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Abstract

This thesis addresses the challenge of refactoring untyped actor systems into typed ones, partic-
ularly within the Scala ecosystem using Akka framework [48]. The actor model, with its message-
passing architecture, offers a solution to concurrency and scalability issues in distributed systems,
but transitioning from untyped Akka Classic to typed Akka actors is complex and error-prone task.
This work proposes a solution through the development of a communication flow graph that captures
actor interactions and message exchanges, which is then used to automate the refactoring process
while preserving system behavior and communication integrity.

Key contributions include the implementation of the communication flow graph and an auto-
mated refactoring tool that translates untyped actor systems to typed ones. The evaluation demon-
strates that while the refactored systems maintain communication patterns and functionality, they
may introduce a slight reduction in maintainability. Additionally, the resulting effectiveness of the
refactored benchmarks varies depending on the complexity of the underlying system.

Lastly, this research sets the foundation for improving refactoring tooling aimed at actor systems,
extending the usability of the communication flow graph for the automated documentation of actor
systems, and highlights the need to revisit traditional software quality metrics to suit actor-based
systems.
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Chapter 1

Introduction

In modern software development, particularly in the domain of distributed systems, achieving concur-
rency, scalability, and fault tolerance is of utmost importance. The actor model, first introduced by Carl
Hewitt in 1973, offers a robust approach to handling these challenges [21]. Actors are independent
computational entities that communicate exclusively through asynchronous message-passing, without a
shared state, enabling them to avoid many concurrency issues such as race conditions and deadlocks.
This makes them ideal for building scalable and resilient systems [44]. One such library for implement-
ing the actor model on the JVM is Akka, which has gained significant traction for its ability to simplify
the development of concurrent and distributed applications [48].

In modern software development, particularly in distributed systems, achieving concurrency, scala-
bility, and fault tolerance is both difficult and important. Traditionally, concurrency was handled using
the thread model, where multiple threads share the same memory space and would require specific con-
structs to ensure data isolation. However, this approach often led to complex issues like race conditions,
deadlocks, and the need for intricate locking mechanisms to ensure data consistency [25]. The actor
model emerged as an alternative to address these challenges more simply and effectively [21]. Unlike
the thread-based model, actors are self-contained, independent computational entities that communicate
exclusively through asynchronous message passing. By avoiding shared state, the actor model elimi-
nates the need for locks, significantly reducing the risks of concurrency bugs like race conditions and
deadlocks. This makes actors a powerful tool for building scalable and resilient systems in which com-
ponents operate independently and failures are isolated to individual actors, enhancing fault tolerance
[5]. One such library implementing the actor model on the JVM is Akka, which has gained signifi-
cant traction for simplifying the development of concurrent and distributed actor-system applications by
offering high-level abstractions that ease the complexities of managing concurrency [48].

Initially, Akka was implemented based on an untyped actor system, which does not enforce any
restrictions on the types of messages exchanged between actors. While flexible, this approach can lead
to runtime errors when messages of the wrong type are sent, as type checking only occurs at runtime
[20]. This increases the difficulty of code maintenance, as developers must rely on manual manage-
ment of message contracts and interactions. As a result, in large systems, untyped actors can introduce
complications in maintaining and reasoning about the flow of messages across the system. To overcome
these issues, Akka Typed was introduced to provide strong type safety into the actor model, enforcing
type checks at compile time. This change significantly reduces the risk of runtime errors and improves
code maintainability by clearly defining which messages an actor can handle, along with other type
safety benefits. Typed actors specifically provide better guarantees about the correctness of message
exchanges and make the system more understandable for developers, supporting long-term maintenance
[31]. However, despite these benefits, there has been a noticeable adoption lag in migrating from Akka
Classic (untyped) to Akka Typed [19].

The primary reason for this adoption lag is the complexity involved in refactoring an untyped actor
system into a typed one. Refactoring and restructuring existing code without changing its external
behavior has inherent challenges, but refactoring a distributed system poses additional difficulties due
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1. INTRODUCTION

to the system’s complexity, non-deterministic behavior, and reliance on asynchronous message passing
[16, 42, 51]. Ensuring that communication patterns and behavior remain intact while transitioning from
untyped to typed actors is a demanding and error-prone task, which becomes even harder when a system
spans multiple components or services across a network. In addition, there is a significant gap in tooling
support for such transition as there are few tools or automated refactoring solutions to help developers
transform untyped actor systems into typed [8]. Without automated support, developers must heavily
invest productive time to ensure that all communication patterns are correctly transformed [36].

Such lack of tooling support can be explained by the currently limited ability to extract and interpret
underlying actor system communication patterns, message protocols, individual actor interactions, and
possible states [26]. Without this underlying capability, it becomes very difficult for an automated solu-
tion to comprehend and refactor actors while maintaining the correctness of the overall actor system. As
a result, this thesis seeks to address the challenges of untyped actor system refactoring, by both provid-
ing a way to extract underlying communication patterns within the system, as well as implementing an
automated refactoring solution for systems running on Scala. In addition, these extracted patterns could
provide valuable insights to help with the migration from untyped to typed actor systems and lay the
foundation for automated tasks like documentation generation, quality assurance, and test case genera-
tion [26]. By focusing on the refactoring of actor systems, and the unique issues they present, this work
contributes to the broader goal of making typed actor systems more accessible to Scala developers.

1.1 Problem Description

The core issue tackled in this thesis is the lack of tooling and capability to effectively identify and
extract communication patterns within actor systems, particularly those built in Scala using the Akka
framework. This lack of capability to understand the underlying communication between actors leads
to the broader problem of insufficient tooling support for refactoring efforts when transitioning from
untyped actor systems to typed ones. Developers are often discouraged from refactoring due to the
associated complexity and high effort cost resulting in adoption lag. Presently, no automated tool can
analyze and interpret the communication protocols, actor interactions, and message exchanges necessary
to perform accurate refactoring. This research aims to bridge that gap by proposing a method to extract
the communication protocols, which can then be used to automate the refactoring of untyped actors in
the Scala ecosystem.

The problem consists of several complex issues, each contributing to the overall challenge of ex-
tracting and refactoring actor communication patterns. First, identifying and resolving actor references
is essential to determine inter-actor communications. This involves identifying each variable and con-
structor parameters and determining their values to know an actor’s initial state. By knowing the initial
state, we can start mapping out the behavior of each actor which includes determining what messages an
actor can process, where the processing takes place, and how the actor’s state or behavior may change
over time. This also contributes to comprehending each message exchange between actors since it is
also necessary to understand the data types and parameters carried by messages. Lastly, any and all
interactions between actors or the external environment must be identified and mapped out between the
variables representing actors and targets of each interaction.

To successfully automate the refactoring of an actor system, additional challenges must be addressed.
Other than the identification of code elements that require modification, the resulting transformation of
expressions and underlying data types must be determined. On top of that, some cases cannot be directly
refactored with equivalent code expression due to underlying differences between untyped and typed
actor systems, which may require design space exploration [51]. A robust yet flexible enough solution is
essential to address wide range of scenarios, and only by addressing all these aspects can the refactoring
process be successful and fully automated.
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1.1. Problem Description

1.1.1 Research Question(s)

The primary goal of this thesis is to propose a way to extract communication patterns and implement an
automated refactoring tool for the Akka library assisting the Scala ecosystem with the transition from
untyped actors to typed ones. To achieve this, the following research questions will be answered:

• RQ1: How to refactor an actor-based system to a typed actor-based system?

The first research question focuses on the foundational problem of transforming an untyped actor
system into a typed actor system. The difficulty of this task comes from the requirement of
preserving the communication patterns and message protocols that actors use to interact with
each other in the system.

– RQ1.1: How can a message flow be extracted from an actor system?
The next key challenge is understanding and extracting the message flow between actors.
Accurate extraction of message flow allows for the correct mapping of untyped messages to
their typed equivalents, ensuring system correctness after refactoring.

• RQ2: How effective is the implemented automated actor refactoring?

This research question aims to evaluate the efficiency of the refactored program. The goal here
is to determine whether automated tools can reliably and accurately refactor actor systems with-
out introducing bugs or degrading performance. This leads to three sub-questions to evaluate
efficiency, maintainability, and applicability of the refactored code:

– RQ2.1: What effect does refactoring have on the performance of the refactored actor-based
systems?
The first sub-question addresses the impact of refactoring on actor system performance. It
investigates whether the refactored actor-based system performance is comparable to origi-
nal after transitioning to a typed actor system. The evaluation focuses on ensuring that the
system remains efficient without introducing significant delays or resource consumption that
could hinder its operation.

– RQ2.2: How does refactoring influence the maintainability of actor-based systems?
The second sub-question explores how refactoring affects the system’s maintainability. This
involves assessing whether the refactored system remains easy to understand, modify, and
extend. If refactoring leads to higher complexity or decreases maintainability, it may negate
the benefits of automated refactoring due to requiring large manual effort to maintain the
code which could have been used to manually refactor the system in the first place.

– RQ2.3: Are the implemented refactoring strategies applicable to real-world applications?
The last sub-question addresses the practical applicability of the proposed refactoring strat-
egy. It seeks to validate whether the approaches developed in this thesis can be successfully
applied to real-world actor-based applications and whether the technique generalizes beyond
small use cases.
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Chapter 2

Overview

This chapter provides an overview of the transformative process of refactoring from classical actor sys-
tems into typed actor systems. We begin by demonstrating a code example before and after refactoring
and highlighting key modifications made to the actor system which includes Actor object definitions,
Actor behavior and apply functions, and typed Message objects. The subsequent sub-chapter provides
and explains the essential information for accurate refactoring by the software. Lastly, a concept of a
Communication Flow Graph is presented that not only aids in understanding the intended actor commu-
nication protocol [26] but also ensures the software can accurately and effectively perform refactoring.

2.1 Overview of Refactoring

In order to provide a general understanding of the proposed refactoring approach, this section will
present a simple example of Classic Akka code before and after refactoring into Typed Akka. Specifi-
cally, what is changed, why these changes are made, and the assumptions behind these changes.

The code example in Listing 2.1 depicts a simple actor system where the actor Counter can in-
crement or decrement internal value. By receiving Increment, Decrement, or Print messages from the
external environment, the Counter actor will increase the value, decrease the value, or print the current
value respectively. The Counter actor also inherits the trait traitWithActor that itself extends Actor trait
which allows for the class to define and override receive method. Counter class also requires a construc-
tor parameter that indicates starting value. Finally, the actor system is created which then creates the
Counter actor and processes incoming messages.

New constructs after refactoring. Because of the changes introduced in the Typed Akka framework
[51], a few additional constructs are generated during the refactoring process. Primarily, the Messages
object that may or may not contain message definitions along with associated trait, and the userGuardian
actor [54]. Both of these constructs will be explained in detail in later chapters but in essence, (1)
Messages object contains message types that are used by several actors and (2) the user guardian is
defined as a setup Behaviour that is spawned as a top-level actor by the actor system in order to enforce
best practices of actor hierarchy [48]. It is possible, however unlikely, that the Messages object may not
exist because individual actors may send a certain message only to itself, meaning that the actor itself
only needs to be aware of the message type, and as such that specific message type will be defined within
the actor object definition. In all the other cases, at least two separate actor object definitions will need
to be aware of message types because both the sending and receiving actors must know the message
type and its definition. Then the userGuardian will, in general, contain every code entry and definition
that creates or sends messages to an actor within the actor system. Given that, as a result, the refactored
code in Listing 2.2 has an additional object CounterUserGuardianMessages that contains a trait and
case objects that act as messages of type Message. Then, the CounterUserguardianMessages object is
imported to the inherited trait traitWithActor, Counter actor object and a function startActorSystem()
that defines user guardian actor behavior.
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2. OVERVIEW

Actor object. In classical Akka, an actor class must extend or inherit an Actor trait in order to
function as an actor and a function that returns Receive entity, but in Typed Akka, all it needs is a
function that returns Behaviour type entity [50]. Because in Scala both object and class can contain a
function, in Typed Akka it is best practice to define actors as objects and implement apply() function that
would return a Behaviour entity [53]. As such, the actor classes are refactored into objects that inherit
the same traits, but because the objects cannot consume constructor parameters, the apply() function that
returns a Behaviour entity accepts the constructor parameters in order to process the parameter in the
same way as a classical actor would.

Actor behavior and apply function. In a similar manner, any function that is named receive(...)
of a type Receive, is assumed to provide the initial Receive entity definition, and as such it is refactored
in Typed Akka as the starting apply(...) function with identical function parameters. Because both
actor class constructor parameters and initial receive function parameters are moved to the apply(...)
function as parameters, a second overloaded apply(...) function will be created if any of the constructor
parameters are used within the function’s definition. The first one will have an identical definition to
the initial receive(...) function with some predefined default values being used to replace the constructor
parameters, while the second apply(...) function will include initial receive(...) function parameters
as well as class constructor parameters while keeping identical definition. This allows us to preserve
three things; (1) inherited and overridden functions are preserved without the need to understand the
deeper purpose of the overridden function, (2) ensure that the refactored typed actor Behaviour is aware
of the parameters that are used within its definition, and (3) simplify the actor creation refactoring by
preserving the actor parameter structure. This refactoring approach of the overloaded apply(...) function
can be seen in the Listing 2.2 lines 20 and 21.

Message type object. Classical Akka also allows for actor class inheritance so that the inherited
actor methods and values could be reused by other actors, but this presents two problems. The first
problem occurs when you want to maintain the actor class hierarchy in Typed Akka because if we strictly
refactor actor classes into objects then inheritance breaks due to Scala disallowing object inheritance,
i.e. a class or an object inheriting another object. For that purpose, if an actor class is detected to
be inherited by another class, then during refactoring both actor object and actor class will be created
having identical internal structure to each other. In essence, this creates a companion object to the actor
class that supports both standard Typed Akka actor creation approaches [53] as well as allows for actor
objects to inherit the actor class definitions, functions, and values.

The second problem emerges when trying to determine the message type during Behaviour con-
struction. Because the actor objects can inherit classes and traits that may or may not contain functions
that return Behaviour entities, it is possible for them to be overridden. This means that the message type
must be known in advance for the whole inheritance chain, and as a result, every function that returns a
Behaviour entity and is overridden down the inheritance chain, must have the same message type. Such
type inheritance can be seen in refactored Typed Akka code in the Listing 2.2 line 11 and line 20 where
the apply() function is overridden. The overloaded function apply(i: Int) at line 21 is also defined with
the same Behaviour type because otherwise it would cause a type mismatch with countReceive(i: Int)
function, and the latter must match the type with overridden apply() function.

2.2 Information extraction

In order to refactor an actor system, it is necessary to correctly extract, comprehend, and eventually
transform the intended communication protocol for the typed actor system. For that, the first step of
the process is to correctly read and interpret the source code of a classic actor system by constructing
an actor class inheritance graph. As mentioned in the last chapter, the classical akka actor system [50]
allows for actor trait inheritance, and as such we must consider classes and traits that inherit it. Only
by having an accurate inheritance graph it is possible to determine what receive functions each actor
class can call since that determines different messages that an actor can process. That is important when
refactoring receive functions due to typed behaviors and cases when a function is overridden in typed
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2.2. Information extraction

1 object BasicAgentClassicExample extends App {

2 object Counter {

3 case object Increment

4 case object Decrement

5 case object Print

6 }

7
8 trait traitWithActor extends Actor {

9 def receive: Receive = {

10 case x => println("[Trait] I got a message: " + x.

toString)

11 }}

12
13 class Counter() extends traitWithActor {

14 import Counter._

15 override def receive: Receive = countReceive(0)

16 def countReceive(i: Int): Receive = {

17 case Increment => context.become(countReceive(i + 1)

)

18 case Decrement => context.become(countReceive(i - 1)

)

19 case Print =>
20 println(s"[Counter] Current count: $i")

21 sender() ! Print

22 }}

23
24 import Counter._

25 val system = ActorSystem("CounterSystem")

26 val counter = system.actorOf(Props( new Counter(0)), "

Counter")

27 counter ! Increment

28 . . .

29
30 Thread.sleep(1000)

31 system.terminate()

32 }

Listing 2.1: Classical Akka code example in Scala

1 object BasicAgentTypedExample extends App {

2 object CounterUserGuardianMessages {

3 trait Message

4 case object Increment extends Message

5 case object Decrement extends Message

6 case object Print(replyTo: ActorRef[UserGuardian])

extends Message

7 }

8
9 trait traitWithActor {

10 import CounterUserGuardianMessages._

11 def apply(): Behavior[Message] = Behaviors.receive { (

context , message) =>
12 message match {

13 case x => println(s"[Trait] I got a message: " + x

.toString)

14 Behaviors.same

15 }}}

16
17 object Counter extends traitWithActor {

18 import CounterUserGuardianMessages._

19
20 override def apply(): Behavior[Message] = countReceive

(0)

21 def countReceive(i: Int): Behavior[Message] =
Behaviors.receive { (context , message) =>

22 message match {

23 case Increment =>
24 countReceive(i + 1)

25 case Decrement =>
26 countReceive(i - 1)

27 case Print(replyTo) =>
28 println(s"[Counter] Current count: $i")

29 replyTo ! Print(context.self)

30 Behaviors.same

31 }}}

32
33 def startActorSystem(): Unit = {

34 import CounterUserGuardianMessages._

35 val userGuardian: Behavior[Unit] = Behaviors.setup {

context =>
36 val counter = context.spawn(Counter(), "system -

Counter1")

37 counter ! Increment

38 . . .

39 Behaviors.empty

40 }

41
42 val system = ActorSystem(userGuardian , "Counting")

43 Thread.sleep(1000)

44 system.terminate()

45 }

46 startActorSystem()

47 }

Listing 2.2: Typed Akka code example in Scala

actors. In addition to constructing an inheritance graph, the names of every class and trait that extends
or inherits actor trait are recorded as that will be needed when refactoring, referencing, and representing
actors in the communication flow graph.

2.2.1 Communication Flow Graph

Once the inheritance graph is constructed, the next step is to construct a communication flow graph [26].
In essence, the Communication Flow Graph (CFG) represents an intended actor system communication
pattern between actors, child actors, and potential message exchanges between them. As described in
section 2.3 previous works have described and defined a similar representation, and largely our CFG
will be very similar to [26] with few key differences. Since it is important for us to differentiate between
different receive/behavior functions that process messages as well as what message triggers which re-
sponse, the Communication Flow Graph will also include additional information for each incoming and
outgoing edge. The information, represented as labels on an edge, will indicate the state of an actor, or
more specifically the receive/behavior function, that must be active in order to process an incoming or
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2. OVERVIEW

Figure 2.1: Generated MFG from the example source code presented on Listing 2.1

evoke an outgoing message. Additionally, an outgoing edge will also contain information on a message
that was received by an actor and caused the same actor to respond with a message(s) to some target
actor. Such representation requires to recognize, extract and record each message type that a given actor
can process and, each message type that is sent to some actor. As a result, it is imperative to have a com-
plete view of every state an actor can transition to because only by having a complete view it is possible
to see what messages an actor can process, what messages the actor is capable of sending, and what,
if any, child actors are spawned. Only then CFG can contain an actor representation that would depict
every interaction that an actor makes within the actor system. Such depiction of an actor will be referred
as an ”abstract actor” as it will only represent total interactions that an actor class can make without
considering the possibility of multiple actor instances of the same class existing in different states, and
as such interacting differently.

To accurately collect the total states an actor can possess, each function that returns Actor.Receive
type is analyzed. That is because any function that returns Actor.Receive type can be assigned as an
actor state, and as result, it must be considered even if the state is rarely accessed. Then, it is necessary
to collect the messages and their types that each receive function can process as it will be used when
resolving behavior types and message objects during the refactoring process. In addition, it will be
required when constructing MFG as it would provide a complete view of the possible actor interactions.

Finally, it is important to recognize the intended recipients of each message that an actor is sending in
order to correctly represent an abstract actor’s communication protocol. Generally, there are four ways
of providing an actor with a target actor reference [53, 49]: (1) by passing an actor reference object as
a constructor parameter, (2) by an actor using context.sender() function to reference the sender actor,
(3) an actor itself finds or produces an actor reference by searching for an actor reference in the actor
hierarchy tree or by spawning a child actor, and (4) by passing an actor reference object within a message.
However, even considering only these four methods it may still present an exploration space too large
to consider every possible expression as there are no hard restrictions imposed by the Classical Akka
framework nor a developer is restricted to substitute standard expressions and functions with his own
[52]. As such, in order to limit exploration space, we will limit ourselves by only considering the first two
methods along with a few standardized expressions belonging to the third. The fourth method is omitted
from our consideration both because it introduces far too much variability in possible expressions due to
the nature of untyped actors and messages, and because it is considered bad practice to message anything
other than immutable objects since that can introduce race conditions [31]. The detailed self-imposed
restrictions and algorithms by which the target actors are resolved will be explained in section 3.

An example CFG can be seen in Figure 3.1 that was generated based on extracted information from
the source code example in Listing 2.1. In it, you can see the messages that the external environment
is sending indicated by the dashed line, and an abstract actor responding with Print message to the
sender. The outgoing label from the actor counter contains additional information: the receive/behavior
function that produces the outgoing message, the message that was processed and evoked the outgoing
message, and the outgoing message.
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Chapter 3

Implementation

This chapter delves into the implementation details of our refactoring tool designed for actor-based
systems, outlining the underlying technical framework and the methodologies employed. The chapter
begins by defining the foundational concepts and technical assumptions that guide the approach, set-
ting a clear framework for the subsequent analysis. The core of our implementation revolves around
static analysis techniques, including syntax tree analysis, flow graph construction, and inheritance graph
construction, which are essential for accurate actor extraction and interaction mapping. Then we will
describe the data structures and object models that support these processes and discuss the specific algo-
rithms developed to facilitate the refactoring of the analyzed source code. Furthermore, the chapter will
cover our setup for implementing these functionalities, highlighting integrations of existing libraries and
tools. Despite exploring various existing solutions, limitations were encountered that required the devel-
opment of customized tools tailored to meet the unique demands of actor-based systems. This detailed
exposition aims to provide a clear and thorough understanding of the technical details underpinning the
refactoring implementation.

3.1 Definitions

To provide clarity and establish a consistent understanding throughout this document, this section out-
lines the key definitions and terminology employed in describing our refactoring implementation.

One of the first steps in the process is the construction of the class dependency graph. Below are the
terms and definitions used to describe the class dependency graph.

• Class Dependency Graph - Class dependency graph captures classes that either directly inherit
an ’Actor’ trait or inherit a class inherited an ’Actor’ trait. The trait ’Actor’ is implemented by the
Akka Classic library and it is required to define, create, and handle an actor in the actor system
[52]. Any class or trait that does not inherit an ’Actor’ trait is omitted, even if a child class does
inherit an ’Actor’ trait from another source. It is assumed that the class dependency graph is a
directed acyclic graph that can also be a disconnected graph. The graph contains a set of nodes
and edges that represent the inheritance of traits and classes defined in the extracted syntax tree.

• Class Dependency Graph Node - A graph node represents a single trait or a class. Additionally,
each node contains two lists of parent and child node names, respectively. Each list contains nodes
that are directly adjacent to a given node, meaning that there is only a single edge distance between
the given node, parent nodes, and child nodes. Lastly, each node stores the syntax subtree that
represents the body, name, and a few boolean variables that indicate whether it is a class or a trait,
if a node extends the ”Actor” trait, and if a class contains an ’abstract’ keyword in its definition.

• Class Dependency Graph Edge - A graph edge is a directed edge ’UV’ from node ’U’ to node a
’V’ where ’U’ comes before ’V’. The edges themselves do not exist as separate objects, but rather
they are derived from the parent and child lists that each node contains.
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• Class Dependency Graph Start Node - a node that directly inherits the ’Actor’ trait defined by
the Akka Classic library. Note that the start node can contain any number of parent nodes but none
of the parent nodes can inherit an ’Actor’ trait.

• Class Dependency Graph Terminal Node - a node with no outgoing directional edges, i.e., an
empty child list.

The other large component is a Call Graph that guides the static analysis and refactoring. Below are
the associated terms and definitions.

• Call Graph - A call graph represents calling relationships between different functions within the
extracted Class Dependency Graph. Each node in the call graph corresponds to a function, and
edges between nodes indicate that one function calls another. The graph is a cyclic-directed graph
that can also be a disconnected graph.

• Call Graph Node - A node in a call graph represents a function that exists in the analyzed actor
classes, and only in actor classes. So if an actor class calls a function that is implemented in, for
example, a singleton object that is not a companion object, then such functions will be overlooked
and ignored impacting the accuracy of the call graph. In addition, Each node also contains the
name of the function, the fully qualified name of the node, which includes the namespace, any
enclosing functions, traits, objects, or classes [17]. The node also indicates if the function, or
any of its parent functions, returns a Akka Classic ’Receive’ type, and a list of calls made from
the given function. The calls are represented as a list of custom objects that represent a function
definition and a set of parameters that inform about the function’s context.

• Call Graph Edge - Just as the Class Dependency Graph Edge, the Call Graph Edge is also a
directional edge that is represented by the list of calls in any given node. By knowing the fully
qualified name of a function in each node, we can know both the names and the namespaces,
which can then be used to look up the next called function in the list of call graph nodes.

Another set of definitions relates to a points-to lists that identifies every instance of Akka Classic
’Props’ objects, actor instances, and actor reference objects ’ActorRef’.

• ’PropsInst’ points-to list - This points-to list is produced by a Context-Insensitive, Flow-
Insensitive source code analysis that captures every Akka Classic ’Props’ instance by recording
the pointing variables to such instance, used parameters, and actor class that was used to instantiate
the ’Props’ object.

• ’ActorInst’ points-to list - It is produced by a Context-sensitive, Flow-Insensitive analysis
by identifying keywords that instantiate an actor object. Each entry records variable names that
point to the actor object, the actor class that is identified through the ’Props’ instance (that we
resolve through ’PropsInst’ points-to list), the parameters that are used during instantiation, and
indication if this actor object was instantiated within a class or a trait that directly inherits Akka
Classic trait ’Actor’.

• ’ActorRefs’ points-to list - as opposed to the previous points-to analysis, this one is performed
in a limited scope in order to resolve actor reference objects ’ActorRef’ in an actor class con-
structor parameters. As before, this analysis is a Context-Insensitive, Flow-Insensitive points-to
analysis as it only maps an actor reference object to a potential list of target actor classes it could
represent.

The last group of definitions is used to represent a Communication Flow Graph that represents an
abstracted view of the actor system’s communication message flows.
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• Communication Flow Graph - The graph itself is a cyclic-directed graph that can also be a
disconnected graph, where each node is an actor that can be created and each edge is a message
flow path that can be sent or received by a given actor node. The graph does not guarantee that
each actor node has been instantiated at any given time during runt-time, it only depicts every
actor instance type that can be created and the interactions between them.

• Communication Flow Graph Node - each node represents an abstracted view of an actor, mean-
ing that there is only a single node per actor class, even when there can be multiple actor instances
of the given class with different communication patterns [53]. That is to say that each node is an
abstracted view of all the observed actor class configurations and communication patterns through
out all of its instances. Additionally, each node has a label that is equal to the given actor class
name.

• Communication Flow Graph Edge - an edge is a directed edge ’UV’ from node ’U’ to node a
’V’ where ’U’ comes before ’V’. Since the graph can contain cycles, the source and the target of
an edge can be the same node. Each edge has a label that indicates the message type that is sent,
representing an interaction between actors caused by sending and receiving a message.

3.1.1 Data structures

This subsection delves into the data structures utilized within our source code refactoring framework
corresponding to the definitions outlined previously. These structures serve to represent various objects,
capturing essential information about their attributes, representation of source code elements, and their
relationships within the software system.

The ’MetaClass’ data object represents a node in a Class Dependency Graph. The MetaClass
encapsulates essential information about a given class that was recognized in the source code and iden-
tifies inheritance hierarchies, and their relationships within a software system. The attributes of the
’MetaClass’ object include:

• name - The name of the class/trait.
• parentC - A list of class/trait names that this class inherits from.
• childC - A list of class/trait names that inherit from this class.
• isActor - Indicates whether this class/trait inherits the ’Actor’ trait class.
• isAbstract - Indicates whether this class/trait contains the ’abstract’ keyword.
• isClass - Indicates whether this object represents a class (false indicates a trait).
• tree - Contains the syntax tree that implements the entire class.

1 case class MetaClass(
2 name: String,
3 parentC: List[String],
4 childC: List[String],
5 isActor: Boolean,
6 isAbstract: Boolean,
7 isClass: Boolean,
8 tree: Tree)

Listing 3.1: MetaClass data object definition

The ’FunctionNode’ data object represents a node in the function call graph, capturing essential in-
formation about individual functions and their calls within a code. The ’FunctionNode’ object contains
the following parameters:

• name - The name of the function.
• namePath - The fully qualified name of the function, encompassing the namespace and any enclos-
ing functions, traits, objects, or classes. This comprehensive identifier ensures unique identification
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of the function within the entire software system. Because of the nature of the identifier, it is used to
identify and handle inheritance and override possibilities.

• isReceive - A boolean indicator that specifies whether the function returns a Receive type or
if any of its parent functions return a Receive type. This attribute is particularly relevant when
identifying what functions may process the received messages.

• calls - A list of functions that this function calls. Each function in the list is of type ’FunctionTemp’,
representing another data object that contains a number of parameters describing the target functions
and their properties.

1 case class FunctionNode(
2 name: String,
3 namePath: String,
4 isReceive: Boolean,
5 calls: List[FunctionTemp])

Listing 3.2: FunctionNode data object definition

The ’FunctionTemp’ is a separate data object that gets initially constructed to represent all the
functions observed in the source code, as well as collect a number of parameters describing the function
and its fully qualified namespace. Because the fully qualified namespace of a function can contain
various scopes in which a function is accessed, it was necessary to include classes, traits, and objects for
the recognition logic to correctly determine the namespace. As a result, each ’FunctionTemp’ object
can represent a trait, class, object, or a function with varying degree of parameters. The ’FunctionTemp’
contains the following parameters;

• name - The name of the function.
• namePath - The fully qualified name of the function, encompassing the namespace and any enclos-
ing functions, traits, objects, or classes. This comprehensive identifier ensures unique identification
of the function within the entire software system.

• objectType - An integer value indicating the type of node. This value helps to determine if the
node is a function definition or a potential function call within a class, trait, or object. The possible
values are: 0, 1, 2, and 3, representing function definition node, object node, class node, and trait
node, respectivelly.

• access - An integer value indicating the access level of the function. The possible values are: 0,
1, 2, 3, representing public, protected, override, and private keywords, respectivelly.

• params - A list of lists of parameters of the given node, if it has any.
• imports - A list of import statements used in the body of the current node.
• calls - A list of function names that this node makes a call to.
• dclType - The return type of the current function. If the node is not a function, this value is equal
to None.

• body - The body of the current node.
1 case class FunctionTemp(
2 name: String,
3 namePath: String,
4 objectType: Int,
5 access: Int,
6 params: List[List[Term.Param]],
7 imports: List[Import],
8 calls: List[String],
9 dclType: Option[Type] = None,

10 body: Term = Term.Name("EMPTY"))

Listing 3.3: FunctionTemp data object definition

Both ’PropsInst’ and ’ActorInst’ have almost identical data structure except that the’ActorInst’
also indicates whether an actor instance is created within an actor class. As a result, only the ’ActorInst’
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data object’s parameters will be explained:
• varNames - A list of variables representing the actor instance. This attribute captures different
variable names used to reference the same actor instance.

• aClass - The actor class associated with this actor instance. Identifies the type of actor to be
instantiated.

• params - A list of parameters or variables received by the actor instance during instantiation. This
may include variables that reference an actor props class.

• inAClass - A boolean flag that identifies whether this actor instance is created inside an actor
class that directly extends the actor trait. This attribute distinguishes between actor instances created
within actor classes and those created elsewhere in the program.

1 case class ActorInst(
2 varNames: List[String],
3 aClass: String,
4 params: List[String],
5 inAClass: Boolean)

Listing 3.4: ActorInst data object definition
Like previous data structures that represent graphs, the Communication Flow Graph is also expressed

as list of a single data objects ’IntermediateActor’. However, each CFG node contains additional cus-
tom data objects to represent the discovered actor’s possible states, interactions, and outgoing message
calls. Each of these data objects will be explained separately, starting with a ’IntermediateActor’ that
represents an abstract actor in the Communication Flow Graph:

• name - The name of the intermediate actor, which is the same as the actor class name.
• actorRefParam - A list of constructor parameters for the actor class that is of type ActorRef. This
provides information about the actor references used within the actor’s constructor.

• states - A list of behavioral states that the actor can possess and transition to. Each of the states
contains details about that particular state that an actor can be in.

1 case class IntermediateActor(
2 name: String,
3 actorRefParam: List[ActorRefs],
4 states: List[State])

Listing 3.5: IntermediateActor data object definition
The ’State’ data object represents a receive function within an actor, containing the name of the

function, a flag indicating if it is overridden, and a list of interactions that occur within each state. Each
state can be viewed as a possible behavioral state that an actor could take. So a list of ’State’ within
an ’IntermediateActor’ object is a list of behaviors that an actor could transition to and from. The
’State’ data object parameters are as follows:

• recM - The name of the state, which is the same as the receive function name. This attribute
identifies the specific state of the actor.

• isOverride - A boolean flag indicating whether this state overrides a previous definition of the
same state, such as a state inherited from a superclass or trait.

• interactions - A list of interactions that occur within this state. Each interaction details the
communication and behavior associated with this state.

1 case class State(
2 recM: String,
3 isOverride: Boolean,
4 interactions: List[Interaction])

Listing 3.6: State data object definition
Each state’s object ’Interaction’ models a case statement and the code block it triggers within an

actor’s receive function. Crucially, it holds a list of outgoing messages with the message recipients, along
with the triggering message for this interaction, and an indication of whether the triggering message’s
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type should be included in the refactoring later on. This is because some ’case’ statement expressions
may not indicate the message type directly. The ’Interaction’ data object is characterized by the
following attributes:

• caseName - The name of the variable or message that triggered this case statement. This is the
part that appears directly after the ’case’ keyword in the code.

• msType - The message type, if a type was specified. This provides information on the type of
message handled in this case statement.

• inMessageObj - An optional boolean indicating whether this interaction’s caseName should be
considered as a message that might be included in a new and refactored message definition object.
This distinction is important because some case statement expressions may contain a message with
an implicit type, while others might capture any input and treat it as an unknown type variable.

• messageCall - A list of message calls originating from this actor as a result of triggering this
interaction. This details the subsequent communications initiated by the actor upon receiving this
type of message within its current state.

1 case class Interaction(
2 caseName: String,
3 msType: Type,
4 inMessageObj: Option[Boolean],
5 messageCall: List[MessageCall])

Listing 3.7: Interaction data object definition

Within an ’Interaction’ object, the ’MessageCall’ data object represents a single message sent
to some target actor, detailing the target, message type, and message contents. Each ’MessageCall’
instance contains the following parameters:

• target - The name of the target receiving the message. Since the target may not directly point to
an actor reference, it is treated as an unknown variable that eventually points to some actor.

• message - The message type being sent. This attribute captures the specific message being com-
municated.

• args - The contents within the message that is being sent.
1 case class MessageCall(
2 target: String,
3 message: String = "",
4 args: List[Term])

Listing 3.8: MessageCall data object definition

Lastly, the data object ’MessageType’ is used to discover and represent the actual message defini-
tions within the whole actor system and later verify the observed messages during refactoring. The data
object ’MessageType’ records these parameters:

• name - The name of the message type. This identifies the specific message being defined.
• params - A list of parameters specified in the message definition. These parameters define the
data type and contents of the message.

• msTrait - An optional trait that the message definition inherits, if any. This indicates any traits or
interfaces the message type may implement.

• template - This captures the complete message definition body and structure. It becomes impor-
tant when refactoring message definitions.

• isCLass - A boolean flag indicating whether the message definition is expressed as a class or an
object.

1 case class MessageType(
2 name: String,
3 params: List[List[Term.Param]],
4 msTrait: Option[Type],
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5 template: Template,
6 isCLass: Boolean)

Listing 3.9: MessageCall data object definition

Note: the data types of ’Tree’, ’Type’, ’Term’, and ’Template’ are defined by a library that we use
to produce and modify the syntax tree of the actor system application source code that is under analysis.

3.2 Technical assumptions

This section outlines the initial technical assumptions that the analysis and refactoring of actor-based
systems is based on. These assumptions define the actor expressions and the specific rules that must be
satisfied by the source code of the actor system application. That includes the expected structure of actor
definitions, message-passing expressions, and their definitions, handling of actor and message variables,
and interaction patterns between the actor system and external environment (i.e. remaining application
code that interacts with the actor system). These assumptions ensure the accuracy and effectiveness of
our static analysis and subsequent refactoring processes.

For the most part, these assumptions are based on the official Akka Library best practices and style
guide guidelines that aim at preserving the advantages that an actor system brings while preventing
common pitfalls [61, 52]. However, these assumptions also serve to limit possible code expressions and
structures by setting boundaries and reducing the complexity associated with diverse coding styles. As a
result, this simplifies the process of static analysis and refactoring, making it possible to automate these
tasks effectively. Below you can find the list of assumptions:

• Single Actor System Analysis - The analysis and refactoring are conducted on a single actor
system. By extension, the application on which analysis and refactoring are conducted will host
only a single actor system.

• Actor Responsibility - Adheres to the principle of single responsibility for actors, meaning an
actor should handle only one type of task and receive and process a specific set of messages. In
addition, a single message should represent a single intent of interaction.

• Actor Definition - Actor definitions must extend an Actor trait or inherit it from another class
or trait. As a result, a class, trait, or object that does not extend or inherit an ’Actor’ trait should
not have functions that return an actor behavior (’Receive’ type) and hence will not process mes-
sages or otherwise influence the actor’s state. This ensures that actors communicate exclusively
through asynchronous message passing, with no direct sharing of state between actors. Moreover,
classes, traits, or objects implementing actors must be defined in the specified source code files
and inherited functions should not be ambiguous, i.e. inherited function should exist only in a
single parent.

• Stateless Actors - Actors should not be stateful, i.e. contain or save stateful variables other
than constructor parameters. Instead, the changes to the state should be passed as function call
parameters, aligning more to a functional programming style.

• Type Inference - Sufficient type information can be inferred or provided for messages and actor
behaviors to transition them to a typed system. As a result, no actors should exclusively process
messages of type ’Any’.

• Message-handling - Each actor must contain message-handling logic that processes incoming
messages by using pattern matching to differentiate between messages. Such logic can be changed,
indicating a change in the actor’s behavior.

• Actor Behavior Switching - The actors should support different lifecycle phases that can be
represented by switching between different behaviors (’Receive’ functions), like a finite state
machine, aligning more with a functional programming style.
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Figure 3.1: Execution flow demonstrated as separate stages with dash-line representing optional step
that exports Communication Flow Graph (CFG) as a dot-graph file.

• Message Parameters - Message parameters must be immutable, thereby maintaining encapsula-
tion of an actor’s state and preventing access by other actors. Consequently, messages will not
contain another message as a constructor parameter as that would introduce a risk of variable
outcome, and violate the Actor Responsibility assumption.

3.3 Execution Overview

The execution flow is designed to systematically transform untyped actors within an actor system by
conducting a static analysis followed by a refactoring process. Such two-phase approach ensures that
the actor’s interactions and message handling are observed, examined, and then optimized or modified
as necessary. The overall objective is to accurately represent actor behaviors and message interactions
within the system while transforming untyped into a typed actor system.

The execution begins with the Static Analysis 3.3 phase where the system parses and analyzes the
actors and their associated message types. This involves identifying all messages used by each actor
and determining how these messages are processed in various states. The analysis phase results in the
generation of several data structures: a class dependency graph, communication flow graph, call graph,
points-to lists, and message type list. These structures provide a core understanding of the communica-
tion patterns and dependencies within the system, serving as a required input for the refactoring.

Following the static analysis, the implementation proceeds to the Refactoring 3.3 phase which uti-
lizes the extracted data from the static analysis to transform the actor and their message-handling func-
tion definitions. This involves modifying actor class and trait, updating constructor parameters, and
creating new message objects where necessary. The refactoring process ensures that all actor references
and message interactions are considered and aligned with the original system design. By incorporating
the static analysis results, the refactoring phase can accurately target areas that require modification and
apply changes precisely and efficiently.

The static analysis and refactoring phases are inherently interconnected. The static analysis provides
a comprehensive understanding of the system’s current state, which is essential for informed decision-
making during refactoring for targeted modifications that preserve the system’s performance and main-
tainability. Together, these phases form an execution flow that ensures the system is both thoroughly
analyzed and effectively transformed to benefit from a typed actor system. The overview of this process
is visualized in the figure 3.1.

Static Analysis Overview

The execution of static analysis begins with the formation of points-to lists 3.4.1. Initially, a points-to
list for Props instances is created by parsing the source code syntax tree. This list identifies which actors
are instantiated by each Props object. Subsequently, an actor instance points-to list is formed by using
the previously created Props points-to list. This second list maps actor instances to the specific Props
objects that create them, providing a clear mapping between actors, Props instance, and their variables.

16



3.4. Static Analysis

Next to the creation of points-to lists, a class dependency graph is constructed, also using the source
code syntax tree 3.4.2. This graph represents the dependencies between different classes and traits in the
system which is then topologically sorted to facilitate the construction of a call graph, and subsequently
a communication flow graph.

The call graph 3.4.3 maps out the relationships between various function calls within the system,
indicating which functions invoke others, and as a result, it provides important details into the flow of
execution within the actor classes and helps identify potential points of interaction and dependency when
processing received messages .

Following the creation of the call graph, a communication flow graph is generated 3.4.4. This graph
is built using the previously created data structures: the topologically sorted class dependency list, the
actor instance points-to list, and the call graph. The communication flow graph is represented by a list
of Intermediate Actors, each encapsulating the behavior and possible states of individual actor class.
The process of creating the communication flow graph involves a chain of sub-functions that construct
various data structures as part of the Intermediate Actor creation. These sub-functions extract states
representing receive functions, interactions representing case statements within the receive functions,
and call statements made within the case statements.

The final step is the identification of message types used by the actor system 3.4.5. This is achieved
by analyzing the source code syntax tree in conjunction with the communication flow graph represented
by a list of Intermediate Actors. This step ensures that all message types utilized within the system are
identified.

With the set of these data structures laying the groundwork for the subsequent refactoring phase, the
refactoring phase can begin by calling a custom syntax tree transformer that acts as an entry point.

Refactoring Overview

When the transformer is called, the execution flow begins by creating a map from the list of Interme-
diate Actors that will represent a set of messages each intermediate actor can understand and process
3.5.1. The map is then used to identify the largest possible supersets in order to determine potential
actor types and consolidate the message-type objects based on the underlying type. Such a process is
particularly useful when inheritance is heavily used across the actor system producing numerous but
similar actor classes.

Once the largest possible supersets are identified, the message type objects are generated based on
these underlying types described by each superset, the list of original message types, and the source
code syntax tree message type definitions 3.5.2. Subsequently, each actor class is refactored using
Intermediate Actors representation, the respective superset, and associated actor type, the original
syntax tree of the actor class, the call graph, and a set of parameters based on observed actor definitions
3.5.3. This refactoring process is similarly composed of a set of functions that evaluate and process
specific parts of the actor class’s definition that eventually produce two lists of refactored syntax trees:
one for the refactored actor classes and another for the new message type definitions containing the
identified actor types. These lists are then returned by the transformer and the main function proceeds
to reconstruct the syntax tree to restore the source code into proper format.

The refactoring phase ensures that each discovered actor class is taken into account and transformed
to match the expected syntax structure for a typed actor system without falling back to untyped actor
definitions. While every actor class is transformed, as we will see some of the possible actor system
compositions could result in more complex structures than it was beforehand degrading constancy and
maintainability 4.

3.4 Static Analysis

This section looks into the static analysis process, the first step in the source code refactoring as demon-
strated here 3.1, detailing the execution flow, algorithms, and outcomes. The algorithms employed will
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be looked at through pseudocode and explained with the rationale behind them highlighting how they
help reconstruct the underlying actor system communication protocol. Such analysis sets the foundation
for refactoring the untyped actor system into a typed one.

The first step in the process is the construction of the supporting data structures explained previ-
ously, specifically in this order: points-to lists for ’Props’ and ’ActorRef’ objects, class dependency
graph with topological sorting, collection of all functions and construction of call graph, discovery and
construction of defined message types, and construction of Communication Flow Graph with the help
of supporting data structures.

Algorithm 1: Identify Props Instances
Input: tree: Source
Output: List of PropsInst

1 Function identifyProps(tree):
2 props← empty list of PropsInst;

3 foreach value definition in tree do
4 if definition creates ”Props” && assigns to a variable then
5 names← list of variables that this value is assigned to;
6 if ”Props” contain parameters then
7 foreach p in parameters do

/* Traverse syntax subtree p and look for certain
expressions */

8 if p is term ”classOf” && p contains any type parameter t then
9 params← all other parameters that are not p

10 aClass← lowercase string of the type parameter t
11 props← props ∪ {PropsInst(names, aClass, params)};
12 else if p is term ”new” then

/* We know the class type parameter t from the term "new"
*/

13 aClass← lowercase string of type parameter t
14 if class type parameter t contains other parameters then
15 foreach param in t do
16 params← params ∪ {param} ;

17 else
18 params← empty list of strings

19 props← props ∪ {PropsInst(names, aClass, params)};

/* Assumes that "Props" does not contain constructor parameters
and expects only a type parameter */

20 else if ”Props” contains one and only one type parameter t then
21 aClass← lowercase string of type parameter t
22 props← props ∪ {PropsInst(names, aClass, empty list of strings)}

23 return props;

3.4.1 Points-to lists

Both ’Props’ and ’ActorRef’ points-to lists are constructed in a similar fashion, however, the recogni-
tion logic for these object types is different. In both cases, the entirety of the source code syntax tree is
traversed in order to identify syntax patterns that indicate the initialization of a ’Props’ and ’ActorRef’
objects, but the patterns that identify the objects are different. For that purpose, we will examine only
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the algorithm used to produce the ’Props’ points-to list while noting a few key differences between an
algorithm that produces ’ActorRef’ instance points-to list.

The Algorithm1 is a relatively simple one as it only traverses the syntax tree while looking for
expressions that define a ’Props’ object. Once an expression is recognized that creates a ’Props’ object
and is assigned to some variable, then a list of variables is collected that refer to this object. Afterward,
the ’Props’ object itself is examined to differentiate between several different expressions that can be
used to pass an actor class to the ’Props’ constructor. If ’Props’ contains parameters, then it must
be a class runtime representation of an actor class, which we assume is represented either with the
’new’ keyword or ’classOf ’ function. If there are no constructor parameters but there is one and only
one type parameter, then it is assumed that the specified type parameter is an actor class. This holds
true because ’Props’ expects a class with inherited Actor trait [56]. Once an actor class is identified, the
remaining parameters are collected and a ’PropsInst’ instance is created and added to the ’PropsInst’
list. Lastly, after traversing the complete syntax tree, the ’PropsInst’ list is returned.

There are only two key differences compared to the process when producing the ActorInst list.
Firstly, instead of matching definitions that create a Props instance, a specific call to a function ’actorOf’
is looked for. This function call signifies an actor instantiation which, by definition [52], means that the
parameter must be a Props instance. As a result, the found parameter is evaluated, whether it is a direct
instantiation of a Props object, or whether it is some variable. If it indeed is a variable, then it is matched
with the variables identified in the PropsInst list, and if found, the associated actor class is known.

Clearly, such implementation can only handle one degree of indirectness without awareness of the
surrounding context. Even if two separate variables representing a different instance of Props object
existing in different class scopes share the same name, then they will both be incorrectly recognized as a
reference to an actor class. Having this in mind, the points-to lists are used in a limited scope to resolve
actor class constructor parameters of type ActorRef [57], as explained later.

3.4.2 Class Dependency Graph

A Class Dependency Graph (CDG) will be essential for refactoring untyped actor classes, as it provides a
structured representation of the relationships and dependencies between various classes within an actor
system. By mapping out these dependencies, the CDG allows us to understand how different classes
interact and rely on each other, and what traits, functions, and definitions are accessible for a given actor
class. That is crucial for identifying potential points of failure or areas that need modification during the
refactoring process. Additionally, having a topologically sorted CDG can help with the communication
flow graph’s construction as that would simplify the process by presenting the dependencies in a linear
order. As a result, the source syntax tree is analyzed and CDG is constructed once points-to lists are
processed.

The algorithm begins by initializing two empty lists and starts iterating through each node in the
syntax tree, checking if the node is a trait or class definition. In both cases, the function ’scan’ 3 is
called that parses and extracts necessary information for the class dependency graph from a trait or a
class node, but the difference is the value of a ’isClass’ flag. The results of these scans, if not empty, are
added to a temporary meta class (tmc) list ’tmcList’. Once all trait and class definitions are processed,
the algorithm refines each tmc to establish child-parent relationships to create a Meta Class list ’mcList’.
It is necessary because initially we only know the traits and classes that a given definition inherits when
observing it for the first time, not what classes or traits extend it. In an ideal world, if every trait and class
is defined in sequential order of their inheritance then we could identify the child classes the first time a
class or a trait is observed, however, the real world is messy so we can not make such an assumption.
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Algorithm 2: Construct Class Dependency Graph
Input: tree: Source
Output: List of MetaClass

1 Function constructClassDependencies(tree):
2 tmcList← empty list of TempMetaClass
3 mcList← empty list of MetaClass

4 foreach node in syntax tree do
5 if node is a Trait definition then
6 scan( f alse, node);
7 If result was not empty, add it to tmcList;

8 if node is a Class definition then
9 scan(true, node);

10 If result was not empty, add it to tmcList;

11 foreach tmc in tmcList do
12 childC← empty list of String

13 foreach otherTmc in tmcList do
14 if otherTmc != tmc && otherTmc is child of tmc then
15 Add otherT mc to childC;

/* Initially, every inherited class or trait is treated as a parent.
They must be filtered. */

16 newParentC← Filter tmc.parentC unobserved classes;
17 mcList← mcList ∪ {MetaClass(tmc.name, newParentC, childC, tmc.isActor,

tmc.isAbstract, tmc.isClass, tmc.tree)};
18 startNodes← Filter mcList for start nodes;

/* Ensures the class dependency graph adheres to Actor Definition
assumption. */

19 mcListFiltered← filterActorDependencies(startNodes, mcList - startNodes);
20 return mcListFiltered;

Having that in mind, each tmc checks other temporary meta classes to determine if they inherit the
current tmc, which is added to ’childC’ list if true. Afterward, the parent class of the tmc is filtered to
remove unobserved parent classes and then constructs a MetaClass object, adding it to ’mcList’. The
filtering of the parent’s list is important because initially every inherited class and trait is treated as a
parent, but not every inherited class or trait may implement an actor and its relevant functions. Since we
established the assumption Actor Definition that only traits and classes that inherit the actor trait can
define the actor and its states, we should filter out the parent list only to contain the relevant classes or
traits.

Once all meta classes are processed, the algorithm identifies the starting nodes in order to filter out
all and any unrelated traits and classes initially identified. This is the consequence of observing and
capturing every class and trait definition, even if a given definition does not inherit an actor trait. Even
though such an approach is not ideal, it is necessary since initially we do not know what traits and
classes may inherit an actor trait. For that purpose, the function ’filterActorDependencies’ 4 will
remove any unrelated classes and traits from the CDG. As a result, the last step of the algorithm filters
the ’mcList’ to produce only the start nodes and calls the ’filterActorDependencies’ function.

Next, we will look into the ’scan’ function algorithm that extracts all the relevant information from
a given class or a trait and then returns a temporary meta class object option. The algorithm takes two
inputs: a Boolean ’isClass’ indicating whether the node is a class, and the ’node’ itself, representing a
class or trait definition with its body. It begins by initializing several variables with their default values
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and then checks if the node extends any classes or traits. If true, then two checks are conducted: whether
the given node contains an abstract keyword, and whether inherited classes or traits contain the Actor
trait. There is an additional sanity check on the syntax structure since due to limitations, not all possible
syntax expressions can be recognized. Once the list of inherited classes and traits is processed, the
option of TempMetaClass is created with the name of the class/trait, parent list, three boolean flags
indicating the presence of actor trait, presence of abstract keyword, and a class flag, and the node itself.
Since classes or traits can only inherit the actor trait, the ’scan’ function will return None for any class
or a trait that does not inherit anything.

Algorithm 3: Scan class/trait for Class Dependency Graph
Input: isClass: Boolean, node: Tree
Output: Option of TempMetaClass

1 Function scan(isClass, node):
2 isActor← false
3 isAbstract← false
4 mc← None
5 parentC← empty list of String
6 if node extends then
7 if node definition contains abstract keyword then
8 isAbstract← true;

9 foreach parent in inherited classes/traits do
10 if parent meets expected syntax structure then
11 Add parent to parentC;
12 if parent is ”Actor” trait then
13 isActor← true;

14 mc← Option(TempMetaClass(node.name, parentC, isActor, isAbstract, isClass, node));

15 return mc;

The value None in Scala represents an absence of value, the opposite of it being a value of option
of some type. As a result, the algorithm returns an option of TempMetaClass representing a value’s
possible presence or absence in a type-safe way [63].

Algorithm 4: Filter Class Dependency Graph
Input: startNodes: List[MetaClass], remainingMcList: List[MetaClass]
Output: List of MetaClass

1 Function filterActorDependencies(startNodes, remainingMcList):
2 newStartNodes← filtered list of remainingMcList that are children of startNodes
3 if newStartNodes is not empty then
4 return startNodes + filterActorDependencies(newStartNodes, remainingMcList -

newStartNodes);

5 else
6 return startNodes;

Lastly, the algorithm for the function ’filterActorDependencies’ filters out the Meta Class list
to remove any classes or traits that do not inherit or extend the Actor trait to meet the Actor Definition
assumption. The function takes two inputs: a list of MetaClass objects representing the starting nodes of
the graph, and the list of remaining MetaClass objects to be processed. The algorithm begins by filtering
the ’remainingMcList’ to contain only those objects that are children of the given start nodes list
’startNodes’. If the filtered list ’newStartNodes’ is not empty, the algorithm recursively calls itself,
passing in the ’newStartNodes’ as the start nodes, and the filtered list ’remainingMcList’ without
the ’newStartNodes’ as the new list of remaining MetaClass objects to be processed. This process
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continues until the new start node list is empty. When no more new start nodes are found, the algorithm
returns the accumulated ’startNodes’, representing the filtered class dependency graph.

In essence, this function serves two purposes: first to ensure the class dependency graph contains
only the classes that are relevant to the actors, consequently ensuring the Actor Definition assumption.
Secondly, it resolves a few edge-case scenarios where some of the classes used to remain in the list even
when validating if a class inherits Actor trait.

Class Dependency Graph Topological sorting

Because of the possibility of an actor inheriting receive functions or functions that process messages
outside of the receive function while overriding others, we must consider every previous class in the
CDG when processing all the states an actor can be in. As a result, we must process every class an
actor class inherits sequentially to have a complete representation of an actor class. Having that in mind,
and because the CDG is an acyclic-directed graph, topological sorting becomes a convenient way of
processing the class in the correct order when constructing intermediate actor data objects.

The topological sorting is implemented via Depth-First search algorithm described here [14]. In
principle, it is a recursive algorithm that visits each node of the graph in an arbitrary order and preprends
a given node to the output list when all of nodes it depends on have been already visited and prepended
to the output list.

3.4.3 Call Graph

The construction of the call graph utilizes a similar two-stage pattern used in constructing CDG where
initially all functions are found and recorded, and then each of them is processed to build the call graph.
For that, the function ’collectAllFunctionTemp’ 5 visits every node of CDG and scans every function
defined while constructing fully qualified namespaces for each trait, class, object, and function defini-
tion. As a result, in addition to functions, the initial list of ’FunctionTemp’ objects will contain nodes
that are traits, classes, and objects that contain calls made to any other function.

It starts with an empty list of intermediate temporary functions and an empty map to track inheritance
names, where the map keys are class names, and the values are lists of sequences representing trait, class,
object, or function names in inheritance paths.

The algorithm iterates over each dependency class in the input list which at that point is topologically
sorted. For each class without a parent (a root node), it adds the list of traits, classes, objects, or functions
found in a given trait/class to the list ’functionsTemp’. Then, it initializes the namespace for the root
class in the inheritance names map ’inheritanceNames’ with an empty list. The extraction of Func-
tionTemp from a given trait/class is achieved by ’produceNames’ and ’findFunctionsTemp’ helper
functions that format the namespace string identifier and scan the node, respectively. The actual extrac-
tion is done by the function ’constructFunctionTemp’ that is called by the ’findFunctionsTemp’. In
short, the ’constructFunctionTemp’ traverses the syntax tree looking for a specific pattern, and once
found, identifies certain parameters, constructs and then returns the FunctionTemp instance.

For traits/classes with parents, the algorithm first checks if the parent is a root node in the inheritance
namespace map. If it is, it adds the found FunctionTemp in the trait/class to the list and updates the
inheritance path by adding the current class name to the list of sequences associated with the parent
class. The process of identification and extraction of the FunctionTemp objects are identical to the
process when a node is a root node except with different parameters passed down when calling the
’produceNames’ and ’findFunctionsTemp’ functions.

For remaining traits/classes, it iterates over the entries in the inheritance names map to find a match-
ing parent. If a matching parent is found and the current node name is not already in the sequence, it
further processes the node. It filters the sequences in the inheritance names map to find those that contain
the parent class name and end with it. If such sequences are found, the FunctionTemp from the node is
constructed and added to the ’functionsTemp’ list. The inheritance path is updated by appending the
node name to the appropriate sequence’s end. If no sequences are found that end with the parent name,
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it creates a new sequence by splitting the existing sequence at the parent class name, adding the current
node name at the end of that sequence, and updating the inheritance name map with a new namespace
path and the list of ’functionsTemp’ accordingly. Like previously, the identification and extraction of
FunctionTemp are done by calling ’produceNames’ and ’findFunctionsTemp’ functions. Finally, the
algorithm returns the list of FunctionTemp.

In essence, the inheritance names map ’inheritanceNames’ acts as a reference map that is used
to keep track of and resolve the namespace of each trait, class, object, or function that is discovered
during analysis, whereas ’functionsTemp’ is a list of discovered nodes that may contain calls to some
function with already identified namespace. Since each FunctionTemp instance already knows its own
namespace, there is no need to return the inheritance names map. However, the algorithm relies on a
few assumptions that will be covered in a later section.

Once all possible function calls and functions are discovered within the class dependency graph, the
’constructCallGraph’ will process the ’functionsTemp’ 6 list to produce a call graph.
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Algorithm 5: Collect All Function Temp
Input: topoSClassDepL: List[MetaClass]
Output: List of FunctionTemp

1 Function collectAllFunctionTemp(topoSClassDepL):
2 functionsTemp← empty list of FunctionTemp
3 inheritanceNames← empty map of Strings mapping to List of Sequences of type String
4 foreach class in topoSClassDepL do

/* Considers root nodes */
5 if class.parentC is empty then
6 functionsTemp← functionsTemp ∪ {findFunctionsTemp(class,

produceNames(””, empty Seq of type String))};
/* Initialize root nodes in the namespace reference */

7 inheritanceNames[class.name]← empty List of Seq of type String;

8 else
9 foreach parent in class.parentC do

/* Considers nodes directly after root node */
10 if inheritanceNames contains key parent.name then
11 functionsTemp← functionsTemp ∪ {findFunctionsTemp(class,

produceNames(”.” + parent.name, empty Seq of type String))};
12 inheritanceNames[parent.name]← inheritanceNames[parent.name] ∪

Seq(class.name);
/* Considers all remaining nodes */

13 else
14 foreach (root, names) in inheritanceNames do
15 if names contains parent.name and not class.name then

/* Selects all Seq that contain the parent */
16 targetBranch← inheritanceNames[root].filter(seq→ seq contains

parent.name);
17 parentBranch← targetBranch.filter(seq→ seq last element equals

parent.name);
18 if parentBranch is not empty then

/* Scan class and update namespaces */
19 foreach seq in parentBranch do
20 functionsTemp← functionsTemp ∪

findFunctionsTemp(class, produceNames(”.” +
root.name, seq));

21 index← inheritanceNames[root].indexOf(seq);
22 inheritanceNames[root][index]← seq :+ class.name;

23 else
/* Add a new Seq to the list root */

24 indexSeq← targetBranch.head.indexOf(parent.name) + 1;
25 (firstHalf, )← targetBranch.head.splitAt(indexSeq);
26 newParentBranch← firstHalf :+ class.name;
27 functionsTemp← functionsTemp←

findFunctionsTemp(class, produceNames(”.” + root.name,
firstHalf));

28 inheritanceNames[root]← inheritanceNames[root] +
newParentBranch;

29 return functionsTemp;
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Algorithm 6: Construct Call Graph
Input: functionDepL: List[FunctionTemp]
Output: List of FunctionNode

1 Function constructCallGraph(functionDepL):
2 funcList← filter functionDepL for function nodes & sort it by namespace position in

descending order;
3 funcNodesTemp, funcReceive← empty sequence of FunctionNode;
4 funcNonPrivate← filter functionDepL for non-private nodes;
5 foreach function in funcList do
6 funcMatch← foreach call in function.calls do
7 callName← function call name;
8 allDuplicates← filter funcNonPrivate for nodes that are named callName;
9 finalCalls← empty list of FunctionTemp;

10 if allDuplicates.size > 1 then
/* Selects the function definition in the highest position in

the namespace */
11 highestHierarchy← sort allDuplicates by namespace and take min;
12 foreach dupFunction in allDuplicates do
13 if dupFunction.access is ’override’ && dupFunction is in the namespace of

highestHierarchy) then
14 finalCalls← finalCalls ∪ dupFunction;

15 else
16 finalCalls← allDuplicates;

17 finalCalls

18 if function returns Receive && function.name not exist in funcReceive & is in the
same namespace then

19 funcReceive← funcReceive ∪ FunctionNode(function.name, function.namePath,
true, funcMatch);

20 else if function exists in funcReceive and is not Receive then
21 do nothing & continue;

22 else
23 funcNodesTemp← funcNodesTemp ∪ FunctionNode(function.name,

function.namePath, false, funcMatch);

24 funcInheritReceive← foreach funcR in funcReceive do
25 propagateReceive(funcR, funcNodesTemp).distinct

26 funcNodes← funcReceive ∪ funcInheritReceive ∪ filter funcNodesTemp that are not in
funcInheritReceive & in the same namespace;

27 return funcNodes.toList;

The ”Construct Call Graph” algorithm6 builds a call graph from a list of FunctionTemp objects,
generating a list of FunctionNode objects that represent a call graph. It begins by filtering and sorting the
input list of FunctionTemp objects based on namespace position. Two temporary sequences are initial-
ized to hold the function nodes (funcNodesTemp) and functions that return ”Receive” (funcReceive).
Lastly, a list of non-private nodes is produced by filtering out non-private nodes from the input list.

The algorithm then iterates over each function in the sorted list. For each ’function’, it processes
the function calls to identify the potential target functions of that call by name. If there are multiple
matches, it first selects the function definition with the highest position as a root definition of a function
(line 11). Then each match is added to a returning list ’finalCalls’ if it contains override keyword
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and is within the same namespace as the root function definition. If there is only one match, it adds
it directly to the returning list. As a result, the resulting list ’funcMatch’ should contain only a list of
FunctionTemp objects that could be called by the current ’function’ with all the possible function
definitions due to inheritance.

Next, the algorithm checks if the ’function’ returns ”Receive” and is not already in the ’funcReceive’
list while being in the same namespace. If so, it adds a new function node to the ’funcReceive’ list.
If the ’function’ is already in the ’funcReceive’ list and does not return ”Receive”, it skips further
processing for that function. Otherwise, it adds the function node to the temporary function nodes list
’funcNodesTemp’.

After processing all functions, the algorithm propagates ”Receive” through the call graph by calling
the ’propagateReceive’ function on each function in the ’funcReceive’ list, ensuring each function
node is included only once. It is done to correctly identify what functions are called by a function that
eventually returns a receive type which becomes important when processing the actor definitions and
their possible states.

Finally, it combines the ’funcReceive’ list, the propagated ”Receive” functions, and the remaining
function nodes ’funcNodesTemp’ that are not in the propagated list within the same namespace, return-
ing the complete list of function nodes. This process constructs the call graph, accounting for function
dependencies and namespace hierarchies.

3.4.4 Actor class analysis

After the call graph is constructed, all the necessary data structures are present for the actor class anal-
ysis to begin. It is a combination of syntax tree exploration searching for certain patterns, relevant
information extraction from the syntax tree, and reference operations using the previously constructed
data structures, i.e. call graph, class dependency graph, points-to lists, etc. The implementation itself is
a series of functions handling certain processes when creating the IntermediatActor objects, with each
function depending on the next one.

Algorithm 7: Process Topologically Sorted Classes
Input: topologicalSortedClassD: List[MetaClass], actorInst: List[ActorInst], callGraph:

List[FunctionNode]
Output: List[IntermediateActor]

1 foundIActors← empty list of IntermediateActor;

2 foreach classDep in topologicalSortedClassD do
3 returnedIActor← analyzeAClass(classDep, actorInst, foundIActors, callGraph);
4 foundIActors← foundIActors ∪ returnedIActor;

The algorithm 7 is part of the main function which only loops through the topologically sorted class
dependency list and analyzes the given class by calling ’analyzeAClass’ 8. The returned Intermedi-
atActor instance is added to the ’foundIActors’ list which is used later on when refactoring.

The ”Analyze Actor Class” algorithm 8 analyzes a given actor class to produce an intermediate
representation of the actor, called IntermediateActor. It begins by initializing an empty list to store the
states inherited from parent classes. The algorithm then extracts the states and actor references from the
current class by calling the extractStatesActor function. This function returns a tuple containing the
resolved actor references and the extracted states.

If the current class has parent classes, the algorithm iterates over each parent class. For each parent
class, it filters the list of currently resolved intermediate actors to find those that match the name of
the parent class. The algorithm then iterates over each state of the parent intermediate actor, checking
whether the state should be included based on several conditions: if the state is not already in the parent
states list, if it has more interactions than a state with the same name in the list, or if it has ’override’
keyword while a state in the list does not. If any of these conditions are met, the state is added to
the parent states list. Note, the last two checks are redundant due to the Actor Definition assumption,
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and the if statement is implemented as a Scala pattern matching partial function (ensures that the or
statements are evaluated sequentially)

Algorithm 8: Analyze Actor Class
Input: classDep: MetaClass, actorInstList: List[ActorInst], intermediatActorList:

List[IntermediateActor], callGraph: List[FunctionNode]
Output: IntermediateActor

1 Function analyzeAClass(classDep, actorInstList, intermediatActorList, callGraph):
2 parentIAStates← empty list of State;
3 extractedStatesAndActorRefs← extractStatesActor(classDep, actorInstList,

callGraph);
4 resolvedActorRefs← extractedStatesAndActorRefs[2];
5 extractedStates← extractedStatesAndActorRefs[1];
6 if classDep have parent classes then
7 foreach parentClass in classDep.parentC do
8 parentIAList← filter intermediatActorList for intermediate actors that are named

parentClass.name ;
9 foreach parentIA in parentIAList do

10 parentAIState← empty list of State;
11 foreach parentState in parentIA.states do
12 if parentIAStates not contains parentState.name or

13 parentIAStates contains parentState.name but parentState has more
interactions or

14 parentIAStates contains parentState.name and parentState has override
keyword while the state in parentIAStates with the same name does not
have override keyword then

15 parentAIState← parentAIState ∪ parentState;

16 parentIAStates← parentIAStates ∪ parentAIState;

17 finalStates← extractedStates ∪ filter parentIAStates to not contain duplicates with
extractedStates;

18 return IntermediateActor(classDep.name, resolvedActorRefs, finalStates);

After processing all parent classes, the algorithm combines the extracted states from the current class
with the parent states, ensuring no duplicates. The final list of states is created by merging these two
lists. Since the currently extracted states will always overwrite inherited states with the same name, the
’override’ keyword can be essentially ignored. Finally, the algorithm returns an IntermediateActor
instance, which includes the class name, the resolved actor references used in the constructor, and the
final list of states. This process constructs a comprehensive intermediate representation of the actor
class, considering both its own states and those inherited from parent classes.

To understand how the states of each actor are extracted, we will look at the ’extractStatesActor’
9 function algorithm. As mentioned, the algorithm is called for each class in a topologically sorted class
dependency graph with a points-to set of all actor instances, and a call graph.

The algorithm implemented by a function 9 processes a given actor class to identify its states and re-
solve its actor references passed down through constructor parameters. The function begins by initializ-
ing two empty lists: ’currentlyExtractedState’ for the extracted states and ’currentlyResolvedActorRefs’
for the resolved actor references.

Then, each node in the class dependency tree is checked to determine whether the node is a class or
a trait definition. If it is, the algorithm resolves the actor references by calling the ’resolveActorRefs’
function with the class name, the list of actor instances, and the class constructor.
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Algorithm 9: Extract States and Resolved Actor References
Input: classDep: MetaClass, actorInstList: List[ActorInst], callGraph: List[FunctionNode]
Output: Tuple (List[State], List[ActorRefs])

1 Function extractStatesActor(classDep, actorInstList, callGraph):
2 currentlyExtractedState← empty list of State;
3 currentlyResolvedActorRefs← empty list of ActorRefs;
4 foreach node in classDep.tree do
5 if node is Trait or Class definition then
6 currentlyResolvedActorRefs← resolveActorRefs(node.name, actorInstList,

node.constructor);
7 currentlyExtractedState← extractReceiveMethods(classDep.name, node.body,

currentlyResolvedActorRefs, callGraph);

8 return (currentlyExtractedState, currentlyResolvedActorRefs);

The ’resolveActorRefs’ function essentially just extracts necessary information from the syn-
tax tree, iterates through every constructor parameter of type ActorRef, and calls another function
’identifyActorRef’ that actually resolves and identifies the actor instance that the ActorRef points
to. Now, the function ’identifyActorRef’, taking an actor reference name and the points-to set of all
actor instances, first identifies all instances that are instantiating the given actor class name and collects
a list of every raw parameter variable name that is passed to the constructor. Then, each actor instance’s
list of variables is checked whether any of them exist in the previously collected list of raw variable
names. If it does exist, then the actor class of that instance is added to a list of target classes which is
eventually returned as a potential list of target actor classes.

Such implementation allows us to resolve actor references by one degree of indirectness, however
it also introduces possible inaccuracies. Because the construction of points-to lists and resolution of
actor references here do not take into account namespace scopes, identical variable names with different
values can exist in different scopes while being mistakenly recognized as a possible actor reference
value. On the other hand, because an intermediate actor is an abstracted actor representation of all
observed actor class configurations and communication patterns, the variable namespace scope is not of
concern since the points-to list of actor instances already ensures that all instances of a given actor class
will be evaluated with its own constructor parameters.

Following actor reference resolution, the states are extracted from the class body by invoking the
’extractReceiveMethods’ 10 function, which takes the class name, the class body, the currently re-
solved actor references, and the call graph as parameters. Eventually, the resolved actor references and
extracted states are appended to respective lists.

To avoid double computation of actor reference resolution, the algorithm returns a tuple containing
the list of currently resolved actor references and a list of extracted and inherited states.

The function ’extractReceiveMethods’ 10 with the help of a call graph recognizes and extracts
relevant information from functions that either return a Receive type or are called by a receive function.

The algorithm begins by iterating over each function definition in the class body. For each definition,
it first checks if the definition is a function. Then, if the function’s return type is Receive, the algorithm
calls the ’exploreReceiveMethod’ 11 function with the class name, definition modifiers, name, and its
body as parameters, adding the result to the empty state list ’stL’.
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Algorithm 10: Extract Receive Methods
Input: className: String, body: List[Stat], actorRefs: List[ActorRefs], callGraph:

List[FunctionNode]
Output: List of State

1 Function extractReceiveMethods(className, body, actorRefs, callGraph):
2 stL← empty list of State;
3 foreach definition in body do
4 if definition is a function definition then
5 if definition return type is Receive then
6 stL← stL ∪ exploreReceiveMethod(className, definition.mods,

definition.name, definition.body);
7 else
8 functionNode← filter callGraph by definition.name and className;
9 if functionNode is not empty and is called by a receive function then

10 stL← stL ∪ exploreReceiveMethod(className, definition.mods,
definition.name, definition.body);

11 return stL;

If the definition does not return a Receive type, the algorithm filters the call graph to find nodes
matching the definition’s name and class name. If such a node is found and the definition is called by
some function definition that returns a Receive type, the algorithm again calls ’exploreReceiveMethod’
with the appropriate parameters and adds the result to the state list. After processing all definitions in
the class body, the algorithm returns the list of identified states.

Algorithm 11: Explore Receive Method
Input: className: String, mods: List[Mod], defName: Term.Name, rBody: Term
Output: State

1 Function exploreReceiveMethod(className, mods, defName, rBody):
2 inL← empty list of Interaction;
3 isOverride← Boolean flag identifying if definition mods contain ’override’ keyword;
4 foreach Case statement in rBody do
5 cs← Tuple of the name of a message that triggers this case statement, an indication

whether the case name can be treated as a message type for when refactoring message
definition, and observed type definition;

6 s← extractCallStatements(case.body, className, actorRefs);
7 inL← inL ∪ Interaction(cs.name, cs.type, cs.option, s);

8 return State(defName, isOverride, inL);

Next, the ”Explore Receive Method” algorithm implemented by the function ’exploreReceiveMethod’
11 processes a function definition to extract relevant interactions, i.e. ’case’ statements of a partial func-
tion, and constructs a State object. The input parameters of this algorithm are actor class name, list of
modifiers of the given function definition, definition name, and definition body.

The algorithm iterates over each ’case’ statement within the body to identify the variable name of a
message that triggers the case statement, an option of boolean value that indicates if the message could
be treated as a variable type indicator of the received message, and observed type definition if any. This
is extracted from the syntax subtree of the ’case’ statement as a tuple of three.

Next, the algorithm calls the ’extractCallStatements’ 12 function, passing the case statement
body, class name, and resolved actor references as parameters. This function identifies and extracts all
the call statements within the body, returning a list of MessageCall objects.

Using the identified message name and the extracted call statements, the algorithm constructs an
Interaction object. This object encapsulates the details of the interaction, including the name of a
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message that triggered the case statement, the type of the message, any option parameter, and the call
statements. The interaction is then added to the list of interactions.

After processing all case statements in the definition body, the algorithm constructs a State object
using the definition name, the override flag, and the list of identified interactions. The State object
represents the actor’s behavior in terms of its interactions with other actor classes within this function
definition, reflecting how it handles messages and the actions it performs. Finally, the algorithm returns
the constructed State object.

Algorithm 12: Extract Call Statements
Input: classBody: Term, className: String, actorRefs: List[ActorRefs]
Output: List of MessageCall

1 Function extractCallStatements(classBody, className, actorRefs):
2 s← empty list of MessageCall;
3 foreach term in classBody do
4 if term expression is using scala syntax sugar for ’!’ or ’?’ to send a message then
5 s← identifyCall(s, term, actorRefs);
6 else if term expression is call to some object function then
7 if term is a call to ”become” or ”unbecome” function then
8 s← s ∪MessageCall(”self”, ”self”, params);
9 else if term is a call to ”tell” function then

10 s← identifyCall(s, term, actorRefs);
11 else if term is a call to ”ask” function then
12 s← identifyCall(s, term, actorRefs);
13 else if term is a call to ”forward” function then
14 s← identifyCall(s, term, actorRefs);

15 return s;

The goal is to gather all instances where messages are sent or received using specific actor commu-
nication patterns in Scala.

The algorithm 12 begins by iterating through each term in a given class body. For each term, it checks
if the term expression uses Scala syntax sugar, specifically the ’!’ or ’?’ operators, which are commonly
used for sending messages. If such an expression is found, the algorithm calls the ’identifyCall’ 13
function to process and add the message call to the list.

If the term expression is a call to an object function, the algorithm further examines if the function
call is ’.become(...)’ or ’.unbecome(...)’ which are methods used in Akka actors to change the
actor’s behavior. In such cases, it directly adds a MessageCall object with ’self ’ as the message type
and receiver to the list, indicating that the actor is changing its behavior with ’params’ holding the new
behavior receive function. While it is not exactly the intended use of the MessageCall object, later on,
we will see that MessageCall objects with message type ’self ’ are ignored for the most part.

In addition, the algorithm also checks for other specific function calls such as ’.tell(...),’ ’.ask(...),’
and ’.forward(...),’ which are methods used in Akka for different types of message passing. For each
of these function calls, it again invokes the ’identifyCall’ function to process the term and add the
corresponding message call to the list.

After processing all terms in the class body, the function returns the list of identified MessageCall
objects. These objects represent the various message interactions found within the actor class, capturing
how the actor communicates with other actors or itself.
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Algorithm 13: Identify Call Message
Input: oldS: List[MessageCall], term: Term, actorRefs: List[ActorRefs]
Output: List of MessageCall

1 Function identifyCall(oldS, term, actorRefs):
2 newS← empty list of MessageCall;
3 message← extract message and message parameters from term.params;
4 target← extract message send target from term;
5 if target is ”sender” then
6 newS← oldS ∪MessageCall(target, message.name, message.params);
7 else if target is ”self” then
8 newS← oldS ∪MessageCall(className, message.name, message.params);
9 else

/* Resolved Actor references */
10 foreach actorRef in actorRefs do
11 if target matches actorRef then
12 foreach targetClass in actorRef.targetClasses do
13 newS← newS ∪MessageCall(targetClass, message.name,

message.params);

14 newS← newS ∪ oldS

15 return newS;

The function ’identifyCall’ implements the algorithm 13 that processes a given term representing
a message call and identifies the target of the message that a given actor is sending. That is achieved by
storing the message target, message, and message parameters within a MessageCall object and saving
it in a list. The algorithm takes in an existing list of message calls, a term representing the message call,
and a list of actor references.

The algorithm begins by extracting the intended target, which indicates the recipient, the message,
and its parameters from the term. If the target is identified as Akka ’sender()’ identifier, the algorithm
creates a MessageCall object with the target as ’sender’ and message details, and adds it to the new list
of message calls. Similarly, if the target is ’self,’ indicating that the actor is sending a message to itself,
a MessageCall object is created with a given actor’s class name as the target and added to the list.

For other targets, the algorithm iterates through the list of resolved actor references to identify the
actual target class. If the target matches an actor reference, it iterates through the target classes associated
with that actor reference and creates a MessageCall object for each target class, adding them to the new
list. Otherwise, the target is assumed to be an actor instance that was created within the actor itself,
or identified by the Akka actor search queries [55]. Finally, the algorithm combines the new list of
MessageCall objects with the old list and returns the combined list.

Having identified message calls in a given interaction, the whole chain of functions finally allows
us to analyze every actor class by identifying each of their communication patterns, gaining insight into
message types that are being exchanged between actors, and resolving actor references that are passed
as constructor parameters. However, as it stands now, the communication pattern [53] where a message
contains an actor reference or an actor is created within another actor is not taken into account and
resolved when constructing a Communication Flow Graph, i.e. populating Intermediate Actor list. Such
instances of communication are left out and assumed to be correctly resolved by the original source
code since it must have contained the actor reference variables and used them to process messages.
Only during refactoring, could it present an issue due to message and actor type conflicts but as we will
see later this can be resolved.
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3.4.5 Identifying Message Types

Understanding all message type definitions in the source code is important for understanding the com-
munication patterns within an actor-based system. Messages define the interactions between actors, and
having a clear mapping of these types allows for better analysis of the actor system’s behavior and mes-
sage flow between them. In addition, it aids in verifying and extending the observed intermediate actors
and their interactions, especially during refactoring. As a result, the algorithm 14 analyses the source
code, identifies the message type definitions, and creates a Tuple of lists: one for globally observed sent
messages, and another for MessageType objects.

Algorithm 14: Extract Message Types
Input: iaList: List[IntermediateActor], source: Source
Output: Tuple of (List of String, List of MessageType)

1 Function extractMessageTypes(iaList, source):
2 Function identifyMessageTypes(node, messages, isClass):
3 (isParentClassObject, parentNode)← isNodeParentAnObjectOrClass(node.parent);
4 if isParentClassObject && parentNode has no inheritance then
5 if node has single inheritance then
6 mst←MessageType(node.name, node.params, Some(node.inherited),

node.template, isClass);
7 else if node has no inheritance then
8 mst←MessageType(node.name, node.params, None, node.template, isClass);

9 return mst

10 acMessages← every distinct message sent by an actor in iaList;
11 allMessages← extractAllSeenMessages (source);
12 messages← distinct(allMessages ∪ acMessages);
13 mstList← empty list of MessageType;
14 foreach node in source do
15 if node is object && node.name is in messages then
16 mstList← mstList ∪ identifyMessageTypes(node, messages, false)
17 else if node is class && node.name is in messages then
18 mstList← mstList ∪ identifyMessageTypes(node, messages, true)

19 return (allMessages, mstList);

The algorithm 14 implemented by ’extractMessageTypes’ aims to identify and list all message
types used within the source code. It uses the list of previously found intermediate actors ’iaList’,
the entire syntax tree ’source’, and a helper function ’identifyMessageTypes’. The helper function
checks if a given node’s parent in the syntax tree is an object or a class definition (implemented by
’isNodeParentAnObjectOrClass’ function), determines if the parent has no inheritance, and if true,
checks if the node has at most one inheritance. Based on these checks, the helper function creates
a MessageType object that encapsulates the node’s name, parameters, inheritance details, body, and
whether it’s a class.

The helper function follows a common pattern defined in Akka style guide [61] where message types
should be defined in a companion object or within a class that contains only messages or parameters
relevant to a specific actor class definition, by extension this means it should not inherit anything. By
already expecting a specific kind of expression for message type definitions, we can simplify the logic
for message type identification.

The algorithm itself starts by collecting all distinct messages sent by all Intermediate Actors and
combines them with messages extracted from the entire source code using another helper function
’extractAllSeenMessages’. This function simply traverses a given syntax tree (in this case it is the
whole source code syntax tree) looking for message-sending expressions, similarly to the algorithm 12,
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except the ’extractAllSeenMessages’ returns a list of strings containing the sent message.
Then the algorithm iterates over each node in the source code syntax tree looking for nodes that

are either an object or a class definition, and whose name matches a message in the combined list. It
uses the previously mentioned helper function ’identifyMessageTypes’ to identify its message type
details, extract them, and add to a list of message types ’mstList’. Finally, a tuple is returned containing
the list of all globally observed sent messages ’allMessages’ and the list of identified message types
’mstList’.

Such a result provides a comprehensive view of the message types used in the system which helps
with detecting messages and resolving their types during refactoring. However, the output also depends
on the expected message type definitions limiting the design space of developers. While this allows us
to avoid exploring a large design space looking for message types, and as a result simplifying algorithm
(and by extension implementation), when adhering to an officially recommended style guide there are
cases when such expected expressions are not desirable and may even become troublesome [61, 52].
Nevertheless, for now, we accept such potential inaccuracies for the simplified process as we will see
during evaluation in most cases it is good enough.

Eventually, once all the intermediate actors are extracted, sent messages observed, and message
types recognized, a special function is called that will start the refactoring process expecting a list of
intermediate actors, topologically sorted class dependencies, call graph, and message type list with
globally observed sent messages. In addition to refactoring, the communication flow graph represented
by a list of intermediate agents will be transformed into a graph description language format (DOT) [? ]
and saved locally as a DOT format file to provide both a window to see how the tool interpreted a system
under analysis, as well as to give anyone using it an abstracted view of an actor system.

3.5 Refactoring

The next stage of our application involves refactoring the original source code to transform untyped
actor classes into typed actor definitions. This stage leverages the data structures created during the
static analysis phase, namely the list of intermediate actors, the topologically sorted class dependencies,
the call graph, and the message type list. This transformation aims to enhance the safety and reliability
of the actor-based system by utilizing the Akka Typed framework [48]. Refactoring in this context
involves several key transformations due to core differences between Akka Typed and Classic that enable
the compiler to enforce type safety and provide a robust hierarchical framework for defining actors in
addition to readability and maintainability of the code [20].

Overall, the process of refactoring begins through the function ’transform’ 15 by analyzing all the
message types with intermediate actors to determine what core types can be assigned and defined for
one or more actors. Then based on that dedicated objects for each base message type are defined and
populated for each message type initially received by the transformer. Lastly, each actor class is refac-
tored based on a number of conditions, rules, and observed actor class components or definitions that
eventually get returned once the transformation is complete. Each of these steps will be examined in de-
tail within this section along with their accompanying algorithms, interactions between them, codebase
assumptions, and reasoning behind them.

In general, the algorithm 15 acts as the main entry point for the refactoring to begin. The first
several steps of the process only prepare the data via the functions ’messageTypesDictByIA’ 16,
’findSupersets’ 17, and ’refactorBody’ 20, all of which will be explained later. Then going
through the topologically sorted actor class list, each actor class is refactored by calling ’refactorBody’
through the transformerActorObject transformer, and a message object is defined which includes all the
messages within the corresponding superset to that actor class. The refactored actor class and the corre-
sponding message definition object are added to a list that may or may not contain duplicate definitions
expressed as classes based on whether a given actor class inherits another actor class. This is because
Scala objects cannot be inherited [64], and as we have to consider inheritance, a duplicate actor class
will be included so that it can be inherited.
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Algorithm 15: Refactoring Main
Input: iaList: List of IntermediateActor, topoMcList: List of MetaClass, mstList: List of

MessageType, callGraph: List of FunctionNode, allMessages: List of String
Output: Tuple of List of Stat, List of Tree

1 Function transform(iaList, topoMcList, mstList, callGraph, allMessages):
2 messageTypeDictByIA← messageTypesDictByIA(iaList, mstList);
3 mergedSets← findSupersets(messageTypeDictByIA, empty Map);
4 transformerActorObject← new Transformer that calls refactorBody(...) with various

parameters based on if a node is Class or Trait definition

5 refactoredMcList← empty list of Tree;
6 refactoredMsObj← empty list of Stat;

7 foreach actorClass in topoMcList do
8 correspondingActorSet← filter mergedSets where key contains actorClass.name;
9 correspondingMessageObj← createMessageObjects(correspondingActorSet,

mstList);
10 transformedActor← transformerActorObject(actorClass.tree);
11 if actorClass.childC is not empty then
12 refactoredMcList← refactoredMcList ∪ trans f ormedActor and trans f ormedActor

but expressed as a class;
13 if correspondingMessageObj not in refactoredMsObj then
14 refactoredMsObj← refactoredMsObj ∪ correspondingMessageOb j;

15 else
16 refactoredMcList← refactoredMcList ∪ trans f ormedActor;
17 if correspondingMessageObj not in refactoredMsObj then
18 refactoredMsObj← refactoredMsObj ∪ correspondingMessageOb j;

19 return (refactoredMsObj, refactoredMcList)

3.5.1 Actor Type Resolution

Identifying actor types is the first step in the refactoring process since addressing dependencies and in-
heritance structures effectively is essential to prevent potential type conflicts between parent and child
actor classes. This ensures that type safety and message handling are preserved which simplifies the
refactoring process. However, the Typed Akka documentation [51] presents several approaches to typed
actors and their messages which in some cases substantially differ from the common approaches used
in untyped actor systems. That resulted in taking a few liberties during refactoring to introduce a few
additional function and object definitions aimed at accommodating these incompatible approaches. Un-
fortunately, as we will see when discussing limitations, there are still a number of edge cases and com-
munication patterns that are either overlooked, incorrectly refactored or transformation does not preserve
the actor’s intended communication pattern.

As the first step, it is important to have an overview of all messages that each actor is capable of
processing. We do that by creating a map where the key is a list of actor class names and the value
is a set of tuples for each message where the first element is a message that the actor processes and a
boolean indication if that message was sent to a ’sender()’. Such a map is created by the function
’messageTypesDictByIA’ 16 which takes the intermediate actor list and a list of identified message
types.
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Algorithm 16: Return a Map of IA to Set of Used Messages
Input: iaList: List[IntermediateActor], mstList: List[MessageType]
Output: Map of (List of Strings, Set of Tuples (String, Boolean))

1 Function messageTypesDictByIA(iaList, mstList):
2 dict← empty Map;
3 allActorMs← list of all messages sent across all actors in iaList;
4 foreach ia in iaList do
5 messages← empty Set of (String, Boolean) tuples;
6 foreach st in ia.states do
7 foreach in in st.interactions do
8 notExists← messages does not contain in.caseName or in.msType;

9 if notExists and in.inMessageObj is true or in.caseName exists in mstList or
in.msType exists in mstList then

10 matchingMs← filter allActorMs to contain only messages that match
in.caseName;

11 messages← messages ∪ (in.caseName, across all messages if any
matchingMs.target is equal to ”sender”);

12 dict← dict ∪ (List[String](ia.name), messages);

13 return dict;

The function ’messageTypesDictByIA’ 16 implements an algorithm for generating a map that as-
sociates each intermediate actor with a set of used messages. Basically, the algorithm iterates over each
intermediate actor in the ’iaList’ and analyzes interactions to produce a tuple where the first element is
a message and the second is a boolean value indicating if a message was sent to a ’sender()’. That is
achieved by iterating through the interactions of every intermediate actor’s states. First, it is confirmed if
the message in the current interaction was not already identified as we only care about unique messages
that an actor processes. Then, the message is verified to match previously identified message types or
that it was already identified as a message type that an actor processes. In both cases, the recognized
message in the interaction is then filtered through the list ’allActorMs’ containing all messages sent
throughout all observed actors in order to determine if any matching messages are sent to ’sender()’.
At this point, the ’messages’ set is updated to include the newly discovered interaction message and the
boolean value. After processing all interactions for an actor, the ’dict’ map is updated to include a new
key-value map pair with the intermediate actor name being the key and the ’messages’ set as a value.

The importance of knowing if a message was sent to Classic Akka ’sender()’ function stems from
the fact that Typed Akka does not implement and support such a communication practice by default
[51]. As a result, we need to take into account whenever a message is sent to a ”sender” because that
will require an additional step during refactoring in order to maintain the same communication pattern
between actors.

The resulting structure is intended to represent a mapping between an actor class and a list of mes-
sages that an actor can process. The idea behind such structuring stems from the Actor Responsibility
assumption that each actor will process their own messages and in an ideal application no message will
be processed by more than one actor. Unfortunately, the Classic Akka does not enforce such a structur-
ing [52], and as a result, we must expect that more than one actor can process a given message. As such,
the algorithm must first explore and find the base messages used by multiple actors, group actors based
on messages to encompass the largest number of actors with the least number of messages, and isolate
those groups containing a set of messages representing a list of actors. The function ’findSupersets’
17 does exactly that by looking for supersets among different message combinations between different
actors and merging actor message sets with its possible largest superset. However, cases, where an ac-
tor’s message set partially belongs to some supersets without a true superset existing, remain unresolved,
which results in separate message groups that could potentially contain duplicate messages across mul-
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tiple groups. As a consequence of duplicate messages, if a subset belongs to several supersets, it is
merged into the biggest fitting superset.

During the generation of message type definitions, as explained in the later section 19, each superset
is used to generate its own respective type with each message definition extending that specific message
type. This results in a type that encompasses a set of messages that one or more actors can process and
interpret within a dedicated Scala object [64] holding the message definitions and message companion
objects.

Algorithm 17: Find Supersets
Input: remaining: Map[List[String], Set[(String, Boolean)]], visited: Map[List[String],

Set[(String, Boolean)]]
Output: Map of (List of Strings, Set of Tuples (String, Boolean))

1 Function findSupersets(remaining, visited):
2 if remaining.isEmpty then
3 return visited

4 else
5 finalSets← empty map;
6 head← remaining.head;
7 tail← remaining.tail;
8 if visited.contains(head.key) then
9 return findSupersets(tail, visited)

10 else
11 subsets← filter tail to return all subsets of head.value;
12 supersets← filter tail to return all supersets of head.value;
13 newRemaining← filter tail by removing all elements found in subsets;
14 if supersets.nonEmpty then
15 biggestSuperset← findSupersets(supersets, empty Map).head;
16 subsetsHead← subsets ∪ head;
17 finalSets← compareAndUpdateSets(biggestSuperset, subsetsHead, visited)

18 else
19 finalSets← compareAndUpdateSets(head, subsets, visited)

20 return finalSets

The algorithm implemented by the function ’findSupersets’ 17 tries to identify and process su-
persets within a collection of sets, where each set is represented as a mapping from a list of strings to a
set of tuples containing a string and a boolean value. Here the key value of the mapping represents a list
of actor classes and the values represent the messages that were used by those actor classes, with each
message also indicating (via a boolean flag) whether it was sent to a standard Classic Akka ’sender()’
function.

The core of the algorithm involves recursively evaluating each actor class and message set within
a given Map pair, and determining its relationship with other actors and their message sets in terms
of message subsets and supersets. In addition to finding supersets, the algorithm also propagates the
boolean values of each message within their respective supersets. Because the ’sender()’ function is no
longer present in the Typed Akka, it is necessary to identify which messages are used with ’sender()’
so that during refactoring it would be taken into account. However, it is possible to observe a message
that is not using ’sender()’ in some actor class only to discover later that another actor class is using
the same message with ’sender()’ function. As such, the boolean indicator of a message within a
respective superset must be updated whenever it is discovered that a message is sent to ’sender()’.

The function begins by checking if the input ’remaining’ is empty which keeps track of unevaluated
actor class and message set pairs. So, if it is, the function returns the ’visited’ map, which keeps track
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of the sets that have already been processed. Otherwise, the algorithm proceeds by extracting the first
element of the ’remaining’ map and the rest of the elements, referred to as ’head’ and ’tail’. Additionally,
the ’head’ is checked whether it was already visited and processed to avoid repeated iterations. If it was,
the function continues to recursively process the ’tail’, effectively skipping ’head’. In case it was not,
the algorithm identifies subsets and supersets of ’head’ within the ’tail’. The evaluation of subsets
and supersets only considers the messages, not the boolean values of each message, and subsets with
supersets in this context are represented from the perspective of the current iteration ’head’ value. Such
identification helps in knowing which sets are not ”captured” within the ’head’ set and will be processed
later via the ’newRemaining’ variable by filtering the ’tail’ to remove the found subsets.

Then, if any supersets are found, we must identify the highest-order superset that the ’head’ belongs
to, i.e. a superset that is the largest possible superset within all found supersets for the ’head’. Because
the algorithm looks for supersets, we can recursively call itself by passing supersets as ’remaining’
and ’visited’ as an empty Map. This results in finding the largest superset because with every iteration
’head’ points to another superset in the list while every time again identifying subsets and supersets
of the new ’head’. As a result, every identification of a superset will again trigger a recursive call to
look for the highest-order superset, and this will repeat until there are no supersets found. Eventually,
a highest-order superset is returned because only the head element is taken, and it will always be the
superset that has no other supersets in the original list. Before evaluating the ’head’ with found superset,
the ’head’ and discovered subsets are joined together into a single Map, and the highest-order superset
messages are updated based on the messages’ boolean values within the head and found subsets via
’updateBooleanAndTermValues’ helper function.

Next, because the highest-order superset may have been already discovered, it should be verified
since up until now the ’visited’ map was not considered. As such the function ’compareAndUpdateSets’
18 is called that will compare a given key-value message tuple with a message map and update or create
a new map. In this case, ’biggestSuperset’ is compared to the existing ’visited’ values and based on the
result a map is returned that is added to ’finalSets’.

In cases where no supersets are found, the head is treated as the superset with some number of
subsets within the ’remaining’ map. This means the step of identifying the highest-order superset is
omitted, but the remaining steps, including checking whether the head was already evaluated, are still
performed by again calling ’compareAndUpdateSets’ 18 function. That is because we still need to
know whether the head was already observed when analyzing other sets or not, and consequently update
boolean message values. The only difference is the missing consideration for supersets from the ’head’s’
perspective. Eventually, every key-value map pair will be processed and removed from the ’remaining’
map which will return the accumulated ’visited’ map.

The algorithm ’compareAndUpdateSets’ 18 on its own implements a logic that will recognize if
a given set was already evaluated at some point before. It is exclusively used by ’findSupersets’
17 algorithm which uses the logic here to identify if a given ’head’ or ’biggestSuperset’ was already
observed. However, the algorithm ’compareAndUpdateSets’ does not differentiate between them since
it does not need to.

When ’compareAndUpdateSets’ is executed, it first updates the given ’map’ boolean values based
on the found subset values via ’updateBooleanAndTermValues’. Then the ’map’ is compared with
’visited’ to identify if all of the values in ’map’ exists anywhere within a single set of ’visited’. If the
given ’map’ does exist, then we must determine what key-value map pairs ’map’ belongs to in ’visited’.
Based on that we again re-evaluate the boolean values of each message and merge the keys of ’map’,
’subsets’, and ’visitedMatch’. This results in a new key-value map pair which will be combined with
filtered map ’visitedFiltered’ to effectively overwrite the old ’map’ found in ’visited’ and produce an
updated map. Finally, the iterative process continues with the new remaining and visited maps by calling
again the ’findSupersets’.
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Algorithm 18: Compare and Update Sets
Input: set: Map[List[String], Set[(String, Boolean)]], subsets: Map[List[String], Set[(String,

Boolean)]], visited: Map[List[String], Set[(String, Boolean)]]
Output: Map of (List of Strings, Set of Tuples (String, Boolean))

1 Function compareAndUpdateSets(map, subsets, visited):
2 newVal← updates all map.values boolean values via

updateBooleanAndTermValues(subsets.values);
3 if map.values is already in visited.values then
4 visitedMatch← filter visited to get all messages that are in map;
5 visitedFiltered← filter visited to get all messages that are not in map;
6 newVal← updates all visitedMatch.values boolean values via

updateBooleanAndTermValues(newVal);
7 newKey← map.keys ∪ subsets.keys ∪ visitedMatch.keys;
8 newSuperset←Map(newKey, newVal);
9 newVisited← visitedFiltered ∪ newSuperset;

10 return findSupersets(newRemaining, newVisited);

11 else
12 newKey← map.keys ∪ subsets.keys;
13 newSuperset←Map(newKey, newVal);
14 newVisited← visited ∪ newSuperset;
15 return findSupersets(newRemaining, newVisited);

In case it was not discovered, only the keys are updated to include both the given ’map’ and ’subset’
keys. A new key-value map pair is created by taking new keys with ’newVal’ since it is already updated.
We already know that the given ’map’ is a potentially new superset that still has not evaluated. This new
pair is added to the ’newVisited’ list, and the iterative process continues by calling ’findSupersets’
with the ’newRemaining’ and ’newVisited’.

Overall, the combined algorithmic process of ’findSupersets’ 17 and ’compareAndUpdateSets’
18 represents a greedy approach that combines actor types into the biggest existing encompassing type.
Such an approach works well when the actor system utilizes inherited actors since identifying and com-
bining each actor’s messages will produce a dedicated type for a family of actors that are derived from
the same base actor traits/classes. However, if actor classes inherit possible actor states from multiple
sources with different message types or every actor is using various combinations of messages that are
shared between numerous actors, then in the worst-case scenario this would produce type definitions
equal to the number of actor classes in the system with duplicate messages types between each type
definition. On the other hand, following the Actor Responsibility assumption, the ideal scenario would
also produce type definitions less or equal to the number of actor classes/traits, but each definition would
contain unique messages specific to that actor’s responsibility. One of the ways to improve the algorithm
would be to evaluate the supersets and encompassing sets as they are discovered instead of having them
processed again since the ’remaining’ map is not filtered to remove observed supersets.

It should be noted that the algorithm 17 has a list of helper functions that are used within the algo-
rithm. These functions are generally self-explanatory and used to return a boolean value, and as such
are not explained in detail. The functions are: isSubset, isSuperset, containsStringSetTuple,
equalsStringTuple, updateBooleanAndTermValues.

3.5.2 Message Type Definition

Once the message types are known across the actor system, each message must be reconstructed with
the respective type in a new object containing the message definitions. Since types are discovered based
on actors’ message usage, each new object will indirectly reflect the actors that are grouped under this
type. The algorithm 19 details the process for reconstructing the new type objects.
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The main goal of the algorithm is to define a new type of object through syntax tree reconstruction
that captures these messages, including their parameters and structure, and returns this new object def-
inition. The final object and its message types are then saved in a separate file, containing a detailed
list of the message objects used in the system. The function ’createMessageObjects’ takes two input
parameters: a ’superset’, which represents a list of actor names and messages that belong to this super-
set, and ’mstList’, a list that represents discovered different types of message definitions. The result of
the function is the definition of a new message expressed as a syntax tree that encapsulates all relevant
message parameters and their internal structures.

The algorithm starts by using two helper functions to set up default values representing the new type
name and the name of the object class that will contain the messages. The function
’createMessageObjectType’ produces the type name by deriving it based on the actor names con-
tained in the superset, while ’createMessageObjectName’ generates the name by combining the actor
names into a single string in a pascal case format [45]. An additional helper function
’refactorParamsActorRef’ will be used later to process parameters and ensure that the actor reference
type is consistently applied to all message parameters that are of type ’ActorRef’.

Then, the algorithm iterates over each message in the superset, skipping any message that is equal
to ’self ’, which is an indicator for an actor behavior change where message parameters are parameters
used for a behavior change. For each valid message, the algorithm attempts to identify its corresponding
type from the ’mstList’, and then distinguish between it being a message class and companion objects
in ’mstListFiltered’ and ’mstListCompanion’, respectively. If a message type is found, the algorithm
refactors it, ensuring that the ’replyTo’ parameter is inserted, replacing the ’sender’ parameter, and
adjusted with the correct ’ActorRef’ type using the ’refactorParamsActorRef’ function. This ensures
that any actor message that used to use the ’sender’ parameter will use the correct type.

Finally, a new body is created for the message, using the abbreviation type and the original message
definition body that may contain additional functions or default values. The result is either a new class
or an object that depends on different scenarios based on the structure of the message. If the message
has parameters, it is defined as a class. If it has no parameters but has a Scala companion object [64],
both the class and object are created. Lastly, if neither message parameters nor a companion object exist,
a case object is created. As a result, companion objects are preserved to ensure that the message and
actor system retains all original interactions with each other, particularly for messages that are designed
to have both a class and a companion.
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Algorithm 19: Create Message Type Objects
Input: superset: Tuple(List of String, Set of (String, Boolean)), mstList: List of MessageType
Output: Object definition (Defn.Object)

1 Function createMessageObjects(superset, mstList):
2 abbreviationType← createMessageObjectType(superset);
3 nameObj← createMessageObjectName(superset);
4 statsObj← list of Stat with Trait definition (name equal to abbreviationType));

5 foreach (message, bool) in superset.messages do
6 if message is not ”self” then
7 msType←MessageType(empty);
8 mstListFiltered← filter mstList where name equals message and isClass is true;
9 mstListCompanion← filter mstList where name equals message and isClass is false;

10 if mstListFiltered is not empty then
11 msTypeOld← mstListFiltered.head if exists, otherwise None;
12 if msTypeOld.isDefined then
13 if bool then
14 msType← remove ’sender’ from msTypeOld.params and refactor

msTypeOld with refactorParamsActorRef;

15 else
16 msType← refactor msTypeOld with refactorParamsActorRef;

17 newBody← Body(abbreviationType, msType.body);
18 if bool then
19 msType.params← replyTo constructor parameter of type

ActorRe f (abbreviationType) ∪ msType.params
20 statsObj← statsObj ∪ Defn.Class(message, msType, newBody);

21 else if msType.params is not empty then
22 statsObj← statsObj ∪ Defn.Class(message, msType, newBody);

23 else if mstListCompanion is not empty then
24 msCompanion← mstListCompanion.head;
25 statsObj← statsObj ∪ Defn.Class(message, newBody);
26 statsObj← statsObj ∪ Defn.Object(msCompanion.name, msCompanion.body);

27 else
28 statsObj← statsObj ∪ Defn.Object(message, newBody);

29 return Defn.Object(nameObj, statsObj);

3.5.3 Actor Class Refactoring

After message type definitions are created, then the actual actors are refactored. The process of refac-
toring is implemented in a function ’refactorBody’ 20 that essentially only looks at functions that
return ’Receive’ type, is named ’receive’, or is called by a function that does return ’Receive’ type by
utilizing call graph. Once such function is discovered in an actor class, they are refactored by calling
another function ’createBehaviourObject’ which looks at intermediat actor’s states and interactions
that an actor contains and refactors message and actor references with appropriate types and message
parameters that may have been added (i.e. parameter ’replyTo’). The function outputs a new object or
class definition that includes the refactored actor logic. The primary goal of this function is to convert
untyped actors and their behaviors into typed ones, while ensuring compatibility with existing structures
and maintaining proper message handling.
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Looking deeper at the function, the first step involves initializing a custom transformer, which is
later used to transform all actor reference parameters within the class into their typed equivalents. In
this context, a transformer is a simple recursive function that explores a given syntax tree while pattern-
matching each node, and performing some logic once a match is found. The main loop then iterates
over the ’classTrait’ that actor body, examining each node in the syntax tree. If the node represents a
function that either returns a ’Receive’ type or is explicitly named ’receive’, it is refactored by calling
’createBehaviourObject’ and passing down the function with its parameters, but with a new name
of a function ’apply’. This is necessary because, in the refactoring process, default receive functions
are moved into an apply method which allows for the function to handle previously existing constructor
parameters while ensuring that the whole actor class can exist as an object definition. Such resulting
output of an actor class falls in line to the functional programming paradigm that the Akka library
suggests using. However, this also necessitates that actors should be stateless, hence the existence of the
initial assumption Stateless Actors 3.2.

When a function neither returns the ’Receive’ type nor is named ’receive’ without an explicit return
type, the next step is to check whether this function is invoked by another function that does return the
’Receive’ type. If it is, the function undergoes refactoring in the same manner, but its name remains un-
changed. This process operates under the assumption that any function called by one returning ’Receive’
is likely involved in message handling and message-processing logic. Consequently, these functions are
also refactored to ensure they contain the correct message and actor reference types. On the other hand,
if a function is abstract and either returns ’Receive’ or is named receive’, only the function’s definition is
updated to return the appropriate actor behavior type, specifically ’Behavior[T]’. After applying these
changes, the refactored functions are appended to the ’newBody’ variable, which stores the list of nodes
gathered during the traversal of the actor’s body.

Eventually, the function concludes by determining whether to return a class, trait, or object definition
based on the existence of class parameters and whether a ’receive’ function was found. If the class
definition includes the ’abstract’ keyword or if no default ’Receive’ function was found while the class
contains constructor parameters, then the result will be a class. If the actor was originally defined as a
trait, it remains as a trait definition. In all other cases, the actor is returned as an object.

Through ’refactorBody’ function, a number of helper functions are used. Like in ’createMessageObjects’
19 function, ’createMessageObjectName’ and ’createMessageObjectTypeName’ are used to pro-
duce actor type name. In addition, the function ’refactorParamsActorRef’ is responsible for ensuring
that actor reference parameters are correctly transformed into typed actor references. Lastly, one of the
core functions that handles refactoring of the message processing actor functions is ’createBehaviourObject’.

The function essentially loops through the body of a given function looking for a few specific syn-
tax structures that indicate that a message is being send or processed. If found, then with the help of
custom transformers every message type definition, actor reference and message parameters are refac-
tored to contain appropriate types by reconstructing syntax tree node and replacing the one that was
matched. Since message targets were already resolved during the construction of the ’Intermediate
Actors’, determining the target actor types when sending a message simply requires looking up the
observed message in the relevant ’Intermediate Actors’ definition. Once the target actor class is iden-
tified, the actor type is retrieved from the supersets, which is again formatted using the helper function
’createMessageObjectTypeName’.

A comprehensive breakdown of the ’createBehaviourObject’ algorithm, along with its associated
helper functions and more specialized methods for handling various syntax tree expressions and edge
cases, is provided in Appendix A.
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Algorithm 20: Refactor Body
Input: isTrait: Boolean, classTrait: Tree, ia: IntermediateActor, actorSet: Tuple(List of String,

Set of (String, Boolean)), supersets: Map of (List of String→ Set of (String, Boolean)),
callGraph: List of FunctionNode

Output: Function Definition
1 Function refactorBody(isTrait, classTrait, actorSet, supersets, callGraph):
2 transformerClassParams← new Transformer(Node){. . . };
3 noReceive← true;
4 importMsObj← import definition for actorSet;
5 newBody← empty list of Stat;
6 foreach node in classTrait.body do
7 if node is function definition and returns Receive or is called by function that returns

Receive then
8 if node returns Receive or is named ’receive’ without a return type then
9 noReceive← false;

10 newBody← newBody ∪ createBehaviourObject(node, node.mods,
”apply”, classTrait.params, actorSet, supersets, true);

11 else
12 newBody← newBody ∪ createBehaviourObject(node, node.mods,

node.name, classTrait.params, actorSet, supersets, false));

13 else if node is abstract function and (returns Receive type or is named ’receive’) then
14 actorTypeName← createMessageObjectTypeName(actorSet);
15 newDecltpe← Behavior[correspondingActorTypeName] definition;
16 node.declType← newDeclt pe newBody← newBody ∪ node;

17 else
18 newBody← newBody ∪ node;

19 newInits← node.inits without ’Actor’ and empty constructor parameters;
20 newParams← transformerClassParams(classTrait.params);
21 if classTrait.mods contains ”abstract” or (noReceive and classTrait.params is not empty)

then
22 return Class(classTrait, newInits, importMsObj + newBody);

23 else if isTrait then
24 return Trait(classTrait, newParams, newInits, importMsObj + newBody);

25 else
26 return Object(classTrait.mods, classTrait.name, newInits, importMsObj + newBody);

3.6 Other attempts

Throughout the implementation process, various existing libraries for extracting a call graph, class in-
heritance graph, and dependency graph were considered in order to reduce implementation effort and
ensure coverage of edge case scenarios. However, most of the tools presented limitations that rendered
them unsuitable for this project’s needs.

One of these tools we attempted to utilize is an open-source CLI tool ”callGraph” [3] used for gen-
erating call graphs from source code from an array of code languages. While promising, ”callGraph”
struggled to recognize many Scala-specific expressions and syntactic sugar, often missing function calls
that were important for accurately mapping the communication between actors. Additionally, as a CLI
tool, it only outputs graphs in external file formats, which would require additional effort to integrate
into a broader refactoring solution to utilize the resulting file.
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Another tool we considered was Scala Sculpt [28], a compiler plugin designed to analyze the depen-
dency structure of Scala source code. Scala Sculpt extracts extensive information about dependencies on
every level, but its unconventional and verbose output makes it difficult to use directly. The output would
have required custom logic and considerable effort to parse and group the extracted data into meaning-
ful structures for automated refactoring. Furthermore, Scala Sculpt is an unfinished and unmaintained
project, adding risk to its adoption due to potential bugs or lack of updates in the future.

We also explored using the WALA [35, 23] library for static analysis on JVM bytecode. Since
Scala compiles to JVM bytecode, WALA could theoretically be used to analyze Scala code indirectly.
However, the complexity of using WALA to parse and interpret bytecode generated from Scala pre-
sented significant challenges. Not only would it require extensive effort to adapt WALA for Scala, but
its bytecode-based analysis would limit direct access to Scala-specific constructs, making it less ideal
for accurately capturing actor communication patterns and interactions. As demonstrated by the paper
”Targeted Test Generation for Actor Systems” [26], for similar reasons requiring substantial effort, they
only support Java Akka library instead of both Java and Scala.

While evaluating these options, there was a noticeable lack of robust, well-maintained tools in the
Scala ecosystem for static code analysis capable of extracting dependencies and interactions from source
code. The libraries that were found were either too generalized to meet the specific needs of this project,
too simplistic to capture the complexities of a distributed actor system, or abandoned by their maintain-
ers. This scarcity of appropriate tools reinforced the need to develop a custom solution tailored to the
problem of refactoring untyped actor systems into typed ones.

3.7 Constraints and considerations

When analyzing and refactoring actor-based systems, there are several constraints and considerations
that must be taken into account, both due to the implementation limitations and the innate differences
between typed and untyped actor systems.

One aspect to consider is how the actor state is handled. We assume that actors would not have
an internal state, as the goal was to align to a stateless, immutable, and in general more functional
programming model [22]. However, it is possible that an actor was implemented with stateful values.
To deal with that, an approach is required for a stateful actor to become stateless. Although not yet
implemented, a proposed solution would involve creating a dedicated actor state class that encapsulates
the various state variables of an actor. This class would be instantiated at runtime, and the object would
be passed through function calls whenever state information is needed. By consolidating state values in a
separate class used as a container, we ensure that actor instances remain stateless aligning with our initial
assumptions and functional programming principles. Unfortunately, during evaluation a large majority
of benchmark actors were indeed stateful, and as such each benchmark was manually modified to include
these actor state classes containing all actor stateful variables that are used in a given benchmark.

Another important constraint relates to actor hierarchy. In the untyped actor system, actors can be
spawned in a flat space, meaning that any actor could spawn another actor without considering a parent-
child relationship, usually resulting in an actor system hosting a large number of actors in a flat space.
However, the Akka Typed requires actors to spawn children within a hierarchical context, where each
actor spawns children from its own system context. This introduced a challenge, as actors that previously
had access to the system context needed to be adjusted to spawn child actors from their own context.
Currently, there is no automated logic in place to handle the restructuring of actor hierarchies during
refactoring. As a result, the actor system is expected to already meet actor hierarchy criteria to ensure
that actors are correctly refactored to follow the Akka Typed hierarchical structure.

Despite these constraints, there are a number of limitations that the current implementation, and by
extension the proposed algorithm, can not handle, either due to implementation issues, or logical errors.
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3.7.1 Limitations

The list of limitations here arose from the discovered issues during evaluation, implementation logic that
didn’t consider all possible expressions or the innate differences between Akka Classic and Akka Typed
that are not yet handled [51].

• Lack of Refactoring for Ask Patterns: Although the communication flow graph identifies ask
patterns (i.e. when actors request responses from other actors), the current implementation does
not refactor these patterns. The message and message type information is recognized and used,
but ask patterns are left unchanged during refactoring.

• Ambiguity in Actor References: Actor references can not be ambiguous. An actor reference
variable can not reference multiple actor types, because otherwise, it becomes impossible to de-
termine the exact actor being referenced. Additionally, the target actor reference variable or in-
stance itself must be used directly to invoke a ’tell’, ’ask’, or ’forward’ function (and their
equivalent ’!’ and ’?’ syntactic sugars), and not call some other class, object or function that will
return an ’ActorRef’ instance.

• Reserved Keywords and Syntax Limitations:

– The reserved keyword ’sender’ is assumed to always reference the sender of a message.

– When defining ’Props’ object in Akka Classic and using the keyword ’new’ to specify an
actor class, then any subsequent parameters can not use the keyword ’new’ as they will be
incorrectly recognized as a potential actor class.

– Actor constructor parameters of type ’ActorRef’ cannot include type parameters (e.g., ’ActorRef[Message]’)
in Akka Classic.

– When parameters are passed to a message object during sending or message instantiation,
there should not be variables or functions containing a string ’self ’, as it is reserved to
recognize actor self-reference.

• Message Type and Parameter Constraints: Limitations listed here apply only to the Akka Clas-
sic since they are all related to the recognition of message types and their parameters.

– Literal message types, such as string literals like ”EXIT”, are not recognized as message
types and are ignored. This leads to incomplete refactoring for actors that rely on such literal
types.

– Messages with type parameters (e.g., ’Message[T]’) are not supported.

– Message definitions cannot have standard types like ’Boolean’, ’Int’, ’String’, etc. as
their names.

– Message constructor parameters can not be of type ’Any’.

– Message definition must be within an object or a class (and not in a trait or some function).

– Message parameters must be defined in the constructor of the message object/class defini-
tion.

– Message definitions can only inherit a single trait or class with no mixins.

– The body of each message type definition will not be analyzed and consequently will be
ignored (since they are treated as static objects).

• Function and Message Call Restrictions:

– Functions cannot call themselves because the call graph will not contain the edges that point
to itself. As long as message processing functions are not recursive, this should not be an
issue.
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– Props instances must be assigned to ’val’ variables, and all props constructor parameters
must be passed with their true values directly (without any level of indirection or external
function calls).

– When invoking tell’, ’ask’, or ’forward’ actor call functions (and their equivalent ’!’
and ’?’ syntactic sugars), the first argument must be a message object directly, not the result
of another function or object that returns a message.

– In classical Akka, when changing the actor context/behavior and passing the to-be receive
function, the ’context.become(...)’ must be called within the function that returns re-
ceive type, not within some other function that is called instead of ’context.become(...)’.

• Mutable Objects: Mutable objects should not be passed between actors, as they are not accounted
for in the refactoring logic. Refactoring assumes that actors interact through immutable messages
and their parameters.

• Immutability and Functional Programming Limitations: Implicit values should not be passed
in the same code line as tell, ask, or forward commands due to limitations in recognizing syntactic
sugar (e.g., ’obj.func(...)(...)’).

• Multiple Inheritance Limitation: No trait, class, or object will override a function that is defined
in more than one parent trait or class. If node A and node B in the hierarchy graph define a function
with the same name, and a child node extends both parents and overrides that function, the call
graphs can produce incorrect results which negatively affects the refactoring process.

• No behavior reversal: Currently the implementation does not take into account the Akka Classic
capability to reverse an actor’s behavior via the ’context.unbecome()’ function. This is one of
the innate differences between typed/untyped libraries as such pattern is not available in typed
library.

• No parent-child relationship recognition: The current implementation lacks recognition of
parent-child relationships between actors, despite the ability to resolve actor references and detect
instantiation. While adding this capability would possibly enhance the modeling of actor hierar-
chies and improve refactoring accuracy, particularly for message passing and fault tolerance, it is
not currently implemented.

3.8 Implementation Setup

The implementation used the following libraries:

• scala - 2.13.12

• akka-actor; akka-testkit; akka-actor-typed; akka-actor-testkit-typed - 2.8.2

• scalatest - 3.2.13

• spray-json - 1.3.6

• scalameta - 4.5.13

• graph-dot - 1.13.0

• sbt - 1.9.7

• JDK - 21.0.2
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Chapter 4

Evaluation & Results

The evaluation framework of this research aligns with research questions and will explore the developed
source code refactoring in three domains: Effectiveness, Efficiency, and Applicability. Evaluating the
refactored software across these three domains will present a comprehensive assessment of its capabil-
ities and potential with respect to viability, performance, and practical applicability. The compounded
result of each domain will allow us to draw meaningful conclusions, present the current limitations, and
outline future work.

4.1 Evaluation Questions

Based on the three evaluation domains, each of the evaluation questions will fall into one of them, and
as such, the questions are grouped below to represent their respective domains:

• Effectiveness - as the name suggests, the domain will be aimed at measuring the ability of the
software to produce effective changes and improvements to the refactored code while ensuring
similar or better code quality, essentially representing the software’s ultimate goal. For that, the
code would be evaluated based on a set of evaluation metrics and then tested through a set of unit
tests for each of the benchmark actor programs [24]. As such, the evaluation questions for this
domain are as follows:

1. Are there cases where the software produces refactored code that introduces new bugs or
unintended behavior?

2. How does the refactored code’s quality compare to the original code?

• Efficiency - as opposed to effectiveness, this domain will evaluate the speed and resource con-
sumption necessary to provide the results that the effectiveness domain considers, providing in-
sights into practical utility. For that, a diverse set of actor benchmark programs will be compiled
in several corpuses that then will be used when measuring refactoring software’s efficiency. The
evaluation questions for this domain are as follows:

1. What is the impact on resource (CPU, memory) consumption of the software after the refac-
toring?

• Applicability - at this point, it is important to measure how applicable is the refactoring software
with its current limitations. As such, based on a set of preconditions and constraints, this domain
will measure the ability of the refactoring software to refactor and maintain functionality of a
select large-scale open-source project that can benefit from the refactoring software. Below you
can find the evaluation questions:

1. Is the refactoring software capable of refactoring and preserving the functionality of a large-
scale open-source project?
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4.2 Evaluation setup

In this section, we present the setup used to evaluate the effectiveness, efficiency, and applicability
of the refactored actor-based systems. The evaluation is conducted using a set of benchmarks from
the Savina Benchmark Suite [24], which provides a wide range of benchmarks to test parallelism,
concurrency, and communication overhead in actor-based systems. Specifically, the benchmarks
were chosen to test both the effectiveness and efficiency of the refactored code when compared to
the original, whereas applicability is tested by refactoring real-world application and evaluating
its efficiency.

In addition to Savina benchmarks, we will include four simple benchmarks derived from open-
source GitHub projects that implement stateless actor systems, more inline with functional pro-
gramming paradigm. The aim of these benchmarks are to see the effect that stateful actor systems
have on the refactoring quality as Savina benchmarks are primarily stateful.

4.2.1 Benchmark applications

The Savina benchmark suite provides a collection of benchmarks designed to assess the perfor-
mance of various conditions of actor-based systems. These benchmarks simulate real-world sce-
narios and computational challenges that are representative of typical workloads in distributed
and parallel systems. For this evaluation, we selected 13 benchmarks out of 28 available: 10
parallelism benchmarks, 2 concurrency benchmarks, and 1 micro-benchmark. Each benchmark
offers distinct computational patterns, making them suitable for testing various aspects of the
actor model, such as communication, synchronization, and task distribution. The list of chosen
benchmarks can be found in the table 4.1

Symbol Name Pattern being measured
Parallelism

APSP All-Pairs Shortest Path Phased computation; Graph exploration
ASTAR A-Star Search Message priority; Graph exploration
NQN NQueens first N solutions Message priority; Divide-and-conquer style paral-

lelism
TRAPR Trapezoidal Approximation Master-Worker; Static load-balancing
PIPREC Precise Pi Computation Master-Worker; Dynamic load-balancing
RMM Recursive Matrix Multiplication Uniform load; Divide-and-conquer style parallelism
QSORT Quicksort Non-uniform load; Divide-and-conquer style paral-

lelism
RSORT Radix Sort Static Pipeline; Message batching
UCT Unbalanced Cobwebbed Tree Non-uniform load; Tree exploration
OFL Online Facility Location Dynamic Tree generation and navigation

Concurrency
SBAR Sleeping Barber Inter-process communication; State synchronization
PCBB Producer-Consumer with Bounded Buffer Multiple message patterns based on Join calculus

Micro-benchmark
PP Ping Pong Message delivery overhead

Table 4.1: List of Savina Benchmarks [24] used in the evaluation: 10 parallelism benchmarks, 2 concur-
rency benchmarks, 1 micro-benchmark.

The benchmark selection was guided by the need to capture a diverse range of actor-based com-
putations that reflect real-world scenarios while maintaining a focus on parallelism as it is both
reflective of the real-world patterns and generally difficult to implement correctly. As a result, the
initial intention was to use all 13 of the original Savina parallelism benchmarks. Still, two of them
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could not be refactored correctly without modifying the benchmark source code and altering the
actors and their behaviors, and one had source code comments indicating deadlocking within the
benchmark which could have impacted evaluation results, and as a result, it was omitted.

The original set of concurrency benchmarks, containing 8 in total, includes one specific and three
general communication patterns that have more specific variations within them: Multiple mes-
sage patterns based on Join calculus, Reader-Writer concurrency, Inter-process communication,
and Synchronous Request-Response. For this evaluation, only the benchmarks focused on Inter-
process communication state synchronization and Join calculus were selected for refactoring, as
their implementations are representative of the broader concurrency set and feature a higher num-
ber of actors and messages, making them ideal for this study. The remaining patterns, such as
Synchronous Request-Response and Reader-Writer concurrency, are somewhat covered by paral-
lelism benchmarks, and adding more specialized benchmarks would require significant time with-
out yielding substantial new insights. Moreover, the focus of the refactoring is on actor system
complexity—specifically, the number of actors, their states, behaviors, and interactions—rather
than their computational efficiency. This is because the refactoring process does not alter the in-
ternal logic of actors but instead identifies, groups, and refactors actor types and their interactions.
Consequently, benchmarks with a larger number of actors, more diverse interactions, and a variety
of message types are the most valuable for this evaluation.

Only the ping pong benchmark from the original 7 micro-benchmarks was selected as a baseline
benchmark that has only two actors interacting with clearly defined behaviors and states. Since the
ping pong benchmark actors are not performing computation, as a result being fairly simplistic,
and do not modify their state without being triggered by message interactions, it was perfect for
evaluating whether the refactoring could accomplish bear minimum and refactor actor types with
their respective interactions and messages.

From the original set of seven micro-benchmarks, only the Ping Pong benchmark was selected
as it provides a straightforward baseline with just two actors exhibiting clearly defined behaviors
and states. Since the benchmark actors do not engage in complex computations and only modify
their states through message exchanges, it is ideal for assessing whether the refactoring process
can handle the fundamental task of identifying and refactoring basic actor types along with their
corresponding interactions and messages. Such minimal complexity provides a clear test to con-
firm whether the refactoring could handle the fundamental task of identifying and restructuring
actor types and their interactions at their most basic level.

Stateless Benchmarks

The need for the stateless benchmarks arises from the observation that all selected Savina bench-
marks rely on stateful actors, which may significantly affect code quality after refactoring due to
introduction of actor state class that will contain stateful variables. By including stateless bench-
marks, we aim to evaluate the effects of refactoring on actor systems without the complexity of
managing state, providing a clearer understanding of how the refactoring impacts code quality in
simpler, stateless scenarios.

The four stateless benchmarks are derived from a GitHub repository containing exercise tasks
for learning Akka Classic [13], specifically the ”changing actor behavior” and ”child actor exer-
cise” tasks. These exercises were adapted to allow for precise metric evaluation and high-load
simulations. The benchmarks can be found in the table 4.2

These additional benchmarks will undergo the same evaluation process as the Savina benchmarks
to ensure consistent comparison and to measure the effects of refactoring on both stateful and
stateless actor systems. This will help determine whether the introduction of state has a significant
negative impact on code quality, particularly maintainability and understandability.
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Name Benchmark description
Counter A single actor system that tracks the count of an integer value based on mes-

sages received from an external environment.
FussyKid A two-actor system where one actor randomly sends one of two possible mes-

sages to another actor, which then changes its behavior based on the previous
message and tracks the behavior change.

VotingSystem A one-to-many actor system where multiple copies of a voting actor cast votes,
and a vote aggregator actor collects all votes, ensuring that all actors have voted
and responded.

WordCounter A three-actor system involving one-to-many interactions, where a master actor
creates worker actors to distribute tasks, and aggregates the results from the
workers to respond to the original task initiator.

Table 4.2: List of stateless benchmarks adapted for evaluating refactoring impact on actor systems [13].

Effectiveness Domain

To assess the effectiveness of the refactoring process, unit tests were created and executed on both
the original and refactored versions of the code for all 13 selected benchmarks. The primary goal
of this step was to identify any unintended behavior or bugs introduced during the refactoring pro-
cess by verifying that the same unit test passed both the original and refactored code. Unit tests
for each benchmark were designed to ensure the successful termination of the benchmark with
expected results. By comparing the results of tests for both code versions, any potential discrep-
ancies in behavior were identified. It is important to note that the unit tests do not exhaustively
test every possible actor behavior, individual actor states, and responses for each possible message
and message configuration. Rather, each benchmark under test was treated as a black box with
known input and configuration values, and expected output values, and as long as the benchmark
was successful with the expected resulting value, then it was treated as success.

To evaluate the effectiveness of the refactoring process, unit tests were created and executed on
both the original and refactored code versions for all 13 selected benchmarks. The primary goal
was to detect any unintended behavior or changes introduced during refactoring by ensuring that
the same unit tests passed in both the original and refactored code. These unit tests were designed
to verify that each benchmark completed successfully and produced the expected results. By
comparing the outcomes of the tests for both code versions, any deviations in behavior were
identified. It’s important to note that these tests did not aim to cover every potential actor behavior,
state, or response for all message configurations. Instead, each benchmark was treated as a black
box with predefined input, configuration, and expected output values. As long as the benchmark
ran successfully and yielded the expected result, it was considered a pass.

In addition, to evaluate the code quality of the refactored versions, both code versions were stat-
ically analyzed and compared based on a set of metrics and rules to guide static code evaluation.
The three metrics that were used for this evaluation are explained below:

– Cohesion-Coupling Balance: This metric assesses the relationship between an actor class’s
cohesion, which reflects how closely related its methods and functions are, and its coupling
with other actor classes. Coupling is measured through an actor’s interactions with others as
well as the messages exchanged and the data contained within those messages [15, 27, 18].
A balance of high cohesion and low coupling is preferred, with values exceeding one (>
1) indicating a favorable balance [33]. This metric is designed to evaluate the increased
dependencies for each actor class arising from actor and message types, the introduction of
actor state class, and the replacement of the ’sender()’ function with an additional message
parameter ’replyTo’.
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– Instability: As the refactoring process introduces new classes for each actor, it is important
to understand how these new dependencies may affect the class’s susceptibility to changes
stemming from modifications in dependent classes. This, in turn, provides insights into
the overall maintainability of the code. To assess this, the Instability metric is utilized to
quantify the likelihood of a given actor class undergoing changes, taking into account its
dependencies as well as the classes that rely on it [30].

– Cognitive Complexity: This metric measures how difficult the code is to understand, effec-
tively measuring the understandability of a code [12, 9]. Such measurement is important as
it reflects a developer’s capacity to interpret, utilize, and build upon the refactored code. If
the code lacks clarity, developers may need to invest additional effort into further refactoring
to make it useful.

These three metrics cannot be applied directly to the entire source code as the presence of exist-
ing benchmark infrastructure and calls to standard libraries would distort the results. To ensure
the evaluation remains focused on the benchmarks themselves, we will restrict the scope of the
assessment. Specifically, only the actor classes introduced by the benchmark, along with their
configuration or custom classes specific to that benchmark, will be evaluated. Interactions with
standard Java or Scala libraries, types, or functions, as well as any interactions with the underlying
Savina benchmark suite (such as utility functions, abstract classes, or inherited methods not di-
rectly involved in the benchmark), will be excluded from consideration. However, any new class
or object generated through the refactoring process will be included, including type definitions.
Message definitions will be excluded from the analysis since no new messages are created or de-
fined, only the data exchanged within messages will be considered for Data Coupling evaluation.
Additionally, an actor class is considered dependent on another actor class if it creates child actors
or sends messages to a target actor class, which implies a dependency on that class for message
handling and processing.

Together, these metrics address the second evaluation question within the effectiveness domain
by assessing the impact of refactoring on code quality. Meanwhile, unit tests are designed to
tackle the first evaluation question, ensuring that the refactoring process does not introduce any
unintended changes or errors in the behavior of the benchmark’s actors.

Efficiency Domain

The efficiency domain focused on evaluating the impact of refactoring on resource usage, specifi-
cally CPU, memory consumption, and runtime performance. The same set of 13 benchmarks was
executed under both the original and refactored code on the same hardware, and resource usage
was recorded during the execution of each benchmark over ten iterations. The purpose of such
evaluation is to see if the refactoring introduced any noticeable inefficiencies that could degrade
performance, and identify any additional overhead generated by the refactoring process. By exam-
ining resource consumption, the evaluation would reveal whether the refactored code negatively
impacted system efficiency or remained comparable to the original, ultimately ensuring that the
benefits of refactoring did not come at the cost of significant performance degradation. With these
goals in mind, the following measurements are taken during the execution of each benchmark:

– CPU usage: The percentage of processor time consumed by a benchmark was measured to
determine any significant changes in computation possibly introduced by the refactoring.

– Memory usage: Memory usage was monitored to evaluate whether the refactored code leads
to increased or decreased memory consumption as compared to the original code.

– Runtime: The total time needed to complete each benchmark was measured, allowing for a
direct comparison of the execution speed of the original and refactored code.
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Each benchmark was executed ten times, and the results were used to calculate the arithmetic
mean for each metric. Additionally, the standard deviation of runtime was computed to provide
insight into the variability of the execution times across runs.

Each benchmark was executed ten times to ensure consistent and reliable results. For every perfor-
mance metric, an arithmetic mean was calculated, providing an average value that represents the
benchmark’s overall performance. In addition to the mean, two key parameters were derived from
the runtime measurements: the standard deviation, which indicates the variability in execution
times across the runs, and the skewness, which highlights any asymmetry in the distribution of the
runtime data. Together, these statistics offer a better understanding of the stability and consistency
of the code’s performance while highlighting unintentional changes introduced by the refactoring
regarding the code’s efficiency.

4.2.2 Real-world application

The evaluation of applicability will follow a three-step process: successfully compiling refactored
code, running and passing the project’s unit tests, and successfully running the service locally.
Since the goal of this evaluation is to verify whether the refactoring software can be applied
to larger real-world projects, rather than just benchmarks, it is sufficient for this evaluation to
confirm only the functionality of the refactored software, but all of the steps in the process must
be completed for it to be considered success. However, it is important to note that assessing the
refactoring’s applicability should ideally be extended to a wider range of substantial real-world
projects, rather than relying on a single case study to prove the usefulness of the refactoring
software in practical applications. Due to time constraints, only one project will be used for this
evaluation.

To evaluate the applicability of the refactoring process, a set of open-source GitHub projects
was compiled, with only two meeting the selection criteria: ”Hydra” [34] and ”Tapir” [4]. The
criteria included projects written 95% or more in Scala, using an Akka Classic actor system as
the concurrent computing model, having over 200 files and 20,000 lines of code, and receiving
updates within the last year. ”Hydra” was chosen because it uses an actor system at its core and
functions as a standalone service, making verification easier. ”Tapir” on the other hand primarily
serves as a library and only uses Akka for one of possible backend servers, which made it less
suitable for evaluation.

Hydra itself is a real-time data replication platform that leverages the Scala programming lan-
guage and the Kafka and Akka frameworks. It enables the efficient reception, transformation, and
transmission of data streams by decoupling these processes into distinct, manageable components.
The platform simplifies the complexities of data streaming by offering a simple REST API, allow-
ing developers to interact with it seamlessly due to abstracted underlying implementation details.
Additionally, Hydra is a substantial project, consisting of more than 400 files and over 46,000
lines of code, and is actively maintained.

4.2.3 Technical setup

The refactoring tool, along with all selected benchmarks and the ”Hydra” project, was compiled
and executed on a system with the following specifications:

– Processor: 13th Gen Intel(R) Core(TM) i9-13905H (20 CPUs), 2.6GHz

– Memory: 65536MB RAM

– Graphics Processing Unit: NVIDIA GeForce RTX 4070 Laptop GPU, 7962MB
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4.3 Experimental results

This section provides a detailed presentation of the evaluation results across each domain. The Ef-
fectiveness results will discuss findings related to the unit tests, highlighting any changes or issues
identified in the refactored code, alongside a comparison of relevant metrics before and after the
refactoring. The Efficiency section will include performance metrics and an analysis of resource
consumption differences between the original and refactored code. Finally, the Applicability re-
sults will outline the success of each evaluation step, including any failures, and look deeper into
the underlying causes behind those failures.

4.3.1 Results on effectiveness

In answering the evaluation question ”Are there cases where the software produces refactored
code that introduces new bugs or unintended behavior?”, each benchmark was tested by designing
unit tests that verifies the functionality of benchmarks and correctness of results. Following the
execution of unit tests, 3 out of 13 refactored benchmarks encountered issues. These problems
arose either due to inherent differences between the Classical Akka and Typed Akka libraries,
leading to compilation failures, or as a result of limitations within the refactoring implementation,
which was unable to handle specific expressions or communication patterns accurately.

– PCBB: In the benchmark one of the actors stores a message in a local state variable list, and
processes it after receiving a message from another actor that requests data. After refactor-
ing, the two actors were assigned different types, but because of the implementation, both
were required to process the same message. However, Typed Akka does not allow an actor
to process messages belonging to types other than its own, nor can these actors be combined
into one type because they handle different messages and serve distinct purposes.

Typically, such scenarios in a typed actor system are resolved using message adapters or
distinct messages for each actor type containing the same data elements [60, 53]. As these
solutions were not supported by the refactoring software, the compilation failed due to mis-
matched message and actor types. To correct this, two lines of code were added that take
the data message from a list, extract the data elements, and create a new message with those
data elements. This new message is of a type that the target actor expects, and so it is as if
the same data message was sent to the target that requested the data.

– RSORT: The benchmark is implemented as a pipeline of actors that one after another se-
quentially process messages. During actor creation, the actor reference is passed down as
a constructor parameter which is actually a data object, and one of the data elements in the
object contains the actor reference. In such case an actor is referenced through 2 degrees of
indirectness, meaning that actor reference type resolution failed since only a single degree
of indirectness is supported. This resulted in the unit test for this benchmark failing, and the
benchmark had to be manually corrected with the correct actor type for this actor reference.

– UCT: In the benchmark, one of the actors has several constructor parameters where one of
them references a root node actor of a graph tree and the other references a direct parent node
actor, and it was implemented in such a way that the parent parameter can reference both a
node and a root node. However, both the root actor and node actor are of a different type,
have different behaviors, and serve different purposes which means that after refactoring the
actors will be of different type. Because of that, it would be no longer possible for the same
parent parameter to reference two different types of actor references. As a result, the unit
test failed and the benchmark had to be manually corrected by removing the possibility for
the parent parameter to reference a root node actor, the added logic ensured that the actors
directly under a root node would not have a parent node parameter set and the root node
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reference is used separately when the parent was not set.

This failure occurred because the benchmark’s implementation reflects a pattern that is in-
compatible with a typed actor system. From the refactoring software’s perspective, it was
a coin flip when deciding which type it should be since that parameter can reference both
the node actor and root actor. The refactoring software does not consider such usage pattern
as these patterns are not valid in typed actor systems. Automatic refactoring of this sce-
nario would require exploring possible design space, evaluating it, and selecting the most
appropriate refactoring to handle this communication pattern.

Two of these failed benchmark tests happened because of the innate differences between untyped
and typed actor systems that the Akka library defines, with an additional failure due to the limita-
tions of refactoring software implementation. While these failures demonstrate that the software
cannot refactor the actors without considering expressions that may not be possible in a typed
actor system, these issues were within the expected limitations of the software and are not indica-
tive of failures demonstrating malformed, unexpected, or wrong actor behaviors introduced by the
refactoring.

The unit tests for the stateless benchmarks revealed that there were no direct issues related to
incompatible design patterns between the untyped and typed actor systems. However, the refac-
toring software still encountered challenges due to the limitations outlined in 3.7.1. These is-
sues required manual corrections during the refactoring process but the refactored actor classes
maintained their intended functionality, and no unexpected changes to the actor behavior were
observed. This indicates that while the refactoring software struggled with some limitations, the
overall structure and logic of the stateless benchmarks remained intact post-refactoring.

Effectiveness metrics

After conducting unit tests and correcting the issues found within the benchmarks, the static anal-
ysis began to collect the metrics in answering the evaluation question ”How does the refactored
code’s quality compare to the original code?”. The tables 4.3 and 4.4 demonstrate the measured
metrics of benchmark code before refactoring and after, with the table 4.5 containing the change.

The most notable change after refactoring is seen in the Cohesion-Coupling Balance. The refac-
tored code introduces an actor state class, along with unique type definitions and corresponding
messages for each actor across all benchmarks. This addition inherently reduces the cohesion of
each actor, as new dependencies and calls to apply and getter/setter functions are introduced. As
a result, the coupling between classes increases, leading to a rise in instability. With more depen-
dencies, the likelihood of changes in one class affecting others grows, making the refactored code
more susceptible to modifications when its dependent classes change. By extension, the reduced
cohesion and higher instability suggest that the refactored code worsens code maintainability.

When comparing the changes in metrics, it becomes evident that the cognitive complexity in-
creased consistently across all benchmarks. This rise is largely due to the refactoring process,
which introduced additional logic: the creation of actor instances using Scala object classes, the
implementation of actor state classes, and changes to the infrastructure responsible for handling
actor and actor system shutdowns. Notably, the last modification was uniform across all bench-
marks, while the first two showed slight variations, particularly in the RMM and UCT bench-
marks. However, the cognitive complexity difference in the UCT benchmark was significantly
higher than in other cases. Instead, this increase was largely due to the manual changes made
to the code in order to address the issues identified during unit testing. These fixes, which in-
troduced new conditional logic, substantially contributed to the cognitive complexity of the UCT
benchmark.
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Benchmarks Metrics
Cohesion-Coupling Balance Instability Cognitive Complexity

APSP 0.923 0.500 45
ASTAR 1.019 0.667 33
SBAR 1.055 0.588 30
PCBB 1.449 0.583 33
OFL 0.824 0.556 61
NQN 1.274 0.571 38
PP 1.042 0.333 22
PIPREC 1.168 0.429 24
QSORT 0.487 0.667 48
RSORT 0.600 0.250 35
RMM 0.600 0.625 33
TRAPR 0.354 0.571 20
UCT 1.262 0.571 71

Stateless Benchmarks
Counter 6.000 0.000 6
FussyKid 2.039 0.400 7
VotingSystem 1.729 0.250 3
WordCounter 2.047 0.444 2

Table 4.3: Table detailing effectiveness metric results of the original code

Benchmarks Metrics
Cohesion-Coupling Balance Instability Cognitive Complexity

APSP 0.287 0.667 51
ASTAR 0.578 0.769 39
SBAR 0.660 0.720 36
PCBB 0.646 0.722 39
OFL 0.537 0.714 67
NQN 0.600 0.727 44
PP 0.481 0.667 28
PIPREC 0.527 0.667 30
QSORT 0.236 0.800 54
RSORT 0.151 0.600 41
RMM 0.335 0.750 37
TRAPR 0.205 0.727 26
UCT 0.630 0.750 81

Stateless Benchmarks
Counter 6.000 0.500 7
FussyKid 1.985 0.571 11
VotingSystem 1.660 0.625 8
WordCounter 1.810 0.643 8

Table 4.4: Table detailing effectiveness metric results of the refactored code
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Benchmarks Metrics
Cohesion-Coupling Balance Instability Cognitive Complexity

APSP -0.636 0.167 6
ASTAR -0.440 0.103 6
SBAR -0.395 0.132 6
PCBB -0.804 0.139 6
OFL -0.287 0.159 6
NQN -0.674 0.156 6
PP -0.562 0.333 6
PIPREC -0.641 0.238 6
QSORT -0.250 0.133 6
RSORT -0.449 0.350 6
RMM -0.265 0.125 4
TRAPR -0.150 0.156 6
UCT -0.631 0.179 10

Stateless Benchmarks
Counter 0.000 0.500 1
FussyKid -0.054 0.171 4
VotingSystem -0.069 0.375 5
WordCounter -0.237 0.198 6

Table 4.5: Table detailing effectiveness metric change from original to refactored code metrics

The changes in the Cohesion-Coupling Balance and Instability metrics are consistent with ex-
pectations, as introducing new dependencies naturally has a negative effect on these measures.
However, the degree of impact varies from benchmark to benchmark, depending on their spe-
cific structure, implementation, and the frequency with which internal actor variables (that then
got refactored and included in the actor state class) are accessed or used. Interestingly, the ef-
fects of refactoring on these metrics do not appear to correlate with the type of benchmark, that
is parallelism, concurrency, or micro-benchmark. While this observation suggests some unifor-
mity in the impact of refactoring, a larger sample size would be necessary to draw more definitive
conclusions.

The effectiveness metrics of the refactored stateless benchmarks reveal a pattern similar to the
stateful benchmarks: a general decrease in the cohesion-coupling balance. This decline is primar-
ily due to the actor classes becoming more tightly coupled to the actor type definitions and associ-
ated messages, which are now defined outside of the actor classes. This new external dependency
is also reflected in the instability metric, which shows an increase across all stateless benchmarks.
However, in comparison to the stateful benchmarks, the decrease in cohesion-coupling balance
is significantly smaller, indicating that stateless actor systems are less affected by this structural
change. Instability changes remain roughly the same, except for the Counter benchmark, where in-
stability significantly increased. This increase occurred because, prior to refactoring, the Counter
actor had no external dependencies, while afterward, it became dependent on its type definition,
thereby significantly raising the instability score.

4.3.2 Results on efficiency

To answer evaluation question ”What is the impact on resource (CPU, memory) consumption of
the software after the refactoring?”, each benchmarks’ performance was measured over ten runs
of each benchmark, and the efficiency evaluation can be seen in the below tables. In the same
way as before, tables 4.6 and 4.7 show recorded metrics before and after refactoring, while table
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4.8 shows percentile changes compared between the original code and refactored. All of the
benchmark runs were executed using the default configuration parameters originally defined.

Benchmarks Metrics
CPU (%) Memory usage (MB) Runtime (ms) Std. Dev. (ms)

APSP 03 0067 181.40 020.17
ASTAR 57 0039 380.34 035.14
SBAR 03 0036 209.21 006.43
PCBB 76 0039 330.66 018.88
OFL 09 0169 457.32 044.87
NQN 67 0261 498.74 019.28
PP 03 0034 164.93 011.84
PIPREC 38 0073 099.23 006.25
QSORT 04 1067 12523.62 419.90
RSORT 13 0178 577.05 032.34
RMM 05 0027 467.50 018.08
TRAPR 36 0030 126.44 006.76
UCT 39 2244 732.96 058.69

Stateless Benchmarks
Counter 2.05 0015 0206.60 015.11
FussyKid 2.1 0014 0240.96 015.05
VotingSystem 3.35 0146 1340.24 073.14
WordCounter 1.94 0521 2874.00 048.72

Table 4.6: Table with memory, CPU, and runtime of the original code

Upon examining both tables, it is evident that each benchmark yields distinct and varied results
when compared to one another. However, despite these variations, the overall changes in resource
usage remain relatively minor, with both positive and negative shifts across the benchmarks. As
seen in Table 4.8, when expressed as percentage changes, none of the metrics experienced an
increase or decrease greater than 30% post-refactoring, except for two notable outliers: the UCT
and QSORT benchmarks in terms of CPU and standard deviation values.

These outliers aside, the variations in resource usage across benchmarks appear reasonable, as
no consistent negative trend is observed. Instead, the differences seem more tied to the nature of
each benchmark’s computational task, with some experiencing a higher impact than others. While
these evaluation metrics provide a useful indication of the refactoring’s influence on application
performance, the results should be viewed with some caution due to the limited scope of the
evaluation, both in terms of the number of benchmarks and the number of test iterations.

The efficiency metrics of the stateless benchmarks align closely with the trends observed in the
stateful benchmarks. While the percentile change in the metrics after refactoring was more dras-
tic, there was no consistent positive or negative impact on resource usage metrics such as CPU
and memory consumption. Some benchmarks showed increased resource usage, while others
improved, without a clear pattern emerging. However, one notable result is that the execution
time across all stateless benchmarks was better after refactoring, indicating that while the struc-
tural changes introduced by refactoring did not uniformly affect resource usage, they did improve
runtime performance.

4.3.3 Results on Applicability

The evaluation of applicability was carried out once the open-source project was refactored. The
first step in the evaluation was the compilation of the refactored code relevant to the actor system
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Benchmarks Metrics
CPU (%) Memory usage (MB) Runtime (ms) Std. Dev. (ms)

APSP 03 0048 179.01 008.5
ASTAR 60 0039 395.08 032.64
SBAR 03 0043 215.24 014.89
PCBB 69 0045 325.72 017.37
OFL 10 0135 464.8 014.8
NQN 68 0282 363.22 021.82
PP 03 0043 164.78 015.57
PIPREC 42 0066 128.91 011.77
QSORT 02 1128 11580.4 0125.77
RSORT 14 0187 579.43 039.97
RMM 05 0029 452.16 029.28
TRAPR 38 0034 128.37 007.86
UCT 18 1824 663.01 028.33

Stateless Benchmarks
Counter 1.55 0019 0157.12 010.01
FussyKid 01 0018 0158.71 019.71
VotingSystem 2.35 0097 1211.66 045.20
WordCounter 2.65 0542 2795.92 070.79

Table 4.7: Table with memory, CPU and runtime of the refactored code

Benchmarks Metrics
CPU (%) Memory usage (%) Runtime (%) Std. Dev. (%)

APSP 0.00 -28.36 -1.32 -57.86
ASTAR 5.26 0.00 3.88 32.64
SBAR 0.00 19.44 2.88 14.89
PCBB -9.21 15.38 -1.49 17.37
OFL 11.11 -20.12 1.64 14.80
NQN 1.49 8.05 -27.17 21.82
PP 0.00 26.47 -0.09 15.57
PIPREC 10.53 -9.59 29.91 11.77
QSORT -50.00 5.72 -7.53 125.77
RSORT 7.69 5.06 0.41 39.97
RMM 0.00 7.41 -3.28 29.28
TRAPR 5.56 13.33 1.53 7.86
UCT -53.85 -18.72 -9.54 28.33

Stateless Benchmarks
Counter -24.39 24.68 -23.95 -33.75
FussyKid -52.38 21.92 -34.13 30.96
VotingSystem -29.85 -33.38 -9.59 -38.20
WordCounter 36.60 3.94 -2.72 45.29

Table 4.8: Table with memory, CPU, and runtime expressed in percentile change
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used in the application, after which two more steps were supposed to follow. Unfortunately, the
compilation of the project was not successful as there were numerous issues with the limitations
of the software 3.7.1. Due to current assumptions, the software does not take into account the
external environment interactions with the actor system(s) in the application, meaning that there
are overlooked interactions, missing message types that were not discovered or incorrectly recog-
nized as such, and some syntax expressions and sugars were not recognized as valid which should
have been since they are part of message processing logic. Additionally, the software failed to
recognize certain functions used in message handling, misidentified actor reference types, and
overlooked inherited functions and values that actor classes rely on. Several new bugs were also
discovered, further preventing the refactoring process from functioning as intended.

Given these complications, it is clear that the planned three-step evaluation process could not
be completed. This highlights significant gaps in the software’s ability to handle complex real-
world applications and emphasizes the need for further improvements to handle diverse actor
interactions, external dependencies, and more sophisticated syntax patterns. Current limitations
and assumptions may serve as a starting point but there is still significant work needed for the
refactoring software to effectively handle large-scale projects. These projects often have software
components spread across multiple packages, files, or classes, and the software must accurately
identify and manage these elements. Expanding the software’s capabilities to handle distributed
components and complex project structures will be essential for it to be truly effective in large
real-world applications.

4.4 Discussion on evaluation

The evaluation of the refactoring software revealed several important insights, highlighting both
its potential and limitations. In terms of effectiveness, the benchmarks showed a negative impact
on maintainability and understandability, largely due to the increased complexity introduced by
additional dependencies and actor-state interactions. These changes, though negative to cohesion
and coupling metrics, were expected, as they stem from the transition to a typed actor system.
Such trade-offs are a natural consequence of the shift from untyped to typed systems, especially
in stateful actors, and while they complicate the structure, they bring the advantage of stronger
type safety.

The unit tests exposed some significant limitations and assumptions inherent in the software, par-
ticularly regarding its ability to handle edge cases where untyped actors do not seamlessly translate
to typed actor systems. Some of these cases required specific solutions that usually depend on the
particular use case and interaction patterns. The inability of the refactoring process to account
for all these nuanced scenarios emphasizes the need for more case-specific strategies, which are
currently lacking in the software’s design.

When considering efficiency, the changes after refactoring were not uniform across the bench-
marks. The results showed variability based on the individual computational task and the specific
communication patterns of each benchmark. While some changes in performance metrics did
not exceed 30%, there were outliers. These findings suggest that the impact of refactoring on
efficiency is contextual and cannot be generalized across different types of tasks or actor commu-
nication models.

From the applicability perspective, both the unit tests and the evaluation of the open-source ”Hy-
dra” project indicate that the refactoring software is still far from being robust enough to handle
large projects. While it can identify and assign actor types based on their discovered behaviors,
there are notable problems. The software currently struggles when external interactions, dis-
tributed project structures, or complex message types are involved, particularly when components
involved in actor behavior processing are not correctly recognized. These shortcomings reveal

59



4. EVALUATION & RESULTS

that the software in its current state is limited to smaller or more straightforward systems where
all interactions and structures are easily recognizable.

However, despite these challenges, the underlying Communication Flow Graph model success-
fully captures actor interactions within a system. It recognizes messages and their types and can
resolve actor types based on message usage, serving as a proxy for distinguishing actor roles and
purposes. This capability is a good starting point for actor system refactoring, documentation, or
test generation, and with further refinement, it could form the backbone of a more effective and
scalable solution.

That said, while these initial results offer a foundation, the refactoring software requires signif-
icant additional development to become usable in large-scale applications. The current limita-
tions, inefficiencies, and unhandled cases point to the need for more comprehensive handling of
actor-environment interactions, better recognition of involved components, and more sophisti-
cated resolution of complex communication patterns. In addition, it is important to note that these
evaluations were conducted using only 13 benchmarks, with 10 test iterations each, and a single
real-world application. Such a sample size is not large enough to make definitive claims about the
software’s overall performance or generalize the findings. At best, these results provide an initial
understanding of the refactoring process and its potential effects, but they should be interpreted
cautiously and not taken at face value. Further testing on a larger scale is necessary to draw more
reliable conclusions.
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Chapter 5

Related Work

In the realm of concurrent programming and actor-based systems, numerous studies have ex-
plored the challenges and opportunities associated with system performance, maintenance and
code quality. Previous research efforts have delved into various refactoring techniques aimed at
improving the structure and performance of actor-based applications. Noteworthy contributions
include works that address the intricacies of concurrent system implementations, highlighting the
importance of maintaining a balance between complexity and maintainability. Additionally, over
the years, a small focus of attention was brought upon the analysis of actor model interactions
between components within an actor system, paving the way for enhanced comprehension and
optimization of communication protocols within these systems. Despite that, the automated refac-
toring techniques were never truly explored in an actor model context, but rather partly adapted
from classical concurrent techniques that deal with threads, locks, and similar techniques. Below
we discuss the more recent proposals of an automated actor system analysis, the effectiveness of
more classical refactoring techniques applied to active object languages [16], and the refactoring
of a concurrent system code.

5.1 Actor system analysis

Li, Hariri, and Agha’s paper ”Targeted Test Generation for Actor Systems” addresses the
intricate challenge of testing actor-based systems effectively [26]. At the core of their approach is
the utilization of static analysis techniques to identify critical paths and potential points of failure
within the actor system. By analyzing the structure of the actor hierarchy and the flow of messages
between actors, the methodology aims to pinpoint troublesome areas of the codebase through the
exploration of backward symbolic execution [11]. Because of the large exploration space due to
concurrency, they prune the search space by utilizing two heuristics combined with a feedback-
directed technique. This as a result enables the generation of tests that focus on discovered bugs
or critical areas, thereby maximizing the effectiveness of the testing process while minimizing
redundant test cases.

However, to benefit from the backward symbolic execution, the authors first extract the inter-actor
message flow graph that represents potential interactions within the actor system, essentially pro-
ducing the system’s communication protocol. This is achieved by constructing a Message Flow
Graph (MFG) that is generated in a multi-stage process. First, the author’s implementation trans-
forms the actor application JVM Bytecode into Wala IR [23]. By utilizing built-in hierarchy, call
graph, and 1-object-sensitive points-to analysis, they then produce a reference map γ that maps ac-
tor references to the actual actors, and a graph G that maps a tuple of source actor reference, target
actor reference and an operation type (either message sent or actor created operation) to a list of
points-to sets of messages or constructor parameters (depending on the operation type). The graph
G is then methodically constructed by observing all the outgoing events (i.e. connections/edges)
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from every actor that directly received a message or was created by an external environment, and
iteratively move from one observed actor to another analyzing its outgoing events, updating the
work list (i.e. unvisited but observed actors) and G by adding a new actor or merging any dupli-
cate actors that contain any new information. After the work list is empty, the reference map γ is
collapsed with the graph G to produce the MFG.

The suggested approach can successfully extract the message flow of an actor system that rep-
resents true communication patterns with a diminishing number of false positives as the project
size increases. However, as pointed out by the authors, the edges in the MFG do not represent
acquaintances of actors, it is very well possible that an actor A is aware of an actor B but actor
A neither creates nor sends a message to B. In addition, because the MFG is built by exploring
actor interactions, it would miss abstract actors or actor classes that are not created or sent a mes-
sage to. This is especially prevalent in frameworks or libraries that utilize actors as an underlying
concurrency mechanism where developers do not interact with the actors [4].

In comparison to the approach outlined in the referenced research, both approaches share the
foundational goal of understanding actor-system communication protocols, but our suggested ap-
proach effectively identifies all defined actors in the system, even those without direct interactions.
However, it does not capture the strength or frequency of relationships between actors, nor does it
account for an actor’s awareness of others without communication. A notable advantage of the al-
ternative approach is its ability to recognize parent-child actor relationships, which would benefit
communication pattern modeling and refactoring accuracy.

”Inferring Ownership Transfer for Efficient Message Passing” by Negara, Karmani, and
Agha focuses on optimizing message passing in actor-based systems through static analysis [32].
The paper proposes techniques to infer ownership transfer semantics, where an actor relinquishes
ownership of a message to another actor, reducing message passing overhead (i.e. sending a
message via pass-by-value or pass-by-reference). By conducting static analysis to recognize an
actor’s behavior and exchange pattern when receiving a message, the authors develop algorithms
to detect ownership transfer points. The analysis itself is conducted by first constructing a message
receiver context-sensitive call graph where message handlers in all actors act as a potential entry
point. Then a flow-insensitive field-sensitive Andersen’s points-to analysis [41], with the help of
the call graph, is conducted to construct an interprocedural points-to graph that helps determine
whether data referenced by an object is used by more than one procedure (i.e function). However,
that does not answer if and what procedures actually access the data. For that, the authors utilize
a custom interprocedural live variable analysis algorithm which will identify what, and in which
procedures, messages should be sent via pass-by-value. In this context, a procedure can originate
from any actor in the system but only a single actor will be the origin of it. The authors prove
that the approach can successfully analyze and model the dataflow of the variables within an actor
and the usage of the received data between them, but it does not recognize different possible
interactions. In other words, it does not consider actor states and changes caused by the message,
nor the relationship between actors.

On one hand the research paper examines actor interactions by analyzing how values are handled
during message passing but on another it overlooks actor state and behavior changes, which are
crucial for a complete understanding of communication patterns in actor systems. This is under-
standable since the paper’s focus is on message value usage rather than full interaction awareness.
Both approaches share methods for identifying messages, relying on accurate call graphs and
points-to lists but incorporating variable analysis from their approach could enhance our refactor-
ing, particularly in resolving edge cases involving variable types and values.

When examining actor systems from a broader perspective, semantic similarities become appar-
ent within microservices architecture and their communication patterns. As a result, delving
into research on microservices could yield valuable insights. The paper ”ARCHI4MOM: Us-
ing Tracing Information to Extract the Architecture of Microservice-Based Systems from
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Message-Oriented Middleware” by Snigdha Singh, Dominik Werle & Anne Koziolek pro-
poses a method for automatic architecture extraction from Message-oriented Middleware (MOM)
based microservice applications [40] that may be adapted for actor systems. It resolves the is-
sue where continuous development and evolution of a software project often lead to architecture
knowledge loss while the current efforts at architecture reconstruction from dynamic data still do
not support the extraction for MOM-based systems [6, 39, 43]. To tackle that, ARCHI4MOM
utilizes tracing data collected from the system at run-time, reconstructs the architecture model
by extending existing frameworks like OpenTracing and Performance Model Extractor (PMX) to
support MOM-based systems, and integrates them into the Palladio Component Model (PCM)
[10]. The method workflow consists of data preparation, data processing, architecture extrac-
tion, and model construction phases. During data preparation, the system is instrumented with
the tracing tool Jaeger to collect run-time data. The data processing phase analyzes trace struc-
ture, identifies communication patterns (that is, synchronous or asynchronous), and extracts and
integrates into PMX relevant information for architecture reconstruction. Architecture extrac-
tion involves identifying additional PCM model elements based on the extracted data to support
asynchronous communication and integrating it with previously defined PMX. Lastly, the model
builder phase introduces the logic to construct the final PCM architecture model that supports
MOM-based asynchronous communication. That is necessary because the PMX lacks the logic to
construct a PCM model that supports asynchronous communication

While such an approach can successfully extract and reconstruct architecture from dynamic data
within a MOM-based microservices system, it may as well be applicable for the actor model to
extract communication protocol in an actor system since in both cases it is a distributed asyn-
chronous communication through a middleware (i.e. actor dispatchers [58]). As such, the same
methodology with some effort can be adapted to instrument an actor system, trace the communica-
tion data at run-time, recognize the communication patterns and actor interactions, and eventually
export and construct the observed communication protocol. Naturally, such an approach would
be susceptible to a risk of missing rare communication patterns or interactions if sufficient obser-
vation time is not given, and as a result, would be more suitable as a long-running and continuous
observation effort.

The main distinction between our and their approaches is the subject of the analysis but the goal
remains the same: extract the communication architecture, or pattern, within a system. However,
to apply their suggested approach in extracting the ’architecture’ of actor system, it would require
different tools and techniques to capture the underlying mechanisms and interactions. The whole
nature of analysis would transition from static to dynamic as it would require the system to run for
the extraction to happen, which is not exactly compatible when you want to refactor the running
software. As a result, it may introduces a disconnect between analysis and refactoring phases,
potentially requiring manual intervention to bridge the gap.

5.2 Automated software refactoring and refactoring of concurrent
and distributed systems

As shown in ”Refactoring and Active Object Languages” by Volker Stolz, Violet Ka I Pun
& Rohit Gheyi, classical Martine Fowler’s refactoring techniques, such as Extract Class, Move
Method, etc., have been proven to benefit concurrent systems, yet it is possible for them to in-
advertently introduce behavior changes presenting yet another challenge for automated refactor-
ing [42, 36, 16]. As a result, demonstrated by Baqais, A.A.B. & Alshayeb, M in their liter-
ature review ”Automatic software refactoring: a systematic literature review”, attempts at
automated refactoring encounter difficulties in ensuring behavior preservation. In addition, the
survey highlights that the most common techniques are search-based and the majority of valida-
tion approaches utilize metrics, even though balancing competing metrics may become difficult
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since improving one metric may degrade another. Despite that, automated refactoring can help to
streamline the refactoring process, reduce maintenance effort, and potentially lower the number
of bugs in a concurrent system [7, 38].

The paper ”Study and Refactoring of Android Asynchronous Programming” by Yu Lin,
Semih Okur & Danny Dig exemplifies the issues that refactoring can solve in concurrent ap-
plications as it helps with transitioning from shared-memory communication into distributed-
style communication through refactoring [29]. Specifically, it presents a comprehensive forma-
tive study, quantitatively and qualitatively evaluating the asynchronous constructs of Android ap-
plications, understanding developer practices and usage of asynchrony, and identifying barriers
encountered during this process. To solve several issues identified in the analysis, the paper
introduces a refactoring tool AsyncDroid that implements an algorithm designed to tackle the
challenges of refactoring from shared-memory communication, as exemplified by AsyncTask, to
distributed-style communication, such as IntentService [1, 2].

To correctly apply and recognize the opportunities for refactoring AsyncTask to IntentService,
the authors define four preconditions that act as guidelines to ensure an accurate transformation
process. First, all variables that either enter or exit the doInBackground method within AsyncTask
must be capable of being marked as serializable (P1). Secondly, all methods invoked within
AsyncTask must also be accessible by IntentService (P2). Then, the refactored task should directly
extend AsyncTask and not be subclassed (P3), and lastly, the usage of AsyncTask instances should
be limited to invoking AsyncTask.execute (P4).

The algorithm itself begins by analyzing the objects that can potentially benefit from the refac-
toring. It identifies the incoming variables (IV) flowing into doInBackground and the outgoing
variables (OV) escaping from it. Next, the algorithm generates the IntentService class, moving
the method body of doInBackground to onHandleIntent. It creates fields for each variable in IV
and OV, and copies or moves methods invoked within doInBackground to the IntentService class.
AsyncTask instances are replaced with IntentService instances, and the receiver for the task re-
sult is created and registered, typically in lifecycle event handlers of the top-level or static inner
class. Finally, other AsyncTask handlers like onPreExecute and onProgressUpdate are handled
accordingly, ensuring that the refactored code retains the original semantics and functionality of
the AsyncTask.

Authors’ and ours approaches to refactoring require specific preconditions and assumptions to en-
sure correctness, including the recognition of incoming and outgoing variables for the refactoring
target. However, their focus is primarily on refactoring the structural elements of classical object-
oriented programming by moving code bodies to new locations, such as lifecycle event handlers
or static inner classes, based on expected expressions. They prioritize refactoring shared-memory
communication into distributed communication without tracking state transitions and data type
changes since such refactoring does not necessitate the understanding the class states that can
occur during its lifetime, as compared to actors in an actor system. In comparison, our approach
deals with more dynamic elements like actor behavior transitions. Nevertheless, the current imple-
mentation could benefit from having a broader understanding of all variables influencing actor’s
behavior and not just the actor reference variables. This would allow, with combination of call
graph, to reason about actor’s logic and type in finer detail without only relying only on message
types that an actor can process. The refactoring itself in both cases rely on identifying syntactical
expressions and refactoring them while maintaining equivalent functional purposes.

In a similar fashion, Y. Zhang, S. Dong, X. Zhang, H. Liu & D. Zhang in ”Automated Refac-
toring for Stampedlock” address the challenge of selecting suitable refactoring targets, i.e. syn-
chronized locks, and statically analyzing the source code in Java programs to leverage the ad-
vanced features offered by StampedLocks [47]. They propose an approach that involves analyz-
ing the JVM Bytecode to locate synchronized methods and blocks, which are potential targets for
conversion to StampedLocks. The authors define preconditions for refactoring that must be met
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due to the nature of StampedLocks, mainly the conditional operations, such as wait(), notify() and
notifyAll(), and reentrance, meaning the ability of a thread to acquire the same lock multiple times.
Both of these preconditions are not supported by the StampedLocks [46].

The whole process is divided into three stages: static code analysis, lock inference, and trans-
formation. The first stage analyzes the JVM bytecode to conduct visitor-pattern analysis for the
identification of locks, then the discovered locks are checked whether they meet the preconditions,
during which the reentrance analysis also identifies the communication operations that cannot be
refactored to the StampedLock. In the lock inference stage, the remaining locks undergo a side
effect analysis [37] which will model changes and convert them into respective SpampedLock
lock models: read lock, optimistic read lock, upgrading lock, or downgrading lock. Lastly, the
transformation stage uses a syntax tree to locate all targeted synchronized locks and refactor them
into the respective StampedLock with a few additional ’try. . . finally. . . ’ structures.

The research paper’s approach shares a common goal with ours: analyzing source code to identify
refactoring targets, determining their impact, and applying refactoring based on the most suitable
expressions through syntax tree manipulation. Both use similar techniques since they conduct
visitor-pattern analysis which could be compared with actor reference resolution for knowing what
interacts with class definition under refactoring. However, their focus is on refactoring structural
expressions without needing to identify underlying type changes between classes. Instead, they
concentrate on how refactoring affects application logic. A key strength of their approach is
the use of side-effect analysis, which helps predict the consequences of refactoring and select
an appropriate locking model. In essence, this would be akin to different expressions that actor
behaviors could take after refactoring which would provide a deeper understanding in available
options for refactoring. However, it would be the most beneficial when refactoring ask patterns
since they implement ’Futures’ that allow to reason about parallel operations that may be finished
in the future - a way to eventually synchronize tasks [62].

Refactoring in current context
Automated refactoring of concurrent applications implies several critical considerations to ensure
the correctness and effectiveness of the transformation process. One essential aspect is the analysis
of the call graph and application structure, particularly in concurrent programs where dependen-
cies and interactions between threads are parallel and can significantly impact the behavior of the
system. Understanding the concurrency patterns and dependencies through a call graph analysis
is crucial for identifying synchronization points and potential areas for refactoring. Addition-
ally, establishing preconditions for the refactoring process is essential to guide the transformation
and ensure that the refactoring is applied only to suitable code segments which as a result would
prevent unintended consequences or errors in the transformed code.

Semantic equivalence between the original and refactored structures is another key consideration,
where refactoring techniques aim to preserve the behavior and functionality of the code while
improving concurrency constructs. By refactoring semantic-equivalent structures with a set of
preconditions, the need for search-based techniques to explore alternative refactorings is mini-
mized, leading to more predictable and reliable transformations. Moreover, the findings from
studies such as ”Study and Refactoring of Android Asynchronous Programming” and ”Au-
tomated Refactoring for Stampedlock” highlight the potential benefits of automated refactor-
ing for asynchronous and concurrent communication that demonstrate how automated refactoring
tools can effectively identify and refactor asynchronous and concurrent code patterns.

And as such, There are notable parallels between our proposed refactoring approach and the meth-
ods discussed in the reviewed papers, especially when identifying the refactoring targets and eval-
uating effects of transformation. However, the actor behavior changes over time and the transition
form untyped to typed system requires broader system understanding so that actor class behavior
change could be modeled and types inferred, which presents itself as a unique challenge. That
is not to say that there is nothing that actor refactoring could benefit from existing approaches,
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specifically the side-effect analysis would benefit greatly in understanding ask pattern transforma-
tion, especially when exploring possible design space. In addition, improved variable recognition
influencing actor behavior would allow for finer inference of actor types. By leveraging auto-
mated refactoring techniques tailored to the characteristics of concurrent applications, it allows us
to streamline the process of optimizing and managing concurrent code which leads to improved
code maintainability, readability, and performance.

66



Chapter 6

Conclusions and Future Work

This chapter begins by summarizing the key contributions presented throughout the thesis, high-
lighting the approach taken to refactor untyped actor systems into typed actor systems and the
methodologies developed for extracting actor communication patterns. Following this, we discuss
these contributions within the context of the results observed during the evaluation phase. The
chapter examines how effectively the proposed solutions address the challenges of actor system
refactoring, as well as any limitations or areas where improvements are needed. Finally, we take
a look at possible future research, exploring potential advancements and extensions to this work.

6.1 Contributions and Discussion

One of the primary contributions of this thesis is the definition and implementation of the com-
munication flow graph, alongside an algorithm that demonstrates the process of extracting it. The
communication flow graph serves as a comprehensive representation of the interactions between
actors within an (untyped) actor system, detailing message exchanges, actor references, and the
overall structure of actor communication. This tool helps in visualizing and understanding how
messages flow through the system, which is crucial for performing a safe automated refactoring to
a typed actor system. This is possible because of the several advantages that the communication
flow graph presents. One of which being a precise tracking of message passing and interaction,
helping to identify and map out communication patterns between actors. This is particularly use-
ful in automated systems where manual inspection would be too costly or inefficient, such as in
large and complex systems. However, the communication flow graph also has limitations. For
instance, while it effectively captures asynchronous message passing, it does not fully account for
ask-patterns [59], limited comprehension of external environments, and its capability to handle
parent-child actor relationships remains underdeveloped. Furthermore, some ambiguities in actor
references and certain Scala syntax expressions are not fully resolved by the current extraction
process limiting its usability in real-world projects.

In addressing RQ1 ”How to refactor an actor-based system to a typed actor based system?”, a
structured approach is demonstrated for refactoring untyped actor systems into typed ones. The
proposed solution leverages the communication flow graph to inform the refactoring process by
ensuring that communication patterns remain intact. That is facilitated by answering RQ1.1 ”How
can a message flow be extracted from an actor system?” as the communication flow graph itself is
the answer. It presents a clear method for extracting message flow by analyzing actor behaviors,
references, and message interactions, which was validated during the evaluation phase. The algo-
rithm’s effectiveness in producing a reliable communication flow graph confirms that the message
flow can be systematically extracted, even though some limitations persist.

Another key contribution is the automated refactoring process that transforms untyped actor sys-
tems into typed ones. The evaluation shows that the refactored systems maintain communication
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integrity and performance due to extracted communication flow graph, though they introduce a
slight reduction in maintainability. This decrease stems from the addition of a new Scala Object
that holds relevant message and actor type definitions. Scala Objects by themselves are defined
as classes that will have only a single instantiation of it and is treated as a singleton object [64].
This results in a tighter coupling between an actor and the new object, which slightly impacts
the cohesion-coupling balance, making the system less maintainable in the long term. But the
performance impact of refactoring varies based on the underlying application. The results from
the Savina and stateless benchmarks do not indicate a consistent pattern of performance improve-
ment or degradation. The effect of refactoring on CPU usage, memory consumption, and runtime
differs across benchmarks, highlighting that performance change depends on application.

Answering the RQ2 ”How effective is the implemented automated actor refactoring?”, the eval-
uation demonstrates that the refactoring process is effective in terms of preserving communica-
tion patterns and overall system functionality. However, in answering RQ2.1 ”What effect does
refactoring have on the performance of the refactored actor-based systems?” the efficiency of
the refactoring process depends on the underlying application in terms of utilized communication
patterns, actor statefulness, and computational tasks that impact performance. The maintainability
impact is understood by through RQ2.2 ”How does refactoring influence the maintainability of
actor-based systems?” which is answered by noting that while communication is preserved and
performance is generally stable, maintainability suffers due to the increased coupling introduced
by the new Scala Objects. Finally, answering RQ2.3 ”Are the implemented refactoring strategies
applicable to real-world applications?” suggests that while the communication flow graph was
extracted the refactoring could not be applied effectively to complex real-world actor system. The
current refactoring limitations prevented the refactoring process from functioning as intended due
to missed interactions, unrecognized message types, and overlooked syntax patterns. While it cer-
tainly is capable at refactoring smaller projects within limited scope, the current implementation
can not handle applications with large structures and external dependencies.

6.2 Future work

The exploration of refactoring approaches and surrounding issues has revealed several directions
of future development and research. This section discusses both the improvements required for
the refactoring tool’s implementation and the broader research directions that can emerge from
this work.

6.2.1 Research improvements

There is significant work required to improve the refactoring tool for larger-scale projects. To
make it usable in real-world applications, it is essential to address the current limitations addressed
in 3.7.1. Future development efforts should aimed at broadening the scope of actor systems that
can be refactored by reducing the number of assumptions and introducing more sophisticated logic
that can interpret different code expressions, handle varied actor system patterns, and manage edge
cases, especially those emerging from object-oriented programming paradigms.

6.2.2 Follow up research

The communication flow graph and its associated call and inheritance graphs can also serve as
valuable tools beyond refactoring. For instance, these graphs can be adapted for test generation,
as demonstrated by the previous research [26]. Additionally, the same graphs could be utilized to
generate detailed documentation about actor system communication patterns, both at a high level
and in terms of the specific functions and behaviors of actor classes. This would provide develop-
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ers with a clearer understanding of how actors interact, aiding in debugging, system maintenance,
and further development.

In addition, during the evaluation process, it became clear to us that current methods for assessing
maintainability, coupling, and cohesion in actor systems are insufficient. Traditional definitions
of these metrics are not well-suited to actor-based systems, particularly in the Scala ecosystem,
where analysis requires awareness of syntax handling both functional and object-oriented pro-
gramming definitions. Evaluating coupling and cohesion between actors is especially challenging
since there are no robust coupling metrics designed to account for the unique interactions between
actors, such as their data dependencies, relationship types, and the intensity of their coupling.
Cohesion, though easier to assess, is still problematic because much of an actor’s functionality is
embedded within the actor framework itself, which limits traditional cohesion evaluations. For
example, traditional cohesion metrics might overlook the fact that an actor’s behavior change as
it processes messages. If an actor has a single receive function that handles incoming messages
but calls external singleton objects, traditionally its cohesion score would be low. However, its
behavior transitions and changes with each message, suggesting a higher level of cohesion than
what traditional metrics would indicate. Similarly, message definitions that reside outside the ac-
tor class could reduce cohesion scores even if those messages are exclusively processed by the
specific actor type.

These considerations indicate that current maintainability, coupling and cohesion metrics for ac-
tor systems need to be reexamined. Traditional metrics should be adjusted to reflect the unique
properties and provide new ways to interpret actor systems. Here too the communication flow
graph could play a role in facilitating static analysis and improving actor system quality metrics,
providing more accurate assessments of maintainability, coupling, and cohesion. These adjusted
metrics could help developers better evaluate and optimize actor systems in the future.

6.3 Conclusions

This thesis presents an implementation that focuses on automating the refactoring of untyped ac-
tor systems into typed actor systems by introducing a communication flow graph. The implemen-
tation demonstrates an approach for analyzing communication patterns in actor-based systems,
laying the groundwork for extracting and utilizing message flows and actor interactions. Through
this analysis, the communication flow graph was created and used to guide the refactoring pro-
cess. Although the tool showed success in extracting communication patterns and performing
refactoring on smaller-scale projects, it struggled with complex, real-world applications due to
the inherent limitations of typed and untyped actor system differences, external interactions, and
complex syntax patterns.

The contributions of this research include the development of the communication flow graph and
the implementation of an automated refactoring process. While the tool provides benefits in un-
derstanding actor communication patterns and improving the refactoring process, limitations still
remain. Future work should focus on expanding the tool’s capabilities, improving the accuracy of
analysis, and refining code quality metrics specifically designed for actor-based systems.
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Appendix A

Helper Algorithms

This appendix contains most of the helper function and their algorithms used in the algorithms
covered in the implementation section 3.

Create Behaviour Object

The Create Behaviour Object algorithm is implemented in a function createBehaviorObject
21 designed to generate a new function definition from an existing function definition that either
returns or is called by a function that returns ’Receive’ type. Its inputs include the syntax tree
of the existing function ’node’, keywords ’newMods’ (e.g. ’private’), parameters ’oldParams’,
actor type containing function that will be refactored ’actorSet’, all actor types ’supersets, and
a boolean flag ’isReceive indicating whether the function returns ’Receive’ type. The algorithm
outputs an updated function definition that aligns with the actor’s typed using helper functions to
transform specific terms.

The algorithm operates by iterating through each term in the original function body, checking
for messaging patterns like ’tell’, ’ask’, and forward’ function calls (including Akka specific
syntax sugars ’!’ and ’?’), and refactoring them. In addition, the each ’sender’ reference is
refactored into ’replyTo’ to replace any message sent to a sender of a message with a reference
that will be included as a message data after refactoring. Helper functions like ’updateTermCall’,
’updateTermSelect’, and ’updateMessageCallShort’ refactor these terms while maintaining
type consistency for actors and messages.

In addition, when dealing with case statements, the algorithm ensures that Behaviour.same is
included based on ’isReceive’ boolean value, adding proper handling for messages due to the
typed system requirement of an actor to always return a behavior after message processing. After
processing the function body, it assigns the new actor type to the function and updates parameters
and definitions accordingly, ensuring that the actor’s type matches the defined communication
pattern.
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Algorithm 21: Create Behaviour Object
Input: node: Tree, newMods: List of Mods, newName: String, oldParams: List of Param,

actorSet: Tuple(List of String, Set of (String, Boolean)), supersets: Map of (List of
String→ Set of (String, Boolean)), isReceive: Boolean

Output: Function Definition
1 Function createBehaviourObject(node, newMods, newName, oldParams, actorSet, supersets,

isReceive):
2 transformerTermNameMessage← new Transformer that updates old messages with new

messages;
3 transformerArgsMessage← new Transformer that updates message parameters w.r.t. ’self’

and ’sender’;
4 actorTypeName← createMessageObjectTypeName(actorSet);

5 trnsfBody← foreach term in node.body do
6 if term expression is using scala syntax sugar for ’!’ or ’?’ to send a message then
7 return updateCallMessageShort (term, supersets)

8 else if term is a call to object function and function is ”tell” or ”ask” or ”forward”
then

9 newTermSelect← updateTermSelect(term);
10 return updateTermCall(newTermSelect, term, supersets,

transformerArgsMessage);

11 else if term is a ’case’ statement then
12 return updateTermCase(term)

13 else if term is value or variable definition that uses ”sender” then
14 return term.value.replace(”sender”, ”replyTo”)

15 else
16 return term

17 transfBodyMessages← trans f ormerTermNameMessage(trns f Body);
18 newDeclTpe← assign new type ”Behavior[actorTypeName]” if isReceive is true. Else

keep the same node.type;
19 newParams← empty list of parameters;

20 newParamsAndNewBody← updateDefinitionAndParams(node, newMods, oldParams,
transfBodyMessages, actorTypeName, isReceive);

21 return Function(newMods, node.name, newParamsAndNewBody.params, newDecltpe,
Block(newParamsAndNewBody.body))

Refactor Message Send Call

The Message Call Refactoring algorithm implemented by a function ’updateMessageCallShort’
updates message-sending expressions when syntax sugars ’!’ and ’?’ are used in the actor system.
It takes a term representing a message send operation ’term’ and a map of ’supersets’ for message
type identification. The algorithm first identifies whether the message was send at any point in
the system to a sender() expression, indicating that the message must also contain the ’replyTo’
parameter. Then, it is checked if the message target is expressed as a ’sender’ or ’self ’ reference,
refactoring its arguments and targets references to ’replyTo’ and ’context.self ’ accordingly, and
returns the updated term.

This helper function is primarily used in the ’createBehaviourObject’ algorithm when message
send calls need to be refactored to accommodate typed actor systems. The helper functions like
’identifyCorrespondingMessageType’ and ’transformerArgsMessage’ are used in identi-
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fying the correct message type and refactoring message parameters. The algorithm ensures that
all send messages, whether targeting ’sender’, ’self ’, or other actors, are properly refactored to
match the updated actor types.

Algorithm 22: Refactor Message Send Call with Syntax Sugar
Input: term: Term, supersets: Map of (List of String→ Set of (String, Boolean))
Output: Term

1 Function updateMessageCallShort(term, supersets):
2 newArgs← empty list of Term;
3 currentMs← term.message;
4 messageType← identifyCorrespondingMessageType(currentMs, supersets);
5 sentMessage← messageType.find(currentMs);

6 if sentMessage boolean value is true then
7 msArgsRefactored← trans f ormerArgsMessage(currentMs.args);
8 newArgs← Param(”context.self”, String) ++ msArgsRe f actored;

9 else
10 newArgs← trans f ormerArgsMessage(currentMs.args);

11 if term.target is ”sender” then
12 return Term(”replyTo”, term.operation, newArgs)

13 else if term.target is ”self” then
14 return Term(”context.self”, term.operation, newArgs)

15 else
16 return Term(term.target, term.operation, newArgs)

Refactor the Case Statement

The Case Statement Refactoring algorithm implemented in a function ’updateTermCase’ mod-
ifies case statements and their body in an actor’s message processing function. It takes a case term
and outputs an updated case. The algorithm refines the case pattern to ensure the inclusion of the
’replyTo’ parameter within message handling if needed. This ensures compatibility with typed
actor systems, where ’sender()’ is replaced by ’replyTo’.

The body is updated to check for the presence of ’context.become’ expressions and ensure
that it transitions to the next behavior properly (since ’context.become’ will always contain
reference to function that returns new behavior, it is enough to just replace ’context.become’
with referenced function). If no state transition exists, the body is appended with Behaviors.same,
ensuring that each case block concludes by returning a behavior.
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Algorithm 23: Refactor the Case Statement and Case Body
Input: term: Term
Output: Case

1 Function updateTermCase(term):
2 newPat← term.pattern;
3 if term.pattern contains messages that should contain ”replyTo” then
4 newPat← identify message element in term.pattern and return new pattern that contains

”replyTo” within message parameters
5 newTermBlock← term.body;
6 if isReceive then
7 contextBecomeExists← false;
8 if term.body contains ”context.become” then
9 contextBecomeExists← true;

10 term.body← replace ”context.become(...)” in term.body with the parameter that
was within ”context.become(...)”

11 newTermBlock← Block(term.body)

12 else
13 newTermBlock← Block(term.body ++ Term(”Behaviors.same”))

14 return Case(newPat, term.condition, newTermBlock)

Refactor the Function Definition and Parameters

The Function Definition and Parameter refactoring algorithm implemented by the function
’updateDefinitionAndParams’ is designed to refactor the definition and parameters of a func-
tion that returns or is called by a function that returns ’Receive’ type in an actor. It takes as input
the original function definition ’node, a list of keyword modifiers ’newMods’, old parameters ’old-
Params’, the transformed function body ’transfBodyMessages’, the actor type ’actorTypeName’,
and whether the function handles returns ’Receive’ type ’isReceive’. The algorithm outputs a
tuple consisting of a list of refactored parameters and the function body.

This algorithm refines function definitions by adding necessary parameters like the actor’s ’con-
text’ and adjusting ’ActorRef ’ parameters using ’updateTermParams’ helper function. If the
function returns ’Receive’ type (’isReceive’ is true), it integrates the Behavior.receive expres-
sion as a first entry point to the function, as it is crucial for handling message types and having
access to actor’s context and type definition. For functions that do not directly return ’Receive’
types but are called by other functions that do return ’Receive’, it adds the ’context’ parameter
explicitly to resolve references like ’self ’. The algorithm ensures that functions operate correctly
within the refactored system by updating both the parameters and function definition to fit Akka’s
typed actor model.
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Algorithm 24: Refactor the Function Definition and Parameters
Input: node: Term, newMods: List[Mod], oldParams: List[Param], transfBodyMessages:

Term, actorTypeName: String, isReceive: Boolean
Output: Tuple of (List of Param; Term)

1 Function updateDefinitionAndParams(node, newMods, oldParams, transfBodyMessages,
actorTypeName, isReceive):

2 if isReceive then
3 newBody← if transfBodyMessages is expressed as partial function definition (i.e.

block) or a call to some function then
4 if newMods contains ”override” then
5 newParams← updateTermParams(node.params, actorTypeName)
6 newDefaults← updateDefaultConstructorParameters(oldParams)
7 return (newParams ,Term.Apply(”Behavior.receive”, newDefaults ++

transfBodyMessages))
8 else
9 newParams← updateTermParams(oldParams ++ node.params,

actorTypeName)
10 return (newParams, transfBodyMessages)

11 else
12 return (Empty list of Param, transfBodyMessages)

13 else
14 contextParam← new parameter ”context” of a type ”ActorContext[$actorTypeName]”
15 newParams← contextParam ++ updateTermParams (node.params, actorTypeName)

return (newParams, transfBodyMessages)
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