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Introduction 
 

To study how information is processed in the brain, we need to look at the activity of brain’s main cells, 

the neurons [1]. Neurons process information in groups or ensembles [2], called neural networks, so we 

need to not only be able to determine the contribution of individual neurons, but also establish 

correlations among them to understand their connectivity and function [1]. For this we need three 

components, first to simultaneously record the activity from most of the neurons in the neural network 

of interest [1] [3] [4]. Second, to stimulate or inhibit specific neurons within the network in order to map 

its input-output relation [1] [3] [4] [5], in a reverse engineering way. Third, a step that allows us to extract 

the neural activity from the recordings and process it by mean of signal processing and data analysis 

techniques [3] [6] [7] [8]. These steps of extracting and processing the neural activity provide the means 

to later determine the contribution of neurons alone, establish correlations and connectivity, calculate, in 

some cases, the right stimulation, and study the network’s function. Figure 1 shows a diagram of a neural 

network, the three components, and their interaction. 

 

 

 
Figure 1. Diagram sketching a neural network from the brain and how the three components: recording, 

processing and stimulation/inhibition interact with each other in order to study the network. The dashed line 
between processing and stimulation/inhibition means there is not always a relation between both. 

 

Recording 
The neural activity we want to record is the action potential (AP), shown in Figure 2. There have been 

different techniques that enable the recording of neurons’ APs [1] [3] [4] [6] [9]. These techniques range 

from direct measurements of tens of neurons such as patch-clamping [10] to indirect measurements that 

can include thousands of neurons, like electroencephalography (EEG) [4].  

In this work, however, we are going to focus on the CMOS-based high density microelectrode array 

(HDMEA) device [1], shown in Figure 3, developed at ETH Zurich. This device falls within the category of 
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multi-microelectrode designs, has an active area of 3.85 x 2.10 mm2 where brain or retina slices are 

placed, and possess 26,400 platinum microelectrodes, from which 1024 can be selected for recording. The 

electrodes’ signals from the CMOS HDMEA are amplified, bandpass filtered, and sampled at 20 kHz with 

a 10 bit analog-to digital converter. The digital signals are sent to a Field Programmable Gate Array (FPGA) 

and then to a computer for processing. These capabilities allow the implementation of in-vitro 

extracellular electrophysiology of neural networks containing thousands of neurons.  

Extracellular electrophysiology and multelectrode spikes 
Extracellular electrophysiology, one of the leading techniques in neuroscience [6], is the measure of the 

electrical potentials in the extracellular medium of a group of neurons via microelectrodes. The measures 

contain noise coming from different sources [4] and the extracellular representation of the APs: the 

spikes, as shown in Figure 2. 

 

 
 

Figure 2. The action potential and its extracellular representation: the spike [11] 

 

 

 

 

 

 

 

Figure 3. High resolution CMOS HDMEA platform [1] (left), and image of neurons on top of it [11] (right) 
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Since we are dealing with multiple electrodes to record the neural network under study, whenever a 

neuron fires, generating an AP, the spike is not only measured in one electrode but in many of them 

surrounding the neuron. The electrodes closer to the neuron’s soma would present a larger spike 

amplitude, while the further away the electrode is the lower the spike amplitude. We therefore say, we 

have a multielectrode spike representation of the neurons. Additionally, if we average the spikes of a 

neuron in every electrode we find its multielectrode spike waveform, called the neuron’s footprint, and 

shown in Figure 4. 

 

 
 

Figure 4. Footprint of a neuron on top of a group of approximately 400 electrodes on the CMOS HDMEA. From 
the spike amplitude it is possible to infer the position of the neuron. The spikes seem noise free thanks to the 

averaging used to compute the footprint [11] 

 

Stimulation 
For stimulating or inhibiting the neural network there are also different approaches [3] [4] [9]. Chemical, 

optical, and electrical techniques have been develop in order to manipulate the activity of the neurons in 

a network. Even though we are not going to talk about any stimulation or inhibition, it is important to 

mention that the CMOS HDMEA device let us to set up to 32 channels to electrically stimulate neurons in 

the network under study [1]. This characteristic gives us the possibility to apply the stimulation based on 

ongoing recordings in a closed-loop fashion, allowing us to establish and study the input-output relations 

mentioned before. 

 

Processing 
Finally, we need a processing step to extract the neurons’ spikes from the recorded data. For extracellular 

electrophysiological recordings the processing consists of two steps: finding the spikes within the 

recording, and second, figuring out to which neurons those spikes belong [6] [7]. We can summarize the 

two steps as: detection and classification of spikes. In neuroscience the standard method for spike 
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detection and classification is called spike sorting [3] [6] [7] [8] [12]. With spike sorting we are able to 

reconstruct the spike train of each neuron, i.e. a time series that tells us when the neuron actually spiked. 

Spike sorting 
Spike sorting is not an easy task for several reasons [8]. First, the recorded signals always present 

background noise coming from the electronic circuitry of the recording device, as well as from the 

influence of attenuated spikes from neurons far away from the electrode of interest [4]. Second, spikes 

vary in shape, not only among different neurons, but also from the same neuron along time, presenting 

bursts in some case, i.e. periods of high spiking frequencies. Third, spikes from different neurons can 

overlap, say, if neurons close to each other spike at the same time, then the recorded spike waveform in 

the electrodes close to the neurons would be the superposition of the spikes, leading to a larger, smaller 

or even unrecognizable waveforms [8]. Fourth, the position between the neurons and the electrodes can 

change over time, changing the shape of the spike waveform recorded on the microelectrodes. All these 

problems, noise, spike variations, overlaps, and electrode-neuron drift affect the detection and 

classification task of spike sorting [8]. These problems lead to not only the detection of noise as spikes, 

known as false positives, or the omission of spikes, named false negatives, but also to classification errors, 

i.e. misclassification of spikes to their respective neurons. Furthermore, since the spikes are digitalized in 

order to be processed, this digitalization causes problems when classifying the spikes into the different 

neurons due to jittering [8]. Figure 5 presents a chunk of a recording in the CMOS HDMEA, where five 

adjacent electrodes presenting different spike waveforms, background noise, and overlaps can be 

observed.  
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Figure 5. Data recorded with the CMOS HDMEA from a retina slice. The red areas represent: 1: background 
noise. 2: Two spikes from the same neuron presenting different waveforms. 3: A possible overlap of two spikes 

 

The general procedure of spike sorting consists of a series of steps [7] [8] [12]. First, the recorded data is 

bandpass filtered. Second, when the filtered data crosses a, predefined, voltage threshold a spike is 

detected. Third, a number of data points around the detected spike are considered part of the spike 

waveform and extracted from the recording. From those extracted data points a number of features are 

extracted. Fourth, the extracted features are used to classify the spikes assigning them to their putative 

neurons by means of a clustering algorithm. The aforementioned steps are presented in Figure 6. 
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1 
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Figure 6. Overview of the spike sorting process [12]. In (a) the data is recorded with the electrodes. The raw data 
in (b) is bandpass filtered and (c) is obtained. Threshold crossing is done in (d) to detect the spikes, which are 

then extracted and aligned in (e). The relevant features of the spikes are extracted in (f) and used for clustering 
in (g). Finally in (i) the spikes of the different clusters are used to classify the neurons and reconstruct the spike 

trains 

 

The main disadvantages with the classical spike sorting approach are that it is not scalable to process 

thousands of neurons, and present an unsupervised step, clustering, not suitable for real-time 

implementations [12] [13] [14]. 

Since we are dealing with the CMOS HDMEA device to record and stimulate neurons. We seek a processing 

method that enable not only the recording of thousands of neurons at the same time, but also, closed-

loop experiments involving electrical stimulation on real-time. 

Template matching 
One way to overcome the two aforementioned disadvantages of the classical spike sorting approach is by 

implementing a template matching based algorithm to detect and classify the spikes [8]. In template 

matching, a known signal, called the template, is to be found within the noise [13]. In our case, if we would 

have the averaged multielectrode spike waveform of every neuron, i.e. its footprint, we could use them 

as templates to match the spikes within the recording, solving both detection and classification.  

However, to find the footprint of every neuron we still need to apply spike sorting. After spike sorting, the 

footprint of each neuron is computed by taking the centroid of each cluster, i.e. its mean. Applying 

template matching seems redundant because the templates are made after the clustering step of spike 
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sorting, which is basically the one we want to avoid. However, if a spike sorting procedure is applied at 

the beginning of the recorded data to create the clusters and obtain the templates, then these templates 

can be used to detect and classify spikes along the rest of the recording. This won’t require any supervision 

step, and will be much faster than the classical spike sorting approach. 

Bayes optimal template matching (BOTM) 
In this work we are going to focus on the template matching based algorithm for spike detection and 

classification presented by Franke et. al. [13], the Bayes optimal template matching (BOTM). This 

algorithm is scalable to thousands of neurons, parallelizable, optimal under certain considerations [13], 

and finally, faster than the common spike sorting [13] due to the lack of a clustering step. The BOTM 

equation can be summarized as follows: 

 

𝑑𝑖(𝑡) = 𝑋(𝑡)𝑇𝐶−1𝜉𝑖 − 𝑐𝑖 
  

Equation 1 

 
 

Where 𝑑𝑖  is called the discriminant function of neuron 𝑖, 𝜉𝑖  is the template for that neuron, 𝑐𝑖 is a constant 

that depends solely on the neuron, 𝑋(𝑡)𝑇 is the transpose of the multichannel recording, and 𝐶−1 is the 

inverse of the noise covariance matrix [13] [15]. The BOTM algorithm computes the discriminant function 

of every neuron along the data and compares them with a threshold for spike detection, this threshold is 

defined by the noise’s discriminant function [13]. Once a spike is detected, the algorithm compares the 

discriminant functions of the different neurons, assigning the detected spike to the neuron with the 

largest value. 

 

BOTM and electrode correlations 
After introducing the three components we use for studying neural networks: recording, stimulation and 

processing. And stating we are going to focus on the processing algorithm, and specifically on the BOTM, 

we can discuss further the motivation of this work. 

Simplify the noise covariance matrix 
The BOTM algorithm requires us to compute the noise covariance matrix 𝐶 [13] [15], and its inverse 𝐶−1. 

This matrix is computed by calculating the correlation between electrodes’ signals where only noise, and 

no spikes, is present. The size of the matrix is proportional to the square number of electrodes times the 

squared length of a spike in samples. Therefore, since we are dealing with 1024 readout channels and a 

spike is approximately 50 samples long (considering the 20 kHz sampling frequency), the matrix would 

have around 2,5 × 109 components, making it too large to compute and handle. 

The first aim of this work is to simplify the noise covariance matrix to make it easier to compute and 

handle. 

The noise covariance matrix 𝐶 presents at the same time: spatial noise correlations among electrodes, 

temporal noise correlations of electrodes with themselves, and spatio-temporal noise correlations among 
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different electrodes. The inverse of the noise covariance matrix, as presented in Equation 1, is working as 

a whitening transformation [15] [16] [17], whitening the data 𝑋(𝑡)𝑇. 

Here we consider separating the spatial, temporal and spatio-temporal correlations. We make two smaller 

matrices as in [16], one containing the spatial noise correlations and the other containing the temporal 

noise correlations. With this approach we evaluate the BOTM’s performance on detection and 

classification on three scenarios: 

 First, considering only spatial correlations among the electrodes and neither temporal nor spatio-

temporal, applying what is known as spatial noise whitening. 

 Second, considering only temporal and neither spatial nor spatio-temporal correlations, called 

temporal noise whitening.  

 Third, taking both spatial and temporal correlations into account, by applying one whitening after 

the other, called spatial-and-temporal noise whitening. 

With these approaches we can build simpler matrices which are smaller and easier to handle, but also 

evaluate the contribution of each of these correlations, and whitenings, to the performance of the BOTM 

algorithm. 

Data and signal correlations 
The second aim would be to look at the other two correlations we find among electrodes: spike 

correlations and signal correlations. The first one is the correlation between electrodes just taking the 

spikes into account, and the second case taking both noise and spikes all together into account to compute 

the correlation of the signals between electrodes. Even though we were not able to evaluate spike 

correlations, we show how the signal correlations affect the BOTM performance. 

The relation between the three correlations we find among the electrodes, as presented in [18], is: 

 

𝑅 = 𝐻 + 𝐶 
  

Equation 2 

 
 

Where 𝑅 is the signal covariance matrix and contains the spatial signal correlations among electrodes, 

temporal signal correlations of electrodes with themselves, and spatio-temporal signal correlations 

among different electrodes. 𝐻 is the spike covariance matrix, containing spatial spike correlations among 

electrodes, temporal spike correlations of electrodes with themselves, and spatio-temporal spike 

correlations among different electrodes. And 𝐶 is previously mentioned noise covariance matrix. For the 

evaluation of 𝑅 we again divide the correlations into spatial, temporal and spatial-and-temporal in order 

to be able to handle the matrices. 

By looking at 𝑅 and 𝐻 we would like to know if there is a way to utilize the correlations among electrodes,  

as the noise covariance matrix 𝐶 is used in Equation 1, to generate optimal filters from every template, 

i.e. filters that suppress every template except for one [18].  
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Organization of the rest of this work 
In the next section, Bayes optimal template matching (BOTM), we introduce the details of the BOTM 

algorithm and the noise covariance matrix involved on it. Then in the Correlations and whitening section 

we introduce the importance of taking the correlations, present in the noise covariance matrix, into 

account, and the concept of data whitening. We also introduce the effects of spatial and temporal 

whitening. In the next section, Data and performance measures, we discuss about how to build the data 

to evaluate the BOTM and how to assess its performance. Then we enter the results of this work. We first 

show the effects of whitening on the BOTM applied to a small group of electrodes in the section 

Comparing different whitening approaches (Part 1). After this we make a break in the results and show, 

in the section called The problem of high-frequency components in inserted footprints, how we got 

erroneous conclusion about the performance of the BOTM algorithm, and how the problem behind this 

can affect any template matching based algorithm. In the next section called Comparing different 

whitening approaches (Part 2), we show the performance of the BOTM with different whitening strategies 

and over a group of 289 electrodes. To wrap up, in the last chapter: Conclusions, outcomes and future 

work, we discuss about the remarks and conclusions we came up within this work.  
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Bayes optimal template matching (BOTM) 
 

We are going to focus now on the Bayes optimal template matching algorithm (BOTM) presented in [13]. 

This algorithm presents the optimal way to perform spike detection and classification by a template 

matching process in an extracellular electrophysiological recording. The template matching process is a 

filtering operation, where the filter proposed is derived linearly from the templates, and it is the matched 

filter that at the same time increases the signal-to-noise ratio (SNR) and leads to an optimal classification 

in a Bayesian sense. The BOTM solves both detection and classification problem at once. However, it is 

important to mention that in order to apply the algorithm, as in any template matching based algorithm, 

the number of neurons and their templates have to be known in advance. 

There are two definitions we have to understand before going on to understand the BOTM equations: the 

templates, and the noise covariance matrix. The templates 𝜉 represent the mean of multivariate normally 

distributed clusters, and have the following structure: the template for neuron 𝑖 is 𝜉𝑖 = [𝜉𝑖,1
𝑇 ,

𝜉𝑖,2
𝑇 , … , 𝜉𝑖,𝑀

𝑇]𝑇 where 𝜉𝑖,𝑏 is the spike waveform for neuron 𝑖 on electrode 𝑏. Since every spike is 

digitalized by the CMOS HDMEA platform, and every spike waveform in every electrode is 𝐿 samples long, 

the template is a vector of length 𝐿𝑀, where 𝑀 is the number of electrodes. The noise covariance matrix 

among the 𝑀 electrodes is represented by 𝐶. This matrix contains noise correlations among the 

electrodes. These noise correlations come in the form of noise spatial correlations among channels, noise 

temporal correlations of individual channels with themselves, i.e. noise autocorrelation of every channel, 

and spatio-temporal noise correlations between channels, i.e. noise cross-correlations among channels.     

Now we can elaborate on the details of the BOTM equations. In [13], after analyzing the spike classification 

problem as a multi-class classification problem, the following function is obtained: 

 

𝑑𝑖(𝑡) = 𝑋(𝑡)𝑇𝐶−1𝜉𝑖 −
1

2
𝜉𝑖
𝑇𝐶−1𝜉𝑖 + ln(𝑝(𝑖)) 

  
Equation 3 

 

Where the sub-index 𝑖 stands for neuron 𝑖, 𝑑𝑖  is called the discriminant function of the corresponding 

neuron, 𝑋𝑇 represents the transpose of the data recorded by the 𝑀 electrodes, 𝜉𝑖  the template of neuron 

𝑖,  𝐶−1 the inverse of the noise covariance matrix, 𝜉𝑖
𝑇𝐶−1𝜉𝑖 represents the energy of the template, and 

𝑝(𝑖) is the prior firing probability of the neuron. This is the same function used in linear discriminant 

analysis (LDA) [19]. 

Taking the matched filter defined for maximizing SNR in the context of spike sorting [20]: 

 

𝑓 =
𝐶−1𝜉

𝛽
 

  
Equation 4 
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Where 𝛽 is a normalization constant. It becomes clear that Equation 3 is a filtering operation of the data 

with the matched filter.  

In order to detect and classify spikes in the data, the discriminant function 𝑑𝑖  for every neuron is 

calculated. When the discriminant function crosses a certain detection threshold, a spike is detected, then 

the discriminant function values of all the neurons are compared and the spike is assigned to the neuron 

with the largest value. It is important to mention that the BOTM equation provides the detection 

threshold in an analytic way, being equal to the discriminant function of the noise template, obtained by 

setting the template to zero in Equation 3: 

 

𝑑𝑛(𝑡) = 𝑋(𝑡)𝑇𝐶−10 −
1

2
0𝑇𝐶−10 + ln(𝑝(𝑛)) 

  
Equation 5 

 

One the of the important features of the BOTM algorithm is that it is completely parallelizable, as the 

discriminant functions are all independent from each other and can be computed separately. Moreover, 

the computational time of the algorithm is reduced to just the filtering operation, since the second and 

third terms are constants for every neuron [13].  The BOTM equation can be finally rewritten in the 

following compact form: 

 

𝑑𝑖(𝑡) = 𝑋(𝑡)𝑇𝐶−1𝜉𝑖 + 𝑐𝑖 
  

Equation 6 

 

This simplification is possible because the energy and the prior probability of spike of every neuron are 

both constant and independent among neurons. 

Figure 9 shows, in a very simple example of one electrode and two neurons, how the BOTM detects and 

classifies spikes to their putative neurons. 
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Figure 7. Data created by two spiking neurons and noise. Here we show how the BOTM algorithm is able to 

detect the spikes within the noise and assign them to their correct putative neurons 

 

Noise covariance matrix 
The noise covariance matrix is extensively used in the spike sorting literature [15] [16] [21] [22]. It has a 

special block structure:  

 

𝐶 =

𝐶1,1 ⋯ 𝐶𝑀,1

⋮ ⋱ ⋮
𝐶1,𝑀 ⋯ 𝐶𝑀,𝑀

 
  

equation 7 

 

Where the 𝐶𝑖,𝑘 block is the noise cross-correlation matrix between electrodes 𝑖 and 𝑘. Each of these blocks 

is a 𝑇 × 𝑇 matrix, where 𝑇 is a time lag equal to the defined spike length, with a Toeplitz structure [23], 

meaning that its first row contains the noise cross-correlation between electrodes 𝑖 and 𝑘, its second row 

contains a shifted version of the first, the next row a shifted version of the previous one and so on. It is 

important to mention that, as the name implies, the noise cross-correlation between electrodes is 

calculated along chunks of the recording where there is just noise and no spikes detected as shown in 

Figure 8. The noise covariance matrix 𝐶 has a symmetric structure with 𝐶𝑖,𝑖 = 𝐶𝑖,𝑖
𝑇 and 𝐶𝑖,𝑘 = 𝐶𝑘,𝑖

𝑇. Since 
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every block is 𝑇 × 𝑇 matrix and there is one block for every pair of electrodes, the dimensionality of 𝐶 is 

𝑇𝑀 × 𝑇𝑀, where, has before 𝑀 is the number of electrodes used.  

 

 

 
Figure 8. Voltage traces of four electrodes. Noise and spikes can be clearly identify. Noise chunks are extracted to 

compute noise correlations [24] 

 

This noise covariance matrix presents at the same time: spatial noise correlations among electrodes, 

temporal noise correlations of electrodes with themselves, and spatio-temporal noise correlations among 

different electrodes.  
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Correlations and whitening 
 

To understand the effect of the noise correlations and the noise covariance matrix over the BOTM, we 

can consider again a simple case were we have a recording with only two spiking neurons and their 

respective templates. If the data were noise free, the value of the discriminant function for each neuron 

considered in the BOTM algorithm would be always the same. In this case finding a boundary to separate 

the BOTM output for every neuron is trivial, as shown in Figure 9 (a), and spike detection and classification 

would be straight forward. However, due to the noise present in the data, 𝑋(𝑡), the discriminant functions 

have a distribution of values around the ideal noise free value, as shown in Figure 9 (b). Here, finding a 

threshold for detection and a boundary to separate the two distributions for spike classification is not 

straight forward. Nonetheless, since the noise present in the data is taken into account when deriving the 

BOTM, as having a covariance matrix 𝐶 among electrodes [13], the final BOTM equation gives us the best 

way to separate the discriminant function values even in the presence of noise. 

We can summarize the best way to separate both discriminant function values by: 

1. Multiplying data and templates by the inverse of the noise covariance matrix 𝐶−1, as the first term 

in Equation 6 

2. Adding the respective constant for each neuron, as the second term in Equation 6 

3. Taking the identity line that divides the plane by two halves comparing the value of the two 

discriminant functions. This is equivalent to saying that whenever a spike is detected, we assign it 

to the neuron with the largest discriminant function 

Understanding the second point mentioned is straight forward: when we add the constant we move the 

discriminant function value of every neuron away from the noise threshold. The first bullet point however, 

requires a more detailed explanation.    

The inverse of the noise covariance matrix can be expressed as a product of two upper triangular matrices, 

as follows: 

 

𝐶−1 = 𝑈𝑇𝑈 
  

Equation 8 

 

By definition the matrix 𝑈 is a whitening matrix [17]. Therefore, when multiplying 𝐶−1 in Equation 6 we 

are applying a whitening transformation to the data as 𝑋(𝑡)𝑇𝑈𝑇 [15] [16], and reshaping the templates 

as 𝑈𝜉𝑖. Data whitening is important for sphering the noise distributions [15], as seen in Figure 9 (c), 

ensuring the optimal classification of spikes [13]. It is also important to apply the same transformation to 

the templates to preserve their matching with the spike waveforms in the data. 

The whitening transform sets the variance of the noise on every electrode to one and eliminates 

correlations among every pair of electrodes, i.e. decorrelate the noise among electrodes. With the 

reshaped distributions the right boundary is the identity line that provides the best separation between 
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every pair of neurons. With this boundary we are able to assign the detected spikes to their corresponding 

neurons in an optimal way. 

 

 
 

Figure 9. (a) Decision boundary and discriminant function values in the ideal case of recording without noise. (b) 
Distribution of discriminant function values considering noise in the recording. Notice that the discriminant 
function values become a distribution around the ideal noise free case. The red square close to the origin 

represents the values that are consider as noise. (c) Decision boundary and distribution of discriminant function 
values when applying the BOTM equation, it is clear that the whitening transformation is sphering the 

distributions, and the constant added is moving them away from the noise region 

 

Despite the fact the BOTM equation provides an implicit whitening transformation that enables the 

decorrelation needed for the classification of spikes, we previously discussed the difficulty in computing 

and handling the full noise covariance matrix 𝐶. So we implement an approach of dividing the full noise 

covariance matrix in two simpler matrices, applying two whitenings: a spatial whitening, and a temporal 

whitening. Now we introduce what is the effect of these two whitenings alone. 

 

Spatial noise whitening 
Spatial noise whitening is a transformation that sets the noise variance over every electrode to the unity 

and the cross-correlation between every pair of electrodes to zero, i.e. reshapes the noise distributions 

into normal distributions. The noise correlations among electrodes are used to compute the spatial noise 

whitening transformation. Figure 10 shows how the noise correlation between two electrodes can be 

reshaped by a spatial noise whitening transformation in order to have a normal distributed noise. 
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Figure 10. Electrode data before and after spatial noise whitening 

 

Calculating the spatial noise whitening 
To calculate the spatial noise whitening transformation we use the noise correlations among electrodes 

by calculating the cross-correlation matrix between the noisy chunks of every pair of electrodes. The 

cross-correlation between every pair of electrodes is given by: 

 

𝑐𝑜𝑟𝑟𝑗,𝑘 =∑
𝑐𝑜𝑟𝑟(𝑛𝑗𝑖

, 𝑛𝑘𝑖)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑖)

𝑁

𝑖=1

 
  

Equation 9 

 

Where 𝑛𝑗𝑖 and 𝑛𝑘𝑖 represent the 𝑖-th chunk of noise, i.e. data trace where no spikes were detected, 

between electrodes 𝑗 and 𝑘 respectively. Then, the correlations among electrodes are arranged in the 

cross-correlation matrix as follows: 

 

𝑐𝑜𝑟𝑟 =

𝑐𝑜𝑟𝑟1,1 ⋯ 𝑐𝑜𝑟𝑟𝑀,1

⋮ ⋱ ⋮
𝑐𝑜𝑟𝑟1,𝑀 ⋯ 𝑐𝑜𝑟𝑟𝑀,𝑀

 
  

Equation 10 

 

If we apply a Cholesky factorization of this cross-correlation matrix we decompose the matrix in an upper 

triangular matrix and its transpose. Finally, when inverting the upper triangular matrix we obtain the 

matrix 𝑆𝑛 that represents the spatial noise whitening transformation as shown in Equation 12.  

 

𝐶ℎ𝑜𝑙(𝑐𝑜𝑟𝑟) = 𝑌𝑇𝑌 
  

Equation 11 
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𝑆𝑛 = 𝑌−1 
  

Equation 12 

 

Temporal noise whitening 
Temporal noise whitening is a transformation that reduce noise correlations in a single electrode over 

time, i.e. it decorrelates noise on every single electrode. Meaning that the power spectral density of the 

noise of every electrode will be characterized by white noise, i.e. it will be a flat spectrum. Figure 11 shows 

the correlation of a piece of data with a shifted version of it on one electrode, and the effect of applying 

the temporal noise whitening on that electrode. To make it clearer for this purpose, Figure 12 represents 

the power spectral density (PSD) of the electrode data before whitening, with a specific frequency shape, 

and after whitening, with a flatter spectrum.   

 

 
 

Figure 11. Electrode data before and after temporal noise whitening 
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Figure 12. PSD of a single electrode before and after temporal noise whitening 

 

Calculating the temporal noise whitening  
To compute the temporal noise whitening transformation we follow an approach similar to [16]. For each 

electrode we take the autocorrelation of the chunks of data where no spikes were detected, i.e. noise 

chunks, in the electrode. The autocorrelation is calculated by lagging the noise chunks a value equal to 

the spike length, as: 

 

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗 =∑
𝑐𝑜𝑟𝑟(𝑛𝑗𝑖

, 𝑛𝑗−𝜏𝑖
)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑖)

𝑁

𝑖=1

 
  

Equation 13 

 

Where 𝑛𝑗𝑖 represent the 𝑖-th chunk of noise in electrodes 𝑗, and 𝜏 represents the lag, which goes from 

zero to the spike length in sample. Then, since the autocorrelation is a symmetric vector by definition with 

length equal to twice the maximum lag, we take its half and build a Toeplitz [23] matrix out of it. 

 

𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧(𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗[0,… ,max(𝑙𝑎𝑔)]) 
  

Equation 14 

 

The Toeplitz matrix is as follows: 
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𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗(0) ⋯ 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗(max 𝑙𝑎𝑔))

⋮ ⋱ ⋮
𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗(max 𝑙𝑎𝑔)) ⋯ 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗(0)

 
  

Equation 15 

 

We then find the inverse of the Toeplitz matrix and calculate its square root: 

 

𝑖𝑛𝑣𝑡𝑜𝑒𝑝𝑗 = 𝑡𝑜𝑒𝑝𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑗
−1 

  
Equation 16 

 

The square root in this context is defined as a matrix 𝑀 such that: 

 

𝑖𝑛𝑣𝑡𝑜𝑒𝑝𝑗 = 𝑀𝑀 
  

Equation 17 

 

Finally, from the matrix 𝑀, we extract the values from the middle column. This middle column is a vector 

that represents the temporal noise whitening for the specific electrode 𝑗, such as: 

 

   

𝑇𝑛𝑗 = [𝑀1,𝑘, …𝑀𝑛,𝑘] 
  

Equation 18 

 

Where 𝑛 is the total number of rows and 𝑘 represents the middle column. 
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Data and performance measures 
 

Data and templates 
To evaluate the BOTM algorithm’s performance with different whitening approaches we need data 

recorded by the CMOS HDMEA. Moreover, we need, first, the ground truth, i.e. the information of every 

spike from every neuron in the recorded data, and second the template of every neuron present in the 

recording. 

There are different ways to obtain the ground truth. The simplest one is to create a fake multichannel 

noise trace, define a number of neurons and their respective footprints, and then insert the footprints as 

spikes in the multichannel noise trace. This way we would have the exact spike times and their respective 

putative neurons. However, this approach presents two problems, first we run into the risk of having 

footprint waveforms that are not real, and second, the noise correlations of a real recording would be 

impossible simulate. 

A more robust way to create a data set with a known ground truth would be to take a real recording from 

the CMOS HDMEA and apply a spike sorting algorithm to identify the neurons and their spikes. Then take 

the multielectrode footprint of some of the neurons we found and use them to create new fake 

multielectrode footprints. These new footprints representing new neurons are then reinserted in the 

original recording at known times. With this approach we are able to know exactly when our fake neurons 

are spiking, also we are keeping the background noise and real signals in the electrodes, which would be 

impossible to reproduce by creating the full fake data. Every time we want to compare the performance 

of the BOTM with any whitening approach we just have to look at the fake neurons and how well were 

they detected and classified. 

 

Performance measures 
Once we have detected and classified the spikes with the BOTM algorithm we have to find a measure of 

how good both tasks were performed. The way to measure the performance of the BOTM is by looking at 

the false positive spikes (FP), false negative spikes (FN), and classification errors (CLE). 

False positive spikes are spikes that are detected by the algorithm but are not actually in the data, as 

shown in the topmost BOTM output in Figure 13. On the other hand false negative spikes are spikes that 

are actually happening in the data but the BOTM was not able to detect them, as shown in the middle 

row of  

Figure 13. In this case the BOTM didn’t detect two spikes within the data. Finally a classification error is a 

spike that was correctly detected, but the algorithm miss-classified it, assigning it to the wrong neuron, as 

shown in the last row of Figure 13.  
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Figure 13. Examples of FP, FN, and CLE 
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Simplifying the noise covariance matrix and studying signal correlations 
 

A new approach implementing the BOTM algorithm 
We already discussed the importance of the noise covariance matrix on the BOTM algorithm: its inverse 

provides a whitening transformation that is crucial for spike detection and classification. We also saw that 

computing this noise covariance matrix becomes impossible when large number of electrodes are used 

for recording. However we can split the noise covariance matrix into two simpler matrices: one containing 

spatial correlations, which its inverse provides spatial whitening, and one containing temporal 

correlations, which its inverse provides temporal whitening. Therefore, in the following sections we 

evaluate the performance of the BOTM algorithm by applying spatial whitening alone, temporal whitening 

alone, and both spatial and temporal whitening together, one after the other. 

 

Signal correlations and signal whitening 
It is important to mention that we also evaluate what happens if we take signal correlations, i.e. not only 

noise but also spikes, into account. To build the signal covariance matrix we take the full trace of every 

electrode, and not the noise chunks as before, and again compute both: the spatial covariance matrix and 

the temporal covariance matrix. After this we calculate their respective spatial whitening and temporal 

whitening matrices.  
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Comparing different whitening approaches (Part 1) 
 

BOTM on toy data with fake noise 
As a first approach to implement the BOTM with different whitening strategies we studied the very 

simplest case. We took the multielectrode footprint of four neurons in five electrodes close to each other. 

The footprint of each neuron can be seen in Figure 14.  

 

 

These footprints were obtained by the classical spike sorting procedure. Then we created a fake five 

electrodes noise trace of 20 seconds, 400000 samples, and inserted the known footprints by adding them 

to the background noise. The footprints were randomly inserted as multielectrode spikes in the noise 

trace, keeping record of the exact spiking time to be used later as a ground truth. In total 2045 

multielectrode spikes were inserted. To resemble real spike variability, the amplitude of the spikes was 

randomly modified within a range of ±10%. We also checked for refractory period violations, eliminating 

spikes from the same neuron that were too close to each other. The noise, multielectrode footprints in 

noise free data, and final toy data containing noise and spikes is presented in Figure 15. 

 

 

 
Figure 14. Five-electrode footprint of four neurons. Each color in the plot represents the waveform in each 

electrode 
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We applied the BOTM algorithm using the inserted footprints as templates for matching. In Figure 16 we 

compare how do the noise whitening transformations affect the performance of the BOTM. As expected 

when the data, and the templates, are not whitened the algorithm gives a larger number of errors. 

Moreover spatial whitening seems to provide a better performance than temporal whitening. Finally the 

application of both whitenings provides the least number of errors. 

 

 

 
 

Figure 15. Generated noise, spikes, and full toy data with noise and spikes. The voltage traces are spaced by 
100uV and the spikes are highlighted in the toy data to have a better visualization 
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In Figure 17 we see the comparison when applying signal whitening. Here again any of the whitenings 

provide a better performance than the not whitened case. However two things have to be highlighted, 

the first is that when spatial whitening is involved (spatial and spatial-and-temporal whitening) the 

algorithm becomes noise robust, eliminating all the FP. The second is that the performance of the spatial-

and-temporal whitening is not better than the only spatial whitening. The reason of this is that spatial 

whitening and temporal whitening alone are not completely independent of each other, therefore, when 

applying both, one after the other, it can happen that the whitening one is producing is affected by the 

next whitening, affecting the final performance of the algorithm. 

 

 

 
Figure 16.  BOTM performance with different noise whitening approaches 
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Using real multielectrode spikes (derived from the footprints) and inserting them into a generated fake 

noise is an easy way to have reliable ground truth, and a fast way to run and test the algorithm. But, this 

does not provide a picture of what would happen in a real recording. In a real recording there would be 

more spikes than just the ones from the four neurons we considered, these spikes would look like noise 

in some cases, but would also be confused among the matching of the BOTM, leading to an overall 

increase on the number of errors. Additionally a real recording contains spatial, temporal, and spatio-

temporal correlations among electrodes we are not taking into account when creating the fake noise. The 

only way to test the performance of the BOTM algorithm with real electrode correlations is by using noise 

from real recordings.  

 

BOTM on toy data with real noise 
In this case we took the same footprints used with the fake noise. However, the noise was taken from a 

real recording. We extracted a five electrodes trace of 20 seconds, 400000 samples, and added the known 

footprints to this trace. Figure 18 shows the noise, the added spikes, and the final toy data. Notice in this 

case the noise also contains spikes. These spikes, which we are considering as background noise, will affect 

the performance of the BOTM, affecting the number of errors compared to the previous case of fake 

noise, but this is something we cannot avoid if we want to have real correlations in our data. However, 

there is a way to overcome this problem as we will see later. 

 

 

 
Figure 17.  BOTM performance with different signal whitening approaches 
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We applied the BOTM algorithm to this new data and the variations of the whitening as before. In this 

case we still used the same four templates coming from the neurons we previously inserted. Figure 19 

shows what happens when applying noise whitening. Figure 20 shows, on the other hand, the 

performance of the BOTM when applying signal whitening. Notice that in this case the number of errors 

is presented in a logarithmic scale. 

 

 

 
Figure 18.  Real noise, spikes, and full toy data with noise and spikes. The voltage traces are spaced by 100uV 

and the spikes are highlighted in the toy data to have a better visualization 
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The number of errors for the not whitened case increased by more than 1400% with respect to the fake 

noise case, mainly because of the FP. This drastic change is due to the spikes in the noise that are confused 

by the BOTM algorithm, we will tackle this problem later. Furthermore, and more interesting is the fact 

that even though the spatial whitening provide some improvement in the number of errors, the temporal, 

and the spatial-and-temporal whitenings drastically reduced the number of total errors. Specifically, the 

 

 
Figure 19.  BOTM performance with different noise whitening approaches 

 
 

Figure 20.  BOTM performance with different signal whitening approaches 
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temporal signal whitening approach produces a perfect matching leading to zero errors, and the spatial-

and-temporal signal whitening an almost perfect performance with only 2 errors. 

After looking at this results, we can think the temporal signal whitening is transforming the data and 

templates in such a way that we can perfectly detect and classify any spike with the BOTM. However we 

now from [13] that this is not the case. We then decided to investigate on what was going on: why the 

temporal signal whitening was providing such a good BOTM performance when using noise from a real 

recording? 
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The problem of high-frequency components in inserted footprints 
 

We were able to find out that the inserted footprints have high-frequency components not present in the 

real noise, which are enhanced after temporal whitening, making them easier to match. 

To understand this we first have to take a look at the high-frequencies of the footprints, then, discuss why 

they are there but not in the real noise, later, why is the temporal whitening enhancing those frequencies, 

and finally understand why this is an actual problem, and how to solve it. 

As mentioned before, a real recording was used as noise, and then on top of that noise we added the fake 

footprints. In Figure 21 we see the PSD of the real recording used as noise (a), the toy data generated with 

the noise and the inserted footprints (b), and the noise and footprints separated (c). In Figure 1Figure 21 

(a) we can observe that the real recording has the shape of the bandpass filter used as the first digital 

signal processing step of the classical spike sorting algorithm. However, when we add the footprints that 

are going to define the spikes of our ground truth for the BOTM algorithm, we obtain the PSD shown in 

(b). Even though the footprints are extracted from the neurons previously classified in the spike sorting 

algorithm, when we add them back into the data, they change the shape of PSD, adding high-frequencies. 

By comparing (a) and (b) in Figure 21, we clearly see that there is a change, mainly, in the high-frequency 

components of the data. This change must come from the added spikes, since was the only thing that we 

added. To make this clearer, we have replotted in (c) the PSD of the noise but now with the PSD of the 

signal containing only spikes and no noise on top. When looking at this figure it becomes obvious that the 

new PSD is the sum of the real recording’s PSD and the PSD of the signal containing only spikes. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 21. (a) Power spectral density (PSD) of the recording used as noise. (b) PSD of the toy data containing 

noise as well as inserted footprints. (c) PSD of the recording used as noise, and the noise free signal composed 
solely by added spikes (black) 
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To understand why the footprints are adding such high-frequencies components we must understand 

where these footprints are coming from. In principle the footprints should not have any difference in PSD 

compared to the real recording since they are obtained from the same band pass filtered data. But, there 

are two sources for these high frequencies which we will call: the offset problem, and the alignment 

problem. 

Before introducing both problems we have to remember how we build the footprint for each neuron. 

Following the classical spike sorting approach: first we detect the spikes, then we extract some samples 

around the spike peak in order to get its waveform, and finally we align the waveforms coming from the 

same spikes in the same electrodes and average them (get the centroid of their distribution) in order to 

get the footprint. 

 

The offset problem 
The offset problem arises when we add the footprints with the noise. Since we are just adding both signals 

the transition between the background noise and the added footprint is not smooth, introducing the 

aforementioned high-frequencies.  

 

The alignment problem 
The alignment problem comes into play when we are aligning the spike waveforms extracted from the 

recording to build the footprints. Because the spikes are not locked to our sampling frequency, and since 

we are dealing with sampled spikes (i.e digitalized), when trying to align different spike waveforms, the 

alignment can differ if the starting sample of the waveforms is not the same. This is known as sampling 

jittering and is presented in [15]. Then, when we sum up waveforms that are not perfectly aligned, but 

present a time shift, we create new spike waveforms that contain high-frequency fluctuations. 

 

Temporal whitening and its effect on the high-frequency components 
As explained before in the Correlations and whitening section, the temporal whitening is basically 

flattening the PSD of the recording (see Figure 12). Now, if we look at the PSD of Figure 21 (a) again, we 

would think the temporal whitening should be just a function that leads to a flat spectrum. And that is 

exactly what is happening, as is shown in Figure 22. The problem is that because the temporal whitening 

filter is suppressing the mid-frequencies and enhancing the high-frequencies, and in these high-

frequencies there are only spike components and no noise, the temporal whitening is actually suppressing 

the noise while enhancing the inserted spikes. 
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The actual problem 
Now that we understand that the temporal whitening is enhancing high-frequencies, where spike but not 

noise components are present, we can discuss whether this is an actual problem. We can ask ourselves, 

with this perfect matching that leads to zero errors, are we not solving the detection and classification 

problem? The actual problem is that these high-frequencies are there just because we are inserting fake 

footprints (spikes) to be able to have a ground truth. In a real case scenario, there will not be frequencies 

higher than the cutoff frequency of the bandpass filter used. Therefore the enhancement of spikes over 

noise due to the temporal whitening will never happen. The only way to actually measure the 

performance of the BOTM under different whitening circumstances is by removing those undesirable 

high-frequency components. 

One question that may arise is how this problem was handle in the original BOTM publication [13]. Here 

the effect of the temporal whitening is less obvious since the full noise covariance matrix is used and there 

is no individual evaluation of the spatial and temporal components. However, the very low magnitude in 

the high-frequency components of the data is represented by singular values in the noise covariance 

matrix that are very close to zero, making it ill-conditioned. The ill-conditioned noise covariance matrix is 

handled by diagonal loading, solving at the same time the inversion of the matrix, and the high-frequency 

components in the inserted footprints.  

In our case, we decided to rebuild the footprints, making sure every spike had a smooth start and end 

when added to the data, to prevent the offset problem. And, bandpass filtering every footprints after the 

alignment process, with the same filter used for the data, to eliminate the high-frequencies coming from 

the alignment problem.   

  

 
 

Figure 22. PSD of the temporal signal whitening transformation 



38 
 

Comparing different whitening approaches (Part 2) 
 

Here we compare the different whitening approaches with the new data set built with the 10 footprints 

without high-frequency components. Once again we took a 20 seconds, i.e. 400000 data samples, real 

recording and used it as noise, however to get closer to a real CMOS HDMEA application we used 289 

electrodes. To this 289 electrodes 20 seconds recording, we added the new footprints. Figure 23 shows 

the PSD of the new noise and inserted footprints, i.e. spikes. It is interesting to compare this figure to 

Figure 21 (c) and look at how the spikes have no high-frequency components anymore. 

 

 

In a first attempt to measure the performance of the BOTM on our new data we applied the algorithm 

without any whitening transformation. In this case we also considered only the inserted neurons’ 

templates and not the templates coming from the neurons in the background noise for the matching. 

However the more templates we add to the matching the better the performance of the BOTM should 

be. Therefore, as a second case we added all the neurons in the original recording that were found 

previously by the spike sorting algorithm. 

 

BOTM without whitening 
When using only the templates from the inserted neurons in the BOTM algorithm the total number of 

errors is 3562, see Figure 24, left column. Table 1 gives a more detailed error outlook of every inserted 

neuron. However when we use templates from all the neurons found in the recording with a previous 

spike sorting approach, 620 templates in this case, the number of errors decrease drastically to 748, Figure 

 
 

Figure 23.  Power spectral density (PSD) of the new recording used as noise, and the signal composed solely by 
the new spikes on top (black) 
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24, right column, Table 2. It is important to realize that in this case the number of errors is in a logarithmic 

scale to have a better visualization of the results.  

 

 
 

Figure 24. BOTM considering only templates from inserted neurons (left column), and considering templates 
from all the neurons found in the original recording 

 

 

Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 17 0 1 18 

2 51 0 0 51 

3 54 2 4 60 

4 370 102 16 488 

5 2385 11 3 2399 

6 312 5 4 321 

7 117 2 1 120 

8 0 0 0 0 

9 58 0 0 58 

10 44 1 2 47 

Total 3408 123 31 3562 

 
Table 1. BOTM output for the 10 inserted neuron footprints when only templates from inserted neurons are used 

 

There are some important observation we have to make here. The first one is that the number of errors 

decreases when we add more templates. The reduction of errors comes largely due to the reduction in 

the number of FP, in the first case we have 3408 FP, while in the second 195 FP. The number of FP is large 
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in the first place because any spike detected from the original recording, i.e. not inserted spikes, will be 

assigned to one of the inserted neurons, leading to a FP, since we are only using their templates in the 

matching algorithm. But when we use the templates from all the neurons, the algorithm is able to assign 

the spikes from the original recording to their putative neurons, reducing the number of FP. 

 

Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 19 51 70 

2 0 6 11 17 

3 2 19 56 77 

4 0 18 63 81 

5 193 11 32 236 

6 0 13 45 58 

7 0 18 61 79 

8 0 2 15 17 

9 0 14 40 54 

10 0 16 43 59 

Total 195 136 417 748 

 
Table 2. BOTM output for the 10 inserted neuron footprints when templates from all the neurons found in the 

original recording are used 

 

Another important point to discuss is the number of CLE, which goes from 31 in the case where only the 

templates from the inserted neurons are used, to 417 in the case where the templates from all neurons 

are used. This increase in the number of CLE is due to the high number of templates, since we have 620 

templates when we considering all the neurons, the algorithm is more likely to confuse spikes, assigning 

them to the wrong putative neuron. Finally the number of FN seems unchanged in the plots, being 123 

for the case of the templates from inserted neurons, and 136 for the case of the temples from all neurons. 

However if we look at where the errors are coming from, we see the nature of FN is completely different 

in both cases. For the first case, just one neuron accounts for the most of the FN, while for the second 

case, most of the neurons present between 11 and 19 FN. To understand what is happening we need to 

explain what the BOTM does in detail when a spike is detected. Every time a spike is detected, the 

algorithm sets a “detection window” where any other spike detected is neglected, this to be sure the spike 

initially detected is not counted many times among the rest of the electrodes. The problem arises when 

two or more spikes are happening at the same time, but due to the detection window just one is detected. 

This is exactly what is happening in the second case with the 620 templates, since the BOTM is detecting 

spikes everywhere in the CMOS HDMEA device every time a spike is detected, the rest of the spikes 

happening within the detection window are being neglected increasing the number of FN. In the first case 

where we only have the templates from the inserted neurons, we are not able to detect every spike and 

therefore there are not many detection windows neglecting the rest of the spikes. 
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BOTM with noise whitening 
After discussing the effect of using the templates from all the neurons, previously detect and classified in 

a spike sorting approach, in the BOTM algorithm, we finally want to study the effect of the noise whitening 

transforms. We used the previous case of the BOTM algorithm without whitening, and with the templates 

from all the neurons, as our base case. Then we looked at the performance of the algorithm when applying 

a spatial noise whitening, a temporal noise whitening, and a spatial-and-temporal noise whitening. Figure 

25 shows the plot comparing the different whitening strategies. Table 3, Table 4, and Table 5 show a more 

detailed picture of the BOTM’s errors. 

 

 
 

Figure 25. BOTM with different noise whitening approaches 

 

By comparing the bar plots in Figure 25 we can see how all the whitenings are actually reducing the 

number of errors compared to the base case. What is also interesting is that the number of FN increases 

when applying any whitening, again compared to the base case. This, is as explained before, due to the 

detection window the BOTM sets when detecting a spike. Finally we see how the spatial-and-temporal 

noise whitening is worse than the spatial noise whitening. As stated previously this is because both spatial 

and temporal whitening transformations are not completely independent from each other, therefore 

when applying one after the other the data is not perfectly spatio-temporally whitened. 
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Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 2 34 36 

2 0 2 1 3 

3 0 43 36 79 

4 0 19 36 55 

5 3 20 30 53 

6 1 19 20 40 

7 0 32 38 70 

8 4 51 37 92 

9 0 31 15 46 

10 0 25 17 42 

Total 8 244 264 516 

 
Table 3. BOTM performance when applying spatial noise whitening 

 

Looking at the details of the spatial noise whitening we see how it makes the matching more noise robust, 

taking the number of FP from 195 to just 8. Here we also discuss about three neurons that present a large 

total error change after spatial noise whitening. Neuron 2 got only three errors after spatial whitening, 

when we looked at the footprint of this neuron we saw it has large amplitude spikes waveform in a small 

number of electrodes. After spatial noise whitening the footprint still exhibited the large amplitude 

waveforms but in a reduced number of electrodes, making the neuron more focalized and harder to 

confuse with others, reducing CLE. Another interesting neuron is number 5. This neuron had the problem 

that it is not noise robust: 193 FP in the not whitened case, however thanks to the spatial noise whitening 

the number of FP is reduced just to 3. Finally neuron 8, this neuron presented the highest spike amplitude 

and ideally should be detected without problem, but again the number of FN is increasing due to the 

“detection widow” problem. 

 

Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 42 15 57 

2 0 25 4 29 

3 0 52 19 71 

4 0 78 19 97 

5 39 68 26 133 

6 0 48 13 61 

7 1 58 14 73 

8 0 18 3 21 

9 0 50 10 60 

10 0 42 14 56 

Total 40 481 137 658 

 
Table 4. BOTM performance when applying temporal noise whitening 
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For the case of temporal noise whitening, we again see an improvement over FP errors and the overall 

error value compared to the not whitened case. 

In the last case of spatial-and-temporal whitening again neuron 5 sees a large improvement as for the 

case of only spatial whitening, and neuron 8 becomes again the neuron with the least number of errors. 

Furthermore, neuron 2 presents again a large number of errors due to the increase in FP. 

 

 

Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 44 12 56 

2 33 57 28 118 

3 0 41 31 72 

4 0 47 22 69 

5 2 20 23 45 

6 0 20 14 34 

7 0 0 57 57 

8 0 3 2 5 

9 0 33 14 47 

10 0 28 18 46 

Total 35 293 221 549 

 
Table 5. BOTM performance when applying spatial-and-temporal noise whitening 

 

BOTM with signal whitening 
We finally applied our last variation over whitening approaches: signal whitening. Here the procedure is 

the same as for noise whitening, however the structure used to apply the whitening transformations was 

the signal covariance matrix 𝑅. 
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Figure 26. BOTM with different signal whitening approaches 

 

Here we can appreciate the spatial signal whitening is actually not providing any improvement over the 

base case, we will discuss this later. But as expected the temporal and spatial-and-temporal signal 

whitening are better over the base case. As in the noise whitening cases the number of FN is increasing 

due to the BOTM “detection window” issue. 

 

Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 21 22 43 

2 242 55 31 328 

3 0 38 34 72 

4 5 67 46 118 

5 2 20 21 43 

6 1 13 19 33 

7 0 40 29 69 

8 0 2 0 2 

9 0 7 35 42 

10 0 22 19 41 

Total 250 285 256 791 

 
Table 6. BOTM performance when applying spatial signal whitening 

 

In the particular case of spatial signal whitening it is important to point out that approximately one third 

of the total errors are coming from the FP of neuron 2. This neuron, when whitened, seems to resemble 

one of the neurons in the background noise, leading to the increase number of FP.   
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Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 55 13 68 

2 0 23 2 25 

3 0 60 17 77 

4 0 73 18 91 

5 0 72 18 90 

6 0 54 9 63 

7 0 54 22 76 

8 0 23 7 30 

9 0 51 7 58 

10 0 44 12 56 

Total 0 509 125 634 

 
Table 7. BOTM performance when applying temporal signal whitening 

 

In this case is the temporal whitening is providing the most noise robust detection, leading to zero FP. 

Another interesting outcome to mention is that this whitening reduces the number of classification errors 

in one third of the base case. 

Finally the spatial-and-temporal whitening present a low number of FP, but also of FN, resulting in a 

reduction in the total number of errors. 

 

Neuron False Positives (FP) False Negative (FN) Classification Errors (CLE) Total Errors 

1 0 41 19 60 

2 0 1 2 3 

3 0 48 28 76 

4 0 46 25 71 

5 9 24 14 47 

6 2 31 7 40 

7 0 0 63 63 

8 0 4 2 6 

9 0 35 14 49 

10 0 32 9 41 

Total 11 262 183 456 

 
Table 8. BOTM performance when applying spatial-and-temporal signal whitening 
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Conclusions, outcomes and future work 
 

Before going into the conclusions let us restate the core ideas we were address during the development 

of this work. We wanted to implement the BOTM, a template matching based algorithm, for spike 

detection and classification, on a recording with a large number of electrodes. The BOTM algorithm 

requires the inverse of the noise covariance matrix among electrodes to apply a spatio-temporal data 

whitening. However, this matrix becomes too large for large number of electrodes, making it impossible 

to compute and handle. To solve this we presented an approach of separating this matrix into two smaller 

and simpler matrices: one providing a spatial noise whitening and another providing a temporal noise 

whitening. With this separation we were able to evaluate the BOTM on a large number of electrodes and 

moreover provide insights into the effect of each whitening. We were also interested on evaluating the 

performance of the BOTM by considering other correlations among electrodes: signal and spike 

correlations. Even though we were not able to look at the spike correlations, we evaluated the 

performance of the BOTM when signal correlations are taken into account.  

The first observation is that the covariance matrix (both noise and signal) can be split into two simpler 

matrices: the spatial covariance matrix that leads to spatial whitening, and the temporal covariance matrix 

leading to temporal whitening. This is something handful for the purpose of the data whitening, however, 

as we saw in the results, these matrices (and their whitenings) are not completely independent. Therefore 

applying one after the other can influence the whitening as a whole. 

One of the most important outcomes we got during this work was that the toy data to tests the BOTM 

performance has to have real noise in it, and that we have to be really careful about the footprints we are 

inserting as ground truth. This is important not only for the BOTM but for any template matching-based 

algorithm. We have to make sure the frequency components of the footprints lie in the range of the 

frequency components of the noise we are using, and that there is no offset when adding the footprints 

into the data, so no high-frequency steps will be added. 

Thanks to the insights we got about the temporal whitening and its effect on flattening the PSD of the 

data, we proposed an idea to be further developed in the future. Considering the temporal whitening is 

reverting the effect of the bandpass filter, introducing large values in the high-frequency components and 

leading to instabilities. One approach to avoid these instabilities is to apply the temporal whitening before 

bandpass filtering the data. This could be done by taking the raw data, calculating a temporal whitening 

filter for each channel, applying the temporal whitening and flattening the data’s spectrum, and then 

applying the bandpass filter data for spike sorting. 

Another important result, as shown in Figure 24, is the fact that the more templates we use for the BOTM 

the least the number of errors. This is clear since the algorithm has more templates to match, reducing 

the overall number of errors. The only tradeoff with having large number of templates is that the number 

of FN increases due to the “detection window” mentioned before that blinds the algorithm whenever a 

spike is detected.  

Comparing Figure 25 and Figure 26 it is not clear whether noise or signal whitening leads the better results. 

Spatial noise whitening seems to be better, than spatial signal whitening, however for temporal and 

spatial-and-temporal whitening the results were similar. More performance tests of the BOTM over 

different data sets would be useful to determine which is better. Another problem is determining the 
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exact effect each whitening is exerting, since 289 electrodes and 620 footprints are not easy to visualize 

and interpret. It would be interesting to also look at the spike covariance matrix, i.e. the matrix formed by 

the correlation of chucks where only spikes happened (opposed to the noise covariance matrix). With this 

matrix we could apply a PCA, reducing the vector space where the footprints are described, and reducing 

the dimension where the BOTM operates. 

Finally, what is also interesting about the different whitening approaches is that the reduction in the 

number of errors to the base case (not whitened) is very low, from 748 to 456 in the best case, compared 

to the reduction is already providing the use of all the 620 templates in the recording, from 3562 to 748 

errors in total. Therefore we can infer that thanks to the high resolution the CMOS HDMEA is providing, 

there could be no need to use the noise covariance matrix at all since the reduction in the number of 

errors is not critical.   
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