached) accesses to
main memory occur at this level of granularity. Randomly
accessing elements smaller than a cache line, or quantities
that cross a cache line, introduces granularity effect, incur-
ring a granularity overhead, also referred to as read- or write-
amplification.

Cache size. Probing hash tables requires randomly ac-
cessing the hash table. If the cache is not large enough to
contain the whole hash table, cache misses occur, decreasing
the performance of the hash join. To reduce the number of
cache misses, we can partition the data before building the
hash table, in order to fit the hash table of each partition in
the cache.

TLB entries and virtual page size. The TLB caches
virtual memory page address to physical page address trans-
lations. If the translation table does not cache the requested
translation entry, a TLB miss occurs. The requested data
cannot be loaded until the translation entry is updated.
More misses are likely if more pages are accessed. Main
memory hash join algorithms, especially the partitioning
hash join, are sensitive to the number of TLB entries [12].
Using a large page size can reduce the TLB entries re-
quired [2, 3], increasing the TLB hit rate.

Memory bandwidth. Memory bandwidth determines
the rate at which data can be transferred between main
memory and the CPU. For memory-bound algorithms, the
overhead of transferring data dominates.

CPU processing rate. CPU processing rate indicates
how fast the processors process data. For hash join on mod-
ern hardware we believe optimized algorithms are usually
memory bandwidth bound. However, memory bandwidth
may increase in the near future, which means algorithms
may become compute bound, and we need to explore trade-
offs between computation and memory accesses.

Other features. There are many other potential im-
pact factors such as NUMA topologies, simultaneous mul-
tithreading (SMT), synchronization, and load balancing.
These factors have been proved to be influential in [3, 10].
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In this paper, to simplify the model, we limit the algorithms
to running on a single-node machine, and assume that the
SMT, synchronization and load balancing factors contribute
only a few percent of the overall cost. While we do not in-
clude these factors in the proposed performance model, we
show that despite this the model can provide a reliable pre-
diction of the performance.

3.2 Model

3.2.1 Platform Assumptions
Our model assumes a basic multi-core machine with a

memory size that is large enough to store all the data, and
we assume no intermediate results need to be written back
to the disk. As we want to study the comparison between
no-partitioning hash join and partitioning hash join, to make
them competitive, we assume that neither of the two rela-
tions can fit in the last level cache (LLC). Each data trans-
fer between the LLC and main memory should be an inte-
ger multiple of smallest main memory transfer size, namely
granularity, normally the same as the cache line size. Al-
though NUMA architectures play an important role in the
hash join performance [10], we focus on a single NUMA node
system for now, and defer the analysis of NUMA effects and
multi-node systems to future work.

3.2.2 The formulas and their explanation
Table 1 shows the notation of the parameters used in our

performance model. Please note that to predict relative per-
formance of algorithms, our model does not use any empiri-
cally fitted parameters. To describe different hash join algo-
rithms and their variants, we adopt a uniform description.
The total running time T of a hash join algorithm consists
of the running time of each phase:

T =

n∑

i=1

Ti (1)

For the running time of each phase Ti, we consider both the
cost of memory accesses and that of computation. The cost
of each phase should be the sum of the time the system was
computing and the time it was accessing memory, minus the
time it was doing both.

Ti = Tcom + Tmem − Toverlap (2)

Suppose β =
min{Tcom,Tmem}−Toverlap

max{Tcom,Tmem} , then

Ti = (1 + β)max {Tcom, Tmem} (3)

For a well-optimized algorithm we assume maximum over-
lap, i.e., β = 0. So, formula 2 reduces to:

Ti = max {Tcom, Tmem} (4)

The computation cost can be represented as:

Tcom =
D

P
+ C (5)

where D denotes the processing data amount, and P indi-
cates the base processing rate. We use C to represent the
other costs such as cache miss penalty, TLB miss penalty,
synchronization cost, etc. The memory accesses in each
phase consist of different passes of read and write. For a
multi-pass memory access we have:

Table 1: Model Parameters
Parameters Description
T total running time
Ti running time of each phase
n total number of phases
Tcom computation time
Tmem memory accesses time
Toverlap the overlap between Tcom and Tmem

C penalty cost during computing
m total passes of memory access in each phase
D required data amount, equal to relation size
Dr data amount for read
Dw data amount for write
P processing rate
B memory bandwidth
Br read bandwidth
Bw write bandwidth
W tuple size
G granularity(size of cache line)
α the number of cache lines the data span across
R, S relation R, S
|S|, |R| tuple number of relation R, S

Tmem =
∑

f(Dr, Br, Dw, Bw) (6)

The function f(Dr, Br, Dw, Bw) indicates the data transfer
time of each data pass. (Dr/Dw) is the read/write data
amount and (Br/Bw) the read/write bandwidth. We con-
sider both a memory channel shared between read and write
and a (buffered) architecture with separate read and write
channels. Thus,

f(Dr, Br, Dw, Bw) =

{
Dr+Dw

B
Shared channel

max
{

Dr
Br
, Dw
Bw

}
Non-shared channel

When calculating Dr and Dw access granularity must be
taken into account. This means that instead of calculating
these as the size of the elements transferred times the num-
ber of elements transferred, Dr or Dw become αG times
the number of elements where α accounts for the number of
granules transferred per element because of size and align-
ment, and G is the granule size.

3.3 Study of Hash Join Algorithms
We analyze two prevalent parallel hash join algorithms

mentioned in [2, 4], a parallel no-partitioning hash join and a
histogram-based 2-pass partitioning hash join. For this case
study, we assume, that relation R is not larger than relation
S, or |R| ≤ |S|. The hash table is built based on relation R.
In section 3.3.1 and 3.3.2, we analyze both algorithms with
a shared memory channel machine, and extend this to the
non-shared channel machine in section 3.3.3.

3.3.1 No Partitioning Hash Join
The parallel no partitioning hash consists of two phases:

the build phase and the probe phase.

TNP = Tbuild + Tprobe

During the build phase, the CPUs scan all the tuples in
relation R, and a hash function is applied to each tuple’s
key to build the hash table. After that, the hash table is
written back to main memory. Thus, the memory accesses in
the build phase contain a sequential read of relation R, and
for each tuple in R, it reads and writes the corresponding
hash table buckets with granularity effect. As we can reduce
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hash collision by techniques such as using larger hash tables
or a better hash function, we assume that there are no or
few hash collisions. So, for the build phase or the probe
phase, only one hash table bucket is accessed for each tuple.
Hence the actual data amount for read is:

W |R|+ αG|R|
The actual data amount for write is:

αG|R|
The total data transfer time for the build phase is:

Tmem1 =
W |R|+ αG|R|+ αG|R|

B
=

(W + 2αG)|R|
B

(7)

The cost of computation contains the pure processing part
and the other cost C1. We use Pi to indicate the processing
rate of each phase. According to previous research based
on the modern multi-cores architecture [2], the cache miss
penalty caused by randomly accessing the hash table takes
up most part of C1, making the computation dominating.
Therefore,

Tcom1 =
W |R|
P1

+ C1 (8)

In the probe phase, tuples in relation S are read, and after
a same hash function being run on each tuple’s key, the
corresponding hash table buckets are read from the hash
table for probing. Therefore, only a read is needed in this
phase and the memory access cost is:

Tmem2 =
W |S|+ αG|S|

B

Similar with 8, the cache miss penalty is significant in the
probe phase. The computation cost in this phase is:

Tcom2 =
W |S|
P2

+ C2

The total cost for parallel no partitioning hash join is:

TNP = max

{
(W + 2αG)|R|

B
,
W |R|
P1

+ C1

}

+max

{
(W + αG)|S|

B
,
W |S|
P2

+ C2

} (9)

3.3.2 Radix Partitioning Hash Join
The radix partitioning hash join we mention in this sec-

tion consists of three phases, the first partitioning phase,
the second partitioning phase, and the build-probe phase.
To reduce the potential contention between different threads
in the first partitioning phase, an extra histogram phase is
added to build a global histogram for each thread. The sec-
ond partitioning phase is similar with the first pass. One
difference is that in the second partitioning phase, the his-
togram is built locally for each thread. The build-probe
phase can be divided into a couple of sub-phases since it re-
peats the build phase and the probe phase for each partition.
However, we can combine the build phase for all partitions
into a build phase during the cost calculation, as well as the
probe phase. As not all the partitions need to do the build-
probe phase, the data needed to process and access in this
phase is some percentage of the relation size. To simplify
the calculation in this case study, we assume that it needs to
operate the build-probe phase on all the partitions, namely,

the whole relations. The total cost of radix partitioning hash
join is:

TRP = Thistogram + Tpartition1 + Tpartition2 + Tbuild + Tprobe

Following reasoning similar to the no-partition case the
total cost of radix partitioning hash join is:

TRP = max

{
W (|R|+ |S|)

B
,
W (|R|+ |S|)

P1
+ C1

}

+max

{
3W (|R|+ |S|)

B
,
W (|R|+ |S|)

P2
+ C2

}

+max

{
4W (|R|+ |S|)

B
,
W (|R|+ |S|)

P3
+ C3

}

+max

{
W |R|
B

,
W |R|
P4

+ C4

}

+max

{
W |S|
B

,
W |S|
P5

+ C5

}

(10)

We briefly describe the phases to explain each of the com-
ponents of this equation.

The histogram phase (phase 1) is done separately on both
relations. For each relation, the processors read all the
tuples and builds the histogram. The histogram is small
enough to store in the cache and there is no need to write
back to the memory. So, only a sequential read is done on
both tables. While included in the formula we expect the
compute cost to be dominated by the transfer cost.

During the first partitioning phase (phase 2), all tuples in
both relations are scanned and assigned to the correspond-
ing partition, and then the partitions are written back to the
memory. Even though the access to each partition is ran-
dom, the cache is large enough to maintain a small bucket
for each partition. When the small bucket is full, it is written
back to the main memory and the another empty bucket will
be read for other tuples. So, the granularity-size data block
is fully used in this phase. Assuming the size of the parti-
tioned relation is equal to the original relation size, there is
a full read and a full write for both relations. Also, the data
block should be read before it is written back. If the number
of partitions is too large, it may cause many TLB misses,
the overhead of which can cause the computation cost dom-
inating. However, multi-passes approaches can be used to
limit the fanout of each pass partitioning, minimizing the
number of TLB misses. Therefore, in the later parts of this
paper, we assume that the memory access costs dominate
the total running time.

The second pass partitioning phase (phase 3) is similar
with the the first pass partitioning, but here we include the
second histogram build with the partitioning.

For the build-probe phase (phase 4 & 5), we assume that
in this case the hash table for each partition is small enough
to fit in the cache and there are few cache misses when ac-
cessing the hash table. Otherwise, the cache misses penalty
may take up a significant part of the cost, turning it back
the the case of no partitioning hash join for each partition.
The build sub-phase (phase 4) and probe sub-phase (phase
5) are modeled separately.

3.3.3 Non-shared Channels
If the two algorithms analyzed in section 3.3.1 and 3.3.2

run on a non-shared memory channel machine, the overlap
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between read and write should be considered. In the no-
partitioning hash join, the write only happens during the
build phase. The cost for transferring data depends on the
dominating part between reading both the tuples and the
hash table and writing the hash table. So, formula 7 is
changed to:

Tmem1 = max

{
W |R|+ αG|R|

Br
,
αG|R|
Bw

}

Correspondingly, the overall cost of no-partitioning hash join
is modified to:

TNP = max

{
W |R|+ αG|R|

Br
,
αG|R|
Bw

,
W |R|
P1

+ C1

}

+max

{
(W + αG)|S|

Br
,
W |S|
P2

+ C2

} (11)

The write happens during all partitioning phases in the radix
partitioning hash join. As we analyze above, the read and
write amount for the first partitioning phase are 2W (|R| +
|S|) and W (|R|+ |S|), respectively, the memory access time
for either pass should change to:

Tmem2 = max

{
2W (|R|+ |S|)

Br
,
W (|R|+ |S|)

Bw

}

Similarly, cost for the second partitioning phase is:

Tmem3 = max

{
3W (|R|+ |S|)

Br
,
W (|R|+ |S|)

Bw

}

Consequently, the overall performance for radix partitioning
hash join is:

TRP = max

{
W (|R|+ |S|)

Br
,
W (|R|+ |S|)

P1
+ C1

}

+max

{
2W (|R|+ |S|)

Br
,
W (|R|+ |S|)

Bw
,
W (|R|+ |S|)

P2
+ C2

}

+max

{
3W (|R|+ |S|)

Br
,
W (|R|+ |S|)

Bw
,
W (|R|+ |S|)

P3
+ C3

}

+max

{
W |R|
Br

,
W |R|
P4

+ C4

}

+max

{
W |S|
Br

,
W |S|
P5

+ C5

}

(12)

3.4 Model Analysis
In this section, we validate the proposed model and show

how to make a prediction with the model. We assume we can
use techniques such as prefetch and multi-pass partitioning,
to reduce the cost of computation, and both algorithms are
limited by the memory bandwidth. We use a 16B tuple size
W and 64B cache line size G as an example. We assume
the hash table, the tuples and the meta data are within the
same cache line. Each access to a 16B tuple in the hash
table causes transfer of a 64B block, or α = 1. For a non-
shared memory channel machine, according to formula 9 the
running time of the no-partitioning hash join is:

TNP =
(W + 2αG)|R|

B
+

(W + αG)|S|
B

=
144|R|+ 80|S|

B

In a two-pass partitioning radix hash join, assume a good
partition number is chosen to reduce the cache misses and
TLB misses, so that the algorithm is memory bandwidth

limited. According to formula 10, the running time of the
radix partitioning hash join is:

TRP =
W (|R|+ |S|)

B
+

3W (|R|+ |S|)
B

+
4W (|R|+ |S|

)
B

+
W |R|
B

+
W |S|
B

=
144(|R|+ |S|)

B

We can conclude that for this case the no-partition hash
join will always perform better.

There are some differences when running the algorithms in
a non-shared channel machine since the read and write have
overlap. We select a cache line size of 128 Bytes. Suppose
the read bandwidth is twice as large as the write bandwidth.
That means in one phase if the read data amount is not twice
larger than the write data amount, that phase is dominated
by the write cost. According to formula 11, the cost of the
no-partitioning hash join in a non-shared channel machine
is:

TNP =
αG|R|
Bw

+
(W + αG)|S|

Br
=

128|R|
Bw

+
144|S|
Br

Similarly, based on formula 12, the running time of the radix
partitioning hash join in a non-shared channel machine is:

TRP =
W (|R|+ |S|)

Br
+
W (|R|+ |S|)

Bw
+

3W (|R|+ |S|)
Br

+
W |R|
Br

+
W |S|
Br

=
80(|R|+ |S|)

Br
+

16(|R|+ |S|)
Bw

It is also be useful to look at granularity effects . Assuming
that the tuple does not exceed the size of a cache line (i.e.,

α = 1), and setting X = |S|
|R| ,

TNP =
|R|
B

((W + 2G) + (W +G)X)

TRP =
|R|
B

(W (1 +X) +W (3 + 3X)

+W (4 + 4X) +W (1 +X))

solving TNP < TRP yields

W >
G

8
(
X + 2

X + 1
) (13)

especially when X = |S|
|R| is large enough,

Wbreak even ' G

8
(14)

Thus, unlike the change in |S|
|R| , change in the tuple size

plays a significant role in which algorithm performs best.
For G=64B, the break-even tuple size is about 8B.

4. EXPERIMENT SETUP

4.1 Platform
We validate the proposed model on two different multi-

core machines. The HP Proliant DL-360P has 10 cores per
node, with SMT2 configuration. Different with HP Pro-
liant DL-360P, the IBM POWER8 S824L has fewer cores but
more threads. Each of 4 NUMA nodes in the IBM POWER8
S824L has 5 cores with up to SMT8 setting per cores. Cache
and TLB configurations are summarized in table 2.

Both platforms have multiple NUMA nodes. As we want
to eliminate the NUMA effect, we only use one node in both
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Table 2: Hardware Platforms Feature
HP Proliant

DL-360p Gen8
IBM POWER8

S824L

CPU
Intel Xeon

E5-2670 v2 2.5GHz
IBM POWER8E

3.7GHz
Cores 10/20 5/20
Threads 20/40 40/160
Cache L1

L2
L3

32 KiB
256 KiB
25 MiB

64 KiB
512 KiB
8 MiB

TLB L1
L2
L3

64
512
N/A

48(96)
256
2048

Page size 4 KiB 4 KiB
Memory 192 GB 256 GB

Mem. BW 42/84 GB/s
Read: 76.8/307.2 GB/s
Write: 38.4/153.6 GB/s

Cacheline 64B 128B

platforms. The memory bandwidth in HP Proliant DL-360P
is around 42 GB/s within each NUMA node. It is shared
between the read and write. The IBM POWER8 S824L has
seperate read channels and write channels with each node
supporting 76.8 GB/s read and 38.4 GB/s write bandwidth.

4.2 Workload
For evaluating both algorithms analyzed in section 3.3, we

use the workload from [4] and extend it to support various
tuple sizes from 4B to 128B. We assume the workload is
in a column-oriented mode with each tuple in a form of
< key, value >. Except for the 4B tuple case, which has a
4B key and no value, we assume an 8B key. We assume the
key in each relation is unique and uniformly distributed.

5. EXPERIMENTAL RESULTS
In this section, the proposed model is evaluated. We first

analyze both algorithms by tuning prefetch distance, radix
bits, and SMT configuration. After that, we demonstrate
the granularity effect by changing the tuple size. Finally, we
vary the relation size ratio and show that the relation size
ratio does not change the winner in the competition between
no-partitioning hash join and radix partitioning hash join.

5.1 Impact of Software Prefetch
One of the dominating costs in a no-partitioning hash join

is the result of cache misses. Since the latency is high for
getting the data from main memory instead of from cache,
cache misses cause stalls in the processor. The processor
cannot continue to work until the data is returned. Using
software prefetch is a way to reduce the cache miss penalty.

Figure 1 shows the impact of using prefetch in the no-
partitioning hash join. A prefetch distance i means that
when processing the current tuple, the processors do the
prefetch of the hash bucket for the next ith tuple. We can
see from the figure that, the performance improves more
than 25% in the Intel machine and 35% in the POWER8
machine, respectively. For the Intel machine, the perfor-
mance remains stable when the prefetch distance reaches
4, and after 10, the performance nearly doesn’t increase any
more. This is because it reaches the memory bandwidth lim-
itation. The prefetch effect is more obvious in the POWER
machine. The running time drops sharply from no-prefetch
to only adopting a prefetch distance of 1. In the rest of the
paper, the no-partitioning hash join uses prefetch distance

of 10 in the Intel machine and 6 in the POWER machine
unless otherwise specified.

The performance improvement is the result of latency hid-
ing. When randomly accessing the hash table either dur-
ing the build phase or the probe phase, as the cache is not
large enough to hold the whole hash table, a lot of cache
misses occur. Doing prefetch can access the data before it is
needed, reducing the wait cycles for the data response. If the
prefetch distance is large enough, it can reduce most of the
waiting time. A drawback of utilizing prefetch is the increase
of the number of instructions. However, this penalty is far
less than the performance increase introduced by prefetch.

0 1 2 3 4 5 6 7 8 9101112

0

0.5

1

1.5

2

prefetch distance

r
u
n
n
in

g
t
im

e
(
s
)

Intel

Build

Probe

0 1 2 3 4 5 6 7 8 9101112

0

0.5

1

1.5

2

prefetch distance

r
u
n
n
in

g
t
im

e
(
s
)

POWER8

Build

Probe

Figure 1: Running time for no-partitioning hash join
with different prefetch distance (Intel, 10 cores, 20
threads, POWER8, 5 cores, 40 threads)

5.2 Number of Partitions and Partitioning
Passes

Radix partitioning hash join is a hardware-sensitive algo-
rithm. The radix bit, indicating the number of partitions
(2radix bit), is an important tuning parameter. It should be
well configured to gain good performance. On the one hand,
If the partition number is too small, the size of each parti-
tion may not fit in the cache, leading to cache misses. On
the other hand, if the number of partition is too large, each
partitioning pass may cause a lot of TLB misses.

Figure 2 shows how the performance changed running
against the Intel and the POWER8 machine by varying the
radix bit. We can see that, in both figures, the partition-
ing time increases when the radix bit goes up, along with
the build-probe time decreasing. The best trade off radix
bit configuration for the Intel machine is 10, after which the
partitioning time jump sharply due to the TLB miss penalty.
The POWER8 machine is more robust with respect to this
parameter. A radix bit of 14 is the best configuration, and
when the radix bit is larger than 19, the partitioning time
increases significantly. The build-probe time, on the other
hand, declines rapidly at the beginning when radix bit in-
creases beyond 6. The reduction of cache misses contributes
to this performance enhancement. However, the build-probe
cost does not keep shrinking when the partition number is
too large (radix bit is 20 in both machines). This is be-
cause the computation for each partition takes up a larger
percentage of the overhead and starts to dominate.

5.3 SMT effect
Figure 3 demonstrates the curve of the SMT effect in the

POWER8 machine. We run the no-partitioning hash join
both with and without prefetch, and radix partitioning hash
join. We can see that the no-partitioning hash join benefits
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Figure 2: Running time for partitioning hash join
with different radix bits (Intel, 10 cores, 10 threads,
POWER, 5 cores, 15 threads). The cost for building
histogram is included in the first partitioning phase.

from the SMT, especially the case without prefetch. This
logical because both threading and prefetching hide memory
latency. However, it keeps stable when the threads number
is more than 20 for the no-partitioning hash join without
prefetch and more than 10 for that with prefetch. Con-
versely, the radix partitioning hash join is more oblivious to
the SMT configuration. The running time does not change
a lot when the SMT is in different configurations. It even
increases slightly when the thread number reaches 20 which
means SMT4 configuration. For the rest of this paper, we
use SMT8 for the no-partitioning hash join and SMT3 for
the radix partitioning hash join in the POWER8 machine
as they are the best selection based on this experiment.
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Figure 3: Running time with different numbers of
threads (POWER, 5 cores)

5.4 Granularity
Because we cannot change the cache line size we vary the

size of the tuples. Figure 4 shows how the running time
changes as a function of the tuple size changing from 4B to
128B for measured data and our model on the Intel machine.
For larger tuple sizes the no-partitioning hash-join performs
better. This is expected because for larger sizes there is
increased bandwidth pressure and the amplification benefit
of the partitioned hash join is reduced. The measured and
predicted curves have similar shape. The measured break-
even point is around 8B, close to 9B provided by the model.

Figure 5 shows the performance of both hash join algo-
rithms running on the POWER8 machine. The running
time of radix partitioning hash join increases smoothly in a

same pace with the tuple size. The running time of the no-
partitioning hash join, showing a different curve, climbing
stably at the beginning when the tuple size is small. From a
32B tuple size to 64B size, there is a jump, almost doubling
the running time, which is as shown in the 32B size in the
Intel machine test. This is because the tuple and the meta
data in a same hash table bucket are split over two cache
lines. Consequently, each access to the hash table actually
transfers two cache lines instead of one. Measured radix par-
titioning hash join win when the tuple size is 16B or smaller,
while the no-partitioning hash join win when the tuple size
is 32B or larger. The modeled break even is around 21B
which matches the prediction analyzed in section 3.4
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Figure 4: Running time with different tuple size (In-
tel, 10 cores, radix (red) and no-partition (blue))
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Figure 5: Running time with different tuple size
(POWER, 5 cores, radix (red) and no-partition
(blue))

5.5 Relation Size Ratio
In this section, we explore how the relation size ratio im-

pacts the performance. We run both algorithms in both
platforms with various |R| from 16 ∗ 220 to 256 ∗ 220 and
keep the size of S at 256 ∗ 220. Figure 6 and figure 7 sum-
marize the prediction trend of both algorithms’ performance
with different R size according to the proposed model. We
can see from figure 6, consistent with the model, that when
the tuple size is 16B, the no-partitioning hash join is always
better than the radix partitioning hash join. Conversely,
when the tuple size is 8B, the radix partitioning hash join
outperforms the no-partitioning hash join. In figure 7, the
radix partitioning hash join runs faster than no-partitioning
hash join both when the tuple size is in 8B and in 16B.

Figure 6 and figure 7 illustrate the experiment results
of the relation size ratio effect. Both figures have similar
shapes with the proposed model prediction. The curve of
no-partitioning hash join in 8B tuple size is close to that
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in 16B tuple size due to the granularity effect, while the
running time doubles for the radix partitioning hash join
when the tuple size changes from 8B to 16B. The radix par-
titioning hash join runs slower than the estimation by the
model, likely because the overlap between computation and
memory accesses cannot be ignored. So all the curves for
radix partitioning hash join in the model should be shifted
up. Consequentially, as shown in figure 6 and figure 7, the
no-partitioning hash join can win in some cases when the
difference between the size of both relations are large.
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Figure 6: Running time with different relation size
ratio (Intel, 10 cores)
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Figure 7: Running time with different relation size
ratio (POWER, 5 cores.)

6. CONCLUSIONS AND FUTURE WORK
In this paper, we analyze the performance of in-memory

hash join algorithms on multi-core platforms. We discuss
the factors that impact the performance and find that the
granularity is one of the main impact factors. Based on this
finding, we propose a performance model considering both
computation and memory accesses. According to the model,
no-partitioning hash join should be more competitive than
the partitioning hash join when the tuple size is large and the
granularity is small. The results show that our model can
accurate predict the winner between no-partitioning hash
join and partitioning hash join. In the future, we expect
to extend the proposed model to account for NUMA effects
and skewed data distributions.
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5
ACCELERATING HASH JOINS

SUMMARY

The previous chapter gave a detailed study of performance analysis on hash joins. Ac-
cording to the study, we can can draw a preliminary conclusion that FPGAs can also ac-
celerate some of the memory-intensive operations such as hash joins. However, it is not
trivial to use this knowledge in designing a hash-join accelerator on FPGAs. In addition,
it is interesting to know how much performance improvement can be gained from im-
plementing such operations on FPGAs. To answer these questions, this chapter studies
the design of an FPGA-based hash-join accelerator.
Recent studies on hash-join algorithms implemented in reconfigurable logic have
improved their throughput performance. However, performance limitations caused by
random accesses to the main memory creates a bottleneck that limits the performance.
This chapter presents an FPGA-based high-throughput hash join accelerator. The
proposed accelerator stores the hash table that needs to be randomly accessed in
HBMs, where all HBM channels operate independently to enable full HBM bandwidth.
Furthermore, the accelerator uses a pre-partitioning method to steer HBM access
requests to the corresponding HBM channel to avoid the traffic contentions across
different HBM channels, and thus mitigating memory access as a bottleneck to limit
performance.

The content of this chapter is based on the following paper:
J. Fang, J. Lee, Z. Al-Ars, H.P. Hofstee, Optimizing FPGA-based Hash Joins with HBMs,

ready for submission.

65



OPTIMIZING FPGA-BASED HASH JOINS WITH HBMS

Jian Fang
Delft University of Technology

Delft, the Netherlands
j.fang-1@tudelft.nl

Jinho Lee
Yonsei University

Seoul, Korea
leejinho@us.ibm.com

Zaid Al-Ars
Delft University of Technology

Delft, the Netherlands
z.al-ars@tudelft.nl

H. Peter Hofstee
IBM Austin

Delft University of Technology
Texas, USA

h.p.hofstee@tudelft.nl

ABSTRACT

Hash join is a commonly used database operator and significantly impacts the database performance.
Recently, FPGA community has studied and developed new hardware algorithms to improve its
throughput. However, the performance limitations caused by the random access to the main memory
is challenging this progress. In this paper, we present a high throughput FPGA-based hash join
accelerator. The proposed architecture stores the hash table in HBMs and allows all HBM channels
to operate independently. We propose a pre-partition method to steer the traffic to the corresponding
channels to relieve contentions. In a result, the proposed method should efficiently utilize the HBM
bandwidth.

Keywords hash join · FPGA · HBM · random access · database

1 Introduction

Hash join is a commonly used operation in database systems and significantly impacts the performance of databases.
It combines two tables into one compound table under specific constraints, where the most frequently used one is
to combine two tables by a common field, called equi-join. Recently, researchers have been looking into using
application-specific processors to improve the hash join performance, among which the FPGA is a promising one.
Previous studies [1–3] have explored the potential of using FPGAs to accelerate hash joins, and show some performance
improvements, but yet still face challenges.

For small size problems, the hash table can be stored in the FPGA internal memory or the block RAM (BRAM) which
provides lower-latency but higher-bandwidth data accesses than the main memory. Thus, an optimized pipelined FPGA
designs should be able to keep up with the rate of reading the data from the main memory. However, the BRAMs in
an FPGA typically contain a few mega bytes, which limits the problem size (the smaller table) to tens to hundreds
thousand tuples.

For large size problems for which the hash table would exceed the BRAM size in an FPGA, the hash table can be stored
in the main memory. Building and probing an in-memory hash table requires a large number of random accesses to the
main memory, which might lead to poor throughput performance. Another way to handle the large size problems is to
do a partitioning phase on both tables before joining them. If the partition is small enough to store its hash table in the
FPGA internal memory, it can make use of the locality to avoid random accesses to the main memory. A drawback of
this method is that it demands an extra partition phase or extra passes transferring the data between the main memory
and the FPGA, especially for those large problem cases that needs multiple partitioning phases.

In this paper, we explore the potential of using a new kind of memory, the high bandwidth memory (HBM), to accelerate
FPGA-based the hash joins. Integrating HBMs with FPGAs brings FPGAs large capacity local memory along with
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huge amount of bandwidth. One of the latest Xilinx FPGAs [4] can support up to 32 channels accessing two 4GB HBM
stacks at an aggregate peak bandwidth of 460GB/s. Consequently, it is possible to store larger hash tables in the FPGA
side (hundred million tuples), meaning that larger size problems can be handle within the FPGA. Even if the HBM is
not large enough to keep the hash table of the smaller table, utilizing HBM for the partitioning hash join can reduce
the requirement for the number of partitions, and thus fewer partitioning passes are required. However, to efficiently
utilize such huge bandwidth post two main challenges. First, as the 460GB/s bandwidth is an accumulation of all HBM
channels’ bandwidth, a design should activate as many channels as possible. Second, traffic across different channels
might cause contention which will lead to significant performance drops [5]. This paper presents a new FPGA-based
hash join accelerator architecture. The proposed accelerator stores the hash table in HBM and utilizes a pre-partition
method to steer the traffic to the appropriate memory channel to reduce the contention. Specifically, we make the
following contributions.

• We present a hash join architecture on the FPGA that can efficiently use the HBM bandwidth.
• We propose a pre-partition method to steer the traffic to the corresponding channels to relieve contentions.
• We present a performance model for the proposed hash join architecture. Based on the estimation, the proposed

method can reach 22GB/s throughput which is limited by the host-to-accelerator interface.

2 Related Work

The studies on optimization of the hash join performance started early on the CPU architecture. There are two main
classes of hash join algorithms, including no-partitioning hash joins and partitioning hash joins. Previous studies
have been done discussing the impact of cache misses [6], TLB misses [7], the Non-uniform memory access (NUMA)
effect [8], and the granularity effect [9], as well as comparing both classes of hash join algorithms [10, 11].

In the context of FPGA, the hash join performance relies on the hash table organization. An efficient hash table structure
can avoid stalls in the pipeline and allows continuous data processing. The hash join in [1] utilizes a bit vector table to
store the hash entries and an address table to maintain the linked lists. The access to the hash bit vector table and that to
the address table are placed in different stages which allows non-stall processing. The study in [12] proposed a grouping
method to construct a biggest hash table in BRAMs. In this method, the BRAMs are diveded into groups that are linked
by a chain. Tuples with hash collisions will be assigned to the next group until the hash table overflows. Note that, both
methods construct the hash table in BRAMs, which limits the problem size to only a few hundred thousand tuples.

If the hash table is too large to keep in BRAMs, the hash table might need to be kept in the main memory which might
lead to random accesses. To reduce the penalty caused by the random accesses, the BRAM can be used to act as a
cache [3] and store the most frequently used entries locally. However, the cache miss ratio might increase when the
hash table becomes larger. Thus, for large data sets, the system might not be able to benefit from the cache mechanism.
The study from [2] proposes a multithreading hash join algorithm running on the Convey-MX system with memory
bandwidth of 76.8GB/s, which achieves a throughput of up to 12GB/s. In this architecture the join engine maintains
thousands of threads in the FPGA to hide hide the long latency accessing the main memory. However, this method
might suffer bandwidth waste and become less efficient because of granularity effect, or data transferred in practice is
larger than the request amount [9]. Another way to avoid the random accesses is to partition the data sets into small
enough partitions, so that the hash table of each partition can be built in the FPGA internal memory. The partitioning
method proposed in [13] can partition the data into eight thousand partitions which can saturate the QPI bandwidth
(6GB/s) and can be scaled up to fit faster interfaces. However, due to the limited size of BRAMs in the FPGA, large
tables need to be partitioned into numerous small partitions. Thus, it might require multiple passes of partitioning which
reduces the end-to-end performance.

In this paper, we focus on medium size hash joins for which the hash table can be stored in the HBMs. For larger data
sets, as the HBM can keep much larger hash tables than the BRAM, fewer partitions are requied during the partitioning
phase. Consequently, it can handle much larger data sets(e.g. several TB), within one pass partitioning. To the best
of our knowledge, this paper present the first hash join on HBM in the context of FPGAs. Previously, using HBM to
optimize hash join are studied in the CPU [14] and GPU [15] architecture.

3 Proposed Architecture

The proposed hash join accelerator consists of a build engine to build the hash table and a probe engine to do the
probing and matching. The details are shown in Fig. 2 and Fig. 3, respectively. We assume both join tables are in
column-oriented format where each tuple contains a fixed size key field and a fixed size value field (can be a pointer
pointing to the original record in the database).
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3.1 Hash Table Organization

In the proposed architecture, hash collisions are handled by the separate chaining technique using linked lists. The hash
table organization is illustrated in Fig. 1. It contains a head pointer table (HPT) to store the hash entries and a linked list
table (LLT) to hold the linked lists. Both tables are stored in the HBM. Each entry in the HPT records the pointer that
points to the corresponding linked list, as well as the first tuple of each linked list. Similarly, each entry in the LLT
contains the collision tuple and a “next" pointer. Reaching a next pointer of an “END" means it is the tail of the linked
list, and there is no more tuple in the rest of the linked list. When updating the linked list, the new tuple is inserted from
the head, so that it can update the hash table in constant time during the build phase.

The hash table is built in the build phase. It first reads the hash entry according to the hash value of the new tuple
calculated by the hash function. Then it writes the new tuple to the hash entry along with the updated head pointer.
Meanwhile, the old data read from the hash entry is copied to the empty location in the LLT. The next empty location
then move to a next slot (in sequence). When probing the hash table, the first step is to read the hash entry in the HPT
and validate whether it finds a match. Then, it locates the linked list using the head pointer and traverses it based on the
next pointer. The traversal procedure stops when the next pointer gives an “END" (N − to−M mapping) or the first
match is found (N − to− 1 mapping).

The hash table is spread over the HMB sections in a stripe style. Each section in the hash table corresponds to a section
or a group of sections in the HBM, and the accesses to a specific hash table section can use its own channel. This way,
it can avoid the contention caused by the accesses across different channels, and thus improve the bandwidth efficiency.

Figure 1: Hash Table Organization

3.2 the build engine

Fig. 2 demonstrates the components and architecture of the build engine. The build engine reads a line from the interface
which contains multiple tuples. These tuples are sent to the hash function components to calculate the hash value using
the same hash function. The hash value indicates the address of the hash entry. In the pre-partitioner, each tuple is
steered to one of FIFOs based on the location of its hash entry in the HBM. Note that, it is possible that some of the
tuples in a line might need to access the same HBM section. Thus, the FIFOs might receive unbalanced workloads.

In the next stage, the HPT update unit and the LLT update unit work together to build the hash table in the HBM. It
works in three steps. First, the HPT update unit sends a read request to read the existing (old) hash entry base on the
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Figure 2: The Build Engine

address calculated from the hash value. After the read request is sent, a write request follows to update the hash entry.
The new hash entry includes the tuple itself and the pointer that pointer to the linked list. As the linked list is updated
from the head, this pointer can be decided when the next empty location is allocated, which is managed by the LLT
address counter. In the third step, when the old hash entry is read, it is stored to the LLT update FIFO, after which the
LLT update router drives it to the corresponding LLT update unit according to the LLT section it should be written.
Then, an update/write request is sent to the HBM to update the linked list.

During the update of the HPT, it is possible that a read request might arrive faster that a previous write request on the
same address. Even though the HBM memory controller can handle this dependency, the communication needs to
follow the AXI rules between the user logic and the AXI interface on the HBM memory controller side, which means
the user needs to take care the request order acknowledged by the AXI interface. In our design, we adopt a simple
control mechanism by maintaining a unfinished write request window. Whenever a write to the HPT, it records this
write in the window, while a write acknowledgement leads to remove this write record. With this unfinished write
request window, if a read matches one of the addresses in the window, this read request will be stalled until the write
record is removed from the window.
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3.3 the probe engine

When the build phase is done, the system enters the probe phase. Fig. 3 describes the architecture of the probe engine.
Most of components can be shared between the build engine and the probe engine such as the hash function units, FIFO,
pre-partitioner, and the router. Similar to the build engine in the earlier stage, it reads a whole input line and assigns the
tuples to the corresponding FIFO depending on the output of the hash function.

Figure 3: The Probe Engine

The HPT probe unit then sends a read request to read hash entry in the HPT and start the probing. The address of the
hash entry is calculated by the hash value. The HPT probe unit also forwards the original input tuple to the validation
unit, where the tuple will be validated. After the read data arrives, the validation unit compares the data read out from
the HPT and the original tuple to find whether there is a match.

If no match is found, the next pointer, as well as the original data, will be sent to the LLT probe unit, generating a new
read request and preparing for the validation on the next tuple in the linked list. Since the next tuple in the linked list
might sit in a different section of the HBM, a router is required to drive this read request to the appropriate LLT probe
unit. This procedure continues until a match is found or the probing reach the end of the linked list.
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If a match is found, the validation unit sends both tuple for joining. In our experiment, we simply count the number
of joined pairs instead of materializing the results, different applications would have different join result format
requirement. Depending on the application, we can stop the probing on this linked list if the data set only allows one to
one mapping or the application only needs to find one match. Otherwise, the traversal on the linked list will continue
until it reaches the end of the chain.

4 Evaluation

4.1 Performance Model

Suppose the join is performed between table R and table S. We estimate the build phase throughput (Tbuild) and probe
phase throughput (Tprobe) of the proposed method separately using the table size (SR and SS) over the running time
(tbuild and tprobe).

Tbuild =
SR

tbuild
,

Tprobe =
SS

tprobe
.

For the build phase, suppose the design is fully pipelined and the computation can be overlapped by the data transition.
The running time of the build phase depends on either the accesses to HBM or to the host. That is

tbuild = max{tHBM , thost},
where thost can be simply calculated using the host to accelerator bandwidth, or thost = SR

Bhost
. During the build phase,

as described in Section 3.2, the hash entries and linked lists need to be updated, which leads to two reads and one write.
Thus,

tHBM =
3αSR

BHBM
.

Note that each random access to the HBM needs to follow the granularity rule [9]. Thus, we use α as an amplifying
factor to cover the wasted data amount. Consequently, the throughput of the build phase can be explained as

Tbuild = min{Bhost,
BHBM

3α
}.

Similarly, the probe phase requires one read to the HPT and at lease one read to the LLT depending by the collision
degree. Assuming that each tuple gets β collisions, the throughput of the probe phase can be presented as

Tprobe = min{Bhost,
BHBM

(2 + β)α
}.

4.2 Performance Estimation

Assume that the proposed method is implemented in a frequency of 250MHz in the Xilinx Virtex Ultrascale VU37P-2
device on an AlphaData ADM 9H7 board. We can enable both HBM stacks with combined total 32 HBM channels,
which provide 8GB capacity and up to 460GB/s aggregate raw bandwidth (or 14GB/s per channel) through a 450MHz
interface. If the interface frequency is adjusted to 250 MHz which is the same as the logic design, the HBM bandwidth
becomes 255GB/s in total or 8GB/s per channel. We measure the random access throughput of the HBM using the
memory control from [5]. We only gain 4GB/s random access throughput per channel or 128GB/s in total which is only
half of the maximum.

In addition, we assume that both tables are stored in a column-oriented format that each tuple contains an eight-byte
key and an eight-byte value. As the access to HBM is in a granularity size of 32B, each access to the hash entry or
the linked list should be 32B, causing α to be 2. Supposing a perfect hash function is chosen so that there is no hash
collision, or β = 0 Accordingly, setting BHBM = 128GB/s, we can estimate the throughput of the build phase and
the probe phase as,

Tbuild = min{Bhost, 21.3GB/s},
Tprobe = min{Bhost, 32GB/s}.
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If the size of the probe table is much larger than the smaller one, the running time will be dominated by the probe phase,
and we can approximately use the probing throughput to represent the hash join throughput. If the proposed architecture
connects to the host through the latest OpenCAPI 3.0 interface where an effective data rate about 22GB/s can be
achieved, the throughput of the proposed architecture should be 22GB/s, which is limited by this host-to-accelerator
interface.

5 Conclusions

FPGAs have been used to accelerate the hash join performance in database systems. However, the current studies
either can only handle very small data sets or suffer performance drop due to the frequent random accesses to the main
memory. In this paper, we proposed an hash join accelerator with HBMs. The proposed accelerator can activate all the
HBM channels to gain large bandwidth. It allows all HBM sections operate independently. A pre-partitioning method
is used to steer the HBM access requests to the corresponding HBM channels to avoid the traffic contentions across
different HBM channels, and thus can efficiently utilize the bandwidth.
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6
CONCLUSIONS

This chapter summarizes our contributions and draws conclusions. It also highlights
possible future research directions. The summary and conclusions are presented in Sec-
tion 6.1, after which future work is discussed in Section 6.2.
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6.1. SUMMARY AND CONCLUSION
This thesis explores the potential of using FPGAs to accelerate database systems. It
consists of an investigation of the limitations of recent FPGA-accelerated database
systems, related technology development, and state-of-the-art database operator
acceleration. Selecting decompression and hash join as examples, we design and
implement accelerators for both operations, and perform an in-depth performance
analysis. Specifically, we make the following contributions.

In Chapter 2, we give a comprehensive survey on using FPGAs to accelerate database
systems, emphasizing the possibilities of new interface and memory-related technolo-
gies. We present the FPGA background in detail and analyze FPGA-accelerated database
system architecture alternatives and point out the bottlenecks in different system archi-
tectures. After that, we discuss the reasons why FPGAs are not being widely used in the
database field, followed by a study of memory-related technology trends which have the
potential to make FPGAs attractive again. Thereafter, an overview of the state-of-the-art
research on FPGA-accelerated database operators is presented. Finally, we discuss the
major challenges and possible future research directions. We can summarize this chap-
ter and draw conclusions as follows.

• Most of the overhead in a number of database applications is due to transferring
data from the host to the FPGA, resulting in only a small speedup when the FPGA
is integrated in database systems.

• In addition to the communication overhead, the weak programmability is a main
engineering reason that prevents FPGAs from being widely used in the database
field. Database vendors have switched to a more engineering-friendly accelerator,
GPUs, which can also provide decent performance gains.

• With the new technologies including the interconnect and new types of memory,
plus progress in FPGA design automation, FPGAs should become a reasonable ac-
celerator for database systems.

• To push this progress a step forward, studies in different directions including new
database architectures, new types of accelerators, deep performance analysis, and
the development of tool chains is required.

In Chapter 3, we propose a “refine" technique and a “recycle" technique to achieve effi-
cient high single-decompressor throughput by keeping only a single BRAM-banked copy
of the history data and operating on each BRAM independently. We apply these two
techniques to a widely used decompression algorithm in big data and database applica-
tions. We also proposed a proof-of-concept Parquet-to-Arrow converter architecture in
FPGAs to improve the conversion throughput. We can summarize this chapter and draw
conclusions as follows.

• The proposed method efficiently refines the tokens into commands that operate
on a single BRAM and steers the commands to the appropriate one. Thus, it can
activate multiple BRAMs and execute the commands independently.
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• The recycle method is used where each BRAM command executes immediately
and those that return with invalid data are recycled to avoid stalls caused by the
RAW dependency.

• According to experimental results, the proposed Snappy decompressor which
adopts these two techniques achieves up to 7.2 GB/s throughput per decompres-
sor, with each decompressor using 14.2% of the logic and 7% of the BRAM re-
sources of the Xilinx VU3P FPGA. One decompressor keeps pace with an NVMe
device (PCIe Gen3 x4) on a small FPGA.

• The proposed Parquet-to-Arrow converter can achieve more than 7GB/s through-
put which is limited by the the bandwidth of the connection to device memory.
It can be extended to support more features such as decompression, which can
benefit from integrating the proposed Snappy decompressor.

In Chapter 4, we analyze the performance of hash join algorithms by using a bandwidth-
driven model and provide a guideline for choosing the right algorithm according to the
dataset and architecture characteristics. We analyze and validate the different perfor-
mance impact factors and point out the importance of the granularity factor. We propose
a performance model that considers both computation and memory accesses accord-
ing to these factors, and study different hash join algorithms and validate the proposed
model in different processor architectures. We can summarize this chapter and draw
conclusions as follows.

• We analyze the impact factors for the hash join algorithms. Based on the analysis,
we point out that the granularity factor can significantly impact the performance
of different hash join algorithms.

• We build a performance model based on these impact factors which considering
both the computation and data transition. Based on the proposed model, we study
a no-partitioning hash join and a radix partitioning hash join algorithm, and find
out that no-partitioning hash join should be more competitive than the partition-
ing hash join when the tuple size is large and the granularity is small.

• We validate the model with hardware-based experiments on an x86 CPU and a
Power8 CPU. The results show that our model can accurately predict the winner
between no-partitioning hash join and partitioning hash join operations.

In Chapter 5, an FPGA-based hash join accelerator architecture that makes use of HBMs
is presented. The proposed accelerator stores the hash table in HBM and utilizes a pre-
partition method to steer the traffic to the appropriate memory channel to reduce the
contention between the requests across different HBM channels, and thus improve the
HBM bandwidth efficiency. We can summarize this chapter and draw conclusions as
follows.

• We study the performance of HBMs. While the sequential memory accesses to
HBMs can achieve the peak bandwidth if all HBM channels and sections are acti-
vated, random accesses suffer obvious performance drops, especially for the cases
where the requests need to cross different channels.
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• We present a hash join architecture on the FPGA that can efficiently use the HBM
bandwidth. The proposed architecture enable all the HBM sections and channels,
and maps each channel to only one HBM section to avoid requests crossing differ-
ent channels.

• We propose a pre-partition method to steer the traffic to the corresponding chan-
nels to reduce contentions. As a result, the proposed method should efficiently
utilize the HBM bandwidth

6.2. FUTURE WORK
In this section, we discuss the future work. Here, we list a number of possible recom-
mendations to extend the work in this thesis in new directions.

• Accelerator Design
New accelerator memory interfaces and other new hardware bring new features
that could change the existing balance in accelerator-based systems. For example,
new accelerator memory interfaces, such as OpenCAPI, bring fast speed in access-
ing the data sitting in the host memory. For some operators, more engines or more
powerful engines are required which might consume the limited resources in an
FPGA. Sort is one of them. Related work shows that, even though a strong sort en-
gine [30] can merge multiple sorted streams at the speed of the interconnection
bandwidth, the interface to efficiently fetch the data might consume too many re-
sources to deploy in a practical system [31]. Thus, we need to look for a new design
or even a new class of algorithms, e.g. the partitioning sort [32]. The partitioning
sort is widely used in GPUs and in the cloud to sort large data sets. An efficient
partitioner in an FPGA might be able to partition a TB-size data set in one pass
into multiple MB to GB level partitions, while another pass can sort each set of
partitions with corresponding ranges within the FPGA with the help of HBMs.

Another interesting direction is to explore the potential of accelerating more com-
plex operations such as multi-way join, regular path query, skyline, and even ma-
chine learning. Such operations are time-consuming but not well studied yet in
the context of FPGAs. Related work extends the analysis of hash joins presented in
this thesis to multi-way hash joins and draws similar conclusions. The most recent
work [33] on multi-way hash joins also shows the value and the possibility of using
reconfigurable hardware to accelerate such operations.

• Performance Analysis
Unlike CPUs that has been well studied in the database field, FPGAs in databases
are in the start-up stage. Deeper study is required on how FPGAs perform in the
system, what the impact factors are, and how the architectures and different pa-
rameters influence the performance. Additionally, FPGAs might not be a perfect
accelerator for all operations. Some operations might perform better on GPUs,
and some even should be kept on the CPU. Thus, it is worth comparing the per-
formance of different operations running against different architectures. The in-
tuition is that latency-sensitive streaming processing applications might benefit
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more from FPGAs than GPUs, since GPUs need to process data in batch mode with
well-formatted data for throughput gains. However, this requirement can perfectly
meet the features of the FPGA with data-flow designs where format conversion is
often free. Moreover, FPGAs might be able to outperform GPUs in specific do-
mains such as security and text data analytics.

• Compilers and Frameworks
As stated earlier, an important reason why FPGAs are not widely used in the
database field is the weak programmability. Programming FPGAs required devel-
opers to have full-stack skills, from high-level algorithm design to low-level circuit
implementations. Consequently, the continued development of improved tool
chains is crucial to further propagating the use of FPGAs. First of all, it is nec-
essary for HLS tools to support stronger features and more features. For instance,
supporting OpenMP in HLS tools might introduce the ability to compile parallel
programs into FPGA accelerators that support shared memory. Second, develop-
ing query-to-hardware compilers is a good way to make FPGAs easy to use. These
compilers can generate the circuits automatically from queries, and even help to
manage the hardware resources, which can greatly reduce the workload for devel-
opers and shorten the development cycles. However, there are only a few recent
such compilers in academia (e.g. [34]), let alone in the industry. Last, frameworks
for specific functionality, such as supporting in-memory/storage data format and
auto interface generation, might be a good direction to help hardware designers.
Frameworks such as Fletcher [35] help by automatically generating the interface
to support Apache Arrow [36], an in-memory standard data format. Consequently,
hardware designers can focus on the kernel design and its optimization. A recent
application of Fletcher is the Parquet-to-Arrow converter [37] which can convert a
standard storage format, Apache Parquet [5], into Apache Arrow.
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