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Illustration front page: page 1 of Galilei [1610], in which the Italian scientist Galileo Galilei announced the
discovery of four satellites of Jupiter: the Medicea Sidera, now known as Galilean moons.
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ABSTRACT

This research aims at modeling the trajectory followed by the Galileo spacecraft during a
variety of flybys about the Galilean moons. The chosen flybys have good Earth’s eleva-
tion angles and either low or high closest-approach altitudes, so that the comparison of
the two can give relevant insight into the accuracy of the corresponding trajectories. By
propagating the state of the spacecraft during these flybys, optimizing the nominal initial
state of the spacecraft (obtained through the SPICE program) and the spherical harmon-
ics of the moons, and estimating new harmonics, the minimum root mean square error
between the resulting trajectory and the Jet Propulsion Laboratory (JPL) ephemerides is
found. The analysis of its components along the Local Orbital axes gives insight into the
existing relation between them and the Earth’s elevation and azimuth angles. In particular,
a low-altitude flyby implies in general a higher error, but when two flybys have similar al-
titudes, then the Earth’s elevation plays a relevant role and the flyby with the largest one is
more likely to have a larger error too. The root mean square error of the fitted trajectories
can vary from 15 cm to 7 m, so always less than the 9 m declared by NASA [2004] as the
maximum error of the moons ephemerides. Furthermore, the flybys about Ganymede and
Callisto show a high error in the along-track and cross-track directions, since the radius of
their sphere of influence is quite larger than that of the inner moons’ ones, hence there is
more time for the perturbations to influence the orbit. A by-product of this research is the
estimate of the Galilean moons’ gravity field, in particular the new values for their J2 and
C2,2 coefficients led to the conclusion that Io is less hydrostatic, while Europa and Callisto
are more hydrostatic than previously thought.
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PREFACE

The idea of doing my thesis project on this subject came after a combination of two events.
Almost one year ago, I managed to find a library which lent a copy of the "Sidereus Nun-
cius", in which Galileo Galilei wrote in Latin, the scientific language of the time, to the
future Grand Duke of Tuscany, Cosimo II de’ Medici, to announce him his discovery of four
satellites of Jupiter, now known as the Galilean moons, but at that time named Medicea
Sidera (de’ Medici’s stars) in his honor. So I borrowed this astronomical treatise. I was still
at the first page, when I received an e-mail from the managing director of Astos Solutions
GmbH (in Stuttgart, Germany) telling me that I had been accepted for both an internship
and the thesis project, and that he was interested in the analysis of the accuracy of the per-
turbed two-body problem about the Galilean moons. What I was supposed to do was clear
to me. So we decided to plan the internship from August to November 2016, and the thesis
project from November 2016 to June 2017.
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GLOSSARY

SYMBOLS

The list of Latin symbols present in this paper is shown in Table 1, with description and unit
of measure, followed by the list of Greek symbols in Table 2.

Latin Symbols

Table 1: List of Latin symbols present in this paper, with description and unit of measure.

Symbol Description Unit
a Acceleration m s−2

a Semi-major axis m
A Area m2

az Azimuth angle rad
B Spacecraft’s ballistic coefficient kg m−2

B Magnetic field strength T
c Speed of light (value: 299792458 (Wakker [2015])) m s−1

C Corrected error constant of the Adams-Moulton integration method various
C∗ Predicted error constant of the Adams-Bashforth integration method various
CD Drag coefficient -
Cn,m Gravity field model parameter of degree n and order m -
CR Satellite’s reflectivity -
D Drag N
~e Unit vector -
e Eccentricity of an orbit -
el Elevation angle rad
f Propulsive acceleration m s−2

f Derivative function in the PECE integration method various
F Force N
F Second equinoctial element -
gn,m Gauss geomagnetic coefficient of degree n and order m T
G Universal gravitational constant (value: 6.67428·10−11 (Wakker [2015])) m3 kg−1 s−2

G Third equinoctial element -
h Integration step-size s
h Altitude m
h Specific angular momentum m2 s−1

H Fourth equinoctial element -
hn,m Gauss geomagnetic coefficient of degree n and order m T
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Symbol Description Unit
i Inclination rad
Jn,m Gravity field parameter of degree n and order m -
k Number of steps in the PECE integration method -
K Fifth equinoctial element -
L Libration point -
L Sixth equinoctial element rad
m Order of a coefficient in a series -
m Mass of spacecraft kg
M Mass of celestial body kg
n Degree of a coefficient in a series -
O Origin of a reference frame -
P Point (identifying a body) -
P First equinoctial element m
P Power W

Pn,m
Schmidt semi-normalized associated Legendre function
of degree n and order m

-

q Satellite’s electric charge C
~r Position vector of a body m
R Rotation matrix -
R Radius of a body m
Sn,m Gravity field model parameter of degree n and order m -
t Time s
Teq Equilibrium temperature K
u Argument of latitude rad
u Inverse of radius m−1

U Specific gravitational potential m2 s−2

U Magnetic potential V s m−1

U∗ Electrical potential difference V

v
Spacecraft’s relative velocity with respect to the
atmosphere or the magnetic field

m s−1

V Velocity m s−1

W Energy flux of the solar radiation W m−2

x First component of a reference frame m
y Second component of a reference frame m
y Corrected solution of the PECE integration method various
y∗ Predicted solution of the PECE integration method various
z Third component of a reference frame m
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Greek Symbols

Table 2: List of Greek symbols present in this paper, with description and unit of measure.

Symbol Description Unit
α Constant in the PECE integration method -
α Right ascension of a body (spin state) rad
β Constant in the relativistic effect -
β Constant in the PECE integration method -
β∗ Constant in the PECE integration method -
δ Declination of a body (spin state) rad
∆ Difference various
ε Emissivity -
ε Local truncation error of the PECE integration method various
ε0 Permittivity of free space F m−1

θ True anomaly rad
λnh Nonhydrostatic parameter -
λ Longitude rad
Λn,m Gravity field parameter of degree n and order m rad
µ Gravitational parameter m3 s−2

ρ Density kg m−3

σ Stefan-Boltzmann constant (value: 5.6704·10−8 (Stam [2016])) W
m2K 4

τ Sidereal time angle of a body (spin state) rad
φ Latitude rad
ω Argument of pericenter rad
Ω Right ascension of the ascending node rad
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ABBREVIATIONS

The list of abbreviations present in this paper is shown in Table 3, with the description of
their meaning.

Table 3: List of abbreviations present in this paper, with the description of their meaning.

Abbreviation Description
AB Adams-Bashforth integrator
ABM Adams-Bashforth-Moulton integrator
AM Adams-Moulton integrator
ASTOS AeroSpace Trajectory Optimization Software
AU Astronomical Unit (value: 149597870700 m (Wakker [2015]))
BBC British Broadcasting Company
CB Central Body
CBRP Central Body’s Radiation Pressure
EJSM Europa-Jupiter System Mission
EM ElectroMagnetic
EMFM Europa Multiple-Flyby Mission
ESA European Space Agency
JEO Jupiter-Europa Orbiter
JGO Jupiter-Ganymede Orbiter
JPL Jet Propulsion Laboratory
JRP Jovian Radiation Pressure
JUICE JUpiter ICy moon Explorer
LO Local Orbital frame
MATLAB MATrix LABoratory
MD Mass Distribution
NASA National Aeronautics and Space Administration
PCPF Planet-Centered Planet-Fixed frame
PECE Predictor-Evaluator-Corrector-Evaluator integration method
PLATO PLAnetary Transits and Oscillations of stars
REL Relativistic effects
RKF Runge-Kutta-Fehlberg integrator
RMSE Root Mean Square Error
S/C Spacecraft
s.o.i. Sphere of influence

SPICE
Spacecraft and Planet ephemerides, Instruments description,
C-matrix pointing and Events kernels

SRP Solar Radiation Pressure
TB Third Body
TBP Third Body Perturbation



1
INTRODUCTION

In this chapter, the background of the topic will be presented, alongside with the definition
of the research question and the structure of this paper.

1.1. BACKGROUND

The Jovian system constitutes a scaled version of the Solar System: it has a central body
with a significant mass, has a number of smaller bodies orbiting around (moons), smaller
objects (rings) and magnetic field. As such, it can give insight into the origin of the uni-
verse and its own moons, which possess some of the characteristics needed for habitable
environments; in particular Europa is very likely to possess all of them (Szondy [2013a])
and may thus be considered as a small Earth. This makes Jupiter and its environment an
extremely interesting target for space missions. By virtue of the large number of moons, the
Jovian system has been and will be always more attractive: Galileo (National Aeronautics
and Space Administration, i.e. NASA) is its most important mission (it has performed from
1989 to 2003) in terms of number of flybys and scientific outcomes, but three other great
missions are planned to go to this system in the next decade, i.e. Jupiter Icy Moons Explorer
(JUICE), by the European Space Agency (ESA), Europa Multiple-Flyby Mission (EMFM) and
Europa-Jupiter System Mission (EJSM) by NASA, where the latter will be composed of two
orbiters, one for Europa (for the Jupiter-Europa Orbiter (JEO) sub-mission) and one for
Ganymede (for the Jupiter-Ganymede Orbiter (JGO) sub-mission); these two moons are
suspected to have subsurface oceans (NASA [2009]). The relevance of the Galilean moons
is hence evident.

1.2. RESEARCH QUESTION

In order to have an idea of the reliability and accuracy of the information known about
these moons, it is necessary to have the nominal trajectory of the spacecraft, which can be
obtained through the SPICE program. From these considerations, the following research
question of this project has hence arisen:

1



2 1. INTRODUCTION

What is the quality of the trajectory followed by the Galileo spacecraft during its flybys about
the Galilean moons?

It is clear that the answer to this research question shall identify the relevant elements
which play a relevant role in the determination of the accuracy of the trajectory (i.e. model,
parameters, measurements and orbit geometry), and also suggest options capable of im-
proving it in future missions.

1.3. STRUCTURE

This research is divided into nine chapters, the first of which is this introduction. The
second chapter presents the heritage of the problem, in which past missions towards the
Jovian system are presented to the reader, and the most important characteristics of the
Galilean moons are described. The third faces the astrodynamics of this research, by defin-
ing the frame and coordinates used, presenting the equations of motion and analyzing the
major perturbations during these flybys. The fourth chapter deals with the choice of the
best integration technique for the propagation of the spacecraft’s state, while the Galileo’s
flybys selection is treated in the fifth one. Chapter 6 presents the optimization part of the
problem, in which the initial state of the spacecraft and the spherical harmonics of the
moons are optimized in such a way that the minimum root mean square error with respect
to the JPL ephemerides results. In the seventh chapter, the estimated spherical harmon-
ics are verified by introducing other flybys; furthermore physical considerations related to
the new values of the harmonics are shown, and at the end the obtained errors are inter-
preted. The validation of the script written to accomplish all these tasks is done by means
of a comparison with the ASTOS software in chapter 8. The last one describes the conclu-
sions of this study, by presenting the answer to the research question alongside with the
recommendations for readers which would like to expand this work in the future.



2
HERITAGE

At the beginning of this chapter, the main peculiarities of the Galilean moons are explained.
Then, the spacecraft which have entered the Jovian sphere of influence will be presented.
Future missions with this characteristic will be discussed too.

2.1. THE GALILEAN MOONS

The Italian astronomer and physicist Galileo Galilei discovered the Galilean moons (named
after him; formerly addressed as Medicea Sidera) in January of 1610, according to page 1 of
Galilei [1610].

Missions towards gas giants’ moons can turn out to be fundamental in terms of novel-
ties added to the body of knowledge. One of the most important objectives of this kind of
missions is the search for a habitable environment in the Solar System. Note that, accord-
ing to pages 459-460 of Lissauer and de Pater [2013], a celestial body is said to be habitable
only when four main characteristics are present: liquid water, a stable environment, the
essential elements and chemical energy. The state-of-the-art knowledge about habitability
of Solar System celestial bodies is well described in Figure 2.1 (Szondy [2013b]).

3



4 2. HERITAGE

Figure 2.1: Habitability of some environments; all four criteria have to be fulfilled to achieve habitability. A
red circle means that a specific criterion is not fulfilled, yellow indicates that it is likely satisfied but not

demonstrated, and green that it is very likely or demonstrated (Szondy [2013b]).

According to Figure 2.1 (Szondy [2013b]), Europa seems to satisfy all four criteria, while
Ganymede and Callisto are only likely to have enough chemical energy to support life, but
it is not demonstrated yet. However, these doubts can be solved through flybys and, in
the future, landings. For this reason, the moons treated in this paper are of paramount
importance.

2.2. MISSIONS IN THE JOVIAN SYSTEM

The missions in which spacecraft entered the Jovian system are presented in Table 2.1
(Wikipedia [2017a]) in chronological order.

Table 2.1: Missions of spacecraft which entered the Jovian system, with year, name of the spacecraft and
kind of mission (Wikipedia [2017a]).

Year Spacecraft Mission
1973 Pioneer 10 Jupiter flyby
1974 Pioneer 11 Jupiter flyby
1979 Voyager 1 Jupiter flyby
1979 Voyager 2 Jupiter flyby
1995-2003 Galileo moons flybys and orbiter
1992-2004 Ulysses Jupiter flyby
2000 Cassini-Huygens Jupiter flyby
2007 New Horizons Jupiter flyby
2016-present Juno Jupiter flybys and orbiter
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Among these, the Galileo spacecraft is the only one which has provided a detailed char-
acterization of Jupiter and, overall, its moons as can be realized by reading a piece of NASA
[2010], where its scientific contribution to the body of knowledge is presented:

"Galileo plunged into Jupiter’s crushing atmosphere on Sept. 21, 2003. The spacecraft was
deliberately destroyed to protect one of its own discoveries - a possible ocean beneath the icy

crust of the moon Europa. Galileo changed the way we look at our solar system. The
spacecraft was the first to fly past an asteroid and the first to discover a moon of an asteroid.
It provided the only direct observations of a comet colliding with a planet. Galileo was the

first to measure Jupiter’s atmosphere with a descent probe and the first to conduct long-term
observations of the Jovian system from orbit. It found evidence of subsurface salt-water on

Europa, Ganymede and Callisto and revealed the intensity of volcanic activity on Io."

This has been made real thanks to the large number of flybys of Jupiter and its moons,
as shown in Figure 2.2 (University of Colorado Boulder [2004]).

Figure 2.2: Flybys of the Galileo spacecraft in the Jovian system between 1995 and 2003 (University of
Colorado Boulder [2004]). The Sun is toward the top of the image, while "A" stands for "Amalthea", "C" for

Callisto, "E" for Europa, "G" for Ganymede, "I" for Io, and "J" for Jupiter.

The Galileo mission provides also the latest information about the Galilean moons,
which thus dates back to 1989-2003 (Szondy [2013a]).
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The Juno mission (launched in 2016 and currently ongoing) has objectives similar to
those of Galileo, mostly related to Jupiter’s atmosphere, magnetosphere and gravity field
(NASA [2016b]); it has entered an orbit about Jupiter on July 4th , 2016 (NASA [2016c]) and it
is expected to provide useful information about the above-mentioned Jovian physical char-
acteristics.

Future evidence about the exact state of these moons will hopefully be provided by the
JUICE mission (ESA and partners), whose launch is expected to be in June 2022. Its overall
mission profile is presented in Table 2.2 (ESA [2014]).

Table 2.2: Overall mission profile of the JUICE mission (ESA [2014]).

From Table 2.2 (ESA [2014]), it can be expected that much more about the gravitational
and magnetic field of Europa, Callisto, Ganymede and of course Jupiter will be known after
completion of the mission, thanks to the numerous flybys at varying altitudes. This will
definitely improve the current knowledge of these fields by means of model parameters
and analytical expressions, and thus will lead to the possibility of also taking into account
smaller perturbations. In order to have a clear and more complete idea about the Jovian
system, also the magnetic and plasma interactions of these moons with Jupiter’s magneto-
sphere will be studied.

Finally, more relevant information about the presence of a subsurface ocean on Eu-
ropa will be provided by NASA Europa Multiple-Flyby Mission (EMFM; formerly known as
Europa Clipper), which should have launched in 2022, but due to budget restrictions, the
launch would probably be delayed to mid or even late 2020s (page 734 of NASA [2017]).

2.3. SYNOPSIS: MISSIONS TOWARDS THE GALILEAN MOONS

In the past, only the Galileo spacecraft entered the Galilean moons’ sphere of influence and
provided detailed information about their gravity field, atmosphere, magnetosphere and
possible internal structure. In the future, the EMFM will flyby Europa to investigate about
the possibility of a subsurface ocean, while the JUICE mission will focus also on the other
three moons by means of many flybys, with pericenter at various altitudes to add relevant
information about these moons to our body of knowledge.



3
ASTRODYNAMICS

In this chapter, the choice of the reference frame and the coordinates will be investigated,
as well as the equations of motion and the main perturbations.

3.1. APPROACH

The flybys done between 1995 and 2002 by the Galileo spacecraft will be analyzed with a
perturbed two-body problem formulation, since Galileo is always inside the Jovian moons’
spheres of influence for the selected cases. This lets us consider the influence of other rele-
vant bodies, such as Jupiter, as third-body perturbations without focusing on the modeling
of the three-body problem.

In order to have an easy formulation of the problem, the three-body model does force
the orbits of the two main bodies to be circular (or elliptical), but, in the case of flybys
about moons, they are not concentric, since the two bodies are in general the moon and its
planet, which respectively orbit about the planet and the Sun. For this reason, a perturbed
two-body approach has been chosen to be implemented for the propagation of the orbit.

3.2. JPL EPHEMERIDES CHARACTERISTICS

The nominal JPL ephemerides are affected by an error: the Chebyshev interpolation error,
which, due to the age of the observation data, can reach 9 meters (NASA [2004]). Note that
this limitation is caused by the lack of accuracy of the Galilean moons’ ephemerides file (the
state of the spacecraft with respect to the moon is computed as the vectorial difference be-
tween the observed spacecraft’s and the moon’s one with respect to the Earth), while a new
file with a much better accuracy (0.5 m, according to NASA [2013]) has been made available
in 2013. It is clear that a more accurate ephemerides data of the moons is not enough to
obtain more accurate data of the spacecraft too, because the observed state of Galileo with
respect to the Earth is not provided by SPICE. For this goal, new ephemerides of the Galileo
state with respect to the moons shall be obtained as difference between those of Galileo

7



8 3. ASTRODYNAMICS

and those of the moons, both as observed, i.e. considered with respect to Earth .

3.3. REFERENCE FRAME

For simplicity reasons, the perturbed two-body problem will be described with respect to a
(quasi-)inertial reference frame, centered in the central body’s center of mass and with the
axes directed as the J2000 ones, as illustrated in Figure 3.1 (page 10 of NASA [2017]):

Figure 3.1: Description of the J2000 reference frame (page 10 of NASA [2017]).

Please note that the chosen reference frame is J2000, because it allows an easy formula-
tion of the equations of motion and it is possible to extract the state of celestial bodies and
spacecraft in J2000 coordinates with respect to any other body by means of the JPL SPICE
software.

This frame can of course be centered in any body without needing rotations, since only
the origin of the frame (which corresponds to the body’s center of mass) changes, but the
directions of the axes remain constant.

Two other frames will be needed: the Planet-Centered Planet-Fixed (PCPF) and the Lo-
cal Orbital (LO) frames. They are both rotating frames, but the first is centered in the celes-
tial body’s center of mass; its X- and Y- axes lie in the equatorial plane. The X-axis points
toward the prime meridian, while the Z-axis is perpendicular to the equatorial plane and
points toward the geographic north; the Y-axis finally completes the right-handed system.
The LO frame is instead centered in the spacecraft’s center of mass; the X-axis points radi-
ally outwards (i.e. the direction is the one from the celestial body’s to the spacecraft’s center
of mass). The Z-axis is directed as the osculating angular momentum (thus perpendicular
to the momentary orbital plane); the Y-axis completes the right-handed system. Note fur-
thermore that the motion of the moons is not an issue, since the barycenter of the system
composed by moon (central body) and spacecraft is roughly coincident with the moon’s
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center of mass, due to the fact that the mass of the spacecraft is negligible with respect to
that of one moon.

Please note that the transformations in which these two frames are involved are de-
scribed in Appendices A and B.

3.4. COORDINATE SYSTEM

The state of the spacecraft can in principle be described with many different sets of coor-
dinate systems. Here we highly focus on the most relevant ones: Cartesian, Keplerian and
modified equinoctial elements.

The Cartesian coordinates make use of three components (along perpendicular axes)
for the position and three for the velocity. The Keplerian ones use six elements which de-
scribe the shape, size and orientation of the orbit, but can lead to singularities for null
eccentricity or inclination. The six modified equinoctial elements solve these singularities
by decomposing the eccentricity vector along two perpendicular axes and introducing two
elements (H and K) which directly depend on the inclination.

Since the Keplerian coordinates can lead to singularities, Cartesian coordinates and
modified equinoctial elements will only be considered and compared in Subsection 4.2.2.
There, it will be proved that modified equinoctial elements show a more accurate and fast
propagation than Cartesian coordinates, and will hence be used.

3.5. EQUATION OF MOTION

The equation of motion which describes the spacecraft’s acceleration with respect to its
central body is presented in Equation (3.1) (page 117 of Wakker [2015]):

d 2~r

d t 2
=−

µ

r 2
r̂ (3.1)

where~r indicates the spacecraft’s position with regard to the central body (by means of the
x, y, z coordinates described in the reference frame presented in Section 3.3), r̂ its normal-
ization, while µ is the central body’s gravitational parameter. In particular, µ = GM , with
G the universal gravitational constant and M the central body’s mass. In view of the mass
ratio between the spacecraft and the moons (in the worst case, it is in the order of 10−20, by
considering Europa as central body), Equation (3.1) is a valid description.

In order to have a more general form of Equation (3.1), Equation (3.2) is presented:

d 2~r

d t 2
=−

µ

r 2
r̂ + ~aP (3.2)

where ~aP represents a generic perturbing acceleration vector.
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Equations (3.1) and (3.2) are usually in Cartesian coordinates, but the used equations
of motion are in equinoctial elements: they are presented in the System of Equations (3.3)
(pages 39-40 of Jo et al. [2011b]):



dP
d t = 2P

w

√
p
µ

FT

dF
d t =

√
p
µ

(
FN · si n(L)+ (

(w +1)cos(L)+F
)FT

w − (
H si n(L)−K cos(L)G

)FO
w

)
dG
d t =

√
p
µ

(
−FN · cos(L)+ (

(w +1)si n(L)+G
)FT

w + (
H si n(L)−K cos(L)F

)FO
w

)
d H
d t = 1

2

√
p
µ

(
1+H 2 +K 2

)
FO
w cos(L)

dK
d t = 1

2

√
p
µ

(
1+H 2 +K 2

)
FO
w si n(L)

dL
d t =√

Pµw2

P 2 +
√

p
µ

w

(
H si n(L)−K cos(L)

)
FO

(3.3)

where P,F,G , H ,K ,L represent the nonsingular elements, FN ,FT ,FO the three compo-
nents of the acceleration along the X-, Y- and Z- axes of the LO frame, and w is defined as
w = 1+F · cos(L)+G · si n(L). In case there are no perturbations, all equinoctial elements,
except for L, remain constant.

Note also that the equations to transform from Keplerian to equinoctial elements and
vice-versa are presented at page 39 of Jo et al. [2011b], while the ones between Cartesian
and Keplerian are given on page 135 to 137 of Larson and Wertz [1992].

3.6. PERTURBATIONS

The most relevant perturbations will now be described, and the question about whether
they are negligible or necessary for a flyby-case scenario will be addressed.

3.6.1. THIRD-BODY PERTURBATION

The presence of other celestial bodies does influence the orbit of the spacecraft in such a
way that, depending on the desired accuracy, they may have to be considered in the dy-
namical model.

At page 113 of Wakker [2015], a representation of the third-body perturbation is pre-
sented; a modified version of it is shown in Figure 3.2:
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Figure 3.2: Relative positions of the central body P1, the spacecraft P2 and the third body P3 (modified from
page 113 of Wakker [2015]).

According to page 112 of Wakker [2015], the disturbing acceleration due to the presence
of a third body can be described by Equation (3.4):

~aT BP =−µT B

(
1

r 2
S/C−T B

r̂S/C−T B + 1

r 2
T B

r̂T B

)
(3.4)

where r̂T B indicates the unit position vector of the third body with respect to the central
body, while r̂S/C−T B is the unit position vector of the spacecraft with respect to the third
body; furthermore, µT B indicates the gravitational parameter of the third body. Note that
in general there can be more than one third body: in such a case all the perturbing acceler-
ations will have to be added up.

Since it is desired to study the magnitude of this acceleration with respect to the cen-
tral one defined in Equation (3.1) (from now onwards addressed as aM AI N for simplicity) in
order to assess whether a third body is relevant or not, the ratio of their magnitude should
be maximized to consider the worst-case scenario. Since each scenario will only be con-
sidered inside the sphere of influence of a moon, the minimum value for aM AI N will be ob-
tained when the distance between spacecraft and main body is maximum, i.e. the radius
of the sphere of influence itself. Furthermore, since the acceleration due to a third body
decreases with the increase of the distance of the spacecraft from it, it can be assessed that
this distance should be minimum, i.e. the third body’s center of mass shall be on the line
connecting central body and spacecraft and at the minimum distance from the spacecraft.
Thus, the perturbing acceleration can be written as in Equation (3.5):

~aT BPmax =−µT B

(
1

(rT B−Rs.o.i .)
2
− 1

r 2
T B

)
r̂ (3.5)

where Rs.o.i . indicates the radius of the sphere of influence of the relevant Galilean
moon with respect to Jupiter.

For these reasons, the ratio of the norms of the accelerations can be described as in
Equation (3.6):
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(
aT BP

aM AI N

)
max

=

µT B

(
1

(rT B−Rs.o.i .)
2 − 1

r 2
T B

)
µ

R2
s.o.i .


max

= µT B

µ
R2

s.o.i .

(
1

(rT B−Rs.o.i .)
2
− 1

r 2
T B

)
max

=

= µT B

µ
R2

s.o.i .

(
1

(rT Bmi n−Rs.o.i .)
2
− 1

r 2
T Bmi n

) (3.6)

When Jupiter is considered as the third body, then rT B mi n is simply the pericenter of
the Galilean moon’s orbit about it. When the third body is another planet instead, Equa-
tion (3.7) holds true:

rT B mi n = ∣∣r Jupi ter−Sun − rPl anet−Sun
∣∣− rCentr al Bod y Gal i lean moon−Jupi ter (3.7)

where in particular rCentr al Bod y Gal i lean moon−Jupi ter indicates the apocenter distance
of the Galilean moon with regard to Jupiter.

Please note that also the Sun can be considered as a third body, but in this case rPl anet−Sun

would be zero, and that is why the subscript of this variable refers to planet.

Finally, in order to provide quantitative values to the ratio of the accelerations defined
in Equation (3.6), a value for Rs.o.i . is needed. According to page 115 of Wakker [2015],
Equation (3.8) can be used:

Rs.o.i . ≈ Rs.o.i .max ≈ rT B

(
M

M Jupi ter

) 2
5

(3.8)

where M indicates the mass of the central body and M Jupi ter that of Jupiter.

Table 3.1 presents the radii of the spheres of influence of the Galilean moons with re-
spect to Jupiter, as computed by using Equation (3.8), and the main acceleration exerted by
them on the spacecraft:

Table 3.1: Radii of the spheres of influence of the Galilean moons with respect to Jupiter, and corresponding
two-body gravitational acceleration. The radii of the moons are shown for comparison purposes.

Galilean moon
Radius of the

moon [km]
Radius of the sphere

of influence [km]
Main acceleration at the

sphere of influence [m/s2]
Io 1822 7834 9.7·10−2

Europa 1561 9722 3.4·10−2

Ganymede 2634 24350 1.7·10−2

Callisto 2410 37681 5.1·10−3

Table 3.2 includes the ratio of the accelerations computed for the most relevant celestial
bodies, such as the planets, the Sun and the Galilean moons different from the central body.
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Table 3.2: Values of third-body accelerations and accelerations ratio for the most relevant celestial bodies,
computed at the radii of the spheres of influence specified in Table 3.1.

Galilean moon Third body Third-body acceleration value [m/s2] Accelerations ratio

Io

Sun 4.4·10−9 4.5·10−8

Mercury 9.3·10−16 9.5·10−15

Venus 1.7·10−14 1.7·10−13

Earth 2.5·10−14 2.6·10−13

Mars 4.0·10−15 4.2·10−14

Jupiter 2.7·10−2 2.8·10−1

Saturn 2.2·10−12 2.2·10−11

Uranus 9.9·10−15 1.0·10−13

Neptune 2.1·10−15 2.1·10−14

Pluto 1.1·10−19 1.2·10−18

Amalthea 3.0·10−11 3.1·10−10

Europa 3.4·10−6 3.5·10−5

Ganymede 5.8·10−7 6.0·10−6

Callisto 3.6·10−8 3.7·10−7

Europa

Sun 5.5·10−9 1.6·10−7

Mercury 1.1·10−15 3.4·10−14

Venus 2.1·10−14 6.2·10−13

Earth 3.1·10−14 9.2·10−13

Mars 5.0·10−15 1.5·10−13

Jupiter 8.3·10−3 2.5·10−1

Saturn 2.7·10−12 7.9·10−11

Uranus 1.2·10−14 3.6·10−13

Neptune 2.6·10−15 7.6·10−14

Pluto 1.4·10−19 4.2·10−18

Amalthea 9.1·10−12 2.7·10−10

Io 8.0·10−6 2.3·10−4

Ganymede 3.1·10−6 9.2·10−5

Callisto 7.9·10−8 2.3·10−6

Ganymede

Sun 1.4·10−8 8.3·10−7

Mercury 2.9·10−15 1.7·10−13

Venus 5.3·10−14 3.2·10−12

Earth 7.9·10−14 4.7·10−12

Mars 1.3·10−14 7.5·10−13

Jupiter 5.2·10−3 3.1·10−1

Saturn 6.7·10−12 4.0·10−10

Uranus 3.1·10−14 1.8·10−12

Neptune 6.4·10−15 3.9·10−13

Pluto 3.5·10−19 2.1·10−17

Amalthea 5.7·10−12 3.4·10−10

Io 1.1·10−6 6.8·10−5

Europa 2.7·10−6 1.6·10−4

Callisto 6.8·10−7 4.1·10−5

Callisto

Sun 2.1·10−8 4.2·10−6

Mercury 4.5·10−15 8.9·10−13

Venus 8.2·10−14 1.6·10−11

Earth 1.2·10−13 2.4·10−11

Mars 2.0·10−14 3.9·10−12

Jupiter 1.5·10−3 2.9·10−1

Saturn 1.0·10−11 2.1·10−9

Uranus 4.8·10−14 9.4·10−12

Neptune 1.0·10−14 2.0·10−12
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Callisto

Pluto 5.5·10−19 1.1·10−16

Amalthea 1.6·10−12 3.2·10−10

Io 1.5·10−7 3.0·10−5

Europa 1.4·10−7 2.8·10−5

Ganymede 1.5·10−6 3.0·10−4

The values of µ of Jupiter and its moons have been taken from NASA [2004] (the ones
used for the creation of the ephemerides of the Jovian system), while the others come di-
rectly from the Horizons Web Interface.

From Table 3.2, it can be concluded that the relevant celestial bodies to be considered
are the Sun, Jupiter and the three Galilean moons different from the central body. In partic-
ular, Jupiter has an influence which is much higher than all the other bodies put together.

3.6.2. ATMOSPHERIC DRAG

The Galilean moons have a dust environment, which can be treated similarly to atmo-
spheric drag. Motion in space generates drag, in a direction opposite to motion, and lift,
perpendicular to it. Lift can be neglected due to the fact that it is far smaller than drag
(page 534 of Wakker [2015]), while drag shall be analyzed deeper, since it can be significant,
in particular in lower atmospheres. The equation for the acceleration acting on a satellite
due to atmospheric drag is the following (page 534 of Wakker [2015]):

~aD =−1

2
ρ

CD ·A
m

|~v |~v =−1

2
ρ

1

B
|~v |~v (3.9)

where ρ indicates the atmosphere’s density, CD the drag coefficient related to a surface
A, m the mass of the satellite, ~v its velocity vector with respect to the atmosphere, and B
the satellite’s ballistic coefficient (page 64 of Wertz [1978]).

According to page 233 and 234 of Bagenal et al. [2006], the worst-case scenario for the
Galilean moons happen at the lowest altitudes, where the number of molecules of dust per
unit of volume (called number density) can increase up to 1·10−3 m−3, for an altitude of
about 100 km. Each molecule has an average mass of 1·10−15 kg, thus the mean density is

about 1·10−18 kg
m3 . By using the open-source Horizons Web Interface, it can be stated that

the maximum velocity of the spacecraft with respect to each Galilean moon’s atmosphere
is obtained at their closest approaches: 8.9 km/s at 102 km from Io’s surface on January
17, 2002, 6.3 km/s at 201 km from Europa’s surface on December 16, 1997, 8.0 km/s at 261
km from Ganymede’s surface on September 6, 1996 and 9.7 km/s at 138 km from Callisto’s
surface on May 25, 2001. By using these maximum velocities and a satellite’s ballistic coeffi-

cient equal to 25 kg
m2

(
for conventional spacecraft, it may range from 25 to 100 kg

m2 according

to page 64 of Wertz [1978]: 25 kg
m2 will be used, as worst case

)
, the ratio between the accel-

eration acting on the satellite due to the atmospheric drag and the central one (at altitude
zero) can finally be computed for each moon. In particular, for Io it has a value of 9.7·10−13,
for Europa of 7.7·10−13, for Ganymede of 1.1·10−12, while for Callisto of 1.7·10−12.
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These ratios confirm that the moons’ atmospheres do not play any relevant role in this
analysis, since they are so thin and tenuous that they can definitely be neglected.

3.6.3. RADIATION PRESSURE

The main sources of radiation pressure exerted on the Galileo spacecraft can be three in
these scenarios: the Sun, Jupiter and the central body.

SOLAR RADIATION PRESSURE

The acceleration acting on the spacecraft due to Solar radiation is, from pages 541 and 542
of Wakker [2015], given by Equation (3.10):

~aSRP =CR
W A

m c
r̂S/C−Sun (3.10)

where CR is the satellite’s reflectivity, W the energy flux (or power density) of the Solar radi-
ation, A the effective satellite’s cross-sectional area, m the mass of the satellite, c the speed
of light and r̂S/C−Sun the unit vector directed from the satellite to the Sun. The formula from
page 90 of Lissauer and de Pater [2013] can be used:

W = W1AU(
rS/C−Sun

1AU

)2 (3.11)

where W1AU = 1367.6 W/m2 (value taken from the Horizons interface) is the Solar constant.

Here we use c = 2.99792458·108 m/s (page 671 of Wakker [2015]) and physical values
of the Galileo spacecraft, i.e. m = 2223 kg, A ≈ 82.536 m2 (by considering the worst-case
scenario of page 9 of Jouannic et al. [2015] in which all panels are parallel to each other, just
for an order of magnitude computation) and CR = 1.5 (page 10 of Jouannic et al. [2015]).
Furthermore, since the four moons have approximatively the same distance from the Sun,
the maximum ratio between this perturbation and the central acceleration happens when
the central acceleration is minimum, i.e. at the sphere of influence of Callisto, accord-
ing to Table 3.1. It holds true that at the limit of the Callisto’s sphere of influence (with
rS/C−Sun ≈ 7.8·1011 m), the ratio between the perturbing and the main acceleration is about
1.8·10−6. In the worst-case of the "best" moon instead, i.e. at the Io’s sphere of influence,
this ratio decreases to 9.6·10−8.

Clearly, the Solar radiation pressure can be neglected for all the four moons, since its ra-
tio with respect to the main gravitational acceleration is smaller than the relative influence
of realistic third bodies (Table 3.2).

JOVIAN RADIATION PRESSURE

The acceleration acting on the spacecraft due to the Jovian radiation can be modeled as
Equation (3.10) as well, with a slight modification as can be seen in Equation (3.12):

~a JRP =CR
WJup A

m c
r̂S/C−Jup (3.12)
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where WJup indicates the correspondent of the Solar constant for Jupiter, while r̂S/C−Jup

the unit vector directed from the satellite to Jupiter.

Stam [2016] states that WJup can be found as described in Equation (3.13):

WJup =
Pout Jup

4πr 2
S/C−Jup

(3.13)

where Pout Jup is the power of the radiation emitted by Jupiter.

In particular, Pout Jup can be written (Stam [2016]) as in Equation (3.14):

Pout Jup = 4πR2
JupεJupσT 4

eq Jup
(3.14)

where R Jup represents the radius of Jupiter, εJup its emissivity, Teq Jup
its equilibrium tem-

perature, and σ the Stefan-Boltzmann constant.

According to Stam [2016], the emissivity of the celestial bodies can be approximated to
1, while its equilibrium temperature to roughly 123 K. Furthermore, the Jovian mean radius
is 6.9911·107 m (Horizons interface) and the Stefan-Boltzmann constant is equal to 5.6704
·10−8 W

m2K4 (Stam [2016]). The worst-case scenario happens when the ratio of the accelera-

tion is maximum, i.e. (by neglecting the constant part) when 1
µ

(
Rs.o.i .

rC B−Jup−Rs.o.i .

)2
is maximum,

that is at Europa’s sphere of influence. Note indeed that the values for this ratio are about
6.0 ·10−17 s2/m3, 6.8 ·10−17 s2/m3, 5.5 ·10−17 s2/m3 and 5.8 ·10−17 s2/m3 respectively for Io,
Europa, Ganymede and Callisto.

At the limit of Europa’s sphere of influence, where rS/C−Jup ≈ 6.6 ·108 m, the ratio be-
tween this perturbation and the main one has a value of about 8.0·10−10, so it can be ne-
glected for all the moons.

CENTRAL BODY ’S RADIATION PRESSURE

For the central body’s radiation pressure, the perturbing acceleration model is the same as
for Jupiter and the Sun (see Equation (3.12)), but with the parameters now referred to the
central body. It holds true that:

~aC BRP =CR
WC B A

m c
r̂ (3.15)

The ratio between this perturbing acceleration and the main one is proportional to the

product of a constant and
R2

moon ·T 4
eqmoon
µ

. The equilibrium temperature of Ganymede is 130
K (page 731 of Spencer [1983]), while the others have not been found in literature, thus
they have to be estimated. According to Stam [2016], it can be stated that the equilibrium
temperatures of the other moons can be approximated as in Equation (3.16):

Teqmoon
= TeqGanymede

√
RGanymede

Rmoon
(3.16)

where Rmoon indicates the radius of the moon under consideration.
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By using Equation (3.16), Io has an equilibrium temperature of about 184 K, Europa of
169 K and Callisto of 136 K.

Thus, from the most interior to the most exterior moon,
R2

moon ·T 4
eqmoon
µ has a value of

roughly 6.4 ·108 K4·s2

m , 6.2 ·108 K4·s2

m , 2.0 ·108 K4·s2

m and 2.8 ·108 K4·s2

m respectively. It can then
be assessed that Io (independently from the altitude) is the worst-case scenario. Then, by
considering Io as central body, the equilibrium temperature is about 184 K, while its radius
is about 1.822·106 m (Horizons interface), thus the ratio between this perturbation and the
main acceleration is always about 6.7·10−9 (this is roughly constant since the ratio does
not depend on the altitude from the central body’s surface). Due to its low value, also this
perturbation can be neglected for all the moons in this analysis.

3.6.4. ELECTROMAGNETIC PERTURBATION

JOVIAN ELECTROMAGNETIC PERTURBATION

If the satellite is made of conductive material, it will interact with the magnetic field around
it by means of the Lorentz force. According to page 547 of Wakker [2015], the perturbing
acceleration caused by this phenomenon is described by Equation (3.17):

~aE M = q

m
~v x~B (3.17)

where q indicates the satellite’s electric charge, m its mass, v its velocity relative to the
magnetic field, and B the magnetic field itself.

In particular, still according to the same page, q can be written as the product of the
electrical potential difference U∗ and the satellite’s capacitance C . By using the approx-
imations of a spherical conducting satellite, Equation (3.18) can be written (page 548 of
Wakker [2015]):

C = 4πε0RS/C (3.18)

where ε0 is the permittivity of free space
(
8.854·10−12 F

m

)
, while RS/C is the radius of a

satellite approximated (only for this purpose) as spherical.

According to page 547 of Wakker [2015], Equation (3.19) can be written:

~B = g1,0

(
R

r

)3


2si n(φ)

− cos(φ)

0




r̂

φ̂

λ̂

 (3.19)

where g1,0 is the Gauss geomagnetic coefficients of degree 1 and order 0, R the celes-
tial body’s radius, r the distance between its center of mass and the satellite’s one, while φ
indicates the latitude of the spacecraft. Note also that r̂ , φ̂, λ̂ represent the unit vectors in
the radial (outwards), latitudinal (northwards) and longitudinal (but westwards) directions.
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The following data can be used: U∗ ≈ 100 V (page 548 of Wakker [2015]), m ≈ 2223
kg (Horizons interface), RS/C ≈ 1 m (realistic assumption based on NASA [2016a]), R ≈
6.9911 ·107 m (Horizons interface) and g1,0 = 100 nT (page 292 of Bagenal et al. [2006]).

It can be assessed that the maximum ratio between this perturbation and the main ac-
celeration is at the limit of the Galilean moons’ spheres of influence, where the distance of
the spacecraft from their centers of mass is maximum and where the one from Jupiter is
minimum.

The worst case happens when the velocity and the magnetic field vectors are perpen-
dicular and where φ=±90° (since the magnetic field has its maximum magnitude).

Based on the information on the Horizons interface, the value of v is equal to 7.0 km/s
at Io’s sphere of influence, 18.5 km/s at Europa’s, 14.6 km/s at Ganymede’s and finally 10.4
km/s for Callisto’s sphere of influence.

By using these values, it can be calculated that the ratios of the accelerations are re-
spectively 3.5 ·10−16 for Io, 6.5 ·10−16 for Europa, 2.6 ·10−16 for Ganymede and 1.1 ·10−16 for
Callisto.

JOVIAN INDUCED ELECTROMAGNETIC PERTURBATION ON THE MOONS

Note that this perturbation is related to the electromagnetic field centered in the moon but
induced by Jupiter, while the previous one was centered in Jupiter itself. According to page
78 of Showman and Malhotra [1999], for induced magnetic fields, g1,0 shall be considered
as the ambient Jovian magnetic field, which has a value of 1835 nT at Io, 420 nT for Europa,
120 nT for Ganymede and 35 nT for Callisto.

By using these values and the values of the moons’ radii as R, it can be assessed that the
the ratio of the accelerations is proportional to

v ·g1,0
µ·r (where r is the distance between the

spacecraft and the center of mass of the central body), thus it is maximum at the closest
approach. Always from the Horizons interface, the value of v is equal to 8.9 km/s at the
Io’s closest approach, 6.3 km/s at the Europa’s one, 8.0 km/s at the Ganymede’s one and
finally 9.7 km/s for the Callisto’s one. By using the altitudes described in Subsection 3.6.2, it
can thus be computed that the ratio of the accelerations is respectively equal to 1.1 ·10−12,
1.6 · 10−12, 7.9 · 10−13 and 6.1 · 10−13 for the Galilean moons, from the most interior to the
most exterior. They are so low that the magnetic field induced by Jupiter can be definitely
neglected for all the moons in this analysis.

CENTRAL BODY ’S ELECTROMAGNETIC PERTURBATION

This perturbation is related to the electromagnetic field possessed by the central body (thus
centered in it) and not to that induced by Jupiter. According to page 78 of Showman and
Malhotra [1999], g1,0 is roughly 1300 nT for Io, 750 nT for Ganymede and 0 nT for Europa
and Callisto, since they do not have an own magnetic field, but only the one induced by
Jupiter, just described.

The ratio of the accelerations is again proportional to
v ·g1,0
µ·r , thus it is maximum at clos-

est approach. So, by using the values for v and r just presented, the ratio between this
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perturbation and the central acceleration is equal to 7.9 · 10−13 for Io and 5.0 · 10−12 for
Ganymede. Since they are almost irrelevant, the Galilean moons’ own magnetic fields can
be neglected.

3.6.5. NON-SYMMETRIC MASS DISTRIBUTION

According to page 527 of Wakker [2015], if we assume the presence of a static external po-
tential and negligible effects of solid-Earth, ocean and pole tides, then the gravitational
potential of a body at a point outside it can be described as a sum of spherical harmonics
terms. In particular, from page 543 of Vallado and McClain [2007], it can be written as in
Equation (3.20):

U = µ

r

[
1−

∞∑
n=2

Jn

(R

r

)n
Pn(si nφ)+

∞∑
n=2

n∑
m=1

(R

r

)n
Pn,m(si nφ)

(
Cn,mcos(mλ)+Sn,m si n(mλ)

)]
(3.20)

where R is the equatorial radius of the celestial body, r the distance of the satellite from
the body’s center, φ the latitude, λ the longitude. Furthermore, Cn,m and Sn,m are model
parameters of degree n and order m. Note that Jn = Jn,0 = −Cn,0, since Sn,0 = 0. In par-
ticular, Pn(si nφ)

( = Pn,0(si nφ)
)

are the so-called Legendre polynomials of degree n and
argument si nφ, while Pn,m(si nφ) are the associated Legendre functions of the first kind of
degree n, order m and argument si nφ. A table for their main expressions can be found at
page 541 of Vallado and McClain [2007].

Always according to page 548 of Vallado and McClain [2007], the perturbing accelera-
tion due to the radially non-symmetric mass distribution is given by Equation (3.21):
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where rx ,ry ,rz indicate the components of the acceleration in the directions of the
PCPF-axes, and where Equation (3.22) holds true:
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(3.22)

Note that Equation (3.21) is written in the PCPF reference frame, so the state has to be
transformed from J2000 to PCPF to allow this, by means of the transformation presented
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in Appendix A. After having computed the accelerations in the PCPF frame, they have been
transformed back to the J2000 frame, by means of the transformation presented in Ap-
pendix A.

Also these equations are written in the PCPF-frame, so the transformations described
in Appendix A have been used.

Due to the fact that the zonal harmonics (m=0) do not have any dependency on lon-
gitude, while the tesseral (m 6=0) do, they will be treated separately. This allows to have an
easier formulation for the zonal ones, which are usually more relevant than the others.

In Appendix C, it is proven that the perturbing acceleration acting on the spacecraft
due to a zonal harmonic of degree n is maximum at the poles and does not depend on the
longitude. The external perturbation due to Jupiter is the difference between the direct and
the indirect term, and it is described by Equation (3.23):

aMDzonalmax
= (

aMDzonal di r ect −aMDzonal i ndi r ect

)
max = (n +1)

µPB Rn
PB

r n+2
S/C−PB

|Jn |− (n +1)
µPB Rn

PB

r n+2
PB−C B

|Jn | =

= (n +1)µPB Rn
PB

 1

r n+2
S/C−PB

− 1

r n+2
PB−C B

|Jn |

(3.23)
where µPB and RPB indicates the gravitational parameter and the radius of the perturbing
body, while rS/C−PB represents the distance between that celestial body and the spacecraft,
and rPB−C B the one between the former and the central body.

In general, the maximum ratio between this perturbation and the central acceleration
has the form presented in Equation (3.24):(

aMDzonal

aM AI N

)
max

= (n +1)
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µC B
Rn

PB r 2

 1
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− 1

r n+2
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|Jn | (3.24)

Note that, in case the body whose zonal harmonics are being used is the central body,
the indirect term does not exist and this ratio simplifies into Equation (3.25):(
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aM AI N

)
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= (n +1)

(
R

r

)n

|Jn | (3.25)

In Appendix D, it is shown instead that the perturbing acceleration due to a tesseral har-
monic of degree n and order m 6=0 is maximum at a specific longitude

(
referred to as λamax

)
and at a specific latitude

(
represented by φamax , which is the root of the nonlinear function

presented in Appendix D, in Equation (D.6)
)
. After having defined |Jn,m | =

√
C 2

n,m +S2
n,m ,

the expression of this external perturbation is presented in Equation (3.26):
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where Pn,m indicates Pn,m
(
si nφamax

)
. Note that in Equation (3.26), there is no term λamax ,

because the value of aMD tesser almax
does not explicitly depend on the value of λamax , how-

ever, a generic aMD tesser al does depend on the value of the longitude λ.

Notice that m shall always be less than or equal to n, thus Equation (3.26) cannot be
used when m=n, due to the presence of Pn,m+1. According to Wikipedia [2017b], it can be
solved by using Equation (3.27):

Pn,m+1(si nφ) = (n −m +1)

cosφ
Pn+1,m(si nφ)− (n +m +1)tanφ ·Pn,m(si nφ) (3.27)

The maximum ratio between the perturbation due to a tesseral harmonic and the cen-
tral acceleration is described in Equation (3.28):(
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Note that, if these tesseral harmonics refer to the central body, the indirect term does not
exist and this ratio can be simplified and written as in Equation (3.29):(
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Please note that if these spherical harmonics (either zonal or tesseral) refer to the cen-
tral body, then the maximum ratio is reached at the minimum distance r from its center of
mass, i.e. at the closest approach, otherwise at the limit of the sphere of influence, where
r is maximum (r = Rs.o.i .) and rS/C−PB minimum (rS/C−PB = rPB−C Bmi n −Rs.o.i ). It can be
easily realized that, when the perturbing body is Jupiter, rPB−C Bmi n coincides with the peri-
center of the central body’s orbit about the gas giant.

The main effects of the spherical harmonics of both Jupiter and the central body will
now be quantified depending on the flyby altitude and assessed as negligible or relevant.

JOVIAN NON-SYMMETRIC MASS DISTRIBUTION

If the spherical harmonics of Jupiter are considered, the ratio between the two accelera-
tions is maximum at the limit of the sphere of influence (and with the central body at its
perijove). Table 3.3 presents the values of this ratio for all the four possible central bodies:
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Table 3.3: Values of spherical harmonics perturbing accelerations and accelerations ratio for Jupiter,
computed at the radii of the spheres of influence specified in Table 3.1.

Galilean moon
Jovian spherical

harmonic
Jovian perturbing

acceleration value [m/s2]
Accelerations ratio

Io

J2 7.2·10−5 7.4·10−4

J3 9.0·10−10 9.3·10−9

J4 2.1·10−7 2.2·10−6

J6 6.8·10−10 7.0·10−9

J2,2 4.5·10−10 4.6·10−9

Europa

J2 8.9·10−6 2.6·10−4

J3 7.0·10−11 2.1·10−9

J4 1.0·10−8 3.1·10−7

J6 1.3·10−11 3.9·10−10

J2,2 5.6·10−11 1.6·10−9

Ganymede

J2 2.1·10−6 1.3·10−4

J3 1.0·10−11 6.2·10−10

J4 9.6·10−10 5.8·10−8

J6 4.8·10−13 2.9·10−11

J2,2 1.3·10−11 7.9·10−10

Callisto

J2 2.0·10−7 3.9·10−5

J3 5.6·10−13 1.1·10−10

J4 3.0·10−11 5.9·10−9

J6 4.8·10−15 9.5·10−13

J2,2 1.5·10−12 2.5·10−10

The values for the Jovian zonal harmonics J2, J3, J4 and J6 have been found at NASA
[2004], while the value for J2,2 at page 370 of Campbell and Synnott [1985].

Obviously, the Jovian J2 spherical harmonics will be considered, since it leads to non-
negligible ratios with respect to the main acceleration. The effects of the other spherical
harmonics appear very small. They have also been tested in preliminary orbit calculations
and lead to changes in the root mean square error on position and velocity respectively
smaller than 1·10−3 m and 1·10−6 m/s with respect to the JPL ephemerides, the observa-
tional data. Clearly they can be neglected.

CENTRAL BODY ’S NON-SYMMETRIC MASS DISTRIBUTION

According to page 282 of Bagenal et al. [2006], the value of C2,2 is definitely higher than
S2,2 for all the Galilean moons, so that it can be written that |J2,2| ≈ |C2,2|. Note that a
value of S2,2 has not been found for Io, thus it has been assumed, just for this purpose,
that |J2,2| = |C2,2|, i.e. |S2,2| = 0.

The values of Io’s J2, J4 and J2,2 have been taken from page 1382 of Zharkov and Gudkova
[2010], while J3,1, J3,3, J4,2 and J4,4 from page 1387 of the same paper. The J2, J2,1 and J2,2 val-
ues for Europa come from page 2020 of Anderson et al. [1998], while Callisto’s ones from
page 157 of Anderson et al. [2001]. Ganymede’s J2, J3 and J4, but also the tesseral J2,1, J2,2,
J3,1, J3,2, J3,3, J4,1, J4,2, J4,3 and J4,4 have been taken from page 434 of Russell and Brinckerhoff
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[2009], while its J5, J6, J7 and J8 from page 11 of Parisi et al. [2012].

If the spherical harmonics of the central body are considered, then the ratio between
the two accelerations is maximum at its closest approach. Table 3.4 presents the values of
this ratio for all the four possible central bodies:

Table 3.4: Values of spherical harmonics perturbing accelerations and accelerations ratio for the central
bodies, computed at their closest approaches, i.e. at an altitude of 102 km from Io’s surface, 201 km from
Europa’s, 261 km from Ganymede’s and 138 km from Callisto’s according to the Horizons Web Interface.

∗ According to page 157 of Anderson et al. [2001], the nominal values of C2,1 and S2,1 of Callisto are
estimated to be 0.0·10−6, that is why a zero value for J2,1 is present in this table.

Galilean moon
Spherical
harmonic

Central body’s perturbing
acceleration value [m/s2]

Accelerations ratio

Io

J2 8.1·10−3 5.0·10−3

J4 6.1·10−5 3.8·10−5

J2,2 7.3·10−3 4.5·10−3

J3,1 1.5·10−5 9.4·10−6

J3,3 1.7·10−5 1.0·10−5

J4,2 5.5·10−5 3.4·10−5

J4,4 2.8·10−5 1.7·10−5

Europa
J2 1.1·10−3 1.0·10−3

J2,1 5.5·10−5 5.3·10−5

J2,2 9.6·10−4 9.3·10−4

Ganymede

J2 3.9·10−4 3.3·10−4

J3 3.7·10−6 3.1·10−6

J4 2.0·10−5 1.7·10−5

J5 1.0·10−5 8.6·10−6

J6 8.3·10−6 7.1·10−6

J7 4.0·10−6 3.4·10−6

J8 4.4·10−6 3.7·10−6

J2,1 7.2·10−6 6.1·10−6

J2,2 3.5·10−4 3.0·10−4

J3,1 7.9·10−5 6.7·10−5

J3,2 9.0·10−5 7.6·10−5

J3,3 5.6·10−5 4.8·10−5

J4,1 7.9·10−5 6.7·10−5

J4,2 7.5·10−5 6.3·10−5

J4,3 3.7·10−5 3.2·10−5

J4,4 5.1·10−5 4.3·10−5

Callisto
J2 9.7·10−5 8.8·10−5

J2,1 0∗ 0∗

J2,2 9.1·10−5 8.3·10−5

Respecting the results in Table 3.4, all the available central body’s spherical harmonics
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will be considered, since they lead to non-negligible ratios with respect to the main accel-
eration.

3.6.6. RELATIVISTIC EFFECTS

The equation of motion of the two-body problem, presented as Equation (3.1), considers
the speed of light as infinite.

However, there is a perturbing acceleration due to relativistic effects, i.e. the consider-
ation of the finiteness of the light speed according to Einstein’s theory of general relativity,
which is described by Equation (3.30) (page 121 of Dallas [1977]):

~aREL = µ

r 2c2

3v2 + ∑
k 6=C B

µk

rk
+4

∑
k 6=S/C

µk

rS/C−k

r̂ (3.30)

whereµ is the gravitational parameter of the central body,µk that of the third body, c the
light speed, v the velocity of the spacecraft with respect to the central body, rk the distance
between the third and the central body, while rS/C−k the distance between the spacecraft
and the third body. Note also that the subscript C B indicates the central body and S/C the
spacecraft.

The maximum ratio of this perturbation with respect to the main gravitational acceler-
ation can be then written as in Equation (3.31):

(
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(3.31)

It has the highest values at the closest approache, where v is maximum. Note that by
considering, for each moon, Jupiter, the Sun, the central body itself and the other three
Galilean moons in Equation (3.31), which are the most important bodies for this perturba-
tion, the ratio with respect to the main gravitational acceleration is about 2.9·10−7 for Io,
2.1·10−7 for Europa, 1.8·10−7 for Ganymede and 1.7 ·10−7 for Callisto.

Due to the small values of these ratios, the relativistic effects will not be taken into ac-
count.

3.7. SYNOPSIS: PERTURBATIONS RELEVANCE

Third-body perturbations due to the Sun, Jupiter and the three Galilean moons different
from the central body will be considered, as well the non-symmetric mass distribution ef-
fects of Jupiter in terms of J2, and of the central body by means of all the available spherical
harmonics, because all these lead to a relatively high perturbation with respect to the main
gravitational acceleration.
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INTEGRATION

In this chapter, the choice of the integration technique will be treated, along with the dis-
cussion of local and global truncation errors.

4.1. INTEGRATION TYPE

Although it does not give insight in the solution, numerical integration allows to have reli-
able and quick results, while analytical techniques do allow a deeper comprehension, but
are not able to produce solutions as accurate as the ones obtained from numerical meth-
ods. This holds in particular in the situation when perturbations have to be included, as in
the case here. For these reasons, a numerical integration will be used instead of an analyti-
cal one.

4.2. INTEGRATOR CHOICE

Integrators and different kinds of coordinates will now be compared; the most suitable ones
will be then used for the propagation of the state of the spacecraft.

4.2.1. INTEGRATORS COMPARISON

Comparisons of the absolute error of position and velocity of all the built-in MATLAB in-
tegrators with respect to an extremely accurate higher-order and higher-tolerance Runge-
Kutta-Fehlberg 7(8) are performed in modified equinoctial elements, since they are in gen-
eral more stable for orbit propagation, according to page 50 of Jo et al. [2011a]. Since the
choice of the integrator is quite relevant, it is preferred to compare them by using the most
stable coordinates, and then Cartesian coordinates and modified equinoctial elements will
be compared: if the latter show to perform better than the former, the first assumption
was correct, otherwise a second integrators comparison will be performed, but in Carte-
sian coordinates. Computation times will be compared too. Due to the very long time the
Runge-Kutta-Fehlberg 7(8) method needs to propagate, it is excluded from the candidates
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and used just as reference for comparing all the others. Note that the R2016b version of the
MATLAB software will be used for this project.

The chosen scenario relates to the propagation of the Galileo spacecraft from entering
to leaving the sphere of influence of Ganymede with respect to Jupiter, because this is a
good representation of the possible scenarios which will be analyzed later. The starting
date is June 27, 1996 at 04:44:06.5 UTC and the propagation lasts for 3.5 hours, which is a
good approximation of the Galileo’s flybys duration in general.

The output time-step is equal to 60 seconds. The relative tolerance of the MATLAB
integrators used for these comparisons is the best allowed by the MATLAB software, i.e.
100 · 2−52 (≈2·10−14), while the relative tolerance allowed for RKF7(8) is 1·10−20, since it
has been implemented independently. Furthermore, RKF7(8) is a variable-order method
where the maximum order involved is 8, while the standard MATLAB integrators can reach
a maximum order equal to 5 (with the exception of ODE113 which can automatically vary
the order from 1 up to 13). This proves the superiority of RKF7(8), which however does not
lead to a much different final state, but the computation time is much higher than in the
other cases.

In particular, the propagation has been done considering third-body perturbations, in
order to avoid relevant errors in state, due to the fact that this is an important perturbation.

Figures 4.1 and 4.2 respectively show a plot for the absolute position error of the com-
pared integrators with regard to the RKF7(8) one and a zoom of it. Figures 4.3 and 4.4 indi-
cate the same, but for velocity. Finally, Figure 4.5 shows a comparison of all the computa-
tion times needed to perform the propagation.

Figure 4.1: Absolute position error (with respect to RKF7(8)) comparison of all the MATLAB integrators.
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Figure 4.2: Zoom of the absolute position error (with respect to RKF7(8)) comparison of all the MATLAB
integrators.

Figure 4.3: Absolute velocity error (with respect to RKF7(8)) comparison of all the MATLAB integrators.
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Figure 4.4: Zoom of the absolute velocity error (with respect to RKF7(8)) comparison of all the MATLAB
integrators.

Figure 4.5: CPU time comparison of all the MATLAB integrators.
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ODE113 is the single best for all the three variables, with a root mean square of abso-
lute position error of 1.347·10−6 m and of absolute velocity error of 3.426·10−11 m/s, and
a computation time of 1.677 s. This numerical integrator has indeed been designed for
computational expensive ordinary differential equations. So, ODE113 will be the integra-
tor used in this project.

4.2.2. COORDINATES COMPARISON

It can now be checked whether Cartesian coordinates or modified singular elements are
more suitable for this kind of problem. Note that the output time-step has been reduced to
1 second to obtain more points which influence the root mean square error.

Figure 4.6: Position absolute error (with respect to Runge-Kutta-Fehlberg 7(8)) comparison between
ODE113 in Cartesian coordinates and modified equinoctial elements.
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Figure 4.7: Velocity absolute error (with respect to Runge-Kutta-Fehlberg 7(8)) comparison between ODE113
in Cartesian coordinates and modified equinoctial elements.

Table 4.1 shows the CPU time of ODE113 in Cartesian coordinates and in modified
equinoctial elements:

Table 4.1: CPU time comparison between ODE113 in Cartesian coordinates and modified equinoctial
elements.

Coordinates CPU Time [s]
Cartesian 1.823

Equinoctial 1.751

In Figures 4.6 and 4.7, as well as in Table 4.1, modified equinoctial elements proved to
behave better than Cartesian coordinates, hence they will be used. In particular they have
reported to lead to a root mean square of absolute position error of about 3.177·10−6 m and
of absolute velocity error of roughly 2.527·10−11 m/s, and a computation time of 1.751 s.
Hence, there is no reason to compare the integrators by using the Cartesian coordinates.

4.3. EXPRESSIONS FOR THE CHOSEN INTEGRATOR

The selected ODE113 integrator implements an Adams-Bashforth-Moulton (ABM) PECE
method. The description which follows is taken after Ashino et al. [2000]. A linear multistep
method with k steps can be expressed as in Equation (4.1):

k∑
j=0

α j yn+ j−k+1 = h
k∑

j=0
β j fn+ j−k+1 (4.1)
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where f indicates the derivative function, h the step-size, while α j and β j are constants.
There exists the Adams-Bashforth (AB) integrator which is the explicit version (bk = 0)

of the linear multistep method described above and it is defined by Equation (4.2):

yn+1 − yn = h
k−1∑
j=0

β∗
j fn+ j−k+1 (4.2)

Another method, known as Adams-Moulton (AM), allows for an implicit (bk 6= 0) prop-
agation of the solution. It is described by Equation (4.3):

yn+1 − yn = h
k∑

j=0
β j fn+ j−k+1 (4.3)

This AB method is used to predict y∗
n+1 of the following step. By inserting in Equa-

tion (4.3) the evaluation of the function at the point (xn+1, y∗
n+1), a corrected value of yn+1

is obtained. As a last step, the function is evaluated at (xn+1, yn+1) to get the desired value.
This is the so-called ABM method, because it is a combination of the two; furthermore

the acronym PECE stands for the four phases to be performed: Predict-Evaluate-Correct-
Evaluate. According to page 7 of Xu [2015], the local truncation error for a k-step explicit
step is proportional to hk , and to hk+1 for a k-step implicit step. According to page 50 of
Demanet [2014], if the local truncation error of a convergent stable multistep method with
order p is proportional to hp+1, then the global truncation error is proportional to hp . In
particular, when predictor and corrector have the same order, the local truncation error is
well described by the Milne estimation, given by Equation (4.4):

εn+1 ≈
Cp+1

C∗
p+1 −Cp+1

(yn+1 − y∗
n+1) (4.4)

where C∗
p+1 and Cp+1 are respectively the error constants (they vary only when the number

of steps k varies) of the AB and AM methods.

4.4. SYNOPSIS: INTEGRATOR

The ABM PECE-based MATLAB built-in integrator ODE113 in modified equinoctial ele-
ments will be the propagator used in this project, since it showed its advantages in terms
state error and computation time with respect to all the other options.
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5
SELECTION TEST CASES AND TUNING

INTEGRATOR

In this chapter, a selection of the test cases endowed with the most precise observations
will be provided. The accuracy of the observations mainly depends on the elevation angle
of the Earth, i.e. the angle under which the Earth is seen from the spacecraft’s orbital plane.

5.1. ORBIT GEOMETRY

Unfortunately, there has been no other spacecraft which entered the Galilean moons’ spheres
of influence but Galileo. However, it entered and left them many times (Muller [2006]), so
its flybys about these moons will be analyzed.

It is desired to have two flybys per Galilean moon, both with good elevation angles of
the Earth, but one at low altitude and the other at high altitude. In particular the former
is supposed to be less precise than the latter, since inaccuracies in the gravity model of the
central body and other effects have greater influence at low altitudes. Furthermore, it shall
also be noticed that in general a high-altitude flyby indicates a shorter duration of the flyby
itself inside the sphere of influence of the central body, i.e. there is less time for dynamical
errors to develop.

The spacecraft data are obtained by means of observations which use the concept of
Doppler effect. In order to obtain a good reliability of the data, a constraint on the maxi-
mum absolute value of the Earth’s elevation angle shall be put. For this analysis, it has been
chosen to be 20°, since it is not too low, while still leading to an acceptable accuracy of the
values of the spacecraft’s state. Values higher than 20° would lead to a very low variation
of the spacecraft’s distance from Earth, thus the acquisition data made through Doppler
effect analyses would be not accurate enough.

A summary of the flybys performed by the Galileo spacecraft is presented in Table 5.1.
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Table 5.1: Summary of the flybys performed by Galileo about the Galilean moons. Rows with red background
indicate that they would have been a good choice but the constraint on the Earth’s elevation angle is not

fulfilled. Rows with green background indicate the chosen flybys.

The chosen flybys are I0, I33, E12, E15, G2, G29, C22 and C30, because they are the ones
which guarantee the most extreme closest-approach altitudes and a good accuracy of the
data due to the orbit geometry with respect to Earth.

As an example, Galileo’s flyby of Callisto on August 14, 1999 is considered as a valid test
case, since the orbit appears to be almost perfectly in the plane seen from Earth and fur-
thermore its data are assumed to be precise, because the approaching and receding of the
spacecraft perceived from Earth are fundamental in the computation of its state through
the Doppler effect.

Figure 5.1 shows the Earth’s elevation angle between the instantaneous orbital plane of
Galileo and the line which connects the spacecraft to Earth as a function of time. Note that
the nearer to 0° it is, the higher the accuracy of the observation is.
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Figure 5.1: Earth’s elevation angle as a function of simulation time, during the flyby of Callisto on August 14,
1999.

Since this angle is about 1° throughout the flyby, it can be concluded that the observa-
tions for the state of the spacecraft in this scenario are accurate.

Please notice this also by looking at Figure 5.2, where it can be seen that the trajectory
followed by the spacecraft in a J2000 Earth-centered frame is almost planar and that the
elevation angle of the Earth is almost 0°. The zero-value can be obtained only when the
Earth remains in the orbital plane of the spacecraft throughout the entire flyby, so when
this plane coincides with the ecliptic.
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Figure 5.2: 3D representation of the flyby of Callisto on August 14, 1999 in a J2000 Earth-centered frame. For
clarity, the trajectory followed by the central body is presented too.

Figure 5.3 shows instead Galileo’s trajectory with respect to Callisto in the orbital plane,
i.e. a hyperbola, deformed because of scale.

Figure 5.3: 2D representation of the flyby of Callisto on August 14, 1999 in a perifocal Callisto-centered
frame. Please note that X- and Y- axes differ in scale.

All the flybys of Galilean moons made by the Galileo spacecraft have been between 1995



5.2. TUNING OF RELATIVE TOLERANCE 37

and 2002, so the data are relatively recent and reliable.

Appendix E gives illustrations of the distance variations for all the selected flybys. Clear
variations of the distance (from the 8,000 km of Figure E.7 to the 200,000 km of Figures
E.5 and E.8) are present, thus it can be stated that the observations are accurate also for
this reason: no radial distance variation would mean zero relative velocity of the spacecraft
with respect to the Earth, thus the Doppler effect would be useless. In particular, Figure E.7
would have the smallest accuracy-related advantage due to the fact that the distance from
Earth varies less.

Please note that all these distances appear quite monotonic: they always increase or
always decrease (almost) linearly, but never change their behavior throughout one flyby.
This is due to the fact that the distance spacecraft-Earth is mainly dictated by the distance
central body-Earth, while the variation of the spacecraft distance with respect to Earth is
mainly driven by the velocity of the central body with respect to Earth, and not by the space-
craft’s one, since the latter has been found to be always smaller than the former. In order
to clearly understand this, please note that, in the worst-case scenario, the relative error
that would be done by considering the distance of the central body with respect to Earth
instead of the spacecraft’s one is only about 6.4·10−5 (when the spacecraft is at the limit of
the sphere of influence of Callisto, at its apojove, between the Earth and Jupiter, which are
respectively at their aphelion and perihelion), since the spacecraft orbital radius from the
central body is very small when compared to its distance from the Earth.

5.2. TUNING OF RELATIVE TOLERANCE

A tuning of the integrator relative tolerance will now be performed. By simulating (straight-
forward, no fitting) the chosen low-altitude scenarios (the ones with the largest sensitivities
for gravity field model errors) with ODE113 in modified equinoctial elements with an out-
put time-step of 0.5 seconds (the minimum reachable by the JPL ephemerides), a relevant
comparison between the Root Mean Square of position and velocity absolute errors, and
also computation time, can be done by varying the relative tolerance allowed by the inte-
grator. It is assumed that the RMSE on the position shall be at most 1·10−2 m and the one on
the velocity less or equal to 1·10−5 m/s. Tables 5.2 to 5.9 show these differences; note that
the solutions with the largest relative tolerance which fulfill the constraints on the RMSE
are chosen and thus highlighted in green.

Table 5.2: Root mean square of absolute position and velocity errors, and computation time of the flyby I33
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 7.216 1.372·10−2 48.28
1·10−9 7.217 1.372·10−2 21.09
7·10−9 7.223 1.372·10−2 18.62
8·10−9 7.224 1.372·10−2 18.08
9·10−9 7.231 1.372·10−2 17.37
1·10−8 7.366 1.378·10−2 14.45
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Table 5.3: Root mean square of absolute position and velocity errors, and computation time of the flyby I0 as
function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 2.396·10−1 1.301·10−3 37.03
1·10−9 2.420·10−1 1.301·10−3 14.63
4·10−9 2.445·10−1 1.301·10−3 13.98
5·10−9 2.480·10−1 1.301·10−2 13.24
6·10−9 2.503·10−1 1.301·10−3 13.15
1·10−8 4.629·10−1 1.304·10−3 13.05

Table 5.4: Root mean square of absolute position and velocity errors, and computation time of the flyby E12
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 12.02 1.204·10−2 61.65
1·10−9 12.03 1.204·10−2 24.68
9·10−9 12.10 1.205·10−2 23.80
1·10−8 12.12 1.205·10−2 23.60
2·10−8 12.19 1.206·10−2 23.07
1·10−7 12.31 1.208·10−2 20.40

Table 5.5: Root mean square of absolute position and velocity errors, and computation time of the flyby E15
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 1.141 1.242·10−3 37.03
1·10−10 1.142 1.242·10−3 19.42
8·10−10 1.150 1.243·10−3 16.39
9·10−10 1.151 1.243·10−3 16.21
1·10−9 1.152 1.243·10−3 16.20

Table 5.6: Root mean square of absolute position and velocity errors, and computation time of the flyby G2
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 1.320 7.219·10−4 67.10
1·10−11 1.323 7.219·10−4 41.45
2·10−11 1.328 7.219·10−4 39.73
3·10−11 1.330 7.220·10−4 36.48
4·10−11 1.336 7.221·10−4 35.92
1·10−10 1.365 7.222·10−4 35.03
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Table 5.7: Root mean square of absolute position and velocity errors, and computation time of the flyby G29
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 5.704·10−1 4.080·10−4 42.85
1·10−11 5.710·10−1 4.080·10−4 27.36
9·10−11 5.737·10−1 4.080·10−4 23.45
1·10−10 5.737·10−1 4.080·10−4 23.09
2·10−10 5.864·10−1 4.081·10−4 22.99
1·10−9 6.482·10−1 4.085·10−4 20.41

Table 5.8: Root mean square of absolute position and velocity errors, and computation time of the flyby C30
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 16.52 7.302·10−3 60.38
1·10−10 16.52 7.302·10−3 41.07
2·10−10 16.52 7.303·10−3 38.21
3·10−10 16.53 7.303·10−3 35.74
4·10−10 16.54 7.304·10−3 34.77
1·10−9 16.70 7.307·10−3 30.72

Table 5.9: Root mean square of absolute position and velocity errors, and computation time of the flyby C22
as function of the relative tolerance of the integrator.

Relative tolerance RMSEposition [m] RMSEvelocity [m/s] Computation time [s]
2·10−14 1.454 5.484·10−4 60.38
1·10−11 1.458 5.484·10−4 34.15
2·10−11 1.462 5.484·10−4 31.03
3·10−11 1.474 5.484·10−4 30.04
1·10−10 1.502 5.485·10−4 27.95

Thus, the relative tolerances for the low- and high-altitude flybys are respectively 8·10−9

and 5·10−9 for Io, 1·10−8 and 9·10−10 for Europa, 3·10−11 and 1·10−10 for Ganymede, and
3·10−10 and 2·10−11 for Callisto.

5.3. TUNING OF DATA ACQUISITION STEP-SIZE

In this section, the step-size of the data acquisition will be tuned in such a way that tra-
jectory propagation and optimization will be done with accurate results and in a moderate
amount of time. In particular, the JPL ephemerides have a sensitivity of 0.5 s, i.e. this is the
minimum amount of time needed to consider two points as different. Tables from 5.10 to
5.17 indicates how the root mean square of position and velocity absolute errors, and also
the computation time, vary by changing the time-step between two data points (and thus
the total number of points), by using the relative tolerance chosen in Section 5.2. Note that
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the solutions with the minimum data acquisition step-size which fulfill the constraints on
RMSE are chosen and thus highlighted in green.

Table 5.10: Root mean square of absolute position and velocity errors, and computation time for flyby I33 as
function of the time-step between two data points. The relative tolerance is equal to 8 ·10−9.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 7.224 1.372·10−2 18.08
10 7.225 1.374·10−2 18.04
30 7.225 1.375·10−2 18.02
60 7.226 1.376·10−2 17.98

120 7.226 1.378·10−2 17.95

Table 5.11: Root mean square of absolute position and velocity errors, and computation time for flyby I0 as
function of the time-step between two data points. The relative tolerance is equal to 5 ·10−9.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 2.480·10−1 1.301·10−2 13.24
10 2.480·10−1 1.301·10−2 13.24
30 2.480·10−1 1.301·10−2 13.24
60 2.480·10−1 1.301·10−2 13.24

120 2.480·10−1 1.301·10−2 13.24

Table 5.12: Root mean square of absolute position and velocity errors, and computation time for flyby E12 as
function of the time-step between two data points. The relative tolerance is equal to 1 ·10−8.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 12.12 1.205·10−2 23.60
10 12.13 1.207·10−2 23.55
30 12.13 1.208·10−2 23.53
60 12.13 1.209·10−2 23.51

120 12.14 1.211·10−2 23.47

Table 5.13: Root mean square of absolute position and velocity errors, and computation time for flyby E15 as
function of the time-step between two data points. The relative tolerance is equal to 9 ·10−10.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 1.151 1.243·10−3 16.21
10 1.151 1.243·10−3 16.21
30 1.151 1.243·10−3 16.21
60 1.151 1.243·10−3 16.21

120 1.151 1.243·10−3 16.21
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Table 5.14: Root mean square of absolute position and velocity errors, and computation time for flyby G2 as
function of the time-step between two data points. The relative tolerance is equal to 3 ·10−11.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 1.330 7.220·10−4 36.48
10 1.331 7.228·10−4 36.41
30 1.331 7.231·10−4 36.38
60 1.331 7.232·10−4 36.35

120 1.332 7.236·10−4 36.32

Table 5.15: Root mean square of absolute position and velocity errors, and computation time for flyby G29 as
function of the time-step between two data points. The relative tolerance is equal to 1 ·10−10.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 5.737·10−1 4.080·10−4 23.09
10 5.737·10−1 4.080·10−4 23.09
30 5.737·10−1 4.080·10−4 23.09
60 5.737·10−1 4.080·10−4 23.09

120 5.737·10−1 4.080·10−4 23.09

Table 5.16: Root mean square of absolute position and velocity errors, and computation time for flyby C30 as
function of the time-step between two data points. The relative tolerance is equal to 3 ·10−10.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 16.53 7.303·10−3 35.74
10 16.55 7.304·10−3 35.68
30 16.55 7.304·10−3 35.65
60 16.55 7.304·10−3 35.62

120 16.56 7.305·10−3 35.58

Table 5.17: Root mean square of absolute position and velocity errors, and computation time for flyby C22 as
function of the time-step between two data points. The relative tolerance is equal to 2 ·10−11.

Data acquisition
step-size [s]

RMSEposition [m] RMSEvelocity [m/s] Computation time [s]

0.5 1.462 5.484·10−4 31.03
10 1.462 5.484·10−4 31.03
30 1.462 5.488·10−4 30.86
60 1.463 5.491·10−4 30.71

120 1.463 5.494·10−4 30.40

Since the 0.5 s data acquisition step-size is the one with the largest number of data-
points and has a computation time which is roughly the same as for other observation
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frequencies (but with a greater precision, i.e. smaller RMSE), it will be chosen for all the
flybys.

5.4. SYNOPSIS: GALILEO’S FLYBYS SELECTION

Galileo has been the only spacecraft to enter the Galilean moons’ spheres of influence with
respect to Jupiter, thus only its state-related data can be useful for the purpose of this paper.

The flybys with the lowest and highest altitudes which fulfill the constraint on the Earth’s
elevation angle (i.e. its absolute value shall be less than 20°) and which will then be ana-
lyzed are I0, I33, E12, E15, G2, G29, C22 and C30.

Furthermore, the data-acquisition step-size is 0.5 s, while the relative tolerances for the
low- and high-altitudes flybys are respectively 8·10−9 and 5·10−9 for Io, 1·10−8 and 9·10−10

for Europa, 3·10−11 and 1·10−10 for Ganymede, and 3·10−10 and 2·10−11 for Callisto. They
are different, but this does not constitutes an issue, since the optimization will be done
independently for each flyby. Absolute tolerances will not be tuned, because MATLAB in-
tegrators consider only the maximum tolerance between the absolute and the product of
the relative by the state. Since the absolute tolerance can be set as small as about 2·10−16,
it has always been set to this value, but it will not be taken into account by ODE113, since
2·10−16 will always be smaller than the product of the minimum relative tolerance 2·10−14

and the state of the spacecraft in Cartesian coordinates (the integrator receives Cartesian
coordinates as inputs, since modified equinoctial elements are not provided by SPICE).



6
OPTIMIZATION

In order to improve the dynamical model used to propagate Galileo’s trajectory, optimiza-
tion will be performed. The parameters to be optimized are the components of the initial
state of the Galileo spacecraft, but also the spherical harmonics of the moon under analysis.

6.1. STATE OF THE ART OPTIMIZATION OPTIONS

In Noomen [2015], the optimization techniques are divided in analytical and numerical.
The analytical are mainly based on setting a zero derivative to get the optimum value, how-
ever this is not always possible or convenient (large amount of time to obtain reliable re-
sults), and numerical techniques are needed. This latter group is divided in other main
subgroups as in Table 6.1.
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Table 6.1: Comparison of numerical optimisation techniques (adapted from Noomen [2015]).

Technique Advantages Disadvantages
Sampling:
Grid Search simple implementation slow

need not be differentiable
not robust (limited
resolution)

Monte Carlo simple implementation simple problems only
need not be differentiable luck

not robust (limited
resolution)

Latin Hypercube sampling,
Sobol sampling

simple implementation simple problems only

need not be differentiable luck
variable combinations →
more regular sampling

not robust

Local optimisation:
Nelder-Mead simple local minimum

Newton-Raphson (1d) simple
slow convergence near
flat optimum
local minimum
and maximum

steepest descent (along axes) simple oscillations
always finds a minimum slow convergence
only storage of gradient info local minimum

steepest descent
(arbitrary direction)

always finds a minimum local minimum

better convergence than
steepest descent along axes

Hessian matrix

double-differentiable
Metaheuristics:
Genetic Algorithm
Differential Evolution
Particle Swarm Optimisation
(Adaptive) Simulated Annealing
Ant Colony Optimisation
Dynamic Programming
Interval Analysis

robust;
no need for differentiable;
good initial value not necessary;
direct aim on solution

many iterations (or
evaluations);
convergence unclear;
scales poorly with
problem size;
slow for large number
of parameters

Sampling techniques allow to find the optimum by evaluating the function in samples.
Two relevant examples of sampling techniques which are widely used are the Grid Search
and the Monte Carlo technique. In the Grid Search, the function evaluations are computed
in samples which lie in a defined grid, in which it is possible to set a specific resolution. In
the Monte Carlo technique these samples do not belong to a grid, but are instead randomly
chosen.
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Local optimization techniques allow to find only local optima by computing the deriva-
tive of the function, but may get stuck at that optimum. Furthermore, the continuously
differentiability of the function is a condition that is not always satisfied. Newton-Raphson
(1d) and the steepest descent techniques are gradient-based; indeed they require the deriva-
tive of the function in order to find the optimum, but this constitutes a limit to the general-
ity of problems that they can solve.

Metaheuristics ("methodic research at higher level", according to Noomen [2015]) tech-
niques in general do not require the differentiability of the function instead, but they need
many iterations (or evaluations). In particular, a fundamental characteristic of this al-
gorithm is that it allows the elements of the population to produce offspring (thanks to
crossover), the best of which will remain also for the next iteration (note that there are many
possible implementations of these algorithms, e.g. probability of mutation and percentage
of elitism can vary).

The Grid Search technique has been chosen, because it is simple to implement, do not
need a differentiable function and it is not based on luck. Due to the strongly demanding
computation time needed for this operation, in this chapter the process will be divided
into two phases and then iterated. During the first phase, a Grid Search technique will
be performed for each flyby with the components of the initial state as parameters to be
estimated, while, during the second, another Grid Search will be done per flyby with the
moons’ spherical harmonics as inputs. The goal is to achieve the minimum root mean
square error from the JPL ephemerides.

6.2. FIRST INITIAL STATE GRID SEARCH

In order to obtain simulations which better approximate the JPL ephemerides, the resolu-
tion of the deviations from the initial state has been set to 0.25 m for each position compo-
nent and 0.25·10−3 m/s for each velocity component, since with these variations the RMSE
on position and velocity have been tested to have variations of respectively less than 1·10−2

m and 1·10−5 m/s.

Since there are six components which can be subjected to their nominal values, if ev-
eryone had n possibility of variations, the amount of time needed to complete the Grid
Search would be n6 times that of a single propagation. In order to allow for a perturbation
of only ±1 m (and ±1 mm/s), n should be 9, i.e. 4 positive, 4 negative and the nominal one.
This would lead to more than 500,000 combinations and hence to a total amount of time
of about one year per flyby, by considering one minute as the time needed to propagate a
single flyby. Due to the restricted time availability, a non-straightforward approach to the
Grid Search has been adopted. It has been chosen to perturb each component by ±0.25 m
(and±0.25·10−3 m/s), choose the best set and perturb its components by the same amount,
finally do it iteratively until convergence. This leads to a much faster optimization, since it
does not take into account the area of minor interest.

Grid Search simulations have been performed so that an optimal and potential new ini-
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tial state would result: the one with the least RMSE = RMSEpos + RMSEvel . This particular
objective has been chosen since it gives the greatest importance to position but still con-
siders velocity when small variations of the initial state are required. Note that it has been
tested that the same result would have been obtained by minimizing RMSEpos only, how-
ever when further refinements are needed, RMSEvel becomes important. Note also that by
minimizing only RMSEvel , the initial state would be completely different and in particular
RMSEpos would be much higher, because for now the greatest error is related to the posi-
tion. The reader will of course notice that an error in any acceleration would cause a certain
variation in velocity, its integral, but a much greater one on the position, since this latter is
the integral of the velocity, i.e. the double integral of the acceleration.

Values for RMSEpos and RMSEvel (before and after having done the Grid Searches with
steps in the initial state of 0.25 m and 0.25·10−3 m/s) are provided in Table 6.2.

Table 6.2: Values of RMSEpos and RMSEvel before and after the Grid Searches performed with a step-size of
0.25 m and 0.25·10−3 m/s.

Flyby ID
RMSEpos before

Grid Search
[m]

RMSEpos after
Grid Search

[m]

RMSEvel before
Grid Search
[10−3 m/s]

RMSEvel after
Grid Search
[10−3 m/s]

I33 7.216 2.598 13.72 10.32
I0 0.240 0.159 1.301 1.240

E12 13.20 7.515 13.29 9.743
E15 0.984 0.396 1.047 0.846
G2 1.320 0.498 0.722 0.651

G29 0.570 0.355 0.408 0.351
C30 16.52 7.500 7.302 6.303
C22 1.454 0.581 0.548 0.420

Table 6.3 provides the variations of the initial state in J2000 coordinates as resulting
from the Grid Search technique. Clearly, the total changes are multiples of 0.25 m and
0.25·10−3 m/s for position and velocity, respectively.

Table 6.3: Variations of the initial state in J2000 coordinates as a result of the Grid Search technique.

Flyby ID
∆x0

[m]
∆y0

[m]
∆z0

[m]
∆vx0

[10−3 m/s]
∆vy0

[10−3 m/s]
∆vz0

[10−3 m/s]
I33 +3.00 -2.25 +2.75 -6.75 +5.50 -6.25
I0 +0.00 +0.00 +0.00 +0.25 +0.25 -0.25

E12 +3.00 -4.50 +0.50 -4.75 +6.50 -0.50
E15 +0.25 +0.00 -0.25 -0.75 +0.25 +0.25
G2 -0.25 -0.25 -0.25 +0.25 -0.25 +0.00

G29 -0.25 -0.25 -0.25 +0.25 +0.00 +0.00
C30 -3.50 -4.75 +11.50 +2.00 +2.00 -5.25
C22 +0.00 -0.50 +0.50 +0.00 +0.25 -0.25
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6.3. FIRST SPHERICAL HARMONICS GRID SEARCH

Next, another Grid Search will be performed with the same relative tolerances already de-
fined, but this time with the Galilean moons’ spherical harmonics as parameters, in order
to improve their gravity field and the results of this project.

6.3.1. SENSITIVITY CONSIDERATIONS

By looking at the papers which show the values of these moons’ spherical harmonics, it can
be seen that the ratio between the formal uncertainty and the nominal value is in general
equal to 1 ·10−6 for the gravitational parameter µ, 1 ·10−2 for the zonal harmonics Jn , and
1 ·10−1 for the tesseral harmonics Jn,m . The formal uncertainties can be used to perform
a sensitivity analysis: by changing the nominal values of the moons’ µ, Jn and Jn,m up to
their formal uncertainties, but also the µ of the third bodies which are not Galilean moons
(Sun and Jupiter) and the Jovian J2, the root mean square errors on position and velocity
change, since they are the parameters that affect the objective value in the simulation. If
these RMSE respectively change by less than 1·10−2 m and 1·10−5 m/s, then the parameter
under analysis can be neglected and it will not play a role in the Grid Search which is going
to be performed.

In the estimation process, all the known harmonics and those of one order greater than
the highest known one will be considered. Since it can be assumed that the nominal values
for these latter harmonics are zero, but there are no uncertainties, it can also be assumed
that the uncertainties are 100·10−6 for the zonal harmonics and 10·10−6 for the tesseral ones
(realistic values induced by looking at the spherical harmonics that are known). Please note
that only J2 and C2,2 are excluded from this range because of their great importance, how-
ever nominal values and corresponding formal uncertainties are provided for each moon,
so they do not create any problem with respect to this assumption.

According to the papers which furnished the Galilean spherical harmonics, it is com-
mon practice to use a sensitivity of 0.1·10−6 (hence, same for the Grid Search step-size) for
their evaluation, and for this reason this will be also the sensitivity used in this project. The
only exception is Ganymede since it has already a very precise gravity field, for which a Grid
Search step-size of 0.001·10−6 is required.

6.3.2. FIRST SPHERICAL HARMONICS ESTIMATES

The performed Grid Searches provide two interesting results. The first is that the µ of the
Sun, Jupiter and the Galilean moons, as well as the Jovian J2 are very precise and changes in
their values do not lead to any improvement. The second interesting result is that for each
set of flybys of a specific moon, the same estimates for the spherical harmonics have been
obtained through the Grid Search.

Table 6.4 provides the literature values for some nominal spherical harmonics coeffi-
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cients, evaluated new values for them (in cyan) and estimated values for other new ones
(in yellow) as resulting from the Grid Search optimization. The variation between the new
and old values are also shown. Note that more decimal places for these values can be found
in Table F.1 in Appendix F.

Table 6.4: Literature values for some nominal spherical harmonics, evaluated new values for them (in cyan)
and estimated values for other new ones (in yellow) as resulting from the Grid Search optimization are

presented. The variation between the new and the old values are also shown. Note that more decimal places
for these values can be found in Table F.1 in Appendix F.

Moon Old spherical harmonics [10−6] New spherical harmonics [10−6] Variation of spherical harmonics [10−6]
J2 = 1845.9 J2 = 1842.6 ∆J2 = -3.3

S2,1 = N.A. (0.0) S2,1 = 0.8 ∆S2,1 = 0.8
C2,2 = 553.7 C2,2 = 552.5 ∆C2,2 = -1.2

C3,2 = N.A. (0.0) C3,2 = -0.4 ∆C3,2 = -0.4
Io

C4,1 = N.A. (0.0) C4,1 = -0.5 ∆C4,1 = -0.5
J2 = 435.5 J2 = 432.3 ∆J2 = -3.2
S2,1 = 14.0 S2,1 = -1.0 ∆S2,1 = -15.0

C2,2 = 131.5 C2,2 = 129.0 ∆C2,2 = -2.5
C3,2 = N.A. (0.0) C3,2 = -0.7 ∆C3,2 = -0.7
S3,3 = N.A. (0.0) S3,3 = -1.0 ∆S3,3 = -1.0

Europa

J4 = N.A. (0.0) J4 = 2.1 ∆J4 = 2.1
Ganymede J9 = N.A. (0.000) J9 = 0.014 ∆J9 = 0.014

J2 = 32.7 J2 = 33.3 ∆J2 = 0.6
C2,1 = 0.0 C2,1 = 1.0 ∆C2,1 = 1.0
S2,1 = 0.0 S2,1 = 1.6 ∆S2,1 = 1.6

C2,2 = 10.2 C2,2 = 9.9 ∆C2,2 = -0.3
S2,2 = -1.1 S2,2 = -0.8 ∆S2,2 = 0.3

C3,2 = N.A. (0.0) C3,2 = -0.1 ∆C3,2 = -0.1

Callisto

S3,2 = N.A. (0.0) S3,2 = -0.2 ∆S3,2 = -0.2

Please note that, among the changed ten spherical harmonics, only the updates on Eu-
ropa’s ∆S2,1 and Callisto’s ∆C2,1 are beyond the formal uncertainties provided by the cor-
responding papers, i.e. 12.0·10−6 (page 2020 of Anderson et al. [1998]) and 0.3·10−6 (page
157 of Anderson et al. [2001]). This means that the other eight coefficients lie inside the
uncertainty range in which their true values are more probable to be, while these latter two
not.

Values for RMSEpos and RMSEvel (before and after the Grid Searches performed with a
step-size of 0.1·10−6 (and 0.001·10−6 for Ganymede)) are presented in Table 6.5, of course
with the new initial states shown in Table 6.3.
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Table 6.5: Values of RMSEpos and RMSEvel before and after the Grid Searches performed with a step-size of
0.1·10−6 (and 0.001·10−6 for Ganymede), with the new initial states shown in Table 6.3.

Flyby ID
RMSEpos before

Grid Search
[m]

RMSEpos after
Grid Search

[m]

RMSEvel before
Grid Search
[10−3 m/s]

RMSEvel after
Grid Search
[10−3 m/s]

I33 2.598 2.422 10.32 9.322
I0 0.159 0.156 1.240 1.235

E12 7.515 2.708 9.743 6.110
E15 0.396 0.359 0.846 0.805
G2 0.498 0.486 0.651 0.639

G29 0.355 0.354 0.351 0.350
C30 7.500 6.446 6.303 5.351
C22 0.581 0.567 0.420 0.298

6.4. SECOND INITIAL STATE GRID SEARCH

Now the Grid Searches which have as parameters the initial state components of the Galileo
spacecraft will be performed again, but this time with the new spherical harmonics, to re-
fine the results.

Values for RMSEpos and RMSEvel (before and after the second round of Grid Searches
performed with a step-size of 0.25 m and 0.25·10−3 m/s) are presented in Table 6.6.

Table 6.6: Values of RMSEpos and RMSEvel before and after the second round of Grid Searches performed
with a step-size of 0.25 m and 0.25·10−3 m/s.

Flyby ID
RMSEpos before

Grid Search
[m]

RMSEpos after
Grid Search

[m]

RMSEvel before
Grid Search
[10−3 m/s]

RMSEvel after
Grid Search
[10−3 m/s]

I33 2.422 2.247 9.322 9.090
I0 0.156 0.147 1.235 1.197

E12 2.708 2.347 6.110 6.018
E15 0.359 0.359 0.805 0.805
G2 0.486 0.478 0.639 0.638

G29 0.354 0.354 0.350 0.350
C30 6.446 5.989 5.351 5.131
C22 0.567 0.481 0.298 0.295

Table 6.7 provides the variations of the initial state in J2000 coordinates (with respect
to the last initial state, defined in Table 6.3) as resulting from the second round of the Grid
Search technique.
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Table 6.7: Variations of the initial state in J2000 coordinates (with respect to the last initial state, defined in
Table 6.3) as resulting from the the second round of Grid Search technique.

Flyby ID
∆x0

[m]
∆y0

[m]
∆z0

[m]
∆vx0

[10−3 m/s]
∆vy0

[10−3 m/s]
∆vz0

[10−3 m/s]
I33 -0.25 +0.50 -0.50 +0.75 -0.75 +1.00
I0 +0.00 +0.00 +0.00 +0.00 -0.25 +0.00

E12 +0.25 +1.00 +0.00 +0.25 -1.00 +0.25
E15 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
G2 +0.00 +0.25 +0.00 +0.00 +0.00 +0.00

G29 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00
C30 -0.50 +0.00 -1.25 +0.00 +0.00 +0.75
C22 +0.00 +0.00 +0.25 +0.00 +0.00 +0.00

Note that there are two flybys, E15 and G29, which have not been subjected to any fur-
ther variation in the initial state, thus the next spherical harmonic Grid Search will not be
performed again for them, since the results would not change.

6.5. SECOND SPHERICAL HARMONICS GRID SEARCH

The second round of spherical harmonics coefficients by means of Grid Search shows no
improvement: all the flybys have the same spherical harmonics as before, and thus the
same RMSE. In particular, note from Table 6.7 that the flybys are either not subjected to
any change in initial state or just for a very small amount. This means that the end of the
iterative harmonics coefficients estimation process (and of course of the initial state Grid
Searches as well) has been reached. Note that this fact is not an indication of a missing per-
turbation, rather of convergence: the proposed model fits the nominal JPL ephemerides at
its best. Remember that also these latter ones are affected by error.

6.6. SYNOPSIS: OPTIMIZATION OUTCOMES

Tables 6.4 and 6.7 respectively show the values of the Galilean moons’ spherical harmon-
ics as estimated through the Grid Search technique, and the variation in the J2000 moon-
centered initial state of the Galileo spacecraft with respect to the JPL ephemerides.

Table 6.6 contains instead the final values of the RMSE for both position and velocity.
Due to the fact that all the RMSE on the position are smaller than 9 m (maximum error
on JPL ephemerides), it is assessed that the quality of the optimized trajectories appear to
be high. In particular, a small RMSE indicates that the corresponding optimized trajectory
is very similar to the nominal JPL one, i.e. the most probable to be correct (among the
trajectories which can be created by allowing a variation from it of up to 9 m).
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FURTHER RESULTS

In this chapter, physical considerations related to the estimates of some spherical harmon-
ics coefficients will be presented, along with the verification of these latter ones by means
of the study of eight other flybys. Then, the obtained errors will be interpreted, decom-
posed along the LO-axes and finally related to the initial Keplerian elements (of the orbits
corresponding to those flybys) and the Earth’s elevation angle.

7.1. PHYSICAL CONSIDERATIONS

This section does not present a prime objective of the research, but rather a by-product:
the determination of the hydrostaticity of the Galilean moons.

A moon is said to be in hydrostatic equilibrium when gravity and pressure gradient
forces balance themselves (page 63 of White [2008]). It is now interesting to understand
which body, if any, among the Galilean moons can be considered to be in this state. Ac-
cording to page 1190 of Gao and Stevenson [2013], this happens to be the case when the
ratio between J2 and C2,2 of a synchronously rotating body is 10/3.

Since all the four moons are synchronous, only their J2
C2,2

ratio remains to be computed.
A new parameter λnh , which indicates the deviation from the hydrostatic state, is defined
in Equation (7.1) (page 1190 of Gao and Stevenson [2013]):

λnh = 100 ·
J2

C2,2
− 10

3

10
3

% (7.1)

It can be said that the bigger |λnh | is, the less hydrostatic a body will be.
By using the old and new values of J2 and C2,2 as presented in Table 6.4, the correspond-

ing computed values of λnh are shown in Table 7.1.

51
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Table 7.1: Values of λnh as computed by using the old and the new spherical harmonics coefficients. The
variation between the new and the old values are also shown.

Moon
λnhOLD

[%]
λnhN EW

[%]
∆λnh

[%]
Io 0.013 0.051 0.038

Europa -0.646 0.535 1.181
Ganymede -0.101 -0.101 0.000

Callisto -3.824 0.909 4.733

By looking at the second and third columns of Table 7.1, it can be seen how Io turned
out to be less hydrostatic than previously thought, while Europa and Callisto are apparently
more hydrostatic (it is the absolute value of λnh which determines the nonhydrostaticity).
Ganymede exhibits the same λnh value, since its J2 and C2,2 did not change during the Grid
Searches.

A more direct visualization of these conclusions can be obtained by looking at the leg-
end of Figure 7.1: all the Galilean moons have a J2

C2,2
ratio near the hydrostatic one (nearer

than the Moon, and much nearer than planets like the Earth, Mars and Jupiter, which are
definitely nonhydrostatic), however none of those is perfectly hydrostatic.

Figure 7.1: J2 and C2,2 of the Galilean moons, and their ratio (for hydrostatic considerations). Also the values
for the Moon (page 1429 of Konopliv et al. [2013]), the Earth (page 529 of Wakker [2015]), Mars (page 6 of Liu
et al. [2012]) and Jupiter (page 370 of Campbell and Synnott [1985]) are presented for comparison purposes.

From Figure 7.1, it can be realized that, while the planets orbit about the Sun, they do
not change their shape much (Jupiter in particular): this leads to high internal stresses,
since they are not released in a shape deformation of the body itself. This is different for the
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analyzed moons, the Galilean in particular, since they are subjected to a change in shape
which hence allows to decrease the internal stresses.

It shall be noticed that, if the ratio is higher than the one for hydrostaticity (true for all
the bodies except Ganymede), then it can be induced that J2 is higher than the hydrostatic
J2 and/or C2,2 is less than the hydrostatic C2,2; when the ratio is less than the hydrostatic
one instead (true only for Ganymede), it is vice-versa. In order to have a better physical
insight, please remember that J2 is a zonal harmonic and thus the acceleration it causes
depends only on latitudeφ (and so how much the radius changes by changing the latitude),
while C2,2 is sectorial, hence only the longitude λ (and so how much the radius changes by
changing longitude) affects the related acceleration.

Due to the fact that J2 and C2,2 have a certain accuracy, according to Michigan State
University [2003] the maximum error on λnh is given by Equation (7.2):

δλnh =
√(

∂λnh

∂J2
δJ2

)2

+
(
∂λnh

∂C2,2
δC2,2

)2

=
√√√√(

30

C2,2
δJ2

)2

+
(
− 30J2

C 2
2,2

δC2,2

)2

=

= 30

C2,2

√(
δJ2

)2

+
(

J2

C2,2
δC2,2

)2
(7.2)

where δλnh , δJ2, δC2,2 indicate the accuracy of λnh , J2 and C2,2.

The accuracy of J2 and C2,2 is 0.1 ·10−6, thus the values for the accuracy of δλnh as given
by Equation (7.2) are presented in Table 7.2.

Table 7.2: Values of the accuracy of λnh for the new spherical harmonics.

Moon
δλnhN EW

[%]
Io 1.9 ·10−8

Europa 8.1 ·10−8

Ganymede 2.6 ·10−7

Callisto 1.1 ·10−6

Since δλnh is very small for every moon, it can be concluded that the nominal values
presented in Table 7.1 are accurate, and thus the possible errors on λnh do not affect the
determination of the hydrostaticity of the bodies.

7.2. VERIFICATION OF THE SPHERICAL HARMONICS COEFFICIENTS

In order to prove that the new spherical harmonics better approximate the gravitational
field of the Galilean moons, eight other flybys have been chosen from Table 5.1. Their initial
state have been optimized (as done before for the previous flybys) and finally the root mean
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square errors have been computed with both the old and new harmonics coefficients. The
new flybys are I25, I31, G1, G28, E6, E26, C9 and C10, since they are the ones with the lowest
altitude (they can be expected to be more sensitive to gravity field perturbations and have
greater RMSE, thus they can give more interesting results) which do not have a very high
Earth’s elevation angle (I32 has not been chosen for this reason, since it has an elevation
angle of 51.4°).

Table 7.3 provides the variations of the initial state in J2000 coordinates as resulting
from the Grid Search technique (by using the relative tolerances already used for the low-
altitude flybys: for their values, the reader is referred to Section 5.4) and the gravitational
field with the new spherical harmonics coefficients estimates presented in Table 6.4.

Table 7.3: Variations of the initial state in J2000 coordinates of the new eight flybys as resulting from the Grid
Search technique.

Flyby ID
∆x0

[m]
∆y0

[m]
∆z0

[m]
∆vx0

[10−3 m/s]
∆vy0

[10−3 m/s]
∆vz0

[10−3 m/s]
I25 -1.50 -2.00 +5.00 +4.00 +4.75 -10.75
I31 +7.00 -2.00 -7.50 -13.00 +4.25 +12.75
E6 +2.75 +1.50 -3.75 -3.50 -2.50 +4.25

E26 +3.00 -2.50 +2.50 -7.25 +5.75 -5.25
G1 -0.50 +0.50 -2.50 +0.25 -0.50 +1.50

G28 +0.00 +0.25 +0.25 +0.00 -0.25 +0.00
C9 -0.75 -1.25 +4.75 +0.25 +0.50 -1.75

C10 -0.75 -0.25 +1.25 -0.25 +0.25 -0.50

Values for RMSEpos and RMSEvel (before and after the Grid Searches performed with a
Grid Search step-size of 0.25 m and 0.25·10−3 m/s) are provided in Table 7.4.

Table 7.4: Values of RMSEpos and RMSEvel before and after the Grid Searches performed with a Grid Search
step-size of 0.25 m and 0.25·10−3 m/s.

Flyby ID

RMSEpos

with old
spherical

harmonics
[m]

RMSEpos

with new
spherical

harmonics
[m]

RMSEvel

with old
spherical

harmonics
[10−3 m/s]

RMSEvel

with new
spherical

harmonics
[10−3 m/s]

I25 3.457 3.268 12.339 11.244
I31 6.796 6.649 23.479 21.218
E6 4.649 2.499 5.727 5.537

E26 3.036 2.618 11.026 10.696
G1 0.385 0.384 0.453 0.452

G28 0.315 0.314 0.590 0.581
C9 3.618 3.414 3.297 2.659

C10 2.634 1.578 1.275 1.014

All these flybys have a RMSE greater than those of the flybys analyzed before (RMSE in
Table 6.6), with the exception that G2 has a RMSE greater than that of G1 and G28, and that
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C30 has one greater than that of C9 and C10. This can be explained by the fact that G2 has
a closest-approach altitude of 261 km, while G1 and G28 of 835 and 809 km, respectively,
and C30 of 138 km, but C9 and C10 of 418 and 535 km, according to Table 5.1. Relevant
conclusions of this are treated in a stand-alone section, i.e. Section 7.3.

7.3. INTERPRETATION OF THE OBTAINED RMSE

In this section, the RMSE will be interpreted and possible causes will be addressed, so that
it can be reduced in further missions. In particular, the error will be related to the three
axes of the LO frame, as well as to the Earth’s elevation and azimuth angles.

Figure 7.2 presents a graphical representation of the variables which are going to be
analyzed, i.e. ~rS/C−M ,~rM−E ,~rS/C−E , el , az, elM and azM (note that the moon itself, az and
azM lie in the XLOYLO plane).

Figure 7.2: Graphical representation of the LO frame, the relative position of the spacecraft, a generic moon
and the Earth, and also of the elevation and azimuth angles of the Earth as seen from the spacecraft (el , az)

and the moon (elM , azM ).

From Figure 7.2, the System of Equation (7.3) can be written:
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~rS/C−M =~rS/C−E −~rM−E

~rS/C−E = rS/C−E


cos(el ) · cos(az)

cos(el ) · si n(az)

si n(el )




X̂LO

ŶLO

ẐLO


~rM−E = rM−E


cos(elM ) · cos(azM )

cos(elM ) · si n(azM )

si n(elM )




X̂LO

ŶLO

ẐLO


(7.3)

Reference axes for az and azM are different in sign, but this does not constitute a prob-
lem, because these angles simply measure the angular distance between two vectors ex-
actly as indicated in Figure 7.2, so the different directions of the axes do not create an issue.

Furthermore, for every analyzed flyby, |elM − el | < 1 ·10−4 deg and |azM −az| < 1 ·10−3

deg, so it will be assumed that these differences are negligible.

Note that a small perturbation (e.g. an observation error) in ~rS/C−E and/or ~rM−E will
then affect~rS/C−M as described in Equation (7.4):

δ~rS/C−M ≈ (
δrS/C−E −δrM−E

)cos(el ) · cos(az)
cos(el ) · si n(az)

si n(el )

X̂LO

ŶLO

ẐLO

 (7.4)

This clearly indicates that the distance between spacecraft and moon is computed from
two other observed distances (i.e. rS/C−E and rM−E ) and that observation errors on these
have a specific impact on the final value of each component of~rS/C−M , according to Equa-
tion (7.4).

Note also that for simplicity el can be assumed as constant as a first approximation,
since its value changes for less than 0.1° during the flyby, since the distance between the
spacecraft and the Earth is very large, while az cannot because it can vary for almost 180°,
since it depends on the angular relative position of the two bodies and the spacecraft itself.

For completeness, also the expressions for the elevation el and the azimuth angle az
are presented in Equations (7.5) and (7.6):

el = π

2
−at an2

(
||~rSC−E x ẐLO ||,~rSC−E · ẐLO

)
(7.5)

az = at an2
(
||~rSC−E cos(el )x X̂LO ||,~rSC−E cos(el ) · X̂LO

)
(7.6)

Note that the first argument of the atan2 function is the norm of a cross product, thus
the product of the magnitude of the two vectors by the sinus of the angle between them,
while the second is a scalar product, thus the product of the magnitude of the two vectors
by the cosinus of the angle between them. Clearly, the atan2 allows for the determination
of the angle between these vectors.



7.3. INTERPRETATION OF THE OBTAINED RMSE 57

In particular, when the elevation angle is high, then the cross-track error (ẐLO direc-
tion) will be relatively large. In particular it can be seen from Table 5.1 that Callisto’s flybys
are the ones with the lowest Earth’s elevation angles, but they are also the ones with the
highest RMSE (see Table 6.6): according to Equation (7.4), it can hence be assumed that(
δrS/C−E −δrM−E

)
is quite large for Callisto’s flybys. Please note that, in Appendix G, Fig-

ures G.1 to G.32 show the error decomposed along the three LO axes, for each of the 16
analyzed flybys.

It is now of interest to understand the relation between the directions of the errorδrS/C−M

and the errors in the initial Keplerian elements. The equations for the radial, along-track
and cross-track errors as a function of Keplerian elements are for hyperbolic orbits (modi-
fied from page 6 of Born [2002]) given by the System of Equations (7.7):



R ≈
(
1−e · cosh(θ)+ 3

2
e·si nh(θ)·n·∆t

e−1

)
·∆a+

−a ·e · si nh(θ) ·∆θ0 −a ·
(
cosh(θ)+ si nh(θ) · (1+ cos(θ)

) · si n(θ) · cos2(θ)
)
·∆e

A ≈ r
(
∆ω+∆θ0 − 3

2
n·∆t

a·(e−1) ·∆a + cos(i ) ·∆Ω+
(

1+cos(θ)
)
·si n(θ)·cos2(θ)

e ·∆e
)

C ≈ r
(
si n

(
ω+ (e −1) ·θ) ·∆i − cos

(
ω+ (e −1) ·θ) · si n(i ) ·∆Ω

)
(7.7)

Table 7.5 shows the main error directions (they are the main at the first instant of propa-
gation, as well as on average), initial Keplerian elements and initial errors on the Keplerian
elements, after the performance of the Grid Search; the relation between them and the
System of Equations (7.7) is highlighted through the use of colors.
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Table 7.5: Main error directions (R stands for Radial, A for Along-track and C for Cross-track direction), initial
Keplerian elements and initial errors on the Keplerian elements, after the performance of the Grid Search. R
is red, A is blue, C is green, the combination of R and A is purple, the one of R and C is yellow, while the one

of A and C is cyan.

Flyby
ID

Main
error
axis

a0

[km]
e0

-
i0

[deg]
ω0

[deg]
Ω0

[deg]
θ0

[deg]
∆a0

[mm]
∆e0

[10−6]

∆i0

[10−6

deg]

∆ω0

[10−6

deg]

∆Ω0

[10−6

deg]

∆θ0

[10−6

deg]
I33 C -82 24 127 240 235 282 12 2 136 10 16 1
I0 A -27 102 17 186 333 290 0.04 4 1 10 9 0.9

I31 R,A,C -134 16 90 115 58 282 67 44 157 121 182 68
I25 R,A -106 21 90 250 236 284 42 55 14 100 0.9 62
E12 A -88 21 22 164 338 278 25 65 2 20 101 47
E15 R,A -81 51 29 154 31 294 9 4 1 0.8 7 6
E26 C -26 75 123 240 236 281 4 25 140 13 23 2
E6 R,A,C -107 21 150 216 213 281 27 35 79 33 100 32
G2 R,C -174 18 85 112 75 274 8 0.3 12 0.8 7 0.1

G29 R,A,C -92 55 73 115 58 281 2 4 3 0.1 3 0.6
G28 R,A,C -81 44 143 229 209 277 3 1 5 5 6 0.2
G1 C -179 20 40 116 54 276 0.3 6 30 36 39 3

C30 C -81 32 153 157 148 272 2 22 54 367 419 4
C22 C -103 47 155 175 183 276 3 0.5 2 15 17 0.1
C9 C -115 26 156 220 175 272 2 5 55 110 123 1

C10 R,A,C -114 27 29 131 5 272 5 14 19 36 44 4

For example, flyby I33 has a great error in the cross-track direction, because it has a high
value of ∆i0, which influences exactly that direction, according to the System of Equations
(7.7). Flyby I0 has the main error in the along-track direction, since it has small values of
semi-major axis and inclination, but relevant∆ω0 and∆Ω0. The reader will notice that∆Ω0

of course influences also the cross-track error, but this latter is proportional to the sinus of
the inclination, while the along-track one is proportional to its cosinus and of course if the
value of the inclination is low as in this case, the error will mostly be in the along-track di-
rection. By applying this reasoning to every flyby, Table 7.5 has been filled in.

Note from Table 7.5 that all the Ganymede’s and Callisto’s flybys have a relevant error
in the cross-track direction, in fact the greatest variation in the initial state after the Grid
Searches is always in this direction. This is due to the fact that these moons possess a great
sphere of influence and thus at the first instant the distance between their center of mass
and the spacecraft is high. In this way, the along-track error would be relevant as well ac-
cording to the System of Equations (7.7), however these flybys are also characterized by a
relatively high ∆i0, while ∆θ0, ∆a0 and ∆e0 are quite low.

Figures (7.3) to (7.6) show the RMSE for position and velocity with respect to the closest-
approach altitude and the Earth’s elevation angle.
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Figure 7.3: Graphical representation of the RMSE on position as a function of the closest-approach altitude.

Figure 7.4: Graphical representation of the RMSE on position as a function of the Earth’s elevation angle.
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Figure 7.5: Graphical representation of the RMSE on velocity as a function of the closest-approach altitude.

Figure 7.6: Graphical representation of the RMSE on velocity as a function of the Earth’s elevation angle.

It can thus be realized that in general a lower closest-approach altitude (by compar-
ing flybys about the same moon) implies a higher error, but there are some exceptions for
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which this does not happen. However, in all these cases the Earth’s elevation angle for the
flyby with a higher closest-approach altitude is always larger, thus its observation data are
less accurate: high values of elevation can lead to a very low variation of the spacecraft’s
distance from Earth, thus the acquisition data made through Doppler effect analyses may
be not so accurate.

It is thus shown how the Earth’s elevation angle is a very important parameter which
does play a fundamental role in the final accuracy of the trajectory. For this reason, it is
pointed out that, in order to limit the final error on the trajectory already in the design
phase of a mission, it is of great importance not only limit the minimum closest-approach
altitude, but also the maximum Earth’s elevation angle. As can be seen in Figures 7.3 to 7.6,
it is indeed possible to have a flyby with a better accuracy than one with a slightly higher
closest-approach altitude if the elevation angle of the former is lower.

7.4. SYNOPSIS: ANALYSIS OF THE RESULTS

The new spherical harmonics coefficients lead to a small variation in the estimate of hydro-
staticity of the Galilean moons, which have been proven to be in an almost perfect hydro-
static equilibrium. The estimated harmonics have been also proven to perform better than
the literature ones for eight other flybys too. Then, the error has been related analytically
to the three axes of the LO frame by means of the Systems of Equations (7.4) and (7.7). A
relevant conclusion is that the propagation of a spacecraft’s trajectory about bodies with
a great sphere of influence are more subjected to errors in the along-track and cross-track
directions; furthermore if ∆i0 is relatively high, then the latter outclasses the former.

Moreover, the Earth’s elevation angle has been shown to be an important parameter
which, for flybys with similar altitudes, can determine which of those will have the best
data accuracy, i.e. the one with the lowest elevation angle.
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8
VALIDATION

In this chapter, the validation of the MATLAB (version R2016b) script by means of the al-
ready validated ASTOS software (version 9.0.0) is presented.

8.1. VALIDATION OF THE MATLAB SCRIPT WITH ASTOS

A test-case scenario is chosen and its results, in terms of final state, will be compared be-
tween the two softwares and of course the JPL ephemerides. The test-case scenario is flyby
I33, since it is the one with the lowest altitude, thus the one in which the gravitational per-
turbations will be relatively high. Please note that by comparing for example an unper-
turbed two-body problem, it would not be possible to deduce as much as in a perturbed
case, in which instead also the disturbances are taken into account.

Unfortunately ASTOS does not support the possibility of using the spherical harmonics
of a non-central body, i.e. the Jovian J2 cannot be used.

By using Io’s known values of J4, C3,1, C3,3, C4,2, C4,4, the new ones of J2 and C2,2, along
with the estimated S2,1, C3,2 and C4,1 (from Section 6.3) and the corresponding new initial
state (from Section 6.4), the I33 flyby can be simulated in both MATLAB and ASTOS and
the final state can finally be checked. In order to have the same inputs, an ODE45 (Runge-
Kutta 4(5)) with a relative tolerance of 1·10−10 has been used, since ASTOS does not allow
lower relative tolerances, neither an Adams-Bashforth-Moulton PECE integrator. Note that
this, along with the neglect of the Jovian J2, will result in a loss of accuracy, but this is of no
concern now, since the purpose is just the comparison of the two softwares.

The final state produced at the end of the propagation by ASTOS is described by the
System of Equations (8.1):
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xA =−660555.9381926542 m

y A =−6547759.5055887220 m

zA =−4244934.660600572 m

vxA =−2316.8489620832 m/s

vy A =−7624.6180913323 m/s

vzA =−3220.1063463816 m/s

(8.1)

The final state furnished by the MATLAB script is presented in the System of Equations
(8.2): 

xM =−660555.937819105 m

yM =−6547759.50496799 m

zM =−4244934.66035191 m

vxM =−2316.84896189603 m/s

vyM =−7624.61809136641 m/s

vzM =−3220.10634640675 m/s

(8.2)

The absolute and relative differences between the MATLAB final state and the ASTOS
one are presented in Systems of Equations (8.3) and (8.4)

∆x ≈ 3.7 ·10−4 m

∆y ≈ 6.2 ·10−4 m

∆z ≈ 2.5 ·10−4 m

∆vx ≈ 1.9 ·10−7 m/s

∆vy ≈−3.4 ·10−8 m/s

∆vz ≈−2.5 ·10−8 m/s

(8.3)



∆x
xA

≈−5.7 ·10−10

∆y
y A

≈−9.5 ·10−11

∆z
zA

≈−5.9 ·10−11

∆vx
vxA

≈−8.1 ·10−11

∆vy

vy A
≈ 4.5 ·10−12

∆vz
vzA

≈ 7.8 ·10−12

(8.4)

It can be concluded that, since the differences in the norm of the final Galileo position
and velocity are only 7.7·10−4 m and 1.9·10−7 m/s (definitely negligible for the aim of this
research), the MATLAB script is validated.

Note that ASTOS 9.0.0 also allows for the usage of solar radiation pressure and relativis-
tic effects, which have been tested for this flyby with the worst-case scenario parameters
described in Subsections 3.6.3 and 3.6.6: in ASTOS, both of them reported a variation of
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less than 1·10−2 m and 1·10−5 m/s respectively for the norms of the final position and veloc-
ity. Hence, it is a clear confirmation of the negligibility of the two greatest non-considered
perturbations.

8.2. SYNOPSIS: VALIDATION OF THE SCRIPT

The comparison of the I33 flyby simulated with both MATLAB and ASTOS 9.0.0 allowed to
conclude that the MATLAB script is validated, since the difference between the norms of
the final Galileo’s position and velocity are only 7.7·10−4 m and 1.9·10−7 m/s. Furthermore,
since the addition of general relativity and solar radiation pressure in the software devel-
oped by Astos Solutions GmbH has led to negligible variations of the final state, ASTOS
proved the negligibility of these perturbations.
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9
CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the conclusions will be treated: in particular, final considerations about
what has been done will be presented, and possible consequences, also for real life mis-
sions, will be identified. Finally, recommendations to the reader will be provided.

9.1. FINAL CONSIDERATIONS

Two flybys per moon have been chosen to be analyzed, depending on their closest-approach
altitude and Earth’s elevation angle: I33, I0, E12, E15, G2, G29, C30 and C22. The equations
of motion in equinoctial elements of the perturbed two-body problem have been propa-
gated in the pseudo-inertial J2000 reference frame centered in the Galilean moon about
which the spacecraft is flying, by means of the ODE113 MATLAB integrator with a relative
tolerance of about 2·10−14. The perturbations used are the third-body perturbation of Sun,
Jupiter and the three moons different from the central one, but also the Jovian J2 and all the
available central body’s spherical harmonics.

The initial state and the spherical harmonics have been optimized in such a way that
the minimum root mean square error with respect to the JPL ephemerides is obtained. Fur-
thermore the harmonics coefficients S2,1, C3,2 and C4,1 of Io, C3,2, S3,3 and J4 of Europa, J9

of Ganymede, C3,2 and S3,2 of Callisto have been estimated ex novo. The updated values of
J2 and J2,2 of Io, Europa and Callisto led to a corresponding determination of their hydro-
staticity, for which the inner moon resulted to be less hydrostatic, while the other two to be
more hydrostatic than previously thought. Note however that all the four Galilean moons
are almost perfectly hydrostatic (slightly more than the Moon, and much more than plan-
ets like Mars, Earth or Jupiter) and hence that the internal stresses are mostly released as
shape changes during their orbits about Jupiter.

Eight other flybys (I25, I31, G1, G28, E6, E26, C9 and C10) have been studied and have
shown that the new harmonics perform better than the old for the selected cases. Further-
more, the magnitude of the error on the position of the spacecraft with respect to the moon
depends on the accuracy of the position of these two bodies with respect to the Earth, while
the magnitude of its components along the LO axes depends on the elevation and azimuth
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at the observation time. Note that it is possible to relate the radial, along-track and cross-
track errors to specific errors in the Keplerian elements; it is highlighted that Ganymede
and Callisto which are characterized by a large sphere of influence are much more likely to
have high errors in the along-track and cross-track directions. Two parameters turned out
to be fundamental for the accuracy of a flyby trajectory, i.e. the closest-approach altitude
(higher altitude implies more accuracy) and the Earth’s elevation angle (higher elevation
angle implies less accuracy). It can finally be stated that, in order to keep a certain accuracy
already from the design of a flyby mission, it is not only important to limit the minimum
closest-approach altitude but also the maximum allowed Earth’s elevation angle, since this
latter parameter turned out to be very important when flybys with similar altitudes are
compared.

9.2. RECOMMENDATIONS

Those who are interested in the expansion of this work may want to analyze the remain-
ing flybys and find values of the Galilean moons’ spherical harmonics coefficients by using
the complete set of flybys, in order to get an even more precise estimation. It is pointed
out that the moons’ ephemerides used for the determination of the Galileo’s trajectory are
subjected to an error which can reach 9 meters (NASA [2004]), while a new file with a much
better accuracy (0.5 m, according to NASA [2013]) has been recently made available. In
order to have a very precise trajectory of the spacecraft and thus be able to extrapolate
more accurate information about the gravity field of these moons, it is thus suggested to
ask directly to JPL (or through a cooperation with it) the observation data relative to the
spacecraft’s state with respect to Earth and combine it with the new ephemerides of the
Galilean moons. It is possible that this will result in an analysis so precise that other pertur-
bations neglected in this research, like relativistic effects and solar radiation pressure, may
start to play a relevant role. In this way the Callisto flybys in particular would see their root
mean square errors decreased by a considerable factor, since now they are about one order
of magnitude greater than the reachable 0.5 meters.



A
TRANSFORMATION BETWEEN J2000 AND

PCPF

This appendix presents the transformation used in Chapter 3 needed to pass from the J2000
to the PCPF frame and vice-versa.

Accelerations in J2000 and PCPF frames are defined as in Equations (A.1) and (A.2):

~a J2000 =
a J2000x

a J2000y

a J2000z

 (A.1)

~aPC PF =
aPC PF x

aPC PF y

aPC PF z

 (A.2)

According to pages 63-64 of Bao and Tsui [2000], a rotation matrix can be defined as in
Equation (A.3):

Rτδα = RτRδRα =

=
cos(τ) −si n(τ) 0

si n(τ) cos(τ) 0
0 0 1


1 0 0

0 cos
(pi

2 −δ) −si n
(pi

2 −δ)
0 si n

(pi
2 −δ)

cos
(pi

2 −δ)


cos
(pi

2 +α) −si n
(pi

2 +α)
0

si n
(pi

2 +α)
cos

(pi
2 +α)

0
0 0 1


(A.3)

where Rτ, Rδ and Rα are the matrices which respectively represent a rotation of the side-
real time angle about the Z-axis, the declination about the X-axis, and the right ascension
about the Z-axis.

It can finally be stated that:

~aPC PF = Rτδα~a J2000 (A.4)

Of course, also the inverse transformation can be performed, as described in Equa-
tion (A.5):
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~a J2000 = R−1
τδα~aPC PF (A.5)

Please note that values for τ,δ,α can be found in Seidelmann et al. [2007].



B
TRANSFORMATION BETWEEN J2000 AND

LO

This appendix presents the transformation used in Chapter 3 needed to pass from the J2000
to the LO frame and vice-versa.

Accelerations in J2000 and LO frames are defined as in Equations (B.1) and (B.2):

~a J2000 =
a J2000x

a J2000y

a J2000z

 (B.1)

~aLO =
aLOx

aLOy

aLOz

 (B.2)

According to page 59 of Bao and Tsui [2000], a rotation matrix can be defined as in
Equation (B.3):

RuiΩ = RuRi RΩ =
cos(u) −si n(u) 0

si n(u) cos(u) 0
0 0 1

1 0 0
0 cos(i ) −si n(i )
0 si n(i ) cos(i )

cos(Ω) −si n(Ω) 0
si n(Ω) cos(Ω) 0

0 0 1


(B.3)

where RΩ, Ri and Ru are the matrices which respectively represent a rotation of the right
ascension of the ascending node about the Z-axis, the inclination about the X-axis, and the
argument of latitude (sum of argument of pericenter and true anomaly) about the Z-axis.

It can finally be stated that:

~aLO = RuiΩ~a J2000 (B.4)

Of course, also the inverse transformation can be performed, as described in Equa-
tion (B.5):

~a J2000 = R−1
uiΩ~aLO (B.5)
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C
ZONAL HARMONICS

This appendix presents the equations needed to get the final expression of the maximum
perturbing acceleration due to zonal harmonics.

By applying the condition of a zero order (m = 0) in Equation (3.21), it holds true that
the magnitude of the perturbing acceleration due to a zonal harmonic of degree n is given
by Equation (C.1) (where it has been written Pn,m instead of Pn,m(si nφ) for the sake of the
length of the expression):

aMDzonal =

=
√(

(n +1)Pncosφ+Pn,1si nφ
)2 +

(
(n +1)Pn si nφ−Pn,1cosφ

)2
µPB Rn

PB

 1

r n+2
S/C−PB

− 1

r n+2
PB−C B

|Jn | =

=
√(

(n +1)Pn

)2 +
(
Pn,1

)2
µPB Rn

PB

 1

r n+2
S/C−PB

− 1

r n+2
PB−C B

|Jn |

(C.1)
Note that there is no dependency on the longitude of the spacecraft.

The function

√(
(n +1)Pn

)2 +
(
Pn,1

)2
always has a maximum at φ=±π

2 , where |sinφ| is

1, independently of the value of n. Please note that this means that each zonal harmonic
has its greatest effect at the poles.

Since Pn(1) = 1 and Pn,1(1) = 0 ∀n, it can be stated that the maximum acceleration due
to a zonal harmonic is given by Equation (C.2):

aMDzonalmax
= (n +1)µPB Rn

PB

 1

r n+2
S/C−PB

− 1

r n+2
PB−C B

|Jn | (C.2)
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D
TESSERAL HARMONICS

This appendix presents the equations needed to get the final expression of the maximum
perturbing acceleration due to tesseral harmonics.

Since the acceleration aMD tesser al is defined as the gradient of the perturbing gravita-
tional potential, it can be written as in Equation (D.1)

~aMD tesser al =~∇U∗ = ∂U∗

∂r
r̂ + 1

r

∂U∗

∂φ
φ̂+ 1

r · cosφ

∂U∗

∂λ
λ̂ (D.1)

and thus that

aMD tesser al =
√(

∂U∗

∂r

)2

+ 1

r 2

(
∂U∗

∂φ

)2

+ 1

r 2 · cos2φ

(
∂U∗

∂λ

)2

(D.2)

By using Equation (3.22) and writing Pn,m instead of Pn,m(si nφ) for the sake of the
length of the expression, it holds true that:

(
∂U∗
∂r

)2 = µ2R2n

r 2n+4

(
(n +1)Pn,m

)2(Cn,mcos(mλ)+Sn,m si n(mλ)
)2

1
r 2

(
∂U∗
∂φ

)2 = µ2R2n

r 2n+4

(
Pn,m+1 −m · t anφ ·Pn,m

)2(Cn,mcos(mλ)+Sn,m si n(mλ)
)2

1
r 2·cos2φ

(
∂U∗
∂λ

)2 = µ2R2n

r 2n+4
1

cos2φ
m2P 2

n,m

(
Sn,mcos(mλ)−Cn,m si n(mλ)

)2

(D.3)

By substituting Equation (D.3) in Equation (D.1) and by considering both direct and
indirect terms, it results that:

aMD tesser al =

=
√

f
(
Cn,mcos(mλ)+Sn,m si n(mλ)

)2 + g
(
Sn,mcos(mλ)−Cn,m si n(mλ)

)2
µPB Rn

PB

 1

r n+2
S/C−PB

− 1

r n+2
PB−C B


(D.4)

with f = (
(n +1)Pn,m

)2 + (
Pn,m+1 −m · t anφ ·Pn,m

)2 and g = 1
cos2φ

m2P 2
n,m .

Since f and g are always positive, it is now desired to maximize the aMD tesser al with re-
spect to the longitude. By equalizing its derivative to zero, it is suddenly shown that the rad-

icand has a maximum at λamax = 1
m at an

(
Sn,m
Cn,m

)
+ 2k

m π, with k ∈Z. Please note that this leads
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to the annulment of the term which multiplies g and to the reduction of
(
Cn,mcos(mλamax )+

Sn,m si n(mλamax )
)2 to

(
C 2

n,m +S2
n,m

)
.

By using |Jn,m | =
√

C 2
n,m +S2

n,m , it can be finally stated that:

aMD tesser almax
=

√(
(n +1)Pn,m

)2 + (
Pn,m+1 −m · t anφamax ·Pn,m

)2
µPB Rn

PB

 1

r n+2
S/C−PB

− 1

r n+2
PB−C B

|Jn,m |

(D.5)
where of course Pn,m indicates Pn,m

(
si nφamax

)
.

Notice that φamax can be found by maximizing the radical in Equation (D.5), and so by
equalizing its derivative with respect to φ to zero, as done in Equation (D.6):

φamax =φ
∣∣

(n +1)Pn,m
dPn,m

d si nφ
cosφ+ (

Pn,m+1 −m · t anφ ·Pn,m
)dPn,m+1

d si nφ
cosφ−m

(
(1+ t an2φ)Pn,m+

+ dPn,m

d si nφ
si nφ

)= 0

(D.6)



E
VARIATION OF GALILEO’S DISTANCE FROM

EARTH

This appendix presents figures which show the variation of the distance between the Galileo
spacecraft and the Earth.

The Doppler effect takes advantage of the change in distance between the target and
the observer; for this reason, Figures E.1 to E.8 present the distance between Galileo and
Earth as a function of time.

Figure E.1: Distance between Galileo and the Earth, during the flyby I33.
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Figure E.2: Distance between Galileo and the Earth, during the flyby I0.

Figure E.3: Distance between Galileo and the Earth, during the flyby E12.
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Figure E.4: Distance between Galileo and the Earth, during the flyby E15.

Figure E.5: Distance between Galileo and the Earth, during the flyby G2.
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Figure E.6: Distance between Galileo and the Earth, during the flyby G29.

Figure E.7: Distance between Galileo and the Earth, during the flyby C30.
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Figure E.8: Distance between Galileo and the Earth, during the flyby C22.
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F
SPHERICAL HARMONICS

This appendix shows the nominal spherical harmonics, with the complete number of dec-
imal places as found in literature.

They are shown in Table F.1:
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Table F.1: Literature values for some nominal spherical harmonics, evaluated new values for them (in cyan)
and estimated values for other new ones (in yellow) as resulting from the Grid Search technique are

presented. The variation between the new and the old values are also shown.

Moon
Old spherical

harmonics [10−6]
New spherical

harmonics [10−6]
Variation of spherical

harmonics [10−6]
J2 = 1845.9 J2 = 1842.6 ∆J2 = -3.3

C2,1 = N.A. (0.0) C2,1 = 0.0 ∆C2,1 = 0.0
S2,1 = N.A. (0.0) S2,1 = 0.8 ∆S2,1 = 0.8

C2,2 = 553.7 C2,2 = 552.5 ∆C2,2 = -1.2
S2,2 = N.A. (0.0) S2,2 = 0.0 ∆S2,2 = 0.0
J3 = N.A. (0.0) J3 = 0.0 ∆J3 = 0.0

C3,1 = -1.216867078471049 C3,1 = -1.216867078471049 ∆C3,1 = 0.0
S3,1 = N.A. (0.0) S3,1 = 0.0 ∆S3,1 = 0.0
C3,2 = N.A. (0.0) C3,2 = -0.4 ∆C3,2 = -0.4
S3,2 = N.A. (0.0) S3,2 = 0.0 ∆S3,2 = 0.0

C3,3 = 0.2028203347656355 C3,3 = 0.2028203347656355 ∆C3,3 = 0.0
S3,3 = N.A. (0.0) S3,3 = 0.0 ∆S3,3 = 0.0

J4 = -9.2778 J4 = -9.2778 ∆J4 = 0.0
C4,1 = N.A. (0.0) C4,1 = -0.5 ∆C4,1 = -0.5
S4,1 = N.A. (0.0) S4,1 = 0.0 ∆S4,1 = 0.0

C4,2 = -0.7862685829282511 C4,2 = -0.7862685829282511 ∆C4,2 = 0.0
S4,2 = N.A. (0.0) S4,2 = 0.0 ∆S4,2 = 0.0
C4,3 = N.A. (0.0) C4,3 = 0.0 ∆C4,3 = 0.0
S4,3 = N.A. (0.0) S4,3 = 0.0 ∆S4,3 = 0.0

C4,4 = 0.04034766412073938 C4,4 = 0.04034766412073938 ∆C4,4 = 0.0

Io

S4,4 = N.A. (0.0) S4,4 = 0.0 ∆S4,4 = 0.0
J2 = 435.5 J2 = 432.3 ∆J2 = -3.2
C2,1 = -1.4 C2,1 = -1.4 ∆C2,1 = 0.0
S2,1 = 14.0 S2,1 = -1.0 ∆S2,1 = -15.0

C2,2 = 131.5 C2,2 = 129.0 ∆C2,2 = -2.5
S2,2 = 0.0 S2,2 = 0.0 ∆S2,2 = 0.0

J3 = N.A. (0.0) J3 = 0.0 ∆J3 = 0.0
C3,1 = N.A. (0.0) C3,1 = 0.0 ∆C3,1 = 0.0
S3,1 = N.A. (0.0) S3,1 = 0.0 ∆S3,1 = 0.0
C3,2 = N.A. (0.0) C3,2 = -0.7 ∆C3,2 = -0.7
S3,2 = N.A. (0.0) S3,2 = 0.0 ∆S3,2 = 0.0
C3,3 = N.A. (0.0) C3,3 = 0.0 ∆C3,3 = 0.0
S3,3 = N.A. (0.0) S3,3 = -1.0 ∆S3,3 = -1.0

Europa

J4 = N.A. (0.0) J4 = 2.1 ∆J4 = 2.1
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J2 = 132.1749381068281 J2 = 132.1749381068281 ∆J2 = 0.0
C2,1 = -0.01406383388388918 C2,1 = -0.01406383388388918 ∆C2,1 = 0.0

S2,1 = -1.555435272149148 S2,1 = -1.555435272149148 ∆S2,1 = 0.0
C2,2 = 39.7137621 C2,2 = 39.7137621 ∆C2,2 = 0.0
S2,2 = -3.4924128 S2,2 = -3.4924128 ∆S2,2 = 0.0

J3 = -1.037589660052676 J3 = -1.037589660052676 ∆J3 = 0.0
C3,1 = -7.413877126265827 C3,1 = -7.413877126265827 ∆C3,1 = 0.0
S3,1 = -6.450288178958351 S3,1 = -6.450288178958351 ∆S3,1 = 0.0
C3,2 = -2.213830322146840 C3,2 = -2.213830322146840 ∆C3,2 = 0.0
S3,2 = 3.482543908197695 S3,2 = 3.482543908197695 ∆S3,2 = 0.0
C3,3 = -1.05629956762470 C3,3 = -1.05629956762470 ∆C3,3 = 0.0

S3,3 = -0.1154464124145312 S3,3 = -0.1154464124145312 ∆S3,3 = 0.0
J4 = 4.858141177350019 J4 = 4.858141177350019 ∆J4 = 0.0

C4,1 = 3.811968749609735 C4,1 = 3.811968749609735 ∆C4,1 = 0.0
S4,1 = 5.53109333310153 S4,1 = 5.53109333310153 ∆S4,1 = 0.0

C4,2 = -0.2058302082476025 C4,2 = -0.2058302082476025 ∆C4,2 = 0.0
S4,2 = -1.726226830065382 S4,2 = -1.726226830065382 ∆S4,2 = 0.0
C4,3 = 0.1080367439331393 C4,3 = 0.1080367439331393 ∆C4,3 = 0.0
S4,3 = 0.2320586551260027 S4,3 = 0.2320586551260027 ∆S4,3 = 0.0

C4,4 = 0.006552813929525020 C4,4 = 0.006552813929525020 ∆C4,4 = 0.0
S4,4 = 0.1195145846971386 S4,4 = 0.1195145846971386 ∆S4,4 = 0.0

J5 = -2.317732751096073 J5 = -2.317732751096073 ∆J5 = 0.0
C5,1 = N.A. (0.0) C5,1 = 0.0 ∆C5,1 = 0.0
S5,1 = N.A. (0.0) S5,1 = 0.0 ∆S5,1 = 0.0
C5,2 = N.A. (0.0) C5,2 = 0.0 ∆C5,2 = 0.0
S5,2 = N.A. (0.0) S5,2 = 0.0 ∆S5,2 = 0.0
C5,3 = N.A. (0.0) C5,3 = 0.0 ∆C5,3 = 0.0
S5,3 = N.A. (0.0) S5,3 = 0.0 ∆S5,3 = 0.0
C5,4 = N.A. (0.0) C5,4 = 0.0 ∆C5,4 = 0.0
S5,4 = N.A. (0.0) S5,4 = 0.0 ∆S5,4 = 0.0
C5,5 = N.A. (0.0) C5,5 = 0.0 ∆C5,5 = 0.0
S5,5 = N.A. (0.0) S5,5 = 0.0 ∆S5,5 = 0.0

J6 = -1.789263684630473 J6 = -1.789263684630473 ∆J6 = 0.0
J7 = -0.8344089674985037 J7 = -0.8344089674985037 ∆J7 = 0.0
J8 = -0.8882961790496313 J8 = -0.8882961790496313 ∆J8 = 0.0

Ganymede

J9 = N.A. (0.000) J9 = 0.014 ∆J9 = 0.014
J2 = 32.7 J2 = 33.3 ∆J2 = 0.6
C2,1 = 0.0 C2,1 = 1.0 ∆C2,1 = 1.0
S2,1 = 0.0 S2,1 = 1.6 ∆S2,1 = 1.6

C2,2 = 10.2 C2,2 = 9.9 ∆C2,2 = -0.3
S2,2 = -1.1 S2,2 = -0.8 ∆S2,2 = 0.3

J3 = N.A. (0.0) J3 = 0.0 ∆J3 = 0.0
C3,1 = N.A. (0.0) C3,1 = 0.0 ∆C3,1 = 0.0
S3,1 = N.A. (0.0) S3,1 = 0.0 ∆S3,1 = 0.0
C3,2 = N.A. (0.0) C3,2 = -0.1 ∆C3,2 = -0.1
S3,2 = N.A. (0.0) S3,2 = -0.2 ∆S3,2 = -0.2
C3,3 = N.A. (0.0) C3,3 = 0.0 ∆C3,3 = 0.0

Callisto

S3,3 = N.A. (0.0) S3,3 = 0.0 ∆S3,3 = 0.0
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G
RMSE IN LO COMPONENTS

This Appendix presents the RMSE (on both position and velocity) decomposed along the
three LO axes, for every flyby investigated in this paper.

This is shown through the Figures G.1 to G.32:

Figure G.1: Graphical representation of the RMSE on position of the I33 flyby as a function of the
propagation time.
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Figure G.2: Graphical representation of the RMSE on velocity of the I33 flyby as a function of the
propagation time.

Figure G.3: Graphical representation of the RMSE on position of the I0 flyby as a function of the propagation
time.
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Figure G.4: Graphical representation of the RMSE on velocity of the I0 flyby as a function of the propagation
time.

Figure G.5: Graphical representation of the RMSE on position of the I31 flyby as a function of the
propagation time.
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Figure G.6: Graphical representation of the RMSE on velocity of the I31 flyby as a function of the
propagation time.

Figure G.7: Graphical representation of the RMSE on position of the I25 flyby as a function of the
propagation time.
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Figure G.8: Graphical representation of the RMSE on velocity of the I25 flyby as a function of the
propagation time.

Figure G.9: Graphical representation of the RMSE on position of the E12 flyby as a function of the
propagation time.
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Figure G.10: Graphical representation of the RMSE on velocity of the E12 flyby as a function of the
propagation time.

Figure G.11: Graphical representation of the RMSE on position of the E15 flyby as a function of the
propagation time.
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Figure G.12: Graphical representation of the RMSE on velocity of the E15 flyby as a function of the
propagation time.

Figure G.13: Graphical representation of the RMSE on position of the E26 flyby as a function of the
propagation time.
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Figure G.14: Graphical representation of the RMSE on velocity of the E26 flyby as a function of the
propagation time.

Figure G.15: Graphical representation of the RMSE on position of the E6 flyby as a function of the
propagation time.
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Figure G.16: Graphical representation of the RMSE on velocity of the E6 flyby as a function of the
propagation time.

Figure G.17: Graphical representation of the RMSE on position of the G2 flyby as a function of the
propagation time.
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Figure G.18: Graphical representation of the RMSE on velocity of the G2 flyby as a function of the
propagation time.

Figure G.19: Graphical representation of the RMSE on position of the G29 flyby as a function of the
propagation time.
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Figure G.20: Graphical representation of the RMSE on velocity of the G29 flyby as a function of the
propagation time.

Figure G.21: Graphical representation of the RMSE on position of the G28 flyby as a function of the
propagation time.
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Figure G.22: Graphical representation of the RMSE on velocity of the G28 flyby as a function of the
propagation time.

Figure G.23: Graphical representation of the RMSE on position of the G1 flyby as a function of the
propagation time.
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Figure G.24: Graphical representation of the RMSE on velocity of the G1 flyby as a function of the
propagation time.

Figure G.25: Graphical representation of the RMSE on position of the C30 flyby as a function of the
propagation time.
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Figure G.26: Graphical representation of the RMSE on velocity of the C30 flyby as a function of the
propagation time.

Figure G.27: Graphical representation of the RMSE on position of the C22 flyby as a function of the
propagation time.
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Figure G.28: Graphical representation of the RMSE on velocity of the C22 flyby as a function of the
propagation time.

Figure G.29: Graphical representation of the RMSE on position of the C9 flyby as a function of the
propagation time.
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Figure G.30: Graphical representation of the RMSE on velocity of the C9 flyby as a function of the
propagation time.

Figure G.31: Graphical representation of the RMSE on position of the C10 flyby as a function of the
propagation time.
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Figure G.32: Graphical representation of the RMSE on velocity of the C10 flyby as a function of the
propagation time.
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