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Abstract

During the past decades, the modelling of transport demand by activity based methods has gained consid-
erable attention from the scientific community. Such demand models offer a greater modelling flexibility
than traditional models, by modelling transport demand as a phenomenon which emerges from the de-
sire to perform activities at different locations, as opposed to more traditional models where an origin
destination demand matrix of trips is distributed over different routes and modes.

One of the drawbacks of the activity based paradigm is that data related to activities is more difficult to
collect than traffic counts. Modern technologies, such as smart card ticketing systems and smart phones,
allow us to collect more detailed accounts of the movements of individual passengers. This gives us the
possibility to analyse consecutive journeys and therefore the time a passenger spends in a certain location.
This information can be very useful from an activity based modelling perspective.

In this paper we take an exploratory approach to derive important activity time intervals from smart
card data. We apply a clustering algorithm on the intervals observed at individual stations to detect which
time intervals capture enough activities. We then construct a tree-based labelling algorithm that allows us
to label the activities and analyse activity chains of individual passengers. We count pairs of consecutive
activity labels, visualise the results as a network and calculate which triplets of consecutive activities occur
most often. Using this approach, we are able to identify activity patterns that differ from the typical time
windows associated with home-work activities.

1 Introduction
One of the most valuable pieces of information during the development and operational planning of passen-
ger transportation systems is passenger demand. Understanding how demand develops allows governments
and public transport operators to assess the profitability of infrastructure investments. It also serves as input
for decisions on service frequencies, the choice of vehicle types and rolling stock allocation.

Traditional demand models typically estimate an origin-destination matrix of trips and use a traffic as-
signment model to map routes to OD-pairs in the transportation network. One of the drawbacks of this
approach is that it is not very straightforward to make the matrix time dependent, introduce heterogeneous
groups of travellers or to include the change in demand resulting from interaction between passengers and
the network, such as for example due to crowding.

Activity Based Models [3] provide an improvement in this regard. The main idea of this paradigm
is that transport demand emerges from many individual desires to perform certain activities at different
locations at certain times. An example implementation of such a model is the open source agent-based
transport simulation package MATSim [4], that has been applied at different locations around the world.
The input required for such models consists of individual day plans that define a chain of activities. Since
this input data cannot be directly deducted from an OD-matrix, random plans generated from economic and
geographical data are often combined with travel diaries collected through surveys.



In this paper we develop a method to deduce and analyse activity patterns and activity sequence patterns
within the time dimension. We define an activity as a combination of a time interval and a location. These
activities are reconstructed from the set of trips stored in the data for a specific person. Using both clustering
and labelling methods, we identify important activity time intervals and analyse common activity chains.
We consider a time interval to be important if it represents at least 10% of the activities at a station in the
network. We are not only able to identify home-work patterns, but also identify shorter activities. Moreover,
the activity chains provide information on the order of different activities. We aim to extend our method
to include spatial dimensions in the future, by labelling stations into groups based on the temporal patterns
outputted. We believe that the results obtained using our method can provide public transport operators
insight into how their network is being used and give valuable input for activity based models.

2 Smart Card Data
The Dutch smart card system, called “OV-Chipkaart” is a nation wide smart card for payment of public
transport journeys across modes and operators. The system is operated by the common smart card authority
“Trans Link Systems”, which collects the transactions and provides the operators with the data of their
customers. This is raw transactional data where each record contains at least the following fields: a unique
media ID of the smart card, date and time of the transaction, an ID specifying the station or stop where the
transaction took place and the type of the transaction (i.e. check in or check out). One of the important
features of the Dutch implementation is that passengers both need to check in when they start their journey
and check out at the end. As a result, we do not need to estimate alighting points.

In order to analyse the intervals corresponding to activities in the network, we have extended our imple-
mentation discussed [6] in order to extract the activities from the raw smart card data.

2.1 From raw transactions to journeys
The first step in preparing our data for analysis is to derive a data set of journeys from the raw smart card
data. In order to do this, we sort the raw smart card data based on the media ID and the time stamps, such
that we can easily process consecutive transactions card by card. Every time we detect a check in followed
by a check out while passing through the data, we generate a trip containing a departure time, departure
location, arrival time and arrival location. For some modes (bus and tram) a journey may consist of several
trips. After the trip-construction we merge all trips that take place within the operator specified allowed
transfer time. If we end up with journeys that start and end at the same station, we remove them from the
final set of journeys.

2.2 From journeys to activities and time intervals
After our first step of the process we have obtained a sequence of journeys j1, j2, . . . , jn for each smart card,
ordered by time. If journey ji’s arrival location is equal to journey ji+1’s departure location, we create an
activity at the common location from the arrival time of journey ji until the departure time of journey ji+1.

As it is possible that our activities span multiple days, we simplify them by projecting them onto a
modular ring. Let us first pick a number of time slots U . Throughout this paper we will work with hourly
time slots, so U = 24. All calculation involving the intervals will now be done on the modular ring ZU .
Under the assumption that ZU represents a day, the begin time of the activity is projected onto the ring,
rounding the final time slot down after scaling, while the end time of the activity is rounded up after scaling.
This gives us an interval x = (xb, xe) which starts at a time slot xb ∈ 0, 1, . . . , U − 1 and ends at time slot
xe ∈ 0, 1, . . . , U − 1. As a result, a time slot can be an “overnight” time slot in case xb > xe. For such time
slots, it is not correct to take the difference xb − xe to calculate the duration of the time slot, as time moves
forward. To overcome this fact we define the duration xd of an interval x as follows:

xd =

{
xe − xb if xe ≥ xb
xe + U − xb otherwise



Input : Distance measure parameters θ, the number of clusters k, a random seed σ, a threshold t
Output: A set of relevant intervals R, a weight map w

Method runExperiment(I , θ, k, σ, t) :
foreach station s ∈ S do

R← ∅;
C1, . . . , Ck ← k-means++ applied on Is with distance measure dθ and random seed σ;
for i ∈ 1, . . . , k do

if |Ci|
|Is| ≥ t then
x← centroid of Ci;
R← R ∪ {x};
w(x)← w(x) + |Ci|

|Is||S| ;
end

end
end
return (R,w)

end
Algorithm 1: Iterative loop used to calculate relevant time intervals in the network

3 Extracting Frequent Time Intervals by Clustering
As the number of different intervals observed at each station is likely to be too large for regular interpreta-
tion, we will apply a clustering algorithm in order to obtain a compact description of the types of intervals
observed at the station. As the dissimilarity of two time intervals may depend of the context of the activities,
we introduce a parameterised distance measure. As an example of such differences, consider that activities at
an office will likely have high similarity in the starting time of the activity, while shopping or entertainment
activities are more likely to have similarity in the duration.

After processing the raw smart card data, we end up with a set of stations S and a multiset Is of observed
intervals at a each station s ∈ S. We then apply1 the k-means++ algorithm [2] on each multiset Is. The
advantage of the k-means++ over the traditional k-means algorithm is that it is O(log k) competitive due
to a sampling method for the initial clustering that favours centroids that are far away from each other. Since
there are many stations in the network, we also propose a method to aggregate the cluster outputs to a full
network level. The reason we do not apply the clustering algorithm on the union of all Is multisets is that
we are also interested in time intervals that occur frequently at a station that does not serve a large part of
the total demand.

Finally, as the results of the clustering algorithm may vary with the random initial configuration, the
parametrization of the distance measure and the choice for k, we run our clustering and aggregation method
multiple times in order to get a feeling for the robustness of the cluster centroids.

3.1 The parameterised distance measure
In order to assign different penalties to the distance between start time, duration and end time of the activities,
we introduce a vector θ = (θ1, θ2, θ3). Here, θ1 and θ2 control the penalties if either the duration, start time
or end time is equal, while θ3 controls the penalty if these values are all different. Our distance measure is
calculated as follows:

dθ(x, y) =

 θ1(xd − yd)2 if xb = yb ∨ xe = ye
θ2(xb − yb)2 if xd = yd
θ3(|xb − yb|+ |xd − yd|)2 otherwise

1We applied the implementation offered by the Apache Math Commons library, version 3.0. It is available at http://commons.
apache.org



Input : A set C of configuration parameters for runExperiment, a cutoff number m
Output: A table with for each (xb, xe) interval the robustness fraction

Method calcRobustness(C) :
r ← new table of dimension U × U filled with 0-values;
foreach (θ, k, σ, t) ∈ C do

(J,w)←runExperiment(θ, k, σ, t);
foreach (xb, xe) ∈ J do

if w((xb, xe)) ≥ the mth highest value in {w(x) : x ∈ J} then
r[xb][xe]← r[xb][xe] +

100
|C| ;

end
end

end
return r

end
Algorithm 2: Iterative loop used to calculate the robustness fraction.

In addition to the distance measure, we also need a way to calculate the centroid of a cluster. Since we
work with ZU , the set of all intervals is given by Z2

U . In case of U = 24 this gives us 576 intervals. As a
result, the best cluster center within a cluster of size n can be brute forced in 576 · n calls to the distance
measure.

3.2 Calculating the relevant cluster centroids and their robustness
In order to aggregate the clustering output of the individual stations, we decided to work with a threshold-
based rule. This rule works as follows: given a threshold t, an interval (xb, xe) is relevant if there exists a
station s ∈ S such that (xb, xe) occurs as a centroid in the cluster output of the multiset Is and that cluster
contains more than t|Is| elements of Is. The set of all intervals that adhere to this criterion can be calculated
using Algorithm 1. We also keep track of a weight map w, which registers the fraction of the population
covered by the interval in the cases where it exceeds the threshold.

Since the output of the clustering algorithm, and therefore the output of the runExperiment method can
vary for different configurations of the parameters, we decided to apply it multiple times, keeping track of
how often each interval shows up. Since the number of intervals in a single result set can still be quite large,
we truncate the result set to the m highest scoring intervals according to the weight map w. We then count
the number of times an interval is in a truncated result set and report this as the fraction of the total number of
experiments as the “robustness fraction”. The loop we use to calculate the robustness fractions is presented
in Algorithm 2.

4 Labelling and Activity Chain Analysis
After we have applied the clustering algorithm to learn important time intervals in the network, we want to
learn something about the relationship between the activities that take place during these intervals. Utilising
the output of the clustering algorithm, we can propose a labelling algorithm that assigns a label to each
interval. This algorithm then allows us to transform the chains of activities observed in the data of the
separate passengers into chains of activity labels.

4.1 Developing the labelling algorithm
In [7] it was observed that there are differences in the extend to which different time intervals show up in
different public transport networks. Since our intervals are described by two time slots, it is straightforward
to visualise the robustness fractions in a grid containing all possible intervals. Such a plot gives great insight



8 - 0.11 1.00 0.99

9 - 0.03 0.90 1.00 1.00

10 - 0.37 0.17 0.02 0.25 0.65 0.05 0.05 0.04

11 0.87 0.02 - 0.58 0.62 0.86 0.34 0.05 0.00 0.00

12 1.00 1.00 - 0.61 0.75 0.13

13 0.28 0.85 1.00 1.00 - 0.02 0.98 0.39

14 0.16 0.30 1.00 1.00 0.65 - 0.28 0.87 0.09
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Figure 1: The table of the robustness fractions of the intervals as calculated by our clustering and aggregation
algorithm.

in the extend to which time intervals are important. We can use the plot to construct a tree-based labelling
rule by checking proposed rules against the robust intervals in the plot.

An important aspect to take into account during the development of the labelling rule is the interpretabil-
ity of the chosen labels. As our focus is currently mostly exploratory, we decided to focus on labels that are
easy to interpret, such as long, short, early, late and overnight.

4.2 Analysing consecutive activities
Utilising the labelling procedure developed in the previous section we can now analyse chains of activity
labels. We count all consecutive pairs of activities that are performed by the same person and are connected
by a single journey. The resulting table of counts can then be interpreted as the adjacency matrix of a
weighted directed graph, where the nodes represent the activity labels and the arcs represent the “followed
by” relationship as observed in the data. There are many software packages available that allow us to
visualise and analyse such networks. During our analysis, we have worked with Gephi [5].

We can count activity chains of an arbitrary length in a similar fashion. We believe that counting chains
that are very long will not give a lot of insight, as passengers are not likely to perform many activities within
a single day. However, smaller chain lengths, such as three or four activities, could be interesting as these
patterns are likely to represent behaviour over one or two days. For this reason we added a triplet counting
routine to our implementation of the processing algorithm for the adjacency matrix generation.

5 Experiments and Results
We have applied our clustering method on urban smart card data set from a Dutch network, containing
four months of transactions. The data set contains roughly 22 · 106 journeys and 12 · 106 activities. We
calculated the robustness fractions using the method described in Section 3.2. Our set of configurations
contained all combinations of the following: for k one of {6, 8, 10, 20}, θ ∈ {1, 2, 4}3 with the constraint
that θ3 ≥ θ1 ∧ θ3 ≥ θ2, one of two random seeds, m = 40 and t = 0.1. The total number of configurations
is 112. The resulting table is visualised in Table 1.

Many of the highly robust intervals in Figure 1 are typically associated with commuting patterns. How-
ever, many shorter intervals that start after 9 are quite robust as well. Additionally, intervals with a duration
of precisely 6 or 7 hours are very infrequent. This tells us 6 hours is a natural boundary to distinguish
between short and long activities. The proposed labelling on the duration is presented in Figure 2a. Distin-
guishing between starting times appears to be more complicated. Before 9:00 short activities rarely begin,
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Figure 2: Labelling trees for the labels of an interval
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Figure 3: Network visualisation of the adjacency matrices based on the different labellings

so 8:00 seems to be a good boundary for early activities. At 13:00 it seems that among the shorter activities,
the intervals that are one hour longer than those starting before 13:00 become robust as well. As a result,
we pick the second boundary at 12:00. Finally, after 16:00 the intervals or not very robust, so this gives us
the final boundary. As it would be hard to interpret different labels for overnight activities, we introduce a
single label “Overnight” for activities that have xb > xe. The resulting tree is presented in Figure 2b.

We visualised the trees for labelling on duration and start time based labelling separately, but they can
be combined into one large tree. We can now apply the different trees to count the pairs of sequentially
occurring activity labels. We visualised the pairs observed this way as a network in Figure 3

Some interesting patterns can be observed in Figure 3. First, the most prominent pairs of activities are
those between an overnight interval and intervals that are early and long. These are typically time intervals
associated with home-work and home-study patterns and are thus within expectation high ranking. A more
interesting pattern occurs between overnight and noon activities. There is less interaction between early
activities and noon activities than between overnight and noon activities.

Let us now consider the top ten of triplets occurring in the activity label chains. The most dominant
triplets are typically associated with home - work - home like chains. The fourth and fifth triplet in the full
labelling describe a single activity during noon. Here we might be a bit careful in labelling the overnight
activity as home: maybe some people travel to their work by car and use the public transport system during
lunch time to visit a nearby location. The 10th triplet shows a pattern where two activities are started within
the noon window. There is also evidence of people performing a long activity one day and a short activity
the next day, and vice versa, as witnessed by triplets eight and nine in the duration based labelling.

When we compare these results to the analysis of the “other” activity label considered during the analysis
of Gautineau data by [7], we see that our the third triplet in the start time based labelling suggest a possible
peak around 12:00. However, they also found a peak around 16:00, which would be the afternoon label in
our case. However, if we consider labels in the start time table, only the sixth and ninth triplets represent
evening activities and both are not as strong as the single noon triplet.



Full labelling Duration based labelling Start time based labelling
Overnight LongEarly Overnight 19% Overnight Long Overnight 23% Overnight Early Overnight 20%
LongEarly Overnight LongEarly 16% Long Overnight Long 20% Early Overnight Early 19%
Overnight LongNoon Overnight 4% Short Overnight Short 10% Overnight Noon Overnight 7%
Overnight ShortNoon Overnight 3% Short Short Short 9% Noon Overnight Noon 5%
ShortNoon Overnight ShortNoon 2% Overnight Short Overnight 7% Noon Overnight Early 4%
ShortAfternoon Overnight ShortNoon 2% Short Short Overnight 6% Afternoon Overnight Noon 3%
Overnight ShortEarly Overnight 2% Overnight Short Short 6% Early Overnight Noon 2%
LongNoon Overnight LongNoon 2% Short Overnight Long 6% Afternoon Overnight Early 2%
ShortAfternoon ShortAfternoon Overnight 2% Long Overnight Short 4% Overnight Afternoon Overnight 2%
Overnight ShortNoon ShortNoon 2% Overnight Long Short 2% Overnight Early Noon 2%

Table 1: The most frequent triplets for each labelling method and the percentage with which they occurs
among all triplets detected

6 Related Work
Pelletier et al. [10] present an excellent general review of smart card data research in public transport during
the years 2000-2010. As this is an extensive literature review, we only present a short overview of research
focused on activity analysis based on smart card data.

Agard et al. [1] analyse a binary vector indicating smart card activity during four fixed time slots, defined
by the public transport operator. They find four main travel patterns using hierarchical clustering, the top
two of which correspond to a home-work-home pattern and a home-study-home pattern. Morency et al. [9]
focus on the variation in temporal patterns using a k-means clustering algorithm. They also consider vectors
of 24 binary values indicating whether a passenger has boarded a vehicle during the corresponding hour of
the day. Using clustering with the Hamming distance measure and the component wise median to derive
cluster centroids, they are able to derive regularity indicators from the raw data. Devillaine et al. [7] present
an analysis focused on the temporal distribution of activities based on smart card data from both Santiago,
Chile and Gautineau, Canada. Their classification is based on both temporal aspects as well as card type.
The assigned classes are work, study, home and other. They find that the temporal distribution of activities
in Santiago differs from Gautineau. Activities classified as other have peaks at their starting times when they
start more often around noon or four in the afternoon in the Gautineau network, while they are more evenly
distributed in the Santiago network.

A different methodology to analyse spatio-temporal patterns is to calculate eigenbehaviors [8]. The
general idea of the method is to apply Principal Components Analysis on vectors of binary variables repre-
senting time slot/location combinations. While this method is usually able to reduce a matrix of vectors to
a few dominant eigenvectors, the fractional nature of the eigenvectors makes them complicated to interpret,
especially if the goal is to create input for activity based models.

7 Conclusions and Future Work
We have developed an approach to cluster temporal intervals derived from activity data at a station level
using a parameterised distance measure and to aggregate the results, such that we obtain the most interesting
time intervals in the data. We repeat this process to obtain robustness fractions. Based on the robustness
fractions, we constructed a tree-based labelling procedure. The labels allow us to find the most frequent pairs
and triplets of activity types observed in individual activity chains. While the typical intervals associated
with home and work activities are dominant, we are able to identify shorter activities as well and provide
some insight on their relation to other activities within the activity chains of individual passengers.

Our current approach still has some drawbacks. The modular ring ZU with U = 24 is a quite rigorous
simplification, as we cannot distinguish between an activity that takes one hour and an activity that takes
25 hours. While this simplification allows us to get a general idea of what is happening within the system
without having to look at too many numbers, it is likely more caution is necessary if we want to construct
the input for activity based models. Another thing that we ignore is the distinction between weekdays
and weekends, which has a very significant impact on travel behaviour. For the implementation of a valid
simulation, it will be necessary to make this distinction. If we would introduce these detailed descriptions
of the activity intervals, it would also be necessary to reconsider the proposed distance measured. Finally,



we constructed our labelling algorithm by hand. An interesting question is whether we can use automatic
classification algorithms instead of our manually constructed labelling procedures.

Aside from further refinements of our methods, such as reducing the number of parameters to set and
varying distance measures, there are two main topics for future research. First, we would like to use either
the clustering output at the station level or the complete distribution of intervals observed at the stations to
identify similar classes of stations. If we are able to reduce our stations to a small number of important
classes, we could include some spatial aspects in the analysis of the activity chains. We would also like to
include use our findings in order to generate input for an activity based agent simulation, such as MATSim
has implemented. It would be interesting to see how accurate the observed traffic counts in the smart card
data can be replicated using only a small set of typical activities.
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