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Abstract. The reduced basis method on parametrized domains is applied to approximate
blood flow through an arterial bypass. The aim is to provide (a) a sensitivity analysis for
relevant geometrical quantities of interest in bypass configurations and (b) rapid and reli-
able prediction of integral functional outputs ( such as fluid mechanics indexes). The goal
of this investigation is (i) to achieve design indications for arterial surgery in the perspec-
tive of future development for prosthetic bypasses, (ii) to develop numerical methods for
optimization and design in biomechanics, and (iii) to provide an input-output relationship
led by models with lower complexity and computational costs than the complete solution
of fluid dynamics equations by a classical finite element method.

1 INTRODUCTION

When a coronary artery is affected by a stenosis, the heart muscle cannot be prop-
erly oxygenated through blood. Aorto-coronaric anastomosis restores the oxygen amount
through a bypass surgery downstream an occlusion (see Figs. 1 and 2). At present, differ-
ent kind and shape of aorto-coronaric bypasses are available and, consequently, different
surgery procedures can be devised to set up a bypass. Numerical simulation of physiologi-
cal flows allows better understanding of phenomena involved in coronary diseases (see [1])
and a potential reduction of surgical and post-surgical failures. It may also suggest new
means in bypass surgical procedures as well as with less invasive methods to devise im-
proved bypass configuration ([2], [3], [4]). Efficient schemes for reduced-basis techniques
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[5] applied to parametrized partial differential equations (P 2DEs) have been developed
to provide useful and real time indications (outputs) in a repetitive design environment
as optimization requires and a sensitivity analysis on important geometrical quantities
such as bypass diameter t, arterial diameter D, stenosis length S, graft angle θ, bypass
bridge height H, shown in Fig.(1). In Fig. (2) we show an example of numerical simu-
lation (velocity) of blood flow inside a bypass configuration. See [6] for a more general
framework.
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Figure 1: Bypass geometrical configuration, parametrized by H, L, S, t, D, θ.

0

10

20

30

40

50

60

70

80

90

100

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 2: Idealized 2-D bypass configuration: iso-velocity [ms−1 · 10−2].

1.1 Reduced basis methods for pre-process and real time optimization

Especially in the field of optimization and design, where the evaluation of many different
possible configurations is required – corresponding to different choices of the design pa-
rameters – even for modest-complexity problems, the computational cost is unacceptably
high. To more efficiently utilize the existing computational resources, reliable methods
that reduce the complexity of the problem while at the same time preserve all relevant
information, are becoming very important.
Central to every design, optimization, or control problem is the evaluation of an “input-
output” relationship. The set of input parameters µ, which we will collectively denote as
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“inputs,” identify a particular configuration of the system or of one of its components.
These inputs may represent design or decision variables, such as geometry or physical
properties – for example, control variables in optimization studies. The output parame-
ters s(µ), which we may collectively denote as “outputs”, are performance indexes for
the particular input µ – for example stresses, velocity, flow rates. These outputs are
typically expressed as functionals of field variables associated with a set of parametrized
partial differential equations which describe the physical behavior of the system or its
components. We are interested in calculating the outputs s(µ) = F(µ), for many dif-
ferent inputs/configurations µ chosen from a parameter space D ⊂ R

P , where P is the
number of input parameters. Here, F encompasses the mathematical description of the
physical problem. For the evaluation of F the underlying equations have to be solved.
Usually, an analytical solution is not easy to obtain, rather a discretization procedure like
the finite-element method, is used; then F is replaced by Fh, a discrete form amenable to
numerical solution. The basic premise, is that as the discretization “length” h → 0, then
Fh → F , and consequently sh(µ) → s(µ), ∀µ ∈ D but as h → 0 the cost of evaluating
Fh becomes prohibitive. Especially in the context of design, control, or parameter iden-
tification where “real-time” response or many “input-output” evaluations are required, a
balance between computational cost and accuracy/certainty is essential.
Identifying the problem in the high dimensionality of the discrete problems, model-order
reduction techniques have been developed. The critical observation is that instead of using
projection spaces with general approximation properties — like in finite element method—
we choose problem-specific approximation spaces and use these for the discretization of
the original problem. Using such spaces, we can construct a model that represents with
sufficient accuracy the physical problem of interest using a significantly smaller number
of degrees of freedom. Depending on the choice of the global approximation spaces many
possible reductions are available.

The computational methods developed in this work permit rapid and reliable evaluation
of this input-output relationship induced by partial differential equations in the limit
of many queries — that is, in the design, optimization, control, and characterization
contexts. In designing new methods, certain qualities must be considered:

• Efficiency is crucial for the problems in consideration. To achieve efficiency, we shall
use the reduced-basis method; a weighted-residual Galerkin-type method, where
the solution is projected onto low-dimensional spaces with certain problem-specific
approximation properties.

• Relevance. Usually in a design or optimization procedure we are not interested in the
field solution, but rather in certain design measures. The methods developed give
accurate approximations to these outputs of interest, defined as functional outputs
of the field solution.

• Reliability. To quantify the error introduced by the reduced-basis method, an error
analysis must be invoked on outputs of interest.
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In our field of interest, reduced basis approximation provides not only high computational
savings, a rapid (real-time) and accurate methodological pre-process to detect the essential
feature of the optimization process itself, but also the study of a geometrical sensitivity
analysis of a complete bypass configuration. By selecting a limited number of relevant
geometrical parameters (bypass diameter t, artery diameter D, stenosis length S, graft
angle θ, bypass bridge height H, as reported in Figure 1) and a moderate number (N) of
sample parameters

µk = {tk, Dk, Sk, θk, Hk}, k = 1, . . . , N,

we solve the parametrized equations that govern the physical problem in a reference do-
main Ω, properly mapped by coordinate transformations (see for a preliminary example
[7]). This aspect is considered in Section 2. Then we build properly reduced basis func-
tional approximation spaces for velocity and pressure to guarantee approximation and
algebraic stability. For a new sample µk we look for a new solution which is given by a
weighted combination of previously computed and stored solutions. Weights are given by
the solution of a state problem on the subspace of the reduced basis by a Galerkin pro-
jection. In this work reduced basis methods have been applied to Navier Stokes problem,
used to model blood flow at moderate Reynolds (∼ 1000). The most original contribution
are concerned with the pressure treatment in Navier-Stokes problem, the introduction of
geometrical parametrization of domain by non-affine maps, the study of different options
to guarantee approximation stability of reduced basis approximation and, finally, basis or-
thonormalization to achieve algebraic stability for reduced basis (see [8] for more details).
This methodological development highlights the great potential of reduced basis methods
in optimal flow control and shape optimization, not only for pre-process optimization.
Reduced basis can be seen as methods to solve in real-time complex problem with great
computational savings without loosing accuracy and fast convergence.

2 REDUCED BASIS FOR STEADY NAVIER-STOKES EQUATIONS

The steady Navier-Stokes equations in a domain Ω ⊂ R
d(d = 1, 2, 3) with boundary

conditions Γ = Γin ∪ Γout ∪ Γw are considered:










−ν∆u + (u · ∇)u + ∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on Γw; u = gin on Γin,
(

ν ∂u

∂n̂
− pn̂

)

= 0 on Γout,
(1)

where u is the velocity, p the pressure, f a force field, ν a kinematic viscosity and n the
normal unit vector to the domain boundary. For the mathematical theory of the Navier-
Stokes equations see e.g. [9] and for their numerical solution see [10], [11], [12].
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The weak formulation of problem (1) reads: find u ∈ Y = (H1
ΓD

(Ω))d, p ∈ Q = L2(Ω):














ν

∫

Ω

∇u · ∇wdΩ −

∫

Ω

p∇ · wdΩ +

∫

Ω

(u · ∇)u · wdΩ =

∫

Ω

f · wdΩ+〈F 0,w〉 ∀w ∈ Y,

∫

Ω

q∇ · udΩ = 〈G0, q〉 ∀q ∈ Q,

(2)
F 0, G0 are terms due to non-homogeneous Dirichlet boundary condition on Γin, ΓD =
Γin ∪ Γw and H1

ΓD
(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. We discretize problem (2) by a

stable approximation using finite element method (e.g. the Taylor-Hood P
2−P

1 elements
for velocity and pressure, respectively) on a fine mesh triangulation; see, for example, [13].
The numerical methods used to solve the system of non-linear equations (2) is the iterative
Newton method and involves the Frechet linerization of the advection term (uh · ∇)uh

considering its derivative in the Frechet sense. The linearized version of the discretized
problem (2) at each iteration reads: given u

(k)
h , find u

(k+1)
h ∈ Yh, p

(k+1)
h ∈ Qh, such that



















































ν

∫

Ω

∇u
(k+1)
h · ∇whdΩ −

∫

Ω

p
(k+1)
h ∇ · whdΩ +

∫

Ω

[(u
(k)
h · ∇)u

(k+1)
h +

+(u
(k+1)
h · ∇)u

(k)
h ] · wh dΩ −

∫

Ω

(u
(k)
h · ∇)u

(k)
h · wh dΩ =

=

∫

Ω

f · whdΩ + 〈F 0,wh〉 ∀wh ∈ Yh,

∫

Ω

qh ∇ · u
(k+1)
h dΩ = 〈G0, qh〉 ∀qh ∈ Qh,

(3)

2.1 Geometrical parametric dependence: the reference domain formulation

We suppose that the parametrized domain we are now considering is made of R com-

ponents: Ω̂ = (
⋃R

r=1
¯̂
Ωr), so that we rewrite (3) as follows, introducing the “hat” notation

to indicate equations in parametrized domains and dropping the subscript h for simplicity
of notation:







Â(û(k+1), ŵ) + B̂(p̂(k+1), ŵ) + Ĉ(û(k+1), û(k), ŵ) + Ĉ(û(k), û(k+1), ŵ) =

= 〈F̂ , ŵ〉 + Ĉ(û(k), û(k), ŵ) ∀ŵ ∈ Ŷ ,

−B̂(q̂, û(k+1)) = 〈Ĝ0, q̂〉 ∀q̂ ∈ Q̂,

(4)

where for 1 ≤ i, j ≤ d and ν̂i,j = νδi,j (summation convention is understood):

Â(û, ŵ) =
R
∑

r=1

∫

Ω̂r

∂û

∂x̂i

ν̂ij

∂ŵ

∂x̂j

dΩ̂, (5)

B̂(p̂, ŵ) = −
R
∑

r=1

∫

Ω̂r

p̂∇ · ŵdΩ̂, (6)
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Ĉ(û, v̂, ŵ) =
R
∑

r=1

∫

Ω̂r

(û · ∇)v̂ · ŵdΩ̂, (7)

〈F̂ , ŵ〉 = 〈F̂s, ŵ〉 + 〈F̂ 0, ŵ〉, (8)

and

〈F̂s, ŵ〉 =
R
∑

r=1

∫

Ω̂r

f̂ ŵdΩ̂, 〈F̂ 0, ŵ〉 = −〈Âĝin, ŵ〉, 〈Ĝ0, q̂〉 = 〈B̂q̂, ĝin〉. (9)

The problem now may be traced back to a reference domain by non-affine mappings
on the different subdomains Ω̂r into Ωr. For any x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr

is given by:
x = T r(µ; x̂) + gr, 1 ≤ r ≤ R, (10)

thus
∂

∂x̂i

=
∂xj

∂x̂i

∂

∂xj

= T r
ji(µ, x)

∂

∂xj

. (11)

In the reference domain Ω we have:

A(µ;u,w) =
R
∑

r=1

∫

Ωr

∂u

∂xi

νr
ij(µ, x)

∂w

∂xj

dΩ ∀w ∈ Y, (12)

B(µ; p,w) = −
R
∑

r=1

∫

Ωr

pχr
ij(µ, x)

∂wj

∂xi

dΩ ∀w ∈ Y, (13)

C(µ;u,v,w) = −
R
∑

r=1

∫

Ωr

uiπ
r
ij(µ, x)

∂vj

∂xi

wdΩ ∀w ∈ Y, (14)

〈F,w〉 = 〈Fs,w〉 + 〈F 0,w〉, (15)

where

〈Fs,w〉 =
R
∑

r=1

∫

Ωr

(

f̂ rdet(T r(µ, x))−1
)

wdΩ; (16)

〈F 0,w〉 = −〈Agin,w〉; 〈G0, q〉 = 〈Bq,gin〉.

The transformation tensors for viscous bilinear forms are defined as follows:

νr
ij(µ, x) = T r

ii′(µ, x)ν̂i′j′T
r
jj′(µ, x)det(T r(µ, x))−1, 1 ≤ i, j ≤ d, r = 1, ..., R. (17)

The tensors for pressure, divergence and advection forms are defined, as:

χr
ij(µ, x) = πr

ij(µ, x) = T r
ij(µ, x)det(T r(µ, x))−1. (18)
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2.2 The empirical interpolation method

We are considering subdomains characterized by a non-affine parametric dependence.
We apply, as already proposed in [14] and [15], an empirical interpolation procedure to ex-
pand non-affine mapping terms and decouple the parameters dependent contribution from
the one depending only on spacial coordinates (computed once on a reference domain).
Let us recall the algorithm based on the empirical interpolation method. We consider a
generic function g(x, µ) representing the non-affine mapping term (e.g describing a shape).
The goal is to develop:

gM(x, µ) = ΣM
m=1βm(µ)qm(x), (19)

as a sum of products decomposed in two parts: βm(µ) are parameters dependent weights
(computed many times for each value of µ); qm(x) are shape functions without a para-
metric dependence (computed only once).
The main elements are the test “shape” functions and the interpolation points, respec-
tively:

W g
M = {γm = g(., µg

m), 1 ≤ m ≤ M}, µg
m properly chosen,

TM = {t1, . . . tM}, 1 ≤ M ≤ Mmax, sets of interpolation points.

The interpolation algorithm is:

for M = 1, set t1 = argsupx∈Ω|γ1(x)|, q1 = γ1(x)/γ1(t1), (off − line)

then, for M = 2, . . . ,Mmax : ΣM−1
j=1 σM−1

j qj(ti) = γM(ti), 1 ≤ i ≤ M − 1, (off − line)

rM(x) = γM(x) − ΣM−1
j=1 σM−1

j qj(x), tM = argsupx∈Ω|rM(x)|, (off − line)

qM(x) = rM(x)/rM(tM); gM(x, µ) = ΣM
m=1βm(µ)qm(x), (off − line)

ΣM
j=1qj(ti)βj(µ) = g(ti, µ), 1 ≤ i ≤ M, (on − line).

To stop the procedure we impose ‖g(., µ) − gM(., µ)‖L∞(Ω) ≤ ǫmax where ǫmax is an inter-
polation error. By applying the algorithm recalled above we may write:

νr
ij(µ, x) = Σ

Ma
ijr

m=1β
r
ijm(µ)γr

ijm(x), (20)

χr
ij(µ, x) = Σ

Mb
ijr

m=1α
r
ijm(µ)ωr

ijm(x), (21)

where m refers to the number of interpolation functions we use for each form (related
with max interpolation error), i and j are indexes related to linear/bilinear form, r is the
subdomain index, β and α are weighting quantities depending on the parameters µ, γ
and ω are the interpolation functions used as basis. Furthermore, we define

Ψt(i,j,r,m)(µ) = βr
ijm(µ), At(i,j,r,m)(γ(x),u,w) =

∫

Ωr

γr
ijm(x)

∂u

∂xi

∂w

∂xj

dΩ, (22)

7



Gianluigi Rozza

Υp(i,j,r,m)(µ) = αr
ijm(µ), Bp(i,j,r,m)(ω(x), p,w) = −

∫

Ωr

ωr
ijm(x)p

∂wi

∂xj

dΩ, (23)

Cp(i,j,r,m)(ω(x),u,v,w) =

∫

Ωr

ωr
ijm(x)ui

∂vi

∂xj

wdΩ, (24)

for 1 ≤ r ≤ R, 1 ≤ i, j ≤ d, 1 ≤ m ≤ max(Ma
ijr,M

b
ijr) (t and p are condensed indexes

of i, j, r,m quantities used to simplify notation: each value of t or p represents a different
combination of the previous four indexes i, j, r,m). We may now apply an effectively
affine decomposition to the following operators:

A(µ,u,w) =

Qa

∑

t=1

Ψt(µ)At(γ(x),u,w);

B(µ, p,w) =

Qb

∑

p=1

Υp(µ)Bp(ω(x), p,w) ;

C(µ,u,v,w) =

Qc

∑

p=1

Υp(µ)Cp(ω(x),u,v,w) ;

in general, being Ω ⊂ R
d, Qa = Σd

j=1Σ
d
i=1Σ

R
r=1M

a
ijr; Qb = Σd

j=1Σ
d
i=1Σ

R
r=1M

b
ijr and Qc =

Σd
j=1Σ

d
i=1Σ

R
r=1M

b
ijr;

The non-linear problem (2) has to be discretized, then linearized to be solved by an
iterative method. This problem has an inf-sup condition (LBB) [13] to be guaranteed:

β(µ) = inf
q∈Q

sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q

≥ β0 > 0,∀ µ ∈ D;

We introduce the supremizer operator T µ: Q → Y so that

(T µq,w)Y = B(µ; q,w), ∀ w ∈ Y (25)

and

T µq = arg sup
w∈Y

B(µ; q,w)

‖w‖Y

,

then

β2(µ) = inf
q∈Q

(T µq, T µq)Y

‖q‖2
Q

.
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2.3 Reduced Basis Formulation

In the reduced basis approximation we choose properly (i.e. by optimized algorithm
as proposed for example in [16] if we want to improve computing performance) a set of
sample parameters Sµ

N = {µ1, . . . ,µN}, where µ
n ∈ Dµ, n = 1, . . . , N .

Correspondingly, we take a set of couples (uh(µ
n), ph(µ

n)) which are approximate so-
lutions of the Navier-Stokes problem (3) using finite element method. Then we build
approximation spaces: the reduced basis pressure space is QN = span {ξn, n = 1, . . . , N},
where ξn = ph(µ

n), while for the reduced basis velocity space we enrich the basis solving
problem (25) with finite element method and computing supremizer solutions. We build
a velocity space which is µ dependent, and for this reason assembled on-line:
Y µ

N = span {ζn, n = 1, . . . , N ; T µξn, n = 1, . . . , N}, where ζn = uh(µ
n). More details will

follow.
The reduced basis approximation problem reads: find (uN(µ), pN(µ)) ∈ YN × QN s.t.:

{

A(µ;uN(µ),w) + B(µ; pN(µ),w) + C(µ;uN(µ),uN(µ),w) = 〈F,w〉 ∀ w ∈ YN ,
B(µ; q,uN(µ) = 〈G0, q〉 ∀ q ∈ QN .

(26)
This problem does admit an inf-sup property. We introduce

βN(µ) = inf
q∈QN

sup
w∈YN

B(µ, q,w)

‖w‖Y ‖q‖Q

,

and supremizer solutions allow to guarantee the following stability condition:

βN(µ) ≥ βh(µ) ≥ β0 > 0,∀µ ∈ Dµ,

where βh is the inf-sup constant associated with the Galerkin method. For further elements
dealing supremizer operator and the reduced basis framework see [16]. We rewrite for
computational convenience Y µ

N using the effectively affine dependence of B(µ; q,w) on
the parameter and the linearity of T µ (allowing to assemble velocity reduced basis space
on-line):

T µξ =

Qb

∑

p=1

Υp(µ)T pξ (27)

for any ξ and µ, where:

(T pξ,w)Y = Bp(ω, q,w) ∀ w ∈ Y,

which allows us to write:

Y µ
N = span {

Qb

∑

k=1

Υk(µ)σkn, n = 1, . . . , 2N},

9
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where Q
b
= Qb + 1, ΥQ

b

= 1.
For n = 1, . . . , N :

σkn = 0, for k = 1, . . . , Qb;

σ
Q

b
n

= ζn = uh(µ
n).

For n = N + 1, . . . , 2N :
σ

Q
b
n

= 0;

(σkn,w)Y = Bk(ω, ξn−N ,w),∀w ∈ Y, for k = 1, . . . , Qb. (28)

For a new “µ” we want a solution given by a combination of previously computed stored
solutions as basis functions, i.e.:

uN(µ) =
2N
∑

j=1

uNj(µ)
(

Q
b

∑

k=1

Υk(µ)σkj

)

,

pN(µ) =
N
∑

l=1

pNl(µ)ξl,

whose unknowns uNj and pNl satisfy the following non-linear system:
{

∑2N

j=1 Aµ
ijuNj(µ) +

∑N

l=1 Bµ
ilpNl(µ) +

∑2N

h=1

∑2N

j=1 uNh(µ)Cµ
ijhuNj(µ) = Fi, 1 ≤ i ≤ 2N,

∑2N

j=1 Bµ
jluNj(µ) = Gl, 1 ≤ l ≤ N.

(29)
To solve it we apply the Newton method which reads, yielding the following iteration: for
k ≥ 0 given u

(k)
Nj, find u

(k+1)
Nj and p

(k+1)
Nl such that











∑2N

j=1 Aµ
iju

(k+1)
Nj (µ) +

∑N

l=1 Bµ
ilp

(k+1)
Nl (µ) +

∑2N

h=1

∑2N

j=1 u
(k)
Nh(µ)Cµ

ijhu
(k+1)
Nj (µ)+

+
∑2N

h=1

∑2N

j=1 u
(k+1)
Nh (µ)Cµ

ijhu
(k)
Nj(µ) = F µ

i +
∑2N

h=1

∑2N

j=1 u
(k)
Nj(µ)Cµ

ijhu
(k)
Nh(µ)

∑2N

j=1 Bµ
jlu

(k+1)
Nj (µ) = Gµ

l , 1 ≤ l ≤ N, 1 ≤ i ≤ 2N.

(30)

The sub-matrices A, B and C are given by:

Aµ
ij =

Qa

∑

z=1

Q
b

∑

k′=1

Q
b

∑

k′′=1

Ψz(µ)Υk′

(µ)Υk′′

(µ)Az(γ, σk′i, σk′′j), 1 ≤ i, j ≤ 2N ;

Bµ
il =

Qb

∑

z=1

Q
b

∑

k′=1

Υz(µ)Υk′

(µ)Bz(ω, σk′i, ξl), 1 ≤ i ≤ 2N, 1 ≤ l ≤ N ;

Cµ
ijh =

Qc

∑

z=1

Q
b

∑

k′=1

Q
b

∑

k′′=1

Q
b

∑

k′′′=1

Υk(µ)Υk′

(µ)Υk′′

(µ)Υk′′′

(µ)Cz(ω, σk′i, σk′j, σk′h), 1 ≤ i, j, h ≤ 2N ;

10
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Fi =

Q
b

∑

k′=1

Υk′

(µ)〈F, σk′i〉, 1 ≤ i ≤ 2N ;

Gl = 〈G0, ξl〉, 1 ≤ l ≤ N.

In compact form the linearized problem (30) can therefore be written as:

(

A + C(k+1) B
BT 0

)

·

(

u
(k+1)
N

p(k+1)
N

)

=

(

F (k)

G

)

. (31)

By accounting also for the computation of supremizer components in the velocity space
the following number of operations is needed in order to build reduced basis matrices:

O(Qa(Q
b
)24N2) for sub-matrix A, O((Q

b
)22N2) for B, O(Qc(Q

b
)38N3) for C, O(Q

b
N)

for F and O(N3) for the “inversion” of the full reduced basis matrix (31) at each Newton
iteration. The quantities Qa, Qb and Qc are depending on the number of “shape functions”
(γ(x) and ω(x)) related with interpolation error (εmax) and the number of subdomains
with non-affine mappings (R). Other options to build reduced basis spaces, where stability
can be theoretically proven, are available (see for example [8]) to get a different space YN

for velocity. For example: i) a space which is µ-independent, using only T qξ components
to enrich velocity space. This option is useful if we want to apply an orthonormalization
procedure to restore algebraic stability; or ii) a space µ-independent, using the offline
value of the parameter µi in Υq(µi).

3 THE BYPASS PROBLEM

We consider the parametrized bypass configuration as represented in Figure 3 with the
vector of parameters µ = {t,D, L, S,H, θ, υ} ∈ Dµ ⊂ R

P with Dµ given by:
[tmin, tmax] × [Dmin, Dmax] × [Lmin, Lmax] × [Smin, Smax] × [Hmin, Hmax] × [θmin, θmax] ×
[υmin, υmax]. This test problem deals with non-affine parameters dependence. The aim
is to study the same non-linear problem by varying different geometrical parameters and
then to test reduced basis convergence, extract output information and a sensitivity analy-
sis on parameters of interest. Referring to notation in Section 2 we consider R = 4. The
coordinate transformation in Ω1 with non-affine parametric dependence is given by:

{

x1 = 1
H

x̂1

x2 = 1
t
(x̂2 − (υH2x1(x1 − 1) + Hx1 tan(θ))).

(32)

The role of parameters t and H is to stretch subdomain Ω1 (as L, S,D stretch the re-
maining subdomains), the parameter υ introduces a curvature in the walls of the incoming
branch of the bypass and θ is responsible for a rigid rotation by letting the graft angle
vary. In this way we may separate a subdomain (i.e Ω1) where we have a complex non-
affine parametric dependence from other subdomains where the parametric dependence

11
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is simpler (i.e. Ω2, Ω3, Ω4), thus improving computational efficiency of the method. The
tensors for viscous bilinear terms are given by:

ν1 = ν
[ t

H
−(tan θ + 2υHx1 − υH)

−(tan θ + 2υHx1 − υH) (1+(tan θ+2υHx1−υH)2)
t

H

]

; (33)

ν2 = ν
[ S

D
0

0 D
S

]

; ν3 = ν
[ t

D
0

0 D
t

]

; ν4 = ν
[ L

D
0

0 D
L

]

. (34)

The tensors for pressure, divergence and transport terms are given by:

χ1 = π1
T =

[ t −H(tan θ + 2υHx1 − υH)
0 H

]

; χ2 = π2
G =

[ S 0
0 D

]

; (35)

χ3 = π3
G =

[ t 0
0 D

]

; χ4 = π4
G

[ L 0
0 D

]

. (36)

We apply empirical interpolation expansion to the components of tensors ν1, χ1 and π1

and we build the reduced basis approximation spaces for velocity and pressure as seen in
the previous section.

inflow

outflow
t

H

S L

D stenosed
  occlusion

Γθ
w

Γ

Γ

out

in

down−field

artery

bypass

incoming
branch

Γ
w

Ω̂1

Ω̂2 Ω̂3
Ω̂4

Ω1

Ω2 Ω3 Ω4

Figure 3: Geometrical scheme for the bypass test problem (physical domain and reference one).

We have carried out some tests based on the same geometry considering five different
varying parameters (we have frozen L and H because less important). In particular we
are interested in varying graft angle θ and curvature υ (defining the upstream geome-
try) and the ratio t

D
. For preliminary results see [17]. In Figures 4 and 5 we report

numerical results (max and mean relative H1 errors on velocity and relative L2 errors for
pressure, comparing reduced basis surrogate solutions and the finite element ones) con-
sidering several different geometrical configurations varying N for two different maximum
interpolation error εmax = 10−5 and then εmax = 10−8, to avoid to have interpolation
error dominating our approximation with the constant “plateau” in error plots, by affect-
ing the efficiency of our reduced basis approximation. Concerning computational costs,
once all the off-line calculations are performed and data stored, the on-line costs are for
the maximum N considered and shown in the pictures less than 10% if compared with
the computational costs involved in finite element calculations (without considering the
further costs of re-meshing).
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Figure 4: H1 relative errors on velocity with different ǫmax interpolation error imposed on all g
j
M (x, µ)

(testing hundreds of different configurations with 5 different parameters varying).
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Figure 5: L2 relative errors on pressure with different ǫmax interpolation error imposed on all g
j
M (x, µ)

(testing hundreds of configurations with 5 different parameters varying).

3.1 Outputs sensitivities

We conclude this section with some considerations about the influence of curvature
of the upper stream geometry. The ratio t

D
is the most important parameter and it is

responsible of recirculation in the host artery (see [17]), but also curvature has a role (see
[8]). The ratio S

D
becomes important if we freeze t

D
and so the graft angle θ.

Figure 6 (left) shows the vorticity functional output, defined as s(µ) =
∫

Ωd
(∂u2

∂x1

− ∂u1

∂x2

)dΩ

varying the ratio t
D

. We can see that if the ratio t
D

is less than unity (as usually is)
vorticity is contained, otherwise if the bypass diameter t is larger with respect to the
arterial diameter D a strong recirculation arises in the host vessel and also vorticity
increases considerably. Usually the value of the quantity t

D
is in the range [0.85 − 0.96].

Figure 6 (right) shows the behavior of vorticity varying the curvature of the upstream
(inflow) geometry. Increasing the curvature υ the vorticity diminishes: this behavior can
be explained by the fact that curvature is guiding the flow more smoothly. An interesting
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analysis can be obtained introducing the Dean number, representing the ratio of the
square root of the product of the inertial and centrifugal forces to the viscous forces,
defined as follows

De = 4
[D

R

]
1

2

Re, (37)

where R is the radius of curvature and Re the Reynolds number. See also [18]. If we do
not have curvature the Dean number is equal to zero. In the case we have considered,
the range of the Dean number was [0, 2.31 · Re]. By increasing the Dean number (and
so curvature, the inverse of the curvature radius) makes the maximum of the 2D velocity
profile to increase, but at the same time this maximum is displaced away from the center
of curvature. Note that De = 0 corresponds to a case in which we have a centered velocity
profile of Hagen-Poiseuille type. In our case the displacement of the peak velocity profile
allows the blood to be driven into the host vessel more smoothly and to better adapt the
upstream inflow condition at the junction geometry. In our case the critical zone of the
bypass near the upper wall has lower mean velocity. Results in Figure 6 (right) refers to
a graft angle of 45 degree and a ratio t

D
= 1.
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Figure 6: Distributed vorticity [m2s−1] varying t
D

(left); distributed vorticity [m2s−1] and curvature
(right).

4 CONCLUSION

We have extended the use of reduced basis methodology to non-linear problems in do-
mains with non-affine parametric dependence. This extension has allowed us to approxi-
mate flows in parametrized domains, e.g. blood flows in arterial bypasses, depending on
geometrical parameters, by providing a sensitivity analysis for relevant geometrical and
physical quantities. The goal of this investigation has been to provide a pre-process opti-
mization tool to extract relevant information on bypass system and use them in applying
more complex optimization tool such as optimal flow control in already optimized bypass
configurations. When we are considering problems with an increasing complexity, such
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as the ones with non-linearities and non-affine parametrization, the use of reduced basis
method becomes even more competitive and computational savings are more relevant.
Research guidelines are devoted in developing a posteriori error bounds for reduced basis
in problems with geometrical parametric dependence. Other joint perspectives are the
study of transient flows and fluid-structure interaction problems. Another approach with
reduced basis for Navier-Stokes problem is provided in [19] where basis function are com-
puted using spectral methods in each subdomains considering a technique called “reduced
basis element method”.
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