

Delft University of Technology

Low-Rank Tensor Decompositions for Nonlinear System Identification
A Tutorial with Examples
Batselier, Kim

DOI
10.1109/MCS.2021.3122268
Publication date
2022
Document Version
Final published version
Published in
IEEE Control Systems

Citation (APA)
Batselier, K. (2022). Low-Rank Tensor Decompositions for Nonlinear System Identification: A Tutorial with
Examples. IEEE Control Systems, 42(1), 54-74. https://doi.org/10.1109/MCS.2021.3122268

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MCS.2021.3122268
https://doi.org/10.1109/MCS.2021.3122268

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1066-033X/22©2022IEEE54 IEEE CONTROL SYSTEMS » FEBRUARY 2022

N
onlinear parametric system identifi cation is the
estimation of nonlinear models of dynamical sys-
tems from measured data. Nonlinear models are
parameterized, and it is exactly these parameters
that must be estimated. Extending familiar lin-

ear models to their nonlinear counterparts quickly leads
to practical problems. For example, the generalization of a
multivariate linear function to a multivariate polynomial
implies that the number of parameters grows exponentially
with the total degree of the polynomial. This exponential
explosion of model parameters is an instance of the so-
called curse of dimensionality. Both the storage and com-
putational complexities are limiting factors in the develop-
ment of system identifi cation methods for such models.

The solution to this problem has been sought in the limita-
tion of the complexity of these models through various ways.
For example, state-of-the-art identification methods for non-
linear autoregressive moving average models with exogenous
inputs try to determine which model terms are important
during identification [1]. The goal is to obtain a sparse model
that is described by only a relatively small subset of the expo-
nential number of terms. An alternative approach involves
block-oriented models, where the complexity of the model is
reduced by constructing a nonlinear model through two
kinds of blocks: a linear dynamical block and a nonlinear
static transformation block [2], [3]. Two simple examples of
such models are the Hammerstein model (which consists of a
static nonlinearity followed by a linear block) and the Wiener
model (which has the opposite order). More complexity can be
achieved by combining different branches of block-oriented
models [4]. Sparse and block-oriented model structures, how-
ever, are mostly meaningful when the control engineer has

KIM BATSELIER

Low-Rank Tensor
Decompositions for
Nonlinear System
Identification

Digital Object Identifier 10.1109/MCS.2021.3122268

Date of current version: 18 January 2022

A
TUTORIAL

WITH
EXAMPLES

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 55

strong reasons to believe that the system really has such a
sparse or particular block structure.

The approach to address the curse of dimensionality
described in this article is the use of tensor decompositions
(see “Summary”). Tensors are multidimensional arrays that
are generalizations of vectors and matrices to higher orders.
The total number of entries of a tensor also grows exponen-
tially with the number of dimensions, and tensor decompo-
sitions can alleviate this problem. The key idea in lifting the
curse of dimensionality lies in tensor decompositions,
where a given tensor is decomposed into a set of tensors of
much smaller size. These smaller tensors are often called
factor matrices or core tensors. In this way, the original
tensor never has to be explicitly kept in memory. Instead,
the core tensors can be stored in memory. The “rank” of a
tensor decomposition plays an important role, as it deter-
mines how small the dimensions of the core tensors can be.
Different tensor decompositions have their own definition
of rank, and the question then naturally rises whether low-
rank tensor decompositions can be meaningful in the con-
text of dynamical systems.

One goal of this article is to show that this is effectively the
case. A low-rank representation of a (nonlinear) model can be
intuitively understood as a way of implicitly adding the con-
straint that the model parameters are not all completely inde-
pendent from one another. For example, “Low-Rank
Motivation” shows how a low-rank tensor structure emerges
when modeling a simple linear mass spring system. The
entries of the A matrix in the corresponding linear state-
space model are not independent from one another. The same
is true in nonlinear models. Volterra kernels, for example, are
generalizations of finite-impulse responses (FIRs) to higher
orders and are therefore expected to be smoothly decaying.
Recent research enforces these constraints explicitly through
regularization [5], [6], but is unfortunately limited to third-
order kernels. Smooth functions have been shown to result in
low-rank tensor decompositions [7], [8]. A low-rank tensor
decomposition of the Volterra kernel coefficients can there-
fore be interpreted as implicitly encoding this smoothness
and allows for the identification of models with orders higher
than three. The link between sparse parametric models and
low-rank tensor decompositions is explained in “Sparse Models
as Restricted Low-Rank Tensor Decompositions.”

The goal of this article is twofold. First, it serves as a basic
introduction to tensor decompositions, as they can be a pow-
erful tool for addressing large-scale problems in systems and
control. A second objective of this article lies in the presenta-
tion of three applications in nonlinear system identification
where a low-rank tensor approach is used. The identification
of both Volterra systems and state-space models with poly-
nomial inputs is discussed. This article starts with an over-
view of some basic tensor notations, tensor operations, and
decompositions. This overview is followed by a first applica-
tion: the low-rank, tensor-based identification of truncated
Volterra systems. The second application discusses a Kalman
filter approach to the Volterra identification problem, where
both the mean vector and covariance matrix of the distribu-
tions are represented by low-rank tensor decompositions.
A third and final application is a tensor-based subspace

Summary

Tensor decompositions can be a powerful tool when faced

with the curse of dimensionality and have been applied

in myriad applications. Their application to problems in the

control community remains largely unexplored. This article

aims at filling this gap by introducing tensor decompositions,

where the key idea is always to exploit structure in the prob-

lem to lift the curse of dimensionality. This structure leads to

the notion of low rank, which can be intuitively understood

as parameters in the problem being correlated. The potential

of low-rank tensor decompositions is illustrated by means of

three applications, specifically in nonlinear system identifica-

tion. The parametric identifiation of both Volterra systems and

state-space models with polynomial inputs is discussed.

K
IM

 B
AT

S
E

LI
E

R

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

56 IEEE CONTROL SYSTEMS » FEBRUARY 2022

identification algorithm for state-space models with polyno-
mial inputs. Finally, an overview of online resources and
software is given that can help tensor decomposition users
with particular problems in control.

TENSOR NOTATION AND BASICS
Tensors are multidimensional arrays. A D-way or Dth-
order tensor A RI I ID1 2! # # #g is a D-dimensional array
where each entry A (, ,)i iD1 f is completely determined by
D indices , , .i iD1 f Commonly used tensors in control are
scalars (),D 0= vectors (),D 1= and matrices () .D 2= One
of the goals of this article is to show that tensors of order
D 02 and their decompositions can be a beneficial tool in
control, with a specific focus on nonlinear system identifi-
cation. More detailed information about tensors and their
decompositions can be found in [9]–[11].

Tensor notation and terminology differ across fields,
with a particular distinction between the field of applied
mathematics and quantum mechanics. In this article, the

applied mathematics terminology will be used. Notation
conventions are summarized in Table 1. Following the con-
vention used in Matlab, all indices are one based and hence
start counting from one rather than from zero. Indices are
always denoted by lowercase letters, and their correspond-
ing capital letters denote their respective upper bounds.
For example, an entry of an M N# matrix A is denoted

(,) .A m n Indices can also be combined into a single multi-
index. The conversion of D separate indices , , ,i i iD1 2 f into
one multi-index []i i iD1 2f follows the definition

 [] () .i i i i i I1D d
d

D

l
l

d

1 2 1
2 1

1

g = + -
= =

-

%/ (1)

The same formula is used when a single index []i i i iD1 2g=
is split into D seperate indices. The diagonal of a tensor A
is the entries when all indices attain equal values; that is,

A(, , ,), , .i i i i I1f f=

Low-Rank Motivation

T o illustrate the emergence of low-rank tensor decomposi-

tions in dynamical systems, consider a linear sequence

of N masses all connected through N 1- springs, as shown

in Figure S1. The origin of the local coordinate xn lies at the

equilibrium position of mass ,mn and each spring has a spring

constant .kn Assuming no friction, each mass ,mn exclud-

ing the ones at the border, is then described by the differ-

ential equation

 () ().m x k x x k x xn n n n n n n n1 1 1=- - + -- - +p (S1)

The state of each mass mn can be chosen to contain , ,x xn no

and the concatenation of these state variables for all masses in

a state vector ()tx R N2! allows us to write the continuous-time

state-space model

() (),

() (),

t t

t t

x A x

y x

.
=

=

with state dynamics matrix .A R N N2 2! # The inputs to the sys-

tem are not important in this discussion, as we focus complete-

ly on the state dynamics.

From a white-box perspective, the system identification

problem with regard to the state dynamics is defined as the es-

timation of the ()N2 2 2+ - unique entries (up to a sign) of the

A matrix. These entries are comprised of contributions from

the N masses mn and N 1- spring constants .kn For example,

when ,N 4= the state dynamics matrix is

 ,m
k

m
k

m
k

m
k

m
k k

m
k

m
k

m
k

m
k k

m
k

A

1
1

1
1

1

1

2

1

4

3

1

1

2

1 2

3

2

4

3

2

2

3

2 3

3

3

=
-

- +

-

-
+

J

L

K
K
K
K
K
K
K
K
K
K
K
K
KK

N

P

O
O
O
O
O
O
O
O
O
O
O
O
OO

 (S2)

where empty spaces denote zero entries. The ()2 2 4 2 6+ - =

unique parameters are then found in the lower-left corner of the

A matrix. Although the number of A entries scales quadratically

in the number of masses (),O N2 the number of parameters to

be estimated in identification grows only linearly in the number

of masses O(N). In this example, Newton’s laws enforce a par-

ticular structure to the A matrix, reducing the number of unique

parameters.

Now, assume a black-box perspective, and suppose that

the knowledge that the system consists of a linear sequence

of masses connected through springs is not available. Further-

more, assume that the size of the state vector ()tx is known.

The question then arises whether it is possible to encode the

m1 mN

k1 kN−1

FIGURE S1 A linear sequence of N masses , ,m mN1 f con-
nected through springs with spring constants , , .k kN1 1f -

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 57

For the diagonal of a tensor to exist, it is required that
,I Id $ where d assumes values between one and D. A diag-

onal tensor is defined as a tensor for which all off-diagonal
entries are zero. Three important products are the outer
product, Kronecker product, and Khatri–Rao product. The
outer product % of D vectors ,a R()d Id! where d assumes
values between one and D, is, per definition, the tensor

 A ,a a a R() () ()D I I I1 2 D1 2% % %g != # # #g (2)

such that each tensor entry is computed from the product
of the corresponding vector entries

A (, , ,) () () () .a a ai i i i i i() () ()
D

D
D1 2

1
1

2
2f g=

From this definition, the outer product is not commuta-
tive. The observant reader probably has already noticed that
(2) can be interpreted as the tensor A being “decomposed”
into a set of D tensors. This is correct, as the outer product
plays a fundamental role in tensor decompositions for
exactly this reason. More details are discussed in “Tensor

Decompositions.” A related product is the Kronecker prod-
uct, which is usually defined between matrices. The Kronecker

assumption that there is only a limited number of unique en-

tries (due to physical laws) inside the A matrix. The answer to

this question is a resounding yes, and a key part of the answer

lies in a particular notion of rank. Figure S2 shows the total

number of parameters that must be stored in memory for the A

matrix, the singular value decomposition (SVD) of the A matrix,

the tensor train matrix representation of the A matrix, and the

white-box model as a function of the number of masses in the

system. Remarkably, the SVD requires more storage than the

original matrix, due to the A matrix being almost full rank. Only

one singular value is zero.

The tensor train matrix of A is a specific tensor decompo-

sition that is designed to represent matrices. This tensor de-

composition is also characterized by a notion of rank, which

is much lower in the case of this A matrix and hence results

in fewer parameters that must be stored. The total number of

parameters of the white-box model is also shown in Figure S2

as a reference. The low-rank tensor train matrix representation

requires a storage space that is similar in orders of magnitude

to the white-box parameters. This beneficial representation is

completely due to the structure present in the A matrix, which

can be captured by a low-rank tensor decomposition.

The fact that all entries of the A matrix are not completely

random results in the corresponding low-rank tensor repre-

sentation. Precise conditions for when such a low-rank rep-

resentation is available are given in [7] and [8]. These condi-

tions relate to different structures, such as an algebraic and

displacement structure as well as smoothness, that are pres-

ent in the tensor. Smoothness relates to tensors for which the

entries are the evaluations of smooth functions. An example

of a displacement structure is the block Hankel structure that

is common in subspace identification algorithms. A more

intuitive interpretation of “structure” is that all tensor entries

can be computed from a smaller set of numbers. For example,

the rank 1 matrix decomposition

3
6
9

4
8
12

5
10
15

1
2
3

3 4 5=f f ^p p h

implies that all nine matrix entries on the left-hand side can be

computed from the six numbers on the right-hand side. Hence,

the nine matrix entries are not entirely “independent” from one

another. The different tensor ranks discussed in this article

generalize this idea to higher dimensions.

22 24 26 28 210 212 214

Number of Masses

108

106

104

102

100N
um

be
r

of
 P

ar
am

et
er

s

Original Matrix
Singular Value Decomposition

Tensor Train Matrix
White Box

FIGURE S2 A plot of the number of parameters of each representa-
tion of the state dynamics A matrix versus the total number of
masses in the dynamic system. The tensor train matrix represen-
tation requires a storage cost that is similar to the white-box model.

, , ,Aa a A A scalar, vector matrix, higher-order tensor

, ,A A() ()D1 f An enumeration of D tensors

(, ,)A i iD1 f The (, ,)i i thD1 f entry of tensor A

AT The transpose of a matrix A

A 1- The (Moore–Penrose pseudo-) inverse of a matrix A

% An outer product

, The Kronecker product

9 The Khatri–Rao product

()Aa vec= The vectorization of a tensor A

1N A vector of ones of length N

TABLE 1 A summary of tensor notations used throughout
this article.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

58 IEEE CONTROL SYSTEMS » FEBRUARY 2022

product of matrices ,A RI J! # andB RK L! # is the KI LJ#
matrix

(,)

(,)

(,)

(,)
.C A B

A B

A B

A B

A BI

J

I J

1 1

1

1
7 h

g

j

g

h= = f p

In terms of indices, the Kronecker product is written as

([], []) (,) (,).C A Bki lj i j k l=

Observe that each of the indices of B is first in the
multi-indices of C. This is also the reason why the Kro-
necker product is not commutative. Finally, the Khatri–
Rao product of matrices ,A RI J! # and B RK J! # is the
KI J# matrix

((:,) (: ,) (:,) (:,)),C A B A B A J B J1 19 7 7g= =

formed by taking the column-wise Kronecker product A
with B. The notation (: ,)A j denotes the jth column of the
matrix A, where the colon operator (:) replaces the row
index to include the whole range of possible index values.

At first, one might think that higher-order tensors cannot be
visualized. However, a visualization of higher dimensions is
possible. In fact, tensor diagrams can be a powerful tool to rep-
resent complicated tensor expressions. More information about
tensor diagrams can be found in “Tensor Diagrams.” These
diagrams will be extensively used throughout this article.

Tensor Operations
Manipulating tensors will be crucial when describing the
different applications. In this section, an overview is given
of three important tensor operations. A first operation on
tensors is changing the order D of the tensor through the
“reshape” operator. The operation

B A(, [, , ,])J J Jreshape K1 2 f=

reshapes a D-way tensor A RI I ID1 2! # # #g into a K-way
tensor B .R J J JK1 2! # # #g The total number of entries does
not change through this reshape operation; that is,

.I Jd
D

d k
K

k1 1P P== = A tensor order decrease through the

Sparse Models as Restricted Low-Rank Tensor Decompositions

Sparse parametric models can be interpreted in terms of low-

rank tensor decompositions. Consider, for example, the

single-input, single-output discrete time model

() (), (), , () ,)(y n f u n u n u n1 29f= - -

where (·)f is a 30-variate polynomial in the time-shifted input

signal u(n) of total degree 3. A parameterization of this model

structure requires 30
3 30 5456+ =c m parameters, one for each

distinct monomial. Now, consider the sparse model

 () () () () ()y n c u n c u n u n c u n10 20 290 1 2
3= + - - + - (S3)

parameterized by the unknown model coefficients , ,c c0 1 and

.c2 All remaining 5453 parameters are considered to be ex-

actly zero in this model. How can this sparse parametric model

be rewritten as a low-rank tensor decomposition?

First, all possible 5456 monomials are written as the Kro-

necker product

()

()

()

()
()

()

()
()

()

,
u n

u n

u n

u n
u n

u n

u n
u n

u n

u

1

1

29

1

1

29

1

1

29

R ,
n
3 27 0007 7

h h h

!= -

-

-

-

-

-

J

L

K
K
K
K
KK

J

L

K
K
K
K
KK

J

L

K
K
K
K
KK

N

P

O
O
O
O
OO

N

P

O
O
O
O
OO

N

P

O
O
O
O
OO

which is the vectorization of a rank 1 symmetric tensor that

contains ,00030 273 = entries. The first term of (S3) can then

be written as the inner product

() () () ,()c u n
c

cu u e e e

1
0
0

0

1
0
0

0

0

0

0

n
T

n
T

0
3

0
3

01 1 27 7 7 7

h h h

= =

J

L

K
K
K
K
KK

J

L

K
K
K
K
KK

J

L

K
K
K
K
KK

J

L

K
K
K
K
KK

N

P

O
O
O
O
OO

N

P

O
O
O
O
OO

N

P

O
O
O
O
OO

N

P

O
O
O
O
OO

where ek denotes the kth canonical basis vector in .R30 The

sparse model (S3) can hence be written as

() () (

),

y n c c

c

u e e e e e e

e e e
n

T3
0 1

2

1 1 2 1 11 21

30 30 30

7 7 7 7

7 7

= +

+

where the sum of the three Kronecker product terms is the vec-

torization of a rank 3 canonical polyadic tensor decomposition.

Any sparse model of R terms can in this way be written as a

rank R canonical polyadic decomposition. The sparse model

can, in fact, be interpreted as a very restricted tensor decom-

position in that the vectors in the decomposition are limited to

canonical basis vectors .ek

By lifting this restriction, the rank 3 model is written as

() () ,()y n u a a a a a a a a a() () () () () () () () ()
n

T3
1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

7 7 7 7 7 7= + +

where , ,a a() ()
1
1

3
3

f are arbitrary vectors in .R30 The total number

of model parameters increases from three to ,3 3 30 270$ $ =

which is still a storage gain of a factor 100 compared to the

original tensor of 27,000 entries. In this way, the model be-

comes more expressive in that all 5456 monomials can now

contribute in predicting ().y n If the control engineer has no

reason to believe that the “true model” is sparse and therefore

belongs to this restricted low-rank tensor decomposition model

class, then the use of canonical basis vectors ek in the decom-

position can be removed while keeping the low-rank structure.

Low-rank tensor decompositions can thus be seen as a more

generic choice than sparse models.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 59

reshape operation is equivalent to grouping several indices
together into one multi-index according to (1). Likewise, an
increase of the tensor order is equivalent to the splitting of
an index []i i i iD1 2g= into D separate indices , , , ,i i iD1 2 f

such that (1) is also satisfied. The most common use of the
reshape operator is for converting a tensor into a vector or
matrix and vice versa. The conversion of a D-way tensor A
into a vector a is called the vectorization, denoted A() .vec
For example, the vectorization of the matrix

A
1
2

3
4

5
6= c m

is the vector

() .a A 1 2 3 4 5 6vec= = T^ h

In terms of indices, the relationship between the entries
of a matrix A and its vectorization a can be written as

(,) ([]) .A ai i i i1 2 1 2=

Using the vectorization operator, it is also possible to denote
the relationship between the outer product and the Kro-
necker product

,a a a a a avec () () () () () ()D D1 2 2 1% % % 7 7 7g g=^ h

which follows from the various definitions. Note that the
order of the vectors in the Kronecker product is reversed.
Essentially, both the outer product and Kronecker product
compute products among all possible combinations of the

Tensor Diagrams

Writing down tensor equations quickly becomes cumber-

some as the number of indices increases. A simplified

version of the Penrose tensor diagram notation [57] is used in

this article to visualize tensor operations. Every tensor is repre-

sented by a node (a circle), and each index corresponds to an

edge (a line). Tensors of order zero up to three are illustrated

in Figure S3. The Penrose diagram of an index summation is

obtained by connecting the lines between two nodes in the

diagram. For example, the matrix–matrix product of A RN R! #

with ,B RR M! #

(,) (,) (,),C n m n r r mA B
r

=/

is represented in Figure S4 as the connecting edge between the

nodes A and .B The order of the resulting tensor in a diagram

can always be deduced from the number of edges that are not

connected, the so-called dangling edges. In Figure S4, for ex-

ample, there are two such edges. Hence, the diagram represents

a matrix. Of course, index summations involving tensors of high-

er order can also be visualized with a diagram. For example, a

Tucker decomposition of a third-order tensor A is a contraction

of a third-order tensor S with a matrix on each of its dimensions:

.A S A A A() () ()
1

1
2

2
3

3# # #= (S4)

Figure S5 shows the corresponding tensor diagram. The

resulting tensor A also has an order of three, and its entries

are determined by

(, ,) (, ,) (,) (,)

(,).

A Si i i r r r i r i r

i r

A A

A

() ()

()

r

R

r

R

r

R

1 2 3 1 2 3
1

1 1
2

2 2
111

3
3 3

3

3

2

2

1

1

#

=
===

///

 (S5)

The power of tensor diagrams becomes more apparent as the

number of contractions increases since the need to write out all

index summations explicitly, as in (S5), or define a new notation,

as in (S4), is removed. Tensor decompositions are also called

tensor networks, as different decompositions correspond to

various topologies of interconnected tensors in a diagram.

A B
N R M

FIGURE S4 A tensor diagram of the multiplication of a matrix A
with a matrix .B The diagram has two “dangling” edges and
therefore represents a matrix. The connected edge of size R
represents the summation over the column index of A and row
index of .B

A(2)

A(1) A(3)S

FIGURE S5 A tensor diagram of a Tucker decomposition of a
three-way tensor. The three-way tensor S is contracted along
each of its three dimensions with matrices ,A()1 ,A()2 .A()3 The
resulting tensor is also of the third order, since there are three
“dangling” edges in the diagram.

FIGURE S3 Tensor diagrams of a scalar a, vector a, matrix A, and
three-way tensor .A Each edge represents a dimension of the
tensor, thus allowing the visualization of high-dimensional tensors.

a a A A

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

60 IEEE CONTROL SYSTEMS » FEBRUARY 2022

vector entries. The outer product stores the result in a
tensor, while the Kronecker product stores it in a vector.

A second important operation is the generalization of the
matrix transpose to three or more indices. The operator “per-
mute A(,)p ” rearranges the indices of A RI I ID1 2! # # #g so that
they are in the order specified by the vector p. The resulting
tensor has the same values of A, but the order of the sub-
scripts needed to access any particular element is rearranged,
as specified by p. All the elements of p must be unique, real,
positive, integer values from one to D. For example, applying
the following permutation on the tensor A ,R2 5 3! # #

A(, [, ,]),B 3 1 2permute=

results in a tensor B ,R3 2 5! # # such that

A (, ,) (, ,) .Bi i i i i i1 2 3 3 1 2=

In the same way, the conventional matrix transpose B AT=
can be written as

(, [,]) .B A 2 1permute=

The third and last tensor operation discussed in this sec-
tion is the summation over indices, also called the contraction
of indices. A matrix multiplication is probably the most famil-
iar instance of an index contraction. Indeed, rewriting the
matrix product C AB= in terms of the matrix entries

(,) (,) (,)C A Bi j i i i j
i

I

1 1
1

1 2 2 1
2

2

=
=

/

shows that the index i2 is summed over all its values. A
particularly common index contraction in the context of
tensors is the d-mode product of a tensor with a matrix. The
d-mode product A Ud d# of a tensor A RI ID1! # #g with a
matrix U Rd

S Id d! # is the tensor RB I I S I Id d d D1 1 1! # # # # # #g g- +
with elements

B(

A

, , , , , ,)

(, , , , , ,) (,) .U

i i s i i

i i i i i s i

d d d D

d d d D d d d
i

I

1 1 1

1 1 1
1d

d

f f

f f=

- +

- +

=

/ (3)

The index id has effectively been summed over and
therefore has been replaced by the sd index. Defining the
matrix A()d as

A(, [, , , , , , ,]),
[,]),

A d d d D

I I I

1 2 1 1reshape(permute()d

d D1

f f

g

= - +

the index contraction (3) can be implemented through the
matrix product

.B U A()d d=

The desired B A Ud d#= tensor is then obtained from

B (, [, , , ,]),
[, , , , , , ,]) .

B S I I I

d d D2 3 1 1
permute(reshape d D1 2 f

f f

=

+

Tensor Decompositions
Low-rank approximation of a matrix through a decomposi-
tion is well-known, and the singular value decomposition
(SVD) is an essential tool in this respect [12]. The SVD of a
matrix A RI J! #

 A U S VT= (4)

consists of two orthogonal matrices ,U VR RI I J J! !# # and a
diagonal matrix S RI J! # of nonnegative real numbers

f,1 2$ $v v also called singular values. A matrix is, per defi-
nition, rank R when it has R nonzero singular values. It follows
then that (,).minR I J= The SVD factor matrices of a rank R
matrix can be truncated to dimensions ,U RI R! # ,V R J R! #
and .S RR R! # When , ,R I J% a storage benefit can be obtained
by storing the factor matrices ,US V in memory instead of A.
The storage complexity of A is in this way reduced from IJ to
() .I J R+ Truncating the SVD to a dimension R R1l results in
an optimal rank Rl approximation

,A USV ET= +

where the approximation error E satisfies 2 .R 1< < v= +E l
This optimal approximation property does not apply for
higher-order tensors [13].

The generalization of the SVD from matrices to higher-
order tensors has led to the discovery of many different tensor
decompositions, and each decomposition comes with its own
properties and notion of rank. For this reason, it is good to
have an overview of commonly used decompositions and
how they relate to one another. Three tensor decompositions
discussed in this article are the canonical polyadic decomposi-
tion (CPD), Tucker decomposition, and tensor train decompo-
sition. These decompositions are summarized in terms of
their storage complexity and uniqueness in Table 2. The appli-
cations of these three tensor decompositions go far beyond
the field of control [11], [14]. The main idea is always the same:
a tensor A that is too large to be stored explicitly in memory

Storage
Complexity Unique?

Original tensor A ID

Canonical polyadic
decomposition O(DIR)

Yes, under
mild conditions

Tucker decomposition ()O R DIRD+ No

Tensor train
decomposition ()O DIR2 No

Tensor train matrix
decomposition ()O DI R2 2 No

TABLE 2 A summary of commonly used tensor decompositions
of a D-way tensor A. The storage complexity calculation
assumes uniform tensor dimensions I and uniform tensor
rank R.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 61

is replaced or approximated by a set of smaller tensors. Both
the CPD and Tucker decomposition can be interpreted as
direct generalizations of the matrix SVD to higher-order ten-
sors. The key idea to generalize the SVD is to rewrite this
decomposition in terms of outer products. Labeling column r
of U and V by ur and ,vr respectively, rewrites (4) as

.A u v u vr
r

R

r r
T

r
r

R

r r
1 1

%v v= =
= =

/ /

The notation % for the outer product is used here, as it
generalizes more easily to the case of an outer product of
D 22 vectors

 A .a a a() () ()
r

r

R

r r
D1

1

2% % %g=
=

/ (5)

Such a decomposition is called a CPD, as well as CANDE-
COMP and PARAFAC decomposition [15], [16]. The CP
rank is defined as the smallest R for which (5) is an equal-
ity. A tensor A, as in (2), is, per definition, a rank 1 tensor.
The analog of the matrix singular values rv in the CPD is
the product of the norms of each of the vectors :a()

r
d

A .
a
a

a
a

a
a

()

()

()

()

()

()

r
r

r

r

r

r

r
D

r

R

D1
2

1

2

2

21
2% % %gv=

=

/

Unlike the SVD, the CPD does not require the vectors a()d to
be mutually orthogonal. If the R vectors a R()

r
d Id! are con-

catenated into an I Rd # matrix ,A()d then the CPD can be
rewritten as

 SA ,A A A() () ()
D

D
1

1
2

2
3# # # #g= (6)

where S RR R R! # # #g is a diagonal D-way tensor that con-
tains the rv scalars on the diagonal.

The CPD has been shown to be unique under mild con-
ditions [17], [18]. This uniqueness has proven to be very
useful, especially in the field of signal separation [19], [20].
Another application of the CPD in the field of nonlinear
system identification is for the approximation of a set of
multivariate real polynomials into linear combinations of
univariate polynomials [21], [22]. The storage complexity of
this decomposition is completely determined by the dimen-
sions of the factor matrices .A()d Assuming A is a D-way
tensor with uniform dimensions I and CP rank R, then the
CPD has a storage complexity of DIR. The main problem in
the usage of the CPD is the determination of the CP rank,
which is an NP-hard problem [23]. A more general tensor
decomposition is obtained through a relaxation of the diag-
onal tensor requirement in (6). Allowing S to have a differ-
ent size for each dimension and relaxing the diagonal
constraint results in the Tucker decomposition

 SA ,A A A() () ()
D

D
1

1
2

2
3# # # #g= (7)

where S RR R RD1 2! # # #g is also called the Tucker core tensor
[24], [25]. The single CP rank is in this way replaced by a mul-
tilinear rank (, , ,)R R RD1 2 f with the constraint that .R Id d#

Assuming a uniform multilinear rank R, the storage
complexity of the Tucker decomposition is .R DIRD+ The
exponential RD term is due to the Tucker core .S Contrary
to the CPD, the Tucker decomposition is not unique. An
identity matrix I TT 1= - can always be “inserted” between
the Tucker core S and factor matrix .A()d A new Tucker
core and factor matrix can then be defined as

S S ,
,

T

A T A() ()d

d
T

d

#=

= 1-

u

u

without changing the underlying tensor. This nonunique-
ness provides additional flexibility. For example, a common
way to “fix” the Tucker decomposition into a particular
form is to require that each of the factor matrices A()d con-
sists of orthonormal vectors, leading to the so-called
higher-order SVD [26]. Diagrams of CPD and Tucker
decompositions are provided in “Tensor Diagrams” and
consist of a central core tensor that is “surrounded” in each
of its dimensions by a factor matrix.

A third tensor decomposition is the tensor train, also
called the matrix product state [27]. Rather than being a
core tensor surrounded by factor matrices, a tensor train is
a linear sequence of tensor cores. A tensor train of a tensor
A RI I ID1 2! # # #g is defined as a set of D three-way tensor
cores A ,R()d R I Rd d d 1! # # + such that

A A

A A

(, , ,) (, ,)

(, ,) (, ,) .

i i i r i r

r i r r i r

()

() ()

D
r

R

r

R

r

R

D
D D

1 2
11

1
1 1 2

1
2

2 2 3 1

D

D

2

2

1

1

#

f g

g

=
== =

// /

(8)

A diagram of a tensor train is presented in Figure 1, and it
illustrates the power of this visualization method: the com-
plexity of (8) is captured in a simple illustration. The mini-
mal values of , , ,R R RD1 2 f such that (8) is an equality are
called the tensor train ranks of A. A tensor train satisfies

,R 11 = which implies that the index connecting the first
core to the last core is of unit size. A tensor train is called a
tensor ring or tensor chain when R 112 [28]–[30]. The ring
case will not be considered in the remainder of the article,
and the corresponding unit size edge will not be drawn in
consequent diagrams anymore. The tensor train is also not
unique. An identity matrix I TT 1= - can be inserted between
any two tensor train cores A A ,,() ()d d1- such that these cores
can be rewritten as

A(1) A(2) A(D)

R1

I1 I2

R2 R3 RD

ID

FIGURE 1 A tensor diagram of a tensor train. A tensor train is a
linear sequence of D three-way tensors. The edge that corre-
sponds with the index r1 connects the first core tensor with the last
and is of unit size.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

62 IEEE CONTROL SYSTEMS » FEBRUARY 2022

A A

A A

,
,

T

T

() ()

() ()

d d T

d d

1 1
3

1
1

#

#

=

=

- -

-

u

u

without changing the underlying tensor. Similar to the
Tucker decomposition, the notion of orthogonality can be
used to “fix” a certain representation of the tensor train [31].

The tensor decompositions discussed so far have always
been in the context of decomposing a given tensor. Through
the reshape operation, however, it is also possible to use
tensor decompositions for the representation/approximation
of vectors and matrices. See “Blessing of Dimensionality” for
more details. A particularly useful decomposition is the tensor
train matrix, which is an extension of a tensor train to approx-
imate a matrix [32]. Tensor train matrices are also called
matrix product operators. Consider a matrix A RI JD D

! # of
exponentially large dimensions. The row index i and column
index j can each be split into D indices , ,i iD1 f and , ,j jD1 f
through a reshape operation. The resulting 2 D-way tensor
can then be decomposed as a tensor train matrix that consists
of D four-way tensors A ,R()d R i j Rd d d d 1! # # # + such that the
matrix entry ([], [])A i i i j j jD D1 2 1 2g g can be computed from

A A A(, , ,) (, , ,) (, , ,).r i j r r i j r r i j r() () ()

r

R

r

R
D

D D D
r

R

11 1

1
1 1 1 2

2
2 2 2 3 1

D

D

2

2

1

1

g g
== =

// /
 (9)

The tensor diagram of a tensor train matrix is very similar
to the diagram of a tensor train. The only difference is the

addition of an extra edge to each tensor core, corresponding to
the extra jd index. A useful feature that distinguishes tensor
trains and tensor train matrices from the CPD and Tucker
decomposition is that numerous linear algebra operations can
be computed directly in the decomposed form. An overview
of such linear algebra operations is given in “Linear Algebra
Operations With Tensor Trains.” This property is the main
motivation for the exclusive usage of tensor trains in the appli-
cations described in the following.

APPLICATION 1: MULTIPLE-INPUT, MULTIPLE-
OUTPUT VOLTERRA SYSTEM IDENTIFICATION
The output y(n) of a causal discrete-time FIR system of
order M is described by the linear combination of lagged
input values u(n):

 () () ().y n h h m u n m
m

M

j0 1
0

1
1

= + -
=

/ (10)

The parameter h0 is a constant offset, also called the dc
offset. The parameter M will be called, from now on, the
memory of the system, as it is the maximal lag in the input.
A discrete-time, truncated Volterra model generalizes a FIR
model to higher orders of nonlinearity. This generalization
is obtained by adding homogeneous polynomials of vary-
ing degrees d in the lagged input values to (10). These
higher-order polynomials can be interpreted as finite
higher-order impulse responses. For example, with memory

Blessing of Dimensionality

Tensor decompositions are useful not only in the context

of higher-order tensors. Vectors and matrices can benefit

from low-rank tensor decompositions that compress them by

exploiting correlations between entries. This phenomenon is

called the blessing of dimensionality. By increasing the order

of a tensor via the reshape operator, the resulting tensor de-

composition is described by more rank parameters. Therefore,

the decomposition of this tensor receives more degrees of

freedom, resulting in additional flexibility. An example of this

blessing is described in “Low-Rank Motivation.” The blessing

of dimensionality for vectors is illustrated in Figure S6. A vector

a of length ID can be reshaped into a D-way tensor .A As-

suming that the vector entries are not completely unstructured

[7], [8], a low-rank tensor approximation can be computed from

,A resulting in a storage-efficient representation of the original

vector a.

The decomposition to use depends on the specifics of the

application. If the uniqueness of the decomposition is impor-

tant (for example, to be able to provide some physical mean-

ing to the different factor matrices), then canonical polyadic

decomposition should be used. Alternatively, if only the sub-

spaces associated with the different dimensions are important,

then the Tucker decomposition suffices. When certain linear

algebra operations must be performed on the original vector,

then the tensor train decomposition is highly recommended, as

explained in “Linear Algebra Operations With Tensor Trains.”

The same idea of “tensorization” and replacement by a low-

rank tensor decomposition can also be applied to matrices of

exponential size.

ID I I

I II

I I

I

I

FIGURE S6 A vector of exponential size ID is first reshaped into
a D-way tensor. This tensor can then be represented by any
tensor decomposition, resulting in a storage-efficient repre-
sentation of the original vector.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 63

M 1= and maximal degree ,D 2= the output of the Volterra
model is

() () () () () (,) ()
(,) () () (,) () ()
(,) () .

y n h h u n h u n h u n

h u n u n h u n u n

h u n

0 1 1 0 0
1 0 1 0 1 1
1 1 1

0 1 1 2
2

2 2

2
2

= + + - +

+ - + -

+ -

The parameters (,),h 0 02 (,),h 1 02 (,),h 0 12 and (,)h 1 12 are
called the second-order Volterra kernel coefficients. In gen-
eral, the output y(n) of a degree D, single-input, single-out-
put (SISO), discrete-time Volterra system is described by

 () (, ,) ().y n h h m m u n m
m

M

d

D

d
m

M

d
j

d

j0
01 0

1
1d1

g f= + -
== = =

%// / (11)

The number of kernel coefficients grows exponentially
with the degree of the polynomials, as the dth-order Volt-
erra kernel (, ,)h m md d1 f consists of ()M 1 d+ numbers. In
this section, we consider the following Volterra system iden-
tification problem: for a given degree D and memory M and
a set of N measured input and output values ((), ()) ,u n y n n

N
1=" ,

estimate all Volterra kernel coefficients , , (, ,).h h M MD0 f f
Since the kernel coefficients appear linear in (11), the iden-
tification problem can be written as an ordinary least-
squares problem

 ,y U h= (12)

where the vector y RN! contains the measured outputs,
the vector h RH! is the unknown kernel coefficients,
and the matrix U RN H! # consists of all the monomials of
lagged inputs.

The difficulty in solving (12) lies in the exponential number
of kernel coefficients () .H M 1 d

d
D

0R= += The paradigm to break
this curse is to trade storage for computation. All Volterra coef-
ficients are replaced by a tensor decomposition from which the
Volterra coefficients can be computed. This idea is not new. For
example, Volterra kernels have been expanded on orthonor-
mal basis functions to reduce their complexity [33], [34]. The
notion that the kernel coefficients are not completely random
but are instead evaluations of smoothly decaying functions
can be encoded through the use of low-rank tensor decompo-
sitions [7], [8]. Tensors are therefore also suitable candidates for
this purpose via the blessing of dimensionality. In [35], both
the canonical polyadic and Tucker tensor decompositions are
used to approximate each of the Volterra kernels .hd The
approach described in [36] will be briefly discussed in this sec-
tion. The main differences compared to [35] are threefold: all
Volterra kernels are combined into one tensor, a low-rank
tensor train matrix decomposition is used, and multiple-input,
multiple-output (MIMO) systems are supported.

Tensor Formulation of Volterra Systems
The first step in formulating the MIMO Volterra system lies
in rewriting the least-squares problem (12). Suppose there

are L outputs and P inputs, which implies that ()y n RL!
and () .u n RP! For a given memory M and degree D, the
vector un is defined as

(() ()) .u u un n M1 R(())
n

T T T M P1 1g != - + +

For notational convenience, let (()),I M P1 1= + + and define
the vector

 : .u u u u Rn
D

n n n

D
I

times
D

7 7 7g !=
6 7 84444 4444

 (13)

The output of the MIMO Volterra system can then be written as

 () ,y H un n
D= (14)

where each row of the matrix H RL ID

! # contains all the
Volterra kernel coefficients responsible for one of the L out-
puts. The concatenation of (14) over all measured samples

, ,n N1 f= results in the rewritten least-squares problem

()
()

()

 .

y
y

y

u u u H

N

1
2

T

T

T

N L

D D
N
D T

N I

T
1 2

D
h

g=

#

#

J

L

K
K
K
KK

^

N

P

O
O
O
OO

h
1 2 34444 4444

>

 (15)

Also, for this linear system, the exponential dimension
ID creates a problem. One possible solution is to replace the
unknown HT matrix with the tensor train matrix

H

H

H ,

.

,
R

R

R
()

()

() L I R

R I R

D R I

2 1

1 1

1 1

D

2 3

2

h

!

!

!
#

#

#

By convention, the row index l of H is “split” into D indices,
where the first index has dimension L and all others have
unit dimensions. Equation (14) can now be rewritten as

 H HH() (() (),)y u uun () ()()

L

n

L R

n

R R

D
n

R1

2
3 3

1

1
3

D2 2 3

g=
#

1 2 3444 444 1 2 3444 444 1 2 3444 444: (16)

which is illustrated with a tensor diagram in Figure 2. The
diagram has one “dangling” edge, indicating that the tensor
obtained after all contractions is a vector. All factors
H()u()d

n d
D

3 1
1

=

-" , are matrices, and H()u()D
n3# is a vector.

H(1) H(2) H(3) H(4)

un un unun

FIGURE 2 A tensor diagram of (16) for a four-way tensor. Each
factor H u()d

n3# in (16) is represented by a tensor train matrix
core H()d that is connected to a vector .un The whole diagram
has one “dangling” edge, which means that the whole diagram
represents a vector.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

64 IEEE CONTROL SYSTEMS » FEBRUARY 2022

Equation (16) is therefore a sequence of matrix multiplica-
tions that ends with a matrix vector product, resulting in the
desired vector of outputs ().y n

With this new tensor train matrix formulation, the Volt-
erra system identification problem can be restated as: for a
given degree D and memory M and a set of N measured

Linear Algebra Operations With Tensor Trains

A convenient feature of tensor trains and tensor train matri-

ces is that many linear algebra operations on the underly-

ing vectors and matrices can be directly performed on these

decompositions. A brief overview of some useful linear algebra

operations is provided in this sidebar. Some operations lead

to tensor train ranks of increased size. A rounding procedure

[27] can then be used to truncate the ranks for a given error

tolerance.

ADDITION

The addition of two tensors ,A B RI I! # #g in tensor train

form can be computed directly with the tensor train cores. If

the tensor train ranks of A and B are denoted by , ,R RD1 f

and , , ,S SD1 f respectively, then the tensor train cores of

C A B= + are determined by

(: , , :)
(: , , :)

(: , , :)

(),

(: , : ,)
(: , : ,)
(: , : ,)

.

(, : , :) (, : , :) (, : , :) ,A B

A
B

A
A

C

C

C

i
i

i

d D

0
0

2 1

1
1
1

1 1 1 R

R

R

()
()

()

() ()

()
()

()
()

() () () ()I R S

d
d

d
d

d
d

R S R S

D
D

D
R S I

1 1 1

d d d d

D D

1 1

2 2

! # #

!

!

=

-

=

=

#

#

#

+ +

+

+

+ +

^

e

e o

h

o

The tensor train ranks of the sum C A B= + are the sum of the

respective tensor train ranks.

INNER PRODUCT OF TENSORS

The inner product of two tensors A Band involves a summa-

tion over all indices,

(, ,) (, ,),BA i i i i
i

I

D D
i

I

1 1
1 1

D

D

1

1

g f f
= =

/ /

resulting in a scalar. A tensor diagram of the inner product

of two four-way tensors in tensor train form is in Figure S7.

Each row of the diagram is a tensor train. The connecting

edges between the two tensor trains are the summations

over the indices , , , .i i i iand1 2 3 4 The absence of any remain-

ing “dangling” edges indicates that the whole diagram rep-

resents a scalar.

OUTER PRODUCT OF VECTORS

The outer product of two vectors can be written as an index con-

traction through the insertion of a dummy index of unit dimension

(,) (,) (, .i j i r r jC a b C a b
r 1

1

&%= =
=

)/

The same idea can be applied in tensor train form. The ten-

sor diagram in Figure S8 illustrates how the two tensor trains

of vectors a and b can be combined to form the tensor train

matrix of C. By summing over the unit size dummy indices,

tensor train cores are “merged” together. In this way, a tensor

FIGURE S7 A tensor diagram of the inner product between two
four-way tensors in tensor train form. The absence of any “dan-
gling” edges implies that the resulting diagram is a scalar.

1 1 1 1

R2 R3 R4

S2 S3 S4

R2S2 R3S3 R4S4

FIGURE S8 A tensor diagram of the outer product between two
vectors in tensor train form. Two vectors are shown as tensor
trains with ranks ,R2 ,R3 and R4 and ,S2 ,S3 and ,S4 respec-
tively. The unit size index contractions between the two tensor
trains form the “glue” connecting the two tensor trains together.
After summing over all unit size edges, a tensor train matrix is
obtained. The resulting tensor train ranks are ,R S2 2 ,R S3 3 and

.R S4 4 All edges pointing downward constitute the row index of
the resulting rank 1 matrix, and all upward-pointing edges con-
stitute the column index.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 65

input and output values ((), ()) ,u n y n n
N

1=" , estimate all
tensor train matrix cores H H, , .() ()D1 f Additional param-
eters are the tensor train matrix ranks , , ,R RD2 f which can

either be set in advance by or determined from the mea-
sured data, at an additional computational cost. In the
interest of space, only the algorithm for fixed ranks will be

train matrix is obtained with ranks that are the product of the

corresponding ranks of the two tensor trains.

MATRIX MULTIPLICATION

The multiplication of matrices A and B written in terms of in-

dices is

(, (,) (, .i j i r r jC A B
r

R

1

=
=

))/

In tensor train matrix form, each of the indices i, j, and r is split

into D separate indices. The single summation over r will there-

fore also be split into D summations. The tensor diagram of a

matrix multiplication in tensor train matrix form is almost iden-

titical to the outer product in Figure S8. Again, corresponding

cores of the tensor train matrices are merged through the sum-

mation over the column index of the underlying matrix. Also in

this case, corresponding ranks of the tensor train matrices are

multiplied. The only difference between the two diagrams is

the dimensions of the contracted indices.

THIN QR FACTORIZATION

The thin QR factorization of a matrix A RI RD

! # is

,A Q R=

with Q RI RD

! # a matrix with orthonormal columns and R RR R! #

an upper triangular matrix. Assume that .R ID% If A is given in

tensor train matrix form, then it is possible to compute the Q

matrix in tensor train matrix form. The algorithm is summarized

in Algorithm S1. The assumption is made that the last core

of the tensor train matrix of A contains the column index of

dimension R. The algorithm consists of a sequence of thin QR

factorizations, whereby the Qd factor is retained as the core

for the tensor train of Q and the Rd factor is “absorbed” by the

next core of A. The last computed R factor is the desired up-

per triangular matrix. The sequence of orthogonal tensor train

matrix cores for Q ensures that .Q Q IT
R= A tensor diagram

of thin QR factorization in tensor train matrix form appears in

Figure S9. The thin QR factorization in tensor train matrix form

allows the computation of the Moore–Penrose inverse of a ma-

trix A also directly in tensor train matrix form as

.A R QT1 1=- -

The permutation of the Q matrix in tensor train matrix form is

obtained by a permutation of the row index with the column

index of each tensor train matrix core tensor.

THIN SINGULAR VALUE DECOMPOSITION

Algorithm S1 can be adjusted to compute a thin singular value

decomposition (SVD)

,A U S VT=

with U RI RD

! # a matrix with orthonormal columns, S RR R! # a

diagonal matrix, and V RR R! # orthogonal. All orthogonal ten-

sors of the tensor train matrix are renamed ,U()d and line 9 is

replaced with

, , () .U S V ASVDD D!

The tensor diagram of the thin SVD is almost identical to the di-

agram of the thin QR factorization. The R matrix in the diagram

is replaced by the matrix product .SVT The Moore–Penrose

inverse of a matrix A can then be computed directly in tensor

train matrix form as

.A V S UT1 1=- -

R

R

R

FIGURE S9 A tensor diagram of the thin QR factorization of a
matrix .A RI RD

! # The bottom row of tensors consists of re -
shaped orthogonal matrices and represents the factor matrix

.Q RI RD

! # The R matrix is upper triangular.

Input: tensor train matrix of A RI RD

! # with

A R()D R I R 1D! # # # and .R I RD $

Output: tensor train matrix of Q and R.

 1: for d 1:D 1= - do

 2: (, [,])A A R I Rreshape ()
d

d
d d 1! + % R 11 =

 3: , ()Q AR QRd d d! % thin QR

 4: (, [, ,])Q Q R I Rreshape()d
d d d 1! +

 5: (,[,])A A R IRR reshape ()
d d

d
d d1

1
1 2!+

+
+ + % matrix

 product

 6: (, [, ,])A R I RAreshape()d
d d d

1
1 1 2!+
+ + +

 7: end for

 8: (, [,])A R I RA reshape ()
D

D
D!

 9: , ()Q R AQRD D! % thin QR

10: (, [, , ,])Q R I RQ 1reshape()D
D D!

ALGORITHM S1 Thin QR factorization of a matrix in
tensor train matrix form.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

66 IEEE CONTROL SYSTEMS » FEBRUARY 2022

discussed. A detailed description of how the ranks can
be automatically determined from the measured data
can be found in [36].

Alternating Linear Scheme Volterra
Identification Algorithm
The alternating linear scheme (ALS) is the workhorse algo-
rithm concerning the computation of tensor decomposi-
tions [9], [37], and it can be readily applied to the Volterra
system identification problem. The core idea of the ALS
algorithm is to initialize each of the tensor train matrix
cores, then update each core separately while keeping all
other cores fixed. This procedure of updating will lead to a
stable, efficient, and reliable convergence to a stationary
point of the problem, which is not guaranteed to be the
global optimum. The local linear convergence of the ALS
algorithm in the case of tensor trains has been studied in
[38]. A key ingredient in the formulation of the ALS is (14),
rewritten in terms of one tensor train matrix core. Figure 3
illustrates how this rewriting can be done for the case
where the dth core is updated. By defining a new matrix
and vector

H H

H H

(
() () ,

) () ,U

u u u

u u

R

R
() ()

() ()
d n

d
n

L R

d
d

n
D

n
R1

2 2
1

1
2

1
2

d

d 1# #

#

g

g

!

!=

= #

#
1

2
+

-

+

then (14) can be rewritten as

 H() .y u u Un ()

L

d
T

n
T

d

L R IR

d

R IR1 1d d d d1 1

7 7=
#

2 1

+ +

vec jj `
1 2 344444 44444 1 2 344 44: ` (17)

The two Kronecker products are indicated in Figure 3 by
the two unit size edges. The least-squares problem to
update H()d is then obtained by considering all N samples:

 H

()
()

()

).

y
y

y

U u U
U u U

U u UN

1
2

vec(()

d
T T

d

d
T T

d

d
T

N
T

d

d

1

2

7 7

7 7

7 7

h h
=

2 1

2 1

2 1

J

L

K
K
K
KK

J

L

K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
OO

 (18)

Solving the linear system (18) has a computational com-
plexity of () ,O N R IRd d 1

2
+^ h which is an improvement over

the exponential complexity of the original system. Small
values for Rd and ,Rd 1+ and hence a low-rank representa-
tion of the matrix H, are an essential ingredient in making
high-order Volterra system identification feasible. Algo-
rithm 1 summarizes the whole identification algorithm,
where each core of the tensor train matrix is updated one
after another. The initial guess for the tensor train matrix
cores is usually chosen randomly. The algorithm can be run
for a fixed number of iterations, or a threshold can be set on
the relative error of the residuals of (18). An additional
orthogonalization step can be introduced for more numeri-
cal stability [36]. The ALS algorithm can also be modified
such that it learns the required tensor train ranks from the
measured data [36, p. 32]. In the presence of measurement
noise, however, the obtained ranks will be larger than when
no measurement noise is present. The low-rank structure in
the decomposition can thus be interpreted as a kind of reg-
ularization to prevent overfitting. A similar ALS algorithm
applied to nonlinear identification with B-splines basis
functions, together with an additional smoothness-induc-
ing regularization term, is described in [39].

Double-Balanced Mixer Identification
This experiment considers a double-balanced mixer used
for upconversion [40]. The reason this particular example
was chosen is because it is not a weakly nonlinear system
and therefore cannot be reasonably approximated by a
low-order Volterra system. The output radio-frequency
(RF) signal is determined by a 100-Hz, sine, low-frequency
(LO) signal and a 300-Hz, square-wave, intermediate-fre-
quency (IF) signal. A phase difference of /8r is present
between the LO and IF signals. All time series were sam-
pled at 5 kHz for 1 s. We investigate the effect of additive
output noise on the identified models. Define five differ-
ent noise levels, which are added to the measured RF
output, that generate signals with signal-to-noise ratios
(SNRs) ranging from 11 to 25 dB. The first 700 samples of
the inputs and the noisy output are then used to identify

U<d
u>d

1 1
un un un un

H(1) H(2) H(3) H(4)

FIGURE 3 The definitions of the matrix U d1 and vector u d2 with a
tensor diagram. The two unit size connections in the diagram cor-
respond to the two Kronecker products in (17).

Input: measurements {((), ())} ,n nu y n
N

1= initial tensor train

matrix cores .H()d

Output: tensor train matrix cores that solve (16).

 1: while stopping criterion not true do

 2: for :d D1 1= - do

 3: H()d ! Solve (18)

 4: end for

 5: for : :d D 1 2= - do

 6: H()d ! Solve (18)

 7: end for

 8: end while

ALGORITHM 1 The alternating linear scheme Volterra
identification.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 67

an ,M 2= ,D 11= two-input, one-output Volterra system
using Algorithm 1. The H matrix consists of 48,828,125
entries. The tensor train ranks are all set to a fixed value
of five.

The identified models were then used to simulate the
remaining 4300 samples of the output. The SNR of the sim-
ulated output was computed by comparing the simulated
output with the original noiseless output. Table 3 lists the
SNR of the signals used in the identification, the relative
residual of the simulated output, the runtime of the
identification, and the SNR of the simulated signal. The
SNR of the simulated output is defined as

(() ())

()
,log

y n y n

y n
10

i

n
10 2

2

- t

J

L

K
K
KK

N

P

O
O
OO/

/

where y(n) is the output signal uncorrupted by noise and
()y nt is the simulated output. As expected, a gradual im -

provement of the relative residual can be seen as the SNR of
the signals used for identification increases. Although the
residual remains high throughout the different SNR levels,
the SNR of the simulated output is much better, with a con-
sistent increase of 11 dB. The runtime varies between 2 and
6 s. Figure 4 provides the simulated output on the validation
data for three Volterra models identified under three differ-
ent SNR levels (11, 16, and 25 dB).

APPLICATION 2: KALMAN FILTERING FOR
RECURSIVE VOLTERRA SYSTEM IDENFICATION
An alternative to the ALS algorithm for Volterra identifica-
tion is a Bayesian filtering approach [41]. Such a recursive
filtering method comes with the additional benefit of having
a measure of uncertainty on the estimated model parame-
ters. This uncertainty can then be considered when making
predictions of future output values. The derivation summa-
rized here follows the Kalman filter technique in [42] rather
than the approach in [43] and [44] for two reasons. First, the
Kalman filter equations do not have to be written as tensor
equations, which results in a simpler derivation compared
to [43] and [44]. Second, correlations between the L Volterra
outputs cannot be considered using the approach in [43]
and [44]. The starting point of the derivation is not the linear
system (18) but the state-space model

() () (),

() () () () .
h h w

y C h e

n n n

n n n n

1+ = +

= +

(19)

The state vector h RLID

! is defined as

(),h Hvec=

where H is the L ID# matrix of Volterra kernel coefficients
in (14). Both the process noise ()w n and measurement
noise ()e n are assumed to be stationary Gaussian white
noise processes:

.d
()
() () ()

w
e w e

R
R

n
n m m 0

0
E T T w

e
nm= occ ^ em hm

In this framework, the state vector ()h n is time varying due
to the process noise ().w n This process noise term provides
additional flexibility in that it allows the addition of a for-
getting factor m that weighs past observations ()y n during
the recursive identification. Assuming this particular defi-
nition of the h vector, it can then be shown that the corre-
sponding time-varying measurement matrix ()C n is

 () () .C u In n
D T

L7= (20)

By modeling the initial state ()h 0 as a Gaussian distribu-
tion with mean vector ()m 0 and covariance matrix (),P 0
the MIMO Volterra identification problem can be reformu-
lated as a linear state estimation problem: given the input–
output measurements ((), () ,u yn n n

N
1=" , state-space model

Identification SNR 11 dB 13 dB 16 dB 19 dB 25 dB

y
y y

2

2- t 0.255 0.208 0.151 0.105 0.052

Runtime 2.3 s 5.3 s 6.4 s 3.2 s 2.2 s

Simulated signal SNR 22 dB 24 dB 27 dB 30 dB 37 dB

TABLE 3 A comparison of the results of Algorithm 1 in
the identification of 511 Volterra kernel coefficients for
five different signal-to-noise ratios (SNRs). The relative
validation error decreases as the SNR increases, and
the SNR computed from the simulated signals sees a
consistent increase of approximately 11 dB. The total
runtime for the algorithm does not depend on the SNR of
the training signals and varies between 2 and 6 s.

1280 1290 1300 1310 1320 1330 1340

Time (Samples)

–1
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1

R
ad

io
-F

re
qu

en
cy

 O
ut

pu
t

Reference Output 11 dB 16 dB 25 dB

FIGURE 4 The true and simulated output from the identified models
using Algorithm 1 under three different signal-to-noise ratios. As
expected, higher noise levels on the output during identification
results in worse simulations with the identified model.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

68 IEEE CONTROL SYSTEMS » FEBRUARY 2022

(19), and measurement matrix (20), find the state sequence
()h n of Volterra kernel coefficients. The linear state-space

model [in combination with the Gaussian assumptions on
the noise sources and initial guess ()]h 0 results in the
Kalman filter providing an unbiased minimum variance
state estimate of () .h n Algorithm 2 summarizes the cele-
brated Kalman filter equations. The first two lines of the
algorithm constitute the prediction step, where predictions
of the next state mean vector and covariance matrix are
made, while lines 7 and 8 update these predictions by incorpo-
rating the measurement ()y n through the Kalman gain ().K n

The implementation of Algorithm 2 is not straight-
forward, as almost all vector and matrix quantities have
exponential dimensions. For example, the size of the
covariance matrix ()P n is ,LI LID D# which can quickly
lead to storage problems. Using low-rank tensor decom-
positions to represent all these vector and matrix quanti-
ties is again key in resolving the curse of dimensionality.
The state mean ()m n contains the smoothly decaying
Volterra kernels, which, once more, motivates the use of a
low-rank tensor representation. Two ingredients are
required for the implementation of Algorithm 2. The first
ingredient is the specific low-rank tensor representa-
tions of (),m 0 (),P 0 (),R nw and ()C n so that the filter can
be initialized. The second required ingredient is algo-
rithms to compute linear algebra operations in the tensor
decomposition form.

Tensor Decompositions to Initialize the Kalman Filter
The tensor representations of (),m 0 (),P 0 (),R nw and

()C n can be constructed such that they are all rank 1. If
it is assumed that () ,m m0 1LID= where ,m R! then the
corresponding tensor train is unit rank and consists of
the tensors

M

M

M

M

,

,
.

,m

1

1

1

1 R

R

R

R

()

()

()

()
I

I

I
I

D
I

I

D
L

L

2 1 1

1 1

1 1 1

1 1 1

h

!

!

!

!

=

=

=

=
#

#

#

#

+

The scalar factor m can be freely moved to any of the
()D 1+ cores. A more general ()m 0 can be obtained in
tensor train form by, for example, explicitly construct-
ing the ()m 0 vector and computing its corresponding
tensor train through the tensor train SVD algorithm [27,
p. 2301]. If the L outputs are assumed to be uncorrelated,
then the covariance matrix can be modeled as a diagonal
matrix () ,P Ip0 LID= where p 02 is a real scalar. The cor-
responding tensor train matrix is unit rank and consists
of the tensors

P

P

P

P

,

,
.

,
I

I

I

Ip

R

R

R

R
()

()

()

()
I

I I

I
I I

D
I

I I

D
L

L L

2 1 1

1 1

1 1 1

1 1 1

h

!

!

!

!

=

=

=

=
#

#

#

#

+

The scalar p can also be moved to any of the ()D 1+ core
tensors. A diagonal covariance matrix, however, does not
model possible correlations between the parameters , ,h hL1 f
of the L multiple-input, single-output Volterra models. These
correlations can be captured in a covariance matrix:

,P
p

p

p

p
L

L

L

LL

11

1

1

h

g

j

g

h= f p

where pij denotes the covariance of all kernel coefficients
between Volterra models i and j. The corresponding tensor
train matrix for ()P 0 is then obtained by substituting Ip I
with .PL By choosing the covariance matrix ()R nw of the
process noise ()w n as

() (),R Pn n1 1w
m

= -` j

a forgetting factor ,][0 1!m is introduced. This forgetting
factor induces an approximate, exponentially decaying
weighting on past data. A small m implies that previous
outputs ()y n will be weighted less in the update, while in
the extremal case ,1m = all past outputs will be taken
equally into account. Finally, the particular structure of the
measurement matrix (),C n as in (20), is exactly a rank 1
tensor train matrix:

C

C

C

C

,

,
.

,
u

u

u

I

R

R

R

R
()

()

()

()
L

L L

n
I

D
n

I

D
n

I

2 1 1 1

1 1 1

1 1 1 1

1 1 1

h

!

!

!

!

=

=

=

=
#

#

#

#

+

Input: Measurements {((), ())} ,n nu y n
N

1= initial state mean

(),m 0 initial state covariance () .P 0

Output: state mean (),nm state covariance ()() .n nP 02

 1: for :n N1= do

 2: () ()n nm m 1! - % predicted mean

 3: () () ()n n nP P R1 w! - + % predicted covariance

 matrix

 4: () () () ()n n n nv y C m! -

 5: () () () ()n n n nS C P C RT
e! +

 6: () () () ()n n n nK P C ST 1! -

 7: () () () ()n n n nm m K v! + % measurement update

 of mean

 8: () () () () ()n n n n nP P K S K T! - % measurement update

 of covariance matrix

 9: end for

ALGORITHM 2 The Kalman filter state estimation algorithm
for system (19).

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 69

With these tensor representations in place, each line of
Algorithm 2 can now be implemented completely in tensor
train form. More information about how matrix products
can be computed in tensor train form is available in
“Linear Algebra Operations With Tensor Trains.” Each of
these products, however, will result in ever-increasing
tensor train ranks. To preserve the low-rank tensor rep-
resentation, a tensor train rounding algorithm [27] can
be used. The rounding algorithm takes a tensor train
A A, ,() ()D1 f with ranks , ,R RD2 f and finds a tensor
train B B, ,() ()D1 f with ranks , ,S R S RD D2 2 f# # such
that /A A ,B F F< < < < # e- where e is a user-defined error
tolerance. The rank truncation of D tensor train cores
happens through D 1- consecutive SVDs of the cores,
with a total computational complexity of (),O DIR3 and is
described in detail in [27]. It is, however, possible that no
rank truncation occurs for the specified tolerance. In this
case, the user can limit the ranks to grow beyond a cer-
tain specified maximal value.

One problem that is still unexplored is how the positive
definiteness of the covariance matrix ()P n can be ensured
during rounding. One way to ensure the positive definite-
ness of ()P n is to keep its tensor train matrix rank 1,
although it is not yet understood why this is the case. A
square-root, tensor train matrix Kalman filter implemen-
tation is still an area of research. Once the Kalman filter
has iterated over all samples, a final estimate of the
Volterra kernel coefficients is encoded in the Gaussian
distribution with mean ()m n and covariance matrix ().P n
A predicted output ()y n 1+ is then also described by a
Gaussian distribution:

N() (() (), () () ()).y C m C P C Rn n n n n n1 1 1 1 T
e++ + + + +

Both the mean and covariance of the prediction ()y n 1+
can be computed through contractions of the correspond-
ing tensor trains.

Double-Balanced Mixer Identification
The same double-balanced mixer setup described in the
section covering the ALS Volterra identification algorithm
is used for this experiment. In this experiment, all time
series were sampled at 5 kHz, for a total of 6000 samples.
The output signal was corrupted with Gaussian noise such
that three different outputs with respective SNRs of 12, 17,
and 26 dB were obtained. A Kalman filter is then used to
estimate a two-input, one-output Volterra system with
d 7= and M 10= by filtering the first 5900 samples for the
three noisy outputs separately. The state vector containing
the Volterra kernel coefficients consists of .21 1 801 107 9#.
entries, which is well beyond the reach of a standard
Kalman filter. The initial mean vector ()m 0 is initialized as
the zero vector, and the initial covariance matrix ()P 0 is set
to .I1000 The rounding parameter e was set to a fixed value
of .10 1-

The corresponding maximal tensor train ranks of ()m n
when filtering the output with SNRs of 12, 17, and 26 dB
were 11, 13, and 14, respectively. All tensor train matrix
ranks of ()P n were equal to one. The median runtime for
one filter step was 0.0068 s, and the total runtime to filter
5900 samples was approximately 40 s. The obtained mean
vectors ()m 5900 were then used to simulate the remaining
100 samples. The simulated outputs are shown together
with the reference output, which is not corrupted by noise,
in Figure 5, which demonstrates that a higher SNR results
in better performance of the Kalman filter. For the outputs
with SNRs of 12, 17, and 26 dB, the root-mean-square
errors of the simulated outputs were 0.1778, 0.097, and
0.034, respectively.

APPLICATION 3: SUBSPACE IDENTIFICATION OF
POLYNOMIAL INPUT STATE-SPACE MODELS
The output of a Volterra model is completely determined by
a polynomial of past input values. A large value for the
memory M may be required to capture the dynamics in a
satisfactory manner. One way to retain more information
from the past in the model is through the addition of a state
variable () .x n RK! The following state-space model with
linear state dynamics and polynomial input dependencies
is then obtained:

() () ,

() () .
x A x B u

y C x D u

n n

n n

1 n
D

n
D

+ = +

= +

(21)

The matrices A RK K! # and C RL K! # are assumed to be suf-
ficiently small that they require no tensor representation.
The definition of the vector un is slightly different from the
Volterra model in that no past input values are present any-
more. That is,

0 10 20 30 40 50 60
Time (Samples)

–1.5

–1

–0.5

0

0.5

1

1.5

R
ad

io
-F

re
qu

en
cy

 O
ut

pu
t

Reference Output SNR 12 dB
SNR 17 dB SNR 26 dB

FIGURE 5 The reference and simulated output from the tensor-
based Kalman filter for three different signal-to-noise ratios
(SNRs). The Volterra models identified through Algorithm 2 with
better SNR circumstances simulate outputs during validation that
are closer to the reference output.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

70 IEEE CONTROL SYSTEMS » FEBRUARY 2022

() ,u u n1 R()
n

T T P1!= +^ h

where now the convention I P1= + will be used. The
matrices B RK ID

! # and D RL ID

! # have an exponential
number of columns and model the polynomial input con-
tributions to both the state dynamics and the output. The
maximal total degree D of both polynomial input contribu-
tions B and D are assumed to be equal. The output ()y n of
the system (21) is

() ()y C A x C A Bu D un 0n n i
i
D

n
D

i

n
1

0

1

= + +- -

=

-

/

and is therefore completely determined by the initial state
()x 0 and all input signals , , .u un0 f

The system identification problem resolved in this sec-
tion is: given measurements ((), ()u yn n n

N
1=" , and the state-

space model (21), estimate the matrices A, B, C, and D up to a
similarity transform. Two mainstream identification tech-
niques for linear time-invariant systems still dominate the
field today: prediction error methods and subspace meth-
ods. Prediction error methods rely on nonlinear optimiza-
tion routines to find the values of all unknown matrices such
that the prediction error is minimized. Subspace methods
exclusively use linear algebra operations, such as projections
and matrix decompositions, to find the unknown matrices.
This section will focus on the use of subspace methods, as it
is possible to use a conventional subspace method for the
identification of (21), combined with low-rank tensor repre-
sentations for the B and D matrices [45].

The key equation of subspace methods is the data equa-
tion. For the polynomial input state-space model (21), the
data equation is

 ,Y O X P U| |S S S S1 1= + (22)

where the matrices Y |S1 and U |S1 are block Hankel data
matrices:

y y y

:

:

,

.

Y

y
y

y
y

y
y

U

u
u

u

u
u

u

u
u

u

R

R

|

|

S

S S

T

T

T S

LS T

S

D

D

S
D

D

D

S
D

T
D

T
D

T S
D

I S T

1

1

2

2

3

1 2

1

1

2

2

3

1

1

2

D

g

h h

g

g

g

h

!

!

=

=

#

#

+ + -

+

+

+ -

h h

g

g

h

J

L

K
K
KK

J

L

K
K
K
KK

N

P

O
O
OO

N

P

O
O
O
OO

The scalar S is the window size and must be chosen such that
.S K2 The total number of measurements is .N T S 2= + -

The matrix

 :O

C
CA
CA

CA

RS

S

LS K2

1
h

!= #

-

J

L

K
K
K
K
KK

N

P

O
O
O
O
OO

 (23)

is the well-known extended observability matrix of linear
time-invariant systems, and

 :P

CA B

D

CB D

D
CB

RS

S

LS I S

2

D

h j

g

j
!= #

-

J

L

K
K
K
KK

N

P

O
O
O
OO

 (24)

is a block Toeplitz matrix with an exponential number of
columns. The matrix

:X x x x RT
K T

1 2 g != #^ h

is the state sequence matrix.
Starting from the data equation, two commonly used

subspace identification algorithms, Multivariable Output
Error State Space (MOESP) and Numerical Algorithms for
Subspace State-Space System Identification (N4SID), can be
derived. Both algorithms start from the data matrices U |S1
and Y |S1 and are not straightforward to implement due to
the exponential size of .U |S1 The main difference between
MOESP and N4SID is that MOESP uses realization theory
on the observability term of the data equation to retrieve
the A and C matrices, after which the B and D matrices are
found separately by solving a linear system. In the N4SID
approach, the state sequence X is first estimated, after
which all system matrices are identified from one linear
system [46, p. 165]:

 .
A
C

B
D

XX
Y U| |

S

S S

S

S S

1
=

+r

r

r

re c eo m o

It is this last step of N4SID that is less straightforward to
implement with tensor decompositions. The MOESP algo-
rithm, summarized in Algorithm 3, has a more straightfor-
ward tensor implementation. Linear algebra operations
also play a key role in this algorithm, and the use of tensor
trains is again beneficial. In “Linear Algebra Operations
With Tensor Trains,” all required linear algebra operations
using tensor trains are reviewed.

The implementation of the MOESP identification algo-
rithm with tensor trains requires three main steps: the
construction of the tensor train matrix of ,U |S1 the com-
putation of the linear quadratic (LQ) factor matrices, and
the construction of the tensor train matrix for the right-
hand side of (25). What follows is a short exposition on
the implementation of these steps. More details can be
found in [45].

Tensor Train Matrix of a Block Hankel Data Matrix
Explicit construction of the block Hankel data matrix U |S1
quickly becomes infeasible due to the IDS exponential
number of rows. Fortunately, it is possible to construct the
corresponding tensor train matrix without ever having to
explicitly store the matrix U |S1 in memory. The block

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 71

Hankel structure in the data matrix also ensures that its
tensor train matrix ranks are bounded [45]. Algorithm 4
summarizes the procedure. The main insight upon which
Algorithm 4 is based is that the matrix

(, [,]) ()U U u u u u uI STreshape |S
D D D

S
D D

T S
D

1 1 2 2 2g g= = + -

can be written as a D-times-repeated Khatri–Rao product

U U U U
D times

9 9 9g= u u u
6 7 84444 4444

of the matrix

.U u u u u u RS T S
I ST

1 2 2 2g g != #
+ -

u ^ h

Algorithm 4 builds up the tensor train matrix of U |S1 core by
core, whereby the SVD operation on line 6 is used to deter-
mine the rank between two consecutive cores in line 7.

Computation of the LQ Factor Matrices
A major advantage of both the conventional N4SID and
MOESP methods is that the orthogonal factors in the LQ
decomposition never must be computed. The tensor train
implementation of Algorithm 3, however, requires the
explicit computation of the orthogonal factors Q1 and .Q2
In fact, the LQ decomposition in line 1 of Algorithm 3
cannot be computed in tensor train matrix form. Instead,
using a modification of Algorithm S1, explained in “Linear
Algebra Operations With Tensor Trains,” an economical
SVD of ,U |S1

 ,U W T Q W W
T Q

Q0
0
0|S

T
T

T1 1 2
1 1

2
= = ^ c eh m o (26)

is computed, with W RI S TD

! # an orthogonal matrix in
tensor train matrix form, T RT T! # a diagonal matrix, and
Q RT T! # an orthogonal matrix. The rank of U |S1 is denoted
R such that .T RR R

1 ! #

The required matrix factors ,L11 ,L21 and L22 of the con-
ventional MOESP algorithm can now be computed as

,
,
.

L W T

L Y Q

L Y Q

R

R

R

|

|

I S R

S
LS R

S
LS LS

11 1 1

21 1 1

22 1 2

D

!

!

!

=

=

=

#

#

#

(27)

The tensor train matrix of L11 is easily found, as the first
()D 1- tensors are identical to the tensors of W, while the
Dth tensor of L11 is W .T 0()D T

3 1# ^ h Once the matrix fac-
tors ,L11 ,L21 and L22 are computed, the conventional
MOESP algorithm can be used to find A and C.

Solving a Least-Squares Problem With Tensor Trains
Line 7 of Algorithm 3 requires the computation and parti-
tioning of the ()SL K SID#- matrix .U L LT

2 21 11
1- This requires

the computation of the left inverse of L11 in tensor network

form. Fortunately, from (27) it follows that ,L T W T
11

1
1

1
1=- - as

.W W IT
r1 1 = The transpose of W1 as a tensor train matrix is

done by a permutation of the second index with the third
index of each core tensor. The tensor train matrix of L11

1- is
therefore obtained by permuting each of the tensors W()i
into W()iu and computing W ,T 0()d

2 1
1# -^ h where the inverse

of T1 is obtained by inverting its diagonal. Once the
tensor train matrix of L11

1- is obtained, multiplication
with U LT

2 21 is also performed on the Dth core tensor. In
fact, the multiplication with T 1

1- can be combined with

Input: L samples (,), , (,),u y u yL L0 0 1 1f - - k.

Output: matrices , , , .A B C H

 1:
L
L L

U
Y

Q
Q

0S

S

T

T
1

1

11

21 22

1

2
=;

;

e e eo o o % linear quadratic

 decomposition of data matrices

 2: SVD of L U U
S V

V0
0
0

T

T22 1 2
1

2

1= ^ e eh o o

 3: Define system order as ()K Lrank 22=:

 4: O U S /
S 1 1

1 2= and (: , :)LC O 1S=

 5: Compute A from (: , :) (: , :)SL L L SLO A O1 1k - = +

 6: Partition U L LT
S2 1 g=: ^ h into S blocks of size

()SL K L#-

 7: Partition U L L M MT
S2 21 11

1
1 g=- : ^ h into S blocks of size

()SP K ID#-

 8: Define , ,i SL L L 2i i Sg f= =:r ^ h
 9: Compute ,B D from

O

D
B

L
L

L
L

O
L O

L

M
M

M
M

L

0
S

S

S

S

S S

S

1

2

1

2 1

3 2

1

1

2

1

h h h=

-

-

-

-

r

r

r
o

J

L

K
K
K
K
K
K

J

L

K
K
K
K
KK

e

N

P

O
O
O
O
O
O

N

P

O
O
O
O
OO

 (25)

ALGORITHM 3 The Multivariable Output Error State-Space
subspace identification algorithm.

Input: I × ST matrix ,Uu factor D.

Output: tensor train matrix , ,U U() ()D1 f of .U |S1

 1: (, [, , ,])U I STU 1 1reshape()1 ! u

 2: for , ,d D1 1f= - do

 3: (, [,])U R I STT reshape ()d
d! % R 11 =

 4: T T U! 9 u

 5: (, [,R I ISTT Treshape d!])

 6: [, , (U S V TSVD!])

 7: Rd 1 !+ numerical rank of T determined from SVD

 8: (, [, , ,])U R I RU 1reshape()d
d d 1! +

 9: (, [, , ,])U R I STSV 1reshape()d T
d

1
1!+
+

10: end for

 11: (, [, , ,])U U R IS T 1reshape() ()D D
D!

ALGORITHM 4 Convert the repeated Khatri–Rao product
matrix into a tensor train matrix.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

72 IEEE CONTROL SYSTEMS » FEBRUARY 2022

.U LT
2 21 The partitioning of U L LT

2 21 11
1- into S blocks of size

()SL K Id#- follows from

M

M

M

, [, , , ,]),
, [, () , ,]).

, [, (), , ,]),R SL K I S

R SL K S I

1 2 4 3 5
1

1reshape(
permute(
reshape(

()

()

()D
D

D

D
D -

-

To estimate the matrices B and D, the linear system (25)
must be solved. The matrix on the left-hand side of (25) can

be stored explicitly without the use of any tensor decompo-
sition. If its pseudoinverse is denoted by ,L 1- then the con-
catenation of D with B is

 ,
D
B L

M
M

M
M

k

S

1

1

2

1

h= -

-

J

L

K
K
K
K
KK

c

N

P

O
O
O
O
OO

m (28)

which is equivalent to M .L()D
2

1# - The resulting tensor
train matrix represents the concatenation of the B and D
matrices into a single matrix. The whole subspace identifi-
cation algorithm starts from the tensor train matrix of U |S1
and consists only of manipulations of the Dth tensor core to
compute the tensor train matrix of the B and D matrices.
Since the manipulations are limited to the Dth tensor core,
all ranks R1 up to RD 1- of the resulting tensor train matrix
will remain unchanged. The low-rank property due to
the block-Hankel structure of U |S1 therefore ensures the
low-rank tensor train matrix of the solution. Indeed, using
the upper bounds on tensor train matrix ranks described in
[47, p. 73], it can be shown that the rank RD of the Dth core
of the resulting tensor train matrix will be smaller than the
corresponding rank of .U |S1

High-End Valve Control Amplifier
This experiment compares the performance of Algorithm 3
with other models and methods on real-world data. The data
set is from the same experiment described in [48, p. 3936],
and the system under consideration is a high-end valve
control amplifier (which is normally used as a preamplifier
for audio signals). The amplifier is a SISO system and was
fed a flat spectrum, random-phase multisine with a period
of 4096 samples at 1.25 MHz. We compare four different
models and methods. For each of these models/methods,
only the one with the best relative validation error is
reported. First, a linear state-space system was identified by
Algorithm 3, with system order ,K 3= using the first 1000
samples. Then, a state-space model with polynomial inputs
was identified using Algorithm 3, with D 6= and ,K 30=
also using the first 1000 samples. In addition, a Volterra
model of degree D 2= and memory M 30= was identified
using Algorithm 1, also employing the first 1000 samples.

Finally, a general polynomial state space, as described in
[49], was identified using the iterative methods of the poly-
nomial nonlinear state-space (PNLSS) Matlab toolbox, with
K 15= and where both polynomials of the state and output
equations are of degree 4. To obtain good validation errors,

Model Runtime (s)
Relative
Validation Error

Linear (MOESP) 0.26 0.418

Tensor network
MOESP 0.69 0.148

PNLSS 14,264 0.087

Volterra 1.61 0.004

TABLE 4 A comparison of runtimes and relative validation
errors for four models: a linear multivariable output error
state space (MOESP), a state-space model with polynomial
inputs (TNMOESP), a generic polynomial state-space model
(PNLSS), and a Volterra model.

3972

–0.2

0

0.2

0.4

3974

Time (Sample)

O
ut

pu
t

3976 3978 3980 3982 3984

Reference
PNLSS
Volterra
Tensor Network MOESP
MOESP

FIGURE 6 The reference and simulated amplifier output from four
different models: a linear state-space model [Multivariable Output
Error State Space (MOESP)], a state-space model with polyno-
mial inputs (tensor network MOESP), a generic polynomial nonlin-
ear state-space model (PNLSS), and a Volterra model. The linear
model performs the worst on the validation data, while all three
nonlinear models have acceptable performance.

Many resources are available to facilitate the computation

of all kinds of tensor decompositions.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

FEBRUARY 2022 « IEEE CONTROL SYSTEMS 73

the general polynomial state-space model needed to be
estimated on two periods of the input signal. Each of the
models was then used to simulate the output from the
input that was not used for identification. The runtimes
and relative validation errors / ,y yy< < < <- t where y denotes
the measured output and yt denotes the simulated output,
for each of the methods and models are listed in Table 4.

The linear state-space model can be identified very quickly
but performs the worst, while using polynomial inputs
improves the validation (at the cost of a slightly longer run-
time). The general polynomial state-space system can
improve the validation error by one order of magnitude, at
the cost of a very significant runtime. The convergence of the
iterative method in the PNLSS toolbox was rather slow, as it
took 12,317 s for the relative validation error to drop to 0.29.
The computational complexity of the PNLSS method per
iteration suffers from the large number of polynomial coef-
ficients. Surprisingly, the Volterra model is able to achieve a
relative validation error that is another order of magnitude
smaller than the general polynomial state-space system,
which might suggest that the real-world system is better
described by a Volterra model than a polynomial state-space
model. Figure 6 provides 12 samples of the reference output
and simulated outputs for the four different models. Due to
the scale of the figure, it is not possible to distinguish the
output from the Volterra model from the reference. As evident
from the figure, all nonlinear models produce outputs that are
closer to the real output compared to the linear model.

AVAILABLE RESOURCES
FOR TENSOR DECOMPOSITIONS
Many resources are available to facilitate the computation
of all kinds of tensor decompositions. Furthermore, the
Matlab implementations of all identification methods
described in this article are available as open source soft-
ware. An overview is given in Table 5.

CONCLUSION
This article provided a brief introduction to tensors for sys-
tems and control. Important tensor operations and decompo-
sitions were discussed and illustrated with three applications
in nonlinear system identification. Tensor-based identifica-
tion algorithms were discusssed for Volterra systems and
state-space models with polynomial inputs. The curse of
dimensionality in each of these identification problems was
lifted through the use of low-rank tensor decompositions.
The low-rank property is the essential ingredient in lifting
the curse of dimensionality and can be interpreted as adding
the constraint that model parameters are not completely
independent. By no means is the discussion on tensors in
this article exhaustive. The intention was to highlight some
key features of tensors and help interested practitioners
more efficiently explore relevant literature.

AUTHOR INFORMATION
Kim Batselier (k.batselier@tudelft.nl) received the M.S.
degree in electromechanical engineering and Ph.D. de-
gree in applied sciences from KU Leuven in 2005 and 2013,
respectively. He worked as a research engineer at BioRICS
on automated performance monitoring until 2009. He
is currently an assistant professor at Delft University of
Technology, Delft, 2628 CD, The Netherlands. His current
research interests include linear and nonlinear system
theory/identification, machine learning, tensors, and nu-
merical algorithms.

REFERENCES
[1] S. A. Billings, Nonlinear System Identification: NARMAX Methods in the
Time, Frequency, and Spatio-Temporal Domains. Hoboken, NJ: Wiley, 2013.
[2] S. A. Billings, “Identification of nonlinear systems—A survey,” IEE Proc.
D (Control Theory Appl.), vol. 127, no. 6, pp. 272–285, 1980.
[3] S. A. Billings and S. Fakhouri, “Identification of systems containing
linear dynamic and static nonlinear elements,” Automatica, vol. 18, no. 1,
pp. 15–26, 1982, doi: 10.1016/0005-1098(82)90022-X.
[4] J. Schoukens, J. G. Nemeth, P. Crama, Y. Rolain, and R. Pintelon, “Fast
approximate identification of nonlinear systems,” Automatica, vol. 39, no. 7,
pp. 1267–1274, 2003. doi: 10.1016/S0005-1098(03)00083-9.
[5] G. Birpoutsoukis, A. Marconato, J. Lataire, and J. Schoukens, “Regu-
larized nonparametric Volterra kernel estimation,” Automatica, vol. 82,
pp. 324–327, Aug. 2017, doi: 10.1016/j.automatica.2017.04.014.
[6] G. Birpoutsoukis, P. Z. Csurcsia, and J. Schoukens, “Efficient multidi-
mensional regularization for Volterra series estimation,” Mech. Syst. Signal
Process., vol. 104, pp. 896–914, 2018, doi: 10.1016/j.ymssp.2017.10.007.
[7] T. Shi and A. Townsend, “On the compressibil ity of tensors,”
SIAM J. Matrix Anal. Appl., vol. 42, no. 1, pp. 275–298, 2021, doi: 0.1137/
20M1316639.
[8] I. V. Oseledets, “Constructive representation of functions in low-rank ten-
sor formats,” Constructive Approx., vol. 37, no. 1, pp. 1–18, 2013, doi: 10.1007/
s00365-012-9175-x.

Package Implementation
Open
Source Description

TT Toolbox
[50]

Matlab and
Python

MIT
license

Tensor train and
tensor train matrix

Tensorlab [51] Matlab Closed
source

CPD and Tucker
decomposition

Tensor
Toolbox [52]

Matlab BSD
license

CPD and Tucker
decomposition

TensorBox
[53]

Matlab GPL
3.0

CPD

MVMALS [54] Matlab LGPL
3.0

Volterra identification
with tensor trains

TNKalman
[55]

Matlab LGPL
3.0

Tensor train Kalman
filter

TNMOESP
[56]

Matlab LGPL
3.0

Tensor train
subspace
identification

TABLE 5 Various tensor toolboxes and implementations
for tensor-based nonlinear system identification. TT: Tensor
Train; TN: Tensor Network; MVMALS: Multiple-Input, Multiple-
Output Volterra Modified Alternating Linear Scheme; MOESP:
Multivariable Output Error State Space; MIT: Massachusetts
Institute of Technology; BSD: Berkeley Source Distribution;
GPL: General Public License; LGPL: Lesser GPL; CPD: canonical
polyadic decomposition.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

74 IEEE CONTROL SYSTEMS » FEBRUARY 2022

[9] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
Rev, vol. 51, no. 3, pp. 455–500, 2009, doi: 10.1137/07070111X.
[10] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic,
“Tensor networks for dimensionality reduction and large-scale optimiza-
tion: Part 1 low-rank tensor decompositions,” Found. Trends Mach. Learning,
vol. 9, no. 4-5, pp. 249–429, 2016, doi: 10.1561/2200000059.
[11] A. Cichocki et al., “Tensor networks for dimensionality reduction and
large-scale optimization: Part 2 applications and future perspectives,” Found.
Trends Mach. Learning, vol. 9, no. 6, pp. 431–673, 2017, doi: 10.1561/2200000067.
[12] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed. Baltimore,
MD, USA: JHU Press, 2013.
[13] V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the
best low-rank approximation problem,” SIAM J. Matrix Anal. Appl., vol. 30,
no. 3, pp. 1084–1127, 2008, doi: 10.1137/06066518X.
[14] A. Cichocki et al., “Tensor decompositions for signal processing ap-
plications: From two-way to multiway component analysis,” IEEE Sig-
nal Process. Mag., vol. 32, no. 2, pp. 145–163, 2015, doi: 10.1109/MSP.2013.
2297439.
[15] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an ‘explanatory’ multi-modal factor analysis,” UCLA
Work. Papers Phonetics, vol. 16, no. 1, p. 84, 1970.
[16] J. Carroll and J.-J. Chang, “Analysis of individual differences in mul-
tidimensional scaling via an n-way generalization of “Eckart-Young” de-
composition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970, doi: 10.1007/
BF02310791.
[17] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear de-
composition of n-way arrays,” J. Chemometr., vol. 14, no. 3, pp. 229–239, 2000,
doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N.
[18] A. Stegeman and N. D. Sidiropoulos, “On Kruskal’s uniqueness con-
dition for the CANDECOMP/PARAFAC decomposition,” Linear Algebra
Appl., vol. 420, nos. 2–3, pp. 540–552, 2007, doi: 10.1016/j.laa.2006.08.010.
[19] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications in the
Chemical Sciences. Hoboken, NJ, USA: Wiley, 2005.
[20] E. Acar and B. Yener, “Unsupervised multiway data analysis: A litera-
ture survey,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 1, pp. 6–20, 2008, doi:
10.1109/TKDE.2008.112.
[21] P. Dreesen, M. Ishteva, and J. Schoukens, “Decoupling multivariate
polynomials using first-order information and tensor decompositions,”
SIAM J. Matrix Anal. Appl., vol. 36, no. 2, pp. 864–879, 2015, doi: 10.1137/
140991546.
[22] J. Decuyper, P. Dreesen, J. Schoukens, M. C. Runacres, and K. Tiels, “De-
coupling multivariate polynomials for nonlinear state-space models,” IEEE
Control Syst. Lett., vol. 3, no. 3, pp. 745–750, 2019, doi: 10.1109/LCSYS.2019.
2916955.
[23] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM
(JACM), vol. 60, no. 6, pp. 1–39, 2013, doi: 10.1145/2512329.
[24] L. R. Tucker, “Implications of factor analysis of three-way matrices for
measurement of change,” in Problems Measuring Change, C. W. Harris, Ed.
Madison, WI, USA: Univ. Wis. Press, 1963, pp. 122–137.
[25] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.
[26] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singu-
lar value decomposition,” SIAM J. Matrix Anal. A, vol. 21, no. 4, pp. 1253–
1278, 2000, doi: 10.1137/S0895479896305696.
[27] I. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011, doi: 10.1137/090752286.
[28] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider, “Optimiza-
tion problems in contracted tensor networks,” Comput. Visualization Sci., vol.
14, no. 6, pp. 271–285, Aug. 2011, doi: 10.1007/s00791-012-0183-y.
[29] M. Espig, K. K. Naraparaju, and J. Schneider, “A note on tensor chain
approximation,” Comput. Visualization Sci., vol. 15, no. 6, pp. 331–344, Dec.
2012, doi: 10.1007/s00791-014-0218-7.
[30] B. N. Khoromskij, “O(dlog N)-quantics approximation of N-d tensors
in high-dimensional numerical modeling,” Construct. Approx., vol. 34, no. 2,
pp. 257–280, Oct. 2011, doi: 10.1007/s00365-011-9131-1.
[31] U. Schollwöck, “The density-matrix renormalization group in the age
of matrix product states,” Ann. Phys. (USA), vol. 326, no. 1, pp. 96–192, 2011,
doi: 10.1016/j.aop.2010.09.012.
[32] I. Oseledets, “Approximation of 2d # 2d matrices using tensor decom-
position,” SIAM J. Matrix Anal. Appl., vol. 31, no. 4, pp. 2130–2145, June 2010.
[33] R. J. G. B. Campello, G. Favier, and W. C. d. Amaral, “Optimal expan-
sions of discrete-time Volterra models using Laguerre functions,” Auto-
matica, vol. 40, no. 5, pp. 815–822, 2004, doi: 10.1016/j.automatica.2003.11.016.

[34] C. Diouf, M. Telescu, P. Cloastre, and N. Tanguy, “On the use of equal-
ity constraints in the identification of Volterra-Laguerre models,” IEEE
Signal Process. Lett., vol. 19, no. 12, pp. 857–860, Dec. 2012, doi: 10.1109/LSP.
2012.2223463.
[35] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear system mod-
eling and identification using Volterra-PARAFAC models,” Int. J. Adapt.
Control Signal Process., vol. 26, no. 1, pp. 30–53, Jan. 2012, doi: 10.1002/
acs.1272.
[36] K. Batselier, Z. M. Chen, and N. Wong, “Tensor network alternat-
ing linear scheme for MIMO Volterra system identification,” Automatica,
vol. 84, pp. 26–35, Oct. 2017, doi: 10.1016/j.automatica.2017.06.033.
[37] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear
scheme for tensor optimization in the tensor train format,” SIAM J. Sci.
Comput., vol. 34, no. 2, pp. A683–A713, 2012, doi: 10.1137/100818893.
[38] T. Rohwedder and A. Uschmajew, “On local convergence of alternat-
ing schemes for optimization of convex problems in the tensor train for-
mat,” SIAM J. Numerical Anal., vol. 51, no. 2, pp. 1134–1162, 2013, doi: 10.1137/
110857520.
[39] R. Karagoz and K. Batselier, “Nonlinear system identification with
regularized tensor network B-splines,” Automatica, vol. 122, p. 109300, 2020,
doi: 10.1016/j.automatica.2020.109300.
[40] E. Rubiola, “Tutorial on the double balanced mixer,” arXiv e-prints, 2006.
[41] S. Särkkä, “Bayesian filtering and smoothing,” in Institute of Mathemati-
cal Statistics Textbooks. Cambridge, U.K.: Cambridge Univ. Press, 2013.
[42] K. Batselier, C.-Y. Ko, and N. Wong, “Extended Kalman filtering with
low-rank tensor networks for mimo Volterra system identification,” in Proc.
IEEE 58th Conf. Decision Control (CDC), 2019, pp. 7148–7153, doi: 10.1109/
CDC40024.2019.9028895.
[43] K. Batselier, Z. Chen, and N. Wong, “A tensor network Kalman fil-
ter with an application in recursive MIMO Volterra system identifica-
tion,” Automatica, vol. 84, pp. 17–25, Oct. 2017, doi: 10.1016/j.automatica.
2017.06.019.
[44] K. Batselier and N. Wong, “Matrix output extension of the tensor net-
work Kalman filter with an application in MIMO Volterra system identifica-
tion,” Automatica, vol. 95, pp. 413–418, 2018, doi: 10.1016/j.automatica.
2018.06.015.
[45] K. Batselier, C.-Y. Ko, and N. Wong, “Tensor network subspace identi-
fication of polynomial state space models,” Automatica, vol. 95, pp. 187–196,
2018, doi: 10.1016/j.automatica.2018.05.015.
[46] T. Katayama, “Subspace methods for system identification,” Communi-
cations and Control Engineering. London: Springer-Verlag, 2005.
[47] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multi-
dimensional arrays,” Linear Algebra Appl., vol. 422, no. 1, pp. 70–88, 2010.
[48] M. Schoukens, R. Pintelon, and Y. Rolain, “Parametric identification of
parallel Hammerstein systems,” IEEE Trans. Instrum. Meas., vol. 60, no. 12,
pp. 3931–3938, 2011, doi: 10.1109/TIM.2011.2138370.
[49] J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, and
R. Pintelon, “Identification of nonlinear systems using polynomial nonlin-
ear state space models,” Automatica, vol. 46, no. 4, pp. 647–656, 2010, doi:
10.1016/j.automatica.2010.01.001.
[50] I. Oseledets, S. Dolgov, V. Kazeev, O. Lebedeva, and T. Mach, MAT-
LAB TT-toolbox version 2.3 available online, June 2014. [Online]. Available:
https://github.com/oseledets/TT-Toolbox
[51] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer,
Tensorlab 3.0, Mar. 2016. [Online]. Available: https://www.tensorlab.net
[52] B. W. Bader et al., Matlab Tensor Toolbox Version 3.1, June 2019. [On-
line]. Available: https://www.tensortoolbox.org
[53] A. Phan, P. Tichavsky, and A. Cichocki, “Tensorbox,” GitHub, San Fran-
cisco, Mar. 2019. [Online]. Available: https://github.com/phananhhuy/
TensorBox
[54] K. Batselier, “MVMALS: MIMO Volterra system identification with ten-
sor networks,” Zenodo.org, Apr. 2019, doi: 10.5281/zenodo.2644831.
[55] K. Batselier, “TNKalman: Tensor network Kalman filter for identifica-
tion of time-varying MIMO Volterra systems,” Zenodo.org, Apr. 2019, doi:
10.5281/zenodo.2644841.
[56] K. Batselier, “TNMOESP: Tensor network subspace identification of
state space models with linear state dynamics and polynomial inputs,” Ze-
nodo.org, Apr. 2019, doi: 10.5281/zenodo.2644845.
[57] R. Penrose, “Applications of negative dimensional tensors,” in Combi-
natorial Mathematics and Its Applications. D. Welsh, Ed. New York, NY, USA:
Academic Press, 1971, pp. 221–244.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore. Restrictions apply.

