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 a b s t r a c t

Designs generated by topology optimization are often geometrically too complex for conventional 
manufacturing techniques. While additive manufacturing holds promise for producing such com-
plex designs, several manufacturability constraints must be addressed, including overhang and 
overheating. Unlike the well-studied overhang constraints, which can be described geometrically, 
overheating lacks a straightforward and reliable geometric characterization and therefore requires 
thermal process simulations to identify regions prone to it. However, these simulations are com-
putationally expensive and thus unsuitable for topology optimization, which involves numerous 
design evaluations. This paper proposes a computationally efficient alternative for detecting zones 
prone to overheating. The key idea is to estimate local thermal conductivity—and thereby poten-
tial overheating—by analyzing the local material distribution. This geometric approach provides 
a physically motivated approximation of thermal behavior. The method is then integrated into 
topology optimization, resulting in optimized structures that exhibit clear heat conduction paths 
to the baseplate. Comparisons with high-fidelity thermal simulations demonstrate the effective-
ness and efficiency of the proposed method in mitigating overheating in topology optimization.

1.  Introduction

Topology optimization (TO) determines the optimal material distribution within a design domain to achieve a specific objective 
while meeting a set of constraints. The resulting designs often include complex geometries that are difficult or impossible to produce 
using conventional manufacturing methods, but can be fabricated using additive manufacturing (AM). However, AM introduces its 
own process-specific limitations that must be considered during the design stage. These constraints should be integrated into the 
topology optimization process to ensure manufacturability. Previous research has addressed several of these limitations, including 
overhang control (e.g., van de Ven et al. [1], Zhang et al. [2], Garaigordobil et al. [3], Langelaar[4], Wu et al. [5], Gaynor et al. [6]), 
distortion reduction (e.g., Misiun et al. [7], Miki and Yamada[8], Wildman and Gaynor[9]), and residual stress management (e.g., 
Xu et al. [10], Cheng et al. [11], Allaire and Jakabčin[12]). One important but less extensively studied constraint is local overheating, 
or heat accumulation, which can occur during metal AM and lead to print failure, surface roughness, defects, and degraded material 
quality.

In metal AM, material addition is achieved by selectively melting and fusing the powder through a high-energy beam in the case 
of powder bed fusion (PBF), or by deposition of molten material on the previously deposited solid part in directed energy deposition 
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(DED). Each new layer introduces heat in both cases, causing the underlying material to experience repeated heating and cooling 
cycles. Heating and subsequent cooling are associated with the heat flow from the newly deposited, topmost layer, through the 
previously deposited layers, ultimately into the baseplate, which acts as a heat sink. Severe heat accumulation occurs when the flow 
of heat to the baseplate is obstructed [13,14]. This leads to local overheating and a multitude of problems, such as an enlarged melt 
pool [15], higher residual stresses [16], and even build failure [17,18]. Poor surface quality due to dross formation and balling is 
also directly associated with overheating [19]. Finally, heat accumulation can adversely influence the microstructure, which dictates 
the material properties [20–22]. Thus, it is of paramount importance to mitigate local overheating.

The factors contributing to local overheating can be broadly classified into three categories. The first category pertains to AM 
process parameters such as printing speed, fabrication sequence, and power. Since these parameters influence the heat input, they 
significantly affect the part’s local thermal history [23]. The second category involves the thermal properties of the material. For 
instance, materials with high thermal diffusivity enable faster heat dissipation. Lastly, the third category relates to part design. For 
instance, geometric features that hinder efficient heat evacuation lead to local overheating [19]. In this paper, we focus on heat 
accumulation due to the part design while assuming other factors to be constant.

Overhanging geometric features are known to contribute to heat accumulation, as overhanging layers lack sufficient solid material 
beneath them to facilitate effective heat dissipation. This is because the conductivity of air (in DED) or loose powder (in PBF) is 
much less than that of the solid metal [24,25]. This obstruction in heat flow causes local overheating [13,19]. Geometrical design 
guidelines have been proposed to limit the overhang angle (the angle between the part surface and the baseplate), to be greater 
than a critical value 𝜃cr ranging between 40◦–50◦ [26–28]. Many methods have been developed to avoid overhangs in TO, e.g., Liu 
et al. [29], and Langelaar[30]. However, Adam and Zimmer[31] experimentally demonstrated the persistence of thermal bottlenecks, 
even when overhangs satisfy the critical value, particularly funnel-shaped structures narrowing down along the heat conduction path. 
Moreover, Ranjan et al. [32] found that overhangs with identical overhang angles exhibit different thermal behavior depending on the 
heat evacuation capacity of the local geometric layout. This also implies that explicit overhang control can become too restrictive. 
Additionally, geometric features other than overhangs are also susceptible to overheating. Thin features that have limited solid 
material in their vicinity can obstruct the heat flow and exhibit overheating [15,33]. Therefore, it is necessary to identify and avoid 
geometric features causing overheating.

As discussed above, a purely geometric constraint on the overhang angle is not sufficient to prevent overheating, and at the same 
time, can be too restrictive. The latter happens when the features in the vicinity of an acute overhang may facilitate heat conduction 
to the baseplate, which can render an overhanging feature permissible in the design. Consequently, a TO scheme that could prevent 
overheating by explicitly accounting for the thermal evolution of the AM process would have significant advantages over the geometric 
design rules. Various methods have been developed in the literature that accurately determine the thermal history of the part during 
the AM process [34–36]. The models are, however, computationally expensive due to the multi-physics and multi-scale nature of the 
AM process [37]. Hence, a significant research effort exists to develop simplified AM models that capture thermal evolution during 
AM. Provided they are computationally efficient, these methods can be incorporated into topology optimization. A detailed discussion 
of relevant literature is provided below.

Zhou et al. [38] successfully integrated a transient thermal AM simulation with density-based TO to design support structures with 
efficient thermal conductive capabilities for the laser powder bed fusion (LPBF) process. Similarly, Miki and Yamada[8] proposed a 
TO approach that incorporates thermally induced distortion within the optimization process. Mishra et al. [20] utilized TO to control 
solid-state phase fractions based on the thermal history, thereby influencing the resulting mechanical properties. Although these 
transient thermal simulations are accurate, they are computationally expensive and can render the optimization process intractable 
for large-scale problems, especially in three dimensions. The studies by Ranjan et al. [39] and Ranjan et al. [40] are particularly 
relevant to this work, as they incorporate a simplified, approximate thermal model to prevent overheating in density-based TO. 
This AM process model [32] relies on a series of steady-state thermal analyses within parts of the domain to detect zones prone to 
local overheating. To the best of the authors’ knowledge, this method is among the most computationally efficient available in the 
literature, and is grounded in physical principles of heat conduction. Its computational efficiency and accuracy have been numerically 
demonstrated by Ranjan et al. [39,40], and the mitigation of overheating has been validated experimentally by Ranjan et al. [40]. 
However, the approach of Ranjan et al. [39,40] still requires performing multiple steady-state thermal analyses within smaller sub-
domains at each TO iteration. While significantly faster than fully transient thermal models, this process remains computationally 
intensive when applied to large-scale, real-world problems with millions of degrees of freedom or more. Therefore, there remains a 
need to increase the computational efficiency of AM process simulation further so that it can reliably prevent overheating in large, 
three-dimensional TO problems.

This paper introduces a novel physics-motivated geometrical method for detecting overheating zones in additively manufactured 
parts. A conductivity map is constructed based on the local solid material distribution around all material points. The local conductivity 
propensity at each material point is then used to compute a pseudo-temperature field that reveals whether it is susceptible to local 
overheating during manufacturing. In contrast to transient or even simplified thermal simulations, the proposed approach offers 
negligible computational cost. This pseudo-temperature is then used to formulate a constraint in TO to prevent overheating.

The paper contents are structured as follows: the formulation of the proposed geometric overheating detection method, its appli-
cation, and effectiveness in detecting local overheating are demonstrated in Section 2.1. The geometric overheating detection method 
as a constraint and its integration with TO is established in Section 2.2. The numerical examples of optimized designs are discussed 
in Section 3. A comparative study of the designs obtained using the proposed overheating constraint and other geometric approaches 
from the literature to eradicate overhangs is presented in Section 3.1. The TO scheme’s extension to 3D is demonstrated in Section 3.2. 
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The computational cost of different approaches in both 2D and 3D is compared in Section 3.3. The conclusions and future scope of 
the work are given in Section 4.

2.  Methodology

This section presents the physics-motivated geometric overheating detection method and its integration as a constraint in TO. First, 
physics-motivated geometric overheating detection is described. The method’s effectiveness in detecting overheating is validated by 
a high-fidelity AM process model. Subsequently, the overheating detection method is used as a constraint and incorporated into the 
TO.

2.1.  Geometric overheating detection

During the AM process, the moving heat source raises the local temperature of the material point directly under the heat source 
and surroundings, including several preceding layers, referred to as the heat-affected zone. The temperature field in the heat-affected 
zone exhibits a gradient, with higher temperatures near the heat source gradually diminishing with the distance from the source, 
as modeled in Mirkoohi et al. [41]. Ranjan et al. [32] utilized an analytical solution of the 1D transient heat equation to show that 
the maximum temperature of a newly added material point is unaffected by increasing the domain size beyond a critical thermal 
interaction length defined as

𝜅 =
√

𝛼𝑡ℎ, (1)

where 𝛼 is the thermal diffusivity of the material given as

𝛼 = 𝑘
𝜌𝐶𝑝

, (2)

where 𝑘, 𝜌, and 𝐶𝑝 are the thermal conductivity, density, and specific heat of the material, respectively. The heating time 𝑡ℎ depends 
on the AM process parameters. For the LPBF process, it is estimated as

𝑡ℎ = 𝐴
ℎ𝑣

, (3)

where 𝐴 is the area of the layer, ℎ is the hatch spacing and 𝑣 is the laser scan velocity [32]. For further details, readers are referred to 
[42]. This observation implies that the peak temperature near the heat source primarily depends on the heat transfer within a finite 
heat conduction domain. In 3D, assuming isotropic conduction, this domain becomes a hemisphere with a radius 𝜅. Fig. 1 shows the 
semicircular 2D representation of the heat conduction domain. If a heated material point has abundant solid material within its heat 
conduction domain, ample heat conduction prevents overheating and vice versa. Moreover, within the conduction domain, material 
points closer to the heat source, and those positioned symmetrically opposite the build direction, have a greater influence on heat 
evacuation to prevent overheating.

To determine the heat evacuation capacity of each material point, it remains to calculate the total volume of the solid weighted 
according to the source proximity and orientation based on build direction b in the conduction domain. We call this Conductivity 
Estimation, and the heat conduction domain in the remainder is referred to as the conductivity domain. Note that conductivity here 
refers to the local heat evacuation capability towards the baseplate, not the thermal material property. Yeung et al. [43] introduced a 
similar approach for in-situ laser power regulation utilizing the proportion of solid and powder material surrounding the melt pool. 
Although related, the study did not utilize the idea in the context of part design, which is the purview of this paper.

Consider the part shown in Fig. 1 in a discretized domain of finite elements, analogous to the density-based TO design domain. 
The build direction is along the 𝑦 axis indicated by 𝐛. A discrete pseudo-density field is assumed on each element, where 𝜌 = 1
(blue) indicates solid and 𝜌 = 0 (white) indicates loose powder or air for PBF and DED, respectively. Consider the instance element 
𝑖, which is under the influence of the heat source. The set of elements in the conductivity domain of element 𝑖 is given as 𝑆𝑖. If 
the element center coordinates of elements 𝑖 and 𝑗 are (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗 ), respectively, and 𝜅 is the conductivity domain radius. 

Fig. 1. Schematic illustration of the heat conduction domain on a part during various stages (a–d) of AM. The part is built over a baseplate, and 
the build direction is indicated by 𝐛. The layer-by-layer deposition of the material through the moving heat source and the heat conduction domain 
is shown.
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The element 𝑗 ∈ 𝑆𝑖 if 
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 ≤ 𝜅 granted 𝑦𝑗 ≤ 𝑦𝑖 for the given build direction. The latter condition ensures that only 
the previously deposited layers are considered within the conductivity domain. We introduce weight functions to incorporate the 
influence of elements 𝑗 ∈ 𝑆𝑖 on the heat evacuation capacity of element 𝑖. These weights penalize the contribution of elements 𝑗 ∈ 𝑆𝑖
in the radial and angular directions, such that a higher contribution of conduction is assumed for elements in closer proximity and 
along the build orientation of the element 𝑖. Thus the radial weight function 𝑤̃ and angular weight function 𝑤̂ of element 𝑗 ∈ 𝑆𝑖 are 
given as:

𝑖𝑤̃𝑗 =
𝜅 −

√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2

𝜅
, (4)

𝑖𝑤̂𝑗 =
tan−1

( 𝑦𝑖−𝑦𝑗
𝑥𝑖−𝑥𝑗

)

𝜋∕2
, (5)

normalized between 0 and 1. The prescript indicates that the weight function for the element 𝑖. The final weight function 𝑖𝑤𝑗 = 𝑖𝑤̃𝑗
𝑖𝑤̂𝑗 .

Fig. 2c indicates how the elements in the conductivity domain given by Fig. 2d will be weighted with radial and angular weight 
functions, as shown in Fig. 2a and b, respectively. The conductivity estimation is performed for every solid element by calculating 

Fig. 2. Illustration of the weight functions used to represent the physics of heat conduction geometrically. The material points with a higher 
influence on heat conduction are shown in a darker shade, as shown by the color bar. The radial weights 𝑤̃ (a) penalize the material inside the heat 
conduction domain of radius 𝜅 following the distance to the material under the influence of the heat source, 𝑤̃max = 1, 𝑤̃min = 0 being the maximum 
and minimum value of the radial weights, respectively. The angular weights 𝑤̂ (b) penalize the material concerning the misalignment with the 
build direction measured with angle 𝜃 from the horizontal with 𝑤̂max = 1, 𝑤̂min = 0 being the maximum and minimum value of the angular weights, 
respectively. The final weight function 𝑤 is shown in (c). The conductivity domain (d) on a part discretized with a structured mesh where the local 
conductivity of the central element 𝑖 of a geometric feature is evaluated using the weighted densities of the elements 𝑗 ∈ 𝑆𝑖. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Illustration of the conductivity estimation and detecting heat accumulation zones for a funnel-shaped part. The build direction is given by 
𝐛. The discretized part geometry on a structured mesh is shown in (a). The snapshots of the hotspot map during various stages of AM are shown in 
(b–e). The final hotspot map of the part is shown in (f).

Fig. 4. The hotspot maps for (a) high fidelity transient thermal process model and (b) conductivity estimation analysis. The corresponding critical 
zone (CZ) maps showing contour levels of only 0.5 and above of the maximum temperature of the hotspot map are presented in (c) and (d), 
respectively.

local conductivity for element 𝑖 as:

𝜇𝑖 =

∑𝑛
𝑗∈𝑆𝑖

𝜌𝑗 𝑖𝑤𝑗
∑𝑛

𝑗∈𝑆𝑖
𝑖𝑤𝑗

, (6)

which is constrained within the range [0, 1]. A higher value of 𝜇 indicates that the element 𝑖 has an abundant material in its 
conductivity domain distributed favorably, suggesting good heat conduction and vice versa. This metric resembles the one applied 
in the local volume constraint for generating porous structures in Wu et al. [44]. However, the local volume constraint does not 
account for the direction of material deposition in AM. To get a qualitative indication of the temperature in the part, we define a 
pseudo-temperature 𝑇̃𝑖 for element 𝑖 as:

𝑇̃𝑖 = 1 − 𝜇𝑖. (7)

A higher pseudo-temperature implies susceptibility to local overheating. Note that the pseudo-temperature values only qualitatively 
indicate the overheating tendency of design features and do not represent physical temperatures. The pseudo-temperature field array 
𝐓̃ of the entire domain will be referred to as the hotspot map.

The conductivity estimation is exemplified using the discretized 2D geometry shown in Fig. 3a. The part geometry encapsulates 
features that are responsible for local overheating, such as overhangs, thin sections, and funnel-like features [19,22,28,39]. The 
dimension of the part is 80mm×72mm. All overhangs have an overhang angle of 𝜃 = ±45◦. The conductivity domain radius, 𝜅 =
12mm, is determined based on the thermal interaction length corresponding to the process parameters used in Ranjan et al. [32] and 
the material properties of Ti-6Al-4V at its melting point, as reported in Chiumenti et al. [45]. For other commonly used materials in 
LPBF, such as AISI 316L, Cr-Co, and Al-Si alloys, 𝜅 becomes approximately 10mm, 9mm, and 26mm, respectively, assuming identical 
process parameters and material properties at the melting point [46–48].

The conductivity estimation for the entire part is performed simultaneously for all layers, as the layer-by-layer printing sequence is 
taken into account by the orientation and shape of the conductivity domain. The hotspot map of the temperature field 𝐓̃ is generated 
using Eq.  (7) and is shown in Fig. 3f. Fig. 3b–e shows the hotspot maps of the intermediate stages of the AM process. As can 
be seen in Fig. 3b,c, since there are a large number of solid elements that contribute to heat conduction, the heat evacuation is 
adequate, and overheating risks are low, as observed from the hotspot maps. The overhanging feature in Fig. 3d increases the pseudo-
temperature, since the number of solid elements within the respective conductivity domains diminishes. A comparable reduction in 
local conductivity is observed at the overhang junction, as illustrated in Fig. 3e. Note that although all overhangs share the same 
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inclination angle (45◦), the resulting pseudo-temperature fields slightly differ due to variations in the surrounding geometry. These 
findings are in agreement with the experiments performed in Adam and Zimmer[31], Van Toor[49] and Patel et al. [50].

Next, the conductivity estimation method is compared with an LPBF transient thermal simulation chosen as a reference. The refer-
ence thermal LPBF process model follows [32]. Heat loss through conduction, convection, radiation, and the temperature-dependent 
thermal properties of Ti-6Al-4V from Chiumenti et al. [45] is accounted for. The part-powder/air interface is considered adiabatic. The 
element birth-and-death method is used to mimic the growing domain during AM [51,52]. A lumped layer analysis is incorporated 
that combines 10 AM layers into one super layer. The element size is 0.5mm, corresponding to a layer thickness of 50 µm. In each 
simulation cycle, where a new set of elements is introduced, the deposited super layer undergoes heating with a uniform volumetric 
heat flux for 𝑡ℎ. This is followed by a cooling time during which the heat flux is turned off. We select an estimated cooling time of 
50 s, which is ten times the typical recoater time of 5 s, to take into consideration the layer lumping [52,53]. This choice ensures a 
conservative estimation of heat accumulation between successive layers. The bottom surface of the baseplate acts as a heat sink at a 
constant temperature of 180 ◦C. For more details about the transient simulation, readers are referred to Ranjan et al. [32].

For a consistent comparison, the maximum temperature field 𝐓 from the high-fidelity simulation is normalized by its maximum 
value, 𝐓̂ref = 𝐓∕max(𝐓), to obtain the hotspot map shown in Fig. 4a. The hotspot map of conductivity estimation in Fig. 4b is similar, 
though not identical, to that of the high-fidelity simulation, since the former represents a simplified geometric approximation of 
heat conduction. The conductivity estimation does not provide accurate predictions in regions with abundant material, such as the 
central portion of the design. However, the high-fidelity simulation in Fig. 4a reveals that these regions remain at relatively lower 
temperatures and are therefore not prone to overheating. Since our primary objective is to identify areas that are critical with respect 
to overheating, the conductivity estimation is designed to emphasize regions with less material, which are more susceptible to thermal 
accumulation. To this end, we introduce a critical zone (CZ) map, obtained by showing contour levels of only 0.5 and above of the 
hotspot map. Fig. 4c and d compare the CZ maps extracted from the high-fidelity thermal simulation and the conductivity estimation. 
The CZ maps show excellent agreement around overhanging and thin geometric features, while the conductivity estimation is up to 
1400 times computationally cheaper than the high-fidelity transient thermal simulation. Thus, the geometric conductivity estimation 
method is both accurate and computationally efficient for overheating detection.

It is important to note that the conductivity estimation may underestimate overheating in cases where long overhanging gaps 
smaller than the conductivity domain are present. In such situations, the conductivity estimation can yield an artificially high local 
conductivity value due to the presence of solid material within the conductivity domain, even though the solid region above the 
gap itself may be prone to overheating. The radial and angular weight functions given by Eqs.  (4) and (5) alleviate this issue to 
some extent, but this limitation is still evident in the formulation of the overheating constraint (see Fig. 6b). Nevertheless, the issue 
primarily affects overheating detection in static geometries and is resolved when the method is integrated with robust topology 
optimization, as discussed in Section 2.2.

2.2.  Integration with TO

The primary goal of this paper is to develop a novel TO method to prevent local overheating during the AM process. Therefore, 
we consider a linear elastic compliance minimization objective and a global volume constraint. The design domain is discretized 
with a structured mesh of bi-linear, four-noded elements. A commonly used load case of the half MBB beam is used for optimization. 
Fig. 5 shows the design domain dimensions, the point load, and the boundary conditions for the half MBB beam. The design domain 
is discretized into 180 × 60 elements, with an element size of 1mm×1mm.

The compliance minimization TO is given as follows: 

min
𝜌

∶ 𝑐(ρ) = 𝐔T𝐊𝐔 =
𝑁
∑

𝑖=1
𝐸𝑖(𝜌̃𝑖)𝐮T𝑖 𝐤0𝐮𝑖, (8a)

subject to: 𝐊𝐔 = 𝐟 , (8b)

𝑓 (ρ) = 𝑉 (ρ)∕𝑉 ≤ 𝑣𝑓 , (8c)

0 ≤ ρ ≤ 1. (8d)

Fig. 5. Half MBB beam problem used for the optimization. The load 𝐅, boundary conditions with roller support on the left edge and the bottom 
right corner, dimensions of the design domain, and build direction 𝐛 are as shown.
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Here 𝑐 is the compliance of the structure, and ρ is the array of pseudo-densities which are design variables. The subscript 𝑖 denotes 
the element number, and 𝑁 is the total number of elements. 𝐔 is the global nodal displacement array, 𝐮𝑖 is the element displacement 
vector, 𝐟 is the global nodal force array, 𝐊 is the global stiffness matrix and is assembled from element stiffness matrices 𝐤𝑖 = 𝐸𝑖(𝜌̃𝑖)𝐤0, 
where 𝐤0 is the element stiffness matrix for an element with unit Young’s Modulus. Here, 𝜌̃𝑖 is the filtered density given by Bruns 
and Tortorelli [54] to impose a length scale control and avoid checkerboarding, and 𝐸𝑖(𝜌̃𝑖) is Young’s modulus corresponding to the 
element 𝑖, interpolated via the solid isotropic material with penalization (SIMP) [55], given by:

𝐸𝑖(𝜌̃𝑖) = 𝐸min + 𝜌̃𝑝𝑖 (𝐸0 − 𝐸min), (9)

where 𝐸0 = 1 is the Young’s modulus of a solid element. A small value of 𝐸min = 10−9 is assigned to prevent the singularity of the 
global stiffness matrix, and 𝑝 = 3 is the penalization factor. The global volume constraint is 𝑓 (ρ), the material volume is 𝑉 (ρ) =

∑

𝑖 𝜌̃𝑖𝑣0, 
where 𝑣0 is the constant area or volume of the element in 2D and 3D, respectively. The design domain volume is 𝑉 , and 𝑣𝑓  is the 
prescribed maximum volume fraction.

It remains to incorporate an overheating constraint into the TO using the conductivity estimation method. To prevent overheating, 
the maximum pseudo-temperature across the domain is constrained to remain below a critical temperature value, 𝑇cr . As a result, 
the optimized design is expected to have a geometric layout that will allow for efficient heat evacuation towards the baseplate and 
thus reduce the risk of local overheating. Note that 𝑇cr is a tunable parameter between 0 and 1, and a smaller value leads to a stricter 
constraint. The conductivity domain radius 𝜅 = 12mm is calculated from the process parameters and material properties mentioned 
earlier.

The local conductivity derived in Eq.  (6) is modified by penalizing the densities of elements in the conductivity domain by the 
conductivity penalization factor 𝑞, identical to a SIMP penalization 𝑝. Thus, the penalized local conductivity 𝜇̄ ∈ [0,1] for an element 
𝑖 is calculated as:

𝜇̄𝑖 =

∑𝑛
𝑗∈𝑆𝑖

𝜌̃𝑞𝑗
𝑖𝑤𝑗

∑𝑛
𝑗∈𝑆𝑖

𝑖𝑤𝑗
. (10)

This is done to prevent the constraint from being artificially satisfied by intermediate densities during the initial optimization iterations 
and to promote better convergence. Consequently, the hotspot map showing a pseudo-temperature 𝑇̄ ∈ [0,1] for each element 𝑖 can 
be calculated as:

𝑇̄𝑖 = (1 − 𝜇̄𝑖). (11)

To improve the computational efficiency, the maximum value of the hotspot map 𝐓̄ is used for the constraint as:
max(𝐓̄) ≤ 𝑇cr . (12)

The maximum operator is non-differentiable, making it unsuitable for calculating the sensitivities required in gradient-based optimiza-
tion. A P-mean aggregation scheme specifies the constraint, a smooth, continuous function used to find the maximum temperature 
over the entire design domain. Thus, the overheating constraint is formulated as:

[ 1
𝑁

𝑁
∑

𝑖
(𝑇̄𝑖)

𝑃
]

1∕𝑃

≤ 𝑇cr . (13)

Here, 𝑇̄𝑖 is the 𝑖th member of the array 𝐓̄, 𝑃  is the P-mean exponent. P-mean tends to underestimate the maximum temperature. 
This error can be reduced by increasing the 𝑃  value. However, as 𝑃 → ∞, the P-mean asymptotes to the real maximum value, thus 
becomes non-smooth, resulting in inaccurate estimation of the true maximum, which leads to overconservative designs. Therefore, 
the maximum predicted by the P-mean is corrected by scaling it with the true maximum max(𝐓̄) according to an adaptive scheme 
proposed by Le et al. [56]. Thus, from Eqs.  (11) and (13), the overheating constraint after including a scaling factor 𝛼 becomes:

𝑔 = 𝛼
[ 1
𝑁

𝑁
∑

𝑖
(1 − 𝜇̄𝑖)𝑃

]

1∕𝑃

≤ 𝑇cr , (14)

Fig. 6. TO (a) without the relaxation factor 𝜖, (b) with the relaxation factor 𝜖 in the overheating constraint. The orange semicircle represents the 
conductivity domain.
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where 𝛼 is defined as the ratio between the true maximum temperature obtained from the design domain and the P-mean of the 
previous iteration, given by:

𝛼(𝐼) =

(

max(𝐓̄)
[

1
𝑁

∑𝑁
𝑖 (1 − 𝜇̄𝑖)𝑃

]1∕𝑃

)

(𝐼−1)

, (15)

where 𝐼 is the current iteration number. Note that, since 𝛼 changes discontinuously, the adaptive scheme may cause convergence 
issues. Therefore, it is updated every 25 iterations with a continuation scheme, solving this non-convergence issue. The value of 𝑃  is 
set to be 25, which has good accuracy and convergence over the design iterations.

Applying the overheating constraint given in Eq.  (14) on a standard TO design from Eq.  (8) creates impractical designs with 
isolated geometries outside the base design, as shown in Fig. 6a. The optimizer is compelled to satisfy the minimum local conductivity 
of the elements everywhere in the design domain, even for the void elements 𝜌̃𝑖 ≈ 0 that have a large number of void elements in 
their conductivity domain (𝜌̃𝑗 ≈ 0 ∀ 𝑗 ∈ 𝑆𝑖). To relax the constraint in the void elements that are outside the base design, the pseudo-
temperature 𝐓̄ is multiplied by a relaxation factor ϵ. The relaxation factor for an element 𝑖 is 𝜖𝑖 = 𝜌̃𝑟𝑖 , where 𝜌̃𝑖 is the filtered density of 
the element and 𝑟 is the relaxation exponent. The 𝜖 controls the 𝜇̄ value required to satisfy the overheating constraint for an element 
𝑖. In the void phase, the relaxation factor ensures that the constraint is satisfied by having a very low requirement of 𝜇̄. The value of 
𝑟 = 0.05 is chosen as it had the best convergence among other values of 𝑟 for our choice of 𝑇cr = 0.8. A comprehensive study of how 𝑟
varies with 𝑞 and 𝑇cr is provided in Appendices A.1 and A.2, respectively. The overheating constraint then becomes:

𝑔 = 𝛼
[ 1
𝑁

𝑁
∑

𝑖
((1 − 𝜇̄𝑖)𝜌̃𝑟𝑖 )

𝑃
]

1∕𝑃

≤ 𝑇cr , (16)

where 𝛼 for an iteration 𝐼 is now given as:

𝛼(𝐼) =

(

max(𝐓̄ϵ)
[

1
𝑁

∑𝑁
𝑖 ((1 − 𝜇̄𝑖)𝜌̃𝑟𝑖 )𝑃

]1∕𝑃

)

(𝐼−1)

. (17)

Although the modified overheating constraint suppresses the emergence of isolated geometries in the void regions, another problem 
persists in the topology-optimized designs, as illustrated in Fig. 6b. Even after penalizing elements in the conductivity domain using 
the weight function defined in Eqs.  (4) and (5), the design minimizes the compliance through closely spaced design features in 
the majority of the design domain. As long as the void phase between the neighboring features is considerably smaller than the 
radius of the conductivity domain, the overheating constraint can be artificially satisfied, despite the heat conduction pathway being 
disconnected due to the void phase separating solid phases. Consequently, this design will still be prone to overheating if assessed 
by the transient thermal model introduced earlier, and therefore, it should be avoided. Moreover, the design exhibits a non-discrete 
character due to the smoothing effect of the density filter at the boundaries between solid and void phases, which can be avoided by 
using a Heaviside projection.

To solve the issue of the emergence of small gaps disconnecting solid phases, the overheating constraint is incorporated in the 
robust TO given by Wang et al. [57]. The formulation provides length-scale control on both the solid and void phases. It uses three 
designs called the eroded, intermediate, and dilated designs, with the projected densities ̄̃𝜌𝑒, ̄̃𝜌𝑖, and ̄̃𝜌𝑑 , respectively. Based on the 
projection thresholds, filtered design variables are projected to 1 if they are greater than the threshold or zero if they are lower than 
the threshold through:

̄̃𝜌 =
tanh(𝛽𝜂) + tanh(𝛽(𝜌̃ − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

, (18)

where 𝛽 determines the sharpness of the projection, 𝜂 and ̄̃𝜌 are the projection threshold and projected design variable, respectively. 
The solid features smaller than the density filtering domain are projected to the void phase in the eroded design. The overheating 
constraint is applied to this eroded design. It ensures that sufficient solid facilitates the heat conduction within every solid element’s 
conductivity domain, such that the pseudo-temperature remains below 𝑇cr . Subsequently, voids smaller than the density filtering 
domain are projected to the solid phase in the dilated design. As a result, small gaps are eliminated from the final intermediate 
design, yielding a more robust design and reducing the risk of local overheating.

Lazarov et al. [58] demonstrated that using only the eroded design is sufficient for conservative compliance minimization, as it 
exhibits the highest compliance among the three designs. The robust TO problem with the overheating constraint is defined as: 

min
𝜌

∶ 𝑐(ρ) = 𝐔𝑒T𝐊( ̄̃𝜌𝑒)𝐔𝑒 =
𝑁
∑

𝑖=1
𝐸𝑖( ̄̃𝜌𝑒𝑖 )𝐮

𝑒
𝑖
T𝐤0𝐮𝑒𝑖 , (19a)

subject to 𝐊( ̄̃𝜌𝑒)𝐔𝑒 = 𝐟 , (19b)

𝑓 (ρ) =
𝑉𝑑
𝑉

≤ 𝑉 ∗
𝑑 , (19c)

𝑔(ρ) = 𝛼

[

1
𝑁

𝑁
∑

𝑖

(

(1 − 𝜇̄𝑒
𝑖 )( ̄̃𝜌

𝑒
𝑖 )
𝑟
)𝑃

]1∕𝑃

≤ 𝑇cr , (19d)

0 ≤ ρ ≤ 𝟏. (19e)
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Here 𝑐, 𝐔𝑒, 𝐊, 𝐮𝑒𝑖  are the compliance, global displacement array, global stiffness matrix, and element displacement array, respectively, 
of the eroded structure. The volume constraint is imposed on the dilated design as it has the highest volume among the three designs. 
Every 20 iterations the volume fraction of the dilated design is updated as 𝑉 ∗

𝑑 = 𝑣𝑓
𝑉𝑖
𝑉𝑑 , where 𝑉𝑑 =

∑

𝑖 ̄̃𝜌
𝑑
𝑖 𝑣0 is the volume of the dilated 

design, so that the volume of the intermediate design 𝑉𝑖 remains equal to a prescribed value 𝑣𝑓 . The overheating constraint is given 
by 𝑔(ρ), and 𝜇̄𝑒

𝑖  is the penalized local conductivity of the eroded densities. The sensitivity analysis of the overheating constraint is 
given in Appendix A.4.

3.  Results

The parameters used for the TO and conductivity estimation are given in Table 1. The optimization algorithm used is the method 
of moving asymptotes (MMA) by Svanberg[59], with default parameters. The projection sharpness 𝛽 is set to 1 and incrementally 
increased every 100 iterations to a maximum of 16. This is done to have a smoother transition from the intermediate design and 
give the constraint enough time to modify the design variables, leading to better convergence. The density filter radius is 𝑅 = 4mm, 
corresponding to one-third of the conductivity domain radius 𝜅. Using a smaller value could potentially lead to gaps between solid 
regions. The implications of the choice of 𝜅 and 𝑅 are discussed in Appendix A.3. The result of the robust TO problem from Eq. (19) 
and the progression of the design during the optimization can be seen in Fig. 7. This also illustrates how much P-mean underestimates 
the maximum temperature in the design domain and scaling to the true maximum is required, as explained in Section 2.2. The scaled 
P-mean maximum at the end of the iteration loop, denoted by 𝑇̄ 𝑒

max, where superscript 𝑒 stands for the eroded design, serves as an 
indicator of whether the overheating constraint is satisfied. The convergence criterion is determined by the number of iterations 
required for 𝑇̄ 𝑒

max to reach 𝑇cr ; a lower 𝑇cr typically demands more iterations for convergence.

Table 1 
Robust TO parameters for the conductivity estimation design.

 Parameters  Values
 SIMP penalization  3
 Volume fraction 𝑣𝑓  0.5
 Poisson’s ratio  0.3
 Density filter radius 𝑅 (mm)  4
 Critical temperature 𝑇cr  0.8
 Conductivity penalization factor 𝑞  3
 Relaxation exponent 𝑟  0.05
 Conductivity domain radius 𝜅 (mm)  12
 Projection sharpness 𝛽max  16
 Threshold eroded 𝜂𝑑  0.75
 Threshold intermediate 𝜂𝑖  0.5
 Threshold dilated 𝜂𝑑  0.25
 P-mean exponent 𝑃  25
 No.of iterations  600
 Move limits  0.2
 Constraint scaling parameter (MMA) 𝑐0  2500

Fig. 7. The scaled P-mean maximum over the TO iterations showing the overheating constraint being satisfied.
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The comparison between the robust TO designs with and without the overheating constraint is shown in Fig. 8. The hotspot maps 
are generated post-optimization using Eq.  (11) on the intermediate designs, and the maximum pseudo-temperature in the map is 
denoted by 𝑇̄max. Note that the eroded design has the lowest volume out of intermediate and dilated designs, and thus, 𝑇̄max computed 
on the intermediate design is lower than 𝑇̄ 𝑒

max, ensuring safer final designs. In Fig. 8b, the reference design without overheating 
constraint indicates a high risk of local overheating near the overhangs with a maximum pseudo temperature value of 𝑇̄max = 0.97. 
Preventing such overheating requires sufficient material distribution within the conductivity domain of each solid element. The 
overheating constraint facilitates this redistribution, promoting conductive pathways for effective heat evacuation toward the base 
plate, as illustrated in Fig. 8c. Moreover, the teardrop-shaped voids prevent thermal bottlenecks in the design. Consequently, the 
maximum pseudo-temperature is just 𝑇̄max = 0.78. The structure’s compliance is only 23% higher than the reference design, with the 
benefit of reduced overheating. The measure of non-discreteness as presented by Sigmund[60], which serves as a metric for assessing 
the black-and-white nature of the design, is also relatively low with a value of 𝑀nd = 3.34%. This indicates a crisp design with minimal 
intermediate densities.

3.1.  Numerical validation with high-fidelity LPBF process simulation

The effectiveness of the TO schemes in preventing local overheating is assessed using the high-fidelity transient LPBF process 
simulation described in Section 2.1. Four different cases presented are: i) reference robust TO design given in Fig. 8a, ii) topology 
optimized design with a geometrical overhang control by Langelaar[4], iii) combined length-scale and overhang control topology 

Fig. 8. Robust topology optimized designs (a) without overheating constraint, (c) with overheating constraint, and their corresponding hotspot maps 
in (b) and (d), respectively. The P-mean scaled maximum at the end of the design iteration is given by 𝑇̄ 𝑒

max, and the maximum pseudo-temperature 
of the hotspot map is given by 𝑇̄max. The increase in compliance value compared to the reference design is given by 𝐶∕𝐶ref , and the measure of 
non-discreteness is given by 𝑀nd.

Fig. 9. Part geometry dimensions used for the high-fidelity LPBF process simulation. 𝐛 indicates the build direction.
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optimized design by Pellens et al. [61], iv) and the robust TO design with overheating constraint proposed in this paper. All four 
designs were optimized using a finer resolution of 360×120 elements to achieve good accuracy in the transient thermal simulations. 
The 2D geometries are extended in the out-of-plane dimension to create 2.5D models for the transient thermal simulations. This 
enables convenient visualization of temperature fields, as temperatures remain constant along the out-of-plane direction in layer-by-
layer simulations. The element size is again taken as 0.5mm, corresponding to 10 lumped layers for a layer thickness of 50 µm, which 
makes the domain size of 180mm×60mm×30mm. The conductivity domain radius is 𝜅 = 12mm. The build direction is along the 
z-direction, as shown in Fig. 9.

The maximum temperature field 𝐓 during the heating step for all the elements obtained by the high-fidelity model is given in 
Fig. 10. Also, the spatial average of this temperature field is reported. The maximum temperature indicates the potential overheating 
risk, while the average of this field assesses overheating regions apart from regions where the maximum temperature occurs. It is 
evident that the optimized structure without any constraint in Fig. 10a is prone to overheating with 𝑇max = 1944 ◦C. This is due to 
long, almost horizontal overhangs in the design, causing severe overheating. However, constraining the design to have a minimum 
overhang angle of 𝜃cr = 45◦ does not fully ensure overheating prevention, as shown in Fig. 10b. This is because the funnel-like design 
features lead to thermal bottlenecks in the design, causing the temperature to rise to a maximum of 1160 ◦C, as shown in Fig. 10b. 
The combined length-scale and overhang control TO design eliminates some of these funnel-like structures, reducing the maximum 
temperature to 1104◦, as shown in Fig. 10c. However, with a cost of 24% compliance increase compared to the reference design. The 
reduction in performance is due to the length-scale restrictions on solid and void phases, reducing the design freedom.

Since conductivity estimation does not have a provision for overhang angle, to generate a design for comparison, we first perform 

Fig. 10. High-fidelity transient thermal process simulation predictions showing the maximum temperature 𝑇max attained on every material point 
during the AM process and the spatial average of this field 𝑇avg for (a) on a design without any manufacturability constraint, (b) on a design obtained 
by overhang control, (c) on a design obtained by combined length scale and overhang control, and (d) on a design obtained by the physics-motivated 
geometric approach. Both (b) and (c) have a critical overhang angle of 𝜃cr = 45◦. The conductivity estimation is used to calculate the maximum 
hotspot temperature (e) on the robust overhang controlled design as 𝑇cr = 0.85 for (d). The increase in compliance value compared to the reference 
design is given by 𝐶∕𝐶ref .
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Fig. 11. Regions with a maximum temperature 𝑇 > 900 ◦C representing the high-temperature zones (HTZ) highlighted in pink.

a conductivity estimation using Eq.  (11) on the combined length-scale and overhang control TO design in Fig. 10c since it is the 
least overheating prone of the three designs discussed above. The maximum pseudo-temperature 𝑇̄ce = 0.85, as shown in Fig. 10e, 
is considered as the critical temperature 𝑇cr in the overheating constraint. Fig. 10d shows the maximum temperature field 𝐓 for 
the proposed conductivity estimation design with 𝑇cr = 0.85. The inherent property of the conductivity estimation method to have 
sufficient material within the conductivity domain generates features that conduct heat efficiently to the baseplate, with a much less 
compromise on the objective of only 9%. This is because the conductivity estimation is not restricted to a single critical overhang 
angle throughout the design, preserving design flexibility, unlike other geometric overhang restrictions for overhangs (e.g. Zhang 
et al. [2], Langelaar[4], Gaynor et al. [6], Qian[62]) that impose stricter constraints. Also, the temperature field obtained from the 
high fidelity transient thermal model is depicted in Fig. 10d, where the maximum temperature is only 1061 ◦C, lower than all other 
designs shown above. The average temperature of 𝑇avg = 627 ◦C is also lowest among all four designs, indicating a lower spatial 
maximum temperature distribution. Hence, a physics-motivated geometric representation of heat conduction proposed in this paper 
establishes a practical balance between overheating control and mechanical performance.

Recall that to quantify the regions of high temperature, we defined high-temperature zones (HTZ), where the temperature is higher 
than a threshold pseudo-temperature. HTZs indicate the heat accumulation tendencies associated with different geometric features 
of the AM part. Fig. 11 shows HTZs where the temperature is higher than 85% (𝑇 > 900 ◦C) of the maximum temperature in the 
conductivity estimation design from Fig. 10d, highlighted with pink. It is important to note that the threshold temperature does not 
guarantee the absence of local overheating below this value. Instead, it serves as a lower bound to highlight features that are more 
susceptible to overheating risk. As depicted in Fig. 11a, overhang regions are particularly prone to reach elevated temperatures, with 
an HTZ volume fraction of 17.14%. In Fig. 11b, although the maximum temperature is lower, the presence of funnel-like and thin 
structures hinders effective heat conduction, leading to an HTZ volume fraction of 17.01%. In the combined length-scale and overhang 
control TO design, the incorporation of length-scale control enables thicker features, which facilitate more efficient heat dissipation 
and reduce the HTZ volume fraction to approximately 9.13%, as shown in Fig. 11c. However, despite the reduced prominence 
of funnel-like structures compared to the overhang-constrained design in Fig. 11b, the constant degree of overhang still introduces 
thermal bottlenecks, contributing to gradual heat accumulation in localized regions. The conductivity estimation design is not limited 
to a uniform overhang angle, allowing for greater design flexibility to create efficient heat conduction pathways. Consequently, the 
HTZ volume fraction further reduces to 6.03%, as shown in Fig. 11d. This once again demonstrates that purely geometric control 
is inadequate for addressing local overheating, emphasizing the need for a physics-based approach to mitigate heat accumulation 
effectively with more design freedom and higher performance.

The reference robust TO design contains long overhangs, making it unsuitable for printing without the addition of supports. These 
support structures also serve as heat conduction pathways to the baseplate. To assess how much supports reduce local overheating in 
the part, we generated tree-like support structures using Autodesk Meshmixer, with a maximum support angle of 45◦ (consistent with 
overhang control applied) and a thickness of 3mm. The high-fidelity transient thermal simulation described above was then applied 
to the supported design as shown in Fig. 12. The black outline in Fig. 12a and b highlight the boundary between the part and the 
supports.

The maximum temperature field 𝐓 during the heating step, obtained from the high-fidelity model, is shown in Fig. 12a. In our 
analysis, we focus only on the part itself and exclude the temperatures on the supports. In the supported design, 𝑇max in the part 
decreases from 1944 ◦C obtained in the unsupported case to 1350 ◦C, while 𝑇avg decreases from 670 ◦C to 629 ◦C in the presence of 
supports. Fig. 12b highlights the high-temperature zones (HTZs), defined as regions above 900 ◦C. These zones are shown in pink on 
the part (excluding the supports), while for comparison, the HTZ of the unsupported robust TO design from Fig. 11a is indicated in 
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Fig. 12. Transient high-fidelity thermal simulation showing (a) maximum temperature attained during the AM process on the reference robust TO 
design with supports and (b) the regions with a maximum temperature 𝑇 > 900 ◦C representing the high-temperature zones (HTZ) are highlighted 
in pink. The HTZ for the robust TO design without any supports is superimposed over the supported design and highlighted in dark blue. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. High-fidelity transient thermal process simulation predictions showing maximum temperature on conductivity estimation designs with 
different critical temperature 𝑇cr .

dark blue. The supported design exhibits an HTZ volume fraction of 11.42%, compared to 17.14% in the unsupported case, confirming 
that supports enhance heat conduction. However, they also increase material consumption, and their removal is both costly and 
detrimental to surface quality. By contrast, the conductivity estimation design requires no support for manufacturing and thus avoids 
these drawbacks, while achieving significantly lower values of 𝑇max = 1061 ◦C, 𝑇avg = 627 ◦C, and HTZ = 6.03%.

Recall that the level of local overheating can be further reduced by choosing a lower 𝑇cr . This is demonstrated in Fig. 13, where 
the transient thermal simulation predictions are superimposed on the designs for 𝑇cr = 0.85 and 𝑇cr = 0.7. The maximum temperature 
𝐓 during the heating step is compared. With a stricter overheating constraint, the optimizer must add more material inside the 
conductivity domains such that 𝑇̄ 𝑒

max = 𝑇cr . As a result, the maximum temperature is just 948 ◦C and the average temperature is 619 ◦C. 
However, this comes at the cost of compromising the objective, resulting in an increase in structural compliance of approximately 
47% for 𝑇cr = 0.70.

3.2.  Extension to 3D

To extend the proposed novel TO method to 3D, we have utilized the standard minimum compliance TO code provided by Liu and 
Tovar[63]. The code is modified to incorporate robust TO by Wang et al. [57] and our novel overheating constraint. The boundary 
conditions and loading of the cantilever beam load case are given in Fig. 14. The build direction indicated by 𝐛 is along the 𝑧
axis. Once again, the reference is the minimum compliance robust TO for a global volume constraint. The conductivity estimation 
method described in 2D can be extended to 3D by extending the conductivity domain from ℝ2 to ℝ3. The conductivity domain hence 
becomes a hemisphere that encapsulates the solid features in the three-dimensional domain, as shown in Fig. 15a. The orientation of 
the conductivity domain depends on the build direction to capture the densities of only the elements that are already printed. The 
weights defined in Section 2.1 account for the proximity to the build direction and the heat source. The grayscale of the conductivity 
domain indicates the influence of neighboring elements on the local conductivity, i.e., darker shades represent higher influence and 
vice versa, as shown in Fig. 15a. The local conductivity of every solid element is computed using Eq.  (10). Fig. 15b shows the 
hotspot map generated using Eq.  (11) on a topology-optimized design with no overheating constraint. Similar to the 2D cases, 
heat accumulation occurs in overhanging and thin features, which lack sufficient material beneath them to enable effective heat 
evacuation.
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Fig. 14. A 3D cantilever beam problem. The design space, loading, and boundary conditions are given. The cantilever beam has one face fixed, and 
the load is acting on the bottom front edge. The build direction is indicated by 𝐛.

Fig. 15. Post optimization hotspot map generated using the conductivity estimation method in 3D robust TO design without the overheating 
constraint.

Our physics-motivated geometrical overheating constraint and incorporation into the robust TO formulation, as discussed in 
Section 2.2, can be directly extended to 3D. The critical temperature value is set to 𝑇cr = 0.8, and two different volume fractions, 
𝑣𝑓 = 0.3 and 𝑣𝑓 = 0.5, are tested and compared against the robust TO design without the overheating constraint, as shown in Fig. 16. 
The conductivity domain radius for the given domain size is 𝜅 = 14mm and 𝜅 = 18mm for 𝑣𝑓 = 0.3 and 𝑣𝑓 = 0.5, respectively. The 
density filter radius 𝑅 is one-third of 𝜅, as explained in Section 3. The remaining parameters are taken from Table 1. The design domain 
is discretized with 90 × 30 × 30 elements. Fig. 16b and d show the hotspot map of the robust TO with the overheating constraint for 
the volume fraction of 0.3 and 0.5, respectively. The P-mean scaled maximum pseudo-temperature, 𝑇̄ 𝑒

max = 0.8, indicates that both 
designs satisfy the overheating constraint for 𝑇cr = 0.8. Also, the maximum pseudo-temperature 𝑇̄max is significantly lower than the 
𝑇̄max of reference designs. This is because the overheating constraint redistributes material to ensure adequate heat conduction paths 
beneath each element, while the length-scale control prevents gaps in the design. Furthermore, the structural compliance exhibits 
minimal escalation of 7% and 3%, for volume fractions of 0.3 and 0.5, respectively.

The cross-sectional view of the designs gives a better idea of the design modifications to limit local overheating, as shown in Fig. 17. 
Two section views have been taken, one along the 𝑥 − 𝑧 plane located halfway along the 𝑦 axis, called S1, and the second along the 
𝑦 − 𝑧 plane located halfway along the 𝑥 axis, S2. The designs without the overheating constraint exhibit severe overheating along the 
long overhangs, indicating regions with poor heat conduction. This issue is resolved in the designs with the overheating constraint, 
which introduces sufficient material beneath areas of low heat conduction. Additionally, the teardrop-shaped voids observed in the 
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Fig. 16. Comparison of the hotspot maps of robust TO for 𝑣𝑓 = 0.3 (a) without overheating constraint (b) with overheating constraint (𝑇cr = 0.8), 
and for 𝑣𝑓 = 0.5 (c) without overheating constraint (d) with overheating constraint (𝑇cr = 0.8). The P-mean scaled maximum at the end of the design 
iteration is given by 𝑇̄ 𝑒

max, and the maximum pseudo-temperature of the hotspot map is given by 𝑇̄max. The increase in compliance value compared 
to the reference design is given by 𝐶∕𝐶ref .

Fig. 17. Section views of the designs obtained with and without the overheating constraint. Section views 1 and 2 of the robust TO for 𝑣𝑓 = 0.3
are shown in (a) and (b), respectively, and for 𝑣𝑓 = 0.5, in (c) and (d), respectively. Section views 1 and 2 of the conductivity estimation design for 
𝑣𝑓 = 0.3 are shown in (e) and (f), respectively, and for 𝑣𝑓 = 0.5, in (g) and (h), respectively.

2D designs appear in the 3D problem, as shown in Fig. 17f and h. Hence, the conductivity estimation designs effectively mitigate 
features that lead to local overheating, while maintaining structural stiffness with minimal compromise in 3D TO problems.
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3.3.  Computational cost comparison

The computation times of all four designs mentioned in Section 3.1 and the physics-based local overheating reduction method by 
Ranjan et al. [39] are compared, considering a design domain of 360×120 elements in 2D. The wall clock times are measured on 
a 3GHz processor with 16GB of RAM. Moreover, the computation times of conductivity estimation in 3D explained in Section 3.2 
and the physics-based local overheating reduction method in 3D by Ranjan et al. [40] are also presented to show the computational 
efficiency of our physics-motivated geometric method as compared to a physics-based overheating reduction method. In the 3D 
setting, a domain size resolution of 120×40×40 elements is used, and simulations are performed on an HPC cluster. The wall clock 
time of the simulations, including computational operations and system overhead, is given in Fig. 18a and b for the designs in 2D 
and 3D, respectively. Table 2 shows the average wall-clock time per iteration for 2D and 3D.

The computation time of the robust TO design is taken as a reference. In 2D, the computational cost of TO with overhang control 
is relatively low. The adjoint approach involves simple operations with sparse or even diagonal matrices per layer, which makes the 
order of complexity as 𝑂(𝑁), where 𝑁 is the total number of elements in the design domain. The computational cost doesn’t increase 
significantly in the combined length-scale and overhang control, as only the eroded design densities are considered for the compliance 
calculation. In the conductivity estimation method, the conductivity of each element 𝑖 depends on 𝑗 ∈ 𝑆𝑖 in the conductivity domain, 
and thus, the sensitivity analysis includes densely populated sparse matrix multiplication (see Appendix A.4). Hence, the order of 
complexity is now 𝑂(𝑁𝑑2), where 𝑑 is the number of non-zero elements per row of the sparse matrix. However, the computation time 
is still significantly lower than the physics-based hotspot reduction method [39,40]. This is because in the latter, solving even a steady-
state heat equation over a smaller sub-domain has a complexity of order 𝑂(𝑁3), where 𝑁 is the degrees of freedom in the sub-domain, 
and multiple such steady-state thermal equations are solved along the build direction, increasing the computation time significantly. 
Additionally, in the conductivity estimation method, the weight functions can be pre-computed outside the iteration loop, similar to 
the density filter by Bruns and Tortorelli [54]. As seen from Table 2, the computation time per iteration of the geometric conductivity 

Fig. 18. Computation times over the iterations for different optimization methods in 2D and 3D.

Table 2 
Average CPU time per iteration for different TO designs.
 Models  CPU time (s)/iteration 2D  CPU time (s)/iteration 3D
 Robust TO [57]  0.59  –
 TO with overhang control [4]  0.83  –
 Combined length-scale and overhang control TO
 [61]  1.42  –
 TO with physics-based hotspot constraint
 [39,40]  7.54  483.04
 Robust TO with overheating constraint  4.78  147.82
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estimation method is around 1.58 times lower than the physics-based hotspot constraint. The reduction in time is more prominent in 
3D, where the degrees of freedom increase, and we see a significant reduction of around 3.26 times compared to the physics-based 
method by Ranjan et al. [40]. Thus, the conductivity estimation method proved to be computationally efficient in reducing local 
overheating compared to the physics-based methods.

4.  Conclusions

A novel geometric yet physics-motivated hotspot detection method and its integration with the TO are presented to address 
the local overheating prevention in metal AM. The method uses a geometric representation of heat conduction and computes a 
local conductivity measure for all the material points in the design domain. The weight factors used ensure that the physics of heat 
conduction is incorporated in the computation of the local conductivity. A comparison with high-fidelity transient thermal simulation 
revealed that the conductivity estimation method can detect critical overheating zones in the part very efficiently. The conductivity 
estimation method is employed as an overheating constraint in robust TO. The constraint is formulated to remain active in regions 
with poor heat conduction and is easily satisfied elsewhere. As a result, the overheating constraint compels the optimizer to modify 
the density in low-conduction regions to create heat conduction paths to the baseplate and reduce the risk of overheating.

The designs obtained using the overheating constraint with robust TO proved superior in avoiding local overheating when ana-
lyzed with a high-fidelity transient thermal AM simulation and compared against geometric TO designs. Strictly restricting overhang 
inclination can still lead to AM manufacturability challenges, especially when long overhangs taper into thinner features, creating 
thermal bottlenecks. Combined length-scale overhang-controlled designs mitigate local overheating by incorporating thicker fea-
tures, which allow for improved heat evacuation. However, the trade-off with this approach is a notable decrease in the structural 
performance. On the contrary, the conductivity estimation method does not directly constrain the overhang angle to a fixed value, 
increasing the design freedom and leading to better structural performance and overheating prevention. The decrease in stiffness is 
even lower in 3D than in 2D, indicating that designs free from local overheating can be achieved without compromising structural 
integrity for large TO problems. Moreover, a significant computational gain is obtained for finer resolution geometries and large 3D 
structures with the geometric conductivity estimation method compared to other physics-based local overheating prevention methods 
in the literature.

The critical temperature value, 𝑇cr , is introduced as a tunable parameter that enables improved overheating prevention at the cost 
of reduced stiffness. It is up to the user to find the trade-off between compliance and overheating reduction by tuning the critical 
temperature value. Determining its appropriate value for a given material and process parameters is beyond the scope of this paper. 
Furthermore, developing a framework to define the weight functions of the conductivity domain based on these parameters is essential 
for enhancing the optimized designs. At present, the conductivity estimation method is limited to planar layer deposition. The next 
step involves modifying the conductivity domain to align with the build direction and the curvature of the deposition layers, thereby 
incorporating the fabrication sequence in nonplanar material deposition, an approach made feasible through robot-assisted multi-axis 
AM.
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Appendix A. 

A.1.  Influence of conductivity penalization 𝑞 and relaxation exponent 𝑟

We perform a parameter sweep to identify suitable values for the conductivity penalization exponent 𝑞 = 1, 3, 5 in Eq.  (10) 
and the relaxation exponent 𝑟 = 0.01, 0.05, 0.1, 0.25, 0.5 in Eq.  (19d), as summarized in Fig. A.19. All other parameters are taken 
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Fig. A.19. Parametric sweep of conductivity penalization 𝑞 and relaxation exponent 𝑟 for 𝑇cr = 0.8. The P-mean scaled maximum at the end of the 
design iteration is given by 𝑇̄ 𝑒

max, and the maximum pseudo-temperature of the hotspot map is given by 𝑇̄max. The blue dot indicates the feasible 
designs obtained. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

from Table 1, with the critical temperature value fixed at 𝑇cr = 0.8. Designs that are both feasible and effective in suppressing local 
overheating are marked with a blue dot next to their respective captions. The parameter 𝑞 controls the degree of penalization applied 
to intermediate densities: higher values lead to stronger penalization. The parameter 𝑟 influences the required value of 𝜇̄ to meet the 
critical temperature value 𝑇cr : larger 𝑟 values reduce the required 𝜇̄, resulting in fewer solid elements in the conductivity domain.

When 𝑟 is very low (e.g., 𝑟 = 0.01), the required 𝜇̄ becomes excessively high to satisfy the constraint. As shown in Fig. A.19a–
c, this causes solid densities to cluster, leading to infeasible designs. On the other hand, very high 𝑟 values (e.g., 𝑟 = 0.5) result in 
lower required 𝜇̄ values to satisfy the overheating constraint following Eq.  (19d) and exemplified by designs shown in Fig. A.19m–o. 
However, these designs still turn out to be infeasible, as their maximum pseudo-temperatures of the hotspot map 𝑇̄max exceed the 
threshold, despite 𝑇̄ 𝑒

max = 𝑇cr .
The penalization exponent 𝑞 helps avoid intermediate densities in the local conductivity calculation. However, its impact is most 

relevant during the early optimization iterations when the projection sharpness 𝛽 is low. If the penalization is too strong (e.g., 𝑞 = 5), 
intermediate densities are quickly eliminated, and the design prematurely converges to a black-and-white configuration before 𝛽 is 
increased. This premature convergence makes it difficult for the optimizer to update the design variables and satisfy the constraints, 
as illustrated in Fig. A.19o, i, f, c. The only exception is shown in Fig. A.19l, where a lower required 𝜇̄ allows the design to converge 
even with high penalization. In contrast, the designs shown in Fig. A.19d, g, e, h, k exhibit good convergence and successfully satisfy 
the imposed constraints. Since 𝑞 = 1 leads to convergence issues at higher 𝑟 values (see Fig. A.19j), the recommended choice is 𝑞 = 3, 
as it allows for a broader usable range of 𝑟 values.

A.2.  Influence of critical temperature 𝑇cr and relaxation exponent 𝑟

A parametric sweep of the critical temperature value 𝑇cr = 0.9, 0.8, 0.7 in the overheating constraint given in Eq.  (19d) is performed 
for different relaxation exponent values 𝑟 = 0.01, 0.05, 0.1, 0.25, 0.5 to investigate how the strictness of the constraint influences the 
resulting designs, as shown in Fig. A.20. All parameters are consistent with those in Table 1, except for the number of iterations for 
the 𝛽 update cycle and constraint scaling parameter 𝑐0. As the overheating constraint becomes stricter, more iterations are required 
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Fig. A.20. Parametric sweep of critical temperature 𝑇cr and relaxation exponent 𝑟 for 𝑞 = 3. The P-mean scaled maximum at the end of the design 
iteration is given by 𝑇̄ 𝑒

max, and the maximum pseudo-temperature of the hotspot map is given by 𝑇̄max. The increase in compliance value compared 
to the reference design is given by 𝐶∕𝐶ref . The blue dot indicates the feasible designs obtained. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

for convergence, necessitating a slower update of 𝛽. Specifically, 𝛽 is updated every 50 iterations for 𝑇cr = 0.9, every 100 iterations for 
𝑇cr = 0.8, 0.7. Additionally, the values of 𝑐0 = 1000, 2500, 3500 for 𝑇cr = 0.9, 0.8, 0.7, respectively, showed good convergence behaviour.

As in the previous study from Appendix A.1, infeasible designs are observed at both very low and very high values of 𝑟, as shown 
in Fig. A.20c, b, a, o, n, m, respectively. When 𝑇cr is lowered, the constraint becomes more stringent, prompting the addition of 
more solid material beneath each element to lower the P-mean scaled maximum pseudo-temperature 𝑇̄ 𝑒

max. These solid regions often 
form nearly vertical features that ensure direct thermal conduction paths from the topmost layers to the baseplate, enabling effi-
cient heat evacuation. Additionally, thinner features tend to be straighter than thicker ones due to limited material availability for 
heat conduction. Funnel-shaped structures that cause thermal bottlenecks and are observed at higher 𝑇cr values vanish as the con-
straint tightens. This transition gives rise to tear-drop-shaped voids, which resemble those seen in physics-based hotspot-constrained 
topology-optimized designs reported by Ranjan et al. [39]. However, as design freedom decreases under stricter constraints, structural 
compliance increases. Conversely, increasing 𝑟 leads to greater design freedom by reducing the required 𝜇̄ to meet the overheating 
constraint, which in turn lowers compliance, as observed in Fig. A.20f, i, l.

The designs obtained for different 𝑇cr values perform well within the previously identified optimal range of 𝑟 = 0.05, 0.1, 0.25, with 
a few exceptions noted in Fig. A.20j, i. Among these, 𝑟 = 0.05 consistently yields feasible designs for all values of 𝑇cr , as demonstrated 
in Fig. A.20f, e, d, and is therefore recommended. However, if both better stiffness and improved overheating control are desired, 
higher values of 𝑟 may be preferred for stricter 𝑇cr , as illustrated in Fig. A.20d, h, l.
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Fig. A.21. Parametric sweep of density filter radius 𝑅 and conductivity domain radius 𝜅 for 𝑇cr = 0.8. The P-mean scaled maximum at the end of 
the design iteration is given by 𝑇̄ 𝑒

max, and the maximum pseudo-temperature of the hotspot map is given by 𝑇̄max. The blue dot indicates the feasible 
designs obtained. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A.3.  Influence of density filter radius 𝑅 on the conductivity domain radius 𝜅

The conductivity domain radius 𝜅 controls the domain size in calculating the local conductivity. In 2D, a conductivity domain 
radius of 𝜅 = 12 mm has been used in all simulations, as this corresponds to the thermal interaction length derived from our process 
parameters and material properties, following the method outlined in Ranjan et al. [32]. To examine the influence of the density filter 
radius 𝑅 and the parameter 𝜅 on the conductivity estimation designs, simulations are conducted using 𝜅 = 6, 12, 18 mm, with varying 
values of 𝑅, for 𝑇cr = 0.8, as summarized in Fig. A.21. In the figures, the conductivity domain is represented by an orange semicircle, 
while the density filtering domain is shown as a black circle. In the first row, 𝑅 is set to one-third of 𝜅, whereas in the second row, it 
is assigned a value of 𝜅∕2, 𝜅∕4, and 𝜅∕6.

Feasible designs are obtained when 𝑅 corresponds to one-third of 𝜅 as seen in Fig. A.21a, b, c. This is because the density filter 
radius in the robust TO projection is adequate to enforce a length scale in both solid and void phases. An improvement is observed 
when the ratio of 𝑅∕𝜅 is increased to 1/2, as shown in Fig. A.21a, where the design is free from the smaller void regions seen in 
Fig. A.21a. This results in more efficient pathways for heat conduction. However, choosing a smaller ratio of 1/4 or 1/6 can result 
in gaps existing in the final design as the density filtering domain is insufficient to impose a length scale for the features inside 
the conductivity domain, as seen in Fig. A.21e, f. Even though they satisfy the overheating constraint as indicated by 𝑇̄ 𝑒

max, and the 
maximum pseudo temperature from the hotspot map 𝑇̄max is below 0.8, these gaps will result in local overheating. Therefore, selecting 
an appropriate value of 𝜅, based on material properties and process parameters, and the corresponding 𝑅, is crucial for controlling 
the design features in the proposed overheating constraint TO.

A.4.  Sensitivity analysis of the overheating constraint

The overheating constraint given by Eq.  (19d) is differentiated with respect to the eroded projected densities ̄̃𝜌𝑒 to calculate its 
sensitivity. The partial derivative 𝜕𝑔

𝜕 ̄̃𝜌𝑒𝑙
 is a result of sparse matrix multiplication. The non-zero entries in the sparse matrix are due to 

the dependence of each element 𝑙 on the conductivity domain of other elements. Let this set of elements be denoted as 𝑘 ∈ 𝑃𝑙, where 
element 𝑙 exists in the conductivity domain of the 𝑘th element. To represent this relationship, we define a sparse matrix Ψ of size 
𝑁 ×𝑁 , where the non-zero entries in row 𝑖 correspond to indices 𝑗 ∈ 𝑆𝑖, representing elements in the conductivity domain of element 
𝑖. Conversely, the elements 𝑘 for which element 𝑙 lies in their conductivity domain can be identified as the non-zero entries in row 𝑙
of the transpose matrix Ψ⊤. Thus, the sensitivity of the overheating constraint 𝜕𝑔𝜕 ̄̃𝜌𝑙  (superscript 𝑒 removed for brevity) is evaluated as 
follows: 

𝜕𝑔
𝜕 ̄̃𝜌𝑙

= 𝛼
𝑁𝑇cr

[

1
𝑁

𝑁
∑

𝑖=1

(

(1 − 𝜇̄𝑖) ̄̃𝜌𝑟𝑖
)𝑃

]

1
𝑃 −1

∑

𝑘∈𝑃𝑙

[

(

(1 − 𝜇̄𝑘) ̄̃𝜌𝑟𝑘
)𝑃−1

(

𝑟(1 − 𝜇̄𝑘) ̄̃𝜌𝑟−1𝑘 𝛿𝑘𝑙 −
𝑞 ̄̃𝜌𝑟𝑘 ̄̃𝜌

𝑞−1
𝑙

𝑘𝑤𝑙
∑

𝑗∈𝑆𝑘
𝑘𝑤𝑗

)]

. (20)

Sensitivities with respect to the design variables are calculated using the chain rule as:
𝜕𝑔
𝜕𝜌

=
𝜕𝑔
𝜕 ̄̃𝜌

𝜕 ̄̃𝜌
𝜕𝜌̃

𝜕𝜌̃
𝜕𝜌

. (21)
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