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A Novel Option Pricing Method based on

Fourier-Cosine Series Expansions

Part I: European products

F. Fang∗, C.W. Oosterlee†

January 29, 2008

Abstract

Here we develop an option pricing method for European options based on the
Fourier-cosine series, and call it the COS method. The convergence rate of the COS
method is exponential and the computational complexity is linear. It has a wide
range of applicability for different underlying dynamics, including Lévy processes
and Heston’s stochastic volatility model, and for various types of option contracts.
We will present the method and its applications in two separate parts. The first one
is this paper, where we deal in particular with European options. In a follow-up
paper, part II, we will present its application to options with early-exercise features.

1 Introduction

Efficient numerical methods are required to rapidly price complex contracts and calibrate
various financial models.

In option pricing, it is the famous Feynman-Kac theorem that relates the conditional
expectation of the value of a contract payoff function under the risk-neutral measure to the
solution of a partial differential equation. In the research areas covered by this theorem,
various numerical pricing techniques can be developed. Briefly speaking, existing numerical
methods can be classified into three major groups: partial-(integro) differential equation
(PIDE) methods, monte Carlo simulation and numerical integration methods. Each of
them has its merits and demerits for specific applications in finance, but the methods from
the latter class are often used for calibration purposes. An important aspect of research in
computational finance is to further increase the performance of the pricing methods.

∗Delft University of Technology, Delft Institute of Applied Mathematics, Delft, the Netherlands, email:
f.fang@ewi.tudelft.nl

†CWI – Centrum Wiskunde & Informatica, Amsterdam, the Netherlands, email: c.w.oosterlee@cwi.nl,
and Delft University of Technology, Delft Institute of Applied Mathematics.
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State-of-the-art numerical integration techniques have in common that they rely on a
transformation to the Fourier domain [7, 18]. The Carr-Madan method [7] is one of the best
known examples of this class. The probability density function appears in the integration,
which is not known for many relevant pricing processes. However, its Fourier transform, the
characteristic function, is often available, for example, from the Lévy-Khinchine theorem
for underlying Lévy processes or by other means, as for Heston’s model. In the Fourier
domain it is possible to solve various derivative contracts, as long as the characteristic
function is available. By means of the Fast Fourier Transform (FFT) integration can
be performed with a computational complexity of O(N log2N), where N represents the
number of integration points. The computational speed, especially for plain vanilla options,
makes the integration methods state-of-the-art for calibration at financial institutions.

Quadrature rule based techniques are, however, not of the highest efficiency when
solving Fourier transformed integrals. Due to the fact that the integrands are highly
oscillatory, a relatively fine grid has to be used for satisfactory accuracy with the FFT.

In this paper we will focus on Fourier-cosine expansions in the context of numerical
integration, as an alternative for the methods based on the FFT. We will show that this
novel method, called the COS method, can further improve the speed of pricing plain
vanilla and some exotic options. Its application to American style products will be covered
in a follow-up paper. It is due to the impressive speed reported here that we devote a
paper to the European style products.

This paper is organized as follows. In Section 2, we introduce the Fourier cosine ex-
pansion for solving inverse Fourier integrals. Based on this, we derive, in Section 3, the
formulas for pricing European options and the Greeks. We focus on the Lévy and He-
ston price processes for the underlying. An error analysis is presented in Section 4 and
numerical results are given in Section 5.

2 Fourier Integrals and Cosine Series

The point-of-departure for pricing European options with numerical integration techniques
is the risk-neutral valuation formula:

v(t0, x) = e−r∆tEQ [v(T, y)] = e−r∆t

∫

R

v(T, y)fY |X(y|x)dy, (1)

where v denotes option value, ∆t is the difference between the maturity, T , and the initial
date, t0, and EQ[·] is the expectation operator under risk-neutral measure Q. x and y are
state variables at time t0 and T , respectively; fY |X(y|x) is the probability density of y given
x and r is the risk-neutral interest rate.

In the state-of-the-art Carr-Madan approach [7] the Fourier transform of a version of
valuation formula (1) is taken with respect to the log-strike price. Damping of the payoff
is then necessary as, for example, a call option is not L1-integrable with respect to the
logarithm of the strike price. The method’s accuracy depends on the correct value of
the damping parameter. A closed-form expression for the resulting integral is available in
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Fourier space. To return to the time domain, quadrature rules have to be applied to the
inverse Fourier integral for which the application of the FFT algorithm is appropriate.

The range of applicability of numerical integration methods in finance has recently
been increased by the presentation of efficient techniques for options with early exercise
features [7, 18, 2, 3, 17]. Especially the CONV method [17] achieves almost linear complex-
ity, also with the help of the FFT algorithm, for Bermudan and American options. This
method can also be efficiently used for European options and numerical experiments in [17]
show that the accuracy is not influenced by the choice of the damping parameter. The
difference with the Carr-Madan approach is that the transform is taken with respect to the
log-spot price in the CONV method instead of the log-strike price (something which [16]
and [20] also consider). In the derivation of the CONV method the risk-neutral valuation
formula is rewritten as a cross-correlation between the option value and the transition
density. The cross-correlation is handled numerically by replacing the option value by its
Fourier-series expansion so that the cross-correlation is transformed to an inner product of
series coefficients. The coefficients are recovered by applying quadrature rules, combined
with the FFT algorithm. Error analysis and experimental results have demonstrated sec-
ond order accuracy and O(N log(N)) computational complexity for European options.

These numerical integration methods have to numerically solve the forward or the
inverse1 Fourier integrals:

φ(ω) =

∫

R

eixωf(x)dx (2)

f(x) =
1

2π

∫

R

e−iωxφ(ω)dω. (3)

The density and its characteristic function are an example of a Fourier pair. Existing
numerical integration methods in finance typically compute Fourier integrals by apply-
ing equally spaced numerical integration rules on the integrals then employing the FFT
algorithm by imposing the Nyquist relation to the grid sizes in the x- and ω-domains,

∆x · ∆ω ≡ 2π/N,

with N the number of grid points. The grid values can then be obtained in O(N log2N)
operations. However, there are three disadvantages: The error convergence of equally
spaced integration rules, except the Clenshaw-Curtis rule, is not very high; N has to be a
power of two; and, finally, the relation imposed on the grid sizes prevents one from using
fine grids in both domains.

Remark 2.1. In principle we could use the Fractional FFT algorithm (FrFT) which does
not require the Nyquist relation to be satisfied, as in [8]. Numerical tests indicated however
that this advantage of the FrFT did not outweigh the speed of the FFT.

1Here we use the convention of the Fourier transform definition often seen in the financial engineering
literature. Other conventions can also be used and modifications to the methods are then straightforward.
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Remark 2.2. Alternative methods for the forward Fourier integral, based on replacing
f(x) in (2) by its Chebyshev [19] or Legendre [12] polynomial expansion, can achieve a
high accuracy with only a limited number of terms in the expansion. However, the resulting
computational complexity is typically at least quadratic.

2.1 Inverse Fourier Integral via Cosine Expansion

In this section, as a first step, we present a different methodology for solving, in particular,
the inverse Fourier integral in (3). The main idea is to reconstruct the whole integral
– not just the integrand – from its Fourier-cosine series expansion (also called ‘cosine
expansion’), extracting the series coefficients directly from the integrand. Fourier-cosine
series expansions usually give an optimal approximation of functions with a finite support2

[5]. In fact, the cosine expansion of f(x) in x equals the Chebyshev series expansion of
f(cos−1(t)) in t.

For a function supported on [0, π], the cosine expansion reads

f(θ) =
∑′∞

k=0
Ak · cos (kθ) with Ak =

2

π

∫ π

0

f(θ) · cos(kθ)dθ, (4)

where
∑′ indicates that the first term in the summation is weighted by one-half. For

functions supported on any other finite interval, say [a, b] ∈ R, the Fourier-cosine series
expansion can easily be obtained via a change of variables,

θ :=
x− a

b− a
π; x =

b− a

π
θ + a.

It then reads

f(x) =
∑′∞

k=0
Ak · cos

(

k · x− a

b− a
π

)

, (5)

with

Ak =
2

b− a

∫ b

a

f(x) · cos(k · x− a

b− a
π)dx. (6)

Since any real function has a cosine expansion when it is finitely supported, the deriva-
tion starts with a truncation of the infinite integration range in (3). Due to the conditions
for the existence of a Fourier transform, the integrands in (3) have to decay to zero at ±∞
and we can truncate the integration range in a proper way without losing accuracy.

Suppose [a, b] ∈ R is chosen such that the truncated integral approximates the infinite
counterpart very well, i.e.,

φ1(ω) :=

∫ b

a

eiωxf(x)dx ≈
∫

R

eiωxf(x)dx = φ(ω), (7)

By subscripts for variables, like i in φi, we denote subsequent numerical approximations
(not to be confused with subscripted series coefficients, Ak and Fk).

2The usual Fourier series expansion is actually superior when a function is periodic.
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Comparing equation (7) with the cosine series coefficients of f(x) on [a, b] in (6), we
find that

Ak ≡
2Re

{

φ1

(

kπ
b−a

)

· exp (−i kaπ
b−a

)
}

b− a
, (8)

where Re {·} denotes taking the real part of the argument. It then follows from (7) that
Ak ≈ Fk, with

Fk ≡
2Re

{

φ
(

kπ
b−a

)

· exp (−i kaπ
b−a

)
}

b− a
.

We now replace Ak by Fk in the series expansion of f(x) on [a, b], i.e.

f1(x) ≈
∑′∞

k=0
Fk cos

(

kπ
x− a

b− a

)

, (9)

and truncate the series summation such that

f2(x) ≈
∑′N−1

k=0
Fk cos

(

kπ
x− a

b− a

)

. (10)

The resulting error in f2(x) consists of two parts: a series truncation error from (9) to (10)
and an error originating from the approximation of Ak by Fk. An error analysis that takes
these different approximations into account is presented in Section 4.

Since the cosine series expansion of entire functions (i.e., functions without any singu-
larities3 anywhere in the complex plane, except at ∞) exhibits an exponential convergence
[5], we can expect (10) to give highly accurate approximations to functions that have no
singularities on [a, b], with a small N .

To demonstrate this, we evaluate here equation (10), where

f(x) =
1√
2π
e−

1

2
x2

,

and determine the accuracy for different values of N . We choose [a, b] = [−10, 10] and the
maximum error is measured at x = {−5,−4, · · · , 4, 5}.

Table 1 indicates that a very small error is obtained with a only small number of terms,
N , in the expansion.

Table 1: Maximum error when recovering f(x) from φ(ω) by Fourier cosine expansion.

N 4 8 16 32 64

error 0.0499 0.0248 0.0014 3.50e-08 8.33e-17

cpu time (msec.) 0.0025 0.0028 0.0025 0.0031 0.0032

This technique is found to be highly efficient for the recovery of the density function,
as will be presented in Section 5.

3By ‘singularity’ we mean [5] poles, fractional powers, logarithms, other branch points and discontinu-
ities in a function or in any of its derivatives.
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3 Pricing European Options

In this section, we derive the COS formula for European style options by replacing the
density function by its Fourier cosine series. We make use of the fact that a density
function tends to be smooth and therefore only a few terms in the expansion may already
give a good approximation.

Since the density rapidly decays to zero as y → ±∞ in (1), we truncate the infinite inte-
gration range without loosing significant accuracy to [a, b] ⊂ R, and obtain approximation
v1:

v1(t0, x) = e−r∆t

∫ b

a

v(T, y)fY |X(y|x)dy. (11)

An area, [a, b], which covers [x − 10σ, x + 10σ] is often sufficiently accurate, with σ the
standard deviation of the density. In the case of fat tailed distributions, which we also
consider in this paper, we need larger domains.

In the second step, since fY |X(y|x) is usually not known whereas the characteristic
function is, we replace the density by its cosine expansion in y,

fY |X(y|x) =
∑′+∞

k=0
Ak(x) cos

(

kπ
y − a

b− a

)

(12)

with

Ak(x) :=
2

b− a

∫ b

a

fY |X(y|x) cos

(

kπ
y − a

b− a

)

dy. (13)

So,

v1(t0, x) = e−r∆t

∫ b

a

v(T, y)
∑′+∞

k=0
Ak(x) cos

(

kπ
y − a

b− a

)

dy. (14)

We interchange the summation and integration,

v1(t0, x) = e−r∆t
∑′+∞

k=0
Ak(x) · Vk (15)

with

Vk :=

∫ b

a

v(T, y) cos

(

kπ
y − a

b− a

)

dy, (16)

which is a scaled cosine series coefficient of v(T, y) in y. Thus, from (11) to (15) we have
transformed the inner product of two real functions, fY |X(y|x) and v(T, y), to that of their
Fourier-cosine series coefficients.

Due to the rapid decay rate of these coefficients, we further truncate the series summa-
tion, resulting in approximation v2,

v2(t0, x) = e−r∆t
∑′N−1

k=0
Ak(x) · Vk. (17)
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Similarly as in Section 2, coefficients Ak(x) defined in (13) can be approximated by
Fk(x), defined as

Fk(x) := 2
Re

{

φ
(

kπ
b−a

; x
)

exp (−i kaπ
b−a

)
}

(b− a)
(18)

with φ(ω; x), the characteristic function, defined by

φ(ω; x) :=

∫

R

eiωyfY |X(y|x)dy.

Replacing Ak(x) by Fk(x) in (17), we finally obtain

v3(t0, x) = e−r∆t 2

b− a

∑′N−1

k=0
Re

{

φ

(

kπ

b− a
; x

)

e−ikπ a
b−a

}

· Vk. (19)

This is the COS formula for pricing European style options.
We will show next that Vk, the series coefficients of the payoff, can be obtained analyt-

ically for vanilla and digital options.

3.1 Coefficients Vk for Plain Vanilla Options

Before we can use (19) for pricing options, the payoff series coefficients, Vk, have to be
recovered. We can, however, find analytic solutions for Vk for several contracts.

As we assume here that the characteristic function of the log-asset price is known, we
represent the payoff as a function of the log-asset price. Let us denote the log-asset prices
by

x := ln(S0/K) and y := ln(ST/K),

with St denoting the underlying price at time t and K the strike price. The payoff functions
for European options, in log-asset prices, read

v(y, T ) ≡ [α ·K · (ey − 1)]+ with α =

{

1 for call,
−1 for put.

Before deriving Vk from its definition in (16), we need two mathematical entities.

Definition 3.1. The cosine series coefficients, χk, of g(y) = ey on [c, d] ⊂ [a, b],

χk(c, d) :=

∫ d

c

ey cos

(

kπ
d− a

b− a

)

dy, (20)

and the cosine series coefficients, ψk, of g(y) = 1 on [c, d] ⊂ [a, b],

ψk(c, d) :=

∫ d

c

cos

(

kπ
d− a

b− a

)

dy. (21)

are known analytically.
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Basic calculus shows

χk(c, d) :=
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
d− a

b− a

)

ed − cos

(

kπ
c− a

b− a

)

ec

+
kπ

b− a
sin

(

kπ
d− a

b− a

)

ed − kπ

b− a
sin

(

kπ
c− a

b− a

)

ec

]

, (22)

and

ψk(c, d) :=







[

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

b−a
kπ

k 6= 0,

(d− c) k = 0.
(23)

Focusing, for example, on a call option, we obtain

V call
k =

∫ b

0

K(ey − 1) cos

(

kπ
y − a

b− a

)

dy = K (χk(0, b) − ψk(0, b)) , (24)

where χk and ψk are given by (22) and (23), respectively. Similarly, for a vanilla put, we
find

V put
k = K (−χk(a, 0) + ψk(a, 0)) .

Analytic expressions can also be obtained for some exotic options.

3.2 Digital and European Barrier Options

Whereas for European products equation (19) always applies, the coefficients Vk are dif-
ferent for different payoff functions. With analytical expressions for these coefficients, the
convergence of the COS does not depend on the continuity of the payoff. For those contracts
for which the Vk can only be obtained numerically, the error convergence is dominated by
the numerical rules employed to determine them.

Digital options are popular in the financial markets for hedging and speculation. They
are also important to financial engineers as building blocks for constructing more complex
option products. Here, we consider the payoff of a cash-or-nothing call option, as an
example, which is 0 if ST ≤ K and K if ST > K. For this contract the ‘cash-or-nothing
call’ coefficients, V conc

k , can be obtained analytically:

V conc
k = K

∫ b

0

cos

(

kπ
y − a

b− a

)

dy = Kψk(0, b).

We also give the formula for a so-called gap option [13] of a call options whose payoff
reads

v(T, y) = [K · (ey − 1) − Rb] · 1{ST <H} +Rb,

where 1Ψ = 0 f Ψ is empty and Rb is a so-called rebate, which is paid if the barrier is
hit. The time-dependent version of this payoff represents a barrier option. This will be
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discussed in part II of this paper. The integral that defines V gap
k for such payoff functions

of a call can be split into two parts:

V gap
k =

∫ h

0

K(ey − 1) cos

(

kπ
y − a

b− a

)

dy +

∫ b

h

Rb · cos

(

kπ
y − a

b− a

)

dy,

where h := ln(H/K). It then follows that

V gap
k = K · (χk(0, h) − ψk(0, h)) +Rb · ψk(h, b). (25)

3.3 Lévy Processes and Heston’s Model

Pricing formula (19) can be used for European options under any underlying process as
long as the characteristic function is known. This is the case for exponential Lévy models
and models from the class of regular affine processes of [11], including the exponentially
affine jump-diffusion class of [10]. It is worth mentioning that (19) simplifies for the Lévy
and Heston model.

Here, we focus on the characteristic function for the different models and refer the reader
to the literature, [9, 6, 14] for example, for background information on these processes.

For Lévy processes, whose characteristic functions can be represented by

φ(ω; x) = ϕlevy(ω) · eiωx with ϕlevy(ω) := φ(ω; 0), (26)

the pricing formula simplifies to

v3(t0, x) = e−r∆t 2

b− a

∑′N−1

k=0
Re

{

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

}

Vk. (27)

In particular, for the CGMY/KoBol model, which encompasses the Geometric Brownian
Motion (GBM) and Variance Gamma (VG) models, the characteristic function of the log-
asset price is of the form:

ϕlevy(ω) = exp (iω(r − q)∆t− 1

2
ω2σ2∆t) ·

exp (∆tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]), (28)

where q is a continuous dividend yield, Γ(·) represents the gamma function. In the CGMY
model, the parameters should satisfy C ≥ 0, G ≥ 0,M ≥ 0 and Y < 2. When σ = 0 and
Y = 0 we obtain the Variance Gamma (VG) model; for C = 0 the Black-Scholes model is
obtained.

Remark 3.1. Note that, (27) is an expression with independent variable x. It is therefore
possible to obtain the option prices on different strikes in one single numerical experiment,
by choosing a K-vector as the input x-vector.
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In Heston’s model the volatility, denoted by
√
u, is modeled by a stochastic differential

equation,
dxt =

(

µ− 1
2
ut

)

dt+
√
utdW1t,

dut = −λ(ut − ū)dt+ η
√
utdW2t

(29)

where xt denotes the log-asset price variable and ut the volatility of the asset price process.
Parameters λ ≥ 0, ū ≥ 0 and η ≥ 0 are called the speed of mean reversion, the mean
level of variance and the volatility of volatility, respectively. Furthermore, the Brownian
motions W1t and W2t are assumed to be correlated with correlation coefficient ρ.

For Heston’s model the COS pricing equation also simplifies, since

φ(ω; x, u0) = ϕhes(ω; u0) · eiωx, (30)

with u0 the volatility of the underlying asset price at the initial time and ϕhes(ω; u0) :=
φ(ω; 0, u0). We then find

v(t0, x, u0) ≈ e−r∆t 2

b− a

∑′N−1

k=0
Re

{

ϕhes

(

kπ

b− a
; u0

)

eikπ x−a
b−a

}

Vk. (31)

The characteristic function of the log-asset price, ϕhes(ω; u0), reads

ϕhes(ω; u0) = exp

(

iωµ∆t+
u0

η2

(

1 − e−D∆t

2 −Ge−D∆t

)

(λ− iρηω −D)

)

·

exp

(

λv̄

η2

(

∆t(λ− iρηω −D) − 2 log(
1 −Ge−D∆t

1 −G
)

))

,

with

D =
√

(λ− iρηω)2 + (ω2 + iω)η2 and G =
λ− iρηω −D

λ− iρηω +D
.

Implementation of the COS formula is straightforward. A Matlab code for it, including
the Lévy and Heston models is given in Appendix A.

Remark 3.2 (The Greeks). Series expansions for the Greeks, e.g. ∆ and Γ, can be derived
similarly. Since

∆ =
∂v

∂S0

=
∂v

∂x

∂x

∂S0

=
∂v

∂x
· 1

S0

, Γ =
∂2v

∂S2
0

=
1

S2
0

(

− ∂v

∂S0

+
∂2v

∂S2
0

)

,

it then follows, for example for Heston’s model, from (31) that

∆ ≈ e−r∆t 2

b− a

∑′N−1

k=0
Re

{

ϕ

(

kπ

b− a
; u0

)

eikπ x−a
b−a

ikπ

b− a

}

Vk

S0
(32)

and

Γ ≈ 2e−r∆t

b− a

∑′N−1

k=0
Re

{

ϕ

(

kπ

b− a
; u0

)

eikπ x−a
b−a

[

− ikπ

b− a
+

(

ikπ

b− a

)2
]}

Vk

S2
0

. (33)
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It is also easy to obtain the formula for Vega, ∂v
∂u0

, as u0 only appears in the coefficients:

∂v(t0, x, u0)

∂u0
≈ e−r∆t 2

b− a

∑′N−1

k=0
Re

{

∂ϕhes

(

kπ
b−a

; u0

)

∂u0
eikπ x−a

b−a

}

Vk. (34)

The Greeks formulae for the Lévy processes can be obtained similarly.

4 Error Analysis

In the derivation of the COS formula there are three steps that introduce errors: The
truncation of the integration range in the risk-neutral valuation formula, the substitution
of the density by its cosine series expansion on the truncated range, and the substitution of
the series coefficients by the characteristic function approximation. Therefore, the overall
error consists of three parts:

1. The integration range truncation error:

ǫ1 := v(t0, x) − v1(t0, x) =

∫

R\[a,b]

v(T, y)fY |X(y|x)dy. (35)

2. The series truncation error on [a, b]:

ǫ2 := v1(t0, x) − v2(t0, x) = e−r∆t

+∞
∑

k=N

Ak(x) · Vk, (36)

where Ak(x) and Vk are defined in (13) and (16), respectively.

3. The error related to approximating Ak(x) by Fk(x) in (18):

ǫ3 := v2(t0, x) − v3(t0, x)

= e−r∆t 2

b− a

∑′N−1

k=0
Re

{
∫

R\[a,b]

eikπ y−a

b−a fY |X(y|x)dy
}

Vk. (37)

We do not have to take any error in the coefficients Vk into account here as we have a
closed form solution, at least for the plain vanilla options considered in this paper.

The key to bound the errors lies in the decay rate of the cosine series coefficients. The
convergence rate of the Fourier-cosine series depends on the properties of the functions on
the expansion interval. We first give the definitions classifying the rate of convergence of
the series for different classes of functions, taken from [5].

Definition 4.1 (Algebraic Index of Convergence). The algebraic index of convergence
n(≥ 0) is the largest number for which

lim
k→∞

|Ak| kn <∞, k >> 1,
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where the Ak are the coefficients of the series. An alternative definition: If the coefficients
of a series, Ak, decay asymptotically as

Ak ∼ O(1/kn), k >> 1,

then n is the algebraic index of convergence.

Definition 4.2 (Exponential Index of Convergence). If the algebraic index of convergence
n(≥ 0) is unbounded – in other words, if the coefficients, Ak, decrease faster than 1/kn for
any finite n – the series is said to have exponential convergence. Alternatively, if

Ak ∼ O(exp(−γkr)), k >> 1,

with γ, the ‘asymptotic rate of convergence’, constant, for some r > 0, then the series
shows exponential convergence. The exponent r is the index of convergence.

For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼ O(k−n exp(−(k/j) ln(k))),

(for some j > 0), or geometric with

Ak ∼ O(k−n exp(−γk)). (38)

The density of the GBM process is a typical function that has a geometrically converging
cosine series expansion.

Proposition 4.1 (Convergence of Fourier-cosine series [5] p.70-71). If g(x) ∈ C∞([a, b] ⊂
R), then its Fourier-cosine series expansion on [a, b] has geometric convergence. The con-
stant γ in (38) is determined by the location in the complex plane of the singularities
nearest to the expansion interval. Exponent n is determined by the type and strength of the
singularity.

If a function g(x), or any of its derivatives, is discontinuous, its Fourier-cosine series
coefficients show algebraic convergence. Integration-by-parts shows that the algebraic index
of convergence, n, is at least as large as n′, with the n′-th derivative of g(x) integrable.

References to the proof of this proposition are available in [5].
The following proposition further bounds the series truncation error of an algebraically

converging series:

Proposition 4.2 (Series truncation error of algebraically converging series [4]). It can be
shown that the series truncation error of an algebraically converging series behaves like:

∞
∑

k=N+1

1

kn
∼ 1

(n− 1)Nn−1

14



The proof can be found in [4], a standard textbook.
With the two propositions above, we can state the following lemmas:

Lemma 4.1. Error ǫ3 merely consists of integration range truncation errors, and can be
bounded by:

|ǫ3| < |ǫ1| +Q |ǫ4| , (39)

where Q is some constant independent of N and

ǫ4 :=

∫

R\[a,b]

fY |X(y|x)dy.

Proof. Assuming that fY |X is a real function, we rewrite (37) as

ǫ3 = e−r∆t 2

b− a

∑′N−1

k=0
Vk

∫

R\[a,b]

cos

(

kπ
y − a

b− a

)

fY |X(y|x)dy.

After interchanging the summation and integration, we rewrite
∑′N−1

k=0 as
(

∑′+∞

k=0 −
∑+∞

k=N

)

and replace the cosine expansion of v(T, y) in y by v(T, y) itself:

ǫ3 = e−r∆t

∫

R\[a,b]

[

v(T, y) −
+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

· 2

b− a
Vk

]

fY |X(y|x)dy

= ǫ1 − e−r∆t 2

b− a

∫

R\[a,b]

[

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

· Vk

]

fY |X(y|x)dy. (40)

According to Propositions 4.1 and 4.2, the Vk show at least algebraic convergence and we
can therefore bound the expression as follows,

∣

∣

∣

∣

∣

+∞
∑

k=N

cos

(

kπ
y − a

b− a

)

· Vk

∣

∣

∣

∣

∣

≤
+∞
∑

k=N

|Vk| ≤
Q∗

(N − 1)n−1
≤ Q∗, for N >> 1, n ≥ 1,

for some positive constant Q∗. It then follows from (40) that

|ǫ3| < |ǫ1| +Q |ǫ4|

with Q := 2e−r∆tQ∗/(b − a) and ǫ4 :=
∫

R\[a,b]
fY |X(y|x)dy, which depends on the size of

[a, b].

So, two out of the three error components are truncation range related. When the
truncation range is sufficiently large, the overall error is dominated by ǫ2.

Equation (36) indicates that ǫ2 depends on both Ak(x) and Vk, the series coefficients
of the density and that of the payoff, respectively. We assume that the density is typically
more smooth than the payoff functions in finance and that the coefficients Ak decay faster
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than Vk. Consequently, the product of Ak and Vk converges faster than either one of them,
and we can bound this product as follows,

∣

∣

∣

∣

∣

+∞
∑

k=N

Ak(x) · Vk

∣

∣

∣

∣

∣

≤
+∞
∑

k=N

|Ak(x)| . (41)

Error ǫ2 is thus dominated by the series truncation error of the density function.

Proposition 4.3 (Series truncation error of geometrically converging series [5] p.48). If a
series has geometrical convergence, then the error after truncation of the expansion after
(N + 1) terms, ET (N), reads

ET (N) ∼ P ∗ · exp(−Nν).

Here, constant ν > 0 is called the asymptotic rate of convergence of the series, which
satisfies,

ν = lim
n→∞

(− log |ET (n)|/n) ,

and P ∗ denotes a factor which varies less than exponentially with N .

Lemma 4.2. Error ǫ2 converges exponentially in the case of density functions ∈ C∞([a, b]).

|ǫ2| < P · exp(−(N − 1)ν), (42)

where ν > 0 is a constant and P is a term that varies less than exponentially with N .

The proof of this is straightforward, applying Theorem 4.3 to (41).
Based on Proposition 4.2, we can prove the following lemma.

Lemma 4.3. Error ǫ2 can be bounded for densities having discontinuous derivatives, as
follows:

|ǫ2| <
P̄

(N − 1)β−1
, (43)

where P̄ is a constant and β ≥ n ≥ 1 (n the algebraic index of convergence of Vk).

The proof of this lemma is straightforward. Note that β ≥ n is because the density
function is usually more smooth than a payoff function.

Collecting the results (35), (39), (42) and (43), we can summarize that, with a properly
chosen truncation of the integration range, the overall error converges either exponentially
for density functions that belong to C∞, i.e.

|ǫ| < 2 |ǫ1| +Q |ǫ4| + Pe−(N−1)ν , (44)

or algebraically for density functions with discontinuous derivatives, i.e.

|ǫ| < 2 |ǫ1| +Q |ǫ4| +
P̄

(N − 1)β−1
. (45)
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To determine the size of the truncation range as a multiple of the standard deviation
of ln(ST/K), we use a rule of thumb, from [18]:

b− a = L ·
√

− ∂2φ(T, ω)

∂ω2

∣

∣

∣

∣

ω=0

+

(

∂φ(T, ω)

∂ω

∣

∣

∣

∣

ω=0

)2

(46)

where φ(t, ω) is the characteristic function of ln(St/K) conditional upon ln(S0/K), and L
is a proportionality constant, which can be chosen as L = 10 for smooth Gaussian density
functions but should be chosen somewhat larger in the case of fat tails. The center of the
expansion interval is placed at ln(S0/K).

5 Numerical Results

In this section, we will perform a variety of numerical tests to evaluate the efficiency and
accuracy of the COS method. We first focus on the plain vanilla European options and
consider different processes for the underlying from geometric Brownian motion to the
the Heston stochastic volatility process and the infinite activity Lévy processes Variance
Gamma and CGMY. in the latter case we choose a value for parameter Y close to 2,
representing a distribution with very heavy tails. We will choose long and short maturities
in the tests, and as a final example we will also consider a digital option.

The underlying density functions for each individual experiment are also recovered with
the help of the cosine series based inverse technique presented in Section 2. This may help
the reader to get some insight in the relationship between the error convergence and the
properties of the densities.

We compare our results with the COS method to two of its competitors for European
option pricing, the Carr-Madan method [7] and the CONV method [17]. However, contrary
to the common implementations of these methods we use the Simpson’s rule for the Fourier
integrals in order to achieve fourth order convergent techniques. Also in that case the FFT
can be used for the Carr-Madan as well as for the CONV method. In all experiments,
we set the same truncation range of the density domain for the COS and the CONV
method. By these numerical experiments and comparisons with the other methods, we
aim to demonstrate the stability and robustness of the new COS method, also under
extreme conditions.

It should be noticed that parameter N in the experiments to follow denotes, for the
COS method, the number of terms in the Fourier cosine expansion, and the number of grid
points for the other two methods.

All CPU times presented, in milliseconds, are determined after averaging the computing
times obtained from 100 experiments. The computer used for all experiments in this paper
has an Intel(R) Pentium(R) 4 CPU, 2.80GHz with cache size 1024 KB; The code is written
in Matlab 7-4.
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5.1 Geometric Brownian Motion, GBM

The first set of experiments are performed under the GBM process with a short time to
maturity. Parameters chosen for this test are:

S0 = 100, r = 0.1, q = 0, T = 0.1, σ = 0.25. (47)

Domain length parameter in (46) L = 10.
The convergence behavior at three different strike prices, K = 80, 100 and 120, is

checked. Reference values for these tests are based on an accurate adaptive integration
scheme with a large number of points, of the Carr-Madan formula.
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Figure 1: Recovered density function of the GBM model involved in the experiments;
K = 100, other parameters as in (47).

Figure 1 shows that the recovered density function with small maturity time T has
narrow tails. This implies that the tails of the characteristic function in the Fourier domain
are fat. As a result, the truncation range for the Carr-Madan method in the Fourier domain
has to be chosen relatively large. Therefore, a significantly larger value of N is necessary,
compared to the other two methods to achieve the same level of accuracy.

Remark 5.1. It is known that some experience is helpful for choosing the correct truncation
range and damping factor α in Carr-Madan’s method. A suitable choice appears to be
damping α = 0.75, which is also chosen in the experiments in this section.

The CONV method can be used without any form of damping for most common option
parameters.

As shown in Figure 2, the error convergence of the COS method is exponential (geo-
metric) and superior to that of the 4-th order CONV and Carr-Madan methods. Already
with N = 27, the COS results coincide with the reference values that are 12 to 13 digits
accurate. Further, we observe that the error convergence rate is basically the same for
the different strike prices. Notice that the results for these strikes, for certain N , can be
obtained in one single numerical test with the COS method.

In Table 2, cpu time and error convergence information is displayed for the case K =
100, comparing the COS and the CONV methods. To get the same level of accuracy, the
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Figure 2: COS vs. CONV in error convergence for pricing European call options under
GBM model

COS method uses significantly fewer cpu time; This becomes more prominent when the
desired accuracy is high.

Remark 5.2. We have observed a linear computational complexity for the COS method
by doubling N and performing the computations. In Table 2 this cannot be observed as the
biggest portion of time spent in the experiments with relatively small N is computational
overhead.

Table 2: Error convergence and cpu time comparing the COS and CONV methods for European options
under GBM, parameters as in (47), K = 100. Reference v(0, 100) = 3.65996845 . . .

(N) 32 64 128 256 512

COS msec 0.0441 0.0418 0.0607 0.1006 0.1940

error 1.06e-01 8.87e-04 8.31e-11 1.85e-13 1.85e-13

CONV msec 0.0388 0.0403 0.0464 0.0651 0.1147

error 3.0275 2.56e-01 3.57e-03 1.97e-04 1.20e-05

5.1.1 Cash-or-nothing Option

We confirm that the convergence of the COS method does not depend on a discontinuity
in the payoff function, provided we have an analytic expression for the coefficients Vk by
pricing a cash-or-nothing call option here. The underlying process is GBM, so that an
analytic solution exists. Parameters chosen for this test are:

S0 = 100, K = 120, r = 0.05, q = 0, T = 0.1, σ = 0.2, L = 10. (48)

Table 3 presents the exponential convergence of the COS method.
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Table 3: Error and cpu time for a cash-or-nothing call option with the COS method, parameters as in
(48); Reference v(0, 90) = 0.27330649649.. .

N 40 60 80 100 120 140

error 2.46e-02 1.64e-02 6.35e-04 6.85e-06 2.44e-08 2.79e-11

cpu time (sec.) 0.0330 0.0334 0.0376 0.0428 0.0486 0.0497

5.2 Heston’s Model

As a second test we choose the Heston model with the following parameters:

S0 = 100, K = 100, r = 0, q = 0, λ = 1.5768, η = 0.5751,

ū = 0.0398, u0 = 0.0175, ρ = −0.5711. (49)

Two maturity dates are chosen and the length of the domain L is set accordingly. We
evaluate T = 1 with L = 10 and T = 10 with L = 30.

In (46) we need to compute the standard deviation of the Heston model, which is
not trivial. The standard deviation can, however, be approximated well by the quantity
√

ū+ ūη), which is done for this experiment. Figure 3 presents the recovered density
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Figure 3: Recovered density functions of the Heston experiments, parameters as in (49).

functions. It shows that T = 10 gives rise to somewhat fatter tails in the density function.
In this test we compare the COS method with the Carr-Madan method, which is

state-of-the-art for the calibration of Heston model in industry. The truncated Fourier
domain for the Carr-Madan method is set to [0, 1000] for the experiment with T = 1,
and to [0, 500] for T = 10. The option price reference values are obtained by the Carr-
Madan method using N = 218 points. We find v(0, S0) = 5.785155435 . . . for T = 1 and
v(0, S0) = 22.318945791474590 for T = 10.

Tables 4 and 5 illustrate the high efficiency of the COS method as compared to the
Carr-Madan method.
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Table 4: Error convergence and cpu times for the COS and Carr-Madan methods for Heston’s model
with T = 1, parameters as in (49).

COS Carr-Madan

N error time (msec.) N error time (msec.)

40 4.69e-02 0.0607 512 1.79e+06 0.6702

80 3.81e-04 0.0805 1024 2.16e+01 1.1874

120 1.17e-05 0.1078 2048 2.61e-01 1.9373

160 6.18e-07 0.1300 4096 2.15e-03 3.5577

200 3.70e-09 0.1539 8192 1.40e-07 7.5376

Table 5: Error convergence and cpu time for the COS and Carr-Madan methods for Heston’s model with
T = 10, parameters as in (49).

COS Carr-Madan

N error time (msec.) N error time (msec.)

40 4.96e-01 0.0598 512 3.27e+01 1.2260

65 4.63e-03 0.0747 1024 2.61e-01 1.1872

90 1.35e-05 0.0916 2048 2.15e-03 2.0237

115 1.08e-07 0.1038 4096 1.11e-07 3.8807

140 9.88e-10 0.1230 8192 2.70e-08 7.5381

Note that all computations are really fast as the times are given in milli-seconds. The
COS method, however, appears to be approximately a factor 20 faster than the Carr-Madan
method. As an example of its efficiency we observe from the tables that for N < 200 the
COS method gives results that are accurate up to the 7th digit within 0.15 milliseconds.

The convergence rate of the COS method is somewhat slower for the short maturity
example, as compared to the 10 years maturity. This is due to the fact that the density
function for the latter case is more smooth, as seen in Figure 3. When a density function
belongs to the class of C∞ functions, the Fourier cosine series has an exponentially con-
vergence behaviour. The COS convergence rate for small T is, however, still exponential
in Heston’s model.

5.3 Variance Gamma, VG

As a next example we price options under the Variance Gamma process, which is from
the class of infinite activity Lévy processes. The VG process is usually parameterised with
parameters σ, θ and ν related to C,G and M in (28) through:

C =
1

ν
, G =

θ

σ2
+

√

θ2

σ4
+

2

νσ2
, M = − θ

σ2
+

√

θ2

σ4
+

2

νσ2
, (50)
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The parameters chosen in the numerical experiments are:

K = 90, S0 = 100, r = 0.1, q = 0, σ = 0.12, θ = −0.14, ν = 0.2. (51)

This case has been chosen because a relatively slow convergence was reported for the
CONV method for very short maturities in [17]. Here, we compare the convergence for
T = 1 (with L = 10) and for T = 0.1 year (setting L = 20).

Figure 4 presents the difference in shape of the two recovered density functions. For
T = 0.1, the density is much more peaked. 6. Notice that for T = 0.1 the error convergence
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Figure 4: Recovered density functions for the VG model and two maturity dates; K = 90,
other parameters as in (51).

Table 6: Convergence of the COS method for the VG model with K = 90, parameters as in (51).

T = 0.1; Reference v(0, 90) = 19.09935472 . . . T = 1; Reference v(0, 90) = 10.993703186 . . .

N error time(msec.) N error time(msec.)

128 5.43e-04 0.0709 30 6.08e-04 0.0379

256 7.08e-05 0.1178 60 1.89e-07 0.0473

512 3.80e-06 0.2130 90 1.60e-08 0.0592

1024 2.35e-05 0.1049 120 5.97e-10 0.0731

2048 1.41e-07 0.7809 150 3.29e-12 0.0811

of the COS method is algebraic instead of exponential, so that the convergence is slower
in this case. This is in agreement with the recovered density function in Figure 4, which is
clearly not in C∞. In the extreme case, we would observe a delta function alike curve for
T → 0. According to the error analysis, in the presence of discontinuities in the derivatives,
the error convergence rate of the COS method degrades from exponential to algebraic.

We also plot the errors in Figure 5, comparing the convergence of the COS method to
that of the (N−2)-CONV method4. The convergence rate of the COS method for T = 1
is significantly faster than that of the CONV method, but for T = 0.1 the convergence is
comparable.

4The Simpson rule did not improve the convergence rate here.
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Figure 5: Convergence of the COS method for VG model

5.4 CGMY Process

Finally, we evaluate the method’s convergence for the CGMY model. It has been reported
in [1, 21] that PIDE methods have difficulty solving the cases for which 1 ≤ Y ≤ 2.
Therefore we evaluated the COS method with Y = 0.5, Y = 1.5 and Y = 1.98, respectively.
The other parameters are chosen as follows:

S0 = 100, K = 100, r = 0.1, q = 0, C = 1, G = 5,M = 5, L = 10, T = 1. (52)

In Figure 6, the recovered density functions for the three cases are plotted. For large values
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Figure 6: Recovered density functions for the CGMY model with different values of Y ;
other parameters as in (52).

of Y the tails of the density function are fatter and the center of the distribution shifts.
Therefore, we used adapted truncation ranges in this case: [−L · Y, L · Y ] for Y = 0.5

and Y = 1.5 with L = 10 and the range is set to [−100, 20] for Y = 1.98; Reference values
for the numerical experiments are computed with the COS method with N = 219, as there
are no reference values available for the latter cases. The numerical results are presented
in Tables 7 and 8, for Y = 0.5 and Y = 1.5, respectively.

Again, the COS method converges exponentially, which is faster than the 4th order
convergence of the CONV method With a relatively small values of N , i.e. N ≤ 100,
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Table 7: Comparison of the COS and CONV methods in accuracy and speed for CGMY with Y = 0.5
and the other parameters from (52); Ref.val.=19.8129487706 . . .

COS CONV

N error time (msec.) N error time (msec.)

40 3.82e-02 0.0560 64 2.13e-02 0.0595

60 6.87e-04 0.0645 128 6.42e-04 0.0836

80 2.11e-05 0.0844 256 3.82e-05 0.1366

100 9.45e-07 0.1280 512 2.30e-06 0.2551

120 5.56e-08 0.1051 1024 9.86e-08 0.4957

140 4.04e-09 0.1216 2048 2.93e-08 0.9893

Table 8: Comparison of the COS and CONV methods in accuracy and speed for CGMY with Y = 1.5
and the other parameters from (52); Ref.val.=49.790905305 . . ..

COS CONV

N error time (msec.) N error time (msec.)

40 1.38e+00 0.0545 64 1.17e-02 0.0600

45 1.98e-02 0.0589 128 6.92e-04 0.0928

50 4.52e-04 0.0689 256 4.26e-05 0.1622

55 9.59e-06 0.0690 512 2.73e-06 0.2776

60 1.22e-09 0.0732 1024 3.93e-07 0.5189

65 7.53e-10 0.0748 2048 2.18e-07 0.9773

the COS results are accurate up to 7 digits. The computational time spent is less than
0.1 millisecond. Comparing Tables 7 and 8, we notice that the convergence rate with
Y = 1.5 is faster than that of Y = 0.5, as opposed to the convergence of the CONV
method. Density functions from fat-tailed distributions can often be represented well by
cosine basis functions.

Table 9: The COS method for CGMY model with Y = 1.98; other parameters as in (52). Reference
value = 0.252104475 . . .

N 20 25 30 35 40

msec 0.0438 0.0463 0.0485 0.0511 0.0538

error 4.17e+02 5.15e-01 6.54e-05 1.10e-09 1.94e-15
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6 Conclusions and Discussion

In this paper we introduced an option pricing method based on Fourier-cosine series ex-
pansions, the COS method, for pricing European options. The method can be used as long
as a characteristic function for the underlying price process is available. It is accompanied
by an error analysis. In several numerical experiments, the convergence rate of the COS
method is exponential in accordance with the analysis. However, when the density function
of the underlying process has a discontinuity in its derivatives an algebraic convergence is
expected and observed. Especially for European options the series coefficients of the payoff
functions can be obtained analytically. The computational complexity of the COS method
is linear in N , the number of terms chosen in the Fourier-cosine series expansion. Very
fast computing times are reported here for the Heston and Lévy models. With N < 150
all numerical results obtained were accurate up to 8 digits, in less than 0.5 milliseconds of
cpu time.

The generalization to high dimensional option pricing problems, however, is not trivial,
because an analytic formula for the coefficients Vk cannot easily be obtained. The Vk should
then be recovered numerically, which has an impact on the convergence rate of the COS
method.

References

[1] Almendral A., and Oosterlee C.W., Accurate Evaluation of European and
American Options Under the CGMY Process., SIAM J. Sci. Comput. 29: 93-117,
2007.

[2] Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P., Uni-
versal option valuation using quadrature methods, J. Fin. Economics, 67: 447-471,
2003.

[3] Andricopoulos A.D., Widdicks M., Duck P.W. and Newton D.P., Extend-
ing quadrature methods to value multi-asset and complex path dependent options, J.
Fin. Economics, 2006.

[4] Bender C.M. and Orszag S.A., Advanced Mathematical Methods for Scientists
and Engineers. McGraw-Hill, New York, 1978.

[5] Boyd J.P., Chebyshev & Fourier Spectral Methods, Springer-Verlag, Berlin, 1989.

[6] Carr P.P., Geman H., Madan D.B. and Yor M., The fine structure of asset
returns: An empirical investigation. J. of Business, 75: 305-332, 2002.

[7] Carr P.P. and Madan D.B., Option Valuation Using the Fast Fourier Transform.
J. Comp. Finance, 2:61-73, 1999.

25



[8] Chourdakis K., Option pricing using the Fractional FFT. J. Comp. Finance 8(2),
2004.

[9] Cont R. and Tankov P., Fiancial modelling with jump processes, Chapman and
Hall, Boca Raton, FL, 2004.

[10] D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for
affine jump-diffusions. Econometrica 68: 1343–1376, 2000.

[11] D. Duffie, D. Filipovic and W. Schachermayer, Affine Processes and Appli-
cations in Finance. Ann. of Appl. Probab., 13(3): 984-1053, 2003.

[12] Evans G.A. and Webster J.R., A comparison of some methods for the evaluation
of highly oscillatory integrals. J. of Comp. Applied Math. 112: 55-69, 1999.

[13] E.G. Haug, The complete guide to option pricing formulas. McGraw-Hill, 1998.

[14] Heston S., A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options. Rev. Financ. Studies, 6: 327-343, 1993.

[15] Hull J.C. Options, futures and other derivatives Prentice Hall. 4th ed., 2000.

[16] Lewis A. A simple option formula for general jump-diffusion and other
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A Matlab Code for Lévy and Heston’s Model

All input parameters are denoted by the same notations as given in the text, except for

• “q”: continuous dividend rate.

• “CP”: a flag that switches to call options when it equals 1 and to put options when
it equals −1.

• “Model”: a flag that switches among different underlying processes.

• “Params”: a vector that holds parameters for the specified underlying process.

function C = Euro_Cos(L, S0, CP, K, T, q, r, Model, Params, N)

mu=r-q; qstar=L*gridvol_model(T,Model,Params); x0=log(S0/K);

b=qstar;a=-qstar; j = [0:N-1]; co =pi/(b-a); omega = j*co;

%Series coefficients for the density

cf=cf_model(omega, mu, dt, Model, Params);

fj=real(cf.*exp(i*j*co*(x0-a)))*2/(b-a); fj(1)=0.5*fj(1);

%Series coefficients for the payoff

if CP==1

c=0;d=b;

else

c=a;d=0;

end

dma = (d-a)/(b-a)*pi; cma= (c-a)/(b-a)*pi;

expd=exp(d); expc=exp(c);

Chi = (cos(j*dma)*expd - cos(j*cma)*expc +...

j*co.* (sin(j*dma)*expd - sin(j*cma)*expc) )./(1+(j*co).^2);

Psi = (sin(j(2:end)*dma) - sin(j(2:end)*cma))./(co*j(2:end));

Psi=[d-c, Psi];

vj = CP*K*(Chi-Psi);

%Final pricing formula

C = exp(-r*dt)*sum(fj.*vj);

return;

Note that two inner-called programs, gridvol_model(dt,Model,Params) and cf_model(omega,mu,dt

return the standard deviation and the characteristic function values of the specified under-
lying process, respectively.
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