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N
onlinear parametric system identifi cation is the 
estimation of nonlinear models of dynamical sys-
tems from measured data. Nonlinear models are 
parameterized, and it is exactly these parameters 
that must be estimated. Extending familiar lin-

ear models to their nonlinear counterparts quickly leads 
to practical problems. For example, the generalization of a 
multivariate linear function to a multivariate polynomial 
implies that the number of parameters grows exponentially 
with the total degree of the polynomial. This exponential 
explosion of model parameters is an instance of the so-
called curse of dimensionality. Both the storage and com-
putational complexities are limiting factors in the develop-
ment of system identifi cation methods for such models.

The solution to this problem has been sought in the limita-
tion of the complexity of these models through various ways. 
For example, state-of-the-art identification methods for non-
linear autoregressive moving average models with exogenous 
inputs try to determine which model terms are important 
during identification [1]. The goal is to obtain a sparse model 
that is described by only a relatively small subset of the expo-
nential number of terms. An alternative approach involves 
block-oriented models, where the complexity of the model is 
reduced by constructing a nonlinear model through two 
kinds of blocks: a linear dynamical block and a nonlinear 
static transformation block [2], [3]. Two simple examples of 
such models are the Hammerstein model (which consists of a 
static nonlinearity followed by a linear block) and the Wiener 
model (which has the opposite order). More complexity can be 
achieved by combining different branches of block-oriented 
models [4]. Sparse and block-oriented model structures, how-
ever, are mostly meaningful when the control engineer has 
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strong reasons to believe that the system really has such a 
sparse or particular block structure.

The approach to address the curse of dimensionality 
described in this article is the use of tensor decompositions 
(see “Summary”). Tensors are multidimensional arrays that 
are generalizations of vectors and matrices to higher orders. 
The total number of entries of a tensor also grows exponen-
tially with the number of dimensions, and tensor decompo-
sitions can alleviate this problem. The key idea in lifting the 
curse of dimensionality lies in tensor decompositions, 
where a given tensor is decomposed into a set of tensors of 
much smaller size. These smaller tensors are often called
factor matrices or core tensors. In this way, the original 
tensor never has to be explicitly kept in memory. Instead, 
the core tensors can be stored in memory. The “rank” of a 
tensor decomposition plays an important role, as it deter-
mines how small the dimensions of the core tensors can be. 
Different tensor decompositions have their own definition 
of rank, and the question then naturally rises whether low-
rank tensor decompositions can be meaningful in the con-
text of dynamical systems.

One goal of this article is to show that this is effectively the 
case. A low-rank representation of a (nonlinear) model can be 
intuitively understood as a way of implicitly adding the con-
straint that the model parameters are not all completely inde-
pendent from one another. For example, “Low-Rank 
Motivation” shows how a low-rank tensor structure emerges 
when modeling a simple linear mass spring system. The 
entries of the A matrix in the corresponding linear state-
space model are not independent from one another. The same 
is true in nonlinear models. Volterra kernels, for example, are 
generalizations of finite-impulse responses (FIRs) to higher 
orders and are therefore expected to be smoothly decaying. 
Recent research enforces these constraints explicitly through 
regularization [5], [6], but is unfortunately limited to third-
order kernels. Smooth functions have been shown to result in 
low-rank tensor decompositions [7], [8]. A low-rank tensor 
decomposition of the Volterra kernel coefficients can there-
fore be interpreted as implicitly encoding this smoothness 
and allows for the identification of models with orders higher 
than three. The link between sparse parametric models and 
low-rank tensor decompositions is explained in “Sparse Models 
as Restricted Low-Rank Tensor Decompositions.”

The goal of this article is twofold. First, it serves as a basic 
introduction to tensor decompositions, as they can be a pow-
erful tool for addressing large-scale problems in systems and 
control. A second objective of this article lies in the presenta-
tion of three applications in nonlinear system identification 
where a low-rank tensor approach is used. The identification 
of both Volterra systems and state-space models with poly-
nomial inputs is discussed. This article starts with an over-
view of some basic tensor notations, tensor operations, and 
decompositions. This overview is followed by a first applica-
tion: the low-rank, tensor-based identification of truncated 
Volterra systems. The second application discusses a Kalman 
filter approach to the Volterra identification problem, where 
both the mean vector and covariance matrix of the distribu-
tions are represented by low-rank tensor decompositions. 
A  third and final application is a tensor-based subspace 

Summary

Tensor decompositions can be a powerful tool when faced 

with the curse of dimensionality and have been applied 

in myriad applications. Their application to problems in the 

control community remains largely unexplored. This article 

aims at filling this gap by introducing tensor decompositions, 

where the key idea is always to exploit structure in the prob-

lem to lift the curse of dimensionality. This structure leads to 

the notion of low rank, which can be intuitively understood 

as parameters in the problem being correlated. The potential 

of low-rank tensor decompositions is illustrated by means of 

three applications, specifically in nonlinear system identifica-

tion. The parametric identifiation of both Volterra systems and 

state-space models with polynomial inputs is discussed.
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identification algorithm for state-space models with polyno-
mial inputs. Finally, an overview of online resources and 
software is given that can help tensor decomposition users 
with particular problems in control.

TENSOR NOTATION AND BASICS
Tensors are multidimensional arrays. A D-way or Dth-
order tensor A RI I ID1 2! # # #g  is a D-dimensional array 
where each entry A ( , , )i iD1 f  is completely determined by 
D indices , , .i iD1 f  Commonly used tensors in control are 
scalars ( ),D 0=  vectors ( ),D 1=  and matrices ( ) .D 2=  One 
of the goals of this article is to show that tensors of order 
D 02  and their decompositions can be a beneficial tool in 
control, with a specific focus on nonlinear system identifi-
cation. More detailed information about tensors and their 
decompositions can be found in [9]–[11].

Tensor notation and terminology differ across fields, 
with a particular distinction between the field of applied 
mathematics and quantum mechanics. In this article, the 

applied mathematics terminology will be used. Notation 
conventions are summarized in Table 1. Following the con-
vention used in Matlab, all indices are one based and hence 
start counting from one rather than from zero. Indices are 
always denoted by lowercase letters, and their correspond-
ing capital letters denote their respective upper bounds. 
For example, an entry of an M N#  matrix A is denoted 

( , ) .A m n  Indices can also be combined into a single multi-
index. The conversion of D separate indices , , ,i i iD1 2 f  into 
one multi-index [ ]i i iD1 2f  follows the definition

 [ ] ( ) .i i i i i I1D d
d

D

l
l

d

1 2 1
2 1

1

g = + -
= =

-

%/  (1)

The same formula is used when a single index [ ]i i i iD1 2g=  
is split into D seperate indices. The diagonal of a tensor A  
is the entries when all indices attain equal values; that is,

A( , , , ), , .i i i i I1f f=

Low-Rank Motivation

T o illustrate the emergence of low-rank tensor decomposi-

tions in dynamical systems, consider a linear sequence 

of N  masses all connected through N 1-  springs, as shown 

in Figure S1. The origin of the local coordinate xn  lies at the 

equilibrium position of mass ,mn  and each spring has a spring 

constant .kn  Assuming no friction, each mass ,mn  exclud-

ing the ones at the border, is then described by the differ-

ential equation

 ( ) ( ).m x k x x k x xn n n n n n n n1 1 1=- - + -- - +p  (S1)

The state of each mass mn  can be chosen to contain , ,x xn no  

and the concatenation of these state variables for all masses in 

a state vector ( )tx R N2!  allows us to write the continuous-time 

state-space model

( ) ( ),

( ) ( ),

t t

t t

x A x

y x

.
=

=

with state dynamics matrix .A R N N2 2! #  The inputs to the sys-

tem are not important in this discussion, as we focus complete-

ly on the state dynamics.

From a white-box perspective, the system identification 

problem with regard to the state dynamics is defined as the es-

timation of the ( )N2 2 2+ -  unique entries (up to a sign) of the 

A matrix. These entries are comprised of contributions from 

the N masses mn  and N 1-  spring constants .kn  For example, 

when ,N 4=  the state dynamics matrix is

 ,m
k

m
k

m
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 (S2)

where empty spaces denote zero entries. The ( )2 2 4 2 6+ - =  

unique parameters are then found in the lower-left corner of the 

A matrix. Although the number of A entries scales quadratically 

in the number of masses ( ),O N2  the number of parameters to 

be estimated in identification grows only linearly in the number 

of masses O(N). In this example, Newton’s laws enforce a par-

ticular structure to the A matrix, reducing the number of unique 

parameters.

Now, assume a black-box perspective, and suppose that 

the knowledge that the system consists of a linear sequence 

of masses connected through springs is not available. Further-

more, assume that the size of the state vector ( )tx  is known. 

The question then arises whether it is possible to encode the 

m1 mN

k1 kN−1

FIGURE S1 A linear sequence of N  masses , ,m mN1 f  con-
nected through springs with spring constants , , .k kN1 1f -
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For the diagonal of a tensor to exist, it is required that 
,I Id $  where d assumes values between one and D. A diag-

onal tensor is defined as a tensor for which all off-diagonal 
entries are zero. Three important products are the outer 
product, Kronecker product, and Khatri–Rao product. The 
outer product % of D vectors ,a R( )d Id!  where d assumes 
values between one and D, is, per definition, the tensor

 A ,a a a R( ) ( ) ( )D I I I1 2 D1 2% % %g != # # #g  (2)

such that each tensor entry is computed from the product 
of the corresponding vector entries

A ( , , , ) ( ) ( ) ( ) .a a ai i i i i i( ) ( ) ( )
D

D
D1 2

1
1

2
2f g=

From this definition, the outer product is not commuta-
tive. The observant reader probably has already noticed that 
(2) can be interpreted as the tensor A  being “decomposed” 
into a set of D tensors. This is correct, as the outer product 
plays a fundamental role in tensor decompositions for 
exactly this reason. More details are discussed in “Tensor 

Decompositions.” A related product is the Kronecker prod-
uct, which is usually defined between matrices. The Kronecker 

assumption that there is only a limited number of unique en-

tries (due to physical laws) inside the A matrix. The answer to 

this question is a resounding yes, and a key part of the answer 

lies in a particular notion of rank. Figure S2 shows the total 

number of parameters that must be stored in memory for the A 

matrix, the singular value decomposition (SVD) of the A matrix, 

the tensor train matrix representation of the A matrix, and the 

white-box model as a function of the number of masses in the 

system. Remarkably, the SVD requires more storage than the 

original matrix, due to the A matrix being almost full rank. Only 

one singular value is zero.

The tensor train matrix of A is a specific tensor decompo-

sition that is designed to represent matrices. This tensor de-

composition is also characterized by a notion of rank, which 

is much lower in the case of this A matrix and hence results 

in fewer parameters that must be stored. The total number of 

parameters of the white-box model is also shown in Figure S2 

as a reference. The low-rank tensor train matrix representation 

requires a storage space that is similar in orders of magnitude 

to the white-box parameters. This beneficial representation is 

completely due to the structure present in the A matrix, which 

can be captured by a low-rank tensor decomposition.

The fact that all entries of the A matrix are not completely 

random results in the corresponding low-rank tensor repre-

sentation. Precise conditions for when such a low-rank rep-

resentation is available are given in [7] and [8]. These condi-

tions relate to different structures, such as an algebraic and 

displacement structure as well as smoothness, that are pres-

ent in the tensor. Smoothness relates to tensors for which the 

entries are the evaluations of smooth functions. An example 

of a displacement structure is the block Hankel structure that 

is common in subspace identification algorithms. A more  

intuitive interpretation of “structure” is that all tensor entries 

can be computed from a smaller set of numbers. For example, 

the rank 1 matrix decomposition
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implies that all nine matrix entries on the left-hand side can be 

computed from the six numbers on the right-hand side. Hence, 

the nine matrix entries are not entirely “independent” from one 

another. The different tensor ranks discussed in this article 

generalize this idea to higher dimensions.
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FIGURE S2 A plot of the number of parameters of each representa-
tion of the state dynamics A matrix versus the total number of 
masses in the dynamic system. The tensor train matrix represen-
tation requires a storage cost that is similar to the white-box model.

, , ,Aa a A A scalar, vector matrix, higher-order tensor

, ,A A( ) ( )D1 f An enumeration of D tensors

( , , )A i iD1 f The ( , , )i i thD1 f  entry of tensor A

AT The transpose of a matrix A

A 1- The (Moore–Penrose pseudo-) inverse of a matrix A

% An outer product

, The Kronecker product

9 The Khatri–Rao product

( )Aa vec= The vectorization of a tensor A

1N A vector of ones of length N

TABLE 1 A summary of tensor notations used throughout 
this article.
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product of matrices ,A RI J! #  andB RK L! #  is the KI LJ#  
matrix

( , )

( , )

( , )

( , )
.C A B

A B

A B

A B

A BI

J

I J

1 1

1

1
7 h

g

j

g

h= = f p

In terms of indices, the Kronecker product is written as

([ ], [ ]) ( , ) ( , ).C A Bki lj i j k l=

Observe that each of the indices of B is first in the 
multi-indices of C. This is also the reason why the Kro-
necker product is not commutative. Finally, the Khatri–
Rao product of matrices ,A RI J! #  and B RK J! #  is the 
KI J#  matrix

( (:, ) (: , ) (:, ) (:, )),C A B A B A J B J1 19 7 7g= =

formed by taking the column-wise Kronecker product A 
with B. The notation (: , )A j  denotes the jth column of the 
matrix A, where the colon operator (:)  replaces the row 
index to include the whole range of possible index values.

At first, one might think that higher-order tensors cannot be 
visualized. However, a visualization of higher dimensions is 
possible. In fact, tensor diagrams can be a powerful tool to rep-
resent complicated tensor expressions. More information about 
tensor diagrams can be found in “Tensor Diagrams.” These 
diagrams will be extensively used throughout this article.

Tensor Operations
Manipulating tensors will be crucial when describing the 
different applications. In this section, an overview is given 
of three important tensor operations. A first operation on 
tensors is changing the order D of the tensor through the 
“reshape” operator. The operation

B A( , [ , , , ])J J Jreshape K1 2 f=

reshapes a D-way tensor A RI I ID1 2! # # #g  into a K-way 
tensor B .R J J JK1 2! # # #g  The total number of entries does 
not change through this reshape operation; that is, 

.I Jd
D

d k
K

k1 1P P== =  A tensor order decrease through the 

Sparse Models as Restricted Low-Rank Tensor Decompositions

Sparse parametric models can be interpreted in terms of low-

rank tensor decompositions. Consider, for example, the 

single-input, single-output discrete time model

( ) ( ), ( ), , ( ) ,)(y n f u n u n u n1 29f= - -

where (·)f  is a 30-variate polynomial in the time-shifted input 

signal u(n) of total degree 3. A parameterization of this model 

structure requires 30
3 30 5456+ =c m  parameters, one for each 

distinct monomial. Now, consider the sparse model

 ( ) ( ) ( ) ( ) ( )y n c u n c u n u n c u n10 20 290 1 2
3= + - - + -  (S3)

parameterized by the unknown model coefficients , ,c c0 1  and 

.c2  All remaining 5453 parameters are considered to be ex-

actly zero in this model. How can this sparse parametric model 

be rewritten as a low-rank tensor decomposition?

First, all possible 5456 monomials are written as the Kro-

necker product
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which is the vectorization of a rank 1 symmetric tensor that 

contains ,00030 273 =  entries. The first term of (S3) can then 

be written as the inner product

( ) ( ) ( ) ,( )c u n
c

cu u e e e

1
0
0

0

1
0
0

0

0

0

0

n
T

n
T

0
3
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3

01 1 27 7 7 7

h h h

= =
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P
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where ek  denotes the kth canonical basis vector in .R30  The 

sparse model (S3) can hence be written as

( ) ( ) (

),

y n c c

c

u e e e e e e

e e e
n

T3
0 1

2

1 1 2 1 11 21

30 30 30

7 7 7 7

7 7

= +

+

where the sum of the three Kronecker product terms is the vec-

torization of a rank 3 canonical polyadic tensor decomposition. 

Any sparse model of R terms can in this way be written as a 

rank R canonical polyadic decomposition. The sparse model 

can, in fact, be interpreted as a very restricted tensor decom-

position in that the vectors in the decomposition are limited to 

canonical basis vectors .ek

By lifting this restriction, the rank 3 model is written as

( ) ( ) ,( )y n u a a a a a a a a a( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

T3
1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

7 7 7 7 7 7= + +

where , ,a a( ) ( )
1
1

3
3

f  are arbitrary vectors in .R30  The total number 

of model parameters increases from three to ,3 3 30 270$ $ =  

which is still a storage gain of a factor 100 compared to the 

original tensor of 27,000 entries. In this way, the model be-

comes more expressive in that all 5456 monomials can now 

contribute in predicting ( ).y n  If the control engineer has no 

reason to believe that the “true model” is sparse and therefore 

belongs to this restricted low-rank tensor decomposition model 

class, then the use of canonical basis vectors ek  in the decom-

position can be removed while keeping the low-rank structure. 

Low-rank tensor decompositions can thus be seen as a more 

generic choice than sparse models.
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reshape operation is equivalent to grouping several indices 
together into one multi-index according to (1). Likewise, an 
increase of the tensor order is equivalent to the splitting of 
an index [ ]i i i iD1 2g=  into D separate indices , , , ,i i iD1 2 f

such that (1) is also satisfied. The most common use of the 
reshape operator is for converting a tensor into a vector or 
matrix and vice versa. The conversion of a D-way tensor A
into a vector a is called the vectorization, denoted A( ) .vec
For example, the vectorization of the matrix

A
1
2

3
4

5
6= c m

is the vector

( ) .a A 1 2 3 4 5 6vec= = T^ h

In terms of indices, the relationship between the entries 
of a matrix A and its vectorization a can be written as

( , ) ([ ]) .A ai i i i1 2 1 2=

Using the vectorization operator, it is also possible to denote 
the relationship between the outer product and the Kro-
necker product

,a a a a a avec ( ) ( ) ( ) ( ) ( ) ( )D D1 2 2 1% % % 7 7 7g g=^ h

which follows from the various definitions. Note that the 
order of the vectors in the Kronecker product is reversed. 
Essentially, both the outer product and Kronecker product 
compute products among all possible combinations of the 

Tensor Diagrams

Writing down tensor equations quickly becomes cumber-

some as the number of indices increases. A simplified 

version of the Penrose tensor diagram notation [57] is used in 

this article to visualize tensor operations. Every tensor is repre-

sented by a node (a circle), and each index corresponds to an 

edge (a line). Tensors of order zero up to three are illustrated 

in Figure S3. The Penrose diagram of an index summation is 

obtained by connecting the lines between two nodes in the 

diagram. For example, the matrix–matrix product of A RN R! #

with ,B RR M! #

( , ) ( , ) ( , ),C n m n r r mA B
r

=/

is represented in Figure S4 as the connecting edge between the 

nodes A  and .B  The order of the resulting tensor in a diagram 

can always be deduced from the number of edges that are not 

connected, the so-called dangling edges. In Figure S4, for ex-

ample, there are two such edges. Hence, the diagram represents 

a matrix. Of course, index summations involving tensors of high-

er order can also be visualized with a diagram. For example, a 

Tucker decomposition of a third-order tensor A  is a contraction 

of a third-order tensor S  with a matrix on each of its dimensions:

.A S A A A( ) ( ) ( )
1

1
2

2
3

3# # #=  (S4)

Figure S5 shows the corresponding tensor diagram. The 

resulting tensor A  also has an order of three, and its entries 

are determined by

( , , ) ( , , ) ( , ) ( , )

( , ).

A Si i i r r r i r i r

i r

A A

A

( ) ( )

( )

r

R

r

R

r

R

1 2 3 1 2 3
1

1 1
2

2 2
111

3
3 3

3

3

2

2

1

1

#

=
===

///

 (S5)

The power of tensor diagrams becomes more apparent as the 

number of contractions increases since the need to write out all 

index summations explicitly, as in (S5), or define a new notation, 

as in (S4), is removed. Tensor decompositions are also called 

tensor networks, as different decompositions correspond to 

various topologies of interconnected tensors in a diagram.

A B
N R M

FIGURE S4 A tensor diagram of the multiplication of a matrix A
with a matrix .B  The diagram has two “dangling” edges and 
therefore represents a matrix. The connected edge of size R 
represents the summation over the column index of A  and row 
index of .B

A(2)

A(1) A(3)S

FIGURE S5 A tensor diagram of a Tucker decomposition of a 
three-way tensor. The three-way tensor S  is contracted along 
each of its three dimensions with matrices ,A( )1 ,A( )2 .A( )3  The 
resulting tensor is also of the third order, since there are three 
“dangling” edges in the diagram.

FIGURE S3 Tensor diagrams of a scalar a, vector a, matrix A, and 
three-way tensor .A  Each edge represents a dimension of the 
tensor, thus allowing the visualization of high-dimensional tensors.

a a A A
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vector entries. The outer product stores the result in a 
tensor, while the Kronecker product stores it in a vector.

A second important operation is the generalization of the 
matrix transpose to three or more indices. The operator “per-
mute A( , )p ” rearranges the indices of A RI I ID1 2! # # #g  so that 
they are in the order specified by the vector p. The resulting 
tensor has the same values of A, but the order of the sub-
scripts needed to access any particular element is rearranged, 
as specified by p. All the elements of p must be unique, real, 
positive, integer values from one to D. For example, applying 
the following permutation on the tensor A ,R2 5 3! # #

A( , [ , , ]),B 3 1 2permute=

results in a tensor B ,R3 2 5! # #  such that

A ( , , ) ( , , ) .Bi i i i i i1 2 3 3 1 2=

In the same way, the conventional matrix transpose B AT=  
can be written as

( , [ , ]) .B A 2 1permute=

The third and last tensor operation discussed in this sec-
tion is the summation over indices, also called the contraction 
of indices. A matrix multiplication is probably the most famil-
iar instance of an index contraction. Indeed, rewriting the 
matrix product C AB=  in terms of the matrix entries

( , ) ( , ) ( , )C A Bi j i i i j
i

I

1 1
1

1 2 2 1
2

2

=
=

/

shows that the index i2  is summed over all its values. A 
particularly common index contraction in the context of 
tensors is the d-mode product of a tensor with a matrix. The 
d-mode product A Ud d#  of a tensor A RI ID1! # #g  with a 
matrix U Rd

S Id d! #  is the tensor RB I I S I Id d d D1 1 1! # # # # # #g g- +  
with elements

 
B(

A

, , , , , , )

( , , , , , , ) ( , ) .U

i i s i i

i i i i i s i

d d d D

d d d D d d d
i

I

1 1 1

1 1 1
1d

d

f f

f f=

- +

- +

=

/  (3)

The index id  has effectively been summed over and 
therefore has been replaced by the sd  index. Defining the 
matrix A( )d  as

A( , [ , , , , , , , ]),
[ , ]),

A d d d D

I I I

1 2 1 1reshape(permute( )d

d D1

f f

g

= - +

the index contraction (3) can be implemented through the 
matrix product

.B U A( )d d=

The desired B A Ud d#=  tensor is then obtained from

B ( , [ , , , , ]),
[ , , , , , , , ]) .

B S I I I

d d D2 3 1 1
permute(reshape d D1 2 f

f f

=

+

Tensor Decompositions
Low-rank approximation of a matrix through a decomposi-
tion is well-known, and the singular value decomposition 
(SVD) is an essential tool in this respect [12]. The SVD of a 
matrix A RI J! #

 A U S VT=  (4)

consists of two orthogonal matrices ,U VR RI I J J! !# #  and a 
diagonal matrix S RI J! #  of nonnegative real numbers 

f,1 2$ $v v  also called singular values. A matrix is, per defi-
nition, rank R when it has R nonzero singular values. It follows 
then that ( , ).minR I J=  The SVD factor matrices of a rank R 
matrix can be truncated to dimensions ,U RI R! #  ,V R J R! #  
and .S RR R! #  When , ,R I J%  a storage benefit can be obtained 
by storing the factor matrices ,US  V  in memory instead of A. 
The storage complexity of A is in this way reduced from IJ to 
( ) .I J R+  Truncating the SVD to a dimension R R1l  results in 
an optimal rank Rl approximation

,A USV ET= +

where the approximation error E satisfies 2 .R 1< < v= +E l  
This optimal approximation property does not apply for 
higher-order tensors [13].

The generalization of the SVD from matrices to higher-
order tensors has led to the discovery of many different tensor 
decompositions, and each decomposition comes with its own 
properties and notion of rank. For this reason, it is good to 
have an overview of commonly used decompositions and 
how they relate to one another. Three tensor decompositions 
discussed in this article are the canonical polyadic decomposi-
tion (CPD), Tucker decomposition, and tensor train decompo-
sition. These decompositions are summarized in terms of 
their storage complexity and uniqueness in Table 2. The appli-
cations of these three tensor decompositions go far beyond 
the field of control [11], [14]. The main idea is always the same: 
a tensor A  that is too large to be stored explicitly in memory 

Storage 
Complexity Unique?

Original tensor A ID

Canonical polyadic 
decomposition O(DIR)

Yes, under  
mild conditions

Tucker decomposition ( )O R DIRD+ No

Tensor train 
decomposition ( )O DIR2 No

Tensor train matrix 
decomposition ( )O DI R2 2 No

TABLE 2 A summary of commonly used tensor decompositions  
of a D-way tensor A. The storage complexity calculation 
assumes uniform tensor dimensions I and uniform tensor 
rank R.
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is replaced or approximated by a set of smaller tensors. Both 
the CPD and Tucker decomposition can be interpreted as 
direct generalizations of the matrix SVD to higher-order ten-
sors. The key idea to generalize the SVD is to rewrite this 
decomposition in terms of outer products. Labeling column r 
of U and V by ur  and ,vr  respectively, rewrites (4) as

.A u v u vr
r

R

r r
T

r
r

R

r r
1 1

%v v= =
= =

/ /

The notation % for the outer product is used here, as it 
generalizes more easily to the case of an outer product of 
D 22  vectors

 A .a a a( ) ( ) ( )
r

r

R

r r
D1

1

2% % %g=
=

/  (5)

Such a decomposition is called a CPD, as well as CANDE-
COMP and PARAFAC decomposition [15], [16]. The CP 
rank is defined as the smallest R for which (5) is an equal-
ity. A tensor A,  as in (2), is, per definition, a rank 1 tensor. 
The analog of the matrix singular values rv  in the CPD is 
the product of the norms of each of the vectors :a( )

r
d

A .
a
a

a
a

a
a

( )

( )

( )

( )

( )

( )

r
r

r

r

r

r

r
D

r

R

D1
2

1

2

2

21
2% % %gv=

=

/

Unlike the SVD, the CPD does not require the vectors a( )d  to 
be mutually orthogonal. If the R vectors a R( )

r
d Id!  are con-

catenated into an I Rd #  matrix ,A( )d  then the CPD can be 
rewritten as

 SA ,A A A( ) ( ) ( )
D

D
1

1
2

2
3# # # #g=  (6)

where S RR R R! # # #g  is a diagonal D-way tensor that con-
tains the rv  scalars on the diagonal.

The CPD has been shown to be unique under mild con-
ditions [17], [18]. This uniqueness has proven to be very 
useful, especially in the field of signal separation [19], [20]. 
Another application of the CPD in the field of nonlinear 
system identification is for the approximation of a set of 
multivariate real polynomials into linear combinations of 
univariate polynomials [21], [22]. The storage complexity of 
this decomposition is completely determined by the dimen-
sions of the factor matrices .A( )d  Assuming A  is a D-way 
tensor with uniform dimensions I and CP rank R, then the 
CPD has a storage complexity of DIR. The main problem in 
the usage of the CPD is the determination of the CP rank, 
which is an NP-hard problem [23]. A more general tensor 
decomposition is obtained through a relaxation of the diag-
onal tensor requirement in (6). Allowing S  to have a differ-
ent size for each dimension and relaxing the diagonal 
constraint results in the Tucker decomposition

 SA ,A A A( ) ( ) ( )
D

D
1

1
2

2
3# # # #g=  (7)

where S RR R RD1 2! # # #g  is also called the Tucker core tensor 
[24], [25]. The single CP rank is in this way replaced by a mul-
tilinear rank ( , , , )R R RD1 2 f  with the constraint that .R Id d#

Assuming a uniform multilinear rank R, the storage 
complexity of the Tucker decomposition is .R DIRD+  The 
exponential RD  term is due to the Tucker core .S  Contrary 
to the CPD, the Tucker decomposition is not unique. An 
identity matrix I TT 1= -  can always be “inserted” between 
the Tucker core S  and factor matrix .A( )d  A new Tucker 
core and factor matrix can then be defined as

S S ,
,

T

A T A( ) ( )d

d
T

d

#=

= 1-

u

u

without changing the underlying tensor. This nonunique-
ness provides additional flexibility. For example, a common 
way to “fix” the Tucker decomposition into a particular 
form is to require that each of the factor matrices A( )d  con-
sists of orthonormal vectors, leading to the so-called 
higher-order SVD [26]. Diagrams of CPD and Tucker 
decompositions are provided in “Tensor Diagrams” and 
consist of a central core tensor that is “surrounded” in each 
of its dimensions by a factor matrix.

A third tensor decomposition is the tensor train, also 
called the matrix product state [27]. Rather than being a 
core tensor surrounded by factor matrices, a tensor train is 
a linear sequence of tensor cores. A tensor train of a tensor 
A RI I ID1 2! # # #g  is defined as a set of D three-way tensor 
cores A ,R( )d R I Rd d d 1! # # +  such that

 
A A

A A

( , , , ) ( , , )

( , , ) ( , , ) .

i i i r i r

r i r r i r

( )

( ) ( )

D
r

R

r

R

r

R

D
D D

1 2
11

1
1 1 2

1
2

2 2 3 1

D

D

2

2

1

1

#

f g

g

=
== =

// /
 

(8)

A diagram of a tensor train is presented in Figure 1, and it 
illustrates the power of this visualization method: the com-
plexity of (8) is captured in a simple illustration. The mini-
mal values of , , ,R R RD1 2 f  such that (8) is an equality are 
called the tensor train ranks of A. A tensor train satisfies 

,R 11 =  which implies that the index connecting the first 
core to the last core is of unit size. A tensor train is called a 
tensor ring or tensor chain when R 112  [28]–[30]. The ring 
case will not be considered in the remainder of the article, 
and the corresponding unit size edge will not be drawn in 
consequent diagrams anymore. The tensor train is also not 
unique. An identity matrix I TT 1= -  can be inserted between 
any two tensor train cores A A ,,( ) ( )d d1-  such that these cores 
can be rewritten as

A(1) A(2) A(D )

R1

I1 I2

R2 R3 RD

ID

FIGURE 1 A tensor diagram of a tensor train. A tensor train is a 
linear sequence of D three-way tensors. The edge that corre-
sponds with the index r1  connects the first core tensor with the last 
and is of unit size.
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A A

A A

,
,

T

T

( ) ( )

( ) ( )

d d T

d d

1 1
3

1
1

#

#

=

=

- -

-

u

u

without changing the underlying tensor. Similar to the 
Tucker decomposition, the notion of orthogonality can be 
used to “fix” a certain representation of the tensor train [31].

The tensor decompositions discussed so far have always 
been in the context of decomposing a given tensor. Through 
the reshape operation, however, it is also possible to use 
tensor decompositions for the representation/approximation 
of vectors and matrices. See “Blessing of Dimensionality” for 
more details. A particularly useful decomposition is the tensor 
train matrix, which is an extension of a tensor train to approx-
imate a matrix [32]. Tensor train matrices are also called 
matrix product operators. Consider a matrix A RI JD D

! #  of 
exponentially large dimensions. The row index i and column 
index j can each be split into D indices , ,i iD1 f  and , ,j jD1 f  
through a reshape operation. The resulting 2 D-way tensor  
can then be decomposed as a tensor train matrix that consists 
of D four-way tensors A ,R( )d R i j Rd d d d 1! # # # +  such that the 
matrix entry ([ ], [ ])A i i i j j jD D1 2 1 2g g  can be computed from

A A A( , , , ) ( , , , ) ( , , , ).r i j r r i j r r i j r( ) ( ) ( )

r

R

r

R
D

D D D
r

R

11 1

1
1 1 1 2

2
2 2 2 3 1

D

D

2

2

1

1

g g
== =

// /
 (9)

The tensor diagram of a tensor train matrix is very similar 
to the diagram of a tensor train. The only difference is the 

addition of an extra edge to each tensor core, corresponding to 
the extra jd  index. A useful feature that distinguishes tensor 
trains and tensor train matrices from the CPD and Tucker 
decomposition is that numerous linear algebra operations can 
be computed directly in the decomposed form. An overview 
of such linear algebra operations is given in “Linear Algebra 
Operations With Tensor Trains.” This property is the main 
motivation for the exclusive usage of tensor trains in the appli-
cations described in the following.

APPLICATION 1: MULTIPLE-INPUT, MULTIPLE-
OUTPUT VOLTERRA SYSTEM IDENTIFICATION
The output y(n) of a causal discrete-time FIR system of 
order M is described by the linear combination of lagged 
input values u(n):

 ( ) ( ) ( ).y n h h m u n m
m

M

j0 1
0

1
1

= + -
=

/  (10)

The parameter h0  is a constant offset, also called the dc 
offset. The parameter M will be called, from now on, the 
memory of the system, as it is the maximal lag in the input. 
A discrete-time, truncated Volterra model generalizes a FIR 
model to higher orders of nonlinearity. This generalization 
is obtained by adding homogeneous polynomials of vary-
ing degrees d in the lagged input values to (10). These 
higher-order polynomials can be interpreted as finite 
higher-order impulse responses. For example, with memory 

Blessing of Dimensionality

Tensor decompositions are useful not only in the context 

of higher-order tensors. Vectors and matrices can benefit 

from low-rank tensor decompositions that compress them by 

exploiting correlations between entries. This phenomenon is 

called the blessing of dimensionality. By increasing the order 

of a tensor via the reshape operator, the resulting tensor de-

composition is described by more rank parameters. Therefore, 

the decomposition of this tensor receives more degrees of 

freedom, resulting in additional flexibility. An example of this 

blessing is described in “Low-Rank Motivation.” The blessing 

of dimensionality for vectors is illustrated in Figure S6. A vector 

a of length ID  can be reshaped into a D-way tensor .A  As-

suming that the vector entries are not completely unstructured 

[7], [8], a low-rank tensor approximation can be computed from 

,A  resulting in a storage-efficient representation of the original 

vector a.

The decomposition to use depends on the specifics of the 

application. If the uniqueness of the decomposition is impor-

tant (for example, to be able to provide some physical mean-

ing to the different factor matrices), then canonical polyadic 

decomposition should be used. Alternatively, if only the sub-

spaces associated with the different dimensions are important, 

then the Tucker decomposition suffices. When certain linear 

algebra operations must be performed on the original vector, 

then the tensor train decomposition is highly recommended, as 

explained in “Linear Algebra Operations With Tensor Trains.” 

The same idea of “tensorization” and replacement by a low-

rank tensor decomposition can also be applied to matrices of 

exponential size.

ID I I

I II

I I

I

I

FIGURE S6 A vector of exponential size ID  is first reshaped into 
a D-way tensor. This tensor can then be represented by any 
tensor decomposition, resulting in a storage-efficient repre-
sentation of the original vector.
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M 1=  and maximal degree ,D 2=  the output of the Volterra 
model is

( ) ( ) ( ) ( ) ( ) ( , ) ( )
( , ) ( ) ( ) ( , ) ( ) ( )
( , ) ( ) .

y n h h u n h u n h u n

h u n u n h u n u n

h u n

0 1 1 0 0
1 0 1 0 1 1
1 1 1

0 1 1 2
2

2 2

2
2

= + + - +

+ - + -

+ -

The parameters ( , ),h 0 02  ( , ),h 1 02  ( , ),h 0 12  and ( , )h 1 12  are 
called the second-order Volterra kernel coefficients. In gen-
eral, the output y(n) of a degree D, single-input, single-out-
put (SISO), discrete-time Volterra system is described by

 ( ) ( , , ) ( ).y n h h m m u n m
m

M

d

D

d
m

M

d
j

d

j0
01 0

1
1d1

g f= + -
== = =

%// /  (11)

The number of kernel coefficients grows exponentially 
with the degree of the polynomials, as the dth-order Volt-
erra kernel ( , , )h m md d1 f  consists of ( )M 1 d+  numbers. In 
this section, we consider the following Volterra system iden-
tification problem: for a given degree D and memory M and 
a set of N measured input and output values ( ( ), ( )) ,u n y n n

N
1=" ,  

estimate all Volterra kernel coefficients , , ( , , ).h h M MD0 f f  
Since the kernel coefficients appear linear in (11), the iden-
tification problem can be written as an ordinary least-
squares problem

 ,y U h=  (12)

where the vector y RN!  contains the measured outputs, 
the vector h RH!  is the unknown kernel coefficients, 
and the matrix U RN H! #  consists of all the monomials of 
lagged inputs.

The difficulty in solving (12) lies in the exponential number  
of kernel coefficients ( ) .H M 1 d

d
D

0R= +=  The paradigm to break 
this curse is to trade storage for computation. All Volterra coef-
ficients are replaced by a tensor decomposition from which the 
Volterra coefficients can be computed. This idea is not new. For 
example, Volterra kernels have been expanded on orthonor-
mal basis functions to reduce their complexity [33], [34]. The 
notion that the kernel coefficients are not completely random 
but are instead evaluations of smoothly decaying functions 
can be encoded through the use of low-rank tensor decompo-
sitions [7], [8]. Tensors are therefore also suitable candidates for 
this purpose via the blessing of dimensionality. In [35], both 
the canonical polyadic and Tucker tensor decompositions are 
used to approximate each of the Volterra kernels .hd  The 
approach described in [36] will be briefly discussed in this sec-
tion. The main differences compared to [35] are threefold: all 
Volterra kernels are combined into one tensor, a low-rank 
tensor train matrix decomposition is used, and multiple-input, 
multiple-output (MIMO) systems are supported.

Tensor Formulation of Volterra Systems
The first step in formulating the MIMO Volterra system lies 
in rewriting the least-squares problem (12). Suppose there 

are L outputs and P inputs, which implies that ( )y n RL!  
and ( ) .u n RP!  For a given memory M and degree D, the 
vector un  is defined as

( ( ) ( ) ) .u u un n M1 R( ( ) )
n

T T T M P1 1g != - + +

For notational convenience, let ( ( ) ),I M P1 1= + +  and define 
the vector

 : .u u u u Rn
D

n n n

D
I

times
D

7 7 7g !=
6 7 84444 4444

 (13)

The output of the MIMO Volterra system can then be written as

 ( ) ,y H un n
D=  (14)

where each row of the matrix H RL ID

! #  contains all the 
Volterra kernel coefficients responsible for one of the L out-
puts. The concatenation of (14) over all measured samples 

, ,n N1 f=  results in the rewritten least-squares problem

 

( )
( )

( )

 .

y
y

y

u u u H

N

1
2

T

T

T

N L

D D
N
D T

N I

T
1 2

D
h

g=

#

#

J

L

K
K
K
KK

^

N

P

O
O
O
OO

h
1 2 34444 4444

>

 (15)

Also, for this linear system, the exponential dimension 
ID  creates a problem. One possible solution is to replace the 
unknown HT  matrix with the tensor train matrix

H

H

H ,

.

,
R

R

R
( )

( )

( ) L I R

R I R

D R I

2 1

1 1

1 1

D

2 3

2

h

!

!

!
# # #

# # #

# # #

By convention, the row index l of H is “split” into D indices, 
where the first index has dimension L and all others have 
unit dimensions. Equation (14) can now be rewritten as

 H HH( ) ( ( ) ( ),)y u uun ( ) ( )( )

L

n

L R

n

R R

D
n

R1

2
3 3

1

1
3

D2 2 3

# ## g=
# # # #

1 2 3444 444 1 2 3444 444 1 2 3444 444:  (16)

which is illustrated with a tensor diagram in Figure 2. The 
diagram has one “dangling” edge, indicating that the tensor 
obtained after all contractions is a vector. All factors 
H( )u( )d

n d
D

3 1
1

# =

-" ,  are matrices, and H( )u( )D
n3#  is a vector. 

H(1) H(2) H(3) H(4)

un un unun

FIGURE 2 A tensor diagram of (16) for a four-way tensor. Each 
factor H u( )d

n3#  in (16) is represented by a tensor train matrix 
core H( )d  that is connected to a vector .un  The whole diagram 
has one “dangling” edge, which means that the whole diagram 
represents a vector.
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Equation (16) is therefore a sequence of matrix multiplica-
tions that ends with a matrix vector product, resulting in the 
desired vector of outputs ( ).y n

With this new tensor train matrix formulation, the Volt-
erra system identification problem can be restated as: for a 
given degree D and memory M and a set of N measured 

Linear Algebra Operations With Tensor Trains

A convenient feature of tensor trains and tensor train matri-

ces is that many linear algebra operations on the underly-

ing vectors and matrices can be directly performed on these 

decompositions. A brief overview of some useful linear algebra 

operations is provided in this sidebar. Some operations lead 

to tensor train ranks of increased size. A rounding procedure 

[27] can then be used to truncate the ranks for a given error 

tolerance.

ADDITION

The addition of two tensors ,A B RI I! # #g  in tensor train 

form can be computed directly with the tensor train cores. If 

the tensor train ranks of  A  and B  are denoted by , ,R RD1 f  

and , , ,S SD1 f  respectively, then the tensor train cores of 

C A B= +  are determined by

(: , , :)
(: , , :)

(: , , :)

( ),

(: , : , )
(: , : , )
(: , : , )

.

( , : , :) ( , : , :) ( , : , :) ,A B

A
B

A
A

C

C

C

i
i

i

d D

0
0

2 1

1
1
1

1 1 1 R

R

R

( )
( )

( )

( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( )I R S

d
d

d
d

d
d

R S R S

D
D

D
R S I

1 1 1

d d d d

D D

1 1

2 2

! # #

!

!

=

-

=

=

#

#

#

+ +

+

+

+ +

^

e

e o

h

o

The tensor train ranks of the sum C A B= +  are the sum of the 

respective tensor train ranks.

INNER PRODUCT OF TENSORS

The inner product of two tensors   A Band  involves a summa-

tion over all indices,

( , , ) ( , , ),BA i i i i
i

I

D D
i

I

1 1
1 1

D

D

1

1

g f f
= =

/ /

resulting in a scalar. A tensor diagram of the inner product 

of two four-way tensors in tensor train form is in Figure S7. 

Each row of the diagram is a tensor train. The connecting 

edges between the two tensor trains are the summations 

over the indices , , , .i i i iand1 2 3 4  The absence of any remain-

ing “dangling” edges indicates that the whole diagram rep-

resents a scalar.

OUTER PRODUCT OF VECTORS

The outer product of two vectors can be written as an index con-

traction through the insertion of a dummy index of unit dimension

( , ) ( , ) ( , .i j i r r jC a b C a b
r 1

1

&%= =
=

)/

The same idea can be applied in tensor train form. The ten-

sor diagram in Figure S8 illustrates how the two tensor trains 

of vectors a and b can be combined to form the tensor train 

matrix of C. By summing over the unit size dummy indices, 

tensor train cores are “merged” together. In this way, a tensor 

FIGURE S7 A tensor diagram of the inner product between two 
four-way tensors in tensor train form. The absence of any “dan-
gling” edges implies that the resulting diagram is a scalar.

1 1 1 1

R2 R3 R4

S2 S3 S4

R2S2 R3S3 R4S4

FIGURE S8 A tensor diagram of the outer product between two 
vectors in tensor train form. Two vectors are shown as tensor 
trains with ranks ,R2  ,R3  and R4  and ,S2  ,S3  and ,S4  respec-
tively. The unit size index contractions between the two tensor 
trains form the “glue” connecting the two tensor trains together. 
After summing over all unit size edges, a tensor train matrix is 
obtained. The resulting tensor train ranks are ,R S2 2  ,R S3 3  and 

.R S4 4  All edges pointing downward constitute the row index of 
the resulting rank 1 matrix, and all upward-pointing edges con-
stitute the column index.
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input and output values ( ( ), ( )) ,u n y n n
N

1=" ,  estimate all 
tensor train matrix cores H H, , .( ) ( )D1 f  Additional param-
eters are the tensor train matrix ranks , , ,R RD2 f  which can 

either be set in advance by or determined from the mea-
sured data, at an additional computational cost. In the 
interest of space, only the algorithm for fixed ranks will be 

train matrix is obtained with ranks that are the product of the 

corresponding ranks of the two tensor trains.

MATRIX MULTIPLICATION

The multiplication of matrices A and B written in terms of in-

dices is

( , ( , ) ( , .i j i r r jC A B
r

R

1

=
=

) )/

In tensor train matrix form, each of the indices i, j, and r is split 

into D separate indices. The single summation over r will there-

fore also be split into D summations. The tensor diagram of a 

matrix multiplication in tensor train matrix form is almost iden-

titical to the outer product in Figure S8. Again, corresponding 

cores of the tensor train matrices are merged through the sum-

mation over the column index of the underlying matrix. Also in 

this case, corresponding ranks of the tensor train matrices are 

multiplied. The only difference between the two diagrams is 

the dimensions of the contracted indices.

THIN QR FACTORIZATION

The thin QR factorization of a matrix A RI RD

! #  is

,A Q R=

with Q RI RD

! #  a matrix with orthonormal columns and R RR R! #  

an upper triangular matrix. Assume that .R ID%  If A is given in 

tensor train matrix form, then it is possible to compute the Q 

matrix in tensor train matrix form. The algorithm is summarized 

in Algorithm S1. The assumption is made that the last core 

of the tensor train matrix of A contains the column index of 

dimension R. The algorithm consists of a sequence of thin QR 

factorizations, whereby the Qd  factor is retained as the core 

for the tensor train of Q and the Rd  factor is “absorbed” by the 

next core of A. The last computed R factor is the desired up-

per triangular matrix. The sequence of orthogonal tensor train 

matrix cores for Q ensures that .Q Q IT
R=  A tensor diagram 

of thin QR factorization in tensor train matrix form appears in 

Figure S9. The thin QR factorization in tensor train matrix form 

allows the computation of the Moore–Penrose inverse of a ma-

trix A also directly in tensor train matrix form as

.A R QT1 1=- -

The permutation of the Q matrix in tensor train matrix form is 

obtained by a permutation of the row index with the column 

index of each tensor train matrix core tensor.

THIN SINGULAR VALUE DECOMPOSITION

Algorithm S1 can be adjusted to compute a thin singular value 

decomposition (SVD)

,A U S VT=

with U RI RD

! #  a matrix with orthonormal columns, S RR R! #  a 

diagonal matrix, and V RR R! #  orthogonal. All orthogonal ten-

sors of the tensor train matrix are renamed ,U( )d  and line 9 is 

replaced with

, , ( ) .U S V ASVDD D!

The tensor diagram of the thin SVD is almost identical to the di-

agram of the thin QR factorization. The R matrix in the diagram 

is replaced by the matrix product .SVT  The Moore–Penrose 

inverse of a matrix A can then be computed directly in tensor 

train matrix form as

.A V S UT1 1=- -

R

R

R

FIGURE S9 A tensor diagram of the thin QR factorization of a 
matrix .A RI RD

! #  The bottom row of tensors consists of re -
shaped orthogonal matrices and represents the factor matrix 

.Q RI RD

! #  The R  matrix is upper triangular.

Input: tensor train matrix of A RI RD

! #  with 

A R( )D R I R 1D! # # #  and .R I RD $

Output: tensor train matrix of Q and R.

 1: for d 1:D 1= -  do

 2:  ( , [ , ])A A R I Rreshape ( )
d

d
d d 1! +  % R 11 =

 3:  , ( )Q AR QRd d d!  % thin QR

 4:  ( , [ , , ])Q Q R I Rreshape( )d
d d d 1! +

 5:  ( ,[ , ])A A R IRR reshape ( )
d d

d
d d1

1
1 2!+

+
+ +  % matrix  

 product

 6:  ( , [ , , ])A R I RAreshape( )d
d d d

1
1 1 2!+
+ + +

 7: end for

 8: ( , [ , ])A R I RA reshape ( )
D

D
D!

 9: , ( )Q R AQRD D!  % thin QR

10: ( , [ , , , ])Q R I RQ 1reshape( )D
D D!

ALGORITHM S1 Thin QR factorization of a matrix in 
tensor train matrix form.
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discussed. A detailed description of how the ranks can 
be automatically determined from the measured data 
can be found in [36].

Alternating Linear Scheme Volterra  
Identification Algorithm
The alternating linear scheme (ALS) is the workhorse algo-
rithm concerning the computation of tensor decomposi-
tions [9], [37], and it can be readily applied to the Volterra 
system identification problem. The core idea of the ALS 
algorithm is to initialize each of the tensor train matrix 
cores, then update each core separately while keeping all 
other cores fixed. This procedure of updating will lead to a 
stable, efficient, and reliable convergence to a stationary 
point of the problem, which is not guaranteed to be the 
global optimum. The local linear convergence of the ALS 
algorithm in the case of tensor trains has been studied in 
[38]. A key ingredient in the formulation of the ALS is (14), 
rewritten in terms of one tensor train matrix core. Figure 3 
illustrates how this rewriting can be done for the case 
where the dth core is updated. By defining a new matrix 
and vector

H H

H H

(
( ) ( ) ,

) ( ) ,U

u u u

u u

R

R
( ) ( )

( ) ( )
d n

d
n

L R

d
d

n
D

n
R1

2 2
1

1
2

1
2

d

d 1# #

# #

g

g

!

!=

= #

#
1

2
+

-

+

then (14) can be rewritten as

 H( ) .y u u Un ( )

L

d
T

n
T

d

L R IR

d

R IR1 1d d d d1 1

7 7=
# # #

2 1

+ +

vec jj `
1 2 344444 44444 1 2 344 44: `  (17)

The two Kronecker products are indicated in Figure 3 by 
the two unit size edges. The least-squares problem to 
update H( )d  is then obtained by considering all N samples:

 H

( )
( )

( )

).

y
y

y

U u U
U u U

U u UN

1
2

vec( ( )

d
T T

d

d
T T

d

d
T

N
T

d

d

1

2

7 7

7 7

7 7

h h
=

2 1

2 1

2 1

J

L

K
K
K
KK

J

L

K
K
K
KK

N

P

O
O
O
OO

N

P

O
O
O
OO

 (18)

Solving the linear system (18) has a computational com-
plexity of ( ) ,O N R IRd d 1

2
+^ h  which is an improvement over 

the exponential complexity of the original system. Small 
values for Rd  and ,Rd 1+  and hence a low-rank representa-
tion of the matrix H, are an essential ingredient in making 
high-order Volterra system identification feasible. Algo-
rithm 1 summarizes the whole identification algorithm, 
where each core of the tensor train matrix is updated one 
after another. The initial guess for the tensor train matrix 
cores is usually chosen randomly. The algorithm can be run 
for a fixed number of iterations, or a threshold can be set on 
the relative error of the residuals of (18). An additional 
orthogonalization step can be introduced for more numeri-
cal stability [36]. The ALS algorithm can also be modified 
such that it learns the required tensor train ranks from the 
measured data [36, p. 32]. In the presence of measurement 
noise, however, the obtained ranks will be larger than when 
no measurement noise is present. The low-rank structure in 
the decomposition can thus be interpreted as a kind of reg-
ularization to prevent overfitting. A similar ALS algorithm 
applied to nonlinear identification with B-splines basis 
functions, together with an additional smoothness-induc-
ing regularization term, is described in [39].

Double-Balanced Mixer Identification
This experiment considers a double-balanced mixer used 
for upconversion [40]. The reason this particular example 
was chosen is because it is not a weakly nonlinear system 
and therefore cannot be reasonably approximated by a 
low-order Volterra system. The output radio-frequency 
(RF) signal is determined by a 100-Hz, sine, low-frequency 
(LO) signal and a 300-Hz, square-wave, intermediate-fre-
quency (IF) signal. A phase difference of /8r  is present 
between the LO and IF signals. All time series were sam-
pled at 5 kHz for 1 s. We investigate the effect of additive 
output noise on the identified models. Define five differ-
ent noise levels, which are added to the measured RF 
output, that generate signals with signal-to-noise ratios 
(SNRs) ranging from 11 to 25 dB. The first 700 samples of 
the inputs and the noisy output are then used to identify 

U<d
u>d

1 1
un un un un

H(1) H(2) H(3) H(4)

FIGURE 3 The definitions of the matrix U d1  and vector u d2  with a 
tensor diagram. The two unit size connections in the diagram cor-
respond to the two Kronecker products in (17).

Input: measurements {( ( ), ( ))} ,n nu y n
N

1=  initial tensor train 

matrix cores .H( )d

Output: tensor train matrix cores that solve (16).

 1: while stopping criterion not true do

 2:  for :d D1 1= -  do

 3:   H( )d !  Solve (18)

 4:  end for

 5:  for : :d D 1 2= -  do

 6:   H( )d !  Solve (18)

 7:  end for

 8: end while

ALGORITHM 1 The alternating linear scheme Volterra 
identification.
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an ,M 2=  ,D 11=  two-input, one-output Volterra system 
using Algorithm  1. The H matrix consists of 48,828,125 
entries. The tensor train ranks are all set to a fixed value 
of five.

The identified models were then used to simulate the 
remaining 4300 samples of the output. The SNR of the sim-
ulated output was computed by comparing the simulated 
output with the original noiseless output. Table 3 lists the 
SNR of the signals used in the identification, the relative 
residual of the simulated output, the runtime of the 
identification, and the SNR of the simulated signal. The 
SNR of the simulated output is defined as

( ( ) ( ))

( )
,log

y n y n

y n
10

i

n
10 2

2

- t

J

L

K
K
KK

N

P

O
O
OO/

/

where y(n) is the output signal uncorrupted by noise and 
( )y nt  is the simulated output. As expected, a gradual im -

provement of the relative residual can be seen as the SNR of 
the signals used for identification increases. Although the 
residual remains high throughout the different SNR levels, 
the SNR of the simulated output is much better, with a con-
sistent increase of 11 dB. The runtime varies between 2 and 
6 s. Figure 4 provides the simulated output on the validation 
data for three Volterra models identified under three differ-
ent SNR levels (11, 16, and 25 dB).

APPLICATION 2: KALMAN FILTERING FOR 
RECURSIVE VOLTERRA SYSTEM IDENFICATION
An alternative to the ALS algorithm for Volterra identifica-
tion is a Bayesian filtering approach [41]. Such a recursive 
filtering method comes with the additional benefit of having 
a measure of uncertainty on the estimated model parame-
ters. This uncertainty can then be considered when making 
predictions of future output values. The derivation summa-
rized here follows the Kalman filter technique in [42] rather 
than the approach in [43] and [44] for two reasons. First, the 
Kalman filter equations do not have to be written as tensor 
equations, which results in a simpler derivation compared 
to [43] and [44]. Second, correlations between the L Volterra 
outputs cannot be considered using the approach in [43] 
and [44]. The starting point of the derivation is not the linear 
system (18) but the state-space model

 
( ) ( ) ( ),

( ) ( ) ( ) ( ) .
h h w

y C h e

n n n

n n n n

1+ = +

= +
 

(19)

The state vector h RLID

!  is defined as

( ),h Hvec=

where H is the L ID#  matrix of Volterra kernel coefficients 
in (14). Both the process noise ( )w n  and measurement 
noise ( )e n  are assumed to be stationary Gaussian white 
noise processes:

.d
( )
( ) ( ) ( )  

w
e w e

R
R

n
n m m 0

0
E T T w

e
nm= occ ^ em hm

In this framework, the state vector ( )h n  is time varying due 
to the process noise ( ).w n  This process noise term provides 
additional flexibility in that it allows the addition of a for-
getting factor m  that weighs past observations ( )y n  during 
the recursive identification. Assuming this particular defi-
nition of the h vector, it can then be shown that the corre-
sponding time-varying measurement matrix ( )C n  is

 ( ) ( ) .C u In n
D T

L7=  (20)

By modeling the initial state ( )h 0  as a Gaussian distribu-
tion with mean vector ( )m 0  and covariance matrix ( ),P 0   
the MIMO Volterra identification problem can be reformu-
lated as a linear state estimation problem: given the input–
output measurements ( ( ), ( ) ,u yn n n

N
1=" ,  state-space model 

Identification SNR 11 dB 13 dB 16 dB 19 dB 25 dB

y
y y

2

2- t 0.255 0.208 0.151 0.105 0.052

Runtime 2.3 s 5.3 s 6.4 s 3.2 s 2.2 s

Simulated signal SNR 22 dB 24 dB 27 dB 30 dB 37 dB

TABLE 3 A comparison of the results of Algorithm 1 in 
the identification of 511 Volterra kernel coefficients for 
five different signal-to-noise ratios (SNRs). The relative 
validation error decreases as the SNR increases, and 
the SNR computed from the simulated signals sees a 
consistent increase of approximately 11 dB. The total 
runtime for the algorithm does not depend on the SNR of 
the training signals and varies between 2 and 6 s.
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FIGURE 4 The true and simulated output from the identified models 
using Algorithm 1 under three different signal-to-noise ratios. As 
expected, higher noise levels on the output during identification 
results in worse simulations with the identified model.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore.  Restrictions apply. 



68 IEEE CONTROL SYSTEMS » FEBRUARY 2022

(19), and measurement matrix (20), find the state sequence 
( )h n  of Volterra kernel coefficients. The linear state-space 

model [in combination with the Gaussian assumptions on 
the noise sources and initial guess ( )]h 0  results in the 
Kalman filter providing an unbiased minimum variance 
state estimate of ( ) .h n  Algorithm 2 summarizes the cele-
brated Kalman filter equations. The first two lines of the 
algorithm constitute the prediction step, where predictions 
of the next state mean vector and covariance matrix are 
made, while lines 7 and 8 update these predictions by incorpo-
rating the measurement ( )y n  through the Kalman gain ( ).K n

The implementation of Algorithm 2 is not straight-
forward, as almost all vector and matrix quantities have 
exponential dimensions. For example, the size of the 
covariance matrix ( )P n  is ,LI LID D#  which can quickly 
lead to storage problems. Using low-rank tensor decom-
positions to represent all these vector and matrix quanti-
ties is again key in resolving the curse of dimensionality. 
The state mean ( )m n  contains the smoothly decaying 
Volterra kernels, which, once more, motivates the use of a 
low-rank tensor representation. Two ingredients are 
required for the implementation of Algorithm 2. The first 
ingredient is the specific low-rank tensor representa-
tions of ( ),m 0  ( ),P 0  ( ),R nw  and ( )C n  so that the filter can 
be initialized. The second required ingredient is algo-
rithms to compute linear algebra operations in the tensor 
decomposition form.

Tensor Decompositions to Initialize the Kalman Filter
The tensor representations of ( ),m 0  ( ),P 0  ( ),R nw  and 

( )C n  can be constructed such that they are all rank 1. If 
it is assumed that ( ) ,m m0 1LID=  where ,m R!  then the 
corresponding tensor train is unit rank and consists of 
the tensors
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The scalar factor m can be freely moved to any of the 
( )D 1+  cores. A more general ( )m 0  can be obtained in 
tensor train form by, for example, explicitly construct-
ing the ( )m 0  vector and computing its corresponding 
tensor train through the tensor train SVD algorithm [27, 
p. 2301]. If the L outputs are assumed to be uncorrelated, 
then the covariance matrix can be modeled as a diagonal 
matrix ( ) ,P Ip0 LID=  where p 02  is a real scalar. The cor-
responding tensor train matrix is unit rank and consists 
of the tensors
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The scalar p can also be moved to any of the ( )D 1+  core 
tensors. A diagonal covariance matrix, however, does not 
model possible correlations between the parameters , ,h hL1 f  
of the L multiple-input, single-output Volterra models. These 
correlations can be captured in a covariance matrix:

,P
p

p

p

p
L

L

L

LL

11

1

1

h

g

j

g

h= f p

where pij  denotes the covariance of all kernel coefficients 
between Volterra models i and j. The corresponding tensor 
train matrix for ( )P 0  is then obtained by substituting Ip I  
with .PL  By choosing the covariance matrix ( )R nw  of the 
process noise ( )w n  as

( ) ( ),R Pn n1 1w
m

= -` j

a forgetting factor , ][0 1!m  is introduced. This forgetting 
factor induces an approximate, exponentially decaying 
weighting on past data. A small m  implies that previous 
outputs ( )y n  will be weighted less in the update, while in 
the extremal case ,1m =  all past outputs will be taken 
equally into account. Finally, the particular structure of the 
measurement matrix ( ),C n  as in (20), is exactly a rank  1 
tensor train matrix:
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Input: Measurements {( ( ), ( ))} ,n nu y n
N

1=  initial state mean 

( ),m 0  initial state covariance ( ) .P 0

Output: state mean ( ),nm  state covariance ( )( ) .n nP 02

 1: for :n N1=  do

 2:  ( ) ( )n nm m 1! -  % predicted mean

 3:  ( ) ( ) ( )n n nP P R1 w! - +  % predicted covariance  

 matrix

 4:  ( ) ( ) ( ) ( )n n n nv y C m! -

 5:  ( ) ( ) ( ) ( )n n n nS C P C RT
e! +

 6:  ( ) ( ) ( ) ( )n n n nK P C ST 1! -

 7:  ( ) ( ) ( ) ( )n n n nm m K v! +  % measurement update  

 of mean

 8:  ( ) ( ) ( ) ( ) ( )n n n n nP P K S K T! -  % measurement update  

 of covariance matrix

 9: end for

ALGORITHM 2 The Kalman filter state estimation algorithm 
for system (19).
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With these tensor representations in place, each line of 
Algorithm 2 can now be implemented completely in tensor 
train form. More information about how matrix products 
can be computed in tensor train form is available in 
“Linear Algebra Operations With Tensor Trains.” Each of 
these products, however, will result in ever-increasing 
tensor train ranks. To preserve the low-rank tensor rep-
resentation, a tensor train rounding algorithm [27] can 
be used. The rounding algorithm takes a tensor train 
A A, ,( ) ( )D1 f  with ranks , ,R RD2 f  and finds a tensor 
train B B, ,( ) ( )D1 f  with ranks , ,S R S RD D2 2 f# #  such 
that /A A ,B F F< < < < # e-  where e  is a user-defined error 
tolerance. The rank truncation of D tensor train cores 
happens through D 1-  consecutive SVDs of the cores, 
with a total computational complexity of ( ),O DIR3  and is 
described in detail in [27]. It is, however, possible that no 
rank truncation occurs for the specified tolerance. In this 
case, the user can limit the ranks to grow beyond a cer-
tain specified maximal value.

One problem that is still unexplored is how the positive 
definiteness of the covariance matrix ( )P n  can be ensured 
during rounding. One way to ensure the positive definite-
ness of ( )P n  is to keep its tensor train matrix rank 1, 
although it is not yet understood why this is the case. A 
square-root, tensor train matrix Kalman filter implemen-
tation is still an area of research. Once the Kalman filter 
has iterated over all samples, a final estimate of the 
Volterra kernel coefficients is encoded in the Gaussian 
distribution with mean ( )m n  and covariance matrix ( ).P n  
A predicted output ( )y n 1+  is then also described by a 
Gaussian distribution:

N( ) ( ( ) ( ), ( ) ( ) ( ) ).y C m C P C Rn n n n n n1 1 1 1 T
e++ + + + +

Both the mean and covariance of the prediction ( )y n 1+  
can be computed through contractions of the correspond-
ing tensor trains.

Double-Balanced Mixer Identification
The same double-balanced mixer setup described in the 
section covering the ALS Volterra identification algorithm 
is used for this experiment. In this experiment, all time 
series were sampled at 5 kHz, for a total of 6000 samples. 
The output signal was corrupted with Gaussian noise such 
that three different outputs with respective SNRs of 12, 17, 
and 26 dB were obtained. A Kalman filter is then used to 
estimate a two-input, one-output Volterra system with 
d 7=  and M 10=   by filtering the first 5900 samples for the 
three noisy outputs separately. The state vector containing 
the Volterra kernel coefficients consists of .21 1 801 107 9#.  
entries, which is well beyond the reach of a standard 
Kalman filter. The initial mean vector ( )m 0  is initialized as 
the zero vector, and the initial covariance matrix ( )P 0  is set 
to .I1000  The rounding parameter e  was set to a fixed value 
of .10 1-

The corresponding maximal tensor train ranks of ( )m n  
when filtering the output with SNRs of 12, 17, and 26 dB 
were 11, 13, and 14, respectively. All tensor train matrix 
ranks of ( )P n  were equal to one. The median runtime for 
one filter step was 0.0068 s, and the total runtime to filter 
5900 samples was approximately 40 s. The obtained mean 
vectors ( )m 5900  were then used to simulate the remaining 
100 samples. The simulated outputs are shown together 
with the reference output, which is not corrupted by noise, 
in Figure 5, which demonstrates that a higher SNR results 
in better performance of the Kalman filter. For the outputs 
with SNRs of 12, 17, and 26 dB, the root-mean-square 
errors of the simulated outputs were 0.1778, 0.097, and 
0.034, respectively.

APPLICATION 3: SUBSPACE IDENTIFICATION OF 
POLYNOMIAL INPUT STATE-SPACE MODELS
The output of a Volterra model is completely determined by 
a polynomial of past input values. A large value for the 
memory M may be required to capture the dynamics in a 
satisfactory manner. One way to retain more information 
from the past in the model is through the addition of a state 
variable ( ) .x n RK!  The following state-space model with 
linear state dynamics and polynomial input dependencies 
is then obtained:

 
( ) ( ) ,

( ) ( ) .
x A x B u

y C x D u

n n

n n

1 n
D
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D

+ = +

= +
 

(21)

The matrices A RK K! #  and C RL K! #  are assumed to be suf-
ficiently small that they require no tensor representation. 
The definition of the vector un  is slightly different from the 
Volterra model in that no past input values are present any-
more. That is,
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FIGURE 5 The reference and simulated output from the tensor-
based Kalman filter for three different signal-to-noise ratios 
(SNRs). The Volterra models identified through Algorithm 2 with 
better SNR circumstances simulate outputs during validation that 
are closer to the reference output.
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( ) ,u u n1 R( )
n

T T P1!= +^ h

where now the convention I P1= +  will be used. The 
matrices B RK ID

! #  and D RL ID

! #  have an exponential 
number of columns and model the polynomial input con-
tributions to both the state dynamics and the output. The 
maximal total degree D of both polynomial input contribu-
tions B and D are assumed to be equal. The output ( )y n  of 
the system (21) is

( ) ( )y C A x C A Bu D un 0n n i
i
D

n
D

i

n
1

0

1

= + +- -

=

-

/

and is therefore completely determined by the initial state 
( )x 0  and all input signals , , .u un0 f

The system identification problem resolved in this sec-
tion is: given measurements ( ( ), ( )u yn n n

N
1=" ,  and the state-

space model (21), estimate the matrices A, B, C, and D up to a 
similarity transform. Two mainstream identification tech-
niques for linear time-invariant systems still dominate the 
field today: prediction error methods and subspace meth-
ods. Prediction error methods rely on nonlinear optimiza-
tion routines to find the values of all unknown matrices such 
that the prediction error is minimized. Subspace methods 
exclusively use linear algebra operations, such as projections 
and matrix decompositions, to find the unknown matrices. 
This section will focus on the use of subspace methods, as it 
is possible to use a conventional subspace method for the 
identification of (21), combined with low-rank tensor repre-
sentations for the B and D matrices [45].

The key equation of subspace methods is the data equa-
tion. For the polynomial input state-space model (21), the 
data equation is

 ,Y O X P U| |S S S S1 1= +  (22)

where the matrices Y |S1  and U |S1  are block Hankel data 
matrices:
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The scalar S is the window size and must be chosen such that 
.S K2  The total number of measurements is .N T S 2= + -  
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is the well-known extended observability matrix of linear 
time-invariant systems, and
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is a block Toeplitz matrix with an exponential number of 
columns. The matrix

:X x x x RT
K T

1 2 g != #^ h

is the state sequence matrix.
Starting from the data equation, two commonly used 

subspace identification algorithms, Multivariable Output 
Error State Space (MOESP) and Numerical Algorithms for 
Subspace State-Space System Identification (N4SID), can be 
derived. Both algorithms start from the data matrices  U |S1  
and Y |S1  and are not straightforward to implement due to 
the exponential size of .U |S1  The main difference between 
MOESP and N4SID is that MOESP uses realization theory 
on the observability term of the data equation to retrieve 
the A and C matrices, after which the B and D matrices are 
found separately by solving a linear system. In the N4SID 
approach, the state sequence X is first estimated, after 
which all system matrices are identified from one linear 
system [46, p. 165]:

 .
A
C

B
D

XX
Y U| |

S

S S

S

S S

1
=

+r

r

r

re c eo m o

It is this last step of N4SID that is less straightforward to 
implement with tensor decompositions. The MOESP algo-
rithm, summarized in Algorithm 3, has a more straightfor-
ward tensor implementation. Linear algebra operations 
also play a key role in this algorithm, and the use of tensor 
trains is again beneficial. In “Linear Algebra Operations 
With Tensor Trains,” all required linear algebra operations 
using tensor trains are reviewed.

The implementation of the MOESP identification algo-
rithm with tensor trains requires three main steps: the 
construction of the tensor train matrix of ,U |S1  the com-
putation of the linear quadratic (LQ) factor matrices, and 
the construction of the tensor train matrix for the right-
hand side of (25). What follows is a short exposition on 
the implementation of these steps. More details can be 
found in [45].

Tensor Train Matrix of a Block Hankel Data Matrix
Explicit construction of the block Hankel data matrix U |S1  
quickly becomes infeasible due to the IDS  exponential 
number of rows. Fortunately, it is possible to construct the 
corresponding tensor train matrix without ever having to 
explicitly store the matrix U |S1  in memory. The block 
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Hankel structure in the data matrix also ensures that its 
tensor train matrix ranks are bounded [45]. Algorithm 4 
summarizes the procedure. The main insight upon which 
Algorithm 4 is based is that the matrix

( , [ , ]) ( )U U u u u u uI STreshape |S
D D D

S
D D

T S
D

1 1 2 2 2g g= = + -

can be written as a D-times-repeated Khatri–Rao product

U U U U
D times

9 9 9g= u u u
6 7 84444 4444

of the matrix

.U u u u u u RS T S
I ST

1 2 2 2g g != #
+ -

u ^ h

Algorithm 4 builds up the tensor train matrix of U |S1  core by 
core, whereby the SVD operation on line 6 is used to deter-
mine the rank between two consecutive cores in line 7.

Computation of the LQ Factor Matrices
A major advantage of both the conventional N4SID and 
MOESP methods is that the orthogonal factors in the LQ 
decomposition never must be computed. The tensor train 
implementation of Algorithm 3, however, requires the 
explicit computation of the orthogonal factors Q1  and .Q2  
In fact, the LQ decomposition in line 1 of Algorithm  3 
cannot be computed in tensor train matrix form. Instead, 
using a modification of Algorithm S1, explained in “Linear 
Algebra Operations With Tensor Trains,” an economical 
SVD of ,U |S1

 ,U W T Q W W
T Q

Q0
0
0|S

T
T

T1 1 2
1 1

2
= = ^ c eh m o  (26)

is computed, with W RI S TD

! #  an orthogonal matrix in 
tensor train matrix form, T RT T! #  a diagonal matrix, and 
Q RT T! #  an orthogonal matrix. The rank of U |S1  is denoted 
R such that .T RR R

1 ! #

The required matrix factors ,L11  ,L21  and L22  of the con-
ventional MOESP algorithm can now be computed as
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The tensor train matrix of L11  is easily found, as the first 
( )D 1-  tensors are identical to the tensors of W, while the 
Dth tensor of L11  is W .T 0( )D T

3 1# ^ h  Once the matrix fac-
tors ,L11  ,L21  and L22  are computed, the conventional 
MOESP algorithm can be used to find A and C.

Solving a Least-Squares Problem With Tensor Trains
Line 7 of Algorithm 3 requires the computation and parti-
tioning of the ( )SL K SID#-  matrix .U L LT

2 21 11
1-  This requires 

the computation of the left inverse of L11  in tensor network 

form. Fortunately, from (27) it follows that ,L T W T
11

1
1

1
1=- -  as 

.W W IT
r1 1 =  The transpose of W1  as a tensor train matrix is 

done by a permutation of the second index with the third 
index of each core tensor. The tensor train matrix of L11

1-  is 
therefore obtained by permuting each of the tensors W( )i  
into W( )iu  and computing W ,T 0( )d

2 1
1# -^ h  where the inverse 

of T1  is obtained by inverting its diagonal. Once the 
tensor train matrix of L11

1-  is obtained, multiplication 
with U LT

2 21  is also performed on the Dth core tensor. In 
fact, the multiplication with T 1

1-  can be combined with 
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ALGORITHM 3 The Multivariable Output Error State-Space 
subspace identification algorithm.

Input: I × ST matrix ,Uu  factor D.

Output: tensor train matrix , ,U U( ) ( )D1 f  of .U |S1

 1: ( , [ , , , ])U I STU 1 1reshape( )1 ! u

 2: for , ,d D1 1f= -  do

 3:  ( , [ , ])U R I STT reshape ( )d
d!         % R 11 =

 4:  T T U! 9 u

 5:  ( , [ ,R I ISTT Treshape d! ])

 6:  [ , , (U S V TSVD!] )

 7:  Rd 1 !+  numerical rank of T determined from SVD

 8:  ( , [ , , , ])U R I RU 1reshape( )d
d d 1! +

 9:  ( , [ , , , ])U R I STSV 1reshape( )d T
d

1
1!+
+

10: end for

 11: ( , [ , , , ])U U R IS T 1reshape( ) ( )D D
D!

ALGORITHM 4 Convert the repeated Khatri–Rao product 
matrix into a tensor train matrix.
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.U LT
2 21  The partitioning of U L LT

2 21 11
1-  into S blocks of size 

( )SL K Id#-  follows from
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To estimate the matrices B and D, the linear system (25) 
must be solved. The matrix on the left-hand side of (25) can 

be stored explicitly without the use of any tensor decompo-
sition. If its pseudoinverse is denoted by ,L 1-  then the con-
catenation of D with B is
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which is equivalent to M .L( )D
2

1# -  The resulting tensor 
train matrix represents the concatenation of the B and D 
matrices into a single matrix. The whole subspace identifi-
cation algorithm starts from the tensor train matrix of U |S1  
and consists only of manipulations of the Dth tensor core to 
compute the tensor train matrix of the B and D matrices. 
Since the manipulations are limited to the Dth tensor core, 
all ranks R1  up to RD 1-  of the resulting tensor train matrix 
will remain unchanged. The low-rank property due to 
the block-Hankel structure of U |S1  therefore ensures the 
low-rank tensor train matrix of the solution. Indeed, using 
the upper bounds on tensor train matrix ranks described in 
[47, p. 73], it can be shown that the rank RD  of the Dth core 
of the resulting tensor train matrix will be smaller than the 
corresponding rank of .U |S1

High-End Valve Control Amplifier
This experiment compares the performance of Algorithm 3 
with other models and methods on real-world data. The data 
set is from the same experiment described in [48, p. 3936], 
and the system under consideration is a high-end valve 
control amplifier (which is normally used as a preamplifier 
for audio signals). The amplifier is a SISO system and was 
fed a flat spectrum, random-phase multisine with a period 
of 4096 samples at 1.25 MHz. We compare four different 
models and methods. For each of these models/methods, 
only the one with the best relative validation error is 
reported. First, a linear state-space system was identified by 
Algorithm 3, with system order ,K 3=  using the first 1000 
samples. Then, a state-space model with polynomial inputs 
was identified using Algorithm 3, with D 6=  and ,K 30=  
also using the first 1000 samples. In addition, a Volterra 
model of degree D 2=  and memory M 30=  was identified 
using Algorithm 1, also employing the first 1000 samples.

Finally, a general polynomial state space, as described in 
[49], was identified using the iterative methods of the poly-
nomial nonlinear state-space (PNLSS) Matlab toolbox, with 
K 15=  and where both polynomials of the state and output 
equations are of degree 4. To obtain good validation errors, 

Model Runtime (s)
Relative  
Validation Error

Linear (MOESP) 0.26 0.418

Tensor network 
MOESP 0.69 0.148

PNLSS 14,264 0.087

Volterra 1.61 0.004

TABLE 4 A comparison of runtimes and relative validation 
errors for four models: a linear multivariable output error 
state space (MOESP), a state-space model with polynomial 
inputs (TNMOESP), a generic polynomial state-space model 
(PNLSS), and a Volterra model.
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FIGURE 6 The reference and simulated amplifier output from four 
different models: a linear state-space model [Multivariable Output 
Error State Space (MOESP)], a state-space model with polyno-
mial inputs (tensor network MOESP), a generic polynomial nonlin-
ear state-space model (PNLSS), and a Volterra model. The linear 
model performs the worst on the validation data, while all three 
nonlinear models have acceptable performance.

Many resources are available to facilitate the computation  

of all kinds of tensor decompositions.
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the general polynomial state-space model needed to be 
estimated on two periods of the input signal. Each of the 
models was then used to simulate the output from the 
input that was not used for identification. The runtimes 
and relative validation errors / ,y yy< < < <- t  where y denotes 
the measured output and yt  denotes the simulated output, 
for each of the methods and models are listed in Table 4.

The linear state-space model can be identified very quickly 
but performs the worst, while using polynomial inputs 
improves the validation (at the cost of a slightly longer run-
time). The general polynomial state-space system can 
improve the validation error by one order of magnitude, at 
the cost of a very significant runtime. The convergence of the 
iterative method in the PNLSS toolbox was rather slow, as it 
took 12,317 s for the relative validation error to drop to 0.29. 
The computational complexity of the PNLSS method per 
iteration suffers from the large number of polynomial coef-
ficients. Surprisingly, the Volterra model is able to achieve a 
relative validation error that is another order of magnitude 
smaller than the general polynomial state-space system, 
which might suggest that the real-world system is better 
described by a Volterra model than a polynomial state-space 
model. Figure 6 provides 12 samples of the reference output 
and simulated outputs for the four different models. Due to 
the scale of the figure, it is not possible to distinguish the 
output from the Volterra model from the reference. As evident 
from the figure, all nonlinear models produce outputs that are 
closer to the real output compared to the linear model.

AVAILABLE RESOURCES  
FOR TENSOR DECOMPOSITIONS
Many resources are available to facilitate the computation 
of all kinds of tensor decompositions. Furthermore, the 
Matlab implementations of all identification methods 
described in this article are available as open source soft-
ware. An overview is given in Table 5.

CONCLUSION
This article provided a brief introduction to tensors for sys-
tems and control. Important tensor operations and decompo-
sitions were discussed and illustrated with three applications 
in nonlinear system identification. Tensor-based identifica-
tion algorithms were discusssed for Volterra systems and 
state-space models with polynomial inputs. The curse of 
dimensionality in each of these identification problems was 
lifted through the use of low-rank tensor decompositions. 
The low-rank property is the essential ingredient in lifting 
the curse of dimensionality and can be interpreted as adding 
the constraint that model parameters are not completely 
independent. By no means is the discussion on tensors in 
this article exhaustive. The intention was to highlight some 
key features of tensors and help interested practitioners 
more efficiently explore relevant literature.

AUTHOR INFORMATION
Kim Batselier (k.batselier@tudelft.nl) received the M.S. 
degree in electromechanical engineering and Ph.D. de-
gree in applied sciences from KU Leuven in 2005 and 2013, 
respectively. He worked as a research engineer at BioRICS 
on automated performance monitoring until 2009. He 
is currently an assistant professor at Delft University of 
Technology, Delft, 2628 CD, The Netherlands. His current 
research interests include linear and nonlinear system 
theory/identification, machine learning, tensors, and nu-
merical algorithms.

REFERENCES
[1] S. A. Billings, Nonlinear System Identification: NARMAX Methods in the 
Time, Frequency, and Spatio-Temporal Domains. Hoboken, NJ: Wiley, 2013.
[2] S. A. Billings, “Identification of nonlinear systems—A survey,” IEE Proc. 
D (Control Theory Appl.), vol. 127, no. 6, pp. 272–285, 1980.
[3] S. A. Billings and S. Fakhouri, “Identification of systems containing 
linear dynamic and static nonlinear elements,” Automatica, vol. 18, no. 1, 
pp. 15–26, 1982, doi: 10.1016/0005-1098(82)90022-X.
[4] J. Schoukens, J. G. Nemeth, P. Crama, Y. Rolain, and R. Pintelon, “Fast 
approximate identification of nonlinear systems,” Automatica, vol. 39, no. 7, 
pp. 1267–1274, 2003. doi: 10.1016/S0005-1098(03)00083-9.
[5] G. Birpoutsoukis, A. Marconato, J. Lataire, and J. Schoukens, “Regu-
larized nonparametric Volterra kernel estimation,” Automatica, vol. 82, 
pp. 324–327, Aug. 2017, doi: 10.1016/j.automatica.2017.04.014. 
[6] G. Birpoutsoukis, P. Z. Csurcsia, and J. Schoukens, “Efficient multidi-
mensional regularization for Volterra series estimation,” Mech. Syst. Signal 
Process., vol. 104, pp. 896–914, 2018, doi: 10.1016/j.ymssp.2017.10.007.
[7] T. Shi and A. Townsend, “On the compressibil ity of tensors,” 
SIAM J. Matrix Anal. Appl., vol. 42, no. 1, pp. 275–298, 2021, doi: 0.1137/ 
20M1316639.
[8] I. V. Oseledets, “Constructive representation of functions in low-rank ten-
sor formats,” Constructive Approx., vol. 37, no. 1, pp. 1–18, 2013, doi: 10.1007/ 
s00365-012-9175-x.

Package Implementation
Open  
Source Description

TT Toolbox 
[50]

Matlab and  
Python

MIT  
license

Tensor train and 
tensor train matrix

Tensorlab [51] Matlab Closed 
source

CPD and Tucker 
decomposition

Tensor 
Toolbox [52]

Matlab BSD 
license

CPD and Tucker 
decomposition 

TensorBox 
[53]

Matlab GPL  
3.0

CPD

MVMALS [54] Matlab LGPL  
3.0

Volterra identification  
with tensor trains

TNKalman 
[55]

Matlab LGPL  
3.0

Tensor train Kalman 
filter

TNMOESP 
[56]

Matlab LGPL  
3.0

Tensor train 
subspace 
identification

TABLE 5 Various tensor toolboxes and implementations  
for tensor-based nonlinear system identification. TT: Tensor 
Train; TN: Tensor Network; MVMALS: Multiple-Input, Multiple-
Output Volterra Modified Alternating Linear Scheme; MOESP: 
Multivariable Output Error State Space; MIT: Massachusetts 
Institute of Technology; BSD: Berkeley Source Distribution; 
GPL: General Public License; LGPL: Lesser GPL; CPD: canonical 
polyadic decomposition.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore.  Restrictions apply. 



74 IEEE CONTROL SYSTEMS » FEBRUARY 2022

[9] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM 
Rev, vol. 51, no. 3, pp. 455–500, 2009, doi: 10.1137/07070111X.
[10] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, 
“Tensor networks for dimensionality reduction and large-scale optimiza-
tion: Part 1 low-rank tensor decompositions,” Found. Trends Mach. Learning, 
vol. 9, no. 4-5, pp. 249–429, 2016, doi: 10.1561/2200000059.
[11] A. Cichocki et al., “Tensor networks for dimensionality reduction and 
large-scale optimization: Part 2 applications and future perspectives,” Found. 
Trends Mach. Learning, vol. 9, no. 6, pp. 431–673, 2017, doi: 10.1561/2200000067.
[12] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed. Baltimore, 
MD, USA: JHU Press, 2013. 
[13] V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the 
best low-rank approximation problem,” SIAM J. Matrix Anal. Appl., vol. 30, 
no. 3, pp. 1084–1127, 2008, doi: 10.1137/06066518X.
[14] A. Cichocki et al., “Tensor decompositions for signal processing ap-
plications: From two-way to multiway component analysis,” IEEE Sig-
nal Process. Mag., vol. 32, no. 2, pp. 145–163, 2015, doi: 10.1109/MSP.2013. 
2297439.
[15] R. A. Harshman, “Foundations of the PARAFAC procedure: Models 
and conditions for an ‘explanatory’ multi-modal factor analysis,” UCLA 
Work. Papers Phonetics, vol. 16, no. 1, p. 84, 1970.
[16] J. Carroll and J.-J. Chang, “Analysis of individual differences in mul-
tidimensional scaling via an n-way generalization of “Eckart-Young” de-
composition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970, doi: 10.1007/
BF02310791.
[17] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear de-
composition of n-way arrays,” J. Chemometr., vol. 14, no. 3, pp. 229–239, 2000, 
doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N.
[18] A. Stegeman and N. D. Sidiropoulos, “On Kruskal’s uniqueness con-
dition for the CANDECOMP/PARAFAC decomposition,” Linear Algebra 
Appl., vol. 420, nos. 2–3, pp. 540–552, 2007, doi: 10.1016/j.laa.2006.08.010.
[19] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications in the 
Chemical Sciences. Hoboken, NJ, USA: Wiley, 2005.
[20] E. Acar and B. Yener, “Unsupervised multiway data analysis: A litera-
ture survey,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 1, pp. 6–20, 2008, doi: 
10.1109/TKDE.2008.112.
[21] P. Dreesen, M. Ishteva, and J. Schoukens, “Decoupling multivariate 
polynomials using first-order information and tensor decompositions,” 
SIAM J. Matrix Anal. Appl., vol. 36, no. 2, pp. 864–879, 2015, doi: 10.1137/ 
140991546.
[22] J. Decuyper, P. Dreesen, J. Schoukens, M. C. Runacres, and K. Tiels, “De-
coupling multivariate polynomials for nonlinear state-space models,” IEEE 
Control Syst. Lett., vol. 3, no. 3, pp. 745–750, 2019, doi: 10.1109/LCSYS.2019. 
2916955.
[23] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM 
(JACM), vol. 60, no. 6, pp. 1–39, 2013, doi: 10.1145/2512329.
[24] L. R. Tucker, “Implications of factor analysis of three-way matrices for 
measurement of change,” in Problems Measuring Change, C. W. Harris, Ed. 
Madison, WI, USA: Univ. Wis. Press, 1963, pp. 122–137. 
[25] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” 
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.
[26] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singu-
lar value decomposition,” SIAM J. Matrix Anal. A, vol. 21, no. 4, pp. 1253–
1278, 2000, doi: 10.1137/S0895479896305696.
[27] I. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., 
vol. 33, no. 5, pp. 2295–2317, 2011, doi: 10.1137/090752286.
[28] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider, “Optimiza-
tion problems in contracted tensor networks,” Comput. Visualization Sci., vol. 
14, no. 6, pp. 271–285, Aug. 2011, doi: 10.1007/s00791-012-0183-y.
[29] M. Espig, K. K. Naraparaju, and J. Schneider, “A note on tensor chain 
approximation,” Comput. Visualization Sci., vol. 15, no. 6, pp. 331–344, Dec. 
2012, doi: 10.1007/s00791-014-0218-7.
[30] B. N. Khoromskij, “O(dlog N)-quantics approximation of N-d tensors 
in high-dimensional numerical modeling,” Construct. Approx., vol. 34, no. 2, 
pp. 257–280, Oct. 2011, doi: 10.1007/s00365-011-9131-1.
[31] U. Schollwöck, “The density-matrix renormalization group in the age 
of matrix product states,” Ann. Phys. (USA), vol. 326, no. 1, pp. 96–192, 2011, 
doi: 10.1016/j.aop.2010.09.012.
[32] I. Oseledets, “Approximation of 2d # 2d matrices using tensor decom-
position,” SIAM J. Matrix Anal. Appl., vol. 31, no. 4, pp. 2130–2145, June 2010.
[33] R. J. G. B. Campello, G. Favier, and W. C. d. Amaral, “Optimal expan-
sions of discrete-time Volterra models using Laguerre functions,” Auto-
matica, vol. 40, no. 5, pp. 815–822, 2004, doi: 10.1016/j.automatica.2003.11.016.

[34] C. Diouf, M. Telescu, P. Cloastre, and N. Tanguy, “On the use of equal-
ity constraints in the identification of Volterra-Laguerre models,” IEEE 
Signal Process. Lett., vol. 19, no. 12, pp. 857–860, Dec. 2012, doi: 10.1109/LSP. 
2012.2223463.
[35] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear system mod-
eling and identification using Volterra-PARAFAC models,” Int. J. Adapt. 
Control Signal Process., vol. 26, no. 1, pp. 30–53, Jan. 2012, doi: 10.1002/ 
acs.1272.
[36] K. Batselier, Z. M. Chen, and N. Wong, “Tensor network alternat-
ing linear scheme for MIMO Volterra system identification,” Automatica,  
vol. 84, pp. 26–35, Oct. 2017, doi: 10.1016/j.automatica.2017.06.033. 
[37] S. Holtz, T. Rohwedder, and R. Schneider, “The alternating linear 
scheme for tensor optimization in the tensor train format,” SIAM J. Sci. 
Comput., vol. 34, no. 2, pp. A683–A713, 2012, doi: 10.1137/100818893.
[38] T. Rohwedder and A. Uschmajew, “On local convergence of alternat-
ing schemes for optimization of convex problems in the tensor train for-
mat,” SIAM J. Numerical Anal., vol. 51, no. 2, pp. 1134–1162, 2013, doi: 10.1137/ 
110857520.
[39] R. Karagoz and K. Batselier, “Nonlinear system identification with 
regularized tensor network B-splines,” Automatica, vol. 122, p. 109300, 2020, 
doi: 10.1016/j.automatica.2020.109300.
[40] E. Rubiola, “Tutorial on the double balanced mixer,” arXiv e-prints, 2006.
[41] S. Särkkä, “Bayesian filtering and smoothing,” in Institute of Mathemati-
cal Statistics Textbooks. Cambridge, U.K.: Cambridge Univ. Press, 2013.
[42] K. Batselier, C.-Y. Ko, and N. Wong, “Extended Kalman filtering with 
low-rank tensor networks for mimo Volterra system identification,” in Proc. 
IEEE 58th Conf. Decision Control (CDC), 2019, pp. 7148–7153, doi: 10.1109/
CDC40024.2019.9028895.
[43] K. Batselier, Z. Chen, and N. Wong, “A tensor network Kalman fil-
ter with an application in recursive MIMO Volterra system identifica-
tion,” Automatica, vol. 84, pp. 17–25, Oct. 2017, doi: 10.1016/j.automatica. 
2017.06.019. 
[44] K. Batselier and N. Wong, “Matrix output extension of the tensor net-
work Kalman filter with an application in MIMO Volterra system identifica-
tion,” Automatica, vol. 95, pp. 413–418, 2018, doi: 10.1016/j.automatica. 
2018.06.015.
[45] K. Batselier, C.-Y. Ko, and N. Wong, “Tensor network subspace identi-
fication of polynomial state space models,” Automatica, vol. 95, pp. 187–196, 
2018, doi: 10.1016/j.automatica.2018.05.015.
[46] T. Katayama, “Subspace methods for system identification,” Communi-
cations and Control Engineering. London: Springer-Verlag, 2005.
[47] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for multi-
dimensional arrays,” Linear Algebra Appl., vol. 422, no. 1, pp. 70–88, 2010.
[48] M. Schoukens, R. Pintelon, and Y. Rolain, “Parametric identification of 
parallel Hammerstein systems,” IEEE Trans. Instrum. Meas., vol. 60, no. 12, 
pp. 3931–3938, 2011, doi: 10.1109/TIM.2011.2138370.
[49] J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, and 
R. Pintelon, “Identification of nonlinear systems using polynomial nonlin-
ear state space models,” Automatica, vol. 46, no. 4, pp. 647–656, 2010, doi: 
10.1016/j.automatica.2010.01.001.
[50] I. Oseledets, S. Dolgov, V. Kazeev, O. Lebedeva, and T. Mach, MAT-
LAB TT-toolbox version 2.3 available online, June 2014. [Online]. Available: 
https://github.com/oseledets/TT-Toolbox
[51] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, 
Tensorlab 3.0, Mar. 2016. [Online]. Available: https://www.tensorlab.net
[52] B. W. Bader et al., Matlab Tensor Toolbox Version 3.1, June 2019. [On-
line]. Available: https://www.tensortoolbox.org 
[53] A. Phan, P. Tichavsky, and A. Cichocki, “Tensorbox,” GitHub, San Fran-
cisco, Mar. 2019. [Online]. Available: https://github.com/phananhhuy/
TensorBox
[54] K. Batselier, “MVMALS: MIMO Volterra system identification with ten-
sor networks,” Zenodo.org, Apr. 2019, doi: 10.5281/zenodo.2644831.
[55] K. Batselier, “TNKalman: Tensor network Kalman filter for identifica-
tion of time-varying MIMO Volterra systems,” Zenodo.org, Apr. 2019, doi: 
10.5281/zenodo.2644841.
[56] K. Batselier, “TNMOESP: Tensor network subspace identification of 
state space models with linear state dynamics and polynomial inputs,” Ze-
nodo.org, Apr. 2019, doi: 10.5281/zenodo.2644845.
[57] R. Penrose, “Applications of negative dimensional tensors,” in Combi-
natorial Mathematics and Its Applications. D. Welsh, Ed. New York, NY, USA: 
Academic Press, 1971, pp. 221–244. 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2022 at 10:37:18 UTC from IEEE Xplore.  Restrictions apply. 


