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Abstract

This study evaluates the feasibility of developing a farm-scale ammonia emission
model for dairy farm using routinely measured parameters and management
variables. Three regression models, each based on a different core predictor—
Total Ammoniacal Nitrogen in manure (TAN), Milk Urea Nitrogen (MUN), and
Ammonia Emission Potential (AEP)—were fitted to ammonia emissions measured
using plume method. All models explained a substantial proportion of the overall
variance in measured NHz emissions (R?>0.68), with statistically significant fits.
Strong positive correlations were found among the basic models adjusted for
pH, temperature, and dry matter (DS), especially between the MUN and TAN
models, underscoring the consistency and reliability of these approaches for
estimating ammonia emissions at the farm scale. Model performance was further
enhanced by incorporating farm and environmental factors such as manure C/N
ratio, housing type, and management variables. In addition to these predictors,
a clear seasonal emission pattern was detected, with peak ammonia emissions
observed during the summer period, underscoring the role of environmental con -
ditions in emission dynamics. Dietary factors—especially digestible protein in the
small intestine (DVE) and the proportion of concentrate—were strong predictors
of TAN and, indirectly, of ammonia emissions, highlighting feed management as
an effective mitigation pathway. Despite the limited sample size, this research
demonstrates the potential of combining direct measurements and key farm vari-
ables in ammonia emission modeling and emphasizes the importance of both
feed and housing management for emission reduction. Future studies with larger
datasets are needed to validate and further refine these findings.

Keywords: Ammonia Emission, Multiple Linear Regression, Dairy Farms,
Nitrogen Balance Analysis, Feed Management
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. Introduction

1.1 The nitrogen issue in the Netherlands

Atmospheric nitrogen deposition has been identified as a primary driver of biodi-
versity decline through multiple mechanisms: eutrophication leading to floristic
alterations, acidification resulting in potentially toxic metal mobilization, and ele -
vated nitrate concentrations in groundwater systems (Feest, van Swaay, & van
Hinsberg, 2014; Payne et al,, 2017). The Netherlands experiences one of the
world's highest atmospheric nitrogen deposition rates (Rubin et al., 2023), reach-
ing a gross nitrogen balance of 165.8 kg N/Ha in 2017, approximately double
the European Union average (Statistics | Eurostat, n.d.). Mitigating nitrogen de -
position being essential for environmental protection is crucial for compliance
with the EU Habitats Directive and EU Bird Directive (HBD). The HBD mandates
EU Member States to preserve or restore threatened and endangered habitats,
notably through the establishment of the EU-wide Natura 2000 protected areas
network (Born, Cliquet, Schoukens, Misonne, & Hoorick, 2014). Within Dutch
territories, 162 Natura 2000 areas exist, with 118 sites experiencing nitrogen
deposits exceeding ecological risk thresholds by an average of 50% (Stokstad,
2019).

The Dutch government therefore has established ambitious targets to address
this challenge, aiming to reduce nitrogen deposition below critical threshold
values (KDW) across 74 % of Natura 2000 areas by 2035 (Marra et al., 2023).
Despite the implementation of multiple policies and measures, the latest report
from the National Institute for Public Health and the Environment (RIVM) shows
that although nitrogen deposition is decreasing, only 21% of areas had effectively
reduced deposition to levels below the KDW by 2021. If this trend continues,
instead of reaching 74%, only 40% of vulnerable nature conservation areas will
fall below the KDW by 2035.

Several factors contribute to this delay, with one key argument focusing on
the political incapability to manage the issue through current policies (Candel,
2023). Forinstance, the previous nitrogen policy, the ‘Programma Aanpak Stikstof’
(PAS), which was annulled by the Dutch Council of State, was criticized for
focusing less on actually reducing nitrogen deposition and more on mitigating
societal resistance by decreasing permit backlogs (Scheeringa, 2020). The newer
policies aim to improve the situation by enabling farmers to directly observe the
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connection between mitigation measures and their outcomes. Therefore, in line
with the recommendations of the Remkes Committee, the Nitrogen Reduction and
Nature Improvement Act (WSN) incorporates the emission reduction target into
its Explanatory Memorandum. This translates the deposition targets into explicit
emission reduction goals—specifically, a 26 % reduction by 2030 and a 50%
reduction by 2035 (Stikstofproblematiek, 2020). The National Program for Rural
Areas (NPLG) also calculates national emission reduction targets for agriculture,
industry, and transport (Hazelhorst, van der Maas, & Romeijn, 2024).

Main nitrogen emission sources and monitoring challenges

According to recent inventories (CBS, 2022b), ammonia accounts for 67 % of total
Dutch nitrogen emissions to air in 2022, with 91% of these ammonia emissions
originating from the agricultural sector. Within agriculture, cattle are responsible
for 53% of ammonia emissions, meaning that dairy farms alone contribute to 32%
of the total nitrogen emissions in the Netherlands. Given that intensive livestock
operations—especially ammonia (NHz) emissions from dairy and non-dairy cattle
manure management and land application—constitute the principal source of
atmospheric nitrogen deposition and emission (Stokstad, 2019; Wever et al.,
2021), dairy farming represent a crucial intervention point.

In 2021, the RIVM calculated how much less nitrogen the agricultural sector
would need to emit in order to meet legal targets, at the request of the Ministry of
Agriculture, Nature, and Food Quality (LNV). Their assessment showed that to
meet these targets, the agricultural sector needs to reduce ammonia emissions
by 40% by 2035 compared to 2005 levels.

By introducing emission targets alongside deposition targets, it becomes
possible for farmers to directly observe what requirements they must meet and
to immediately see the effect of implemented measures. Nevertheless, achieving
these targets requires highly accurate determination of ammonia emissions.

Currently, the Netherlands uses an approach based on the Atmospheric Emis -
sion Inventory Guidebook (AEIG) and the Intergovernmental Panel on Climate
Change (IPCC) Guidelines to estimate NHz emissions from dairy farms and pro-
duce more accurate inventories. This method models emissions based on activity
data, such as the average number of animals present, and emission factors (EF)
(e.g., kg NHz emitted per animal per year). The National Emission Model for
Agriculture (NEMA) is developed according to this methodology. While straight-
forward, this approach has its limitations. It does not accommodate innovative or
farm - specific solutions. Additionally, the emission factors determined at a na-
tional scale may be inappropriate for farm specific estimations, as they often fail to
accurately capture the specific conditions of individual farms (Yang et al., 2022),
and are performed only for the primary, representative categories of livestock
production and manure management systems. The study by Sommer, Webb, and
Hutchings (2019) reveals significant variability in measured NHz emissions com-
pared to EF calculated for barns, manure storage, or manure application within
the main categories of livestock production and manure management systems.
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The EFs provided exhibit a standard deviation as large as 50% of the estimated
average for a given livestock category.

For more farm-specific estimates of ammonia emissions, the KringloopWijzer
(KLW) model is employed. This scientific model, developed under standardized
and EU-reviewed conditions, requires dairy farmers to track all nitrogen inputs
to the farm (e.g., internally grown grass, purchased feed) and outputs from the
farm (e.g., animal products, manure, losses, etc.), then uses a mass balance
approach to estimate nitrogen use efficiency and emissions. The KLW methodol -
ogy calculates digestible protein (VCRE) intake based on feed data, derives total
ammoniacal nitrogen (TAN) in excretion, and subsequently estimates ammonia
emissions by multiplying TAN by the national scale emission factor for the stable
or grazing period (PPO/PRI AGRO Field Technology Innovations et al., 2022). This
model provides valuable insights for farmers into their operational nitrogen cycles.
However, several limitations exist: firstly, it relies heavily on precise farmer input
and knowledge, making comprehensive validation impossible—this vulnerability
to unintentional errors or even fraud makes it unsuitable as the basis for envi-
ronmental policy instruments (Bestman & Erisman, 2016). Secondly, the KLW
fails to include several key parameters—such as temperature and pH—which
are critical to the chemical equilibrium between free ammonia and ammonium
ions (Cai et al.,, 2021). As such, the KLW does not fully capture actual emissions
at the farm level. Studies at two farms by LR - Veehouderij en omgeving et al.
(2022) demonstrate that KLW may overestimate nitrogen use efficiency and thus
underestimate real emissions compared to direct measurements. Thirdly, KLW
calculates annual ammonia emissions using a national-scale EF, which means it
cannot represent emission accumulation or dynamics over shorter timeframes.
Additionally, similar to NEMA, KLW also suffers from the limitation of not being
able to capture variations at the level of specific farms. Consequently, it cannot
clearly link mitigation measures to emission reduction outcomes.

To ensure accuracy and reliability in farm -specific emission monitoring, di-
rectly measuring emissions is often seen as more dependable than relying on
model-based estimates. For barns, measurement methods typically involve
equipment that records air exchange rates and ammonia concentrations in both
incoming and outgoing air; the difference indicates emissions generated by the
livestock (Schep et al., 2024). However, this method requires a closed environ-
ment and is applicable primarily to indoor housing systems. Actual emissions from
open barns or yards can also be measured using plume measurements—mobile
stations are deployed to collect downwind ammonia concentration data from gas
plumes, capturing emissions at the street level (Hensen et al.,, 2024). However,
monitoring all farms with this technology would entail significant costs, and atmo-
spheric measurements are further constrained by unsuitable weather conditions
for data collection (Deru et al., 2018).
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Research Gap, Research Question and Objective

Despite advances in both modeled and measured approaches for quantifying
ammonia emissions, significant shortcomings remain. There is a pressing need
for a method that is both affordable and reliable, capable of providing farm-level
ammonia emission estimates with sufficient certainty. Such a technique is crucial
not only for guiding effective emissions policy but also for enabling farmers
to understand and manage their own emissions and to assess the impacts of
mitigation measures in practice (LR - Veehouderij en omgeving et al., 2021). In
addition, a reliable assessment method would help recognize and reward farmers
who achieve substantial reductions in emissions.

This research addresses this gap by aiming to develop a practical farm - specific
ammonia emission model for dairy farms in the Netherlands. The proposed model
will be built on easily measured predictors or systematic classification of farms,
reflecting key operational differences among them.

The model framework will use measured predictors as its foundation and will
systematically integrate additional factors such as feed management, milk yield,
manure composition, and manure management. The objective is to identify and
categorize key farm characteristics that influence ammonia emission patterns,
thereby improving emission estimation accuracy at the farm level.

Main Research Question:

Is it possible to develop an ammonia emission model for dairy farms based on
measured parameters? Which farm characteristics and management practices
have significant impacts on ammonia emissions during this phase?

Sub-Research Questions:

(a) Which widely used predictor variables and foundational model structures
are most suitable as the basis for the development of a practical ammonia
emission model for dairy farms?

(b) What additional farm characteristics or management variables significantly
affect ammonia emissions, and how much do these factors improve the
model's predictive ability compared to the base models?

(c) How do upstream feed management and nutritional parameters influence
the intermediate predictors of ammonia emission, and indirectly affect emis-
sion outcomes? Can these relationships be quantified to inform mitigation
strategies?



2 . Method

2.1 Data source and collection

Field measurements used for the model derivation were performed at 23 confined
dairy farms across the Netherlands under the combined program of Louis Bolk
Instituut (LBI) and Dirksen Management Support B.V (DMS). These dairy farms
possessed different locations (as seen in Figure 2.1), environmental conditions
and management practices (feeding, housing, and manure storage and treatment
practices), and therefore could represent a range of dairy production systems
in the Netherlands. With the two-year program period, each of the farms were
visited at according frequencies to get related sample and tested with according
method to get required data.

Manure composition data. Manure samples are collected 5 times throughout
the whole program period, the measuring rounds took place at the following
times:

R1: October 2023

R2: February 2024

R3: July 2024

R4: November 2024

R5: January 2025

During the sampling, a composite manure sample was collected from the dairy
cows' manure pit by Peter Vanhoof (Pvf). The sample combined manure taken
from at least 10 different spots underneath the slats. To ensure representative -
ness, areas near the water trough, concentration box, or milking parlour/milking
robot were avoided.

After sampling, the well mixed samples were sent to Pvf's mobile laboratory
(Figure 2.2) for measuring manure compositions (Vanhoof, 2024). In the mobile
lab, bioelectronic measurements (pH, EC, H5S, etc.) were performed with a
Consort C3050 multimeter. In addiiton, the Ammonia Emisison Potention (AEP)
value was also measured using the J-AIM method (Keim, 2025). With this
method, AEP was measured by pouring 400 grams of manure at 20 degrees

5
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Figure 2.1: Distribution of studied farms across the Netherlands
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Celsius into a plastic container. The container is then pressed into the test setup
that is hermetically sealed. After this, air with a relative humidity of approximately
40% was sucked over the manure surface, while the NHz concentration (in ppm)
was measured with a device from the company ExTox from Unna, Germany, the
whole process takes 31 minutes. (Jong et al., 2025)

Figure 2.2: Peter Vanhoof in his mobile lab

Simultaneously with the mobile lab testing, a portion of the manure samples
was sent to Eurofins, an independent clinical laboratory, for detailed analysis of
the following manure composition parameters: pH, dry matter, organic matter,
total nitrogen, Carbon/Nitrogen (C/N) ratio, TAN, organic nitrogen, and P,0Os.
Most of these key parameters were measured using infrared spectrometry. For
instance, to determine TAN, the laboratory performs an extraction step using
either water or HCl, depending on whether the sample is liquid or solid, applying
an extraction ratio based on the method employed. Subsequently, the treated
sample is analyzed according to ISO 15923-1 via spectrophotometry (Eurofins,
2025).

Feed Management data. During the week of manure measurements, farmers
recorded the mixed feed provided to dairy cows using an APP developed by DMS.
The feed was categorized by individual types, such as silage maize, concentrate,
by - products, and total roughage. Farmers entered the nutritional values of each
feed component and reported daily feed amounts in kilograms of dry matter per
cow per day. Some farms utilized automatic feeding systems that automatically
registered the quantities fed for each feed type, while others used feed mixers
with weighing installations, allowing for accurate recording of rations. In some
cases, farmers estimated feed weights due to the lack of weighing equipment.
To ensure data accuracy and plausibility, DMS also collected the 2023 and 2024
Cycle Indicators from the participating farms (Jong et al.,, 2025).

Using these input data, the APP calculated nutritional quality parameters such
as the average Crude Protein (CP or RE) value and the average metabolizable
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energy for maintenance and production (VEM or ME), based on the dry matter
portion of the feed.

Milk composition data. Milk composition data were accessed through the
Milk Production Registration (MPR) system, managed by Codperatie Rundveever -
betering (CRV). Over the two-year period, the system tracked protein content, fat,
lactose, and milk urea nitrogen (MUN) on a monthly basis, along with daily milk
production. By combining milk composition data with feed intake data from the
DMS APP, it became possible to calculate crude protein intake, the Mean Rumen
Degradable Protein Balance (OEB), and Intestinal Digestible Protein (DVE).

Other farm foundational data. Foundational farm data were collected through
guestionnaires and on-site visits. During the program, DMS visited participating
farms twice, in February 2024 and January 2025, gathering information including
the number and type of cows housed, soil type, total farm area, housing system
type (e.g., free-stall, low -emission flooring), bedding materials, manure additives
used during storage, volume of manure pits, frequency of manure mixing, and
other manure management practices (Jong, 2024).

Some of the collected company -specific data were processed in Excel to
convert animal numbers into livestock units (LU) for standardized comparison
between farms. Bedding materials and manure additives were assigned nominal
numeric codes to facilitate analysis. For example, bedding types such as straw,
sawdust, and others were coded as 1, 2, 3, etc., respectively; manure additives
received numeric codes starting from 1 upward.

Measured ammonia emission. During the second (February 2024) and fifth
(January 2025) measurement rounds, TNO conducted plume measurements
outside the stables to quantify the actual ammonia emissions from the farms
(Jong, 2024).

These measurement rounds, conducted at the end of the winter period (R2
and R5), were chosen to best represent stable period conditions, as manure
pits are typically full during this time, reflecting the manure composition of the
period. In round 2, measurements were performed at 18 farms, while round 5
covered 4 farms. The measurements employed a mobile measurement truck
equipped with advanced gas analyzers. At each farm, a mobile wind meter was
installed, and a cylinder containing nitrous oxide (N,O) was placed downwind of
the barn. Known volumes of N, O were released, and the truck drove along public
roads downwind to capture the resulting gas plume, as illustrated in Figure 2.3.
Ammonia concentrations were measured directly in open air by the truck’s roof -
mounted Quantum Cascade Laser (QCL), avoiding adsorption losses commonly
encountered in piping systems.

The plume air was sampled within the trailer by an Aerodyne laser trace gas
analyzer using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) to
measure concentrations of ammonia and nitrous oxide (N2O). Ammonia emissions
were estimated by comparing the measured dilution of the released N, O with the
ammonia concentrate in the plume, under the assumption that both gases exhibit
similar atmospheric dispersion behavior. This relationship can be summarized by
the following equation:
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Figure 2.3: Illustration of a Plume Measurement
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CNHg,measured (2 1)

ONHs = ON,0 X
CNzo,measured

On,0: Known emission rate of NoO (released volume per time)

* CN,0.measured: Measured concentration of N2O in the plume

OnH;: Estimated ammonia emission rate (unknown, to be calculated)

¢ CNHs.measured: Measured concentration of ammonia in the plume

Data from the gas analyzers were synchronized with GPS and wind measure -
ments, enabling identification of source plumes. Two calculation approaches
were applied: one method used the N, O tracer dilution to estimate ammonia
emission rates, while the other employed the Gaussian plume model to math-
ematically estimate emissions based on wind speed, direction, and turbulence.
Both methods yielded emission rates expressed in grams per second.(Hensen et
al.,, 2024)

Data Preparation

Main predictor(s) and basic model(s) selection

To develop a comprehensive model that integrates various farm categories, we
identified two to three key predictors as the foundation for the basic model.

AEP basic model. The primary predictor selected is the Ammonia Emission
Potential (AEP). This metric serves as a practical indicator of ammonia emissions
because it reflects the immediate capacity of manure to release ammonia. While
ambient ammonia concentration remains the most reliable indicator for ammonia
emission (van Jaarsveld, Bleeker, & Hoogervorst, 2000), the AEP value is ob-
tained by measuring the ammonia concentration under controlled yet realistic
environmental conditions. This method provides a “snapshot” or representative
segment of the manure's true emission behavior by simulating key physical and
chemical factors influencing ammonia volatilization—such as temperature, mois -
ture content, and air exchange. Essentially, AEP quantifies the potential amount
of ammonia susceptible to release under these standardized conditions, making
it a useful proxy for actual field emissions. Its reproducibility and sensitivity make
AEP valuable for comparing emission potentials across different manure samples
or treatments, thus supporting emission modeling efforts.

Since the measured AEP is determined at specific temperature conditions, and
considering that actual temperature and pH are critical operational parameters
influencing the chemical equilibrium between free ammonium nitrogen and am-
monium ions (Cai et al., 2021; Srinath & Loehr, 1974; Gustin & MarinSek-Logar,
2011; Bonmati & Flotats, 2003; Lei, Sugiura, Feng, & Maekawa, 2007), a temper-
ature correction should be applied to the AEP based on the actual atmospheric
temperature prior to its use as a predictor of ammonia emission.
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Ammonia emissions depend on both the ammonia gas/liquid equilibrium and
the dissociation equilibrium of ammonia in the liquid phase (Bonmati & Flotats,
2003). The equilibrium of ammonia in aqueous solution is influenced by pH and
temperature, and the relative concentrations of ammonium and ammonia can be
expressed by the following Equation (2.2) (Srinath & Loehr, 1974):

_ [NH3z] _ [NH3z] _ 1
[NHz] + [NHZ] TAN 1 + 10pPKa=pH

where [NHz] is the free ammonia concentration, [NHz] + [NHZ] is the total
ammonia nitrogen (TAN) concentration, and pKj is the logarithmic acid dissocia-
tion constant. The pK, can be expressed as a function of temperature (T in °C)
by Equation (2.3), derived from polynomial regression based on the data from
Bonmati and Flotats (2003):

(2.2)

pPK, =4x108xT2+9x10° xT?-0.0356 x T +10.072 (2.3)

The ammonia-fraction equation (fyn, (T, pH)) determines the equilibrium of
the slurry solution under according temperature and pH environment, therefore
the correction of the measured AEP could be done by below Equation (2.4):

fNH3 (Tmeasured, pHmeasured)
fNH3(20 OC, pHmeasured)

For the final regression model, the above equation forms the basis of the AEP
basic model.

TAN basic model. The second foundational model uses measured Total Am-
moniacal Nitrogen (TAN) as the primary predictor. TAN represents the combined
concentration of ammonium ions (NHZ) and ammonia (NHz). Since NHz con-
stitutes the non-ionized fraction of TAN, it is volatile and can transfer from the
manure slurry to the headspace air above the slurry pit, serving as the direct
source of ammonia emissions. This volatilization occurs throughout the nitrogen
flow chain—from excretion in the stable or pasture, through manure storage
(both indoors and outdoors), to the application of excreta on fields—while NHZ
remains dissolved in the liquid phase. NHz loss has been shown to correlate
closely with TAN variations (Webb et al., 2006; S. Sheppard, Bittman, Swift, & Tait,
2011), making TAN a widely adopted fundamental predictor in ammonia emission
estimation models worldwide (S. C. Sheppard & Bittman, 2012; S. Sheppard et
al.,, 2011; Webb et al., 2006; Cowell & Apsimon, 1998; Webb, 2001; Damm -
gen & Hutchings, 2008; Reidy et al.,, 2009; Velthof et al.,, 2012). Examples of
TAN -based mass balance models include the NARSES model (UK), MARACCAS
model (Europe), DNDC (US), and the NEMA and KLW models (Netherlands).
Despite the limitations and variability discussed in the previous chapter, these
models typically rely on calculated TAN, derived from animal feed composition
and intake, nitrogen digestibility, and nitrogen retention, as well as the emission

AEPnodel = Corrected_AEP = AEP x (2.4)
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factors - rather than directly measured manure TAN. Consequently, since their
primary input is feed -related data, these models are theoretically more accurately
described as feed-based models rather than TAN-based models.

Other models that simulate emissions at the farm or more localized level often
focus on the exchange of ammonia across the gas-film interface above the slurry.
In Cortus and Lemay (2009), a comparison is made between models that predict
NHz emission rates based on convective mass transfer from slurry surfaces.
These models, illustrated in Figure 2.4, incorporate sub-models to estimate both
the convective mass transfer coefficient and the NHz concentration within the
gas film.

From these models, it is evident that most mechanistic approaches to ammonia
volatilization from slurry start by expressing the mass transfer potential as a
function of the dissolved free ammonia concentration in the liquid phase, typically
calculated as f x TAN. For simplicity and due to data limitations, we adopt
this formula as the basis for the TAN basic model. Although NHz and NH7 are
theoretically in chemical equilibrium in solution, this approach still effectively
represents the emission potential.

Because the measured TAN in the database is given in grams per kilogram
of manure excreted, it must be aligned with the units of our measured emission
values which is gram per second. Thus, the TAN model can be formulated as:

TANmodel = TANmeasured X fNHz(Tmeasured, pHmeasured)
X ManureExcretion x ManureDensity (2.5)

/(365 x 24 x 3600)

To apply this model, the annual manure excretion must first be estimated based
on the production of fat and protein corrected milk yield (Jong et al., 2025):

Manure excretion per year = (6.6113 + 0.001 x milkyield

x (0.337 +0.116 X %fat in milk
(2.6)
+0.06 X %protein in milk))

12 .
X - X milk_cow_number

And the manure density is then assumed as a constant value (American Society
of Agricultural Engineers, 2003):

Manure density = 990 kg/m* (2.7)

MUN basic model. Milk urea nitrogen (MUN) is another predictor used to
establish a basic model. The urea content in milk and TAN in manure strongly cor -
relate with dietary protein levels (Frank & Swensson, 2002). Several studies have
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Figure 2.4: Comparison of ammonia emission from slurry (ES) models
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demonstrated a relationship between urinary nitrogen (UUN) and MUN (Burgos,
Fadel, & DePeters, 2007; Jonker, Kohn, & Erdman, 1998; Kauffman & St-Pierre,
2001; Kohn, Kalscheur, & Russek-Cohen, 2002; Huhtanen, Cabezas-Garcia,
Krizsan, & Shingfield, 2015), confirming that urinary nitrogen excretion—the
primary direct source of ammonia—can be reliably estimated from MUN val-
ues. Moreover, MUN has been employed to estimate ammonia emissions (van
Duinkerken et al., 2003; Powell, Broderick, & Misselbrook, 2008). Compared to
UUN, MUN is a more stable predictor, though it may not fully capture the dynamic
variations during transient, static, and reactive phases of ammonia emissions
(Powell et al., 2008).

For this study, we use an MUN emission model adapted from the emission
estimation table of Verbeek-Schilder and Verhoeven (2024), which correlates
specific MUN levels with different grazing time categories (Jong et al., 2025).
Additionally, this model was chosen because the range of milk urea nitrogen
(MUN) in its experimental dataset closely matches our data, with the majority of
milk urea values falling between 14 and 23 mg/dL.

E =0.645xMUN -0.000673 x G — 2.440 (2.8)

where:

E = ammonia emission (kg NHz/LU/year)
MUN = milk urea nitrogen (mg/dL)

G = grazing hours (hours/year)

This formula is based on pasture grazing management and milk urea con-
centrations and is intended for use across all dairy production levels. However,
as it estimates annual emissions, the original source does not explicitly specify
reference temperature and pH values. To enable consistent temperature and pH
corrections, we assume the underlying data correspond to an average temper-
ature of 11.8°C (2024: record heat, rain, and storms in the Netherlands / NL
Times, 2024) and pH 7.5. Although these standard values may not precisely
reflect the original conditions, this normalization facilitates fair comparison of
model outcomes among farms.

After applying pH and temperature corrections and converting units to match
our measured data, the MUN basic model is expressed as:

fNHs (Tmeasured’ pHmeasured)

X LU/(365 x 24 x 3600) x
/" ) fuHg (11.8°C,7.5)

(2.9)

Additional parameters selection

The predictors included in the basic model represent the potential for ammonia
emissions but do not solely determine the final emission levels. Beyond the
effects of pH and temperature incorporated into our models, various farm-related
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factors—such as climate, housing systems, and manure storage practices—either
correlate with these predictors or directly influence the ultimate emissions.

For example, climate is known to influence ammonia emissions, which can
vary by as much as 20% across different regions within the same country due
to overall climatic differences (Skjgth & Geels, 2013). Elevated air temperatures
(already included in our basic model given their significance) and low humidity
generally increase volatilization by altering the ammonia-ammonium equilibrium
and promoting ammonia gas formation (Beaudor, Vuichard, Lathiére, & Hauglus-
taine, 2025). Additionally, higher wind speeds generally increase total ammonia
emissions (Schrade et al., 2012); however, this effect is only observed within
the first 0-12 hours after excretion, with emission rates stabilizing thereafter
(Sommer, Olesen, & Christensen, 1991).

Components of manure composition also exhibit dynamic relationships with
TAN levels, thereby affecting ammonia emissions. For example, the carbon/ni-
trogen (C/N) ratio in excretion interacts complexly with temperature during TAN
volatilization; an increased C/N ratio can mitigate ammonia losses but requires
specific temperature ranges to be effective (X. Wang, Lu, Li, & Yang, 2014).
Whereas, the dry matter content in manure exhibits nonlinear relationships with
the ammonia emission after 6 hours of the excretion, the dry matter factor can be
expressed by the equation below (Sommer & Olesen, 1991):

L 0.014

Fps = = = 0.38
DS = ¢ ' 0.0086 + 1.66 x exp(—0.654D)

where

« L = updated loss rate from TAN,
« f = corrected equation included in previous equations (2.5), and (2.9),

« D = dry matter content in manure (percentage).

Therefore,

L=FDs><f,

which means by multiplying Fps with the TAN and MUN basic models, we can
include the impact of one more related parameter in the model. Since the manure
composition effects were already accounted for in the experimental conditions,
no correction for dry matter (DS) is necessary in the AEP model.

Once manure is deposited on the stable floor, additional farm characteristics
affect TAN volatilization dynamics. Housing system factors such as loose housing
versus tie stalls, barn ventilation type, the presence of solid or slatted floors, and
water flushing practices significantly influence TAN volatility by modifying urea
hydrolysis rates and air exchange within the barn and manure pits (Monteny &
Erisman, 1998; Braam, Ketelaars, & Smits, 1997; Vitaliano, D'Urso, Arcidiacono,
& Cascone, 2024). In the Netherlands, farms are classified using various RAV
codes that correspond to the emission impacts of different housing systems. To
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quantify the differences between housing types, we introduce emission factors
(EF) associated with each RAV code (Koninkrijksrelaties, 2023), expressed in
units of kg NHz per animal place per year. The adjusted housing variable is then
calculated as follows:

EFRravcode X animal place x 1000
365 % 24 x 3600

During subsequent manure treatment and storage phases, various manage -
ment practices—such as manure separation, incineration, pelleting/drying, and
anaerobic digestion—have been shown to impact TAN volatilization (van der Zee
etal,, 2024). Interventions that modify pH, temperature, and C/N ratio are critical;
for instance, anaerobic digestion and solid -liquid separation of dairy cow and
buffalo manure may enhance mineralization of organic nitrogen to TAN, potentially
increasing ammonia emissions. Conversely, covering manure with straw can
reduce emissions by promoting immobilization of TAN as organic nitrogen (Cole
etal., 2005).

Other influential factors include the total number of dairy cattle, as herd size
determines the absolute quantity of nitrogen excreted.

housing_variable =

Independent feed parameters

While the main emission model utilized direct predictors such as TAN, MUN, AEP,
and some manure compositions, these factors themselves are, to a significant
degree, influenced by upstream nutritional and feed management strategies on
the farm.

For instance, feed intake strongly affects nitrogen excretion. Studies have
shown that characteristics such as dry matter (DM), the average metabolizable
energy for maintenance and production (VEM), dietary crude protein (CP), and
the presence of minerals like potassium (K) and sodium (Na) influence nitrogen
excretion by modifying nitrogen conversion efficiency and urine volume (Yan,
Frost, Keady, Agnew, & Mayne, 2007; Madsen, Lund, Brask-Pedersen, & Jo-
hansen, 2023; de Boer, Smits, Mollenhorst, van Duinkerken, & Monteny, 2002;
Waldrip, Todd, & Cole, 2013). VEM, DM, and CP positively correlate with TAN
in manure and MUN levels, whereas the proportion of forage generally exhibits
a negative correlation. The role of corn silage proportion in the diet, the effect
of varying dietary protein relative to milk yield, and energy requirements for milk
production (Feed Unit for Milk) also affect nitrogen excretion and the efficiency of
nitrogen utilization for milk synthesis, thereby impacting TAN and MUN (Wattiaux
& Karg, 2004; Groff & Wu, 2005; Chanda, Khan, Chanda, & Debnath, 2024).
The concentrate proportion in the diet further reflects the intensity of animal
management, where more intensive dairy systems have been linked to increased
atmospheric NHz/ammonium concentrations (Pain, Van der Weerden, Chambers,
Phillips, & Jarvis, 1998). Intermediate nutritional parameters such as Digestible
Intestinal Protein (DVE) and Metabolizable Energy Balance (OEB) also influence
these predictors by reflecting nitrogen efficiency and consequently nitrogen ex-
cretion (van Duinkerken, Smits, André, Sebek, & Dijkstra, 2011).
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These independent parameters were not included in the direct emisison model,
however, as predictors like TAN and MUN are not usually modified directly in
practice, feed composition and feeding strategies are active management levers
available to farmers.

To integrate the predictors and parameters discussed in Sections 2.2.1, 2.2.2
and 2.2.3, and taking into account data availability, a summary of ammonia emis-
sion predictors alongside the farm categories that influence them and dynamically
affect final emission outcomes is presented in Table 2.1. The sample size repre-
sents the number of observations or data points collected from the respective
source and used in the analysis for each parameter.

As this study focuses on developing a barn emission regression model, param-
eters influencing emissions during grazing or manure application are excluded.

Statistic analysis

The statistical analysis in this chapter is organized into three interconnected
sections. First, we develop weighted regression models to predict ammonia emis -
sions using each of the basic underlying models (TAN-, MUN-, and AEP-based),
incorporating additional farm and management parameters to improve predic -
tive accuracy. Second, recognizing the availability of a larger dataset of model
predictions, we perform a comparative analysis of the outputs from the three
basic models, examining their mutual correlations and exploring temporal patterns
across multiple experimental rounds. Finally, to better understand the underlying
drivers of ammonia emission variability, we investigate the feed-to - predictor re -
lationships by constructing ordinary least squares regression models that identify
which feed characteristics significantly influence the selected predictors—and
through them, ammonia emissions. This multifaceted approach enables us to
both build robust emission prediction models and uncover biologically mean-
ingful feed-related factors that can guide practical mitigation strategies. The
potential correlations and causal relationships among the selected parameters
are illustrated in Figure 2.5.

Direct Emission Model Development

To quantify and optimize the influence of selected parameters on ammonia emis-
sions, we constructed regression models to simulate farm-level NHz emission
based on key predictors. Measured ammonia emission served as the target
for model calibration. The simulated emission was formulated as a function of
selected variables, starting from a basic model and progressively incorporating
additional paramters as per 2.2.2 representing farm management categories.
Given that measurement errors vary between farms, we employed Weighted
Least Squares (WLS) regression to calibrate the simulation model(de Levie, 1986).
In WLS, each observation is assigned a weight inversely proportional to the vari-
ance of its measurement error, such that more precise (lower-error) measure -
ments have greater influence on parameter estimation. The mathematical forms
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Figure 2.5: Potential Correlations and Causal Relationships Among Selected Parameters

are:

TAN -based Simulated Ammonia Emission = Bg + B1 X TANmodel X Fps
+ B2 X C/N
+ Bz X Housing_variable
+ B4 X manure_additive_variable

+ fBs X bedding_materials_variable
(2.10)

MUN -based Simulated Ammonia Emission = Bg + 1 X MUNmodel X Fps
+ B2 X C/N
+ 3z X Housing_variable
+ B4 X manure_additive_variable

+ Bs X bedding_materials_variable
(2.11)

AEP-based Simulated Ammonia Emission = B + 81 X AEPmodel
+ B2 X Housing_variable

+ B4 X bedding_materials_variable
(2.12)
The coefficients g; are determined by minimizing:
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Bo + D Bjxij

Jj=1

2
) (2.13)

N
v (y/ -
i=1

with y; as the TNO measured emission for farm /i, and weights w; = 1/0,.2
where 01.2 is the variance (squared standard error) of each measurement.

Process-Based, Per-Cow emission normalization

Although all regression models were developed and calibrated using total farm-
level ammonia emissions, a process-based perspective was introduced by nor-
malizing both measured and predicted emissions to a per-cow basis. For each
farm observation, per-cow NHz emission rates were calculated by dividing the to-
tal emission (g/s) by the number of lactating cows present at the time of sampling.
This normalization facilitates direct, process-based comparison of emission inten -
sities between individual farms, independent of herd size, and aligns the analysis
with prevailing standards in emission inventory and mitigation literature (Velthof
etal, 2012). Per-cow emission rates are subsequently used for benchmarking
against literature values and for evaluating management efficiency across farms,
providing additional context to the farm-level model evaluation.

Comparison of Basic Model Predictions and Temporal Patterns

To fully compare the behavior and consistency of alternative ammonia emis-
sion models, we utilized the complete dataset of model predictions—MUNmogel,
AEPmodel, and TANmoger—Spanning 105 experimental conditions, including all
participated farms and experimental rounds. Pearson correlation analysis was
applied to all pairwise combinations of model predictions to assess the degree of
linear association among the three approaches and pairwise scatterplots were
generated to graphically depict model agreement.

Beyond overall correlation, possible temporal or batch-wise effects were
investigated by examining prediction patterns across the five experimental rounds
recorded for each farm. For each round, model prediction distributions were
compared using boxplots, and round-wise mean trends for each model were
plotted. These analyses were conducted to identify consistent differences, trends,
or sources of variability attributable to experimental rounds.

Feed Parameter Contributions to TAN or MUN Predictions

The feed-to-predictor model uses a simpler ordinary least squares (OLS) ap-
proach, where the TAN; and MUN; values for farm i are equally weighted due
to the relatively consistent laboratory conditions and sampling procedures. The
mathematical form is:

Simulated TAN(or MUN) = Bo+B1x1+BoXxo+: -+ y1(XiX Xj)+--- Boxp+ € (2.14)



2.3. Statistic analysis 20

where x1, x2, ... are the selected input variables, x; X x; x; X x; represent
the combined effect of two predictors on the outcome, capturing their potential
non-linear influence on the final prediction (Aiken, West, & Reno, 1991). And
coefficients B;, y; are determined referring to the method ((2.3.1) used in WLS.
All parameters and the target predictor(s) were aligned to same unit g/farm/s.

This section begins by fitting multiple linear regression models to investigate
the associations between the selected feed parameters. This approach enables
the evaluation of both direct effects and correlations (collinearity) among inde -
pendent and dependent variables. Identifying pairs of highly correlated predictors
is essential for ensuring correct model specification in subsequent analyses.

And then to identify the optimal set of explanatory variables, we used a step-
wise forward selection process based on the adjusted coefficient of determination
(Razdj). Starting from one of the chosen feed management, additional variables

where justified by correlation analysis or biological reasoning.
At each step:

1. Add one new candidate variable or interaction term to the model.
2. Fitthe OLS model using the updated variable set.

3. Calculate the new adjusted R?:

) (1-R?)(n-1)
Rig=1- p— (2.15)

where n is the number of observations, p is the number of predictors.

4. If Rgdj increases, the new variable is retained; otherwise, it is excluded.

This process was repeated until no further increase in Rgdj was observed.

Standardized Coefficients For interpretability, we also calculated standardized
coefficients (Beta weights) for both the direct emission model as well as the feed -
to-predictor model:

N SD(XJ')
where SD(-) denotes the standard deviation. Variables with the largest absolute

standardized coefficients contribute most to explaining ammonia emission varia-
tion, regardless of their original scale.

(2.16)

Implementation and tools

All analyses were performed using Python 3.12.7 in the Visual Studio Code (VS
Code) environment. Data manipulation and preprocessing were undertaken with
pandas, regression analyses were carried out using the statsmodels library, and
plots generated via matplotlib. Measurement errors were incorporated as weights
in the WLS model to maximize the efficiency and validity of parameter estimates.
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Table 2.1: Categories Data Description

Description Parameter/Predictor Sample Size Source
TAN 105 Eurofins
AEP 105 Pvf
. Temperature 105 Pvf
M C t
anure Composition oH 105 Pyf
C/N ratio 105 Pvf
DS 105 Eurofins
Milk Yield 105 CRV
. . MUN 105 CRV
Milk C t
! omposttion Protein percentage 105 CRV
Fat percentage 105 CRV
% of maize 105 DMS
% of concentrate 105 DMS
Feed Management/ CP 105 DMS
Nutritional Quality DVE 105 DMS
Parameters OEB 105 DMS
CP/KVEM 105 DMS
DS 105 DMS
Manure Bedding materials 42 DMS
Management Manure Additives 28 DMS
avg.LU 24 DMS
Dairy cow number 105 DMS
Measured NHz 22 TNO
Others Standard error NHz 22 TNO
Animalplace 105 DMS
RAV code 21 DMS

Grazing day 21 DMS




. Results

3.1 Model-based estimation of ammonia emissions

3.1.1 TAN based regression model

The best fit regression model established basing on TANmogel Without adding
manure management categories is displayed as Figure 3.1. The regression line
(black) reflects the model's fit, while the red dashed line (identity) denotes perfect
prediction.
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Figure 3.1: Prediction Accuracy of TAN-Based Model for NH Emissions: Observed vs.
Modeled Values, Including Uncertainty (WLS Regression)

The regression model described in Equation (3.1) yields an R? value of 0.745
with a highly significant p-value. At first glance, this suggests that the model
explains a large portion of the variance in measured NHz emissions. However,
a more detailed inspection of Figure 3.1 reveals that the fitted regression line is

22
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nearly flat and fails to follow the identity line, particularly at the higher end of
measured values. This indicates that, despite the presence of several explanatory
variables, the model's predictions do not vary much across farms, often clustering
around a similar range. This limited variation is likely due to the large uncertainties
present in the estimated regression coefficients and/or a restricted range in the
predictor values among the farms studied, effectively dampening the model's
ability to distinguish emission differences between individual sites.

As a result, the apparently high R? reflects the model's ability to approximate
the overall average emission level across all data points, rather than its capacity
to provide accurate or meaningful predictions for individual farms. In practical
terms, this means the model captures the baseline trend but does not effectively
capture the farm-to-farm variability in NHz emissions. Therefore, care must be
taken not to equate a high R? with strong predictive power for specific cases,
especially when the fitted regression line lacks a significant slope. These findings
highlight the importance of including more informative or farm-specific vari-
ables—particularly those related to manure management—to improve prediction
accuracy and account for the variability observed in NHz emissions.

TAN-based Simulated Emission; = — (0.0127 + 0.0216)
+(0.4750 + 0.9679) X TANmogel X Fps
+ (0.0067 + 0.0029) x C/N

+(0.3097 + 0.2195) x HousingVariable
(3.1)

Table 3.1: TAN Model Coefficients, Standard Errors, and p-values

Parameter Coefficient £ SE p-value

const —0.012740 +£0.021555 0.562753
TANmodel 0.475030 £ 0.967863  0.630230
C/N 0.006736 +0.002930 0.035305 *

HousingVariable 0.309669 +0.219524 0.177498

The regression model results in Table 3.1 indicate that none of the predictor
variables, except the C/N ratio, reach conventional levels of statistical signifi-
cance at the 0.05 level. The intercept (const) shows a small negative coefficient
(-0.013) with a non-significant p-value (p = 0.563), suggesting no significant
baseline effect. The basic model (extra corrected with DS) has a positive coeffi-
cient (0.475) but with high uncertainty and a non-significant p-value (p = 0.630),
indicating weak evidence of its influence on the response. The C/N ratio exhibits
a small positive effect (0.007) with a statistically significant p-value (p = 0.035),
suggesting a modest but meaningful association with the outcome. The housing
type variable has a positive coefficient (0.310) yet remains non-significant (p =
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0.177), implying some potential influence but insufficient evidence to confirm
it. Overall, while the model provides a statistically significant fit and appears to
capture a substantial portion of the total variance in the data, it tends to underes-
timate higher observed values and exhibits considerable predictive uncertainty at
the individual farm level. This highlights the need for further model refinement.
In addition, due to large confidence intervals and limited statistical significance
of the model coefficients, the specific impact of individual predictors remains
difficult to interpret reliably.

In the case of including manure management parameters, such as bedding
materials and manure additives, the regression model (Equation (3.2)) resulted
in a substantial increase in the number of parameters due to the use of multiple
dummy variables for each management category. As shown in Figure 3.2, this
extended model achieves an exceptionally high R? value (0.993), indicating an
almost perfect fit to the measured data. However, this apparent improvement
comes at the cost of model generalizability. Since each dummy variable corre -
sponds to a management practice found in only a small number of farms, the
model tends to tailor itself to these limited data points rather than identifying
generalizable relationships. This is a classic symptom of overfitting, especially
when the total number of predictors (including more than a dozen dummy -coded
variables as shown in Equation (3.2)) approaches or exceeds the number of
observations per group. As a result, the model likely inflates its apparent predic -
tive ability within the current dataset, but its performance on new data would be
substantially less reliable. In summary, although the inclusion of detailed manure
management information appears to enhance model fit, it also introduces a high
risk of overfitting due to limited replicates for each dummy variable level and the
proliferation of parameters relative to the sample size.
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Figure 3.2: Effect of Including Manure Management (Bedding Materials and Additives)
on TAN-Based Model Prediction of NH Emissions (WLS Regression, with Error Bars)

TAN_based Simulated Emission, = 0.0509 + 0.0399 — (3.8623 + 1.3605)

X TANmodel X Fps + (0.0106 +0.0058) xC/N
— (0.0446 +1.0039) x HousingVariable
—(0.0556 + 0.0130) x BeddingMaterials,
—(0.0194 + 0.0249) x BeddingMaterials,
+(0.0224 + 0.0392) x BeddingMaterialsz
+(0.0646 + 0.0325) x BeddingMaterials,
+(0.0140 + 0.0282) x BeddingMaterialss
+(0.0403 + 0.0325) x BeddingMaterials,
+(0.0157 + 0.0152) x BeddingMaterials,
—(0.0311 + 0.0549) x BeddingMaterialsg
+(0.0040 + 0.0127) x BeddingMaterials,
—(0.0040 + 0.0478) x BeddingMaterials,
+(0.1249 + 0.0382) x ManureAdditive;
+ (0.0644 + 0.0536) x ManureAdditive;
—(0.0695 + 0.0218) x ManureAdditives
+ (0.0040 + 0.0127) x ManureAdditive,
+ (0.0000 = 0.0000) x ManureAdditives
+(0.0284 + 0.0781) x ManureAdditiveg
+ (0.0000 + 0.0000) x ManureAdditivey
— (0.0502 + 0.0535) x ManureAdditiveg
(3.2)

— N e N N
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MUN and AEP-based regression models
MUN_based regression model

The best-fit regression model based on MUNogel IS presented in Equation (3.3)
and shown in Figure 3.3. With an R? value of 0.748 and a p-value of 0.0000478,
it demonstrates explanatory power similar to that of the TAN-based approach.
The model provides a statistically significant fit and accounts for a substantial
proportion of the total variance in measured emissions.

MUN -based Simulated Emission = — 0.0117 + 0.0211
+(0.2012 £ 0.3126) x MUNmodget X Fps
+ (0.0066 + 0.0029) x C/N

+(0.2514 + 0.2591) x HousingVariable
(3.3)
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Figure 3.3: Prediction Accuracy of MUN -Based Model for NH Emissions: Observed vs.
Modeled Values, Including Uncertainty (WLS Regression

Similar to the TAN model, the regression results (shown in Table 3.2 indicate
that the C/N ratio is statistically significant (p = 0.0343). However, the basic
model MUNmogel X Fps has a relatively large p-value of 0.529, suggesting there
is no statistical evidence to support a strong effect of this term in the prediction
model.

AEP_based Regression Model

The regression model based on AEP is represented in Equation (3.4) and illus-
trated in Figure 3.4. Compared to previous models, the performance of the AEP
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Table 3.2: MUN Model Coefficients, Standard Errors, and p -values

Parameter Coefficient £ SE p-value

const -0.011749 +0.021148 0.586189
MUN mogel 0.201158 +0.312645  0.529074
C/N 0.006644 +0.002872 0.034340 *

HousingVariable 0.251445 +£0.259128  0.346313

model is improved: R? = 0.681, indicating that AEP and housing type together
explain approximately 68% of the variance in measured ammonia emissions. A p-
value of 0.000006 indicates the model is highly statistically significant. Although
the regression line still falls below the identity line at higher measured values, the
model's predictions generally align more closely with the observed data. While
some prediction uncertainty remains, as reflected by the substantial error bars,
the overall fit better reflects actual emission patterns than previous models.

AEP-based Simulated Emission = 0.0425 + 0.0073
— (0.0006 + 0.0004) x AEPmodel
+(0.7547 £ 0.1717) X HousingVariable

(3.4)
AO (WLS): Actual vs. AEP_based Prediction (WLS)
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Figure 3.4: Prediction Accuracy of AEP-Based Model for NH Emissions: Observed
vs.Modeled Values, Including Uncertainty (WLS Regression)
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Table 3.3: AEP Model Coefficients, Standard Errors, and p -values

Parameter Coefficient + SE p-value
const 0.042509 +£0.007312 0.000021 ***
AEPmodel —0.000637 + 0.000375 0.107143

HousingVariable 0.754659 £0.171710 0.000395 ***

The intercept(const) is statistically significant (p = 0.000021), indicating a
meaningful baseline emission level contributing from parameters not included
in our model. The coefficient for corrected AEP is negative and approaching
significant (p = 0.107143), suggesting that higher Corrected AEP values are
associated with a slight decrease emissions. The housing variable shows a
positive effect and statistically significant (p = 0.000395).

Normalized coefficients of all parameters

The standardized coefficients analysis Table3.8 reveals the relative importance of
parameters across the three regression models. The housing variable consistently
emerges as the most significant predictor, particularly in the AEP-based model (
= 0.4291%*). Inthe AEP-based model, the AEPodel ShOWS a negative association
( = -0.3180), suggesting that higher AEP values might be linked to slightly
lower ammonia emissions. The C/N ratio demonstrates statistically significant
positive associations in both TAN-based and MUN-based models ( 0.16*). The
pair of TANmodet X Fps and MUNnoget X Fps Show modest contributions, with
standardized coefficients around 0.09-0.12.

Table 3.4: Standardized Coefficients (Beta) for Different Models

Parameters AEP Model TAN Model MUN Model
HousingVariable  0.4291%* 0.1761 0.1430
AEPodel -0.3180 - -

C/N - 0.1650% 0.1627*
TANmodel X Fps - 0.0877 -
MUNmodel X Fps - - 0.1216

* Statistically significant coefficients

While the C/N ratio appears to be a relevant predictor, caution is warranted
when interpreting the other variables due to their non-significant effects and
uncertainty in their contributions. The limited significance of most predictors
suggests further investigation with additional data may be needed.
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Normalized per-cow emission

To enable comparison on a per-animal basis, the outputs from the three di-
rect emission models were normalized to annual emissions per cow. This was
achieved by dividing the 22 model-predicted emission values by the corre-
sponding dairy cow numbers for each farm and round, and then applying the
appropriate time conversion to yield results in kilograms of ammonia per cow per
year. For a broader context, the 2022 national average inventory was used as a
reference. This benchmark was calculated by dividing the national total ammonia
emission from housing and storage (as reported by Van Bruggen et al. (2024))
by the country-wide average number of dairy cows for 2022 (CBS (2022a)).
The results are summarized in Figure 3.5. Most individual farm-round results fall
below the national average inventory line, with some variation between the three
models at certain farm-rounds. For example, the three models produced slightly
different estimates for Farm 4 in Round 1, which may reflect variability in model
sensitivity to input parameters.

Process-Based Emission Results Comparison by Round and Farm ID

—e— AEP based model
—=— TAN based model
—a— MUN based model
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Figure 3.5: Comparison of Model-Based Ammonia Emission Estimates per Cow per Year
by Farm and Round, with Average Inventory Reference Line

Comparison among the Three Basic Models

All three regression models ((3.1), (3.3), (3.4)) explain a substantial portion
of measured ammonia emissions. A direct comparison of the basic model
outputs—TANmodel X Fps, MUNmodel X Fps, and AEPmogqei—reveals a noteworthy
degree of consistency, as summarized in Table 3.5.
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Table 3.5: Pearson Correlation Matrix of Basic Models” Ammonia Emission Predictions

TANmodet X Fps  AEPmodet  MUNmodel X Fps

TANmodel X Fps 1.000 0.62 0.92
AEP 1odel 0.62 1.000 0.62
MUNmodel X Fps 0.92 0.62 1.000

As shown, TANmodet X Fps and MUNnoqel X Fps display an exceptionally
strong positive correlation (r = 0.92), indicating that these two models simulate
changes in NHz emissions in a remarkably similar, almost linear manner. By
contrast, AEPmodel ShOws a moderate positive correlation (r = 0.62) with both
TANmodet X Fps and MUNmoget X Fps. All correlations are positive, which indicates
that higher values from one model generally correspond to higher values from
the others.

Figure 3.6 further illustrates these relationships. In the pairwise scatterplots
and marginal histograms, it is evident that the predictions of TANmodet X Fps
and MUNnogel X Fps are mostly concentrated at lower emission values, with
moderate spread. Conversely, AEPmodel SPans a broader range and includes
some notably larger values, suggesting greater variability and outliers. In general,
predicted emissions from TANmogel X Fps are lower in absolute value compared
to MUNmogdel X Fps.

Beyond overall correlation analysis, we examined potential temporal and batch
effects by exploring the distribution of model predictions across five experimental
rounds (Figure 3.7) and the round-wise mean emission trends (Figure 3.8).
While the three models differ in variability—AEPmoget Shows more fluctuations
and outliers—their overall temporal trends are quite consistent. The medians
and means of all three models rise from rounds 1 (Oct-23) through 3 (Jul-
24), peaking in round 3, and then decline during rounds 4 (Oct-24) and 5
(Feb-25). This shared pattern suggests systematic effects of temporal factors,
which may be attributable to management changes or environmental variations
across seasons. Despite the higher variability in AEPnogdel, the consistency in
trends across all models supports their complementary value in representing the
temporal dynamics of NHz emissions.

In summary, while each basic model captures slightly different aspects of
the emission dynamics, the strong correlations and consistent temporal patterns
highlight their robustness for monitoring and comparison purposes.

Selection of feed parameters

Figure 3.9 shows the interactions between selected feed managements. The
central hypothesis assumes the existence of interrelations between these param-
eters, as demonstrated in Figure 2.5. While our results can be summarized as
follows:

The independent variables included maize proportion and concentrate pro-
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Correlation Matrix of Feed Parameters
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Figure 3.9: Correlation matrix of selected feed parameters. The heatmap visualizes Pear -
son correlation coefficients among key dietary components, including maize proportion,
concentrate proportion, and nutritional indices (DVE, OEB, CP, CP/VEM). Higher (red) or
lower (blue) color intensity reflects the strength and direction of the pairwise correlations.
This matrix helps to identify potential multicollinearity and interdependencies among the
feed variables, which are essential considerations for downstream regression analyses
and model interpretation.
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portion. Neither maize nor concentrate proportions showed strong statistical
relationships with DVE, OEB, CP or CP_KVEM (all p > 0.05, R? < 0.03). How-
ever, within the intermediate variables, CP is a significant predictor for OEB
(p < 0.05, R? = 0.42) and DVE (p < 0.05, R? = 0.95). Moreover, OEB and DVE
serve as mutual significant predictors of one another (p < 0.05, R? = 0.25 for
both regressions).

In summary, the following variable pairs demonstrated sufficiently strong
correlations or reciprocal predictive relationships to warrant their consideration as
potential interaction terms in the development of feed-to-key - predictor model:

« RE and OEB
« RE and DVE
« OEB and DVE

Based on these conclusions, the predicted TAN were constructed according
to the feed elements listed in Table 3.6:

Table 3.6: Variables used in the regression models for simulated key predictor

Variable ID Variable Name Description
X1 Maize Proportion % maize in diet
X2 Concentrate Proportion % concentrate in diet
X3 CP Crude protein content in feed
X4 OEB Metabolizable energy balance (OEB)
X5 DVE Digestible protein in the small intestine
Xe CP x OEB Interaction term: crude protein x OEB
X7 CP x DVE Interaction term: crude protein x DVE
Xsg OEB x DVE Interaction term: OEB x DVE
Xo CP/KVEM Ratio of crude protein to digestible energy in feed

Feed regression model

Based on the results presented in Table 3.7, most selected variables improved the
adjusted R? of the models, with only minor decreases observed for X, (OEB), and
Xo (CP/KVEM). Nevertheless, we did not rely solely on adjusted R? as the criterion
for variable selection. Given the established theoretical evidence supporting the
linear contributions of OEB and DVE to UUN (Burgos et al., 2007), and recognizing
the CP/KVEM ratio as a critical parameter for nitrogen efficiency, we retained
these variables in the model.

The M9 model, encompassing 9 variables, ultimately demonstrated the highest
R? and most favorable adjusted R?, thus emerging as our definitive regression
model for predicting TAN using feed management variables.
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Table 3.7: Stepwise model R? summary and variables included for each TANmodel
Prediction

Model Variables Included R? RZ; Nrof Predictors
M1 X1 (Maize Proportion) 0.084 0.075 1
M2 X1, X2 (Concentrate Proportion) 0.095 0.078 2
M3 X1, X2, X3 (CP) 0.682 0.673 3
M4 X1, X2, X3, X4 (OEB) 0.683 0.671] 4
M5 X1, X2, X3, X4, X5 (DVE) 0.710 0.696 5
M6 X1, X2, Xz, X4, X5, Xg (CP X OEB) 0.716 0.698 6
M7 X1, X2, Xz, X4 Xs, Xe, X7 0.721 0.701 7
(CP x DVE)
M8 X1, Xo, Xz, X4, X5, Xg, X7, Xg 0.727 0.705 8
(OEB x DVE)
M9 X1, Xo, Xz, X4, X5, Xg, X7, Xg, X9 0.729 0.703] 9
(CP/KVEM)

The regression model can be expressed as below Equation (3.5), and illus-
trated with Figure3.10:

Predicted TAN = - 0.0377 = 0.0307
+ (0.0008 + 0.0003) x %maize
+ (0.0014 + 0.0005) x %concentrate
—(0.0506 = 0.0343) x CP
+(0.1130 + 0.0582) x OEB
+(0.1044 + 0.0284) x DVE
+(0.0158 + 0.0139) x CP x OEB
—(0.0007 = 0.0027) x CP x DVE
—(0.0475 +0.0324) x DVE x OEB
+(0.0209 + 0.0246) x CP_KVEM

The regression analysis reveals a strong positive correlation, with an R? value
of 0.729 and a highly significant model p-value of 5.11e-23. The regression line
demonstrates a near-linear relationship between the measured and predicted TAN
values, indicating the model's predictive capability. The data points closely cluster
around the identity line (red dashed line), suggesting that the predictive model
closely approximates the actual measured TAN values. The spread of points
suggests variability exist, but the overall trend confirms the model's reliability
in estimating TAN across different farms, with most predictions falling within a
narrow range of the actual measurements.

Standardised coefficient as shown in Table3.8 provide insights into the relative
importance of each feed variables. The most substantial predictor is DVE which
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Figure 3.10: Comparison of measured and predicted TAN values. The plotted data show
a near-linear relationship, with most points closely following the identity line (dashed
red) and an overall R? of 0.729, highlighting the predictive strength of the model.

demonstrated a strong and highly significant relationship. It follows by CP shown
as a notable negative coefficient, though the p-value (0.144) suggested the
relationship might be attributed to random chance. Among the remaining param-
eters, the maize and concentrate proportions in feed show statistically significant
positive associations with TAN, although the relatively modest 8 suggests that

the impact may be limited.

Table 3.8: Regression Coefficients

Parameter Standardized Beta p-value Significance
Yomaize 0.2087 0.0024 ok
Y%concentrate 0.1627 0.0084 ok
CP -1.5711 0.1436
OEB 0.6593 0.0552
DVE 1.7782 0.0004 kx
CPxOEB 0.8004 0.2594
CPxDVE -0.1212 0.8087
DVEXOEB -1.2050 0.1450
CP/KVEM 0.6592 0.3969




. Discussion

4.1 Overall direct emission model performance

Overall, in modeling TNO-measured NHz emissions, the three regression mod-
els—Equations (3.1), (3.4), and (3.3)—each based on different underlying ap -
proaches, consistently captured the major patterns observed in the emission data.
By incorporating pH- and temperature - corrected values (TANmodel, MUNmodel,
and AEPmogel), together with dry matter content (DS), the C/N ratio in manure,
and a housing type variable, these models provided a comprehensive framework
for interpreting the primary drivers of emission potential. All three models yielded
R? values greater than 0.68, with p-values below 0.0001, indicating statistically
significant fits that explain a substantial proportion of the overall variance.

However, when zooming into individual model elements, neither basic model
presents statistically significant contributions. Only the pH and temperature -
corrected AEP shows an approaching significance (p= 0.1), yet its negative
coefficient with the emission suggests that as AEP increases, the final emission
tends to decrease — a counterintuitive relationship. The weak connection be-
tween our chosen basic models and the measured TNO emissions might be
attributed to our limited sample size, with only 22 TNO-measured NHz emissions
collected across two experimental rounds (Feb.24 and Feb.25). This sample size
limitation is particularly problematic for robust statistical inference. According to
the rule-of-thumb (Green, 1991), the recommended sample size (N) should
be N > 50 + m for reliable regression analysis, especially when the number of
predictors (m) is less than 7 (which is our case). Small sample sizes not only
reduce statistical power but also increase the likelihood of type Il errors, where
genuine relationships may remain undetected due to insufficient data points.
Moreover, the limited sample size amplifies the risk of overfitting and reduces
the generalizability of our statistical models, potentially masking true underlying
relationships between basic model, other chosen additional parameters and am-
monia emissions.

Other parameters such as the C/N ratio presents statistical significant while a
positive but much smaller standardized coefficient. Previous research by X. Wang
etal. (2014); Jiang, Schuchardt, Li, Guo, and Zhao (2011) indicates that a lower
C/N ratio can increase NHz emission (negative correlation), but those findings
were based on composted manure and observed under higher temperature

37
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regimes (e.g., 35°C) with C/N ratios above 25. In contrast, the C/N ratios in our
dataset are much lower (6-11) and temperatures substantially cooler (6°C-16°C).
At these lower temperatures and narrower C/N ranges, the microbial activity
responsible for rapid nitrogen mineralization and ammonia production is likely
constrained, and the direct influence of C/N ratio on ammonia volatilization is
less pronounced.

The housing type variable in our model represents the unit-converted emission
factor for each RAV code. Its positive correlation with measured emissions across
all three regression models is logical, given that it inherently represents emissions
per animal place. However, statistical significance was only observed in the
AEP -based model.

In terms of manure management, including factors such as bedding material
and the use of manure additives provided some improvement to model fit ((3.2)).
However, these variables were highly imbalanced and sparse in our sample—for
instance, out of 10 possible bedding materials type, types 6 (“Zaagsel kalk") and
10 (“Geperste gedroogde zonnebloempitten”) were extremely rare, appearing
only once each. And some manure additives do not appear in any farm'’s records.
This limited variation means that the estimated effects for some categories are
based on very few data points, resulting in large standard errors and limited
statistical significance. Additionally, overfitting is a concern when numerous
dummy variables are included relative to the number of observations, which
in our case sometimes led to instability in the regression results and unreliable
coefficient estimates. As such, while their inclusion may superficially increase the
explanatory power of the models, we caution against drawing strong conclusions
about the specific effects of individual manure management practices. Larger and
more balanced datasets would be necessary to reliably evaluate these factors in
future studies. Given the statistical constraints and potential for model instability,
we strategically excluded manure management variables when constructing the
MUN -based and AEP-based regression models.

Normalizing the results to a per-cow, per-year basis allows for direct com-
parison of ammonia emissions performance across individual farms and rounds.
This horizontal comparison reveals distinct differences among farms, highlighting
that certain farms consistently exhibit lower emissions per cow relative to others.
Such differences may stem from a variety of factors, including but not limited to
feeding strategies, housing types, and manure management approaches. These
results emphasize the value of farm-level normalization for benchmarking and
identifying operational best practices that may contribute to lower emissions. It is
also noteworthy that the majority of the farm-level emission values are lower than
the national average for 2022 (although our results are based on predictions from
winter 2023 to spring 2024). This potential underestimation is likely linked to the
exclusion of several parameters in our modeling approach. Although our models
combine basic and additional parameters selected based on data availability,
they do not include all variables known (or suspected) to affect ammonia emis-
sions, as outlined in Section 2.2. Therefore, the direct emission models may lack
important explanatory power with respect to both temporal and farm - specific



4.2. Comparison of basic models 39

variation, further highlighting the need for more comprehensive data collection
and enhanced model complexity in future studies.

In general, despite deriving three statistically fitted regression models, our abil-
ity to accurately estimate ammonia emissions is severely constrained by profound
methodological limitations. The TNO-measured NHz dataset, characterized by its
minimal sample size, presents significant challenges to robust statistical inference.
The measured emissions exhibit considerable variability, ranging from approx -
imately 0.02 to 0.18 g/s, accompanied by standard errors spanning 0.004 to
0.07 g/s. This substantial variation introduces profound uncertainty, particularly
for higher emission measurements. While the regression models demonstrate an
initial statistical fit, the combination of small sample size, high measurement un-
certainty, and significant standard errors fundamentally prevents us from making
definitive claims about ammonia emission prediction accuracy.

Comparison of basic models

When comparing the predictive performance within the basic models, the analysis
shows strong positive correlations between the different model-derived emission
predictions, particularly between TANmodet and MUNmogel (correlation coefficient
= 0.92), which is consistent with the findings in Burgos et al. (2007); Kohn et al.
(2002); Huhtanen et al. (2015) that TAN and MUN are strongly correlated. This
demonstrates that despite relying on different predictor variables, these two mod -
els closely track similar emission dynamics. The generally lower absolute values
predicted by the TANmoget COMpared to the MUNmogel Can be explained by the
fact that the MUNmoger €Stimates emissions based on milk urea nitrogen, which
serves as an indirect indicator of nitrogen use efficiency and ammonia emission
potential, often leading to higher predicted values. Conversely, the TAN mea-
surement represents the manure TAN level at a point of temporary compositional
equilibrium, where a portion of ammonia has already undergone volatilization,
consequently resulting in a potential underestimation of total ammonia emissions.

The results also presents moderately strong correlations between the AEPmodel
and both TANmogel X Fps and MUNnodel X Fps (correlation coefficients 0.62),
suggesting the AEPmoqel also effectively reflects key trends in ammonia emissions.
This may be explained by the fact that the TAN- and MUN -basic models primarily
consider only the TAN in the manure or Urea in milk, adjusted for pH, temperature,
and dry matter, without accounting for the more complex dynamics within manure
composition. In contrast, the AEP measurement method, aside from controlling
experimental temperature, better reflects the potential interactions occurring
within the manure during the TAN volatilization process. The less constrained
prediction range in Figure3.6 of the AEPoge1 Might also indicate its greater
sensitivity to other environmental factors which not involved in the other two
basic models such as humidity, microbial activity, minerals in manure, etc..

This strong inter-model correlation implies significant shared information
and complementary strengths, which reinforce confidence in their underlying
representations of the emission processes. Even though adjustments are needed
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to improve alignment with measured values (for example: including more outdoor
climate variables), the consistent trends and relational structure among the models
indicate their capability to validate one another and provide robust predictive
insights. Moreover, the stability of these correlations suggests that while absolute
predicted values may deviate, the models reliably differentiate between low and
high emission scenarios.

Temporal analyses across five monitoring rounds demonstrate that the trends
predicted by all three models are concordant, peaking in round 3 (summer) and
declining afterwards. This seasonal pattern align with the findings by Saha et al.
(2014), that in summer the farm tends to have higher ammonia emission from
barns comparing to spring, autumn and winter. The possible reason for the differ-
ence is because the temperature variations (Powell et al.,, 2008; Q. Wang, Flesch,
Bai, Zhang, & Chen, 2024), although the specific contribution of temperature
fluctuations to the observed emission changes was not explored in depth in this
study, future research could focus on quantifying these effects in greater detail.
Furthermore, the stable seasonal trends observed across models underscore
their capability to provide dependable predictive insights into ammonia emissions.

Feed to predictor contribution

A reliable regression model using feed management in estimating TAN was
sucessfully detrived. The near-linear relationship between measured and pre-
dicted TAN values validates the model's effectiveness in capturing the complex
nitrogen dynamics in agricultural feed systems.

The standardrized coefficents shows that the Digestible Protein in the Small
Intestine (DVE) emerges as the most significant predictor of TAN, with a strong
and statistically significant relationship ( = 1.7782, p = 0.0004). The Dutch
DVE/OEB1991 and DVE/OEByg10 Systems takes these two parameters as impor -
tant criteria for nitrogen efficiency evaluation. Studies by de Boer et al. (2002);
Van Dongen (1999) suggest that lower DVE intake could reduce urinary nitrogen
excretion and thus ammonia emission, which do align with this positive rela-
tionship. Similarity, Rumen Degradable Protein Balance (OEB), is also typically
recognized as positively associated with ammonia emissions (van Duinkerken et
al.,, 2003; Van Dongen, 1999). Yet in our regression model, OEB only showed a
marginally significant relationship (p = 0.0552), suggesting a potential, though
not conclusive, association.

Additionally, maize and concentrate proportions demonstrate statistically sig-
nificant positive associations with TAN, although with more modest effects (maize:
= 0.2087, p = 0.0024; concentrate: =0.1627, p = 0.0084). As anticipated, the
percentage of concentrate, serving as a proxy for intensive farming management,
demonstrated a positive correlation with emissions (Kelleghan, Hayes, Everard,
& Curran, 2020; Dragosits et al., 2002). However, in contrast to established re -
search indicating that with diets rich in readily fermentable carbohydrates (more
maize) could mitigate ammonia emissions (Roberts, Xin, Kerr, Russell, & Bre-
gendahl, 2007; Vogel & Humenik, 2017; van Duinkerken et al., 2003), our data



4.3. Feed to predictor contribution 41

unexpectedly demonstrated a positive association between maize proportion and
total emissions. This might be attributable to the underlying biological complexity.
For instance, Arndt, Powell, Aguerre, and Wattiaux (2015) demonstrated that
while increasing alfalfa proportion and reducing corn proportion in feed, the total
daily urinary urea increases, yet the urea concentration per liter of urine actually
decreases. This absolute increase is primarily attributed to changes in total urine
volume resulting from dietary mixture alterations. Given the complexity of feed
composition, other feed proportion variations may also exert subtle influences on
these biochemical dynamics.

Beyond the most influential predictors, crude protein (CP) emerged as a pa-
rameter of interest, notably showing a negative coefficient in our results. This
contrasts with established research, which generally finds that higher dietary
protein intake leads to increased nitrogen excretion (McGinn, Janzen, Coates,
Beauchemin, & Flesch, 2016; Cole et al., 2005; Sajeev, Amon, Ammon, Zol-
litsch, & Winiwarter, 2018; Lynch, Sweeney, Callan, & O'Doherty, 2007). One
possible explanation for this discrepancy lies in the complex interactions be-
tween dietary components represented in our multivariate model. When multiple,
highly correlated nutritional variables are included simultaneously, the unique
effect of CP—after controlling for total nitrogen intake and other confounding
factors—may be isolated from its most direct biological pathway, occasionally
resulting in counterintuitive coefficients due to multicollinearity. This suggests
that CP alone, without considering dietary energy provision and other dietary
factors, may not reliably reflect the true drivers of TAN excretion within the farm
systems included in our dataset. In contrast, our findings for the CP/kVEM ratio
revealed a positive correlation with nitrogen emissions, aligning well with prior
studies. This ratio likely provides a better explanation of nitrogen dynamics be -
cause it reflects the balance between protein and energy supply. A high CP/kVEM
ratio may indicate insufficient energy to digest crude protein efficiently, resulting
in lower nitrogen utilization and consequently higher TAN excretion. Therefore,
compared to CP alone, the CP/KVEM ratio offers a more reliable indicator of the
complex relationship between diet composition and nitrogen emissions. These
results highlight the importance of considering nutrient balance, not just absolute
nutrient amounts, in predicting ammonia emissions and nitrogen excretion. Our
results are consistent with earlier research (Arndt et al.,, 2015; LR - Veehouderij
en omgeving, Plomp, Van Noord, Meerkerk, & De Haan, 2018) that also reported a
positive association between CP/KVEM and TAN excretion. Taken together, these
findings underscore the limitations of interpreting single nutrient effects without
context and reinforce the need for integrated nutritional metrics in environmental
modeling.

Regarding the regression coefficients for REXOEB, REXDVE, and DVEXOEB, the
results point to complex influences on TAN excretion. For example, the negative
coefficient from the pair of term DVE*OEB suggests a phenomenon of dimin-
ishing returns or antagonism: when both DVE and OEB are high simultaneously,
their combined effect on TAN emissions is less than the sum of their separate
effects. Statistically, this negative interaction term essentially corrects for the
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“over-counting” that would result if the two variables simply added together
without accounting for overlaps or dependencies in their effects on nitrogen
metabolism.Nevertheless, none of the pairwise interaction terms show statistical
significance, which means that while these trends hint at possible biological or
metabolic interactions, the current data variability does not allow us to draw firm
conclusions about the existence or strength of these effects.

Implications

The direct emission model developed in this study offers a cost-effective and
practical solution for predicting ammonia emissions at the farm level. Unlike
models that rely on national-scale emission factors—which often overlook impor-
tant farm - specific differences—our approach incorporates measured on-farm
predictors. This enables the model to better reflect the real-life management
practices, feeding strategies, and environmental conditions unique to each farm.
Compared to direct atmospheric ammonia measurement techniques, this model
is considerably less resource-intensive, as it utilizes routinely collected farm data
and does not require costly equipment or labor-intensive sampling, making it
feasible for widespread monitoring and application.

Although the statistical significance of individual predictors in the direct emis-
sion model may be limited due to sample size and data quality constraints, the
strong agreement between the three basic models (TANmodel X Fps, MUNmodel X
Fps, and AEPmoqel) Underscores the model's robustness in capturing dynamic
changes in ammonia emissions. This demonstrates that, even if absolute emis-
sion values are difficult to predict with precision, the modeling approach remains
highly valuable for tracking emission trends and monitoring farm performance
over time. It provides a practical framework for assessing the effects and sensitiv -
ity of mitigation actions and management interventions. Farms and policymakers
can apply this tool to monitor progress, detect improvements or setbacks, and
evaluate the real-world impacts of emission reduction strategies.

From a feed management perspective, our regression analysis provides clear,
actionable recommendations for mitigating TAN excretion at the source. Specifi-
cally, strategies that reduce dietary DVE (digestible protein in the small intestine)
and lower the proportion of concentrate in the ration are likely to yield direct
reductions in ammonia emissions, as reflected by the standardized coefficients
in the model. These insights can guide more targeted and effective feed inter-
ventions to improve nitrogen use efficiency and environmental outcomes.

Finally, all three predictive models consistently captured a pronounced sea-
sonal pattern, with highest ammonia emissions recorded during the summer. This
highlights the need for seasonally adaptive mitigation strategies, with increased
efforts targeting periods of elevated risk, such as hot months. Regular, year-
round monitoring can further help to identify when and how interventions are
most effective, enabling timely responses—such as improved ventilation, timely
manure removal, or cooling measures—that maximize the benefits of emission
reduction efforts.
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In summary, although the direct emission model alone may not be suitable
for direct on-farm application, the combination of the basic models developed
in this study offers a cost-effective and farm-specific approach for monitoring
ammonia emission trends, guiding management interventions, and supporting
policy evaluation in livestock production systems.

Scope and Data Limitations

Despite yielding important insights into the farm categories and other drivers of
ammonia emission, several limitations of this study should be acknowledged.

First, the direct emission model's scope is confined exclusively to the stable
period, primarily due to the availability of relevant and consistent TNO measured
data. This temporal focus may limit the generalizability of results to other periods
when feed management or environmental conditions differ—such as grazing sea-
sons —where patterns of feed intake, manure output, and volatilization dynamics
could diverge significantly.

Second, the dependent variable—ammonia emission rate—was estimated
using the TNO plume method, which, in this study, was measured on a single day
for each site rather than through continuous or frequent monitoring during the
stable period. This “snapshot” approach cannot capture within-farm or between -
day variability, which might arise from daily changes in weather, manure handling,
animal behavior, or diet intake. Consequently, emission values used in model
development may not fully represent typical or seasonal averages, possibly
introducing measurement error or bias.

Third, such a small dataset of the measured NHz presents statistical limitations.
Simple linear models were used in a two-step approach, which fits the scope and
scale of available data. The low sample size not only restricts the complexity of
models that can be reliably estimated, but also limits the applicability of the linear
regression approach itself: with limited data, linear models provide interpretability
and minimize overfitting, but they cannot capture possible nonlinear or more
complex relationships in the system. Structural Equation Modeling (SEM), which
would allow for a more sophisticated understanding of relationships and under -
lying mechanisms (Rex B., 2023), was not feasible here due to the increased
risk of model overfitting, identification problems, and instability of parameter
estimates under data scarcity. Therefore, both the choice of linear regression
and the exclusion of more advanced modeling approaches were conservative
responses to these data constraints.

Last important limitation is that although the simulation models demonstrated
good fit to the measured ammonia emission data within our dataset, the lack of an
independent external dataset precluded validation of model performance beyond
the sampled farms. As a result, the predictive accuracy and generalizability of
the derived regression models cannot be robustly assessed. This introduces the
possibility of overfitting to the current sample and means further data collection
or application to new farms would be necessary to confirm the reliability and
applicability of these models in broader contexts.
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In summary, while this study’s design was shaped by significant practical con-
straints, it establishes clear foundational results and highlights priorities for future
data collection. Expanding both the temporal depth and breadth of measurement,
as well as the sample size and balance among management practices, will be
essential to improve model precision and expand the applicability of research
findings for on-farm emission mitigation.



5 . Conclusion

This study aimed to investigate whether a measured -parameter-based ammonia
emission model could be developed for dairy farms and which farm or manage -
ment variables most significantly impact emissions. The following conclusions
address the main research question and each sub-research question in turn,
drawing upon results from regression analysis, model validation, and contextual
discussion.st ammonia emission estimation models.

Main research question: Is it possible to develop an ammonia emission model
for dairy farms based on measured parameters? Which farm characteristics
and management practices have significant impacts on ammonia emissions?

The research successfully developed three regression models, each based on
core predictors—Total Ammoniacal Nitrogen in manure (TAN), Milk Urea Nitrogen
(MUN), and Ammonia Emission Potential (AEP)—to fit measured TNO ammonia
emissions. All three models achieved statistically significant results, with R? alues
exceeding 0.68, indicating good predictive performance within the available sam -
ple. The inclusion of additional farm and environmental variables—specifically
manure pH, measurement temperature, dry matter content, C/N ratio, milk yield,
grazing days, and housing type—helped account for variability in ammonia emis -
sions.

However, it is important to acknowledge the model's statistical limitations,
primarily due to a small sample size that falls below the generally recommended
threshold for robust inference. As a result, while model fits are encouraging,
some predictor effects (including those of the base models themselves) may be
underpowered and findings should be interpreted with caution regarding general
applicability.

Sub-RQ1:Which widely used predictor variables and foundational model
structures are most suitable as the basis for the development of a practical
ammonia emission model for dairy farms?

All three predictor constructs (TAN, MUN, and AEP) proved viable as bases for
direct ammonia emission regression modeling. Among them, models based on
MUN and TAN showed the strongest mutual agreement, with consistently higher
R? and a more logical positive association with measured emission values. The
AEP-based model performed slightly less well, even exhibiting a counterintu-
itive negative coefficient when controlling for local conditions, suggesting that
while AEP can provide supplementary information, MUN and TAN are prefer-
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able as foundational predictors for practical applications in emission monitoring.
Specifically, MUN reflects overall nitrogen loss, whereas TAN has a more direct
connection to actual ammonia emissions.

Sub-RQ2:What additional farm characteristics or management variables sig-
nificantly affect ammonia emissions, and how much do these factors improve the
model's predictive ability compared to the base models?

Beyond the predictors and the parameters included in basic model such as
manure pH and temperature and dry matter, several additional farm character -
istics significantly improved model explanatory power. Statistically significant
contributors included the C/N ratio in manure, as well as the housing type variable
(linked to standard emission factors). These variables capture key site - specific or
operational conditions influencing volatilization dynamics. By incorporating them,
the models better account for environment- and management-driven variation,
improving their performance and relevance for emission estimation at the farm
scale.

Sub-RQ3:How do upstream feed management and nutritional parameters
influence the intermediate predictors of ammonia emission, and indirectly affect
emission outcomes? Can these relationships be quantified to inform mitigation
strategies?

The study also demonstrates that upstream feed management exerts a quan-
tifiable effect on ammonia emission potential, primarily via its impact on TAN.
Regression analysis of dietary factors revealed that the content of digestible
protein in the small intestine (DVE) and the share of concentrate feed are the most
influential predictors of TAN. Both showed significant positive associations with
TAN, suggesting that reducing DVE content and the proportion of concentrate
in rations could be highly effective for mitigating direct ammonia losses from
barns. These findings support feed-focused mitigation strategies: by optimizing
protein sources and feed composition, farms can not only improve nitrogen use
efficiency but also substantially lower their environmental ammonia footprint.
Additionally, the moderate but significant impact of other nutritional ratios (such
as the CP/KVEM ratio) supports the case for considering both macro- and mi-
cronutrient balancing in practical feed management.

In summary, while sample size limitations prevent definitive statements about
all factors, this research establishes a practical foundation for farm-scale am-
monia emission modeling based on measured parameters. Although the direct
emission model alone may have limitations, the combination of basic models
presents a feasible and cost-effective approach for monitoring emission trends
and supporting targeted mitigation—yparticularly through dietary management
and environmental controls. These tools are accessible for on-farm use and
can guide both immediate management decisions and longer-term strategies to
improve environmental performance.

Beyond the farm level, wider application of such models can contribute to
meeting societal goals for reducing agricultural ammonia emissions, support-
ing compliance with environmental regulations, and informing policy evaluation.
Future work with larger and more varied datasets is recommended to further
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validate and refine these approaches and expand their value for both producers
and broader stakeholders.
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