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Continuous Human Activity Recognition With

Distributed Radar Sensor Networks and
CNN-RNN Architectures

Simin Zhu"', Ronny Gerhard Guendel™, Graduate Student Member, IEEE, Alexander Yarovoy, Fellow, IEEE,

and Francesco Fioranelli

Abstract— Unconstrained human activities recognition with
a radar network is considered. A hybrid classifier combining
both convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) for spatial-temporal pattern extraction is
proposed. The 2-D CNNs (2D-CNNs) are first applied to the radar
data to perform spatial feature extraction on the input spec-
trograms. Subsequently, gated recurrent units with bidirectional
implementations are used to capture the long- and short-term
temporal dependencies in the feature maps generated by the
2D-CNNs. Three NN-based data fusion methods were explored
and compared with utilize the rich information provided by the
different radar nodes. The performance of the proposed classifier
was validated rigorously using the K-fold cross-validation (CV)
and leave-one-person-out (L1PO) methods. Unlike competitive
research, the dataset with continuous human activities with
seamless interactivity transitions that can occur at any time
and unconstrained moving trajectories of the participants has
been collected and used for evaluation purposes. Classification
accuracy of about 90.8% is achieved for nine-class human activity
recognition (HAR) by the proposed classifier with the halfway
fusion method.

Index Terms—Deep learning (DL), distributed radar, human
activity recognition (HAR), micro-Doppler signatures, radar
sensor network (RSN).

I. INTRODUCTION

VER the past decades, radar systems have gained
Osigniﬁcant attention for short-range indoor scenarios,
for example to localize and track moving humans [1]-[3],
recognize various human behaviors [4]-[6], and even mon-
itor their vital signs [7]-[9]. Compared with other sensors,
such as inertial measurement units (IMUs) or RF tags, radar
sensors can capture human motion without the participants
carrying any device on them. Furthermore, unlike LiDAR
and camera sensors, radar is robust against environmental
light conditions. Moreover, it can measure range, velocity,
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and angular information simultaneously for each independent
target. Last but not least, radar may alleviate end-users’ pri-
vacy concerns in sensitive environments like the lavatory and
bedroom.

Among various applications mentioned above, radar-based
human activity recognition (HAR) has high societal impor-
tance. For example, in elderly care, HAR systems can be
applied to detect life-threatening activities like “falling” [10].
Commonly, HAR is achieved by exploiting the features of
human motions embedded in the Doppler-time (DT) domain
(or spectrogram) [11]-[13]. Additionally, it is possible to
use other radar data representations, for instance, the range-
time (RT) domain [14], the range-Doppler (RD) domain [15],
or the cadence velocity diagram (CVD) [16]. Nevertheless,
much work still focuses on using spectrograms for HAR as
they can capture the characteristics of individual body parts
movement [17].

One of the first works that shows the feasibility of
radar-based HAR has been presented in [18]. It uses the
support vector machine (SVM) [19] as the classifier trained on
a set of handcrafted features extracted from spectrograms. Sub-
sequently, Kim er al. [20] proposed an alternative HAR sys-
tem using deep learning (DL) [21] approaches to remove the
requirement for feature extraction and selection steps. In their
work, the proposed classifier is based on the convolutional
neural network (CNN), which conducts an automatic feature
extraction process and allows a hierarchical decomposition of
the input data.

CNN treats the input spectrograms as optical images. It is
well known that CNN exploits local correlations in the input
data by restricting the receptive field of the hidden neurons in
the network to be local [22], [23]. However, the Doppler spec-
trogram of human motion contains not only local correlations
but also temporal dependencies [24]. To capture both, it is
desired for the output neurons in the CNNs to have a sizeable
receptive field so that no critical information will be lost [25].

Modern CNN architectures [26], [27] consider stacking
many convolutional layers and using the subsampling tech-
nique to increase the size of the receptive field. However, deep
CNNs (DCNNs) are notoriously data-hungry because of the
significant amount of trainable parameters to be estimated [28].
Besides, to use CNNs for HAR, the input spectrogram is often
assumed to contain only one type of activity [29]-[31].

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 07:15:36 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-0092-9082
https://orcid.org/0000-0002-7824-4318
https://orcid.org/0000-0001-8254-8093

5115215

To address the above-mentioned limitations in using CNNs
for HAR, the recurrent neural network (RNN) and its vari-
ants [32] were proposed as alternatives [33]. RNNs are
well-suited for processing temporal series due to their loop
structure [34]. For example, an HAR system that considers
the continuous nature of human activities is presented in [35].
This system uses the long short-term memory (LSTM) [36]
network with its bidirectional implementation [37] as the
classifier. Dissimilar to the previous works, in which different
human activities were separated artificially during the data
collection stage, the result shows that RNNs can be applied
to process continuous sequences of human movements with
seamless interactivity transitions. However, one downside of
RNNs compared with CNNGs is that they fail to capture the
local structure of the input data due to their fully connected
topology.

Apart from the limitations of specific network architectures,
many research works investigated radar-based HAR tasks
in a constrained fashion. More specifically, the directions
of the target’s movement are limited within a trajectory to
mitigate the influence of unfavorable aspect angles on the
system performance [38]. This is a simplification of realistic
scenarios, where the targets can move freely with an arbi-
trary trajectory, and the HAR problem becomes unconstrained
and more challenging [39]. In addition to the unconstrained
trajectories, performed activities in real life are also contin-
uous, with flexible duration and natural transitions between
activities.

Multinode radar systems with different internodal data
fusion methods were introduced to reduce the dependence of
the classification accuracy on the aspect angle [40]. In general,
such a radar sensor network (RSN) consists of several spatially
distributed radar nodes, working in a multistatic [41] or
distributed monostatic [42] framework. Compared with using
a single radar for HAR, there is a higher chance that at
least one radar node in the RSN can capture the human
movement from a favorable aspect angle. With RSN, it is
important to investigate the impact of different radar geome-
tries and data fusion techniques. A simulation framework
was proposed in [43] to benchmark the activity recognition
performance in relation to various radar deployment geome-
tries, and different data fusion strategies to handle the uncon-
strained HAR problem in a distributed RSN were presented
in [44].

Despite these initial studies, to the best of our knowledge,
very few works in the literature have investigated radar-based
unconstrained HAR with classifiers combining both CNNs
and RNNs for spatial-temporal pattern extraction and verified
such approaches on experimental data from a distributed RSN.
From this perspective, the main contributions of this article are
as follows.

1) The proposed classifier provides an end-to-end solution
for automatic HAR in an RSN. It exploits a hybrid
CNN-RNN architecture to leverage the merits of both
NNs. The 2-D CNNs (2D-CNNs) are first applied to
perform spatial feature extraction on the input spectro-
grams. Subsequently, gated recurrent units (GRUs) [45]
with bidirectional implementations are used to capture
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the long- and short-term temporal dependencies in the
feature maps generated by the 2D-CNNs. Unlike several
previous works which only explored one type of NN,
the proposed classifier can capture the spatial-temporal
characteristics of human motion to classify continuous
human activities with seamless interactivity transitions.
Three types of NN-based data fusion methods are
explored, i.e., the early fusion (signal-level fusion),
late fusion (high-level fusion), and halfway fusion
(intermediate-level fusion), in order to exploit the mul-
tiperspective views and data provided by the RSN
for unconstrained HAR. Additionally, a weight-sharing
(WS) technique is implemented across all feature extrac-
tion channels. This leads to a lightweighted NN with a
fewer number of trainable parameters and better classi-
fication performance.

Unlike some previous works, this article considers a
more realistic and challenging HAR scenario. In par-
ticular, during the data collection stage, the participants
were allowed to move freely in the measurement area
while performing continuous activities. Hence, each
radar recording contains multiple human activities with
natural interactivity transitions. In total, nine types of
activities are collected and performed by 14 participants.
For model evaluation, the K-fold cross-validation (CV)
method and the leave-one-person-out (L1PO) method
are implemented together to utilize the limited dataset
more efficiently and estimate the model performance
more rigorously. The result shows that maximum clas-
sification accuracy of 90.8% is reached on the unseen
test dataset.

Considering realistic HAR scenarios, the performance of
the proposed classifier is further assessed in three practi-
cal aspects, namely, the system generalization capability,
the influence of imperfect tracking, and the system
scalability. For the generalization capability, it is shown
that the proposed classifier can generalize well on the
unseen dataset of a new participant with a classifica-
tion accuracy of 85.1% averaged over 14 participants.
Regarding the impact of imperfect tracking on the HAR
problem, it is shown that the proposed classifier can
maintain a stable classification performance even when
the missed detection rate is set to as high as 2E-1
(essentially equivalent to the loss of several time bins
of spectrograms for classification). Finally, the proposed
hybrid CNN-RNN classifier is shown to be able to
process a variable number of radar inputs after network
training. In other words, there is no alignment limitation
if the number of actually deployed radar nodes is differ-
ent from those considered in training, showing that the
classifier has up/down scalability.

2)

3)

4)

The rest of the article is structured as follows. First, the
experimental setup and the used dataset are explained in
Section II. Next, the design details related to the proposed
HAR system are presented in Section III. Then, the sys-
tem performance is evaluated using the experimental data
in Section IV. After that, three practical aspects related to
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Fig. 1. Layout of the distributed RSN at TU Delft MS3 Laboratory [44].
It consists of five identical pulsed UWB radars placed circularly around
the measurement area. The measurement area is a circle with radius equals
to 2.19 m.

realistic HAR scenarios are inspected in Section V. Finally,
conclusions and potential future directions are provided in
Section VI.

II. EXPERIMENTAL SETUP AND DATASET DESCRIPTION

This section presents the experimental setup of the homo-
geneous RSN [44] and an overview of the used dataset [46].

A. Experimental Setup

Fig. 1 shows the layout of the distributed RSN, in which
the top picture illustrates the position of the radars at TU Delft
MS3 Laboratory, Delft, The Netherlands, and the bottom one
provides the schematic of the radar deployment geometry.

In the RSN, five identical pulsed radio ultrawideband
(UWB) [47] radar sensors were used. Compared with other
types of radar sensors, for example, the popular frequency-
modulated continuous-wave (FMCW) radar, the UWB radar
is also suitable for indoor sensing [48]. Also, due to its
large operational bandwidth, it can provide extraordinarily
high range resolution and localization capability. Further-
more, UWB radar is robust against the multipath and fading
effect and has the advantage of low power consumption,
compact installation size, and affordable price. The UWB
radar used in this article is provided by Humatics (PulsON
P410). It operates at a center frequency of 4.3- with 2.2-GHz
bandwidth. The pulse repetition frequency (PRF) of the radar
is 122 Hz, or 8.2 ms in terms of pulse repetition interval
(PRI), with a resulting maximum unambiguous velocity of
around £2.13 m/s. Each radar has two omnidirectional broad-
band antennas, and they work in a monostatic mode with
a computer synchronizing the simultaneous operation of all
nodes.
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B. Dataset Description

The dataset used in this work is publicly available; readers
interested in more detail and visualizations can refer to [46].
The human movements considered in the dataset are designed
to simulate unconstrained human activities of daily living
(ADL). The pursuit of unconstrained HAR is crucial, not
only because of the continuous nature of human motions
but also for the future development of home monitoring
systems for older and possibly frail residents [10]. Overall,
nine types of activities are performed (labeled from 1 to 9)
and 14 participants joined the data collection process (labeled
from A to N). To have continuous human activities with
seamless interactivity transitions, each participant is asked
to perform a combination of the designed activities inside
the measurement area. In total, seven combined sequences of
the designed human movements were constructed, and each
combination was performed four times by every participant.
These combined sequences include the following.

1) “Walking” (label 1) versus “Stationary” (label 2).

2) “Sitting-down” (label 3) versus “Standing-up” (label 4).

3) “Bending from sitting” (label 5) repeated in a sequence.

4) “Bending from standing” (label 6) repeated in a

sequence.

5) “Falling-from-walking” (label 7) versus “Standing-up-

after-falling” (label 8).
6) “Falling-from-standing’ (label 9) versus “Standing-up-
after-falling” (label 8).

7) “Mix of all nine activities” (contains labels from 1 to 9).

While performing different activities, participants were free
to determine transition points between two consecutive activ-
ities, and these transitions could occur multiple times during
the 2-min (120-s) recording time of each sequence. This is
expected to increase the diversity of the transitions between
activities in the collected data, as opposed to data collection
approaches that may require participant time or some degree
of control over transitions [42]. Moreover, participants can
choose their own trajectory for translational activities, such as
“walking.” Likewise, for in-place motions, such as “Sitting-
down,” participants can change their body orientation, as well
as the aspect angle to the lines of sight of the radar nodes.

An example of the recorded data for one of the “Mix of all
nine activities” sequence is shown in Fig. 2.

III. METHODOLOGY

This section provides the design details of the proposed
HAR system.

A. System Overview

Fig. 3 provides an overview of the proposed HAR system.
This consists of five blocks, including: 1) the data preprocess-
ing block; 2) the CNN block; 3) the data fusion block; 4) the
RNN block; and 5) the fully connected NN (FCNN) block.

First, the data preprocessing block transforms the raw radar
data into the input data (spectrograms). Next, the CNN blocks
extract spatial features from the spectrograms and generate
intermediate feature maps. Then, the data fusion block com-
bines the maps from five convolutional channels and selects
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Fig. 2. Example of the recorded data with nine human activities performed
continuously, with seamless interactivity transitions. The top figure shows the
footprints of the participant during his movement in the measurement area.
The middle figure presents the spectrogram extracted from radar #3. The
bottom figure provides the ground truth labels for the target’s movements.

the most prominent features. After that, the RNN block is
used to capture the temporal characteristics from the feature
map after fusion. Finally, the FCNN block maps the high-level
feature representations to the final predictions.

B. Data Preprocessing Block

The main objective of the data preprocessing block is to
process the raw UWB radar data and format it as input data
for model training, validation, and testing. This consists of
three steps: 1) data alignment; 2) target localization; and
3) feature extraction. In this section, we summarize these three
preprocessing steps. However, readers interested in additional
details of specific processing methods for UWB radar wave-
forms used in this work are referred to [49], [50].

The UWB radars in the proposed RSN work as monostatic
nodes, each with a local oscillator. Since small inaccuracies
in the central synchronization process may cause a slightly
different start and end sampling times, it is important to
first align the data from the five radar nodes so that the
detection of human motion can be fused later. As the global
acquisition start and end timestamps are provided for each
radar, data alignment can be accomplished by simply selecting
the collected data of the five radars within the latest acquisition
start time and the earliest acquisition end time.

Generally, knowing the target’s position is a necessary
condition for extracting its Doppler signatures [51]. However,
integrating tracking algorithms with the HAR task will directly
increase the system complexity. Furthermore, as discussed
in Section V-B, imperfect tracking can influence the quality
of the generated input data. Therefore, this article uses an
alternative solution that considers the Doppler effect in the
fast-frequency/slow-time domain [49].

The alternative method is similar to the phase-based demod-
ulation method described in [50]. It first implements the fast
Fourier transform (FFT) on the collected RT map along the
fast-time dimension. FFT converts the received pulses from
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the fast-time/slow-time domain to the fast-frequency/slow-
time domain, where “fast-frequency” represents the frequency
spectrum of each individual UWB pulse. Assuming that the
pulses generated by the UWB radar are identical and that
the bandwidth and the center frequency of the pulses are
known, tracking moving targets can be simplified by locating
the frequency bins that contain the phase variations caused
by human motion. This method is specifically used in UWB
radar, allowing only one target to appear in the sensing area.

In the feature extraction stage, the short-time Fourier trans-
form (STFT) is implemented to process the extracted fre-
quency bins and generate the spectrogram. Since the complete
spectrogram contains human motions of 2 min, it is further
segmented into several small, nonoverlapping segments. The
final input data to the proposed NN has a size of 32 by 30,
where 32 is the Doppler axis and 30 is the time dimension
(262.4-ms interval between two timestamps). It should be
noted that this article does not provide detail analysis of
the input size, focusing on the network structure and fusion
capabilities.

Finally, it is worth mentioning that the data preprocessing
discussed here aims to remove the dependencies between
the tracking and classification problems. However, since the
ultimate goal for many HAR tasks is joint tracking and
classification, it might be rewarding as future work to replace
the preprocessing block with a multiple target tracking (MTT)
system with subsequent feature extraction, as illustrated in
Section V-B.

C. CNN Block

In this work, the stacked 2D-CNN is used to perform a
stepwise feature extraction process on the input data. This
can automatically generalize spatial features without “manual
feature engineering.” In addition, one advantage of using
CNN s is that they are invariant to the translation of frequency
changes [52]. This is a crucial feature because the Doppler
characteristics of human activities can translate into the time
and frequency dimensions.

Fig. 4 shows the design details of the CNN block. Each
input source from a radar node is processed by a CNN block.
A total of five CNN blocks with the same architecture are used.
The CNN block contains three 2D-CNN layers for extracting
spatial features and one 1 x 1 convolutional layer (also known
as network-in-network (NIN) [53]) for depth reduction. Since
the input data came from five identical UWB radars, a WS
technique [54], [55] is implemented on the five CNN blocks.
This WS approach allows the five blocks to have the same
architecture and share the same weights, thereby reducing
the number of model parameters and mitigating potential
overfitting problems. It should be noted that the WS approach
does not imply that the data from the five radar nodes are
of equal importance to the final prediction (this is actually
decided in a later data fusion block), but the WS uses the
same parameters for the initial feature extraction part.

In the CNN block, each 2D-CNN layer is usually followed
by a batch normalization (BN) [56] layer, a nonlinear activa-
tion layer, and a pooling layer. BN is used to standardize the
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Architecture overview of the proposed HAR system. On the leftmost are the raw radar inputs from five UWB radar sensors. The inputs to the CNN

block are the spectrograms. The outputs of the HAR system are predictions, which provide information about the performed activities.

feature maps generated by the 2D-CNN layer. It implements
normalization and scaling steps on the feature maps and read-
justs the mean and standard deviation through two trainable
weights. As shown in [57], BN can speed up the model training
process. In addition, it can reduce generalization errors and
alleviate the problem of internal covariate shifts [58].

After BN, nonlinearity is introduced in the NN by adding
a nonlinear activation layer. This enables the network to learn
complex relationships between input and output. It converts the
learned linear mapping into a nonlinear form for propagation
in the hidden layer, or predictions in the output layer [59].
In the proposed CNN block, the rectified linear activation
function (ReLU) [60] is used to perform an element-level
nonlinear transformation on the data passed from the BN layer.

In addition to the BN and activation layer, the first 2D-CNN
layer has an additional layer, the pooling layer. This can pro-
vide additional translational invariance to the CNN block [61].
Besides, it offers an inexpensive method to quickly increase
the receptive field of the CNN block and reduces the com-
putational cost. In this work, maximum pooling (MaxPool)
is added after the first 2D-CNN layer, and it only applies
down-sampling in the frequency dimension [58], [62].

Finally, the output of each CNN block is an intermediate-
level feature map, which can be further processed by subse-
quent processing blocks.

D. Data Fusion Block

Fig. 5 illustrates the implementation of the data fusion
block. It uses the halfway fusion method to combine the
rich information of human motion observed by the five radar
nodes. This method first concatenates the intermediate feature
maps provided by the five CNN blocks to form a data cube.
Then, a channelwise MaxPool is performed to select the most
representative features. After that, the data cube is compressed
into a feature map again and sent to the RNN block.

There are several advantages of using the halfway fusion
method. First, it can be used to fuse data from heterogeneous
sensor systems. It also supports an end-to-end data fusion
pipeline without the need for multistage model training. How-
ever, the halfway fusion method is often hard to train and has
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Fig. 4. Architecture of the five CNN blocks. Each of them consists of three
2D-CNN layers for feature extraction and one 1 x 1 convolutional layer for
channel reduction. In addition, the weighted-sharing technique is applied to
the five CNN blocks.

many training parameters. This is because the prediction error
needs to be back-propagated through multiple CNN blocks to
adjust their weights. In this work, the use of homogeneous
RSN and WS technique alleviate the shortcomings of the
halfway fusion method.

In addition to the halfway fusion method, two popular
data fusion strategies, early fusion and late fusion are also
considered and compared in this work. As the name suggests,
early fusion combines the multisensor data in the early stages
of processing. In this article, the early fusion method concate-
nates the input spectrograms into a cube and then feeds them
to the CNN block. Different from halfway fusion, the NN with
early fusion has lower complexity because it only needs one
CNN block. However, if the input data have different formats,
such as fusion of optical and audio inputs, or even radar data
of different formats and dimensions, the early fusion method
is not applicable.

Contrary to early fusion, late fusion merges the data in the
later stages of processing. The input spectrogram from each
radar node is first processed independently by the proposed
CNN and RNN blocks. After that, the generated high-level
feature maps are connected, and the final prediction is achieved
through the FCNN block. As a result, the late fusion method
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Fig. 5. Illustration of the data fusion block. It first concatenates the feature

maps generated by the five CNN blocks. Then, it applies a channelwise
MaxPool to select the most representative features.

allows the fusing of data from heterogeneous sensors. In addi-
tion, it permits single-modal pretraining. However, the late
fusion method is time-consuming because it requires multiple
stages of pretraining.

In short, the main difference between the three NN-based
data fusion methods lies in the way and location where the
data sources are fused. Because of this, they allow feature
interaction between the five input channels at different levels.

E. RNN Block

Although the CNN block can take advantage of the local
correlation from the input spectrogram in the time and fre-
quency dimensions, DCNNs are usually required to capture
long-term temporal dependencies. However, DCNNs are dif-
ficult to design and require a lot of training data. Therefore,
the RNN block is introduced after the data fusion block to
directly model the signal in time.

Three types of RNNs are studied in this work, including:
1) the simple RNN [32]; 2) LSTM [36]; and 3) GRU [45].
The simple RNN is similar to a single neuron but has cycles
in the time dimension. It calculates the hidden state vector
of the next timestamp and the output vector of the current
timestamp based on the previous hidden state and current
sequence input. The loop continues and the hidden state
propagates until the last data sequence is processed. Therefore,
for the output vector of a given timestamp, the simple RNN
uses not only the current input but also the previous hidden
state containing the information of all past input. It should be
noted that the propagation of hidden states over time is a key
characteristic of RNN because continuous human activities are
time-dependent.

However, due to the vanishing gradient problem [63], simple
RNNs are not good at capturing long-term dependencies.
LSTM and GRU are two variants of simple RNN, which can
effectively handle long-term temporal correlation. LSTM and
GRU have a loop architecture similar to the simple RNN. They
process the input data in turn and propagate the hidden state
vector forward in time. Unlike simple RNNs, LSTM and GRU
introduce several gates, each of which regulates the data flow
into and out of the network and learn to keep only relevant
information. The special gate architecture of LSTM and GRU
alleviates the problem of gradient disappearance and improves
the training speed. As for differences between LSTM and
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GRU, first of all, they have similar architectures, and both use
gates to control the update of the hidden state vector. However,
GRU has fewer gates and trainable parameters. Hence, it runs
faster than the LSTM during model training. Nevertheless,
LSTM and GRU are often used in research, because it is
difficult to say which is more effective for specific problems
and data.

It should be mentioned that the RNNs discussed earlier are
unidirectional. In other words, the output of these RNNs at a
given timestamp is based on the current and previous model
inputs. However, human activities are time-dependent in both
front and rear directions, such as the continuous movement
of “walking,” “falling-from-walking,” and “standing-up-after-
falling.” For example, to classify a “fall,” not only the Doppler
signatures of the past “walking” motion will help, but the
future “standing-up-after-falling” will also help. In order to
solve this problem, this article considers the bidirectional
implementation [37] of the RNNs discussed earlier. Compared
with the unidirectional RNNs, the bidirectional RNNs have an
additional reverse loop layer. The forward layer takes the input
sequence forward in time, and the reverse layer takes the input
sequence backward in time. Then, the output vectors from the
forward and reverse layers are concatenated. Therefore, the
output of the bidirectional RNNs at a given timestamp is based
on the past, present, and future inputs.

F. FCNN Block

The FCNN block appears at the end of the proposed NN
and is used to make the final prediction. It consists of three
dense layers and one dropout layer [64]. For the dense layer,
it usually contains multiple neurons. Each neuron in a dense
layer is connected to all neurons in its adjacent layer. Due to
its special architecture, the dense layer can learn how to build
a mapping between input and output.

In this work, the input data of the FCNN block is the
high-level feature map generated by the RNN block. In order
to predict the human activity at each time step, the FCNN
block is distributed in the time dimension. In other words,
the FCNN block processes the vectors in the feature map one
at a time. Finally, the Softmax activation function is used to
calculate the probability vector of human activity changes over
time.

G. Implementation Details

In this work, the proposed classification model is developed
using the TensorFlow platform [65]. All model training, vali-
dation, and testing experiments are performed on a single-core
Intel Xeon CPU at 2.2 GHz and a Tesla T4 GPU running with
CUDA [66].

The proposed classifier is trained from scratch. The
mini-batch gradient descent method [67] optimized by adap-
tive moment estimation (Adam) [68] is applied to model
training. The training data is equally divided into batches with
a batch size of 32. During training, the initial learning rate is
set to 1E-3, and once learning stalls, a callback function is
used to reduce the learning rate. Although the model can be
trained for up to 100 epochs, the early stopping strategy [69]
is used to avoid over-training the neural network.
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TABLE I

COMPARISON OF VALIDATION RESULTS OF THE PROPOSED CLASSIFIER
WITH A DIFFERENT NUMBER OF CNN AND RNN LAYERS

Depth of CNN | Validation Acc. (%) std Parameters
1 84.9% 1.72 32K
2 84.9% 1.94 45K
3 87.1% 1.11 71K
4 86.2% 1.06 96K
5 86.3% 1.35 122K
Depth of RNN | Validation Acc. (%) std Parameters
1 84.0% 1.61 32K
2 87.1% 1.11 71K
3 87.0% 1.02 90K
4 86.8% 1.07 108K

Thanks to the lightweight network architecture, the total
training time for tuning the 71 K trainable parameters is about
2 min, and the average runtime latency for computing one
prediction is about 78.9 ms (or 128.6 ms using only the CPU).
Considering that the input data (spectrogram) provided to the
classifier has an update rate of 262.4 ms (equivalent to 32 radar
pulses), the time margin when using a single-core CPU is
about 133.8 ms. Although the real-time implementation of the
proposed classifier is not the goal of this article, this time
margin seems to suggest that the proposed method is real-time
implementable given the prediction rate reasonably required
for indoor human monitoring.

IV. RESULTS AND DISCUSSION

This section presents the evaluation results of the proposed
classifier for various model configurations.

For the train-validation-test dataset split, the K-fold CV
and L1PO methods are used in combination. First, the L1PO
method randomly holds out the data of one participant among
the 14 as the testing data. Next, the fivefold CV method
partitions the remaining data into the training and validation
sets. Then, the classifier and its hyperparameters are trained
and adjusted based on the training and validation data. Finally,
the optimized classifier is assessed using the testing data.

The default model architecture is provided in Section III
and, unless specifically mentioned, is applied to all experi-
ments presented here.

A. Hyperparameter Tuning

The depth of the CNN and RNN blocks are two crucial
hyperparameters in the hybrid CNN-RNN architecture. Table I
shows the validation accuracy of the classifier as a function of
the number of CNN and RNN layers.

Based on these results, deepening the CNN and RNN block
can improve the system performance in terms of validation
accuracy and standard deviation (std). This is because a
deeper CNN and RNN architecture enables the classifier to
learn more complicated spatial and temporal characteristics.
However, further increasing the depth of both NNs beyond a
certain threshold will not continue to benefit the performance.
This is because the more complex the model the higher
the number of model parameters, potentially leading to the
overfitting problem, especially when the available data for
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TABLE II

COMPARISON RESULTS OF THE PROPOSED CLASSIFIER
WITH/WITHOUT USING THE WS TECHNIQUE

Weight-sharing (WS) | Validation Acc. (%) std Parameters
With WS 87.1% 1.11 71K
Without WS 83.7% 0.89 229K

model training is limited, which is a typical condition for
radar-based experimental HAR. Finally, it is worth mentioning
that similar trends have also been observed in [61], [70], [71]
for speech recognition tasks using the CNN-RNN architecture.

B. Impact of the Weight-Sharing Method

In radar-based HAR tasks, the available dataset for system
development and training of algorithms often has a small size
due to the demanding efforts of data collection and labeling.
Thus, the complexity of the proposed NN becomes a critical
factor to consider since a complex NN can easily overfit the
limited training data and learn irrelevant information.

To address this issue, a WS method is proposed and
applied to the five convolutional blocks. Table II shows
the impact of the WS method on classification performance
and model complexity in terms of a number of parameters.
With this technique, the number of trainable parameters has
reduced significantly from 229 K to 71 K. Moreover, the
model achieves a higher classification accuracy. Despite the
advantages, it should be noted that implementing the WS
method requires a “homogeneous” sensor network consisting
of identical sensor nodes.

C. Impact of Different Types of RNNs

In the proposed hybrid architecture, RNNs are responsible
for capturing the temporal dependencies within the input data.
To find the best-suited RNN, Fig. 6 shows the comparison
results of the proposed classifier with six different RNN archi-
tectures. More specifically, the simple RNN is compared with
its two variants, i.e., GRU and LSTM. All three types of RNNs
are also implemented with their bidirectional implementation
for comparison.

As shown in the results, all RNNs with a bidirectional archi-
tecture outperform the corresponding unidirectional RNNs.
This indicates that both forward and backward temporal
characteristics are beneficial for radar-based HAR and should
be captured. However, the simple RNN does not gain as
much improvement as LSTM and GRU with the bidirectional
architecture. This shows that the long-term dependencies,
which the simple RNN fails to capture due to the vanishing
gradient problem, are also crucial features for improving the
model performance in this application.

D. Impact of Different Data Fusion Methods

For a distributed RSN, it is necessary to consider various
types of data fusion methods to leverage the best performances
from the combination of information from different radar
nodes. Fig. 7 presents the comparison results of the proposed
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Fig. 6. Comparison results of the proposed classifier with three popular RNN
architectures and their bidirectional implementations.

©
=1

gss f

~ t

(2]

s

S 80

(%]

Q

<

.5 75

g f -

g 70 * ‘_

65
Early Halfway Late Radar Radar Radar Radar Radar
Fusion Fusion Fusion #1 #2 #3 #4 #5
Fig. 7. Comparison results (accuracy bars and std interval) of the proposed

classifier with three types of data fusion strategies: early fusion, late fusion,
and halfway fusion. The three fusion methods are further compared to the
case when only the data from a single radar is used (denoted “Radar #N,” N
indicates the radar index).

classifier with three NN-based fusion strategies, i.e., early
fusion, late fusion, and halfway fusion. Moreover, the system
performance with data fusion is compared with the case when
only the data from a single radar is used (i.e., “No Fusion”).

Based on the results, it is evident that all three fusion tech-
niques outperform the “No Fusion” case. This demonstrates
that using a distributed RSN with data fusion methods for
solving unconstrained HAR problems is superior to using
just a single-radar setting. Moreover, we can see that the
system performances for the single-radar case are similar to
each other. This is related to the fact that the participant’s
movements inside the measurement area are nearly random,
and the chances for each radar node to have a good or bad
aspect angle are approximately equal. This randomness can
also be observed from the example of movements’ footprints
in Fig. 2.

Apart from that, it is noted that the halfway fusion method
outperforms its two counterparts with regard to classification
accuracy and std. This indicates that the halfway fusion,
which allows fusing intermediate-level convolutional features,
is the best choice of fusion scheme for the problem at hand.
It provides a balance between combining fine DT details and
high-level feature representations.

Finally, the relationship between the recognition accuracy
and the number of radars is shown in Fig. 8. It is clear that
as more radar sensors are used together, the recognition rate
improves. Also, if we compare the use of a single radar with
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Fig. 9.  Confusion matrix of the proposed classifier for nine-class HAR
obtained using the testing data. The rows in the confusion matrix represent
the actual labels, whereas the columns represent the predicted labels.

the use of two radars, the performance gain is most significant,
but it becomes progressively more difficult to considerably
increase performance while adding more sensors (“law of
diminishing returns”). Beyond the simple number of radar
sensors used together, it may be an interesting work to study
the effects of different geometries of these nodes [43], but this
is beyond the scope of this article.

E. Performance Evaluation of the Optimized Network

After hyperparameter tuning and searching for the optimal
NN architecture, the performance of the optimized classifier
is studied in this section.

Fig. 9 provides the confusion matrix of the proposed clas-
sifier to check if there are misclassifications in distinguishing
two different classes. Fig. 9 shows that the proposed classifier
performs generally well in making correct predictions for

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 07:15:36 UTC from IEEE Xplore. Restrictions apply.



ZHU et al.: CONTINUOUS HAR WITH DISTRIBUTED RADAR SENSOR NETWORKS AND CNN-RNN ARCHITECTURES

91
90.5
90
89.5
89
88.5
88
87.5
87
86.5

86 ——
Test Accuracy Macro

F1-Score

Macro-average Macro-average

Recall Precision

Fig. 10. Performance of the proposed classifier evaluated using accuracy
and three additional metrics. All results are measured using the testing data
with the L1PO method.

each type of human activity. However, three error patterns are
observed. They are: 1) “Walking” versus. “Stationary” (label
1 and 2); 2) “Walking” versus “Falling-from-walking” (label
1 and 7); and 3) “Standing-up-from-falling” versus “Falling-
from-stationary” (label 8 and 9). Further analysis of the error
patterns is discussed in Section IV-F.

In Sections IV-A-IV-D, the accuracy metric is the primary
evaluation metric used to measure the performance of different
network configurations and hyperparameters, which is a popu-
lar choice widely used in the literature. However, for multiclass
recognition tasks, such as the one at hand, the accuracy metric
cannot reflect the model performance for each class and can
hide significant classification errors for minority classes if the
dataset is imbalanced. In this case, the dataset is imbalanced as
there is a majority of walking compared with in-place activities
and relatively fewer falling cases than other activities.

Fig. 10 provides the classification accuracy of the opti-
mized classifier and three additional metrics, including:
1) macro-average recall; 2) macro-average precision; and
3) macro Fl-score. The macro-average recall and precision
reflect the averaged recall and precision performance across
different classes. In contrast, the macro Fl-score aggregates
the macro-average recall and precision to indicate the model’s
overall performance. As shown in the results, even though
the collected data is imbalanced for each class, the proposed
classifier is able to learn complex feature patterns using limited
data and achieve acceptable performance on the additional
metrics (i.e., 88.1% macro Fl1-score), without having signifi-
cant errors in the less frequent classes.

F. Error Analysis

To further improve the performance of the proposed classi-
fier, it is necessary to understand the reasons behind the errors
that the classifier made. Hence, this subsection analyzes the
error patterns based on an inspection of the testing data and
the prediction results.

Fig. 11 illustrates three primary error patterns generated by
the proposed classifier. Among them, the most common error
is the transition error [shown in Fig. 11(a)]. It might happen
when the target translates its activity from the current type to
another but the classifier is confused in determining the exact

5115215
Sitting-down Stationary Walking
Vvs. vs. vs.
Standing-up Falling-from-stationary Stationary

(b)

== == Predicted label Ground truth

Fig. 11.  Three primary causes of the prediction errors in the proposed
classifier. From left to right: (a) transition error, (b) boundary error, and
(c) labeling error.

transition point in time. It should be noted that this potential
confusion exists already in the labeled ground-truth data, as it
is difficult (even for the participants themselves) to define
exactly the transition instant between two consecutive activity
types. Nevertheless, one would like to have the prediction
of the classifier as close as possible to the transition instant
indicated in the ground truth.

The second type of error is the boundary error. This often
happens at the two boundaries of the input spectrogram, i.e.,
the starting and ending points in time. The boundary error can
have a high incidence rate when the target changes its activity
category at the boundaries [as illustrated in Fig. 11(b)]. Based
on the conclusions from Section IV-C, it is known that both
the backward and forward temporal correlations are beneficial
for model prediction. However, there is not enough forward
or backward information for the classifier to exploit at the
boundaries of the spectrogram.

The last type of mistake is the labeling error. These are
unavoidable human errors that can happen at any time due to
mislabeling. As shown in Fig. 11(c), the participant performed
two continuous activities, “Stationary” and ‘“Walking,” and
this is already empirically noticeable by visual inspection in
the spectrogram. However, the ground truth label indicates
that the target conducted “Walking” only, though the classifier
correctly recognized the “Stationary” action.

V. FURTHER EXPLORATION OF PRACTICAL ASPECTS

This section provides further explorations of the system
performance from three practical aspects in relation to realistic
HAR problems.

A. System Scalability

One practical issue in dealing with realistic HAR tasks is
the required alignment in the number of radar nodes between
the development (e.g., controlled conditions in laboratory) and
the deployment environment (e.g., private spaces in homes or
offices). The alignment may be hard to achieve because the
number of radars in the deployment location can be limited by
conditions such as cost and space. Therefore, it is desirable
that the designed HAR system has scalability so that it can
handle a variable number of radar outputs.

To test this aspect, the proposed classifier was trained and
tested with an unmatched, different number of radars. The
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Fig. 12.  Test accuracy of the proposed classifier for an unmatched number
of radars in the training and testing data. Here, the classifier was trained and
tested on a different number of radars. This aims to simulate the case when
different radar nodes were deployed after the model training. The blue bars
indicate that the classifier was tested using five radars, whereas the orange
means only three radars were used for testing (radar index #/, #3, and #5).

results are shown in Fig. 12. In Fig. 12, two experiments were
conducted. The first experiment measures the upscaling capa-
bility. The classifier is first trained using three radars (radar
index #1, #3, and #5). After model training, the classification
accuracy is measured using the testing data collected from
all five radars. Based on the results, although the classifier is
trained with only three radars, it is able to capture relevant
information from five radars and improve the test accuracy.
On the contrary, the second experiment inspects the down-
scaling capability of the classifier. Unlike before, the classifier
is trained using all five radars but tested with three radars
(radar index #1, #3, and #5). The result shows that although
the test accuracy is reduced from 89.9% to 86.8% by using
fewer radars, the accuracy is similar (86.8% versus 87.1%)
and the std is smaller (0.38 versus 1.37) compared with the
case when the classifier is trained and tested with three radars.
The reason behind the success of the up- and down-
scalability of the proposed classifier is the use of a hybrid
CNN-RNN architecture and the halfway fusion method. In the
CNN-RNN architecture, CNNs are specialized in capturing
various motion patterns in the input data. After model training,
the CNN block can be used as a feature extractor and applied
to generalize middle-level convolutional features from a vari-
able number of inputs. Moreover, the halfway fusion block
itself does not contain any trainable parameters but simply
combines feature maps from different convolution channels.
Finally, it is important to note that the experiments con-
ducted in this section are simplified and idealized. In real-
world scenarios, for example, radars might be placed in very
different geometrical settings. However, it suffices to prove
the capability of the proposed classifier in terms of up/down
scalability, which has been rarely discussed in previous works.

B. Impact on Classification of Imperfect Tracking

Although many works did not consider tracking tasks while
investigating the HAR problem, being able to detect and
track the target in the indoor environment is a prerequisite
for realistic activity recognition, especially for multisubject
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TABLE III

NUMBER OF ZERO COLUMN VECTORS GENERATED FOR EACH RADAR
CHANNEL ACCORDING TO A GIVEN MISSED DETECTION RATE (Pyp).
THE TOTAL NUMBER OF COLLECTED DOPPLER VECTORS IN THE
TESTING DATASET FOR EACH RADAR CHANNEL IS 6990

Pnrrp | Rad. #1 | Rad. #2 | Rad. #3 | Rad. #4 | Rad. #5
1E-3 10 6 9 7 6
SE-3 39 27 40 29 30
1E-2 76 59 77 61 63
SE-2 362 325 366 330 334
1E-1 717 664 722 672 677
2E-1 1424 1348 1431 1360 1367
3E-1 2128 2036 2137 2050 2060

activity recognition tasks. Human tracking using UWB radar
sensors [1] is a challenging assignment that is often affected
by ubiquitous false alarms and a high misdetection rate. Thus,
it is important to consider the impact of imperfect tracking on
the proposed HAR system.

Fig. 13 provides an example of the extracted spectrograms
from the proposed RSN based on the tracking results generated
by a decentralized tracker [3]. This example shows that the
direct implications of an imperfect filtering process within the
tracking algorithm are global and local misdetections. Worse
than the local misdetections at an individual radar node, global
misdetections imply that all radar sensors fail to track the
target in the scene. As a consequence of these problems,
the extracted spectrograms can be incomplete and filled with
zero-column vectors at certain time bins.

In this article, a test is performed to quantitatively analyze
the influence of the zero columns in the spectrograms on
the system performance. In the planned test, zero column
vectors are randomly added to the testing dataset according
to a Bernoulli process, parameterized by the missed detection
rate (Pyip). This would model the effect of imperfect tracking.
Table III shows the number of zero vectors generated for
each radar node under different Pyp values. To empirically
visualize how the zero vectors influence the quality of the
input data, Fig. 14 provides the comparison between the
input spectrograms when Pyp equals 0 and 2E-1. Finally,
it is noteworthy that the zero vectors are only added to
the testing data, with the assumption that the training data
were collected in a more controlled scenario where imperfect
tracking is not present, unlike in the testing scenarios. It is
possible that mixing zero vectors also in the training data
may add extra regularization effects to the network learning
and improve the system’s robustness, but this is left for future
work.

Fig. 15 shows the classification accuracy of the pro-
posed classifier measured for different Pyip. Furthermore, two
depth reduction strategies are compared, the average pooling
(AvgPool) and MaxPool methods, within the halfway fusion
framework. Based on the results, the proposed classifier shows
a robust performance against misdetections as it can maintain
a test accuracy of approximately 83.6% even when Pyp is set
to 1E-1 (i.e., nearly one in ten-time bins of the spectrograms
are zeroed). Additional details on the problem of multitar-
get tracking in indoor human activity classification are also
reported in [72].
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Spectrogram: Radar 2

Example of the generated spectrograms using the proposed RSN based on the tracking results. The black rectangles which shift along time are

equivalent to the inputs to the proposed classifier. The red arrows pinpoint the time when all radars lost track of the target (global misdetection), whereas the
green arrow denotes the moment when the target is partially missed by the RSN (local misdetection).
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Fig. 14.  Visual illustration of the zero column vectors added to the input

spectrograms in case of missed detections. The original input data in the top

row (Pyp = 0) is compared with the case when Pyp is set to 2E-1.
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Fig. 15. Classification accuracy of the proposed classifier evaluated under
different missed detection rates (ranging from O to 3E-1). In addition, two
feature combining methods, AvgPool and MaxPool, for fusing the feature maps
generated by the convolutional feature extractor are compared.

Finally, a further improvement in classification accuracy
and system robustness is observed when an AvgPool layer
is applied to compress the convoluted feature maps. Unlike
the MaxPool layer, which only selects the most prominent
middle-level features and discards the others [73], the AvgPool
layer takes the average value of the features and retains
more robustness in case of missing information happening at
different nodes because of the imperfect tracking. As shown
in the results, the proposed classifier with the AvgPool-based
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Fig. 16. Generalization capability of the proposed classifier measured over
14 participants. The validation and test accuracy are calculated using the
fivefold CV method and the L1PO method, respectively.

halfway fusion method can withstand a Pyp of 2E-1 and
achieve approximately 81.2% test accuracy.

C. Generalization Capability for Unknown Participants

Also, very important is the generalization capability when
evaluating an HAR system. This is because radar-based appli-
cations often have a limited dataset, and an NN-based classifier
can easily overfit the training data. Therefore, it is necessary
to know how the proposed classifier performs on the dataset
sampled from an unknown participant never seen before.

Fig. 16 provides the evaluation result of the proposed
classifier. To measure its generalization capability, the L1PO
method is implemented across all 14 participants. More explic-
itly, each person has been selected as the testing data once,
while the remaining data are used for model training and
validation. With the fivefold CV method applied, for every test
instance, the model is trained, validated, and tested five times,
respectively, before averaging the results for each participant.

The result shows that, although the test accuracy fluctuates
across participants, the proposed classifier is able to generalize
well using only a very small part of all possible motion
patterns. The classifier scores an average test accuracy of
85.1% on the data from participants it has never seen before.
However, one might notice that the classifier is less accurate
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TABLE IV

PERFORMANCE COMPARISON BETWEEN REPRESENTATIVE M

ETHODS IN THE LITERATURE AND THE PROPOSED APPROACH

Works | Sensors | Size | Fusion | Features | Motion Diversity | Scalability | Mis-detection | Classification Performance
SVM CcwW / No / Separated and | Unexplored | Unexplored 92.8% accuracy measured us-
([18]) | Doppler constrained ing the hold-out method with
radar human motions handcrafted features for 7-class
HAR task
CNN SFCW About| No Spatial Separated and | Unexplored | Unexplored 94.9% accuracy reported using
([74]) | radar 135M | sensor features constrained the hold-out method for 8-class
fusion human motions HAR task
RNN One Not Yes Temporal | Semi-continuous Unexplored | Unexplored 92.7% average accuracy mea-
([42]) | FMCW given features and semi- sured using the LIPO method
+ three constrained with handcrafted features for 7-
UWB human motions class HAR task
CNN- | Planar About| No Spatio- Separated and | Unexplored | Unexplored 97.7% accuracy measured using
RNN FMCW 10M | sensor | temporal | constrained 5-fold CV with 0.5 sec aggrega-
([75]) | radar fusion features human motions tion time for 7-class HAR task
CNN- Linear Not No Spatio- Separated and | Unexplored | Unexplored 92.0% accuracy reported using
RNN FMCW | given | sensor | temporal | semi-constrained the hold-out method for 3-class
([76]) | radar fusion features human motions HAR task
CNN- CcwW 205K | No Spatio- Separated and | Unexplored | Unexplored 98.3% accuracy measured by 5-
RNN Doppler sensor | temporal | constrained fold CV for 7-class HAR and
([77]) | radar fusion features human motions 76.2% accuracy achieved by
this method on our dataset with
L1PO method
CNN- | Five 71K | Yes Spatio- Continuous and | Up/down Only 2.6% ac- | 90.8% accuracy measured us-
RNN UWB (three temporal | unconstrained Scalable curacy loss at | ing the L1PO and 5-fold CV
(ours) radars types) features human motions 1E-1 method for 9-class HAR task

in identifying the activities of Person L and M. One hypo-
thetical explanation for this performance drop is that there
was a considerable time gap between the data collection for
Person L and M and the remaining participants. During such
gap time, the layout of the laboratory furniture had to be
partially modified due to construction work, and the resulting
changes in multipath and clutter are hypothesized to affect the
performance of HAR systems.

In general, these results also reflect the importance of the
generalization test. Without it, the evaluation of the perfor-
mance can be severely biased, as the test accuracy ranges from
a maximum of 90.8% to a minimum of 75.5%.

VI. CONCLUSION

In this work, a novel hybrid CNN-RNN architecture for
HAR is designed for fusing data from an RSN. As summarized
in Table IV, the proposed network is validated by a continuous
and unconstrained stream of human motion collected using a
network of five distributed monostatic UWB radar nodes. This
more realistic human motion scenario differs from previous
studies that have tended to use artificially separated activities,
or at best, continuous activities just from a single-monostatic
radar. Notably, during the data collection, the 14 participants
were able to have arbitrary moving trajectories within the
measurement area, while performing nine ADLs with seamless
interactivity transitions.

Also, instead of manually generating handcrafted features,
the proposed CNN-RNN classifier performs automatic feature
extraction across spatially distributed radar nodes. The stacked
2D-CNNs perform a hierarchical feature decomposition on the
input data, whereas the bidirectional GRUs exploit the past and
future temporal dependencies within the human motion. Fur-
thermore, three NN-based data fusion methods were explored
and compared to utilize the rich information provided by the

different nodes of the RSN. Due to the lightweight CNN-RNN
architecture and WS technique, the proposed network is
small in scale with only 71 K trainable parameters, which
reduces the need to collect large radar datasets that are often
expensive.

Besides, considering more realistic human activities, three
practical aspects for the implementation of the proposed clas-
sifier in HAR problems were considered, namely, the system
scalability across different numbers of nodes, the impact
of imperfect tracking, and the generalization capability for
unknown participants. The results showed that the proposed
classifier has up/down scalability to handle a variable number
of radar inputs after model training. Also, it shows a robust
performance against missed detections during the tracking
process prior to spectrogram generation, as well as acceptable
performances for unseen participants.

For a fair and comprehensive performance comparison in
terms of classification accuracy, as shown in the last column
of Table IV, one challenge is the broad diversity of approaches
proposed in the literature. These tend to consider different
sensor types and numbers, a different number of classes and
data representations, and different evaluation methods. This
makes it difficult to compare on the same benchmarking
dataset, also because the source code of some models is
not shared. To attempt a possible comparison, the method
proposed in [77] for separated (noncontinuous) activities has
been reimplemented to handle our dataset. This method and
our proposed method have been validated rigorously using
a combination of L1P0O and K-fold CV method: the former
decides the test data and the latter splits the rest into training
and validation. The result shows that fivefold-averaged clas-
sification accuracy of about 90.8% is achieved for nine-class
HAR by the proposed classifier, whereas the method adapted
from [77] yields lower results.
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Future work aims to further improve the classifier’s per-
formance based on the current results. For example, promis-
ing future directions can be investigating the influence of
negative classes, trying to address the transition error and
boundary error as discussed in Section IV-F, or replacing
the current CNN-RNN architecture with deep transformers
operating on audio, images, or on point clouds [78]-[80].
Negative classes can be, for example, movements that are not
related to the activities of interest to be classified. For the
transition error, it is possible to remove the requirement of a
precise activity-to-label alignment by using the connectionist
temporal classification (CTC) [81] loss. Preliminary result
shows that adding the CTC loss to the proposed NN can signif-
icantly improve the F1 score of “Falling-from-walking” from
0.71 to 0.92.

Apart from that, different radar data representations for the
network input can be investigated. In this work, spectrograms
are used to capture the various velocity patterns of different
body parts in human movements. However, recent works [17],
[82], [83] have shown that combining multidomain informa-
tion for HAR can also be advantageous, e.g., combining the
RD, DT, CVD, and RT information.
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