
Modeling Ammonia Emis-
sions from Dairy Farm:
Integration of Nitrogen Indicators and Farm Cate-gories
MSc thesis
Jie Shuai



Modeling Ammonia
Emissions from
Dairy Farm:

Integration of Nitrogen Indicators and
Farm Categories

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Industrial Ecology

Author: Jie ShuaiLU Student ID: s3938417TU Delft Student ID: 6106838Supervisor: Prof. Dr. J.W. ErismanSecond supervisor: Dr. J.M. MogollónProject duration: Feb 2025 – Aug 2025



Abstract

This study evaluates the feasibility of developing a farm-scale ammonia emissionmodel for dairy farm using routinely measured parameters and managementvariables. Three regression models, each based on a different core predictor—Total Ammoniacal Nitrogen in manure (TAN), Milk Urea Nitrogen (MUN), andAmmonia Emission Potential (AEP)—were fitted to ammonia emissions measuredusing plume method. All models explained a substantial proportion of the overallvariance in measured NH3 emissions (R2>0.68), with statistically significant fits.Strong positive correlations were found among the basic models adjusted forpH, temperature, and dry matter (DS), especially between the MUN and TANmodels, underscoring the consistency and reliability of these approaches forestimating ammonia emissions at the farm scale. Model performance was furtherenhanced by incorporating farm and environmental factors such as manure C/Nratio, housing type, and management variables. In addition to these predictors,a clear seasonal emission pattern was detected, with peak ammonia emissionsobserved during the summer period, underscoring the role of environmental con-ditions in emission dynamics. Dietary factors—especially digestible protein in thesmall intestine (DVE) and the proportion of concentrate—were strong predictorsof TAN and, indirectly, of ammonia emissions, highlighting feed management asan effective mitigation pathway. Despite the limited sample size, this researchdemonstrates the potential of combining direct measurements and key farm vari-ables in ammonia emission modeling and emphasizes the importance of bothfeed and housing management for emission reduction. Future studies with largerdatasets are needed to validate and further refine these findings.Keywords: Ammonia Emission, Multiple Linear Regression, Dairy Farms,Nitrogen Balance Analysis, Feed Management
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1. Introduction
1.1 The nitrogen issue in the Netherlands

Atmospheric nitrogen deposition has been identified as a primary driver of biodi-versity decline through multiple mechanisms: eutrophication leading to floristicalterations, acidification resulting in potentially toxic metal mobilization, and ele-vated nitrate concentrations in groundwater systems (Feest, van Swaay, & vanHinsberg, 2014; Payne et al., 2017). The Netherlands experiences one of theworld’s highest atmospheric nitrogen deposition rates (Rubin et al., 2023), reach-ing a gross nitrogen balance of 165.8 kg N/Ha in 2017, approximately doublethe European Union average (Statistics | Eurostat, n.d.). Mitigating nitrogen de-position being essential for environmental protection is crucial for compliancewith the EU Habitats Directive and EU Bird Directive (HBD). The HBD mandatesEU Member States to preserve or restore threatened and endangered habitats,notably through the establishment of the EU-wide Natura 2000 protected areasnetwork (Born, Cliquet, Schoukens, Misonne, & Hoorick, 2014). Within Dutchterritories, 162 Natura 2000 areas exist, with 118 sites experiencing nitrogendeposits exceeding ecological risk thresholds by an average of 50% (Stokstad,2019).The Dutch government therefore has established ambitious targets to addressthis challenge, aiming to reduce nitrogen deposition below critical thresholdvalues (KDW) across 74% of Natura 2000 areas by 2035 (Marra et al., 2023).Despite the implementation of multiple policies and measures, the latest reportfrom the National Institute for Public Health and the Environment (RIVM) showsthat although nitrogen deposition is decreasing, only 21% of areas had effectivelyreduced deposition to levels below the KDW by 2021. If this trend continues,instead of reaching 74%, only 40% of vulnerable nature conservation areas willfall below the KDW by 2035.Several factors contribute to this delay, with one key argument focusing onthe political incapability to manage the issue through current policies (Candel,2023). For instance, the previous nitrogen policy, the ’Programma Aanpak Stikstof’(PAS), which was annulled by the Dutch Council of State, was criticized forfocusing less on actually reducing nitrogen deposition and more on mitigatingsocietal resistance by decreasing permit backlogs (Scheeringa, 2020). The newerpolicies aim to improve the situation by enabling farmers to directly observe the
1



1.2. Main nitrogen emission sources and monitoring challenges 2
connection between mitigation measures and their outcomes. Therefore, in linewith the recommendations of the Remkes Committee, the Nitrogen Reduction andNature Improvement Act (WSN) incorporates the emission reduction target intoits Explanatory Memorandum. This translates the deposition targets into explicitemission reduction goals—specifically, a 26% reduction by 2030 and a 50%reduction by 2035 (Stikstofproblematiek, 2020). The National Program for RuralAreas (NPLG) also calculates national emission reduction targets for agriculture,industry, and transport (Hazelhorst, van der Maas, & Romeijn, 2024).

1.2 Main nitrogen emission sources and monitoring challenges
According to recent inventories (CBS, 2022b), ammonia accounts for 67% of totalDutch nitrogen emissions to air in 2022, with 91% of these ammonia emissionsoriginating from the agricultural sector. Within agriculture, cattle are responsiblefor 53% of ammonia emissions, meaning that dairy farms alone contribute to 32%of the total nitrogen emissions in the Netherlands. Given that intensive livestockoperations—especially ammonia (NH3) emissions from dairy and non-dairy cattlemanure management and land application—constitute the principal source ofatmospheric nitrogen deposition and emission (Stokstad, 2019; Wever et al.,2021), dairy farming represent a crucial intervention point.In 2021, the RIVM calculated how much less nitrogen the agricultural sectorwould need to emit in order to meet legal targets, at the request of the Ministry ofAgriculture, Nature, and Food Quality (LNV). Their assessment showed that tomeet these targets, the agricultural sector needs to reduce ammonia emissionsby 40% by 2035 compared to 2005 levels.By introducing emission targets alongside deposition targets, it becomespossible for farmers to directly observe what requirements they must meet andto immediately see the effect of implemented measures. Nevertheless, achievingthese targets requires highly accurate determination of ammonia emissions.Currently, the Netherlands uses an approach based on the Atmospheric Emis-sion Inventory Guidebook (AEIG) and the Intergovernmental Panel on ClimateChange (IPCC) Guidelines to estimate NH3 emissions from dairy farms and pro-duce more accurate inventories. This method models emissions based on activitydata, such as the average number of animals present, and emission factors (EF)(e.g., kg NH3 emitted per animal per year). The National Emission Model forAgriculture (NEMA) is developed according to this methodology. While straight-forward, this approach has its limitations. It does not accommodate innovative orfarm-specific solutions. Additionally, the emission factors determined at a na-tional scale may be inappropriate for farm specific estimations, as they often fail toaccurately capture the specific conditions of individual farms (Yang et al., 2022),and are performed only for the primary, representative categories of livestockproduction and manure management systems. The study by Sommer, Webb, andHutchings (2019) reveals significant variability in measured NH3 emissions com-pared to EF calculated for barns, manure storage, or manure application withinthe main categories of livestock production and manure management systems.



1.2. Main nitrogen emission sources and monitoring challenges 3
The EFs provided exhibit a standard deviation as large as 50% of the estimatedaverage for a given livestock category.For more farm-specific estimates of ammonia emissions, the KringloopWijzer(KLW) model is employed. This scientific model, developed under standardizedand EU-reviewed conditions, requires dairy farmers to track all nitrogen inputsto the farm (e.g., internally grown grass, purchased feed) and outputs from thefarm (e.g., animal products, manure, losses, etc.), then uses a mass balanceapproach to estimate nitrogen use efficiency and emissions. The KLW methodol-ogy calculates digestible protein (VCRE) intake based on feed data, derives totalammoniacal nitrogen (TAN) in excretion, and subsequently estimates ammoniaemissions by multiplying TAN by the national scale emission factor for the stableor grazing period (PPO/PRI AGRO Field Technology Innovations et al., 2022). Thismodel provides valuable insights for farmers into their operational nitrogen cycles.However, several limitations exist: firstly, it relies heavily on precise farmer inputand knowledge, making comprehensive validation impossible—this vulnerabilityto unintentional errors or even fraud makes it unsuitable as the basis for envi-ronmental policy instruments (Bestman & Erisman, 2016). Secondly, the KLWfails to include several key parameters—such as temperature and pH—whichare critical to the chemical equilibrium between free ammonia and ammoniumions (Cai et al., 2021). As such, the KLW does not fully capture actual emissionsat the farm level. Studies at two farms by LR - Veehouderij en omgeving et al.(2022) demonstrate that KLW may overestimate nitrogen use efficiency and thusunderestimate real emissions compared to direct measurements. Thirdly, KLWcalculates annual ammonia emissions using a national-scale EF, which means itcannot represent emission accumulation or dynamics over shorter timeframes.Additionally, similar to NEMA, KLW also suffers from the limitation of not beingable to capture variations at the level of specific farms. Consequently, it cannotclearly link mitigation measures to emission reduction outcomes.To ensure accuracy and reliability in farm-specific emission monitoring, di-rectly measuring emissions is often seen as more dependable than relying onmodel-based estimates. For barns, measurement methods typically involveequipment that records air exchange rates and ammonia concentrations in bothincoming and outgoing air; the difference indicates emissions generated by thelivestock (Schep et al., 2024). However, this method requires a closed environ-ment and is applicable primarily to indoor housing systems. Actual emissions fromopen barns or yards can also be measured using plume measurements—mobilestations are deployed to collect downwind ammonia concentration data from gasplumes, capturing emissions at the street level (Hensen et al., 2024). However,monitoring all farms with this technology would entail significant costs, and atmo-spheric measurements are further constrained by unsuitable weather conditionsfor data collection (Deru et al., 2018).
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1.3 Research Gap, Research Question and Objective

Despite advances in both modeled and measured approaches for quantifyingammonia emissions, significant shortcomings remain. There is a pressing needfor a method that is both affordable and reliable, capable of providing farm-levelammonia emission estimates with sufficient certainty. Such a technique is crucialnot only for guiding effective emissions policy but also for enabling farmersto understand and manage their own emissions and to assess the impacts ofmitigation measures in practice (LR - Veehouderij en omgeving et al., 2021). Inaddition, a reliable assessment method would help recognize and reward farmerswho achieve substantial reductions in emissions.This research addresses this gap by aiming to develop a practical farm-specificammonia emission model for dairy farms in the Netherlands. The proposed modelwill be built on easily measured predictors or systematic classification of farms,reflecting key operational differences among them.The model framework will use measured predictors as its foundation and willsystematically integrate additional factors such as feed management, milk yield,manure composition, and manure management. The objective is to identify andcategorize key farm characteristics that influence ammonia emission patterns,thereby improving emission estimation accuracy at the farm level.Main Research Question:
Is it possible to develop an ammonia emission model for dairy farms based on
measured parameters? Which farm characteristics and management practices
have significant impacts on ammonia emissions during this phase?Sub-Research Questions:

(a) Which widely used predictor variables and foundational model structuresare most suitable as the basis for the development of a practical ammoniaemission model for dairy farms?
(b) What additional farm characteristics or management variables significantlyaffect ammonia emissions, and how much do these factors improve themodel’s predictive ability compared to the base models?
(c) How do upstream feed management and nutritional parameters influencethe intermediate predictors of ammonia emission, and indirectly affect emis-sion outcomes? Can these relationships be quantified to inform mitigationstrategies?



2. Method
2.1 Data source and collection

Field measurements used for the model derivation were performed at 23 confineddairy farms across the Netherlands under the combined program of Louis BolkInstituut (LBI) and Dirksen Management Support B.V (DMS). These dairy farmspossessed different locations (as seen in Figure 2.1), environmental conditionsand management practices (feeding, housing, and manure storage and treatmentpractices), and therefore could represent a range of dairy production systemsin the Netherlands. With the two-year program period, each of the farms werevisited at according frequencies to get related sample and tested with accordingmethod to get required data.
Manure composition data. Manure samples are collected 5 times throughoutthe whole program period, the measuring rounds took place at the followingtimes:
- R1: October 2023
- R2: February 2024
- R3: July 2024
- R4: November 2024
- R5: January 2025
During the sampling, a composite manure sample was collected from the dairycows’ manure pit by Peter Vanhoof (Pvf). The sample combined manure takenfrom at least 10 different spots underneath the slats. To ensure representative-ness, areas near the water trough, concentration box, or milking parlour/milkingrobot were avoided.After sampling, the well mixed samples were sent to Pvf’s mobile laboratory(Figure 2.2) for measuring manure compositions (Vanhoof, 2024). In the mobilelab, bioelectronic measurements (pH, EC, H2S, etc.) were performed with aConsort C3050 multimeter. In addiiton, the Ammonia Emisison Potention (AEP)value was also measured using the J-AIM method (Keim, 2025). With thismethod, AEP was measured by pouring 400 grams of manure at 20 degrees

5



2.1. Data source and collection 6

Figure 2.1: Distribution of studied farms across the Netherlands
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Celsius into a plastic container. The container is then pressed into the test setupthat is hermetically sealed. After this, air with a relative humidity of approximately40% was sucked over the manure surface, while the NH3 concentration (in ppm)was measured with a device from the company ExTox from Unna, Germany, thewhole process takes 31 minutes. (Jong et al., 2025)

Figure 2.2: Peter Vanhoof in his mobile lab

Simultaneously with the mobile lab testing, a portion of the manure sampleswas sent to Eurofins, an independent clinical laboratory, for detailed analysis ofthe following manure composition parameters: pH, dry matter, organic matter,total nitrogen, Carbon/Nitrogen (C/N) ratio, TAN, organic nitrogen, and P2O5.Most of these key parameters were measured using infrared spectrometry. Forinstance, to determine TAN, the laboratory performs an extraction step usingeither water or HCl, depending on whether the sample is liquid or solid, applyingan extraction ratio based on the method employed. Subsequently, the treatedsample is analyzed according to ISO 15923-1 via spectrophotometry (Eurofins,2025).
Feed Management data. During the week of manure measurements, farmersrecorded the mixed feed provided to dairy cows using an APP developed by DMS.The feed was categorized by individual types, such as silage maize, concentrate,by-products, and total roughage. Farmers entered the nutritional values of eachfeed component and reported daily feed amounts in kilograms of dry matter percow per day. Some farms utilized automatic feeding systems that automaticallyregistered the quantities fed for each feed type, while others used feed mixerswith weighing installations, allowing for accurate recording of rations. In somecases, farmers estimated feed weights due to the lack of weighing equipment.To ensure data accuracy and plausibility, DMS also collected the 2023 and 2024Cycle Indicators from the participating farms (Jong et al., 2025).Using these input data, the APP calculated nutritional quality parameters suchas the average Crude Protein (CP or RE) value and the average metabolizable
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energy for maintenance and production (VEM or ME), based on the dry matterportion of the feed.

Milk composition data. Milk composition data were accessed through theMilk Production Registration (MPR) system, managed by Coöperatie Rundveever-betering (CRV). Over the two-year period, the system tracked protein content, fat,lactose, and milk urea nitrogen (MUN) on a monthly basis, along with daily milkproduction. By combining milk composition data with feed intake data from theDMS APP, it became possible to calculate crude protein intake, the Mean RumenDegradable Protein Balance (OEB), and Intestinal Digestible Protein (DVE).
Other farm foundational data. Foundational farm data were collected throughquestionnaires and on-site visits. During the program, DMS visited participatingfarms twice, in February 2024 and January 2025, gathering information includingthe number and type of cows housed, soil type, total farm area, housing systemtype (e.g., free-stall, low-emission flooring), bedding materials, manure additivesused during storage, volume of manure pits, frequency of manure mixing, andother manure management practices (Jong, 2024).Some of the collected company-specific data were processed in Excel toconvert animal numbers into livestock units (LU) for standardized comparisonbetween farms. Bedding materials and manure additives were assigned nominalnumeric codes to facilitate analysis. For example, bedding types such as straw,sawdust, and others were coded as 1, 2, 3, etc., respectively; manure additivesreceived numeric codes starting from 1 upward.
Measured ammonia emission. During the second (February 2024) and fifth(January 2025) measurement rounds, TNO conducted plume measurementsoutside the stables to quantify the actual ammonia emissions from the farms(Jong, 2024).These measurement rounds, conducted at the end of the winter period (R2and R5), were chosen to best represent stable period conditions, as manurepits are typically full during this time, reflecting the manure composition of theperiod. In round 2, measurements were performed at 18 farms, while round 5covered 4 farms. The measurements employed a mobile measurement truckequipped with advanced gas analyzers. At each farm, a mobile wind meter wasinstalled, and a cylinder containing nitrous oxide (N2O) was placed downwind ofthe barn. Known volumes of N2O were released, and the truck drove along publicroads downwind to capture the resulting gas plume, as illustrated in Figure 2.3.Ammonia concentrations were measured directly in open air by the truck’s roof-mounted Quantum Cascade Laser (QCL), avoiding adsorption losses commonlyencountered in piping systems.The plume air was sampled within the trailer by an Aerodyne laser trace gasanalyzer using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) tomeasure concentrations of ammonia and nitrous oxide (N2O). Ammonia emissionswere estimated by comparing the measured dilution of the released N2O with theammonia concentrate in the plume, under the assumption that both gases exhibitsimilar atmospheric dispersion behavior. This relationship can be summarized bythe following equation:
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Figure 2.3: Illustration of a Plume Measurement
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QNH3 = QN2O ×
CNH3,measured

CN2O,measured
(2.1)

• QN2O: Known emission rate of N2O (released volume per time)
• CN2O,measured: Measured concentration of N2O in the plume
• QNH3 : Estimated ammonia emission rate (unknown, to be calculated)
• CNH3,measured: Measured concentration of ammonia in the plume
Data from the gas analyzers were synchronized with GPS and wind measure-ments, enabling identification of source plumes. Two calculation approacheswere applied: one method used the N2O tracer dilution to estimate ammoniaemission rates, while the other employed the Gaussian plume model to math-ematically estimate emissions based on wind speed, direction, and turbulence.Both methods yielded emission rates expressed in grams per second.(Hensen etal., 2024)

2.2 Data Preparation
2.2.1 Main predictor(s) and basic model(s) selection

To develop a comprehensive model that integrates various farm categories, weidentified two to three key predictors as the foundation for the basic model.
AEP basic model. The primary predictor selected is the Ammonia EmissionPotential (AEP). This metric serves as a practical indicator of ammonia emissionsbecause it reflects the immediate capacity of manure to release ammonia. Whileambient ammonia concentration remains the most reliable indicator for ammoniaemission (van Jaarsveld, Bleeker, & Hoogervorst, 2000), the AEP value is ob-tained by measuring the ammonia concentration under controlled yet realisticenvironmental conditions. This method provides a “snapshot” or representativesegment of the manure’s true emission behavior by simulating key physical andchemical factors influencing ammonia volatilization—such as temperature, mois-ture content, and air exchange. Essentially, AEP quantifies the potential amountof ammonia susceptible to release under these standardized conditions, makingit a useful proxy for actual field emissions. Its reproducibility and sensitivity makeAEP valuable for comparing emission potentials across different manure samplesor treatments, thus supporting emission modeling efforts.Since the measured AEP is determined at specific temperature conditions, andconsidering that actual temperature and pH are critical operational parametersinfluencing the chemical equilibrium between free ammonium nitrogen and am-monium ions (Cai et al., 2021; Srinath & Loehr, 1974; Guštin & Marinšek-Logar,2011; Bonmatı & Flotats, 2003; Lei, Sugiura, Feng, & Maekawa, 2007), a temper-ature correction should be applied to the AEP based on the actual atmospherictemperature prior to its use as a predictor of ammonia emission.
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Ammonia emissions depend on both the ammonia gas/liquid equilibrium andthe dissociation equilibrium of ammonia in the liquid phase (Bonmatı & Flotats,2003). The equilibrium of ammonia in aqueous solution is influenced by pH andtemperature, and the relative concentrations of ammonium and ammonia can beexpressed by the following Equation (2.2)(Srinath & Loehr, 1974):

f =
[NH3]

[NH3] + [NH+4]
=
[NH3]
T AN

=
1

1 + 10pKa−pH
(2.2)

where [NH3] is the free ammonia concentration, [NH3] + [NH+4] is the totalammonia nitrogen (TAN) concentration, and pKa is the logarithmic acid dissocia-tion constant. The pKa can be expressed as a function of temperature (T in °C)by Equation (2.3), derived from polynomial regression based on the data fromBonmatı and Flotats (2003):
pKa = 4 × 10−8 ×T 3 + 9 × 10−5 ×T 2 − 0.0356 ×T + 10.072 (2.3)

The ammonia-fraction equation (fNH3(T , pH )) determines the equilibrium ofthe slurry solution under according temperature and pH environment, thereforethe correction of the measured AEP could be done by below Equation (2.4):

AEPmodel = Corrected_AEP = AEP ×
fNH3(Tmeasured, pHmeasured)
fNH3(20 ◦C, pHmeasured)

(2.4)
For the final regression model, the above equation forms the basis of the AEPbasic model.
TAN basic model. The second foundational model uses measured Total Am-moniacal Nitrogen (TAN) as the primary predictor. TAN represents the combinedconcentration of ammonium ions (NH+

4) and ammonia (NH3). Since NH3 con-stitutes the non-ionized fraction of TAN, it is volatile and can transfer from themanure slurry to the headspace air above the slurry pit, serving as the directsource of ammonia emissions. This volatilization occurs throughout the nitrogenflow chain—from excretion in the stable or pasture, through manure storage(both indoors and outdoors), to the application of excreta on fields—while NH+
4remains dissolved in the liquid phase. NH3 loss has been shown to correlateclosely with TAN variations (Webb et al., 2006; S. Sheppard, Bittman, Swift, & Tait,2011), making TAN a widely adopted fundamental predictor in ammonia emissionestimation models worldwide (S. C. Sheppard & Bittman, 2012; S. Sheppard etal., 2011; Webb et al., 2006; Cowell & Apsimon, 1998; Webb, 2001; Dämm-gen & Hutchings, 2008; Reidy et al., 2009; Velthof et al., 2012). Examples ofTAN-based mass balance models include the NARSES model (UK), MARACCASmodel (Europe), DNDC (US), and the NEMA and KLW models (Netherlands).Despite the limitations and variability discussed in the previous chapter, thesemodels typically rely on calculated TAN, derived from animal feed compositionand intake, nitrogen digestibility, and nitrogen retention, as well as the emission
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factors - rather than directly measured manure TAN. Consequently, since theirprimary input is feed-related data, these models are theoretically more accuratelydescribed as feed-based models rather than TAN-based models.Other models that simulate emissions at the farm or more localized level oftenfocus on the exchange of ammonia across the gas-film interface above the slurry.In Cortus and Lemay (2009), a comparison is made between models that predictNH3 emission rates based on convective mass transfer from slurry surfaces.These models, illustrated in Figure 2.4, incorporate sub-models to estimate boththe convective mass transfer coefficient and the NH3 concentration within thegas film.From these models, it is evident that most mechanistic approaches to ammoniavolatilization from slurry start by expressing the mass transfer potential as afunction of the dissolved free ammonia concentration in the liquid phase, typicallycalculated as f × TAN. For simplicity and due to data limitations, we adoptthis formula as the basis for the TAN basic model. Although NH3 and NH+

4 aretheoretically in chemical equilibrium in solution, this approach still effectivelyrepresents the emission potential.Because the measured TAN in the database is given in grams per kilogramof manure excreted, it must be aligned with the units of our measured emissionvalues which is gram per second. Thus, the TAN model can be formulated as:
TANmodel = TANmeasured × fNH3 (Tmeasured, pHmeasured)

× ManureExcretion ×ManureDensity
/(365 × 24 × 3600)

(2.5)
To apply this model, the annual manure excretion must first be estimated basedon the production of fat and protein corrected milk yield (Jong et al., 2025):

Manure excretion per year =
(
6.6113 + 0.001 ×milkyield

×
(
0.337 + 0.116 ×%fat in milk
+0.06 ×%protein in milk))
× 12
7

×milk_cow_number

(2.6)

And the manure density is then assumed as a constant value (American Societyof Agricultural Engineers, 2003):
Manure density = 990 kg/m3 (2.7)

MUN basic model. Milk urea nitrogen (MUN) is another predictor used toestablish a basic model. The urea content in milk and TAN in manure strongly cor-relate with dietary protein levels (Frank & Swensson, 2002). Several studies have
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Figure 2.4: Comparison of ammonia emission from slurry (ES) models
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demonstrated a relationship between urinary nitrogen (UUN) and MUN (Burgos,Fadel, & DePeters, 2007; Jonker, Kohn, & Erdman, 1998; Kauffman & St-Pierre,2001; Kohn, Kalscheur, & Russek-Cohen, 2002; Huhtanen, Cabezas-Garcia,Krizsan, & Shingfield, 2015), confirming that urinary nitrogen excretion—theprimary direct source of ammonia—can be reliably estimated from MUN val-ues. Moreover, MUN has been employed to estimate ammonia emissions (vanDuinkerken et al., 2003; Powell, Broderick, & Misselbrook, 2008). Compared toUUN, MUN is a more stable predictor, though it may not fully capture the dynamicvariations during transient, static, and reactive phases of ammonia emissions(Powell et al., 2008).For this study, we use an MUN emission model adapted from the emissionestimation table of Verbeek-Schilder and Verhoeven (2024), which correlatesspecific MUN levels with different grazing time categories (Jong et al., 2025).Additionally, this model was chosen because the range of milk urea nitrogen(MUN) in its experimental dataset closely matches our data, with the majority ofmilk urea values falling between 14 and 23 mg/dL.

E = 0.645 ×MUN − 0.000673 ×G − 2.440 (2.8)
where:
E = ammonia emission (kg NH3/LU/year)
MUN = milk urea nitrogen (mg/dL)
G = grazing hours (hours/year)This formula is based on pasture grazing management and milk urea con-centrations and is intended for use across all dairy production levels. However,as it estimates annual emissions, the original source does not explicitly specifyreference temperature and pH values. To enable consistent temperature and pHcorrections, we assume the underlying data correspond to an average temper-ature of 11.8°C (2024: record heat, rain, and storms in the Netherlands | NL
Times, 2024) and pH 7.5. Although these standard values may not preciselyreflect the original conditions, this normalization facilitates fair comparison ofmodel outcomes among farms.After applying pH and temperature corrections and converting units to matchour measured data, the MUN basic model is expressed as:

MUNmodel = (0.645 ×MUNmeasured − 0.000673 ×G − 2.440)

× LU/(365 × 24 × 3600) ×
fNH3 (Tmeasured, pHmeasured)

fNH3 (11.8 ◦C,7.5) (2.9)
2.2.2 Additional parameters selection

The predictors included in the basic model represent the potential for ammoniaemissions but do not solely determine the final emission levels. Beyond theeffects of pH and temperature incorporated into our models, various farm-related
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factors—such as climate, housing systems, and manure storage practices—eithercorrelate with these predictors or directly influence the ultimate emissions.For example, climate is known to influence ammonia emissions, which canvary by as much as 20% across different regions within the same country dueto overall climatic differences (Skjøth & Geels, 2013). Elevated air temperatures(already included in our basic model given their significance) and low humiditygenerally increase volatilization by altering the ammonia-ammonium equilibriumand promoting ammonia gas formation (Beaudor, Vuichard, Lathière, & Hauglus-taine, 2025). Additionally, higher wind speeds generally increase total ammoniaemissions (Schrade et al., 2012); however, this effect is only observed withinthe first 0–12 hours after excretion, with emission rates stabilizing thereafter(Sommer, Olesen, & Christensen, 1991).Components of manure composition also exhibit dynamic relationships withTAN levels, thereby affecting ammonia emissions. For example, the carbon/ni-trogen (C/N) ratio in excretion interacts complexly with temperature during TANvolatilization; an increased C/N ratio can mitigate ammonia losses but requiresspecific temperature ranges to be effective (X. Wang, Lu, Li, & Yang, 2014).Whereas, the dry matter content in manure exhibits nonlinear relationships withthe ammonia emission after 6 hours of the excretion, the dry matter factor can beexpressed by the equation below (Sommer & Olesen, 1991):

FDS =
L

f
= 0.38 +

0.014
0.0086 + 1.66 × exp(−0.654D )

where
• L = updated loss rate from TAN,
• f = corrected equation included in previous equations (2.5), and (2.9),
• D = dry matter content in manure (percentage).
Therefore,

L = FDS × f ,

which means by multiplying FDS with the TAN and MUN basic models, we caninclude the impact of one more related parameter in the model. Since the manurecomposition effects were already accounted for in the experimental conditions,no correction for dry matter (DS) is necessary in the AEP model.Once manure is deposited on the stable floor, additional farm characteristicsaffect TAN volatilization dynamics. Housing system factors such as loose housingversus tie stalls, barn ventilation type, the presence of solid or slatted floors, andwater flushing practices significantly influence TAN volatility by modifying ureahydrolysis rates and air exchange within the barn and manure pits (Monteny &Erisman, 1998; Braam, Ketelaars, & Smits, 1997; Vitaliano, D’Urso, Arcidiacono,& Cascone, 2024). In the Netherlands, farms are classified using various RAVcodes that correspond to the emission impacts of different housing systems. To
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quantify the differences between housing types, we introduce emission factors(EF) associated with each RAV code (Koninkrijksrelaties, 2023), expressed inunits of kg NH3 per animal place per year. The adjusted housing variable is thencalculated as follows:

housing_variable = EFRAVcode × animal place × 1000
365 × 24 × 3600During subsequent manure treatment and storage phases, various manage-ment practices—such as manure separation, incineration, pelleting/drying, andanaerobic digestion—have been shown to impact TAN volatilization (van der Zeeet al., 2024). Interventions that modify pH, temperature, and C/N ratio are critical;for instance, anaerobic digestion and solid-liquid separation of dairy cow andbuffalo manure may enhance mineralization of organic nitrogen to TAN, potentiallyincreasing ammonia emissions. Conversely, covering manure with straw canreduce emissions by promoting immobilization of TAN as organic nitrogen (Coleet al., 2005).Other influential factors include the total number of dairy cattle, as herd sizedetermines the absolute quantity of nitrogen excreted.

2.2.3 Independent feed parameters
While the main emission model utilized direct predictors such as TAN, MUN, AEP,and some manure compositions, these factors themselves are, to a significantdegree, influenced by upstream nutritional and feed management strategies onthe farm.For instance, feed intake strongly affects nitrogen excretion. Studies haveshown that characteristics such as dry matter (DM), the average metabolizableenergy for maintenance and production (VEM), dietary crude protein (CP), andthe presence of minerals like potassium (K) and sodium (Na) influence nitrogenexcretion by modifying nitrogen conversion efficiency and urine volume (Yan,Frost, Keady, Agnew, & Mayne, 2007; Madsen, Lund, Brask-Pedersen, & Jo-hansen, 2023; de Boer, Smits, Mollenhorst, van Duinkerken, & Monteny, 2002;Waldrip, Todd, & Cole, 2013). VEM, DM, and CP positively correlate with TANin manure and MUN levels, whereas the proportion of forage generally exhibitsa negative correlation. The role of corn silage proportion in the diet, the effectof varying dietary protein relative to milk yield, and energy requirements for milkproduction (Feed Unit for Milk) also affect nitrogen excretion and the efficiency ofnitrogen utilization for milk synthesis, thereby impacting TAN and MUN (Wattiaux& Karg, 2004; Groff & Wu, 2005; Chanda, Khan, Chanda, & Debnath, 2024).The concentrate proportion in the diet further reflects the intensity of animalmanagement, where more intensive dairy systems have been linked to increasedatmospheric NH3/ammonium concentrations (Pain, Van der Weerden, Chambers,Phillips, & Jarvis, 1998). Intermediate nutritional parameters such as DigestibleIntestinal Protein (DVE) and Metabolizable Energy Balance (OEB) also influencethese predictors by reflecting nitrogen efficiency and consequently nitrogen ex-cretion (van Duinkerken, Smits, André, Šebek, & Dijkstra, 2011).
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These independent parameters were not included in the direct emisison model,however, as predictors like TAN and MUN are not usually modified directly inpractice, feed composition and feeding strategies are active management leversavailable to farmers.To integrate the predictors and parameters discussed in Sections 2.2.1, 2.2.2and 2.2.3, and taking into account data availability, a summary of ammonia emis-sion predictors alongside the farm categories that influence them and dynamicallyaffect final emission outcomes is presented in Table 2.1. The sample size repre-sents the number of observations or data points collected from the respectivesource and used in the analysis for each parameter.As this study focuses on developing a barn emission regression model, param-eters influencing emissions during grazing or manure application are excluded.

2.3 Statistic analysis
The statistical analysis in this chapter is organized into three interconnectedsections. First, we develop weighted regression models to predict ammonia emis-sions using each of the basic underlying models (TAN-, MUN-, and AEP-based),incorporating additional farm and management parameters to improve predic-tive accuracy. Second, recognizing the availability of a larger dataset of modelpredictions, we perform a comparative analysis of the outputs from the threebasic models, examining their mutual correlations and exploring temporal patternsacross multiple experimental rounds. Finally, to better understand the underlyingdrivers of ammonia emission variability, we investigate the feed-to-predictor re-lationships by constructing ordinary least squares regression models that identifywhich feed characteristics significantly influence the selected predictors—andthrough them, ammonia emissions. This multifaceted approach enables us toboth build robust emission prediction models and uncover biologically mean-ingful feed-related factors that can guide practical mitigation strategies. Thepotential correlations and causal relationships among the selected parametersare illustrated in Figure 2.5.

2.3.1 Direct Emission Model Development
To quantify and optimize the influence of selected parameters on ammonia emis-sions, we constructed regression models to simulate farm-level NH3 emissionbased on key predictors. Measured ammonia emission served as the targetfor model calibration. The simulated emission was formulated as a function ofselected variables, starting from a basic model and progressively incorporatingadditional paramters as per 2.2.2 representing farm management categories.Given that measurement errors vary between farms, we employed WeightedLeast Squares (WLS) regression to calibrate the simulation model(de Levie, 1986).In WLS, each observation is assigned a weight inversely proportional to the vari-ance of its measurement error, such that more precise (lower-error) measure-ments have greater influence on parameter estimation. The mathematical forms
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Figure 2.5: Potential Correlations and Causal Relationships Among Selected Parameters

are:
TAN-based Simulated Ammonia Emission = β0 + β1 × TANmodel × FDS

+ β2 × C/N
+ β3 × Housing_variable
+ β4 × manure_additive_variable
+ β5 × bedding_materials_variable(2.10)

MUN-based Simulated Ammonia Emission = β0 + β1 ×MUNmodel × FDS

+ β2 × C/N
+ β3 × Housing_variable
+ β4 × manure_additive_variable
+ β5 × bedding_materials_variable(2.11)

AEP-based Simulated Ammonia Emission = β0 + β1 × AEPmodel
+ β2 × Housing_variable
+ β4 × bedding_materials_variable(2.12)The coefficients βi are determined by minimizing:
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N∑
i=1

wi

(
yi −

[
β0 +

n∑
j=1

βj xi j

])2
(2.13)

with yi as the TNO measured emission for farm i , and weights wi = 1/σ2
iwhere σ2

i is the variance (squared standard error) of each measurement.
2.3.2 Process-Based, Per-Cow emission normalization

Although all regression models were developed and calibrated using total farm-level ammonia emissions, a process-based perspective was introduced by nor-malizing both measured and predicted emissions to a per-cow basis. For eachfarm observation, per-cow NH3 emission rates were calculated by dividing the to-tal emission (g/s) by the number of lactating cows present at the time of sampling.This normalization facilitates direct, process-based comparison of emission inten-sities between individual farms, independent of herd size, and aligns the analysiswith prevailing standards in emission inventory and mitigation literature (Velthofet al., 2012). Per-cow emission rates are subsequently used for benchmarkingagainst literature values and for evaluating management efficiency across farms,providing additional context to the farm-level model evaluation.
2.3.3 Comparison of Basic Model Predictions and Temporal Patterns

To fully compare the behavior and consistency of alternative ammonia emis-sion models, we utilized the complete dataset of model predictions—MUNmodel,
AEPmodel, and TANmodel—spanning 105 experimental conditions, including allparticipated farms and experimental rounds. Pearson correlation analysis wasapplied to all pairwise combinations of model predictions to assess the degree oflinear association among the three approaches and pairwise scatterplots weregenerated to graphically depict model agreement.Beyond overall correlation, possible temporal or batch-wise effects wereinvestigated by examining prediction patterns across the five experimental roundsrecorded for each farm. For each round, model prediction distributions werecompared using boxplots, and round-wise mean trends for each model wereplotted. These analyses were conducted to identify consistent differences, trends,or sources of variability attributable to experimental rounds.

2.3.4 Feed Parameter Contributions to TAN or MUN Predictions
The feed-to-predictor model uses a simpler ordinary least squares (OLS) ap-proach, where the TANi and MUNi values for farm i are equally weighted dueto the relatively consistent laboratory conditions and sampling procedures. Themathematical form is:

Simulated TAN(or MUN) = β0+β1x1+β2x2+· · ·+ γ1(xi× xj )+· · · βnxn+ ϵ (2.14)
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where x1, x2, . . . are the selected input variables, xi × xj xi × xj representthe combined effect of two predictors on the outcome, capturing their potentialnon-linear influence on the final prediction (Aiken, West, & Reno, 1991). Andcoefficients βi , γi are determined referring to the method ((2.3.1) used in WLS.All parameters and the target predictor(s) were aligned to same unit g/farm/s.This section begins by fitting multiple linear regression models to investigatethe associations between the selected feed parameters. This approach enablesthe evaluation of both direct effects and correlations (collinearity) among inde-pendent and dependent variables. Identifying pairs of highly correlated predictorsis essential for ensuring correct model specification in subsequent analyses.And then to identify the optimal set of explanatory variables, we used a step-wise forward selection process based on the adjusted coefficient of determination(R2
adj). Starting from one of the chosen feed management, additional variableswhere justified by correlation analysis or biological reasoning.At each step:
1. Add one new candidate variable or interaction term to the model.
2. Fit the OLS model using the updated variable set.
3. Calculate the new adjusted R2:

R2
adj = 1 − (1 − R2)(n − 1)

n − p − 1 (2.15)
where n is the number of observations, p is the number of predictors.

4. If R2
adj increases, the new variable is retained; otherwise, it is excluded.

This process was repeated until no further increase in R2
adj was observed.

StandardizedCoefficients For interpretability, we also calculated standardizedcoefficients (Beta weights) for both the direct emission model as well as the feed-to-predictor model:
β ∗
j = βj ·

SD(xj )SD(y ) (2.16)
where SD(·) denotes the standard deviation. Variables with the largest absolutestandardized coefficients contribute most to explaining ammonia emission varia-tion, regardless of their original scale.

2.3.5 Implementation and tools
All analyses were performed using Python 3.12.7 in the Visual Studio Code (VSCode) environment. Data manipulation and preprocessing were undertaken withpandas, regression analyses were carried out using the statsmodels library, andplots generated via matplotlib. Measurement errors were incorporated as weightsin the WLS model to maximize the efficiency and validity of parameter estimates.
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Table 2.1: Categories Data Description

Description Parameter/Predictor Sample Size Source

Manure Composition
TAN 105 EurofinsAEP 105 PvfTemperature 105 PvfpH 105 PvfC/N ratio 105 PvfDS 105 Eurofins

Milk Composition
Milk Yield 105 CRVMUN 105 CRVProtein percentage 105 CRVFat percentage 105 CRV

Feed Management /Nutritional QualityParameters

% of maize 105 DMS% of concentrate 105 DMSCP 105 DMSDVE 105 DMSOEB 105 DMSCP/kVEM 105 DMSDS 105 DMS
ManureManagement Bedding materials 42 DMSManure Additives 28 DMS

Others

avg.LU 24 DMSDairy cow number 105 DMSMeasured NH3 22 TNOStandard error NH3 22 TNOAnimalplace 105 DMSRAV code 21 DMSGrazing day 21 DMS



3. Results
3.1 Model-based estimation of ammonia emissions
3.1.1 TAN based regression model

The best fit regression model established basing on TANmodel without addingmanure management categories is displayed as Figure 3.1. The regression line(black) reflects the model’s fit, while the red dashed line (identity) denotes perfectprediction.

Figure 3.1: Prediction Accuracy of TAN-Based Model for NH Emissions: Observed vs.
Modeled Values, Including Uncertainty (WLS Regression)

The regression model described in Equation (3.1) yields an R2 value of 0.745with a highly significant p-value. At first glance, this suggests that the modelexplains a large portion of the variance in measured NH3 emissions. However,a more detailed inspection of Figure 3.1 reveals that the fitted regression line is
22
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nearly flat and fails to follow the identity line, particularly at the higher end ofmeasured values. This indicates that, despite the presence of several explanatoryvariables, the model’s predictions do not vary much across farms, often clusteringaround a similar range. This limited variation is likely due to the large uncertaintiespresent in the estimated regression coefficients and/or a restricted range in thepredictor values among the farms studied, effectively dampening the model’sability to distinguish emission differences between individual sites.As a result, the apparently high R2 reflects the model’s ability to approximatethe overall average emission level across all data points, rather than its capacityto provide accurate or meaningful predictions for individual farms. In practicalterms, this means the model captures the baseline trend but does not effectivelycapture the farm-to-farm variability in NH3 emissions. Therefore, care must betaken not to equate a high R2 with strong predictive power for specific cases,especially when the fitted regression line lacks a significant slope. These findingshighlight the importance of including more informative or farm-specific vari-ables—particularly those related to manure management—to improve predictionaccuracy and account for the variability observed in NH3 emissions.

TAN-based Simulated Emission1 = − (0.0127 ± 0.0216)
+ (0.4750 ± 0.9679) × TANmodel × FDS
+ (0.0067 ± 0.0029) × C/N
+ (0.3097 ± 0.2195) × HousingVariable(3.1)

Table 3.1: TAN Model Coefficients, Standard Errors, and p-values

Parameter Coefficient ± SE p-value
const −0.012740 ± 0.021555 0.562753TANmodel 0.475030 ± 0.967863 0.630230C/N 0.006736 ± 0.002930 0.035305 *HousingVariable 0.309669 ± 0.219524 0.177498

The regression model results in Table 3.1 indicate that none of the predictorvariables, except the C/N ratio, reach conventional levels of statistical signifi-cance at the 0.05 level. The intercept (const) shows a small negative coefficient(-0.013) with a non-significant p-value (p = 0.563), suggesting no significantbaseline effect. The basic model (extra corrected with DS) has a positive coeffi-cient (0.475) but with high uncertainty and a non-significant p-value (p = 0.630),indicating weak evidence of its influence on the response. The C/N ratio exhibitsa small positive effect (0.007) with a statistically significant p-value (p = 0.035),suggesting a modest but meaningful association with the outcome. The housingtype variable has a positive coefficient (0.310) yet remains non-significant (p =
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0.177), implying some potential influence but insufficient evidence to confirmit. Overall, while the model provides a statistically significant fit and appears tocapture a substantial portion of the total variance in the data, it tends to underes-timate higher observed values and exhibits considerable predictive uncertainty atthe individual farm level. This highlights the need for further model refinement.In addition, due to large confidence intervals and limited statistical significanceof the model coefficients, the specific impact of individual predictors remainsdifficult to interpret reliably.In the case of including manure management parameters, such as beddingmaterials and manure additives, the regression model (Equation (3.2)) resultedin a substantial increase in the number of parameters due to the use of multipledummy variables for each management category. As shown in Figure 3.2, thisextended model achieves an exceptionally high R2 value (0.993), indicating analmost perfect fit to the measured data. However, this apparent improvementcomes at the cost of model generalizability. Since each dummy variable corre-sponds to a management practice found in only a small number of farms, themodel tends to tailor itself to these limited data points rather than identifyinggeneralizable relationships. This is a classic symptom of overfitting, especiallywhen the total number of predictors (including more than a dozen dummy-codedvariables as shown in Equation (3.2)) approaches or exceeds the number ofobservations per group. As a result, the model likely inflates its apparent predic-tive ability within the current dataset, but its performance on new data would besubstantially less reliable. In summary, although the inclusion of detailed manuremanagement information appears to enhance model fit, it also introduces a highrisk of overfitting due to limited replicates for each dummy variable level and theproliferation of parameters relative to the sample size.
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Figure 3.2: Effect of Including Manure Management (Bedding Materials and Additives)
on TAN-Based Model Prediction of NH Emissions (WLS Regression, with Error Bars)

TAN_based Simulated Emission2 = 0.0509 ± 0.0399 − (3.8623 ± 1.3605)
×TANmodel×FDS+(0.0106±0.0058)×C/N
− (0.0446 ± 1.0039) × HousingVariable
− (0.0556 ± 0.0130) × BeddingMaterials1
− (0.0194 ± 0.0249) × BeddingMaterials2
+ (0.0224 ± 0.0392) × BeddingMaterials3
+ (0.0646 ± 0.0325) × BeddingMaterials4
+ (0.0140 ± 0.0282) × BeddingMaterials5
+ (0.0403 ± 0.0325) × BeddingMaterials6
+ (0.0157 ± 0.0152) × BeddingMaterials7
− (0.0311 ± 0.0549) × BeddingMaterials8
+ (0.0040 ± 0.0127) × BeddingMaterials9
− (0.0040±0.0478)×BeddingMaterials10
+ (0.1249 ± 0.0382) ×ManureAdditive1
+ (0.0644 ± 0.0536) ×ManureAdditive2
− (0.0695 ± 0.0218) ×ManureAdditive3
+ (0.0040 ± 0.0127) ×ManureAdditive4
+ (0.0000 ± 0.0000) ×ManureAdditive5
+ (0.0284 ± 0.0781) ×ManureAdditive6
+ (0.0000 ± 0.0000) ×ManureAdditive7
− (0.0502 ± 0.0535) ×ManureAdditive8(3.2)
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3.1.2 MUN and AEP-based regression models

MUN_based regression modelThe best-fit regression model based on MUNmodel is presented in Equation (3.3)and shown in Figure 3.3. With an R2 value of 0.748 and a p-value of 0.0000478,it demonstrates explanatory power similar to that of the TAN-based approach.The model provides a statistically significant fit and accounts for a substantialproportion of the total variance in measured emissions.
MUN-based Simulated Emission = − 0.0117 ± 0.0211

+ (0.2012 ± 0.3126) ×MUNmodel × FDS
+ (0.0066 ± 0.0029) × C/N
+ (0.2514 ± 0.2591) × HousingVariable(3.3)

Figure 3.3: Prediction Accuracy of MUN-Based Model for NH Emissions: Observed vs.
Modeled Values, Including Uncertainty (WLS Regression

Similar to the TAN model, the regression results (shown in Table 3.2 indicatethat the C/N ratio is statistically significant (p = 0.0343). However, the basicmodel MUNmodel × FDS has a relatively large p-value of 0.529, suggesting thereis no statistical evidence to support a strong effect of this term in the predictionmodel.
AEP_based Regression ModelThe regression model based on AEP is represented in Equation (3.4) and illus-trated in Figure 3.4. Compared to previous models, the performance of the AEP
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Table 3.2: MUN Model Coefficients, Standard Errors, and p-values

Parameter Coefficient ± SE p-value
const −0.011749 ± 0.021148 0.586189MUNmodel 0.201158 ± 0.312645 0.529074C/N 0.006644 ± 0.002872 0.034340 *HousingVariable 0.251445 ± 0.259128 0.346313

model is improved: R2 = 0.681, indicating that AEP and housing type togetherexplain approximately 68% of the variance in measured ammonia emissions. A p-value of 0.000006 indicates the model is highly statistically significant. Althoughthe regression line still falls below the identity line at higher measured values, themodel’s predictions generally align more closely with the observed data. Whilesome prediction uncertainty remains, as reflected by the substantial error bars,the overall fit better reflects actual emission patterns than previous models.
AEP-based Simulated Emission = 0.0425 ± 0.0073

− (0.0006 ± 0.0004) × AEPmodel
+ (0.7547 ± 0.1717) × HousingVariable(3.4)

Figure 3.4: Prediction Accuracy of AEP-Based Model for NH Emissions: Observed
vs.Modeled Values, Including Uncertainty (WLS Regression)
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Table 3.3: AEP Model Coefficients, Standard Errors, and p-values

Parameter Coefficient ± SE p-value
const 0.042509 ± 0.007312 0.000021 ***AEPmodel −0.000637 ± 0.000375 0.107143HousingVariable 0.754659 ± 0.171710 0.000395 ***

The intercept(const) is statistically significant (p = 0.000021), indicating ameaningful baseline emission level contributing from parameters not includedin our model. The coefficient for corrected AEP is negative and approachingsignificant (p = 0.107143), suggesting that higher Corrected AEP values areassociated with a slight decrease emissions. The housing variable shows apositive effect and statistically significant (p = 0.000395).
Normalized coefficients of all parametersThe standardized coefficients analysis Table3.8 reveals the relative importance ofparameters across the three regression models. The housing variable consistentlyemerges as the most significant predictor, particularly in the AEP-based model (= 0.4291*). In the AEP-based model, the AEPmodel shows a negative association( = -0.3180), suggesting that higher AEP values might be linked to slightlylower ammonia emissions. The C/N ratio demonstrates statistically significantpositive associations in both TAN-based and MUN-based models ( 0.16*). Thepair of TANmodel × FDS and MUNmodel × FDS show modest contributions, withstandardized coefficients around 0.09-0.12.
Table 3.4: Standardized Coefficients (Beta) for Different Models

Parameters AEP Model TAN Model MUN Model
HousingVariable 0.4291* 0.1761 0.1430
AEPmodel -0.3180 – –C/N – 0.1650* 0.1627*
TANmodel × FDS – 0.0877 –
MUNmodel × FDS – – 0.1216

* Statistically significant coefficients
While the C/N ratio appears to be a relevant predictor, caution is warrantedwhen interpreting the other variables due to their non-significant effects anduncertainty in their contributions. The limited significance of most predictorssuggests further investigation with additional data may be needed.
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3.1.3 Normalized per-cow emission

To enable comparison on a per-animal basis, the outputs from the three di-rect emission models were normalized to annual emissions per cow. This wasachieved by dividing the 22 model-predicted emission values by the corre-sponding dairy cow numbers for each farm and round, and then applying theappropriate time conversion to yield results in kilograms of ammonia per cow peryear. For a broader context, the 2022 national average inventory was used as areference. This benchmark was calculated by dividing the national total ammoniaemission from housing and storage (as reported by Van Bruggen et al. (2024))by the country-wide average number of dairy cows for 2022 (CBS (2022a)).The results are summarized in Figure 3.5. Most individual farm-round results fallbelow the national average inventory line, with some variation between the threemodels at certain farm-rounds. For example, the three models produced slightlydifferent estimates for Farm 4 in Round 1, which may reflect variability in modelsensitivity to input parameters.

Figure 3.5: Comparison of Model-Based Ammonia Emission Estimates per Cow per Year
by Farm and Round, with Average Inventory Reference Line

3.2 Comparison among the Three Basic Models
All three regression models ((3.1), (3.3), (3.4)) explain a substantial portionof measured ammonia emissions. A direct comparison of the basic modeloutputs—TANmodel × FDS , MUNmodel × FDS , and AEPmodel—reveals a noteworthydegree of consistency, as summarized in Table 3.5.
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Table 3.5: Pearson Correlation Matrix of Basic Models’ Ammonia Emission Predictions

TANmodel × FDS AEPmodel MUNmodel × FDS

TANmodel × FDS 1.000 0.62 0.92
AEPmodel 0.62 1.000 0.62
MUNmodel × FDS 0.92 0.62 1.000

As shown, TANmodel × FDS and MUNmodel × FDS display an exceptionallystrong positive correlation (r = 0.92), indicating that these two models simulatechanges in NH3 emissions in a remarkably similar, almost linear manner. Bycontrast, AEPmodel shows a moderate positive correlation (r = 0.62) with both
TANmodel×FDS and MUNmodel×FDS . All correlations are positive, which indicatesthat higher values from one model generally correspond to higher values fromthe others.Figure 3.6 further illustrates these relationships. In the pairwise scatterplotsand marginal histograms, it is evident that the predictions of TANmodel × FDSand MUNmodel × FDS are mostly concentrated at lower emission values, withmoderate spread. Conversely, AEPmodel spans a broader range and includessome notably larger values, suggesting greater variability and outliers. In general,predicted emissions from TANmodel × FDS are lower in absolute value comparedto MUNmodel × FDS .Beyond overall correlation analysis, we examined potential temporal and batcheffects by exploring the distribution of model predictions across five experimentalrounds (Figure 3.7) and the round-wise mean emission trends (Figure 3.8).While the three models differ in variability—AEPmodel shows more fluctuationsand outliers—their overall temporal trends are quite consistent. The mediansand means of all three models rise from rounds 1 (Oct-23) through 3 (Jul-24), peaking in round 3, and then decline during rounds 4 (Oct-24) and 5(Feb-25). This shared pattern suggests systematic effects of temporal factors,which may be attributable to management changes or environmental variationsacross seasons. Despite the higher variability in AEPmodel, the consistency intrends across all models supports their complementary value in representing thetemporal dynamics of NH3 emissions.In summary, while each basic model captures slightly different aspects ofthe emission dynamics, the strong correlations and consistent temporal patternshighlight their robustness for monitoring and comparison purposes.

3.2.1 Selection of feed parameters
Figure 3.9 shows the interactions between selected feed managements. Thecentral hypothesis assumes the existence of interrelations between these param-eters, as demonstrated in Figure 2.5. While our results can be summarized asfollows:The independent variables included maize proportion and concentrate pro-
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Figure 3.6: Pairwise relationships and distributions of basic model outputs: TANmodel ×
FDS , MUNmodel × FDS , and AEPmodel. The diagonal panels display the distribution of
each model output individually.



3.2. Comparison among the Three Basic Models 32

Figure 3.7: Distribution of emissions predicted by each basic model across experimental
rounds.

Figure 3.8: Round-wise mean emission trends for each model output. Each model
exhibits a similar trajectory, with peak emissions in July 2024, followed by a decrease in
later rounds.
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Figure 3.9: Correlation matrix of selected feed parameters. The heatmap visualizes Pear-
son correlation coefficients among key dietary components, including maize proportion,
concentrate proportion, and nutritional indices (DVE, OEB, CP, CP/VEM). Higher (red) or
lower (blue) color intensity reflects the strength and direction of the pairwise correlations.
This matrix helps to identify potential multicollinearity and interdependencies among the
feed variables, which are essential considerations for downstream regression analyses
and model interpretation.
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portion. Neither maize nor concentrate proportions showed strong statisticalrelationships with DVE, OEB, CP or CP_kVEM (all p ≥ 0.05, R2 ≤ 0.03). How-ever, within the intermediate variables, CP is a significant predictor for OEB(p < 0.05, R2 = 0.42) and DVE (p < 0.05, R2 = 0.95). Moreover, OEB and DVEserve as mutual significant predictors of one another (p < 0.05, R2 = 0.25 forboth regressions).In summary, the following variable pairs demonstrated sufficiently strongcorrelations or reciprocal predictive relationships to warrant their consideration aspotential interaction terms in the development of feed-to-key-predictor model:

• RE and OEB
• RE and DVE
• OEB and DVE
Based on these conclusions, the predicted TAN were constructed accordingto the feed elements listed in Table 3.6:

Table 3.6: Variables used in the regression models for simulated key predictor

Variable ID Variable Name Description
X1 Maize Proportion % maize in diet
X2 Concentrate Proportion % concentrate in diet
X3 CP Crude protein content in feed
X4 OEB Metabolizable energy balance (OEB)
X5 DVE Digestible protein in the small intestine
X6 CP × OEB Interaction term: crude protein × OEB
X7 CP × DVE Interaction term: crude protein × DVE
X8 OEB × DVE Interaction term: OEB × DVE
X9 CP/kVEM Ratio of crude protein to digestible energy in feed

3.2.2 Feed regression model
Based on the results presented in Table 3.7, most selected variables improved theadjusted R2 of the models, with only minor decreases observed for X4 (OEB), and
X9 (CP/kVEM). Nevertheless, we did not rely solely on adjusted R2 as the criterionfor variable selection. Given the established theoretical evidence supporting thelinear contributions of OEB and DVE to UUN (Burgos et al., 2007), and recognizingthe CP/kVEM ratio as a critical parameter for nitrogen efficiency, we retainedthese variables in the model.The M9 model, encompassing 9 variables, ultimately demonstrated the highest
R2 and most favorable adjusted R2, thus emerging as our definitive regressionmodel for predicting TAN using feed management variables.
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Table 3.7: Stepwise model R2 summary and variables included for each TANmodel
Prediction

Model Variables Included R2 R2adj Nr of Predictors
M1 X1 (Maize Proportion) 0.084 0.075 1M2 X1, X2(Concentrate Proportion) 0.095 0.078 2M3 X1, X2, X3 (CP) 0.682 0.673 3M4 X1, X2, X3, X4 (OEB) 0.683 0.671↓ 4M5 X1, X2, X3, X4, X5 (DVE) 0.710 0.696 5M6 X1, X2, X3, X4, X5, X6 (CP × OEB) 0.716 0.698 6M7 X1, X2, X3, X4, X5, X6, X7(CP × DVE) 0.721 0.701 7
M8 X1, X2, X3, X4, X5, X6, X7, X8(OEB × DVE) 0.727 0.705 8
M9 X1, X2, X3, X4, X5, X6, X7, X8, X9(CP/kVEM) 0.729 0.703↓ 9

The regression model can be expressed as below Equation (3.5), and illus-trated with Figure3.10:
Predicted TAN = − 0.0377 ± 0.0307

+ (0.0008 ± 0.0003) × %maize
+ (0.0014 ± 0.0005) × %concentrate
− (0.0506 ± 0.0343) × CP
+ (0.1130 ± 0.0582) × OEB
+ (0.1044 ± 0.0284) × DVE
+ (0.0158 ± 0.0139) × CP × OEB
− (0.0007 ± 0.0027) × CP × DVE
− (0.0475 ± 0.0324) × DVE × OEB
+ (0.0209 ± 0.0246) × CP_kVEM

(3.5)

The regression analysis reveals a strong positive correlation, with an R2 valueof 0.729 and a highly significant model p-value of 5.11e-23. The regression linedemonstrates a near-linear relationship between the measured and predicted TANvalues, indicating the model’s predictive capability. The data points closely clusteraround the identity line (red dashed line), suggesting that the predictive modelclosely approximates the actual measured TAN values. The spread of pointssuggests variability exist, but the overall trend confirms the model’s reliabilityin estimating TAN across different farms, with most predictions falling within anarrow range of the actual measurements.Standardised coefficient as shown in Table3.8 provide insights into the relativeimportance of each feed variables. The most substantial predictor is DVE which
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Figure 3.10: Comparison of measured and predicted TAN values. The plotted data show
a near-linear relationship, with most points closely following the identity line (dashed
red) and an overall R2 of 0.729, highlighting the predictive strength of the model.

demonstrated a strong and highly significant relationship. It follows by CP shownas a notable negative coefficient, though the p-value (0.144) suggested therelationship might be attributed to random chance. Among the remaining param-eters, the maize and concentrate proportions in feed show statistically significantpositive associations with TAN, although the relatively modest β suggests thatthe impact may be limited.
Table 3.8: Regression Coefficients

Parameter Standardized Beta p-value Significance%maize 0.2087 0.0024 **%concentrate 0.1627 0.0084 **CP -1.5711 0.1436OEB 0.6593 0.0552DVE 1.7782 0.0004 **CP×OEB 0.8004 0.2594CP×DVE -0.1212 0.8087DVE×OEB -1.2050 0.1450CP/kVEM 0.6592 0.3969



4. Discussion
4.1 Overall direct emission model performance

Overall, in modeling TNO-measured NH3 emissions, the three regression mod-els—Equations (3.1), (3.4), and (3.3)—each based on different underlying ap-proaches, consistently captured the major patterns observed in the emission data.By incorporating pH- and temperature-corrected values (TANmodel, MUNmodel,and AEPmodel), together with dry matter content (DS), the C/N ratio in manure,and a housing type variable, these models provided a comprehensive frameworkfor interpreting the primary drivers of emission potential. All three models yielded
R2 values greater than 0.68, with p-values below 0.0001, indicating statisticallysignificant fits that explain a substantial proportion of the overall variance.However, when zooming into individual model elements, neither basic modelpresents statistically significant contributions. Only the pH and temperature-corrected AEP shows an approaching significance (p= 0.1), yet its negativecoefficient with the emission suggests that as AEP increases, the final emissiontends to decrease — a counterintuitive relationship. The weak connection be-tween our chosen basic models and the measured TNO emissions might beattributed to our limited sample size, with only 22 TNO-measured NH3 emissionscollected across two experimental rounds (Feb.24 and Feb.25). This sample sizelimitation is particularly problematic for robust statistical inference. According tothe rule-of-thumb (Green, 1991), the recommended sample size (N) shouldbe N ≥ 50 +m for reliable regression analysis, especially when the number ofpredictors (m) is less than 7 (which is our case). Small sample sizes not onlyreduce statistical power but also increase the likelihood of type II errors, wheregenuine relationships may remain undetected due to insufficient data points.Moreover, the limited sample size amplifies the risk of overfitting and reducesthe generalizability of our statistical models, potentially masking true underlyingrelationships between basic model, other chosen additional parameters and am-monia emissions.Other parameters such as the C/N ratio presents statistical significant while apositive but much smaller standardized coefficient. Previous research by X. Wanget al. (2014); Jiang, Schuchardt, Li, Guo, and Zhao (2011) indicates that a lowerC/N ratio can increase NH3 emission (negative correlation), but those findingswere based on composted manure and observed under higher temperature
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regimes (e.g., 35℃) with C/N ratios above 25. In contrast, the C/N ratios in ourdataset are much lower (6–11) and temperatures substantially cooler (6℃–16℃).At these lower temperatures and narrower C/N ranges, the microbial activityresponsible for rapid nitrogen mineralization and ammonia production is likelyconstrained, and the direct influence of C/N ratio on ammonia volatilization isless pronounced.The housing type variable in our model represents the unit-converted emissionfactor for each RAV code. Its positive correlation with measured emissions acrossall three regression models is logical, given that it inherently represents emissionsper animal place. However, statistical significance was only observed in theAEP-based model.In terms of manure management, including factors such as bedding materialand the use of manure additives provided some improvement to model fit ((3.2)).However, these variables were highly imbalanced and sparse in our sample—forinstance, out of 10 possible bedding materials type, types 6 (“Zaagsel kalk”) and10 (“Geperste gedroogde zonnebloempitten”) were extremely rare, appearingonly once each. And some manure additives do not appear in any farm’s records.This limited variation means that the estimated effects for some categories arebased on very few data points, resulting in large standard errors and limitedstatistical significance. Additionally, overfitting is a concern when numerousdummy variables are included relative to the number of observations, whichin our case sometimes led to instability in the regression results and unreliablecoefficient estimates. As such, while their inclusion may superficially increase theexplanatory power of the models, we caution against drawing strong conclusionsabout the specific effects of individual manure management practices. Larger andmore balanced datasets would be necessary to reliably evaluate these factors infuture studies. Given the statistical constraints and potential for model instability,we strategically excluded manure management variables when constructing theMUN-based and AEP-based regression models.Normalizing the results to a per-cow, per-year basis allows for direct com-parison of ammonia emissions performance across individual farms and rounds.This horizontal comparison reveals distinct differences among farms, highlightingthat certain farms consistently exhibit lower emissions per cow relative to others.Such differences may stem from a variety of factors, including but not limited tofeeding strategies, housing types, and manure management approaches. Theseresults emphasize the value of farm-level normalization for benchmarking andidentifying operational best practices that may contribute to lower emissions. It isalso noteworthy that the majority of the farm-level emission values are lower thanthe national average for 2022 (although our results are based on predictions fromwinter 2023 to spring 2024). This potential underestimation is likely linked to theexclusion of several parameters in our modeling approach. Although our modelscombine basic and additional parameters selected based on data availability,they do not include all variables known (or suspected) to affect ammonia emis-sions, as outlined in Section 2.2. Therefore, the direct emission models may lackimportant explanatory power with respect to both temporal and farm-specific
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variation, further highlighting the need for more comprehensive data collectionand enhanced model complexity in future studies.In general, despite deriving three statistically fitted regression models, our abil-ity to accurately estimate ammonia emissions is severely constrained by profoundmethodological limitations. The TNO-measured NH3 dataset, characterized by itsminimal sample size, presents significant challenges to robust statistical inference.The measured emissions exhibit considerable variability, ranging from approx-imately 0.02 to 0.18 g/s, accompanied by standard errors spanning 0.004 to0.07 g/s. This substantial variation introduces profound uncertainty, particularlyfor higher emission measurements. While the regression models demonstrate aninitial statistical fit, the combination of small sample size, high measurement un-certainty, and significant standard errors fundamentally prevents us from makingdefinitive claims about ammonia emission prediction accuracy.

4.2 Comparison of basic models
When comparing the predictive performance within the basic models, the analysisshows strong positive correlations between the different model-derived emissionpredictions, particularly between TANmodel and MUNmodel (correlation coefficient= 0.92), which is consistent with the findings in Burgos et al. (2007); Kohn et al.(2002); Huhtanen et al. (2015) that TAN and MUN are strongly correlated. Thisdemonstrates that despite relying on different predictor variables, these two mod-els closely track similar emission dynamics. The generally lower absolute valuespredicted by the TANmodel compared to the MUNmodel can be explained by thefact that the MUNmodel estimates emissions based on milk urea nitrogen, whichserves as an indirect indicator of nitrogen use efficiency and ammonia emissionpotential, often leading to higher predicted values. Conversely, the TAN mea-surement represents the manure TAN level at a point of temporary compositionalequilibrium, where a portion of ammonia has already undergone volatilization,consequently resulting in a potential underestimation of total ammonia emissions.The results also presents moderately strong correlations between the AEPmodeland both TANmodel × FDS and MUNmodel × FDS (correlation coefficients 0.62),suggesting the AEPmodel also effectively reflects key trends in ammonia emissions.This may be explained by the fact that the TAN- and MUN-basic models primarilyconsider only the TAN in the manure or Urea in milk, adjusted for pH, temperature,and dry matter, without accounting for the more complex dynamics within manurecomposition. In contrast, the AEP measurement method, aside from controllingexperimental temperature, better reflects the potential interactions occurringwithin the manure during the TAN volatilization process. The less constrainedprediction range in Figure3.6 of the AEPmodel might also indicate its greatersensitivity to other environmental factors which not involved in the other twobasic models such as humidity, microbial activity, minerals in manure, etc..This strong inter-model correlation implies significant shared informationand complementary strengths, which reinforce confidence in their underlyingrepresentations of the emission processes. Even though adjustments are needed
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to improve alignment with measured values (for example: including more outdoorclimate variables), the consistent trends and relational structure among the modelsindicate their capability to validate one another and provide robust predictiveinsights. Moreover, the stability of these correlations suggests that while absolutepredicted values may deviate, the models reliably differentiate between low andhigh emission scenarios.Temporal analyses across five monitoring rounds demonstrate that the trendspredicted by all three models are concordant, peaking in round 3 (summer) anddeclining afterwards. This seasonal pattern align with the findings by Saha et al.(2014), that in summer the farm tends to have higher ammonia emission frombarns comparing to spring, autumn and winter. The possible reason for the differ-ence is because the temperature variations (Powell et al., 2008; Q. Wang, Flesch,Bai, Zhang, & Chen, 2024), although the specific contribution of temperaturefluctuations to the observed emission changes was not explored in depth in thisstudy, future research could focus on quantifying these effects in greater detail.Furthermore, the stable seasonal trends observed across models underscoretheir capability to provide dependable predictive insights into ammonia emissions.

4.3 Feed to predictor contribution
A reliable regression model using feed management in estimating TAN wassucessfully detrived. The near-linear relationship between measured and pre-dicted TAN values validates the model’s effectiveness in capturing the complexnitrogen dynamics in agricultural feed systems.The standardrized coefficents shows that the Digestible Protein in the SmallIntestine (DVE) emerges as the most significant predictor of TAN, with a strongand statistically significant relationship ( = 1.7782, p = 0.0004). The DutchDVE/OEB1991 and DVE/OEB2010 systems takes these two parameters as impor-tant criteria for nitrogen efficiency evaluation. Studies by de Boer et al. (2002);Van Dongen (1999) suggest that lower DVE intake could reduce urinary nitrogenexcretion and thus ammonia emission, which do align with this positive rela-tionship. Similarity, Rumen Degradable Protein Balance (OEB), is also typicallyrecognized as positively associated with ammonia emissions (van Duinkerken etal., 2003; Van Dongen, 1999). Yet in our regression model, OEB only showed amarginally significant relationship (p = 0.0552), suggesting a potential, thoughnot conclusive, association.Additionally, maize and concentrate proportions demonstrate statistically sig-nificant positive associations with TAN, although with more modest effects (maize:= 0.2087, p = 0.0024; concentrate: = 0.1627, p = 0.0084). As anticipated, thepercentage of concentrate, serving as a proxy for intensive farming management,demonstrated a positive correlation with emissions (Kelleghan, Hayes, Everard,& Curran, 2020; Dragosits et al., 2002). However, in contrast to established re-search indicating that with diets rich in readily fermentable carbohydrates (moremaize) could mitigate ammonia emissions (Roberts, Xin, Kerr, Russell, & Bre-gendahl, 2007; Vogel & Humenik, 2017; van Duinkerken et al., 2003), our data
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unexpectedly demonstrated a positive association between maize proportion andtotal emissions. This might be attributable to the underlying biological complexity.For instance, Arndt, Powell, Aguerre, and Wattiaux (2015) demonstrated thatwhile increasing alfalfa proportion and reducing corn proportion in feed, the totaldaily urinary urea increases, yet the urea concentration per liter of urine actuallydecreases. This absolute increase is primarily attributed to changes in total urinevolume resulting from dietary mixture alterations. Given the complexity of feedcomposition, other feed proportion variations may also exert subtle influences onthese biochemical dynamics.Beyond the most influential predictors, crude protein (CP) emerged as a pa-rameter of interest, notably showing a negative coefficient in our results. Thiscontrasts with established research, which generally finds that higher dietaryprotein intake leads to increased nitrogen excretion (McGinn, Janzen, Coates,Beauchemin, & Flesch, 2016; Cole et al., 2005; Sajeev, Amon, Ammon, Zol-litsch, & Winiwarter, 2018; Lynch, Sweeney, Callan, & O’Doherty, 2007). Onepossible explanation for this discrepancy lies in the complex interactions be-tween dietary components represented in our multivariate model. When multiple,highly correlated nutritional variables are included simultaneously, the uniqueeffect of CP—after controlling for total nitrogen intake and other confoundingfactors—may be isolated from its most direct biological pathway, occasionallyresulting in counterintuitive coefficients due to multicollinearity. This suggeststhat CP alone, without considering dietary energy provision and other dietaryfactors, may not reliably reflect the true drivers of TAN excretion within the farmsystems included in our dataset. In contrast, our findings for the CP/kVEM ratiorevealed a positive correlation with nitrogen emissions, aligning well with priorstudies. This ratio likely provides a better explanation of nitrogen dynamics be-cause it reflects the balance between protein and energy supply. A high CP/kVEMratio may indicate insufficient energy to digest crude protein efficiently, resultingin lower nitrogen utilization and consequently higher TAN excretion. Therefore,compared to CP alone, the CP/kVEM ratio offers a more reliable indicator of thecomplex relationship between diet composition and nitrogen emissions. Theseresults highlight the importance of considering nutrient balance, not just absolutenutrient amounts, in predicting ammonia emissions and nitrogen excretion. Ourresults are consistent with earlier research (Arndt et al., 2015; LR - Veehouderijen omgeving, Plomp, Van Noord, Meerkerk, & De Haan, 2018) that also reported apositive association between CP/kVEM and TAN excretion. Taken together, thesefindings underscore the limitations of interpreting single nutrient effects withoutcontext and reinforce the need for integrated nutritional metrics in environmentalmodeling.Regarding the regression coefficients for RExOEB, RExDVE, and DVExOEB, theresults point to complex influences on TAN excretion. For example, the negativecoefficient from the pair of term DVE*OEB suggests a phenomenon of dimin-ishing returns or antagonism: when both DVE and OEB are high simultaneously,their combined effect on TAN emissions is less than the sum of their separateeffects. Statistically, this negative interaction term essentially corrects for the
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“over-counting” that would result if the two variables simply added togetherwithout accounting for overlaps or dependencies in their effects on nitrogenmetabolism.Nevertheless, none of the pairwise interaction terms show statisticalsignificance, which means that while these trends hint at possible biological ormetabolic interactions, the current data variability does not allow us to draw firmconclusions about the existence or strength of these effects.

4.4 Implications
The direct emission model developed in this study offers a cost-effective andpractical solution for predicting ammonia emissions at the farm level. Unlikemodels that rely on national-scale emission factors—which often overlook impor-tant farm-specific differences—our approach incorporates measured on-farmpredictors. This enables the model to better reflect the real-life managementpractices, feeding strategies, and environmental conditions unique to each farm.Compared to direct atmospheric ammonia measurement techniques, this modelis considerably less resource-intensive, as it utilizes routinely collected farm dataand does not require costly equipment or labor-intensive sampling, making itfeasible for widespread monitoring and application.Although the statistical significance of individual predictors in the direct emis-sion model may be limited due to sample size and data quality constraints, thestrong agreement between the three basic models (TANmodel × FDS , MUNmodel ×
FDS , and AEPmodel) underscores the model’s robustness in capturing dynamicchanges in ammonia emissions. This demonstrates that, even if absolute emis-sion values are difficult to predict with precision, the modeling approach remainshighly valuable for tracking emission trends and monitoring farm performanceover time. It provides a practical framework for assessing the effects and sensitiv-ity of mitigation actions and management interventions. Farms and policymakerscan apply this tool to monitor progress, detect improvements or setbacks, andevaluate the real-world impacts of emission reduction strategies.From a feed management perspective, our regression analysis provides clear,actionable recommendations for mitigating TAN excretion at the source. Specifi-cally, strategies that reduce dietary DVE (digestible protein in the small intestine)and lower the proportion of concentrate in the ration are likely to yield directreductions in ammonia emissions, as reflected by the standardized coefficientsin the model. These insights can guide more targeted and effective feed inter-ventions to improve nitrogen use efficiency and environmental outcomes.Finally, all three predictive models consistently captured a pronounced sea-sonal pattern, with highest ammonia emissions recorded during the summer. Thishighlights the need for seasonally adaptive mitigation strategies, with increasedefforts targeting periods of elevated risk, such as hot months. Regular, year-round monitoring can further help to identify when and how interventions aremost effective, enabling timely responses—such as improved ventilation, timelymanure removal, or cooling measures—that maximize the benefits of emissionreduction efforts.



4.5. Scope and Data Limitations 43
In summary, although the direct emission model alone may not be suitablefor direct on-farm application, the combination of the basic models developedin this study offers a cost-effective and farm-specific approach for monitoringammonia emission trends, guiding management interventions, and supportingpolicy evaluation in livestock production systems.

4.5 Scope and Data Limitations
Despite yielding important insights into the farm categories and other drivers ofammonia emission, several limitations of this study should be acknowledged.First, the direct emission model’s scope is confined exclusively to the stableperiod, primarily due to the availability of relevant and consistent TNO measureddata. This temporal focus may limit the generalizability of results to other periodswhen feed management or environmental conditions differ—such as grazing sea-sons —where patterns of feed intake, manure output, and volatilization dynamicscould diverge significantly.Second, the dependent variable—ammonia emission rate—was estimatedusing the TNO plume method, which, in this study, was measured on a single dayfor each site rather than through continuous or frequent monitoring during thestable period. This “snapshot” approach cannot capture within-farm or between-day variability, which might arise from daily changes in weather, manure handling,animal behavior, or diet intake. Consequently, emission values used in modeldevelopment may not fully represent typical or seasonal averages, possiblyintroducing measurement error or bias.Third, such a small dataset of the measured NH3 presents statistical limitations.Simple linear models were used in a two-step approach, which fits the scope andscale of available data. The low sample size not only restricts the complexity ofmodels that can be reliably estimated, but also limits the applicability of the linearregression approach itself: with limited data, linear models provide interpretabilityand minimize overfitting, but they cannot capture possible nonlinear or morecomplex relationships in the system. Structural Equation Modeling (SEM), whichwould allow for a more sophisticated understanding of relationships and under-lying mechanisms (Rex B., 2023), was not feasible here due to the increasedrisk of model overfitting, identification problems, and instability of parameterestimates under data scarcity. Therefore, both the choice of linear regressionand the exclusion of more advanced modeling approaches were conservativeresponses to these data constraints.Last important limitation is that although the simulation models demonstratedgood fit to the measured ammonia emission data within our dataset, the lack of anindependent external dataset precluded validation of model performance beyondthe sampled farms. As a result, the predictive accuracy and generalizability ofthe derived regression models cannot be robustly assessed. This introduces thepossibility of overfitting to the current sample and means further data collectionor application to new farms would be necessary to confirm the reliability andapplicability of these models in broader contexts.
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In summary, while this study’s design was shaped by significant practical con-straints, it establishes clear foundational results and highlights priorities for futuredata collection. Expanding both the temporal depth and breadth of measurement,as well as the sample size and balance among management practices, will beessential to improve model precision and expand the applicability of researchfindings for on-farm emission mitigation.



5. Conclusion
This study aimed to investigate whether a measured-parameter-based ammoniaemission model could be developed for dairy farms and which farm or manage-ment variables most significantly impact emissions. The following conclusionsaddress the main research question and each sub-research question in turn,drawing upon results from regression analysis, model validation, and contextualdiscussion.st ammonia emission estimation models.Main research question: Is it possible to develop an ammonia emissionmodelfor dairy farms based on measured parameters? Which farm characteristicsand management practices have significant impacts on ammonia emissions?The research successfully developed three regression models, each based oncore predictors—Total Ammoniacal Nitrogen in manure (TAN), Milk Urea Nitrogen(MUN), and Ammonia Emission Potential (AEP)—to fit measured TNO ammoniaemissions. All three models achieved statistically significant results, with R2 aluesexceeding 0.68, indicating good predictive performance within the available sam-ple. The inclusion of additional farm and environmental variables—specificallymanure pH, measurement temperature, dry matter content, C/N ratio, milk yield,grazing days, and housing type—helped account for variability in ammonia emis-sions.However, it is important to acknowledge the model’s statistical limitations,primarily due to a small sample size that falls below the generally recommendedthreshold for robust inference. As a result, while model fits are encouraging,some predictor effects (including those of the base models themselves) may beunderpowered and findings should be interpreted with caution regarding generalapplicability.Sub-RQ1:Which widely used predictor variables and foundational modelstructures are most suitable as the basis for the development of a practicalammonia emission model for dairy farms?All three predictor constructs (TAN, MUN, and AEP) proved viable as bases fordirect ammonia emission regression modeling. Among them, models based onMUN and TAN showed the strongest mutual agreement, with consistently higher
R2 and a more logical positive association with measured emission values. TheAEP-based model performed slightly less well, even exhibiting a counterintu-itive negative coefficient when controlling for local conditions, suggesting thatwhile AEP can provide supplementary information, MUN and TAN are prefer-
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able as foundational predictors for practical applications in emission monitoring.Specifically, MUN reflects overall nitrogen loss, whereas TAN has a more directconnection to actual ammonia emissions.Sub-RQ2:What additional farm characteristics or management variables sig-nificantly affect ammonia emissions, and how much do these factors improve themodel’s predictive ability compared to the base models?Beyond the predictors and the parameters included in basic model such asmanure pH and temperature and dry matter, several additional farm character-istics significantly improved model explanatory power. Statistically significantcontributors included the C/N ratio in manure, as well as the housing type variable(linked to standard emission factors). These variables capture key site-specific oroperational conditions influencing volatilization dynamics. By incorporating them,the models better account for environment- and management-driven variation,improving their performance and relevance for emission estimation at the farmscale.Sub-RQ3:How do upstream feed management and nutritional parametersinfluence the intermediate predictors of ammonia emission, and indirectly affectemission outcomes? Can these relationships be quantified to inform mitigationstrategies?The study also demonstrates that upstream feed management exerts a quan-tifiable effect on ammonia emission potential, primarily via its impact on TAN.Regression analysis of dietary factors revealed that the content of digestibleprotein in the small intestine (DVE) and the share of concentrate feed are the mostinfluential predictors of TAN. Both showed significant positive associations withTAN, suggesting that reducing DVE content and the proportion of concentratein rations could be highly effective for mitigating direct ammonia losses frombarns. These findings support feed-focused mitigation strategies: by optimizingprotein sources and feed composition, farms can not only improve nitrogen useefficiency but also substantially lower their environmental ammonia footprint.Additionally, the moderate but significant impact of other nutritional ratios (suchas the CP/kVEM ratio) supports the case for considering both macro- and mi-cronutrient balancing in practical feed management.In summary, while sample size limitations prevent definitive statements aboutall factors, this research establishes a practical foundation for farm-scale am-monia emission modeling based on measured parameters. Although the directemission model alone may have limitations, the combination of basic modelspresents a feasible and cost-effective approach for monitoring emission trendsand supporting targeted mitigation—particularly through dietary managementand environmental controls. These tools are accessible for on-farm use andcan guide both immediate management decisions and longer-term strategies toimprove environmental performance.Beyond the farm level, wider application of such models can contribute tomeeting societal goals for reducing agricultural ammonia emissions, support-ing compliance with environmental regulations, and informing policy evaluation.Future work with larger and more varied datasets is recommended to further
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validate and refine these approaches and expand their value for both producersand broader stakeholders.
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