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Abstract

The aim of this thesis is the study of inference problems in Pair Copula Bayesian Net-
works (PCBN). To this end, certain sub-structures called arteries are identified in the
PCBNs and Arterial Sample Propagation, a sample-based extension of Pearl’s Belief
Propagation Algorithm, is developed for single arteries. This proposed inference method-
ology incorporates properties unique in PCBNs as well as information on the graph struc-
ture, thus avoiding unnecessary computations and boosting the algorithm’s performance.
Furthermore, an extension of Arterial Sample Propagation is proposed for PCBNs with
multiple arteries under some additional assumptions on the graph structure.

This thesis also explores the structural properties of PCBNs, with this examination
moving in two separate directions. On the one hand we analyze inference problem
reduction through pruning, building up to a pruning algorithm for PCBNs that removes
a larger number of variables than existing BN pruning methods. Additionally, we study
the implications that the existence of arcs in arteries have on the PCBN’s structure.
We prove a Theorem used as a background for Arterial Sample Propagation algorithms
developed in this thesis, which has potential applications in the development stage of
PCBNs.
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1
Introduction

The Bayesian Network (BN) is one of the most popular graphical models for representing
probabilistic relationships among a set of variables. This model has gained attention
across a broad array of domains, including finance, risk management, supply chain man-
agement and healthcare. The popularity of this model is due to its ability to incorporate
information in an intuitive graphical way. BNs are able to capture dependence and in-
dependence relationships through solid and understandable mathematical theory. This,
combined with the ever expanding scope of related software implementations, has estab-
lished the attractiveness of BNs in fields such as reliability, safety etc [64, 70].

A real-life example of a BN application is the computational engine of Bonaparte for
Disaster Victim Identification (DVI)[19]. Recent disaster incidents such as the climate
change-fueled surge of natural disasters have emphasized the necessity of DNA inference
methods for victim identification. The Bonaparte system relies on BNs in order to model
the relationship between variables and to perform Bayesian inference given the available
evidence. This system was deployed at the Netherlands Forensic Institute after the 2010
Afriqiyah Airways flight crash in Tripoli, Libya and its success in correctly and efficiently
identifying the 103 deceased victims of the crash in an automated manner underscores
the significance of ongoing research and development in BNs and their relevance in
pressing societal matters.

Let us start with a simplistic example in the scope of disease diagnosis in healthcare
to explain some main concepts in BN models. Consider we wish to predict whether a
patient has the seasonal flu or not based on the symptoms of a patient. The relevant
symptoms would be coughing (C), fever (F), sore throat (S), runny nose (R). Additionally
the model will consider whether the patient has the flu or not (FL) and whether it is
allergy season (A). The directed graph of the BN model for this example is seen in figure
1.1. Note that all variables represented by nodes of the graph are binary taking values
True or False (1 or 0).

This particular graph would indicate that the flu influences the probability of runny
nose, cough and fever, while runny nose may also be influenced by the allergy season.
Furthermore, there is a clear dependence structure between runny nose and a cough,
as they may be both caused by some other disease. Additionally, both runny nose and

1
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A

R

S

C

FL

F

Figure 1.1: A simple Bayesian Network for disease diagnosis.

coughing can lead to a sore throat through post-nasal drip or by directly irritating the
larynx or the pharynx.

The dependencies between variables corresponding to nodes in the graph, which can
be continuous or discrete, are indicated by arcs. Additionally BNs require specification
of conditional densities (for continuous variables) or conditional probability tables (for
discrete variables, respectively). For instance, the conditional probability table of fever
given flu is:

P(F |FL) =
F 1 0

FL 1 0.7 0.3
0 0.05 0.95

Specification of a graph (which needs to be directed and acyclic) and conditional den-
sities (or probability tables) of all nodes given their parents is sufficient to factorize
the density (mass function) of the whole network (for details see chapter 2) in terms of
those conditional densities or probabilities. The factorization of the mass function for
the simple example above is:

P(A = xa, FL = xfl, R = xr, C = xc,F = xf , S = xs) =

P(S = xs|R = xr, C = xc)·
P(R = xr|A = xa, FL = xfl)·
P(C = xc|R = xr, FL = xfl)·
P(F = xf |FL = xfl)·
P(A = xa) · P(FL = xfl).

(1.1)

If data of patients suffering with respiratory symptoms is available one could estimate
parameters of the BN model (conditional probabilities in the tables) for the fixed graphs
structure. It is also possible to search an appropriate structure [36].

In this thesis we concentrate on how the BN models are used after they have been built.
This part of the process is often referred to as conditionalization or inference. During this
phase we are presented with observations of certain variables in the network, also called
evidence and represented as E, and the goal is to calculate conditional distributions of
the form X|E of some other variables given the evidence. For example, we could find
the probability of having a flu given that the patient has a sore throat outside of the
allergy season (for the BN in figure 1.1). We would calculate:

P(FL = 1 |S = 1, A = 0).
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Since the joint distribution of whole network is specified, one can compute such con-
ditional probability by summing the probability in equation 1.1 over all values of the
intermediate nodes R, C, F for FL = 1, S = 1, A = 0 to obtain P(FL = x, S =
1, A = 0), x ∈ {1, 0}, then summing out also over possible values of FL to obtain
P(S = 1, A = 0). Then we can simply use the definition of conditional probability to
obtain:

P(FL = 1 |S = 1, A = 0) =
P(FL = 1, S = 1, A = 0)

P(S = 1, A = 0)

However, using this procedure in larger networks with variables that take more values is
computationally prohibitive. In just this small example we require 3·29+1 computations
for the inference computed in this way.

For this reason it is essential to study more intricate inference algorithms that achieve
the same goal in a more efficient way. These can be divided between ones that operate
on BNs that feature either discrete, continuous or both types of variables. The literature
of discrete BN algorithms ranges from simplistic approaches such as Variable Elimina-
tion to more sophisticated ones like Belief Propagation or Monte-Carlo simulations. The
methods for continuous BNs are limited. Continuous variables are often discretized and
discrete algorithms to propagate evidences are applied. The exceptions are Gaussian
Bayesian Networks (GBNs) where propagation can be performed efficiently. The re-
search of Hybrid BNs is not that advanced, with available models such as Conditionally
Gaussian Bayesian Networks (CGBN) being unreasonably restrictive in either efficiency
or structure of the BN.

A relatively new and promising family of BNs is the Pair Copula Bayesian Network
(PCBN) model. This model was first proposed by Kurowicka and Cooke [46] and further
discussed by [31, 32, 30, 3, 4]. The conditional distributions of nodes given their parents
are decomposed through a collection of (conditional) bivariate copulas (distributions on
unit square with uniform margins). These copulas can be parametric or non-parametric
and can be specified freely without constraints.

Despite many appealing properties of PCBNs, these models were not applied in full
generality except of the case when all copulas in the decomposition are Gaussian. The
recent advances in a master thesis by Horsman [36] has made it possible to perform
estimation and simulations in PCBNs when copulas are not Gaussian.

This thesis will focus on the probabilistic inference of PCBNs. We will provide an
algorithm that, given evidence in the network in the form of observations of multi-
ple variables, yields the conditional (joint) distributions of subsets of remaining nodes.
Our approach to the inference problem will be through application of stochastic sam-
pling.

The motivation behind this is fourfold. Firstly, stochastic sampling can provide with
algorithms that exhibit granularity, taking advantage of parallel computing settings.
Secondly, we will show that stochastic sampling algorithms require a lower amount and
simpler type of integrations present in the algorithm compared to other methods. Fur-
thermore, the presence of certain graph structures called loops poses a problem in most
of non-sampling algorithms; we will show that stochastic sampling can be applied to net-
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works with loops. Lastly, inference algorithms allow us to tackle more complex inference
problems that the rest of the methodologies. These problems arise when the evidence in
the network is in the form of a distributional shift instead of a single observation. For
instance, in the example of figure 1.1, consider that due to thermometer malfunction we
are not certain whether the patient has a fever but we get a 70% probability of it being
the case. In this case implementation of stochastic sampling algorithms is straightfor-
ward, whereas all other methodologies struggle with tackling the inference task.

The goals of this thesis are the following:

• Create the theoretical foundation upon which PCBN inference will be based on.
• Create an effective and efficient methodology for solving PCBN inference problems

for certain DAG structures we define as ”arteries”.
• Create an algorithm for simplifying general PCBN inference problems into smaller

yet equivalent ones.
• Illustrate ways that our methodology can be extended to be applicable to general

DAG structures.

In the following section we will provide an overview of the theoretical foundations neces-
sary for our thesis. This includes Graph Theory, Bayesian Networks and a description
of the PCBN model. In Chapter 3 we will discuss some of the existing methodologies
that are currently available to tackle inference problems in BNs. Chapter 4 contains the
detailed formalization of our artery-based inference. There, we present algorithms for
conducting efficient and effective inference.

We follow with a Chapter on PCBN pruning, our methodology for simplifying the
PCBN based on conditional indepenencies. The thesis continues with Chapter 6, an
extensive simulation study where we test the accuracy and computational cost of our
algorithms.

Next, Chapter 7 gives a foundation for generalizing our previous PCBN inference ap-
proach to general network structures. We illustrate insights on how this can be done and
propose a detailed methodology. Lastly, this thesis provides some supportive properties
of arteries which are fundamental for both our thesis and the deeper understanding of
PCBNs.



2
Prerequisites

In this chapter we provide the necessary theoretical background needed later on in the
thesis. The concepts of graph theory that will be used in the rest of the thesis are
defined and notation is fixed. Additionally, we will define BNs and build towards the
introduction of Pair Copula Bayesian Networks.

All contents of section 2.1 have been extensively discussed and referenced in multiple
sources such as Bollobás [8],Daphne Koller [18],West [69] and Bondy, Murty, et al. [9].
These books provide a more in-depth analysis of Graph Theory than the one required
in this thesis and include all definitions and results discussed.

In section 2.2 we will cover the background information on Bayesian Networks, which
are discussed in detail in Daphne Koller [18], Jensen and Nielsen [39] and Holmes and
Jain [35].

Lastly, for section 2.3, we refer to the references [46, 4, 3, 40, 41, 36].

2.1. Graph Theory
Graphs are visual representations of the relationships between different objects repre-
sented by nodes or vertices. These relationships are visualized as lines which are called
edges or arcs and can be either directed or undirected.

Definition 2.1.1 (Graph). A graph is a pair G = (V,A) where:

• V is a non-empty finite set and,

• A ⊂ {(vi, vj); vi,∈ V, vi ̸= vj} ∪ {{vi, vj} ; vi, vj ∈ V, vi ̸= vj}.

The set V is the set of vertices/nodes while the set A is the set of arcs/edges. It is
assumed that ∀vi, vj ∈ V , of the possible arcs/edges (vi, vj), (vj, vi) and {vi, vj} at most
one can exist in A.

By taking subsets of V,A, we can get subgraphs of the original graph.

Definition 2.1.2 (Subgraph, Induced Subgraph). Let a graph G = (V,A).

5



6 Chapter 2. Prerequisites

• A graph G ′ = (V ′, A′) is called a subgraph of G if-f V ′ ⊆ V and A′ ⊆ A∩(V ′×V ′).
Then we write G ′ ⊆ G .

• Let V ′ ⊆ V . If A′ = A ∩ (V ′ × V ′) then the subgraph G ′ = (V ′, A′) is called an
induced subgraph of G and written as G [V ′].

Definition 2.1.1 highlights the distinction between arcs of the form {x, y} and those of
the form (x, y) for some x, y ∈ V . If only directed arcs are in a graph then there is a
natural order of nodes that can be established.

Definition 2.1.3 (Directionality). Let a graph G = (V,A).

• Edges of the form (x, y) for some x, y ∈ V are called directed arcs and denoted
as:

x→ y

Furthermore, if A ⊂ {(x, y); x, y ∈ V, x ̸= y}, then the graph G is called directed.
• Edges of the form {x, y} for some x, y ∈ V are called undirected arcs and denoted

as
x− y

Furthermore, if A ⊆ {{x, y}; x, y ∈ V, x ̸= y}, then the graph G is called undi-
rected.

v3v2 v4

v1

v5

(a) A directed graph.

v3v2 v4

v1

v5

(b) An undirected graph.

Figure 2.1: Two examples of graphs.

In figure 2.1 we can see two examples of graphs, one directed and one undirected.

Graphs in essence depict the way different elements are connected to each other. Conse-
quently it is of interest to look at the different ways two nodes of the graph are connected.
This is done through the notions of paths and trails.

Definition 2.1.4 (path, trail). Let a graph G = (V,A).

• A sequence of pairwise distinct vertices (v1, . . . , vn), v1, . . . , vn ∈ V, n > 1 is called
a path if vi ∈ V ∀i ∈ {1, . . . , n} and (vi, vi+1) ∈ A, ∀i ∈ {1, . . . , n − 1}. A path
is also denoted as:

v1 → v2 → · · · → vn

• A sequence of pairwise distinct vertices (v1, . . . , vn), v1, . . . , vn ∈ V, n > 1 is called
a trail if vi ∈ V ∀i ∈ {1, . . . , n} and either (vi, vi+1) ∈ A or (vi+1, vi) ∈ A,
∀i ∈ {1, . . . , n− 1}. A trail is also denoted as:

v1 ⇋ v2 ⇋ · · ·⇋ vn
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In either of the previous definitions, n is the length of the path or trail.

For undirected graphs, the definitions of trails and paths are equivalent to each other
and identical to those for directed graphs.

For instance, in figure 2.1a v1 → v2 → v3 → v5 is a path while v3 → v5 ← v4 is not,
because the direction of path v4 → v5 is violated. On the other hand, in the same graph
the trail v3 ⇋ v5 ⇋ v4 is viable. While paths need to follow the direction of arcs, trails
have no such limitation and only need there to be an arc between two nodes for the path
to continue, even if the direction is opposite to that of the arc.

Remark. It should be noted that there cannot be two adjacent identical nodes. This
stems from the restriction in definition 2.1.1 which implies (v, v), {v, v} /∈ A, ∀v ∈ V .

Often in the literature, trails are defined as paths that allow for multiple instances of the
same node to appear. However we opt to follow the definition of trails used in Daphne
Koller [18] instead.

Directed graphs offer a sense of direction and thus an order between adjacent nodes is
introduced. Due to the fact that this thesis focuses mostly on directed graphs, for the
following we will be assuming that the graphs are directed.

Definition 2.1.5 (Adjacent, Parent, Child, Ancestors and Descendants nodes). Let a
directed graph G = (V,A) and nodes v1, v2 ∈ V .

• If v1 → v2 or v1 ← v2 , then we say that the nodes v1, v2 are adjacent and write
v1 ⇋ v2.

• If v1 → v2 then v1 is a parent of v2 and v2 is a child of v1. The sets of parents
and children of a node v are denoted as pa(v) and ch(v) respectively.

• If there is a path from v1 to v2 then we say that v1 is an ancestor of v2 and v2 is a
descendant of v1. The sets of ancestors and descendants of a node v are denoted
as an(v) and de(v) respectively.

For example, in the graph represented by figure 2.1a, v1 is a parent of v3 and an ancestor
of v5, while v5 is a descendant of v1 and a child of v2. Also, we can see the following
sets: pa(v1) = ∅, pa(v2) = {v1}, ch(v1) = {v2, v3, v4}, an(v5) = {v1, v2, v3, v4}, de(v1) =
{v2, v3, v4, v5}.

v2

v1

v3

v4 v5

(a) Example of a graph that
contains the cycle (v2, v4, v5, v2).

v2

v1

v3

v4 v5

(b) Example of a graph that is
acyclical but contains the loop:

(v2, v4, v5, v2).

v1

v3

v2

v3

v4 v5

(c) Example of a polytree

Figure 2.2: Examples illustrating loops and cycles.

Definition 2.1.6 (Cycle, Chord, Loop, Polytree). Consider a graph G = (V,A).
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• A path (v1, . . . , vn), v1, . . . , vn ∈ V, n > 1 is called a cycle if v1 = vn. A graph G
is called acyclic if it contains no cycles.

• Let a trail (v1, . . . , vn), v1, . . . , vn ∈ V, n > 1. An arc vi ⇋ vj between two non-
consecutive nodes in the trail is called a chord of that trail.

• A trail (v1, . . . , vn), v1, . . . , vn ∈ V, n > 1 is called a loop if v1 = vn. A graph G is
called loopy if it contains loops.

• A graph G that does not contain loops is called a polytree.

It is noted that a cycle is by definition also a loop. This means that a polytree is by
extension also an acyclic graph. The converse is not true however. There can be examples
of acyclic graphs that are in fact loopy. Figure 2.2 illustrates three examples of networks
of which one contains a cycle, one is acyclic but loopy and one is a polytree.

We can distinguish different types of connections between nodes.

Definition 2.1.7 (Types of Connections). Let G = (V,A) be a directed graph and
v1 ⇋ v2 ⇋ v3 be a trail in G . Then we say that the trail is a:

• serial connection if either v1 → v2 → v3 or v1 ← v2 ← v3.

• diverging connection if v1 ← v2 → v3.

• converging connection if v1 → v2 ← v3.

For instance, in Figure 2.2b:

- v1 ⇋ v2 ⇋ v4 is a serial connection (v1 → v2 → v4).

- v2 ⇋ v1 ⇋ v3 is a diverging connection (v2 ← v1 → v3).

- v3 ⇋ v5 ⇋ v4 is a converging connection (v2 → v5 ← v4).

One of the most fundamental aspects of Bayesian Networks is the dependence reasoning
these connections offer which requires that cycles not be present in the graph. Hence our
family of graphs is restricted further to directed and additionally, acyclic graphs.

Definition 2.1.8 (Directed Acyclic Graphs). A graph G is called a Directed Acyclic
Graph (DAG) if it is both directed and acyclic.

Besides a parent-child, ancestor-descendant hierarchy of the nodes, it is also important to
introduce an order on the nodes of the graph. It makes sense that a ”good” order follow
the previously mentioned hierarchy of the nodes, and thus we come to the following
definition:

Definition 2.1.9 (Well-ordering). Let G = (V,A) be a DAG. A well-ordering of G <
is a total order in V for which:

v1 → v2 ∈ A⇒ v1 < v2, ∀v1, v2 ∈ V

The well ordering of a DAG is a very useful notion, but in further sections an order of
the parents of each individual node will also be needed.
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Definition 2.1.10 (Parental ordering). Let G = (V,A) be a DAG and v ∈ V . A
parental order <v of v is a total order on the parental set pa(v). For v′ ∈ V we also
define the following two sets:

pa(v ↓ v′) = {x ∈ pa(v) : x <v v
′}

pa(v ↑ v′) = {x ∈ pa(v) : v′ <v v}

v1 v2 v3

v4 v5

v7v6 v8

Figure 2.3: Example of a DAG illustrating d-separations.

An important property of BNs is that its nodes can be divided on subsets and one can
study whether two sets are separated by the third one.

Definition 2.1.11 (d-separation). Let G = (V,A) be a DAG and A, V,K ⊂ V disjoint.
We say that K d-separates A and B and write d − sepG (A,B|K) if for every trail
v1 ⇋ v2 ⇋ · · ·⇋ vn with v1 ∈ A, vn ∈ B there exists a node vi, i ∈ {2, . . . , n− 1} such
that either of the following holds:

• vi−1 → vi ← vi+1 (converging connection) and ({vi} ∪ de(vi)) ∩K = ∅.
• the connection at vi is not converging and vi ∈ K.

Each trail that satisfies one of the above conditions is said to be blocked by K.

If B = ∅ then d− sepG (A, ∅|K) for all A,K ⊂ V .

For instance, in the DAG seen in figure 2.1a, a few (not all) d-separations are:

d− sepG ({v1}, {v6} | {v4}) d− sepG ({v1, v4}, {v2, v3} | ∅)
d− sepG ({v7}, {v8} | {v5}) d− sepG ({v2, v3}, {v1, v4, v6, v7, v8} | {v5})

2.2. Bayesian Networks
BNs are composed of a DAG representing the relationships in the distribution specified
by the BN and the set of conditional probability tables (for discrete BNs) or the set of
conditional densities (for continuous BNs) of all nodes given their parents.

Definition 2.2.1 (Bayesian Network). A Bayesian network (BN) is a pair comprising
of:

• A DAG G = (V,A) where the nodes in V represent random variables Xv, v ∈ V ,
and the arcs represent direct dependencies that abide by the d-separations in the
DAG.
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• A collection
{
fv | pa(v) : ∀v ∈ V

}
of conditional density/mass functions of nodes

given their parents.

The DAG provides the information about conditional independencies in the joint dis-
tribution represented by the BN, through the concept of d-separation as presented in
definition 2.1.11. This result is crucial and can be formalized as: V1, V2, V3 ⊆ V and
X1,X2,X3 being the random vectors of the variables corresponding to the nodes in
V1, V2, V3 respectively:

d− sepG (V1, V2|V3) ⇐⇒ X1 ⊥⊥X2|X3

When examining the dependencies of a node given other nodes it often suffices to consider
a subset of nodes of the BN. Such subsets are called Markov Blankets.

Definition 2.2.2 (Markov Blanket). Let a BN G = (V,A) and a variable X ∈ V . A
Markov Blanket of X in a set V1 ⊂ V \{X} is a subset V2 ⊆ V1 such that:

d− sep(X,V1\V2|V2).

If the Markov Blanket of a node X is minimal, then it is referred to as the Markov
Boundary of that node.

Definition 2.2.3 (Markov Boundary). Let a BN G = (V,A) and a variable X ∈ V . A
Markov Boundary of X for V1 = V \{X} is a Markov Blanket V2 of X in V1 such that
for every other Markov Blanket V3 of X in V1:

V2 ⊆ V3.

It is well known (see e.g. [57]) that the Markov Boundary of a node X is the set of the
parents and children of X, as well as all the other parents of X’s children:

pa(X) ∪ ch(X) ∪
∪

Y ∈ch(X)

(pa(Y )\{X}) .

In what follows, we shall refer to a BN by G , where G is the DAG of the BN. There
is a clear, one-to-one relationship between the nodes of the graph and the variables.
The graph represents variables and describes the conditional independencies in the joint
distribution of these random variables. We will then treat vertices as the variables
themselves, meaning that the vertex set will be of the form V = {Xi, i = 1, . . . , n} and
the conditional densities needed to specify the BN will be denoted by fXi|pa(Xi).

For the sake of simplicity, whenever the variable in V is Xi, then the joint/conditional
densities fXi|Xj

(xi, xj) will instead be denoted as fi|j(xi, xj).

The joint density of all the variables of the BN, can be factorized as the product of all
the conditional densities of nodes given their parents.

Proposition 2.2.4. Let a BN G = (V,A). Then:

fX (x) =
∏
v∈V

fXv | pa(v)(xv |xpa(v))
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X2f2|1

X1

f1

X3 f3|12

X4 f4|3

Figure 2.4: A simple example of a BN.

Similarly, the probability mass function corresponding to the discrete BN is computed.

Using the proposition 2.2.4, we can write the density represented by the DAG in figure
2.4:

f1234(x1, x2, x3, x4) = f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2)f4|3(x4|x3)

A simple and popular family of Bayesian Networks is Discrete Bayesian Networks.
As the name suggests, in discrete BNs, all variables follow discrete distributions with
finite supports. The conditional distributions of nodes given parents conditional proba-
bility tables. For X ∈ V , the conditional probability table corresponding to that variable
takes the form of: [

P(X = x|pa(X) = xpa(X))
]
x∈X

An example of a Discrete BN is portrayed in figure 2.5 where every conditional density
has been replaced with its respective conditional probability table.

X3

X1 X2

X4

X5

X1 0 1
0.5 0.5

X2 0 1
0.7 0.3

X1 0 1
X2 0 1 0 1

X3
0 1 0.1 0.5 0.42
1 0 0.9 0.5 0.58

X2 0 1
X3 0 1 0 1

X4
0 0.3 0.5 1 0
1 0.7 0.5 0 1

X4 0 1

X5
0 0.4 0.5
1 0.6 0.5

Figure 2.5: A discrete BN and its conditional probability tables.

Another family of BNs with nodes that are continuous is the Gaussian Bayesian
Network (GBN) model. This model assumes that all conditional distributions in the
network fX|pa(X) are linear Gaussian distributed, which means that:

(X|pa(X) = y) ∼ N (β0 + βTy, σ2)

As a consequence, in figure 2.4 all conditional densities are Gaussian with a constant
variance and a linear regression of the parent variables as the mean. One example for
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the BN of the same figure could be:

f1(x1) = ϕ(x1|0, 1)
f2|1(x2|x1) = ϕ(x2|0.5 + 2x1, 0.25)

f3|12(x3|x1, x2) = ϕ(x3| − 1 + 0.2x1 − 0.7x2, 0.81)

f4|3(x4|x3) = ϕ(x4| − 0.5x3, 1)

A crucial property of GBNs is that all joint distributions in the network are Normally
distributed. We will discuss this property in greater detail along with its implications
in the next chapter, where we will be examining inference problems.

2.3. Pair Copula Bayesian Networks
The popularity of Discrete and Gaussian families of BNs is attributed to their attractive
properties. The computations in these models are relatively simple, as all marginal and
conditional distributions in these families belong to the same family. Both Discrete and
Gaussian BNs are characterized by the availability of efficient and scalable methods for
probabilistic reasoning and inference.

However, the assumption that all nodes are discrete or Gaussian is very restrictive.

The Pair Copula Bayesian Network is a model that utilizes bivariate copulas in order to
relax the Gaussianity assumption for continuous BNs. Bivariate Copulas are a rich family
of distributions and a powerful statistical tool used for dependence modeling between
variables. Through clever use of copulas, it is possible to decompose higher-dimensional
distributions into products of bivariate (conditional) copulas.

2.3.1. Copulas
Below we present the definition of a copula.

Definition 2.3.1 (Copula). A copula C : [0, 1]d → [0, 1] is a joint CDF of a d-
dimensional random vector with uniformly distributed marginal distributions. The den-
sity of the copula is c.

The use of copulas for modeling dependence between non-uniformly distributed variables
is motivated by the ability to transform any continuous variable into a uniform variable
through the use of its CDF function.

Theorem 2.3.2. Let X be a random variable with a continuous CDF F . Then:

F (X) ∼ U(0, 1).

As a consequence, for a random variable with a continuous CDF F , the (generalized)
inverse F−1 of the CDF is well defined and for V ∼ U(0, 1):

F−1(V ) ∼ F.

For a random variable Xi we denote its transformed counterpart as Ui = Fi(Xi).
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The ability to transform a random variable to a uniform variable is of paramount im-
portance for the application of copulas in practice. The following theorem connects
the definition of copulas with the general notion of joint CDFs irrespective of marginal
distributions.

Theorem 2.3.3 (Sklar’s Theorem). If F : Rd → [0, 1] is a joint CDF of a d-dimensional
random vector, there exists a copula C : [0, 1]d → [0, 1] such that:

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

In this case we will say that X1, . . . , Xd are joined by copula C.

If additionally Xi are continuous variables, then the copula C from Sklar’s theorem is
unique.

With Sklar’s theorem we can model the dependence between the variables independently
from their marginal distributions.

The theorem can be easily rewritten for joint densities, giving the relationship between
the joint density and the joint copula density.

Corollary 2.3.4. Let F : Rd → [0, 1] be an absolutely continuous joint CDF of a d-
dimensional random vector and C : [0, 1]d → [0, 1] the copula CDF with density c. If f
is the joint PDF of F and fi the marginal PDFs of F , then we have:

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

i=1

fi(xi).

Furthermore, we denote conditional copula CDFs and densities in the following way:

Ci|j(ui|uj) = P(Ui ≤ ui |Uj = uj),

ci|j(ui|uj) =
∂

∂ui

Ci|j(ui|uj).

Bivariate copula models have been rigorously studied and have a rich literature at-
tributed to them [42, 48, 47, 16, 40], and thus gained a lot of attention in many fields,
including finance [12].

Motivated by their modeling flexibility, incorporation of bivariate copulas in the con-
ditional probabilities in BNs is a natural step towards copula based BN modeling. To
accomplish this, it is essential to be able to decompose the expression of a multivariate
density function into one using only bivariate copula densities. More specifically, given
a node X in the network, we wish to decompose the conditional density:

fX|pa(X)(x|xpa(X))

For example, in figure 2.6, we wish to decompose the density f4|123.

This is achieved by assigning copulas to arcs of the graph such that one of them is
unconditional, then the next one is conditional on the first variable, the third conditional
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X1 X2 X3

X4 f4|123

14 24|1 34|12

Figure 2.6: An example illustrating a Bivariate copula decomposition of conditional densities.

on the first two etc. Joe [41] and Bedford and Cooke [5, 6]. This process requires
specification of the parental ordering <X of a variable X and assigning copulas according
to this order.

In the example of figure 2.6, we show a decomposition the density of interest,

f4|123(x4 | x1, x2, x3).

Given the parental ordering <4 such that X1 <4 X2 <4 X3 the factorization is:

f4|123(x4 | x1, x2, x3) = f4(x4)c14(u1, u4)c24|1(u2|1, u4|1|u1)c34|12(u3|12, u4|12|u1, u2),

where, based on the conditional independencies of the graph:

u2|1 := C2|1(u2|u1),

u4|1 := C4|1(u4|u1),

u3|12 := C3|12(u3|u1, u2)

and u4|12 := C4|12(u4|u1, u2).

For the general case, the following decomposition of the conditional density of a node
given its parents holds:

fX|pa(X)(x|xpa(X)) = fX(x)
∏

Y ∈pa(X)

cY,X|pa(X↓Y )(uY |pa(X↓Y ), uX|pa(X↓Y )|xpa(X↓Y )). (2.1)

where:

uY |pa(X↓Y ) := CY |pa(X↓Y )(y|xpa(X↓Y ))

and uX|pa(X↓Y ) := CX|pa(X↓Y )(x|xpa(X↓Y )).

As shown in the network of figure 2.6, we will denote the assignment of conditional
copula Cij|pa(i↓j) by writing ij|pa(i ↓ j) next to the arc it corresponds to.

Equation 2.1 implies that only copulas cY,X|pa(X↓Y ) are required for decomposing the
conditional densities of a BN into distinct bivariate copula models. Each of these models
corresponds to an arc in the graph, which is a very intuitive and elegant property that
makes PCBNs all the more attractive.

In the calculation of each conditioned copula density, the calculation of conditional
margins is required.
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In the presented example of figure 2.6 all v-structures are uncoupled, meaning that
there is no arc between the parents, which in-turn implies the independence between
any two parents of X4. Because of this, all copulas C12, C13, C23 can be assumed to be
the independence copula. With this in mind, the u-values are calculated as follows:

• u2|1 = u2 due to the independence between U1 and U2.
• u4|1 = C4|1(u4|u1) is computed using copula C14.
• u3|12 = u3 due to the independence between U1, U2 and U3.
• u4|12 =

∂
∂u2|1

C24|1(u2|1, u4|1|u1).

In the calculation of u4|12 we needed to compute the derivative of copula C24|1 with
respect to the margin u2|1. As we saw, the arguments of that copula were also conditional
margins, creating a recursion of such calculations. The definition of h-functions help
generalize this recursive calculation of conditional margins.

Definition 2.3.5 (h-functions). The first partial derivatives of a bivariate copula C(u, v)
are called h-functions:

hU,V (u, v) =
∂C(u, v)

∂v
and hU,V (u, v) =

∂C(u, v)

∂u
.

Therefore, for copula C joining the random variables U, V :

hU,V (u, v) = C(u|v),
hU,V (u, v) = C(v|u).

To extend h-functions for conditioned copulas and to illustrate how any given conditional
u value is calculated, if K is the conditioning set we have for each Y ∈ K and X /∈
K:

uX|K = FX|K(x|xK) = hX,Y |K−Y
(FX(x|xK−Y

), FY (y|xK−Y
)).

Going back to the example in figure 2.6, let us depict the calculation of u3|12. By
definition we have:

u4|12 = F4|12(x3 | x1, x2) = h4,2|1(u4|1, u2|1|u1)

where:

u4|1 = h4,1(u4, u1),

u2|1 = h2,1(u2, u1).

The values u1, u2, u4 are known and the h-functions h4,2|1, h4,1, h2,1 are the conditional
CDF’s corresponding to the copulas C42|1, C14 and the independence copula C12. If we
had an arc between X1 and X2 with a corresponding copula C12 we would use that
copula instead for the calculation of the h-function h2,1
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2.3.2. The model
Having stated the decomposition of conditional densities into bivariate copula densities
along with h-functions, we can proceed with the formal introduction of Pair-Copula
Bayesian Networks.

Definition 2.3.6 (Pair-Copula Bayesian Network). A Pair-Copula Bayesian Network
(PCBN) is the collection (G ,O,F ,C ) where:

• G = (V,A) is a DAG.
• O = {<v: v ∈ V } is the collection of all parental orders of G .
• F = {fv : v ∈ V } is the collection of the marginal distributions of all variables in

the network.
• C = {Cuv|pa(v↓u) : u→ v ∈ A} is the collection of copulas that are assigned to each

arc in A.

In contrast to the general case of BNs where individual arcs only indicate a parent-child
relationship, PCBNs specifically model the relationship between a node and each of its
parents.

Let us consider the graph structure of the BN of the made-up example in figure 1.1.
The variables are now continuous and we will use this as a PCBN presented in figure
2.7 to identify the forming of a hurricane in a specific geographic location. The relevant
variables are the current month (X1), Hurricane formation (X2), sea surface temperature
(X3), atmospheric pressure (X4), upper-level steering wind speed (X5) and atmospheric
moisture (X6).

X1

X3

X6

X4

X2

X5

13|2
23

24|3 25

34
36

46
|3

Figure 2.7: PCBN on hurricane formation prediction.

In this example, the density of the PCBN is given by:

f(x1, . . . , x6) =
6∏

i=1

fi(xi)c23(u2, u3)c25(u2, u5)c34(u2, u4)c36(u3, u6)

c13|2(u1|2, u3|2|u2)c24|3(u2|3, u4|3|u3)c46|3(u4|3, u6|3|u3).

For estimation purposes, the so called simplifying assumption is in practice assumed
to hold in equation 2.1, ignoring the term xpa(X↓Y ) and turning the equation to:

fX|pa(X)(x|xpa(X)) = fX(x)
∏

Y ∈pa(X)

cY,X|pa(X↓Y )(uY |pa(X↓Y ), uX|pa(X↓Y )). (2.2)
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This assumption however, is not required for the work of our thesis and we will not
incorporate it further.

The copulas in C are said to be specified by the PCBN. Copulas specified by the
PCBN include, besides the copulas in C , the independence copulas that are implied by
the d-separations in graph G . For example in figure 2.7, copulas C23, C46|3 ∈ C and the
independence copula C12 are all specified by the PCBN. On the other hand, the copula
C45 is not specified by the PCBN.

Remark. In order to be able to effectively work with a BN, we need to have an ana-
lytic expression of the conditional densities of nodes given their parents to be able to
calculate the network’s density. However, it has been shown that there are two families
of network structures that, if present, conditional density calculation is impossible in a
PCBN without the need of integration. This is due to the reliance on recursive calcu-
lation of h-functions which, in some structures requires calculation of copulas that are
not specified by the PCBN.

2.3.3. Restricted PCBNs
Horsman [36] has shown that there are only two problematic structures that always
necessitate integration. It is proven that no such structure is present if and only if there
exists a collection of parental orders O for which calculating the density of a network
without integration is possible. Moreover, an algorithm is presented that allows to choose
the parental order which avoids integration in density evaluation or sampling.

The first problematic structure is called an active cycle.

Definition 2.3.7 (Active Cycle). Let G = (V,A) be a DAG. If the loop x← v1 ⇋ · · ·⇋
vn → x is present in G for n > 2, we call this path an active cycle if the following
conditions hold:

1. all connections in (v1, . . . , vn) are either diverging or serial.
2. (x, v1, . . . , vn, x) contains no chords

The second structure is called an interfering v-structure.

Definition 2.3.8 (Interfering v-structures). Let G = (V,A) be a DAG. Five nodes
v1, v2, v3, v4, v5 ∈ V , are said to form an interfering v-structure if:

• {v3, v4} ∈ pa(v1) and {v4, v5} ∈ pa(v2)

• {v3, v5} ∈ pa(v4)

Both structures can be seen in figure 2.8. In the active cycle of figure 2.8a, in order
to calculate the density of the network we would need to calculate the decomposed
conditional density:

f6|45(x6|x4, x5) = f6(x6)c46(u4, u6)c56|4(u5|4, u6|4|u4)

However, for the calculation of u5|4 = h5,4 we need the copula C45 which is not specified by
the PCBN. In order to evaluate this copula using the information specified in C we would
need to resort to integration. Integration for calculating the density is something we wish
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X1

X2 X3

X4 X5

X6

13
13

24 35

46 56
|4

(a) Active Cycle.

X1

X3

X2

X5X4

C
1

14

C 2

25|3

34
|1 35

(b) Interfering V-structure.

Figure 2.8: Problematic structures.

to avoid, however. Having a ready, analytic expression of the density of the PCBN is an
essential condition for ensuring computational efficiency of PCBN applications.

In the interfering v-structure of figure 2.8b, the reasoning is similar to that of the active
cycle. In order to assess which of the copulas C1 or C2 is unconditional, we must focus on
the v-structures formed at the nodes X4 and X5. In either of their conditional density
decompositions we have a copula density containing both of their respective parents:
c34|1 and c25|3.

For the evaluation of these two densities the following conditional marginals need to be
calculated through h-function recursion:

u3|1 = h1,3(u1, u3),

u2|3 = h2,3(u2, u3).

This means that both C1 = C13 and C2 = C23 are required. However, in a PCBN
both copulas can’t be specified due to one of the two being conditioned. If for instance
we choose C1 = C13 and C2 = C23|1, then we would need to calculate C23|1 though
integration.

Therefore, in order to be able to calculate all conditional margins and in extent the
PCBN’s density without integrations, we restrict the model to restricted DAGs, mean-
ing DAGs that do not feature either active cycles or interfering v-structures.

If a PCBN has a restricted DAG, and the collection of parental orderings O allows for the
direct calculation of all conditional margins, then it is called a restricted PCBN.

2.3.4. PCBN Sampling
A basic utility of PCBNs is the ability to simulate the PCBN by obtaining samples of
the nodes of the network. These samples showcase the dependence properties implied
by the copulas in C and the dependence structure of the DAG.

First we will illustrate how one may sample from simpler copula structures. In the most
primitive scenario, we are interested in sampling from a single copula, conditioned on
the observation of one of its margins. Let us denote this copula as C12(u1, u2) and let
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U1

U2

12

(a) Simple Copula Sampling.

U1 U2 U3

U4

14 24|1 34|12

(b) Sampling a node from its
parents.

Figure 2.9: Copula sampling examples.

U1 and U2 be the variables being joint by C12. We can see an representation of this
dependence structure in figure 2.9a. We wish to sample from the distribution:

U1|U2 = u2

We may do so by introducing a uniform sample U ∼ U(0, 1) and obtain our target sample
as:

û1 = C−1
12 (U |u2) = h−1

12 (U, u2)

Let us now consider a variable with multiple parents whose density has been factorized
according to equation 2.1, the example of figure 2.9b can be considered. In this scenario,
to sample u4 given its parents we introduce a uniform sample U ∼ U(0, 1) and obtain
our target sample through the following h-function recursion:

û4 = h−1
14 (u1, h

−1
24|1(u2|1, h

−1
34|12(u3|12, U |u1, u2)|u1))

Note that in this simple example, due to independence we have u2|1 = u2 and u3|12 = u3.
This may not be the case in other scenarios however.

For simulating the PCBN, we sample all roots in the network from the uniform U(0, 1)
distribution independently. Then, at each iteration we sample the next node according
to the well-ordering of the PCBN, given the samples of its parents. At the end of the
sampling procedure, we transform all samples to their respective marginal distributions
in F using the corresponding quantile functions.

Let us show this using the PCBN of figure 2.7. The steps are the following:

Step 1 The PCBN has two roots, X1, X2. Therefore we sample V1, V2
iid∼ U(0, 1) and set

the root samples as û1 = V1, û1 = V2.
Step 2 Next node U3 is sampled and its parents are U1 and U2. Using V3 ∼ U(0, 1), we

obtain our sample from the recursion:

û3 = h−1
23 (u2, h

−1
13|2(u1|2, V3|u1))

Step 3 Next node U4 is sampled and its parents are U2 and U3. Using V4 ∼ U(0, 1), we
obtain our sample from the recursion:

û4 = h−1
34 (u3, h

−1
24|3(u2|3, V4|u3))
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Step 4 Next node U5 is sampled and it has one parent U2. Using V5 ∼ U(0, 1), we obtain
our sample from the recursion:

û5 = h−1
25 (u2, V5)

Step 5 Lastly, U6 is sampled and its parents are U3 and U4. Using V6 ∼ U(0, 1), we obtain
our sample from the recursion:

û6 = h−1
36 (u3, h

−1
46|3(u4|3, V6|u3))

This concludes our review on PCBN simulation. There is a plethora of literature that
delves into more details on copula sampling, including sampling from vine structures.
For more information on copula sampling the reader can refer to Kurowicka and Cooke
[46].



3
Established Methods in Bayesian

Network Inference

Inference problems of BNs have been studied extensively in the past, with proposed
algorithms covering a vast range of mathematical approaches and graph sub-families
[54, 65]. In this section we will delve into the inference methodologies that are most
relevant to our thesis and which help us highlight the advantages and disadvantages of
the proposed algorithm.

Whenever there is an observation of a random variable X, we call this assignment ev-
idence. We denote the set of evidence nodes as E and e as the observations of the
evidence nodes. This new information involving variables of the BN entails that certain
probability distributions of the remaining variables will change when conditioned on the
evidence. The calculation of the conditional (on the observed nodes) joint or marginal
probability distributions in the BN is called inference, conditionalization or belief
updating.

It has been shown that the general problem of probabilistic inference in BNs is NP hard
[14]. Furthermore, this result has been expanded to include the problem of approxi-
mate probabilistic inference [17]. It is thus not possible to find an ”optimally efficient”
algorithm for either the exact calculation or approximate inference of conditional distri-
butions in the network. This is the reason why researching approximative algorithms
is important; while exact algorithms may be impractical in many applications due to
their computational complexity, approximate algorithms can offer a trade-off between
efficiency and accuracy.

In the general case of BN G = (V,A) inference, we are interested in calculating the
conditional probability/density:

fXQ|XE
(xQ|xE)

Where XQ,XE are distinct random vectors consisting of variables in V . This implies a
partition {Q, I, E} of V where:

• Q corresponds to the set of variables which we are interested to find a joint condi-
tional density of, also called query variables.

21
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• E corresponds to the set of evidence variables of which we have observed values.
• I corresponds to the set of variables which are neither query nor evidence, meaning

that I = V \(Q ∪ E). We call these variables intermediate.

Variables that belong to Q ∪ E will also be called nodes/variables of interest.

X3

f3|12

X1

f1

X2

f2

X4

f4|23

X5 f5|4

(a) Example of a BN.

X3

f3|12

X1

f1

X2

f2

X4

f4|23

X5 f5|4

(b) Notation of the inference
problem f3|2,5.

Figure 3.1: Figures illustrating a BN and the notation related to conditionalization.

For example, let us consider the BN structure of figure 3.1a. An example of an inference
problem based on this BN could be:

f3|25(x3|0, 1) (3.1)

in which case Q = {X3}, I = {X1, X4}, E = {X2, X5} with e = {0, 1}.

In the graphical representation of the BN, we visualize the inference problem by assign-
ing thicker lines to variables in Q and using diamond shapes for variables in E. The
intermediate nodes, i.e. those in I are the only ones that do not change shape. We can
see an example of this representation in figure 3.1b.

Yuan and Druzdzel [71] cover a great number of methodologies that are available for BN
inference. The authors mention that the algorithms can be divided between those that
address the task of exact inference and those that find approximate solutions. Daphne
Koller [18] provides a detailed overview of some of the basic methodologies that have
been studied.

The two algorithms that we will discuss are Variable Elimination and Peal’s Algorithm
for Belief Propagation. The choice of these algorithms is motivated by their fundamental
relevance in our own algorithm for PCBN inference, which will be presented in chapter
4.

3.1. Variable Elimination
Variable Elimination is a simple, yet effective method of exact inference in a BN, first
proposed by Zhang and Poole [73]. Daphne Koller [18] illustrates the sum-product algo-
rithm of Variable elimination. Inference is conducted by marginalizing the XI variables
from the network density fV through integration to obtain fQ,E. The same procedure is
done for the variables XE to obtain fE.

Then, using the definition of conditional probability we can obtain:
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fQ|E (xA|xE) =
fQ,E (xA,xE)

fE (xE)
(3.2)

In the most basic approach, marginalization by integrating the density directly can
become exponentially expensive for large and connected networks. Variable elimination
optimizes the integration procedure by focusing on integrating only the relevant factors
in the factorization of the BN density as in proposition 2.2.4. In Variable Elimination,
only the factors containing the variable being eliminated are integrated.

The Variable Elimination algorithm for only one variable includes the notation of fac-
tors ϕ, functions that represent the conditional distributions corresponding to the BN
factorization. For the BN factorization we have the set of factors:

Φ = {ϕX := fX|Pa(X)}X∈V .

As we only need to eliminate one intermediate variable Y , we need to define a factor τ
by integrating over Y from the product of all factors that contain Y .

τ =

∫
Y

∏
ϕX∈Φ:Y ∈DX

ϕX dy, where DX = {X} ∪ pa(X)

The density of the model without Y will be:

fV \Y = τ ·
∏

ϕX∈Φ:Y /∈DX

ϕX

By repetitive use of this algorithm we can eliminate multiple variables in a network
and subsequently calculate any joint distribution and solve inference problems through
equation 3.2. There are also many extensions of this algorithm such as Message Passing
in Clique Trees [18] and the Clustering Algorithm [50].

3.2. Pearl's Belief Propagation Algorithm
The next algorithm that we will analyze is one of the most monumental methodologies
for BN inference as it provides foundation for many other algorithms and introduces a
unique approach for inference problems. This is the Belief Propagation for polytrees
proposed by Pearl [57]. This algorithm is also referred to as Pearl’s algorithm, named
after the author.

Pearl’s algorithm assumes that the DAG is a polytree, thus not containing loops. Belief
Propagation treats evidence updating as signals in the network, to be propagated towards
nodes of interest through the trails in the polytree. The restriction to polytrees is an
essential requirement for belief propagation due to potential conflict between signals
created by merging signals that take different trails to reach the same node.

In belief propagation we utilize causal and diagnostic parameters. These depict
the information of the evidence arriving at the target node from either its parents or
its children. The casual parameter of a node X is written as π(x) while its diagnostic
parameter as λ(x).
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We divide the evidence vector into E+
X = E∩an(X) and E−

X = E∩de(X) which indicate
the evidence variables that are ancestors or descendants of X respectively. Given these,
the parameters can be defined by:

λ(x) = fE−
X |X(e

−
X |x) and π(x) = fX|E+

X
(x|e+

X).

Given these signals the conditional density that we want to arrive at can be written
as:

fX|E(x|e) = απ(x)λ(x),

where α is a normalizing constant.

Let X be any node in the polytree with parents U = {U1, . . . , Un} and children C =
{C1, . . . , Cm}. We can further decompose the causal and diagnostic parameters into
conditional probabilities corresponding to each of the children and the parents.

First we decompose the evidence into evidences that arrive to X from each of the parents
and children as E−

X = {E−
X,C1

, . . . ,E−
X,Cm
} and E+

X = {E+
U1,X

, . . . ,E+
Un,X
}, respectively.

Then, we can define the factors of the target decomposition which are called causal and
diagnostic messages:

• The diagnostic message that each child Ci sends to X is:

λCi
(x) = fE−

X,Ci
|X(e

−
X,Ci
|x).

• The causal message that each parent Ui sends to X:

πX(ui) = fUi|E+
Ui,X

(ui|e+
Ui,X

).

A graphical representation of messages being sent between X and its children and parents
is illustrated in figure 3.2.

X

. . .

. . .

UnU1

CmC1

λ
X (u

1 ) λX
(u

n
)

λC
1
(x
) λ

C
m (x)

π
X (u

1 ) πX
(u

n
)

πC
1
(x
) π

C
m (x)

Figure 3.2: Parents and children of X.

The decomposition of the diagnostic parameter as an expression of messages is:

λ(x) = fE−
X |X(e

−
X |x) =

m∏
i=1

fE−
X,Ci

|X(e
−
X,Ci
|x) =

m∏
i=1

λCi
(x). (3.3)
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On the other hand, the decomposition of the causal parameter is:

π(x) = fX|E+
X
(x|e+

X)

=

∫
U1,...,Un

fX|pa(X)(x|u)fpa(X)|E+
U1,X

,...,E+
Un,X

(U |e+
U1,X

, . . . , e+
Un,X

) du1 . . . dun

=

∫
U

fX|pa(X)(x|u)
n∏

i=1

πX(ui) du.

(3.4)

Subsequently, the conditional density incorporating both types of information is:

fX|E(x|e) = α

(
m∏
i=1

λCi
(x)

)(∫
U

fX|pa(X)(x|u)
n∏

i=1

πX(ui) du

)

Each of the messages requires derivation. To keep notation clear, for updating we always
denote as X the node that sends the message. For calculating the diagnostic and causal
messages, it is derived that:

πCi
(x) = α1

∏
k ̸=i

λCk
(x)π(x), (3.5)

λX(ui) = α2

∫
X

λ(x)

∫
U\{Ui}

fX|pa(X)(x|u)
∏
k ̸=i

πX(uk) du−idx. (3.6)

Where α1, α2 are normalizing constants. The derivation of these formulas, while simple,
does not fall under the scope of this thesis. However, an easy way to intuitively capture
the logic behind them is by looking at figures 3.3a,3.3b. For calculating λX(ui) we need
to join the diagnostic parameter λ(x) that arrives to X from below with the causal
messages πX(uk) that arrive individually from each of the parents of X except Ui. In
order to join the messages we need to integrate first the rest of the parents of X and
lastly, having joined the signals through P(x|pa(x)), join the diagnostic parameter and
integrate X.

For the causal message calculation, the case is simpler. We simply need to join the
causal parameter of X with all of the diagnostic messages that arrive to X from each of
its children except Ci.

Using Pearl’s algorithm for inference with evidence E is done through the following
steps:

1. Initialization: In this step, all peripheral nodes (roots, leafs and evidence nodes)
are activated in the following way:

• For X = e ∈ E we set λ(x) = π(x) = 1 if-f x = e and 0 otherwise.
• For X being a root node we set π(x) = fX(x), the prior probability.
• For X being a leaf node we set λ(x) = 1 and then normalize.
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X
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U−iUi
λ
X (u
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λ(x)

πX
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k
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(a) Diagnostic message calculation.
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U

E−iCi

λ
C
E (x)

π(x)

πC
1
(x
)

(b) Causal message calculation.

Figure 3.3: Illustration of Diagnostic and Causal belief propagation.

2. Bottom-up propagation: A node X calculates the new diagnostic messages
λX(ui) to be sent to the parents, using the messages that X has received from
both its children and its other parents.

3. Top-down propagation: A node X calculates the new causal messages πCi
(x)

to be sent to its children, using the messages that X has received from both its
parents and its other children.

4. Iteration: Steps 2 and 3 are iterated for all nodes until all causal and diagnostic
parameters are calculated:

• If all causal messages that arrive to X are known, calculate the causal pa-
rameter π(x) using equation 3.5.

• If all diagnostic messages that arrive to X are known, calculate the diagnostic
parameter λ(x) using equation 3.6.

• If the causal parameter π(x) has been calculated for X along all the diagnostic
messages that arrive to X, except perhaps that of one of X’s children Y ,
calculate the causal message from X to Y : πY (x).

• If the diagnostic parameter λ(x) has been calculated for X along all the
causal messages that arrive to X, except perhaps that of one of X’s parents
Z, calculate the diagnostic message from X to Z: λX(z).

Pearl’s Belief Propagation Algorithm has served as a fundamental tool in BN inference.
The algorithm’s significance extends beyond its ability to provide exact inference in
polytrees, as it has provided the scientific community with an alternative formal math-
ematical foundation for tackling BN inference problems.

Its advantages over Variable Elimination include the fact that in sparse networks it’s
performance is significantly superior and that it is possible to tackle many inference
problems at the same time. For instance, by continuing the message propagation in the
previous example for one more iteration, f1|25 and f4|25 are also calculated, whereas in
Variable Elimination we would need to go through the whole process once per required
conditional probability.

Additionally, Pearl’s algorithm can easily take advantage of parallelized computations
to boost its efficiency exponentially with respect to the available CPU threads.
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Remark. In spite of the algorithm’s significance, there are certain problems that should
be addressed.

1. The algorithm does not account for the BN’s structure and conditional indepen-
dencies present in the model. Consider the inference problem illustrated by figure
3.4. In this scenario, due to X8 ⊥⊥ X9|X1, it is not required for pearl’s algorithm
to wait for the diagnostic message to arrive to X1 before it propagates towards X8.
In larger graphs this problem may become even more evident

X1X2 X3

X5

X7

X4

X8

Figure 3.4: Example of a BN where Pearl’s Algorithm is inefficient.

2. The algorithm propagates the messages away from the roots, leafs and evidence,
but not only towards the variables in XQ. The previous example showcased this
behavior on the last steps, where we calculated π4(x3) and π(x4), which are not
useful for the inference problem at hand. In bigger and more connected BNs, this
blind propagation results in exponential loss of performance.

3. By not incorporating factors as in Variable Elimination, Pearl’s algorithm imple-
ments integration in a non-strategic way. Each variable is integrated once per
parent in the calculation of the diagnostic message towards that parent. Even
more costly is the integration over all the combinations of parental values in the
calculation of the causal parameter through equation 3.4. These combinations are
exponential in the number of parents and this is why ”if there are more than four
or five parents, approximation techniques must be invoked that make use of the
special structure of the link matrix fX|pa(X)(x|u)”, Pearl [57, p.183].

4. It is impossible to calculate joint conditional probabilities through Pearl’s algo-
rithm. This means that the random vector XQ can only be one dimensional.
Variable Elimination, on the other hand, is able to calculate all types of inference
problems.

5. The requirement that the graph model be a polytree is a very significant restriction.
While the existence of large loops in graphical models may not always be intuitive,
this is not often the case with triangles, which are also loops.

An extension of Pearl’s algorithm that works in general BN structures is Loopy Belief
Propagation. This method of belief propagation is an approximative algorithm has been
discussed by Murphy, Weiss, and Jordan [53]. When loops are present in the BN, Pearl’s
algorithm produces endless circulation of propagating signals through each loop. Dis-
regarding this problem, Loopy Belief propagation employs the algorithm consecutively
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in hopes of the signals converging to an equilibrium which is equivalent to the true
posterior probability.

In the previous example, if we had kept the BN in figure 3.1 without removing the edge
X2 → X4, due to the loop (X2, X3, X4) we would continuously be re-evaluating the
messages:

λ4(x2), λ4(x3)λ3(x2), π4(2), π4(3), π3(2),

along with the parameters:

π(x3), π(x4), λ(x2), λ(x3).

General convergence of loopy signals seems to be the case in BNs according to empirical
results. However, it has been shown that Loopy Belief Propagation is not consistent
as there have been results that illustrate convergence to the wrong posteriors[53]. It
is also shown that for BNs with the same DAG structure, convergence to the correct
distribution depends on the parameters chosen for the conditional distributions in ways
that research has not been able to infer thus far.

The number of available BN inference algorithms is vast, with extensions of Pearl’s
Belief Propagation Algorithm such as Localized Partial Evaluation [21] which works in
tandem with the Annihilation/Reinforcement algorithm [66, 67], as well as distinctly
alternative algorithms like Bounded Conditioning method [37]. Some other algorithms
exist such as an approximative extension of the clique tree propagation algorithm [44]
and a proposed algorithm by Moral, Rumi, and Salmerón [52] for BNs with Mixtures of
Truncated Exponentials.

3.3. Gaussian Bayesian Networks
The Gaussian Bayesian Network (GBN) model is a continuous BN model that assumes
that all conditional distributions in the network fX|pa(X) are linear Gaussian. This means
that:

(X|pa(X) = y) ∼ N (β0 + βTy, σ2)

For pa(X) ∼ N (µp,Σp), it follows that:

• µX = β0 + βTµp

• σ2
x = σ2 + βTΣpβ

• σX,Yi
=
∑n

j=1 βj (Σp)i,j

Using these equations we can directly calculate the joint distribution of all the variables
in the GBN which would be a multivariate Gaussian distribution N (µ,Σ). Thus, by
utilizing the conditional distribution formulas for multivariate Gaussian distributions we
can tackle any inference problem. Given a partition {X1,X2} of V and:

µ =

Ç
µ1

µ2

å
and Σ =

ñ
Σ11 Σ12

Σ21 Σ22

ô
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Then the conditional distribution of X1|X2 = x2 is multivariate Gaussian with param-
eters:

µ′ = µ1 +Σ12Σ
T
22(x2 − µ1)

Σ′ = Σ11 −Σ12Σ
T
22Σ21

GBNs are very attractive in that they offer an extremely efficient and simple approach
to inference problems, albeit to the expense of severely restricting the BN’s conditional
distributions to only allowed to be linear Gaussian. While this strict reliance on linear
Gaussian conditional distributions turns the GBN approach away from the goals of this
thesis, the GBN will serve as a point of reference for testing our algorithm.

A notable extension of GBNs are Conditional Gaussian Bayesian Networks (CG BNs).
CG BNs are a a family of hybrid BNs that extend the theory of GBNs to incorporate
some discrete variables [33, 51, 10, 15].

In CG BNs the restriction is that continuous parents cannot have discrete children, thus
all discrete variables appear ”before” the continuous. The conditional distributions of
continuous variables are once again linear Gaussian, while the conditional distributions
of discrete variables given their (only discrete) parents are multinomial. Extensions
relaxing these assumptions exist, however it is not possible to conduct inference in such
models.

In contrast, multiple algorithms exist for CG BNs including Most Probable Explanation
(MPE) approaches such as the Viterbi Algorithm, with some restrictions on the inference
problem [23] and Maximum A Posteriori (MAP) approaches [58, 59].

We deem however that CG BNs restrict both the distributions and the network structure
too much, hence we will not analyze any of the CG BN methodologies. This thesis aims
to provide an inference methodology that is applicable to PCBNs, an extremely flexible
family of BNs which is not bound by assumptions such as that of CG BNs.

3.4. Applications
In this subsection we will illustrate in practice how Variable Elimination, Pearl’s Algo-
rithm and Gaussian Bayesian Networks are applied.

The theoretical foundations of Variable Elimination and Pearl’s Algorithm in Belief
Propagation apply for both discrete and continuous BNs. However, their application as
exact inference methodologies are mostly restricted to discrete variables. This is because,
in the case of discrete BNs, the integrations of each respective algorithm are much easier
to evaluate because they become summations. On the other hand, in many cases of
continuous BNs, it is not possible to evaluate those integrals without approximation.
Therefore, for the sake of simplicity we chose to show applications of both of these
algorithms in discrete BNs.

A very common approach to inference problems in continuous BNs is Discretization.
This is one of the most common techniques in which all continuous variables have their
supports partitioned in order to become discrete. Thus, the continuous BN inference
problem becomes a discrete one.
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Due to the simplicity of this approach, Discretization has been studied extensively [20, 13,
24, 45, 22, 55]. Subsequently, Discretization algorithms were used in most commercial
BN tools [49]. However, issues arise such as choosing an optimal cardinality of the
partitions. Furthermore, in larger and more connected networks, loss of information
from the discretization of the variables can propagate through the network and become
quite significant.

3.4.1. Example of Variable Elimination
In figure 3.5 we have an graphical representation of a discrete BN inference problem
inspired by the one in figure 3.1, with included conditional probability tables. We want
to solve the inference problem X3|X2 = 0, X5 = 1 or equivalently find:

f3|2,5(x3|0, 1). (3.7)

X3

X1 X2

X4

X5

X1 0 1
0.5 0.5

X2 0 1
0.7 0.3

X1 0 1
X2 0 1 0 1

X3
0 1 0.1 0.5 0.42
1 0 0.9 0.5 0.58

X2 0 1
X3 0 1 0 1

X4
0 0.3 0.0.5 1 0
1 0.7 0.5 0 1

X4 0 1

X5
0 0.4 0.5
1 0.6 0.5

Figure 3.5: A discrete BN in the context of the inference problem f3|2,5.

The factorization of the network PMF can be rewritten in factor terms as:

P(x1, x2, x3, x4, x5) = f5|4(x5|x4)f4|23(x4|x2, x3)f3|12(x3|x1, x2)f2(x2)f1(x1)

=: ϕ5(x4, x5)ϕ4(x2, x3, x4)ϕ3(x1, x2, x3)ϕ2(x2)ϕ1(x1).

As a first step we shall eliminate variable X4. Only factors containing this variable are
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needed for the integration and we calculate:

ϕ4(x2, x3, x4)ϕ5(x4, x5) =

X2 X3 X4 X5 ϕ4ϕ5

0

0
0 0 0.12

1 0.18

1 0 0.35
1 0.35

1
0 0 0.2

1 0.3

1 0 0.25
1 0.25

1

0
0 0 0.4

1 0.6

1 0 0
1 0

1
0 0 0

1 0

1 0 0.5
1 0.5

.

Then we calculate the new factor:

τ1(x2, x3, x5) =
∑
x4

ϕ4(x2, x3, x4)ϕ5(x4, x5) =

X1 X2 X4 τ1

0
0 0 0.47

1 0.53

1 0 0.45
1 0.55

1
0 0 0.4

1 0.6

1 0 0.5
1 0.5

.

Finally, the reduced PMF takes the form:
f1235(x1, x2, x3, x5) = τ1(x2, x3, x5)ϕ3(x1, x2, x3)ϕ2(x2)ϕ1(x1).

Similarly, we can sum over the values of X1 to find f235(0, x3, 1) and once more sum over
values of X3 to find f25(0, 1). By combining the last two PMFs we get the conditional
probability of the inference problem 3.7:

f3|25(x3|0, 1) = 0.7631{x3=0} + 0.2371{x3=1}.

Despite its primitive nature, the performance of variable elimination is a significant im-
provement compared to just integrating the entire density over all values. Keeping a
factor structure means that we avoid many unnecessary calculations. In our example,
for the first step of Variable Elimination, we required 24 calculations, while if we where
to integrate the whole density over X4 we would need 48 calculations. The algorithm
is relatively consistent and the main aspects that limit its efficiency are the number
of variables and the number of values each variable can take. Furthermore, Variable
Elimination does not restrict the graph structure of the BN, as opposed to other algo-
rithms.
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3.4.2. Example of Pearl's Algorithm
The previous example where we applied Variable Elimination assumed a BN whose DAG
was not a poly tree, as it contains the triangular loop (X2, X3, X4) (see in figure 3.5).
Therefore, for the application of Pearl’s Algorithm we need to simplify the network
by removing an edge. Figure 3.6 illustrates a BN where we have removed the edge
X2 → X4.

X3

X1 X2

X4

X5

X1 0 1
0.5 0.5

X2 0 1
0.7 0.3

X1 0 1
X2 0 1 0 1

X3
0 1 0.1 0.5 0.42
1 0 0.9 0.5 0.58

X3 0 1

X4
0 0.4 0.5
1 0.6 0.5

X4 0 1

X5
0 0.65 0.5
1 0.35 0.5

Figure 3.6: A discrete BN.

Let us use the algorithm to solve the same inference problem f3|25(x3|0, 1) for the network
in figure 3.6. The evidence in this case is E = {X2 = 0, X5 = 1}.

Step 1: In the initialization step we set:

– π(x2) = λ(x2) = 1{x2=0} and π(x5) = λ(x5) = 1{x5=1}.

– π(x1) = f1(x1).

Step 2: Diagnostic messages:

λ5(x4) = β
∑
x5

λ(x5)f5|4(x5|x4) = 0.421{x4=0} + 0.581{x4=1}.

Step 3: Causal messages::
π3(x1) = βπ(x1) = f1(x1),

π3(x2) = βπ(x2) = 1{x2=0}.

Then we can calculate the causal parameter of X3 and the diagnostic parameter
of X4:

π(x3) =
∑
x1,x2

f3|12(x3|x1, x2)π3(x1)π3(x2) = 0.751{x3=0} + 0.251{x3=1},

λ(x4) = λ5(x4) = 0.411{x4=0} + 0.591{x4=1}.

Step 2: Second iteration:

λ4(x3) = β
∑
x4

λ(x4)f4|3(x4|x3) = 0.521{x3=0} + 0.481{x3=1}.
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Step 3: Second iteration:

π4(x3) = βπ(x3) = 0.751{x3=0} + 0.251{x3=1}.

Then we can calculate the causal parameter of X4 and the diagnostic parameter
of X3:

π(x4) =
∑
x3

f4|3(x4|x3)π4(x3) = 0.451{x4=0} + 0.551{x4=1},

λ(x3) = λ4(x3) = 0.521{x3=0} + 0.481{x3=1}.

Now we have both the causal and diagnostic parameters of X3 ready, meaning that we
can calculate:

P(X3 = x3|E) = αλ(x3)π(x3) = 0.7651{x3=0} + 0.2351{x3=1}.

Note that this result differs from the one obtained by variable elimination. This is clearly
due to the removal of arc X2 → X4, changing the BN.

3.4.3. Example of Gaussian Bayesian Network
To illustrate how inference is tacked for GBNs we will use a simpler DAG structure.

X1 X2 X3

Figure 3.7: Example of a GBN.

for the conditional densities of the network we assume the following:

X1 ∼ N (1, 1)

X2|X1 = X1 ∼ N (0.5X1 + 2, 0.25)

X3|X2 = X2 ∼ N (X2 − 1, 2)

From the conditional distributions we can directly derive that the distribution of the ran-
dom vector (X1, X2, X3) is multivariate Gaussian (X1, X2, X3) ∼ N (µ,Σ) where:

µ =

Ñ
1

2.5
1.5

é
and Σ =

 1 0.5 0.5
0.5 0.5 0.5
0.5 0.5 2.5


Using the conditional formula of joint normal distributions we can directly derive that:

X2|X1 = 0, X2 = 2 ∼ N (2.11, 0.22)

As we saw, the implementation of GBNs is very effective and efficient. We chose a three
node network for the sake of simplicity. For larger networks the process would be equally
as simple.
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3.5. Stochastic Sampling
To address the shortcomings of the aforementioned methodologies and their extensions,
we chose to conduct inference through sampling. While maintaining core aspects of
both Variable Elimination and Belief Propagation, sampling allows for many additional
benefits including advanced parallelization and granularity, as well as the ability to
propagate information in the presence of loops.

A recurring technique used in existing sampling-based inference algorithms is that of
Importance Sampling, a strategy for calculating an expected value of a distribution
using samples from a different distribution.

Let f, g be two probability densities corresponding to two distributions with the same
support X . Furthermore, assume that both distributions have finite moments and that
we are able to sample from g. Then, if h is an integrable function and wish to evaluate
the integral: ∫

X
h(x)f(x)dx = Ef (h(x)f(x)) ,

we can instead use Monte-Carlo simulation to estimate the value:

Eg

Å
h(X)

f(X)

g(X)

ã
.

In importance sampling, f is referred to as the target function/distribution, while g
is called the importance function/distribution. To evaluate the integral we choose
samples from the density g, also called importance samples, and take the sample
average of the expression h(X)f(X)

g(X)
for all the importance samples. The factor f(x)

g(x)
is

also referred to as the weight of each importance sample and in measure theoretic terms
it is the Radon-Nikodym derivative of f with respect to g.

For more details on Importance Sampling and Stochastic Sampling methodologies we
refer to Glasserman [29],Robert, Casella, and Casella [61] or Gelman et al. [27].

Stochastic Sampling algorithms have been used before in BN inference problems, albeit
the most popular are also quite inefficient. We will briefly cover the most used methods
before presenting our approach.

The first family of sampling algorithms has the prior distribution of the network as
the importance function. Probabilistic Logic Sampling is the most straightforward and
inefficient of the algorithms in this family. It essentially simulates the network uncon-
ditionally and then keeps the samples that are compatible with the evidence [34]. It is
clear that this simple algorithm is increasingly more inefficient the more unlikely the
evidence is.

Likelihood Weighing was an algorithm proposed by Fung and Chang [25] as an augmen-
tation to Probabilistic Logic Sampling. After the same sampling procedure, each sample
gets attributed a weight, which is the product of conditional densities of evidence nodes
given its parents.
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For instance in sample i and for E1, . . . , Em being the evidence nodes with observations
e1, . . . , em, the weight would be equal to:

wi =
m∏
j=1

P
Ä
Ej = ej|Xpa(Ej) =÷xpa(Ej)

i
ä

Then the posterior probabilities are are equal to the weighted observation rates in the
samples. This algorithm is an obvious improvement over Probabilistic Logic Sampling.
Nevertheless, for unlikely evidence it is still highly inefficient and its use is reserved for
improving other algorithms that do not incorporate weighting.

More sophisticated approaches to Sampling algorithms exist. Instead of using the prior
distribution of the BN, these algorithms employ methodologies to learn an ”optimal”
importance function, which would be as close as possible to the posterior distribution.
Self Importance Sampling (SIS), Adaptive Importance Sampling (AIS-BN) and Hamil-
tonian Monte-Carlo (HMC) simulations are all algorithms that fall under this category
[62, 11]. Most of these algorithms have a common drawback, they do not include infor-
mation about BN structure in the importance function like in SIS and HMC. AIS-BN
has multiple modifications to the prior using heuristics which results in over two orders
of magnitude improvement in convergence over likelihood weighting and self-importance
sampling algorithms according to Yuan and Druzdzel [71].

This highlights the importance on incorporating clearly the network structure into our
algorithm, instead of relying on the prior to cover the conditional independencies [49].
Some methods have been proposed that can be applied to existing algorithms to ex-
ploit causal independencies [72], but these methods are limited by the framework of the
original algorithm they is applied to, and there is a strict limit to the possible improve-
ment.

3.5.1. Sampling Importance Resampling
In the scope of our inference algorithm there will be cases in which to get the sample of
interest, we will need to sample from a density which is difficult to sample from. One
may use any sampling methodology to tackle this task, but in this thesis we opted to
employ Sampling Importance Resampling (SIR)[60].

Let us consider the problem of sampling from a univariate density f . For employing
SIR, we may choose a simpler to sample density g and exploit proportionality:

f(x) ∝ g(x)h(x)

then the first step of the SIR algorithm is to obtain L importance samples x̂g
i from the

density g. Each of these samples x̂g
i then gets an unnormalized weight:

w′
i =

f(x̂g
i )

g(x̂g
i )

= h(x̂g
i ), i = 1, . . . , L

These weights are normalized as to provide weights whose sum is 1:

wi =
w′

i∑L
j=1 w

′
j

, i = 1, . . . , L
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To obtain the final samples from the SIR algorithm we resample from the importance
samples x̂g

i using the normalized weights wi. Each sample is chosen with probability
equal to its assigned weight.

One could choose any existing methodology to sample from a density instead of SIR.
However, we deemed SIR to be an especially beneficial choice to solve inference problems
in PCBNs due to the ability to work with the proportional expression of the density as
well as to exploit the copula density factorization to obtain importance samples.



4
PCBN Inference

PCBN models distinguish the marginal distributions of all node variables and their de-
pendence structures. The former are included in the collection of marginal distributions
F , while the latter are part of the collection of specified copulas C . Hence, the inference
can be presented for uniform margins, that is on the level of copulas, and at the last stage
the inverses of the original marginal CDFs can be applied to the conditional margins
obtained through conditionalization to reveal the desired conditional distributions.

Let us first observe that each PCBN can be decomposed into subgraphs that contain
nodes connected by arcs assigned with unconditional copulas. For the PCBN in fig-
ure 4.1 these are the subgraphs containing the nodes {U1, U3, U4, U7, U8, U9, U11} and
{U2, U6, U10}.

U3

U1

U4 U5 U6

U7

U2

U8 U9 U10

U11

13
14|3 24

|13 26

34

37 3938 49|3 59
|34 6, 10

8, 11 10, 11|8

Figure 4.1: Example of a PCBN that illustrates ”artery” trails.

Definition 4.0.1 (Arterial subgraph, artery, extended artery, arterial arcs).
Let (G ,O,F ,C ) be a PCBN. For U being a root of G , we call a subgraph A =
(VA , AA ) ⊂ G an artery of the graph G generated by U if the following conditions are
satisfied.

• U ∈ VA .

37
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• {U2 ∈ V | ∃U1 ∈ VA : C12 ∈ C } ⊆ VA .

• ∀ (U1, U2) ∈ AA , ∃C12 ∈ C .

Furthermore, we introduce the following definitions:

o The artery A is referred to as a singleton artery if |VA | = 1

o The induced subgraph GA = G [VA ] is called extended artery of G .

o The arcs in AA will be referred to as the arterial arcs of GA , and the arcs in A\AA

will be called as the non-arterial arcs of GA .

We extend the definitions of descendants, ancestors, children and parents of node U to
arterial and extended arterial counterparts, each corresponding to the respective sets in
the artery or extended artery that U belongs to. In the example of figure 4.1, for U = U9

we have:

pa(U9) = {U3, U4, U5},
paGA1

(U9) = {U3, U4},
paA1(U9) = {U3}.

Arteries make up subgraphs of the BN containing only arcs for which unconditional
copulas are specified. In the original graph there may also be arcs between nodes of
the same artery that are connected through conditional copulas. These are part of the
extended artery. On the other hand, arcs between nodes of different arteries belong to
neither arteries nor extended arteries.

Remark. Note that due to the process of assigning unconditional and conditional copulas
in the PCBN, for every Ui ∈ V , Ui is either a root variable or there exists a unique
Uj ∈ pa(Ui) such that:

Cji = Cji|∅ ∈ C.

This means that every node is either a root node or has a unique parent to whom it is
connected through an unconditioned copula. This in turn implies that the number of
arteries of a PCBN equals the number of roots, and that each variable in the PCBN
belongs to exactly one artery.

Hence, if there are m root nodes in a PCBN then there are m arteries Ai = (VAi
, AAi

)
and VA1 , . . . , VAm form a partition of V .

Since extended arteries are induced subgraphs of G on VAi
then {GAi

}i=1...m is the unique
extended arterial partition of G .

In figure 4.2 there are three arteries A1,A2,A5 of the PCBN represented in 4.1, corre-
sponding to each of the three roots of the network U1, U2, U5. Note that the artery
with root U5 is a singleton artery.

In figure 4.3 the arteries in figure 4.1 are supplied with extra arks assigned with condi-
tional copulas and we can see extended arteries of the PCBN represented in 4.1.
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Figure 4.2: Arteries of PCBN in figure 4.1.
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Figure 4.3: Extended arteries of PCBN in figure 4.1.

Our proposed methodology for solving PCBN inference problems relies on conducting in-
ference on the sub-PCBN networks that correspond to the arterial and extended arterial
DAGs.

Definition 4.0.2 (Arterial PCBN, Extended Arterial PCBN). Let (G ,O,F ,C ) be a
PCBN with extended arterial partition {GAi

}i=1...m.

• The arterial PCBN of an artery A is the PCBN

(A ,O ′,F ′,C ′)

where:

– O ′ is a collection of parental orderings of the nodes VA in A such that every
parental ordering contains only the first parent in G of each node, according
to O. Equivalently, ∀U1 ∈ VA and o ∈ O, o′ ∈ O ′ the parental orders of U1 in
the respective collection, then o′ is a total order on the singleton {U2} where
U2 is the smallest element in o that belongs to VA . If o has no nodes in VA ,
then o′ = ∅ instead.

– F ′ is the sub-collection of F including exactly the marginal distributions of
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the nodes in VA .
– C ′ is the sub-collection of all unconditioned copulas in C between nodes in

VA , meaning that:

C ′ = {C12|K ∈ C : U1, U2 ∈ VA , K = ∅}.

• The extended arterial PCBN of an extended artery GA is the PCBN

(GA ,O ′′,F ′′,C ′′)

where:

– O ′′ is a collection of parental ordering of the nodes VA in GA such that it
abides by the parental orderings in O, meaning that for all U1, U2, U3 ∈ VA

such that U1, U2 ∈ paA (U3), and for o, o′′ denoting the parental orderings of
U3 in O and O ′′ respectively:

U1 <3 U2 ∈ o′′ ⇐⇒ U1 <3 U2 ∈ o.

– F ′′ is the sub-collection of F including exactly the marginal distributions of
the nodes in VA .

– C ′′ is the sub-collection of all copulas in C between nodes in VA , meaning
that:

C ′′ = {C1,2|K ∈ C : U1, U2 ∈ VA }.

Next we will identify two different types of children a node can have. This distinction
will be crucial in later stages of our algorithm.

Definition 4.0.3 (Children Types). Let GA be an extended arterial PCBN and Ui ∈
chGA

(U1), then:

• We call Ui a type 1 child of U1 if Ui ∈ deA (U1)

• We call Ui a type 2 child of U1 if Ui /∈ deA (U1)

Remark. Figure 4.4 illustrates the two types of children. In network 4.4a, Ui is a type 1
child of U1 as it is also an arterial descendant. On the other hand, in network 4.4b, Ui

is not an arterial descendant and thus is a type 2 child. In the case of the type 2 child,
the other parents of Ui are shown and one of them has to be the arterial parent of U1.

With the required definitions and concepts, we proceed to present the methodology for
PCBN inference. We show this process for single arterial PCBNs. After illustrating
our approach for single-arterial PCBN inference, we will provide insights on how this
methodology can be extended to cover the general case. This means how to combine
inference for multiple arteries, which may be connected with each other.

4.1. Node Sampling
The inference method proposed in this thesis is based on stochastic sampling of the
nodes of the network, given previous samples of their parents and their children. Each
sampling iteration is node through either of the following three types of sampling:
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U1

U2

...

Ui

12

1i|Ki

(a) Type 1

U1 U2

Ui

. . .

1i|Ki

2i|Ki\{1}

(b) Type 2

Figure 4.4: The two types of children in extended arteries.

1. Forward Sampling
2. Backward Sampling
3. Bilateral Sampling

Forward Sampling is performed when we wish to sample a variable given the values
of this variable’s parents. Backward Sampling, is conducted in the opposite direction,
hence a variable is sampled given values of its children. Lastly, Bilateral Sampling is
conducted when we wish to sample a node using values of both parents and children.
The last type of sampling is used to combine the information coming from the parents
and children of the node.

Next we provide a detailed overview of each of the three types of sampling.

4.1.1. Forward Sampling
Out of the three sampling types, Forward sampling is the simplest as it falls in line with
the directionality of the BN.

Forward sampling a node U1, when the values of the node’s parents {U2, . . . , Um} are
given, is identical with the PCBN sampling presented in subsection 2.3.4, where we
obtain our sample through the use of all incoming copulas.

U1 U2 U3

U4

14
24|1

34|12

Figure 4.5: Illustration of Forward Sampling iteration.

In figure 4.5 an example of a Forward Sampling iteration is illustrated. In order to sample
U4 using the values of U1 = u1, U2 = u2, U3 = u3, a uniformly distributed sample:

V ∼ U(0, 1).
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is needed. This sample is an argument of the recursion of inverse h-functions to obtain
a sample of U4|U1 = u1, U2 = u2, U3 = u3:

h−1
14

Ä
u1, h

−1
24|1

Ä
u2|1, h

−1
34|12

(
u3|12, V |u1, u2

)
|u1

ää
.

Note that all required conditional margins needed to perform the recursion above are
computable without integration in restricted PCBNs. Forward samples of variables in
the inference algorithm will be denoted with a superscript f . Thus, instead of presenting
the whole recursion for the sample in example of figure 4.5, we will denote it as uf

4 .

The pseudo-code of Forward Sampling algorithm is given in algorithm 1.

Algorithm 1 Forward.Sample(GA , U1, {u2, . . . , um})
Input: • GA an Extended Artery

• U1 the node to be Forward Sampled
• {u2, . . . , um} values of U1’s parents {U2, . . . , Um} indexed accor-

ding to the parental ordering of U1

Output: Sample û1 of U1

1: V ∼ U(0, 1) ▷ Uniform Sample
2: û1 ← h−1

21 (u2, h
−1
31|2(u3|2, . . . h

−1
m1(um|2...m−1, V |uKi

) . . . |u2))
3: return û1

4.1.2. Backward Sampling
In contrast to Forward Sampling, sampling given the values of a node’s children can be
more complicated due to the sampling direction being opposite to the direction of the
arcs of the DAG.

Two types of Backward sampling are considered:

1. Conditioned on only type 1 children,
2. Conditioned on both type 1 and type 2 children.

We will refer to Backward Sampling in case when only type 1 children are included.
When also type 2 children are involved then the procedure is referred to as Secondary
Backward Sampling.

Backward Sampling
Two cases are considered below which are differentiated by the copula-arc structure
of U1 and its children. In both cases we will denote the type 1 children of U1 as
{U2, . . . , Um}.

Case 1: The first case of Backward Sampling assumes that the following condition
holds:

(B1) There is a type 1 child Ui ∈ {U2, . . . , Um} of U1 with specified copula C1i|Ki
∈

C such that:
{U2, . . . , Um}\{Ui} = Ki.
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Let us assume that this node is Um and that U2, . . . , Um−1 are ordered according to
the parental order of U1. Then the Backward Sample U1 is calculated through the
use of copula C1m|Km and the recursion of h-values, similarly to Forward Sampling.

U1

U2

U3

U4

12

23

23

13|2

24|3

14|23

Figure 4.6: First Type of Backward Sampling.

Example 4.1.1. In figure 4.6 we see an example of a DAG with four nodes. The
goal is to backward sample U1 given values of its children U2, U3 and U4. The
condition (B1) is satisfied and to sample U1 using the values of U2 = u2, U3 =
u3, U4 = u4, a uniformly distributed sample V ∼ U(0, 1) is obtained and the
recursion of inverse h-function gives a Backward Sample of U1|U2 = u2, U3 =
u3, U4 = u4, which is denoted simply as ub

1:

ub
1 = h−1

12

Ä
h−1
13|2

Ä
h−1
14|23

(
V, u4|23|u2, u3

)
, u3|2|u2

ä
, u2

ä
.

The pseudocode of Backward Sampling in case 1 is presented below in algorithm
2.

Algorithm 2 Backward.Sample.1(GA , U1, {u2, . . . , um})
Input: • GA an Extended Artery

• U1 the node to be Backward Sampled
• {u2, . . . , um} values of U1’s type 1 children {U2, . . . , Um} indexed

according to the parental ordering of Um.
Output: Sample û1 of U1

1: V ∼ U(0, 1) ▷ Uniform Sample
2: û1 ← h−1

12 (h
−1
13|2(. . . (h

−1
1m|K2

(V, um|Km |uKm) . . . ), u3|2|u2), u2)
3: return û1

Case 2: When the condition (B1) is not satisfied, the Backward Sampling is a bit more
complicated and is referred to as case 2.

In this case there is no single h-function recursion to obtain a sample from U1 given
its children. Instead we will choose a subset of children for which the condition
(B1) is satisfied, and use the case 1 Backward Samples as importance samples.
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C1 := {Cij|Kij
∈ C : i, j = 1, . . . ,m ∧ U1 ∈ Kij ∪ {Ui}}.

This is a collection of copulas assigned to arcs between nodes U1, U2, . . . , Um such
that U1 is either a marginal variable or part of the conditioning set of these copulas.

The second case of Backward Sampling requires the sample from the conditional
density c1|2...m(u1|u2 . . . um) which can be rewritten as follows:

c1|2...m(u1|u2 . . . um) =
c1,2...m
c2...m

=

∏
c∈C1

c∫ 1

0

(∏
c∈C1

c
)
du1

∝
∏
c∈C1

c.

Note that only copulas containing U1 in the conditioning or the conditioned sets
are needed.

In order to sample from this conditional density we use SIR. We choose the child Ui

such that for the specified copula C1i|Ki
, the following set has the largest possible

cardinality.
K1

i = {Uj1 , . . . , Ujmi
} := Ki ∩ {U2, . . . , Um}, (4.1)

where Uj1 , . . . , Ujmi
are indexed according to the parental order of Ui. We do this in

order to maximize the information on the children of U1 in the importance sample.
This choice will be investigated in the simulation study in Chapter 6.

The L importance samples of U1 are obtained using the following h-function recur-
sion for copula C1i|Ki

:

û1
imp
k = h−1

1j1
(h−1

1j2|Kj2
(. . . h−1

1i|Ki
(Vk, ui|Ki

|uKjmi
) . . . , uj2|Kj2

|uKj2
), uj1),

where V1, . . . , VL
iid∼ U(0, 1).

The weight for each sample will be equal to the product of the densities of all
copulas that were not used in the calculation of the importance sample. These
belong to the sub-collection:

C ′
1 := {Cij|Kij

∈ C1 : ({U2 . . . Um}\({Ui} ∪K1
i )) ∩ ({i, j} ∪Kij) ̸= ∅}.

Then the weight for each importance sample is equal to:

w′
k =

∏
C∈C ′

1

c.

In order to be used in SIR the weights must be normalized:

wk =
wk∑L
j=1 wj

.
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Lastly, we resample using the normalized weights wk in order to obtain the Back-
ward Sample of U1, denoted as ub

1.

The pseudocode for case 2 Backward Sampling is presented in algorithm 3:

Algorithm 3 Backward.Sample.2(GA , L, U1, {u2, . . . , um})
Input: • GA an Extended Artery

• L the number of importance samples.
• U1 the node to be Backward Sampled
• {u2, . . . , um} values of U1’s type 1 children {U2, . . . , Um}.

Output: Sample û1 of U1

1: V1, . . . , VL ∼ U(0, 1) ▷ Uniform Samples
2: Choose Ui that maximizes the cardinality of {Uj1 , . . . , Ujmi

}} as defined in (4.1)
3: for k ∈ {1, . . . , L} do
4: û1

imp
k ← h−1

1j1
(h−1

1j2|Kj2
(. . . (h−1

1jmi |Kjmi

(Vk, ujmi |Kjmi
|uKjmi

) . . . ), uj2|Kj2
|uKj2

), uj1)

5: w′
k ←

∏
C∈C ′

1

c

6: end for
7: for k ∈ {1, . . . , L} do
8: wk =

w′
k∑N

l=1 wl

9: end for
10: Sample û1 from {û1

imp
1 , . . . , û1

imp
L } with weights w1, . . . , wL

11: return û1

U2 U3 U4

U1

U5 U6 U7

12 13 14

25 46 4715|2 16|4

17|4

Figure 4.7: Second Type of Backward Sampling.

Example 4.1.2. In figure 4.7 a PCBN of seven nodes is presented. If U1 is to
be Backward Sampled then this node does not meet the requirements for case 1
Backward Sampling. We choose a child of U1 whose respective copula has the
largest conditioning set. In the example the choices are U5, U6 and U7, as each of
them have one variable in the conditioning set of the copula assigned to the arc
between them and U1. If we choose U5, the importance sample is obtained through
the h-function recursion of copula C15|2:

û1
imp = h−1

12

Ä
h−1
15|2
(
V, u5|2|u2

)
, u2

ä
.

and its weight is equal to:
w′ = c13c14c16|4c17|4.
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Finally, the case 2 Backward Sample of U1, denoted as ub
1 is obtained by resampling

from the importance sample using the corresponding normalized weights.

Secondary Backward Sampling:
The steps of Secondary Backward Sampling are similar to the second case of Backward
Sampling presented above. The sampling from the conditional density needs to be
obtained through SIR. As before, we divide Secondary Backward Sampling into two
cases, depending on the number and types of children that the node has.

Case 1: In the first scenario we assume that U1 satisfies the following condition:

(B2) • 0 type 1 children and,
• m ≥ 1 type 2 children {U2, . . . , Um}.

Let us denote the copulas corresponding to the arcs U1 → Ui as C1i|Ki
. As before,

we wish to sample from the density:

c1|2...m =
c1,2...m
c2...m

.

However, now due to existence of type 2 children of U1, we do not have a closed form
expression of the numerator. Indeed, to compute the numerator it is required to
integrate over the remaining extended arterial parents of the children {U2, . . . , Um},
which are part of the conditioning sets Ki. These nodes are denoted as:(

m∪
i=1

Ki

)
\{U2, . . . , Um} = {Uι1 , . . . , UιM}. (4.2)

The nodes Uιj could be connected to U1 through in or outgoing arc. There will be
a copula assigned to each of these arcs and we will denote these copulas as C1

ιj |Kιj

(avoiding specifying the direction of the arcs).

Additionally all copulas that contain Uιj nodes in either their marginals or the
conditioning sets are collected in the set C1. These are copulas specified by arcs
between:

- two Uιj variables,

- one Uιj variable and one type 2 child Ui,

- one Uιj variable and U1 or

- between two type 2 children Ui, Uj for which the conditioning set Kij of
copula Cij|Kij

contains a Uιj node.

C1 :=
{
Ckl|Kkl

∈ C : Uk, Ul ∈ {U1, U2, . . . , Um, Uι1,...,UιM
} and

({Uk, Ul} ∪Kkl) ∩ {Uι1 , . . . , UιM} ̸= ∅
}
.

(4.3)
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Using the introduced notation we can rewrite the needed conditional density as
follows:

c1|2...m =
c1,2...m
c2...m

=

∫
[0,1]M

c1,2...m,ι1...ιMduι1 . . . duιM∫
[0,1]M+1

c1,2...m,ι1...ιMdu1duι1 . . . duιM

=

∫
[0,1]M

∏
C∈C1

c duι1 . . . duιM∫
[0,1]M+1

∏
C∈C1

c du1duι1 . . . duιM

∝
∫
[0,1]M

∏
C∈C1

c duι1 . . . duιM .

Since the numerator does not have a closed form, it is therefore impossible to
conduct importance sampling as all copula densities are involved in the integration
of Uιj nodes.

SIR is still possible by choosing L iid uniformly distributed samples

V1, . . . , VL
iid∼ U(0, 1)

as the importance samples. Then each such sample has an unnormalized weight
calculated by:

w′ =

∫
[0,1]M

∏
C∈C1

c duι1 . . . duιM .

The pseudo code for the first case of Secondary Backward Sampling is presented
in algorithm 4.

U2 U3 U4

U1

12 13 14

32|1 32|1

Figure 4.8: First Type of Secondary Backward Sampling.

Example 4.1.3. The steps of the Secondary Backward Sampling are illustrated
on the example DAG shown in figure 4.8. We can see that the node U3 may be
Secondary Backward Sampled as it has no type 1 children and two type 2 children,
U2 and U4. To obtain the Secondary Backward Sample of U3, the sample from the
conditional density

c3|24 ∝
∫ 1

0

c32|1c34|1c12c13c14du1
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Algorithm 4 Sec.Backward.Sample.1(GA , L, U1, {u2, . . . , um1 , uη1 , . . . , uηm2
})

Input: • GA an Extended Artery
• L the number of importance samples.
• U1 the node to be Backward Sampled
• {u2, . . . , um} values of U1’s type 2 children {U2, . . . , Um}.

Output: Sample û1 of U1.
1: V1, . . . , VL ∼ U(0, 1) ▷ Uniform Samples
2: Identify the nodes {Uι1 , . . . , UιM}} as defined in (4.2).
3: Identify the copula collection C1 as defined in (4.3).
4: for k ∈ {1, . . . , L} do
5: Estimate w′

k ←
∫
[0,1]M

∏
C∈C1

c duι1 . . . duιM

6: end for
7: for k ∈ {1, . . . , L} do
8: wk =

w′
k∑N

l=1 wl

9: end for
10: Sample û1 from {V1, . . . , VL} with weights w1, . . . , wL

11: return û1

is required. The importance sample will be uniformly distributed. The unnormal-
ized weight of each sample is equal to:

w′ =

∫ 1

0

c32|1c34|1c12c13c14du1.

Then we resample from the importance samples using the normalized weights and
get the required samples denoted as usb

1 .

Because the importance samples of case 1 Secondary Backward Sampling contain
no information on the evidence, we can expect this case to be less efficient. Fur-
thermore, while the integral can be effectively estimated through Monte-Carlo
simulation, estimation has to be done for each individual importance sample, thus
increasing computational cost.

Case 2: In the second case we shall examine all other scenarios that do not meet the
condition (B2), in which case, U1 has at least one type 1 child.

In this scenario U1 has:

• m1 − 1 type 1 children U2, . . . , Um1 and
• m2 type 2 children Uη1 , . . . , Uηm2

.

Furthermore, if Kηi are the conditioning sets of the copulas C1ηi|Kηi
, we collect all

copulas for the nodes that are to be integrated:

(
m2∪
i=1

Kηi

)
\{Uη1 , . . . , Uηm2

} = {Uι1 , . . . , UιM}. (4.4)



4.1. Node Sampling 49

Moreover, we define the collection of copulas C2 which contains the copulas in-
cluded in C1 as per equation 4.3 and all copulas between Uιj and type 1 children
of U1:

C2 :=
{
Ckl|Kkl

∈ C : Uk, Ul ∈ {U1, U2, . . . , Um1 , Uη1 , . . . , Uηm2
, Uι1 , . . . , UιM} and

({Uk, Ul} ∪Kkl) ∩ {Uι1 , . . . , UιM} ̸= ∅
}
.

(4.5)
In this scenario we wish to sample form the density:

c1|2...m1,η1...ηm2
=

c1,2...m1,η1...ηm2

c2...m1,η1...ηm2

=

∫
[0,1]M

c1,2...m1,η1...ηm2 ,ι1...ιM
duι1 . . . duιM∫

[0,1]M+1

c1,2...m1,η1...ηm2 ,ι1...ιM
du1duι1 . . . duιM

=

m1∏
j=2

c1j|Kj

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM∫
[0,1]M+1

m1∏
j=2

c1j|Kj

∏
C∈C2

c du1duι1 . . . duιM

∝
m1∏
j=2

c1j|Kj

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM .

In contrast to case 1 Secondary Backward Sampling, in case 2 we have some copulas
that are outside of the integral, making it possible to obtain an importance sample
conditioned on type 1 children of U1. We choose a type 1 child Ui of U1 such that
the for the specified copula being C1i|Ki

, the following set has the largest possible
cardinality.

K1
i = {Uj1 , . . . , Ujmi

} := Ki ∩ {U2, . . . , Um}, (4.6)
where Uj1 , . . . , Ujmi

are indexed according to the parental order of Ui.

We get the importance samples of U1 using the corresponding recursion of h-
functions for the copula C1i|Ki

:

û1
imp
k = h−1

1j1
(h−1

1j2|Kj2
(. . . h−1

1i|Ki
(Vk, ui|Ki

|uKjmi
) . . . , uj2|Kj2

|uKj2
), uj1),

where V is a uniformly distributed variable.

The unnormalized weight of each sample is:

w′ =

m1∏
l=2

j /∈Ki∪{i}

c1l|Kl

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM .

Resampling the importance samples using the normalized weights we get the Sec-
ondary Backward Sample of U1.
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Algorithm 5 Sec.Backward.Sample.2(GA , L, U1, {u2, . . . , um1 , uη1 , . . . , uηm2
})

Input: • GA an Extended Artery
• L the number of importance samples.
• U1 the node to be Backward Sampled
• {u2, . . . , um1 , uη1 , . . . , uηm2

} values of U1’s type 1 and type 2 children.
Output: Sample û1 of U1.

1: V1, . . . , VL ∼ U(0, 1) ▷ Uniform Samples
2: Identify the nodes {Uι1 , . . . , UιM}} as defined in (4.4).
3: Identify the copula collection C2 as defined in (4.5).
4: Choose Ui that maximizes the cardinality of {Uj1 , . . . , Ujmi

}} as defined in (4.6)
5: for k ∈ {1, . . . , L} do
6: û1

imp
k ← h−1

1j1
(h−1

1j2|Kj2
(. . . (h−1

1jmi |Kjmi

(Vk, ujmi |Kjmi
|uKjmi

) . . . ), uj2|Kj2
|uKj2

), uj1)

7: w′
k ←

m1∏
l=2

l /∈Ki∪{i}

c1l|Kl

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM

8: end for
9: for k ∈ {1, . . . , L} do

10: wk =
w′

k∑N
l=1 wl

11: end for
12: Sample û1 from {û1

imp
1 , . . . , û1

imp
L } with weights w1, . . . , wL

13: return û1

The pseudo-code for the second case of Secondary Backward Sampling is presented
in algorithm 5.

Example 4.1.4. The Secondary Backward Sampling for case 2 is illustrated by sampling
U2 in PCBN in Figure 4.9. The node U2 has two type 2 children U3, U5 and one type 1
child, U4.

U2 U3

U1

U4 U5

12 13

24 35

23|1

25|13

15|3

Figure 4.9: Second Type of Secondary Backward Sampling.
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We want to sample from the density:

c2|345 =
c2345
c345

=

∫ 1

0

c12345du1∫
[0,1]2

c12345du1du2

=

c24

∫ 1

0

c12c13c35c23|1c25|13c15|3du1∫
[0,1]2

c24c12c13c35c23|1c25|13c15|3du1du2

∝ c24

∫ 1

0

c12c13c35c23|1c25|13c15|3du1.

The copula C24 allows us to generate a sample from the distribution U2|U4 = u4 which
is used as an importance sample. Then each sample has the unnormalized weight

w′ =

∫ 1

0

c12c13c35c23|1c25|13c15|3du1,

which can be easily and efficiently estimated. We resample from the importance sample
using the normalized weights to obtain our Secondary Backward Sample.

Finally the last type of sampling process will be explained.

4.1.3. Bilateral Sampling
Bilateral Sampling is used to combine information coming from children and parents of
a node. A node U1 is conditionalized on both extended arterial parents and extended
arterial children.

In contrast to Secondary Backward Sampling, due to the addition of U1’s parents in
the conditionalization for Bilateral Sampling, the extended arterial parents of type 2
children which are also extended arterial parents of U1 will not be integrated.

In this scenario U1 has:

• m1 type 1 children U2, . . . , Um1 ,
• m2 type 2 children Uη1 , . . . , Uηm2

and
• m extended arterial parents Uπ1 , . . . , Uπm

Furthermore, if Kηi is the conditioning set of copula C1ηi|Kηi
, then we define as previ-

ously: (
m2∪
i=1

Kηi

)
\({Uη1 , . . . , Uηm2

} ∪ paGA
(U1)) = {Uι1 , . . . , UιM}. (4.7)

Note that we have also removed the extended arterial parents of U1 as they will not be
integrated over.
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The collection of copulas C2 as defined in equation 4.5 is required at this sampling
scheme.

Now the target density can be rewritten:

c1|2...m1,η1...ηm2 ,π1...,πm =
c1,2...m1,η1...ηm2 ,π1...,πm

c2...m1,η1...ηm2 ,π1...,πm

=

∫
[0,1]M

c1,2...m1,η1...ηm2 ,π1...,πm,ι1...ιMduι1 . . . duιM∫
[0,1]M+1

c1,2...m1,η1...ηm2 ,π1...,πm,ι1...ιMdu1duι1 . . . duιM

=

m∏
i=1

cπi1|Kπi

m1∏
j=2

c1j|Kj

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM∫
[0,1]M+1

m1∏
j=2

c1j|Kj

m∏
i=1

cπi1|Kπi

∏
C∈C2

c du1duι1 . . . duιM

∝
m1∏
j=2

c1j|Kj

m∏
i=1

cπi1|Kπi

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM .

We may choose to obtain the importance sample of U1 by Forward Sampling from the dis-
tribution U1|Uπ1 = uπ1 . . . Uπm = uπm . Therefore, each importance sample is calculated
by:

û1
imp = Forward.Sample(GA , U1, {uπ1 , . . . , uπm}).

The unnormalized weight that corresponds to each of the importance samples is:

w =

m1∏
j=2

c1j|Kj

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM .

Then the final Bilateral sample is obtained by resampling from the importance samples
using the normalized weights:

Remark. To ensure efficiency of SIR implementation, it would be wise to compare the
number of parents m to the cardinality of a maximally conditioned copula set Kj of an
outgoing copula C1j|Kj

. If |Kj| > m then one may choose that copula instead to procure
the importance sample with unnormalized weights:

w′ =

m1∏
i=2

Ui /∈Kj∪{Uj}

c1i|Ki

m∏
i=1

cπi1|Kπi

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM .

The notation of a Bilateral Sample of U1 will depend on the node that will use it in
the Sample Propagation stage. The notation will be ubil

1→i for Ui being the node using
the bilateral sample of U1. The meaning of Ui using the bilateral sample of U1 will be
introduced in the next section.

The pseudo-algorithm for Bilateral Backward Sampling is presented in algorithm 5.
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Algorithm 6 Bilateral.Sample(GA , L, U1, {u2, . . . , um1 , uη1 , . . . , uηm2
, uπ1 , . . . , uπm})

Input: • GA an Extended Artery
• L the number of importance samples.
• U1 the node to be Backward Sampled
• {u2, . . . , um1 , uη1 , . . . , uηm2

, uπ1 , . . . , uπm} values of U1’s extended art-
erial children and parents.

Output: Sample û1 of U1.
1: Identify the nodes {Uι1 , . . . , UιM}} as defined in (4.7).
2: Identify the copula collection C2 as defined in (4.5).
3: for k ∈ {1, . . . , L} do
4: û1

imp
k ← Forward.Sample(GA , U1, {uπ1 , . . . , uπm})

5: w′
k ←

m1∏
j=2

c1j|Kj

∫
[0,1]M

∏
C∈C2

c duι1 . . . duιM

6: end for
7: for k ∈ {1, . . . , L} do
8: wk =

w′
k∑N

l=1 wl

9: end for
10: Sample û1 from {û1

imp
1 , . . . , û1

imp
L } with weights w1, . . . , wL

11: return û1

Example 4.1.5. An example where Bilateral Sampling is applied is sampling U1, using
values of Uπ1 , Uπ2 , U3, U5 in PCBN in Figure 4.10.

Uπ2

Uπ1

U1

U4 U5U3

U2

π11

π2π1

π12

π21|π1

14 15

π13|2

23
13|2

Figure 4.10: Example of Bilateral Sampling.

In this example the following density is required:
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c1|345π1π2 =
c1345π1π2

c345π1π2

=

c14c15cπ11cπ21|π1

∫ 1

0

c13|2c23cπ12cπ13|2 du2∫ 1

0

c14c15cπ11cπ21|π1

∫ 1

0

c13|2c23cπ12cπ13|2 du2 du1

∝ c14c15cπ11cπ21|π1

∫ 1

0

c13|2c23cπ12cπ13|2 du2.

If we choose to use the Forward Sample as an importance sample, we sample from the
parents Uπ1 , Uπ2 with assigned weights:

wi = c14c15

∫ 1

0

c13|2c23cπ12cπ13|2 du2.

Then we can resample with the normalized weights.

4.2. Single Arterial Propagation
In this section the main steps of propagation in the single extended artery are pre-
sented. The propagation is done via sampling which is sequential, local and falls in line
with the theoretical foundation of Pearl’s Algorithm on Belief Propagation. The main
difference being that in our algorithm, messages take the form of samples instead of
distributions.

During the procedure a node may be sampled multiple times through different types of
sampling. For this reason we introduce the following notation for the four types of Node
Sampling:

• uf
1 : Forward Sample of U1.

• ub
1 : Backward Sample of U1.

• usb
1 : Secondary Backward Sample of U1.

• ubil
1→i : Bilateral Sample of U1 excluding U1’s child Ui and Ui’s arterial descendants.

• u∗
1 : Bilateral Sample of U1 using all parents and children.

The reasoning behind the distinction between ubil
1→i and u∗

1 will be made clear in the
following presentation.

The Algorithm for Single Arterial Inference consists of the following four steps:

Stage 1: Initialization - In this stage, all evidence nodes in the artery are identified,
and their Forward, Backward, Secondary Backward and Bilateral Samples are set
to their respective observed values. Furthermore, nodes that can be removed from
the Backward Propagation procedure are identified.

Stage 2: Backward Propagation - This stage is composed of a sequence of Backward
and Secondary Backward Samples. The Backward Propagation starts at evidence
nodes and moves upwards, towards the root of the artery.
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Stage 3: Forward Propagation - consists of a sequence of Forward and Bilateral Samples
which follow the directionality of the DAG and moves from the root of the artery
towards the leaves.

Stage 4: Finalization - combines all necessary and previously calculated samples to
obtain the final samples of the nodes of the PCBN, each being conditionalized on
all of the evidence in the PCBN.

Example 4.2.1. Let us start with a simple example of inference in PCBN in figure
4.11. The evidence is E = {U1 = u1, U5 = u5}. The Pearl’s algorithm would follow the
following steps:

U3U2U1 U4 U5
12 23 34 45

Figure 4.11: Arterial Inference Problem

- Initialization step, in which the evidences’ parameters are set:

π(u1), λ(u5).

- Then the messages are calculated : π2(u1), λ5(u4).
- Next, the causal and diagnostic parameters for U2 and U4 are calculated from the

messages: π(u2), λ(u4).
- This is followed by computing messages : π3(u2), λ4(u3).
- Finally using parameters π(u3), λ(u3), the updated distribution of U3 can be

calculated.

Thus, by combining the causal and diagnostic messages to U3, we can arrive to the
conditional distribution of U3 given U1 = u1 and U5 = u5.

Having Pearl’s Algorithm in Belief Propagation as a point of reference, an overview of
our proposed methodology applied to this simple example is the following:

Stage 1: Initialization Due to all messages and parameters taking the form of sam-
ples, the casual and diagnostic parameters in the initialization phase are exactly
the evidence values. The counterparts to the parameters π(u1), λ(u5) would be
just the evidence values u1, u5.

Stage 2: Backward Propagation The next step would be to sample from the distri-
bution U4|U5 = u5. The obtained sample is:

ub
4.

Note that the sample ub
4 is a sample from the distribution whose density corre-

sponds to diagnostic parameter:

λ(u4) = c5|4(u5|u4).
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Stage 2: Forward Propagation The next step would be to sample from the distribu-
tion U2|U1 = u1. The obtained sample is:

uf
2 .

This sample comes from the distribution whose density corresponds to the causal
parameter:

π(u2) = c2|1(u2|u1).
1

Stage 3: Finalization The last step is to sample from the distribution U3|U1 = u1, U5 =
u5 to obtain the sample u∗

3. This is done by Bilateral Sampling from the distri-
bution U3|U2 = uf

2 , U4 = ub
4, where the conditionalization on U2, U4 is on their

previously sampled values.

As seen in this simple example, belief propagation through sampling requires the three
different types of sampling. Backward Sampling was used to sample ub

4, while Forward
Sampling was used for sampling uf

2 . Lastly, Bilateral sampling was used to combine
both of the previous Forward and Backward Samples to get u∗

3.

Next, each of the presented steps is discussed in more details.

4.2.1. Initialization
During the Initialization stage, the preparatory steps for sample propagation are taken.
The first step to our algorithm is to identify nodes which directly provide information
on the evidence.

Clearly the evidence nodes fall under this category. An evidence node U1 ∈ E will
not be sampled in the following stages, but it will need to propagate the information
of its observed value to its parents and children. Therefore, for all evidence variables
Ui = ui ∈ E we fix their values:

• The Forward Sample: uf
1 = ui.

• The Backward Sample: ub
1 = ui.

• The Secondary Backward Sample: usb
1 = ui.

• The Bilateral Samples: ubil
i→j = ui, for every child Uj ∈ chGA

(Ui).

Apart from evidence nodes, the initialization phase of the algorithm also identifies and
groups nodes according to whether they have descendants in the evidence. This is a
preparatory step required for choosing the nodes that take part in future Backward,
Secondary Backward and Bilateral Sampling.

Let us consider a node U1 belonging to an extended artery GA .

• If deA (U1)∩E = ∅ then U1 is called Uniformly Backward Instantiated (UBI).
• If deGA

(U1)∩E = ∅ then U1 is called Uniformly Secondary Backward Instan-
tiated (USBI).

1Note that in this example there are no counterparts of causal and diagnostic messages, but only
of parameters. Later, in more complex examples we will see how ubil

i→j samples are counterparts to
messages.
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U1

U2

U3

U4 U5

U6 U7

12

23

34 35

46 57

13|2

45|3

Figure 4.12: Example of the Initialization stage.

Let us consider as an example the PCBN inference problem in figure 4.12.

While any node that is USBI is also UBI, the opposite is not true as can be easily
seen in this example. U6 has evidence in neither its arterial nor extended arterial descen-
dants. This means U6 is both UBI and USBI. On the other hand, U4 has no evidence
in its arterial descendants but has the evidence U7 in its extended arterial descendants.
Therefore U4 is USBI but not UBI.

Whether a node is UBI or USBI is determined by the DAG structure. If a node is
both USBI, then it will not participate in any type of Backward or Secondary Backward
Sampling during the Backward Propagation stage. If a node is UBI but not USBI,
depending on the DAG structure, there may be cases where a Secondary Backward
Sample of the node is be necessary. We will discuss the proper use of Secondary Backward
Samples and UBI nodes in greater detail next.

4.2.2. Backward Propagation
The Backward Propagation procedure starts after the Initialization stage. This propa-
gation follows reverse sampling order of the extended arterial PCBN, starting from the
last evidence nodes. The process then moves towards the arterial parents of the earlier
nodes in the propagation procedure.

At each iteration of Backward Propagation, we wish to Backward Sample or Secondary
Backward Sample a variable U1 conditioned on all of the evidence variables that are
arterial descendants or extended arterial descendants of U1, respectively.

Backward Propagation is finalized when all of the nodes U that have not taken part in
Backward Propagation satisfy the following conditions:
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(BP)

1. U ∈ E

2. paGA
(U) ⊆ E

3. U is USBI
4. U is UBI and there does not exist U ′ ∈ paGA

(U) with specified copula CU ′,U |K
such that there exists an arterial diverging node in K

Thus, the process is finalized when all remaining nodes are not required to be sampled
in order to propagate the evidence to their parents.

In the first condition, U is an evidence node and it is not sampled. In the second condi-
tion, U does not have any extended arterial parents that require a Backward Propagated
Sample of U . The third condition means that U is USBI and its Propagated Sample
would contain no information on the evidence. The fourth condition refers to the cases
when it is relevant to Backward Propagate information on type 2 children.

As a result of initialization of Backward Propagation at the last in the order evidence
nodes and propagating towards the root, USBI nodes do not participate in the procedure
of Backward Propagation. Furthermore, as they do not include any information on
descendants in the evidence (as they do not have any), USBI nodes are also omitted
when Sampling of their parents is performed.

Next we will elaborate on the distinction between Backward and Secondary Backward
Sampling and the motivation behind keeping these two sampling types separate.

U1

U2

U4U3

U5 U6

12

23 24

35 46

34|2

(a) Example where Secondary
Backward Sampling is not required.

U1

U2

U4U3

U5 U6

12

23 24

35 46

34|2

13|2

(b) Example where Secondary
Backward Sampling is required.

Figure 4.13: Examples illustrating Secondary Backward Sampling.

Backward Sampling uses only samples of U1’s type 1 children.

The reason for the exclusion of type 2 children is the fact that for Ui being a type 2
child of U1, the copula C1i|K specified by the arc U1 → Ui has a conditioning set K that
includes the arterial parent of U1. For example, in figure 4.13a, U4 is a type 2 child of
U3 and the copula C34|2 assigned to arc U3 → U4 is conditioned on U2. Integrating over
the values of that parent in some way will be required in Secondary Backward Sampling.
However, for the Backward Sample of the parent, we cannot use a sample obtained
through integration of that same parent.
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In chapter 8 we generalize this statement and prove that for any type 2 child U2 of a node
U1, the assigned copula C12|K12 is conditioned on the arterial parent of U1. Therefore,
we are never able to use type 2 children in Backward Sampling.

In such cases the inclusion of type 2 children through Secondary Backward Sampling
is required for upcoming Backward Sampling. The condition for Secondary Backward
Sampling to be used is that U1 has a parent U2 such that:

(BS) The copula C21|K which is specified by the arc U2 → U1 has a conditioning set K
that includes a diverging node in the artery.

Note that Secondary Backward Sampling does not serve as a substitute to regular Back-
ward Sampling. Whenever Secondary Backward Sampling is required, we will be using
two samples of a node, each applied in the Backward Propagation towards different
parents.

Example 4.2.2. The examples of PCBNs in figure 4.13 help us illustrate the Secondary
Backward Sampling in the context of Backward sampling of U3. In both networks 4.13a
and 4.13b, U3 has a type 2 child U4 and a type 1 child U5, while U2 is its arterial parent.
Furthermore, we notice that U2 is a diverging node in the artery. In the network in
figure 4.13a, there is no parent of U3 satisfying the condition (BS). On the other hand,
in the network illustrated in figure 4.13b, U1 is an extended arterial parent of U3 such
that

- The specified copula C13|2 is conditioned on node U2 which is a diverging node in
the artery.

Therefore in the second network, U3 satisfies the condition (BS) and will need to be
both Backward Sampled and Secondary Backward Sampled including the type 2 child
U4. This Secondary Backward Sample will be used later on for the Backward Sample of
U1.

Next we will analyze the types of samples used during each Backward and Secondary
Backward Sampling. As mentioned, USBI nodes are completely omitted from the Sam-
pling, thus we are left with UBI and non-UBI nodes.

For calculating either the Backward Sample or the Secondary Backward Sample of a
node U1, we will use the following samples of its children.

(Ch)

• A type 1 child U2 will be:
(Ch1) Secondary Backward Sampled if the specified copula C12|K includes a

diverging arterial node in the conditioning set K that is a parent of U1.
(Ch2) Backward Sampled if it is not UBI and the condition (Ch1) is not satis-

fied.
(Ch3) Omitted if it is UBI and the condition (Ch1) is not satisfied.
• All type 2 children will be Secondary Backward Sampled.

Example 4.2.3. Let us illustrate the procedure of Backward Propagation in the context
of the inference problem in figure 4.13a. In this case Secondary Backward Sampling of
U3 is not required. The procedure is the following:
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ub
4 ⇝ ub

3 ⇝ ub
2 ⇝ ub

1

On the other hand, in the inference problem seen in figure 4.13b, we require the Sec-
ondary Backward Sample of U3 to propagate to U1, while the regular Backward Sample of
U3 is used for Backward Propagation towards U2. The Backward Propagation procedure
in this scenario is:

ub
4 ⇝ ub

3, usb
3 ⇝ ub

2 ⇝ ub
1

The pseudo-code corresponding to the Backward Propagation Procedure is shown in
algorithm 7.

Larger Example of Backward Propagation Let us consider the example of figure
4.14.

U1

U2

U4

U6 U7U5

U3

23

12

24

14|2

46 47

25|3 27|4

35
45|3

76|4

Figure 4.14: Example of Backward Propagation.

In this example we have two evidence nodes U5, U6, no USBI nodes and one UBI node
U7.

The Backward Propagation starts at the evidence nodes, which have no descendants.
The iterations of Backward Propagation are as follows:

Step 1: Set ub
5 = usb

5 = u5 and ub
6 = usb

6 = u6 to the observed values of the evidence.
Step 2: U3 is not UBI and (B1) holds. Therefore we sample ub

3 using case 1 Backward
Sampling from the distribution:

U3|U5 = ub
5.

Step 3: U7 is UBI, therefore we do not find its Backward Sample. On the other hand,
condition (BS) holds along with condition (B2). Therefore we sample usb

7 with
case 1 Secondary Backward Sampling from the distribution:

U7|U6 = usb
6 .
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Algorithm 7 Backward.Propagation(GA ,E, e, AUBI , AUSBI)
Input: • GA an Extended Artery

• E the evidence nodes.
• e the evidence values.
• AUBI the set of UBI nodes.
• AUSBI the set of USBI nodes.

Output: {ub
i}i=1...m, {usb

i }i=1...m: collections of Backward and Secondary Backward
samples.

1: {U1, . . . , Um} ← the nodes in VA\(AUSBI) ordered in the reverse PCBN sampling
order.

2: i = m
3: while (BP) is not satisfied do ▷ Propagation Loop
4: if Ui ∈ E then ▷ Assign evidence values
5: ub

i ← ei
6: usb

i ← ei
7: else if paGA

(Ui) ∩E ̸= ∅ then ▷ Exclude nodes with evidence parents
8: Ch1 ← type 1 children of Um that are not USBI
9: Ch2 ← type 2 children of Um that are not USBI

10: ∀Ul ∈ Ch1 choose ul from ub
l , u

sb
l , e according to (Ch).

11: if (B1) holds and Ui is not UBI then ▷ Type 1 Backward Sampling
12: ub

i ← Backward.Sample.1(GA , Ui, {uCh1})
13: else if Ui is not UBI then ▷ Type 2 Backward Sampling
14: ub

i ← Backward.Sample.2(GA , L, Ui, {uCh1})
15: end if
16: if (BS) holds then
17: ∀Ul ∈ Ch1 choose ul ← usb

l .
18: if (B2) then ▷ Type 1 Secondary Backward Sampling
19: usb

i ← Sec.Backward.Sample.1(GA , L, Ui, {uCh2})
20: else ▷ Type 2 Secondary Backward Sampling
21: usb

i ← Sec.Backward.Sample.2(GA , L, Ui, {uCh1 ,uCh2})
22: end if
23: end if
24: end if
25: i = i− 1
26: end while
27: return {ub

i}i=1...m, {usb
i }i=1...m
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Step 4: U4 is not UBI and condition (B1) is not satisfied. Therefore we sample ub
4 using

case 2 Backward Sampling from the distribution:

U4|U6 = ub
6, U7 = ub

7.

Furthermore, condition (BS) holds with condition (B2) not being satisfied. There-
fore we sample usb

4 with case 2 Secondary Backward Sampling from the distribution:

U4|U5 = usb
5 , U6 = ub

6, U7 = ub
7.

Step 5: U2 is not UBI and condition (B1) is not satisfied. Therefore we sample ub
2 using

case 2 Backward Sampling from the distribution:

U2|U3 = ub
3, U4 = ub

4, U5 = ub
5, U7 = usb

7 .

Step 6: U1 is not UBI and condition (B1) is satisfied. Therefore we sample ub
1 using case

1 Backward Sampling from the distribution:

U1|U2 = ub
2, U4 = usb

4 .

Then the Backward Propagation Procedure is finalized due to the conditions (BP) being
satisfied.

The sampling procedure can be illustrated in the following sequence of samples:

ub
5, u

sb
5 , u

b
6, u

sb
6 ⇝ ub

3 ⇝ usb
7 ⇝ ub

4 ⇝ usb
4 ⇝ ub

2 ⇝ ub
1.

4.2.3. Forward Propagation
Forward Propagation is a sequence of Forward Samples and Bilateral Samples. We
initialize the Forward Propagation procedure after the Backward Propagation is finalized.
It starts from the root of the artery and follows the ordering of nodes similarly as the
PCBN simulation.

If the next node Ui in the Forward Propagation process is part of the evidence, we simply
skip it and continue by sampling the next node Ui+1 in the process, using uf

i = ui.

Forward Propagation is finalized when all of the nodes U that have not taken part in
Forward Propagation satisfy either of the following two conditions:

(FP) • U ∈ E or
• ch(U) ⊆ E

Whether the Forward or Bilateral Sampling of a node U1 is conducted depends on the
arc-copula structure of U1 and its children. The following condition is checked:

(FS)

U1 is Forward Sampled if for each extended arterial child U2 of U1:

chGA
(U1) ⊆ anGA

(U2) ∪ deGA
(U2) ∪ {U2}.

This means that all children of U1 belong to the same arterial branch.
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(Bil) U1 is Bilaterally Sampled if the previous condition is violated.

In the second case when the Bilateral Sampling is applied, the continuation of Forward
Propagation procedure towards the children may require different Bilateral Samples of
U1.

In Bilateral Sampling of U1, later used in Forward Propagation to child U2, we use all
parents of U1 as well as all of U1’s children that are neither ancestors nor descendants
of U2. This means that the following set of nodes is used:

chGA
(U1)\(anGA

(U2) ∪ deGA
(U2)).

The reason is that each of U1’s arterial children’s forward samples, require U1’s sample to
be conditionalized also on the evidence that is part of the descendants of the remaining
children, but not on those that are already part of the Forward Sample of U2 (i.e. the
descendants and ancestors of U2).

The procedure of each Forward Propagation iteration at a node U1 is as follows:

1. If U1 is an evidence node, keep the observed value as the sample uf
1 of U1.

2. If U1 is not an evidence node and satisfies the condition (FS), obtain a sample uf
1

by Forward Sampling using all of U1’s parents´ Forward Samples.
3. If U1 is not an evidence node and does not satisfy condition (FS), for each of U1’s

extended arterial child U2 obtain a Bilateral Sample u→2
1 of U1 using all of U1’s

parents and all children nodes in:

chGA
(U1)\(anGA

(U2) ∪ deGA
(U2) ∪ {U2}).

In order to avoid multiple evaluations of the same samples we may only calculate one
sample for each arterial branch stemming from U1 and use that sample as a Bilateral
Sample towards all other nodes of the same branch.

Thus we only need to calculate the Bilateral samples for the children that belong to the
node set:

(Bil.F) chA (Ui)\AUSBI
∪
{Uj ∈ Ch2 : C1j|K ∈ C , |K| = 1}.

The pseudocode of Forward Propagation is presented in algorithm 8.

Example 4.2.4. Let us consider a PCBN in figure 4.15a, where E = {U1}. The Forward
Propagation in this case would be conducted without the use of Bilateral Sampling until
reaching the leaves of the PCBN. The Forward Propagation in this example is:

u1 ⇝ uf
2 ⇝ uf

3 ⇝ uf
4 ⇝ uf

5 ⇝ uf
6 .

If E ⊆ {U1, U2, U3}, then the same holds, and the sampling process does not stop in the
arterial diverging node U4.

The PCBN shown in figure 4.15b also does not require Bilateral Sampling but only
Forward Sampling of node U4. This is because U4 belongs to the evidence. In this case
the Forward Propagation procedure is:
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Algorithm 8 Forward.Propagation(GA ,E, e, AUBI , AUSBI)
Input: • GA an Extended Artery

• E the evidence nodes.
• e the evidence values.
• AUBI the set of UBI nodes.
• AUSBI the set of USBI nodes.

Output: {uf
i }, {ubil

i→j}: collections of Backward and Secondary Backward samples.
1: {ub

i}, {usb
i } ← Backward.Propagation(GA ,E, e, AUBI , AUSBI)

2: {U1, . . . , Um} ← VA ordered in the PCBN sampling order.
3: i = 1
4: while (FP) is not satisfied do ▷ Propagation Loop
5: if Ui ∈ E then ▷ Assign evidence values
6: uf

i ← ei
7: for Uj ∈ chGA

(Ui) do
8: ubil

i→j ← ei
9: end for

10: else if i = 1 and |chA (Ui)| = 1 then ▷ Root not in evidence
11: Sample uf

i ∼ U(0, 1)
12: else if chGA

(Ui) ∩E ̸= ∅ then ▷ Exclude nodes with evidence children
13: P ← extended arterial parents of Ui

14: Ch1 ← type 1 children of Um that are not USBI.
15: Ch2 ← type 2 children of Um that are not USBI.
16: ∀Ul ∈ P choose ul according to (FS) and (Bil).
17: ∀Ui ∈ Ch1, Ch2 choose ui from ub

i , u
sb
i according to (Ch).

18: if (FS) holds then
19: uf

i ← Forward.Sample(GA , Ui,uP ) ▷ Forward Sampling
20: else
21: for Uj ∈ (Bil.F) do ▷ Bil.Sampling for each arterial branch
22: Ch← (Ch1 ∪ Ch2)\({Uj} ∪ deA (Uj))
23: ubil

i→j ← Bilat.Sampling(GA , Ui,uP ,uCh) ▷ Bilateral Sample
24: for Ul ∈ deA (Uj) ∩ chGA

(Ui) do
25: ubil

i→l ← ui→j

26: end for
27: end for
28: end if
29: end if
30: i = i+ 1
31: end while
32: return {uf

i }, {ubil
i→j}

u1 ⇝ uf
2 ⇝ uf

3 ⇝ uf
4 = u4 ⇝ uf

5 ⇝ uf
6 .

Finally, for the PCBN in figure 4.15c, the Forward Propagation would reach U3 with
only Forward Samples but then it would require the arterial diverging node U4 to be
Bilaterally Sampled. The Forward Propagation procedure is:
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Figure 4.15: Examples illustrating Forward Propagation.

u1 ⇝ uf
2 ⇝ uf

3 ⇝ u→5
4 ⇝ uf

5 .

Let us analyze the Forward Propagation procedure for the example in figure 4.15c. As-
suming that the results of Backward Propagation are available, we begin Forward Prop-
agation from the root U1.

Step 1: Set uf
1 = ubil

1→2 = ubil
1→3 = u1 as the observed value of the evidence node U1.

Step 2: U2 satisfies the condition (FS). Therefore we sample uf
2 using Forward Sampling

from the distribution:
U2|U1 = uf

1 .

Step 3: U3 satisfies the condition (FS). Therefore we sample uf
3 using Forward Sampling

from the distribution:
U3|U1 = uf

1 , U2 = uf
2 .

Step 4: U4 does not satisfy the condition (FS). Therefore we need to create Bilateral Sam-
ples to be sent to each of U4’s children. The child U6 is part of the evidence,
therefore, the sample ubil

4→6 is not needed. For the child U5 we sample ubil
4→5 using

Bilateral Sampling from the distribution:

U4|U2 = uf
2 , U3 = uf

3 , U6 = ub
6.

Step 5: U5 satisfies the condition (FS). Therefore we sample uf
5 using Forward Sampling

from the distribution:
U5|U4 = ubil

4→5.

Then the Forward Propagation Procedure is finalized due to the conditions (FP) being
satisfied.
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4.2.4. Finalization
During the Finalization stage, for all U1 ∈ Q samples of the form

U1|E

are calculated. Three cases are considered at this step depending on the query node
U1:

1. If U1 has no extended arterial descendants in the evidence, then its Forward Sam-
ples are used.

2. If U1 has no extended arterial ancestors in the evidence, then the Secondary Back-
ward Samples are used.

3. If U1 has both extended arterial ancestors and descendants in the evidence, then
its Bilateral Samples are used.

This concludes our algorithm on Single-Arterial PCBN Sample Propagation.

4.3. Implementation
In this section we will illustrate a full example of Arterial Sample Propagation in PCBNs.
We implement our methodology in R and compare the results with the theoretical con-
ditional distributions.

To make this comparison we only Gaussian Copulas, so as to create a GBN, whose
inference solution is known. We discuss this choice and the calculation of the theoretical
conditional distribution in greater detailed in chapter 6 of our simulation study.

In figure 4.16 the PCBN is illustrated. As seen in the figure, nodes U1, U7 and U8 form
the evidence in our problem.

U1

U2

U3

U4 U5

U6 U7 U8

24|3

38|5

45|3

48|35

Figure 4.16: PCBN structure of example in which we apply Arterial Sample Propagation.

In the collection F , all variables in the PCBN are assigned with a Gaussian N (0, 1)
marginal distribution.
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The inference problem that we will solve for is conditioned on the evidence

X1 = −0.75, X7 = 0.5 and X8 = −0.5,

where Xi are the (Gaussian) transformed variables in the PCBN.

When transforming those values back to their uniform counterparts, the evidence takes
the form

U1 = −0.2266, U7 = 0.6915 and U8 = −0.3085.

Both Gaussian copula parameters and evidence observation values were chosen manually
for this example, with an effort to introduce some randomness, though not truly random.
A restriction was placed to avoid extreme values. We talk more about this restriction in
chapter 6.

In table 4.1 the chosen copula parameters for this example are shown for each of the
specified copulas in the PCBN.

Copula Parameter
C12 -0.6
C23 0.8
C34 0.5
C35 0.6
C56 -0.4
C47 0.75
C48 -0.5
C24|3 0.4
C36|5 0.5
C45|3 -0.4
C46|35 0.4

Table 4.1: Gaussian Copula Parameters

Let us start the Arterial Sample Propagation. The implementation was done for both
Sample and Importance Sample Sizes of 104:

Initialization We initialize by setting:

uf
1 = ub

1 = usb
1 = ubil

1 = 0.2266

uf
7 = ub

1 = usb
7 = ubil

7 = 0.6915

uf
8 = ub

8 = usb
8 = ubil

8 = 0.3085

We additionally identify UBI and USBI nodes. U7 is a USBI node and will not
take part in Backward Propagation.

Backward Propagation U4 has an incoming arc U2 → U4 assigned with a copula C24|3
conditioned on the arterial diverging node U3. Hence we must also Secondary
Backward Sample U4.

The Backward Propagation Process is:

ub
4, u

b
5 ⇝ usb

4 , u
b
3



68 Chapter 4. PCBN Inference

Forward Propagation U3 is an arterial diverging node with evidence in either side
of its arterial branches it creates. Thus we must Bilateral Sample U3 to send its
sample to either U4 or U5

The Forward Propagation Process is:

uf
2 ⇝ ubil

3→4, u
bil
3→5 ⇝ uf

4 ⇝ uf
6

Finalization Here the final samples for nodes U2, U3, U4, U5 and U6 are calculated.

Note that the final sample of U6 is equivalent to uf
6 due to it only having parents.

Lastly all final samples are transformed into their Gaussian counterparts, which
marks the end of Arterial Sample Propagation.

Let us now discuss the performance of Arterial Sample Propagation in this example. To
compare the empirical distributions of our samples to the theoretical ones provided by
GBN theory, we plot the empirical CDF of the samples against the theoretical Gaussian
CDFs.

We can see the excellent performance of Arterial Sample Propagation in the plots pre-
sented in figure 4.17. For all nodes, the distributions of the samples followed closely the
respective theoretical distributions. Furthermore, the total execution time for the prop-
agation was 47.1 seconds, of which 47 were spent during Secondary Backward Sampling
of U4.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Comparison of empirical CDFs of final samples and theoretical CDFs.





5
Pruning

The initial step in PCBN inference is the reduction and simplification of the PCBN. The
goal is to simplify a PCBN and produce a sub-model with the least possible number of
nodes such that all nodes of interest are included and that all conditional densities of
query variables given the evidence stay the same. This process of BN simplification is
called pruning.

The pruning of a PCBN is the removal of specific nodes in the graph. The pruned PCBN
model is a sub-model resulting from the removal of all marginal distributions, parental
orderings and copulas corresponding to the removed arcs and nodes.

First, pruning will be illustrated with an example. Let us consider the inference problem
f4|6,8 applied to the PCBN in figure 4.1. The graphical representation of this problem is
shown in figure 5.1.

U3

U1

U4 U5 U6

U7

U2

U8 U9 U10

U11

13
14|3 24

|13 26

34

37 3938 49|3 59
|34

6,10

8,11 10,11|8

Figure 5.1: Example of inference problem on 11 nodes.

To solve the inference problem f4|6,8 we are interested in trails between the query variable
U4 and the evidence variables U6 and U8.

In this example, the trail U6 → U10 → U11 ← U8 ← U3 → U4 is blocked by E as it
contains the v-structure U8 → U11 ← U10 and U11 is not in E, as well as due to the serial

71
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connection U3 → U8 → U11, where U8 ∈ E. Furthermore, the trail U8 → U11 ← U10 ←
U6 ← U2 → U4 is also blocked by E. Since node U11 is not part of any unblocked trail
between evidence and query variables, it could be considered for pruning..

Another condition to consider when deciding whether to prune a node is whether its
removal necessitates recalculation of copulas. If in example 5.1 when we assume that
U8 is not an evidence variable nodes U1 or U3 are candidates to be pruned, as there is
no un-blocked trail from U6 to U4 including these nodes. However, U2 is included in
the unblocked trail U6 ← U2 → U4, where the last arc is assigned with the conditional
copula C24|13. Both U1 and U3 are included in the conditioning set of that copula, hence
we cannot prune them. If we were to prune U1 and U3 we would need to compute copula
C24, which is not specified by the original PCBN. We will examine this in greater detail
in the section PCBN pruning.

In principle one could examine all trails in the PCBN and see which nodes can be
pruned. However in what follows we propose a more efficient way of simplifying the
PCBN inference problem.

5.1. Leaf Pruning
The easiest kind of PCBN pruning is leaf pruning, which is applied in the general frame-
work of BNs [1]. The following proposition is helpful in the leaf pruning process.

Proposition 5.1.1. Let U ∈ I be a leaf. Then there exists no trail from E to Q
containing U , that is not blocked by E.

Proof. Let us first consider the case |pa(U)| = 1. Denote this single parent of U as V .
Since U has no children and only one parent V and U belongs neither to Q nor to E
then there is no trail from Q to E that contains U .

Let |pa(U)| > 1. Since ch(U) = ∅ then a trail containing U must be of the form:

· · ·⇋ Ui → U ← Uj ⇋ . . .

The connection at U is a converging connection and U ∈ I while U ∩K = ∅. Therefore,
the trail is blocked.

Due to Proposition 5.1.1 all leaves in I can be pruned. This is because, in addition to
the independency statement of the proposition, they can be put as last in the ordering
and their removal does not change the distribution of remaining variables[1].

Example 5.1.2. Let us see how the algorithm 9 works for the PCBN in figure 5.1.

Step 1 : The original PCBN contains three intermediate (neither in query nor in evi-
dences) leaf nodes:

L = {U7, U9, U11}.

These are added to the selection of variables to be pruned:

Lpr = L = {U7, U9, U11}.
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Algorithm 9 Leaf.Prune(G , I)
Input: G a DAG,

I the set of intermediate nodes
Output: Pruned DAG GR

L← {U ∈ I : ch(U) = ∅} ▷ Intermediate Leaves of the network
Vpr ← L ▷ Variables to be pruned
B ← L
while B ̸= ∅ do

B ← {U ∈ I : ch(U)\Vpr = ∅}\Vpr ▷ Intermediate Leaves of the pruned network
Vpr ← Vpr ∪ B

end while
GR ← G [V \Vpr]
return GR

By removing these variables we also remove the arcs with assigned copulas:
C37, C39, C49|3, C59|34, C8,11, C10,11|8.

The resulting PCBN after one iteration of pruning is presented in figure 5.2.

U3

U1

U4 U5 U6

U2

U8 U10

13
14|3 24

|13 26

34

38 6,10

Figure 5.2: First iteration of Leaf Pruning.

Step 2 : After the first iteration we see that the PCBN contains two additional leaf nodes
L = {U5, U10}

and they are added to the final selection of variables to be pruned:
Lpr = {U5, U7, U9, U10, U11}.

Additionally the arc with assigned copula
C6,10

is removed. The resulting PCBN after the second iteration of pruning is presented
in figure 5.3.

The twice pruned PCBN does not contain any more intermediate leaf nodes that can
be removed, and thus, leaf pruning is concluded having removed the nodes Lpr from the
original PCBN.



74 Chapter 5. Pruning

U3

U1

U4 U6

U2

U8

13
14|3 24

|13 26

34
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Figure 5.3: Second iteration of Leaf Pruning.

5.2. PCBN Pruning
Next, we will show that pruning certain non leaf nodes is also possible in PCBNs. In
the general BN setting, pruning nodes that are not leaves is not performed because it
would require recalculation of the conditional distributions of all children of the pruned
node, or their marginal distributions when the pruned node is their only parent.

In PCBNs, however, it is possible to also prune nodes that are not leaves. This is because
of the specification of PCBNs through margins and copulas instead of the conditional
distributions. Furthermore, the bivariate copula factorization of the conditional densities
in PCBNs makes it possible to remove the last parent according to the parental ordering
without requiring to re-compute copulas..

Similarly to Leaf Pruning, our attention lies in the unblocked trails between evidence
and query variables. Let us consider some examples. In each of the three PCBNs seen
in figure 5.4, it is possible to prune the variables U1 and U2. In figure 5.4a, all trails from
U1 and U2 to U4 are blocked by U3 ∈ E. In figure 5.4b, we observe that the shortest
trail from the evidence to U4 does not contain the nodes U1 and U2, nor are these nodes
part of a conditioning set of a copula specified by that trail. In figure 5.4c, similarly as
in figure 5.4b , U1 and U2 can be removed but we do not remove U3 as it forms part of
a trail from the evidence U5 to U4.
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Figure 5.4: Examples for PCBN pruning.
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In the general case, an un-blocked trail between a query variable Uq and an evidence vari-
able Ue may contain a number of converging connections U1, . . . , Un which are activated
by the evidence. The trail takes the form:

Uq ⇋ · · · → U1 ← · · · → Un ← · · ·⇋ Ue.

In the initial stage, our algorithm finds the evidences that are connected to a given query
variable through trails that do not contain converging connections. In the general setting
of trails containing converging connections, this step is equivalent to finding the trail
connecting Uq with the evidence variable that activates the first converging connection
U1.

Our algorithm continues iteratively by finding evidence nodes connected to Uq through
trails containing n converging connections. Due to the converging connections being
activated, each of them imply the existence of at least one evidence variable that is
their descendant or the connection itself. Therefore, the n’th converging connection’s
evidence descendant is connected to Uq though a trail with n-1 converging connections
identified previously.

Motivated by these observations, for a given PCBN we examine the types of unblocked
trails between a query node Uq ∈ Q and an evidence node Ue ∈ E. Despite this trail
possibly containing multiple converging connections that are unblocked by E, at an
initial phase we will restrict our scope to trails without converging nodes, and expand
our framework later.

Hence, in each iteration we search for an unblocked trail between two variables, such
that it does not contain a single converging variable; we are interested in trails of the
form:

U1 ← · · · ← Um → · · · → Un

As illustrated in the example of figure 5.4b, in order to find such a trail while pruning as
many nodes as possible, we must analyze the shortest trails between nodes of interest,
and to keep only nodes that are specified by the copulas of the shortest trail. In the
PCBN of figure 5.4b, despite the existence of the unblocked trails:

U4 ← U2 ← U1 → U3

and
U4 ← U2 → U3,

the shortest trail U4 ← U3 assigned with an unconditional copula directly implies that
we do not need to consider the other two trails.

By including the nodes that are part of the conditioning sets of the copulas specified by
the trail we make sure that all required copulas are specified by the original PCBN. In
the example of figure 5.4c, we kept U3 as it is a part of the shortest trail between U5 and
U3. In figure 5.5, an alternative problem is presented in which the arc 3→ 5 is assigned
with a conditional copula, C35|6. In this scenario we must keep U6, as it appears in the
conditioning set of this copula.
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Figure 5.5

Definition 5.2.1 (Earliest Common Ancestor). Let (G ,O,F ,C ) be a PCBN and
Ui, Uj ∈ V and consider a set A = an(Ui) ∪ an(Uj) ∪ {Ui} ∪ {Uj}. A node U ′ ∈ A
is called earliest common ancestor of Ui and Uj if ∀ U ∈ A, the shortest trail from
Ui to Uj passing though U ′ is not longer than the shortest trail passing though U .

Remark. Note that the earliest common ancestor of Ui and Uj might be Ui or Uj. This
is done to include the case of Ui ⇋ Uj. For example, in figure 5.4b, the earliest common
ancestor of U3 and U4 was U3, with trail U3 → U4. On the other hand, in figure 5.4c,
the earliest common ancestor of U4 and U5 was U3, with trail U4 ← U3 → U5.

In our methodology, for every Uq ∈ Q and Ue ∈ E we find the earliest common ancestor
Uqe and the shortest trail including Uqe:

Ui1 ⇋ · · ·⇋ Uin . (5.1)
where i1 = q and in = e.

If Uq and Ue do not posses an earliest common ancestor then all trails between the two
contain converging connections. Thus, such trail does not provide with any variables
that are possible candidates to be pruned. If we denote the variables to be kept based
on such trails between Uq and Ue as V ∗

qe, we get that V ∗
qe = ∅.

Assume that there exists an earliest common arterial ancestor between Uq and Ue. The
trail 5.1 is made up of a sequence of variables and specified copulas. Let Vqe and Cqe

denote the sets of all these variables and copulas. In this case the nodes we must not
allow to be pruned are:

V ∗
qe := Vqe ∪

Ñ ∪
Cij|Kij

∈Cqe

Kij

é
By conducting this procedure, we find the following sets of evidence nodes based on
whether they are connected to the query variable without converging connections:

• E1
1 := {Ue ∈ E | V ∗

qe ̸= ∅}.
• E1

2 := E\E1
1 .

This shows that all nodes not allowed to be pruned at this stage are:

V q
1 :=

∪
e∈E1

1

V ∗
qe
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The next step is to examine whether there are nodes in E1
2 with a trail to Q unblocked

by E, by allowing a single converging connection which is unblocked by E1
1 . This means

that we look for nodes in E1
2 with a trail to E1

1 unblocked by E and containing no
converging connection.

Just like in the first step, for every Ue1 ∈ E1
1 , Ue2 ∈ E1

2 , we find the earliest common
ancestor Ue1e2 and the implied trail. We then find the specified nodes and copulas of
that trail which provide us with the nodes V ∗

e1u2
which cannot prune.

Then, the next sets of evidence nodes are defined:

• E2
1 := {Ue ∈ E1

2 | ∃Ue1 ∈ E1
1 : V ∗

e1u2
̸= ∅}.

• E2
2 := E\E2

1 .

The nodes to be kept after this stage are:

V q
2 :=

∪
e1∈E1

1

∪
e2∈E2

1

V ∗
e1e2

The process is repeated until we obtain Em+1
1 = ∅. Then, the search for evidence nodes

connected to Uq ∈ Q is finished, and the nodes that are kept based on those trails
are:

V q,keep :=
m∪
i=1

V q
i

For every Uq ∈ Q the above process is performed and all the nodes that need to be kept
from pruning are:

V q,keep :=
∪

Uq∈Q

V q,keep (5.2)

As an output, this algorithm calls for removing all nodes in V \V keep from the PCBN,
along with all of their connected (incoming and outgoing) arcs. The pseudocode corre-
sponding to our PCBN pruning algorithm is depicted in algorithm 10.

Remark. Note that this algorithm also incorporates leaf pruning. An intermediate leaf
node will never be part of the ancestors of query or evidence nodes and thus, by default,
it will never become part of an V keep

i set.

Next, we will prove the algorithm’s ability to retain the conditional distributions of query
variables given the evidence. We start with a very simple lemma.

Lemma 5.2.2. Let G be a DAG and consider the following trail in G :

U1 ⇋ · · ·⇋ Un.

If the trail contains no node with converging connections, it contains at most one diverging
connection.

Proof. If this trail is composed only of serial connections, then obviously it has no nodes
with diverging connections.. To show that there can be only one node with diverging
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Algorithm 10 PCBN.prune( G , I, E,Rkeep)
Input: G a PCBN

I the set of intermediate nodes
E the set of evidence nodes Output: Pruned PCBN Gpr

1: Q← V \(I ∪ E)
2: for Uq ∈ Q do
3: V q

0 ← {q}
4: E0

1 ← {q}
5: E0

2 ← E
6: i← 1
7: while Ei−1

1 ̸= ∅ do
8: for Ue1 ∈ Ei−1

1 do
9: for Ue2 ∈ Ei−1

2 do
10: Ue1e2 ← earliest common ancestor of Ue1 and Ue2 (def.5.2.1).
11: Ve1e2 ← nodes in trail 5.1.
12: Ce1e2 ← copulas specified by trail 5.1.

13: V ∗
e1e2
← Ve1e2 ∪

Ñ ∪
Cij|Kij

∈Ce1e2

Kij

é
.

14: end for
15: end for
16: Ei

1 ← {Ue2 ∈ Ei−1
2 | ∃Ue1 ∈ Ei−1

1 : V ∗
e1e2
̸= ∅}.

17: Ei
2 ← Ei−1

2 \Ei
1.

18: V q
i ←

∪
e1∈E1

1

∪
e2∈E2

1

V ∗
e1e2

19: i← i+ 1
20: end while
21: V q,keep ←

∪i−2
j=0 V

q
j

22: end for
23: V keep ←

∪
Uq∈Q V q,keep

24: G pr ← sub-PCBN G having removed V \V keep.
25: return G pr
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connection assume that there be two diverging connections in a trail. This trail is of the
form:

U1 ← · · · ← Ui1 → · · · ← Ui2 → · · · → Un.

After the first diverging node all following arcs are rightwards facing, while all of the
arcs before the second diverging node are leftwards facing. Hence a node with converg-
ing connection must be on the trail between Ui1 and Ui2 , which contradicts the initial
assumption of no converging connections.

Next, we show that the PCBN obtained after application of the algorithm leads to the
same solution of the inference problem as the initial PCBN.

Theorem 5.2.3. Let the PCBN (G ′,O ′,F ′,C ′) be a sub-model of PCBN (G ,O,F ,C )
obtained as the output of algorithm 10. The conditional distribution fQ|E computed in
PCBN G ′ is the same as the one computed in PCBN G .

Proof. In order to prove this theorem it suffices to show that for every Uq ∈ Q and
Ue ∈ E, every minimal activated by E trail in G between Uq and Ue is also present in
G ′ and remains activated.

Let the minimal trail in G between Uq and Ue activated by E be of the form:

Uq ⇋ U1 ⇋ · · ·⇋ Un ⇋ Ue (5.3)

This trail is not blocked by E and is minimal in length, meaning that there are no chords
present between its elements in G .

The following connections Ui−1 ⇋ Ui ⇋ Ui+1 are possible in this trail :

1. Serial or a diverging connection with Ui /∈ E.
2. Converging connection with Ui or at least one of its descendants belongs to the

evidence.

Let Ud1 , . . . , Udm be the converging nodes in trail 5.3.

The proof will be done by induction on the number m of converging nodes in the trail
5.3.

For m = 0, there is no converging connection in the trail, and the trail is composed of
only serial and diverging connections. Due to lemma 5.2.2, there is at most one diverging
connection in this trail and it is the earliest common ancestor of Uq and Ue.

If there is no diverging connection, the trail is built of only serial connections, implying
either Uq ∈ an(Ue) or Ue ∈ an(Uq). All nodes on such a trail are included and are not
allowed to be pruned. Furthermore, if this trail is activated by E in G this implies that
none of the nodes are part of E, hence it is also activated in G ′.

If there is one diverging connection at a node Ua, then the trail takes the following form:

Uq ← · · · ← Ua → · · · → Ue
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Then, Ua is the earliest common ancestor of Uq and Ue and the algorithm includes all
nodes in the pruned graph. Like before, due to all connections being serial and diverging,
if the trail is activated by E then it is also active in G ′

Let us assume that minimal trails activated by E between nodes Uq and Ue with m or
less converging connections are active in the pruned graph obtained by our algorithm.
That is all nodes required for such trails to be active are kept in the pruned graph. We
will prove that trails with m+1 converging connections are also active in pruned graph.

Such a trail takes the following form and we assume that Udm+1 is the closest to Ue.

Uq ⇋ · · · → Udm+1 ← · · ·⇋ Ue

This last converging connection, Udm+1 is unblocked by E, hence either Udm+1 or one of
its descendants is in E. Let us denote this node that belongs to E as U e

dm+1
. Then the

following trails between Uq and Udm+1 as well as between Udm+1 and Ue are present:

Uq ⇋ · · · → Udm+1 → · · · → U e
dm+1

U e
dm+1

← · · · ← Udm+1 ← · · ·⇋ Ue

The first trail has m converging connections and U e
dm+1

is part of the evidence and by
the inductive assumption, the trail is included in the pruned graph and it is activated
by E.

Furthermore, U e
dm+1

is added to the set Em+1
1 specified in the algorithm. Since the last

converging connection is at Udm+1 , the second trail from U e
dm+1

to Ue does not contain any
converging connections. Therefore, by lemma 5.2.2, this sub-trail contains at most one
diverging connection. Similarly to the argument for m = 0, this entails that U e

dm+1
and

Ue have an earliest common ancestor and that the algorithm keeps all nodes required
for the minimal active trail between the two nodes. Udm+1 is part of this trail, hence the
sub-trail between Udm+1 and Ue is included in G ′.

Therefore, the algorithm includes all nodes required to keep the minimal trail between
Uq and Ue activated by E in pruned graph and the proof is concluded.

Let us now have a closer look at an example with multiple arteries to illustrate how the
pruning algorithm works.

Example 5.2.4. Let us apply algorithm PCBN.prune (10) to the inference problem
presented in figure 5.6. This network consists of 16 nodes, with query Q = {U3, U16}
and evidence E = {U5, U8}.

We start by searching the connections of U3 ∈ Q:

1. We initialize V keep
0 = E0

1 = {U3} and E0
2 = E = {U5, U8}.

2. The only evidence variable in E0
2 that has an earliest common ancestor with U3 is

U5, with that earlier ancestor being:

U3,5 = U3
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Figure 5.6: Example for PCBN pruning.

The minimal trail implied by this earliest common ancestor is:

U3 → U4 → U5

The specified nodes are V3,5 = {U3, U4, U5} and the specified copulas are C3,5 =
{C23, C34|2, C45}. Therefore, the nodes that are to be kept based on this trail are:

V 3
3,5 = {U2, U3, U4, U5}

We set:
E1

1 = {U5} and E1
2 = {U8}

3. E1
2 only contains U8 which has an earliest common ancestor with U5 ∈ E1

1 , that
being:

U5,8 = U6

The implied trail is:
U5 ← U4 ← U6 → U8

The specified nodes are V5,8 = {U4, U5, U6, U8} and the specified copulas are C5,8 =
{C45, C64|23, C68|7}. Therefore, the nodes that are to be kept based on this trail
also include the conditioning sets of these copulas and:

V 3
5,8 = {U2, U3, U4, U5, U6, U7, U8}

Then we are left with E2
1 = ∅ which finalizes the search for nodes connected to U3.

Therefore, the nodes we must keep in order to reach the evidence from U3 are:

V 3,keep = V 3
3,5 ∪ V 3

5,8 = {U2, U3, U4, U5, U6, U7, U8}

Next, we begin the search from the query node U16.
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1. We initialize V keep
0 = E0

1 = {U16} and E0
2 = E = {U5, U8}.

2. The only evidence variable in E0
2 that has an earliest common ancestor with U16

is U8. This common ancestor is:

U16,8 = U7.

The implied trail is:
U16← U7 → U8

The specified nodes are V16,8 = {U7, U8, U16} and the specified copulas are C16,8 =
{C78, C7,16|15}. Therefore, the nodes that are to be kept due to this trail are:

V 16
16,8 = {U7, U8, U15, U16}.

We set:
E1

1 = {U8} and E1
2 = {U5}.

3. E1
2 only contains U5 which has an earliest common ancestor with U8 ∈ E1

1 , which
is:

U8,5 = U6.

The implied trail is:
U8 ← U6 → U4 → U5.

The specified nodes are V8,5 = {U4, U5, U6, U8} and the specified copulas are C8,5 =
{C45, C64|23, C68|7}. Therefore, the nodes that are to be kept because of this trail
also include the conditional sets and:

V 16
8,5 = {U2, U3, U4, U5, U6, U7, U8}.

Then we are left with E2
1 = ∅ which concludes the algorithm for node U16.

Therefore, the nodes we must keep due to U16 are:

V 16,keep = V 3
3,5 ∪ V 3

5,8 = {U2, U3, U4, U5, U6, U7, U8, U15}.

Finally, both obtained sets are joined and we get a set of nodes that cannot be pruned:

V keep = V 2,keep ∪ V 16,keep = {U2, U3, U4, U5, U6, U7, U8, U15}.

The pruned PCBN for this example is presented in figure 5.7.
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Figure 5.7: Pruned PCBN of example 5.6.





6
Simulation Study

In this chapter the results of the extensive simulation study are presented where the
algorithms proposed in chapter 4 are tested.

The goals of the simulation study are:

• To test the effectiveness and efficiency of the node sampling algorithms.

• To find scenarios in which node sampling under-performs.

• To decide the choice of importance sample.

• To test the effectiveness and efficiency of the full PCBN inference through sample
propagation.

The third goal is motivated by the comments made in subsection 4.1. There, we have dis-
cussed that the optimal choice of the importance sample is somewhat unclear, especially
in Bilateral Sampling. We want to investigate which choice should be made and under
what conditions. For the testing Bilateral Sampling, the importance sample was chosen
according to our initial proposals made in chapter 4. This choice will be further discussed
in section 6.7, where other types of importance samples will be considered.

To compare samples obtained through the PCBN inference algorithms with the distri-
butions obtained through GBN inference, we opted to rely on the overlap coefficient
(OVL). The OVL measures the area under two integrable PDFs f1, f2 of distributions
with the same support X :

OV L =

∫
X

min(f1(x), f2(x))dx

In other words, the OVL can be seen as a measure of agreement between two distribu-
tions. It takes values between 0 and 1 and we will use it to see how ’close’ the empirical
conditional distribution, obtained through the proposed in this thesis method, is as com-
pared to the theoretical one. A representation of the OVL for the distributions and
N (1.5, 2) can be seen in figure 6.1.

85
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Figure 6.1: Illustration of the Overlapping Coefficient.

The points X1, X2 where the two densities are equal in value can be calculated by
[38]:
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6.1. Simulation Setup
In this section we will provide details of the simulation process.

In order to be able to reach conclusions about the effectiveness and efficiency of the
sampling algorithms we chose to work with PCBNs that feature only Gaussian copulas
and Gaussian marginals. This family of PCBNs is equivalent to the GBN model, in
which solving inference problems analytically is easy as shown in subsection 3.3.

Each simulation was made up of the following stages:

Stage 1 : Set-up of simulation parameters for the following stages:

- Number of Samples we wished to obtain, set to 50, 100, 500, 103, 104.
- Gaussian Copula Parameter values, set to 0.5, 0.6, 0.7, 0.8, 0.9.
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- Number of Parents, type 1 children and type 2 children, according to the
context of each sampling type.

- Number of Importance Samples, when SIR was required, set to 100, 500, 103,
104.

Stage 2 : Calculation 104 unconditional PCBN simulations, as seen in subsection 2.3.4.

Stage 3 : Estimation of the covariance matrix of the joint normal distribution from the
samples obtained in Stage 2.

Stage 4 : Set the observed values of parents and children to those of a PCBN simulation
from Stage 2. The following steps were taken for 100 different choices of PCBN
simulation.

Stage 4.1 : Calculation of the likelihood of the observed values by integrating
the rest of the variables from the PCBN density.

Stage 4.2 : Calculation of the conditional distribution of the node being sampled
using GBN theory and the Gaussian-transformed observed values from Stage
4.

Stage 4.3 : Forward/Backward/Secondary Backward or Bilateral Sampling of a
node given the observed values provided by Stage 4, and calculating how
much time it took to complete.

Stage 4.4 : Calculation of the Overlapping Coefficient between the theoretical
distribution and the empirical distribution of the sample.

Stages 4.1-4.4 were conducted for all unique combinations of parameters de-
fined in Stage 1 along with the 100 different simulation choices made in Stage
4.

As seen in Stage 4, unconditional PCBN samples were used for the values of the parents
and children. This was done in order to ensure the ”realistic” likelihood of observing such
values; for extraordinarily low likelihoods of observations we are faced with programming
issues such as rounding and floating point errors. As an example, consider the inference
problem presented in figure 6.2, where all copula parameters are equal to 0.95 and
the observed values are 0.95 for U1 and 0.05 for U2. For Forward Sampling U3 we
would require the conditional marginal u1|2, whose value is rounded to 1. This is highly
problematic for many reasons, including the fact that the existing packages only allow
values in (0, 1). Furthermore, while this rounding error may seem negligible in the
uniform world, when translated to the normal marginals the difference between the real
value and Φ−1(1) = +∞ is major.

Besides the accuracy of sampling algorithms which was measured by the OVL, of central
importance was the efficiency of each sampling type. The focus was the time until
completion of the sampling process and how the simulation parameters such as sample
size and number of parents/children affected it.

We are interested in the relative performance for different simulation parameters, but
for reference we note that the system that the simulation study was run on was an
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U1

U2

U3

13|2

Figure 6.2: PCBN inference problem featuring extraordinarily unlikely evidence. (r = 0.95,
U1 = 0.95, U2 = 0.05)

11th Gen Intel(R) Core(TM) i7-11800H processor with Base Frequency 2.30GHz, Boost
Frequency 4.60 GHz, 8 Cores and 16 Logical Processors.

Multiprocessing was only used to run multiple (15) simulations at the same time. Each
individual simulation however was conducted linearly, with the only parallelization being
vectorization of commands when possible.

We tested the algorithms of Forward, Backward, Secondary Backward and Bilateral
Sampling. Therefore, in order to test each sampling type, a different DAG structure
was chosen. In the following sections we present these tested structures along with the
number of parents/children used.

6.2. Forward Sampling Results
For testing the Forward Sampling algorithm, we divided the scope into two types of
DAG structures. The first was when all parents are pairwise independent, and the
second when they are connected through arcs. These two types of DAG structures are
illustrated in figure 6.3.

U1 U2

Um+1

. . . Um

2,m+ 1|1 m,m+ 1|1 . . .m− 1

(a) Network for independent parents.

Um

...

U1

Um+1

m,m+ 1|1 . . .m− 1

(b) Network for dependent parents.

Figure 6.3: Networks used for testing the Forward Sampling algorithm, for m = 1, . . . , 6.
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For Forward Sampling the number of parents took values 1, 2, . . . , 6.

Effectiveness The results between the two scenarios of Forward Sampling were iden-
tical.

Overall, we observe excellent performance for even low sample sizes, which is to be
expected as SIR was not used and the Sampling Method sampled directly from the
target distribution. The estimated average Overlapping Coefficient was 0.9687 with a
5 · 10−4 margin of error at a 95% confidence level.

In figure 6.4a we can clearly see how OVL values become bigger for higher samples
taken. On the other hand, the number of parents does not show any impact on the OVL
values.

For the same exact reason, changing the parameters of the Gaussian Copulas did not
show any change in performance, as illustrated in figure 6.4b.

(a) (b)

Figure 6.4: Forward Sampling OVL Box-Plots (unmarried parents).

Let us now consider how observation likelihood may affect the effectiveness of the al-
gorithm. In the DAG structure of our first scenario of Forward Sampling, parents are
unmarried and thus independent. This means that, we do not need to specify the likeli-
hood of the observation, as this would be constantly equal to 1 for all observations.

On the other hand, likelihood weights may be relevant in the presence of arcs between
parents. The Pearson coefficient between OVL values and weights which was approxi-
mately 0.006 indicated that no linear correlation was present. This was further supported
by the scatter-plot between those two variables as illustrated in figure 6.5. we can con-
clude that likelihood of observations does not influence the performance of Forward
Sampling.

Efficiency Unsurprisingly, Sample Size affected the run-time of the algorithm, as seen
in figure 6.6a. Despite the noticeable increase in speed for higher Sample Sizes, the
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Figure 6.5

algorithm remained fast for all simulations averaging at 0.00303 seconds with a margin
of error of 7 · 10−5(95%) seconds.

(a) (b)

Figure 6.6: Forward Sampling time Box-Plots (unmarried parents).

In the same figure we can observe how the number of parents also caused an increase
in algorithm runtime. In the same way as with the OVL, the parameter choices did not
affect the speed of the algorithm as seen in figure 6.6b.

The results for the Forward Sampling scenario when arcs between parents are present in
the DAG, are identical to those for unmarried parents, with the exception being a slightly
higher run-time for the former case which was 0.0048 seconds with a margin of error
of 1 · 10−4(95%) seconds. For the case where parents are connected, the corresponding
figures are in appendix A.

6.3. Type 1 Backward Sampling
We recall that type 1 Backward Sampling algorithm is used when there exists an outgoing
arc with assigned copula Cij|Kij

, such that all type 1 children belong to {Uj} ∪Kij. An
illustration of the DAG structure used for four children is presented in figure 6.7.
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U0

U1

U2

U3

U4

02|1

03|12

04|12313|2

24|3

14|23

Figure 6.7: Example of DAG for simulating type 1 Backward Sampling with four children.

We considered 1, 2, 3 and 4 children in the context of type 1 Backward Sampling.

Effectiveness Type 1 Backward Sampling greatly resembles Forward Sampling due
to the sample being obtained directly through the h-function recursion. Hence we can
expect that its performance be comparable to that of Forward Sampling.

Indeed, the behavior of OVL values was similar, as seen in figure 6.8. The total average
was 0.9688 with a 5 · 10−4 margin of error on a 95% confidence level; virtually identical
to the results seen in section 6.2. For higher sample size OVL became more effective,
while number of Parents or Gaussian Copula Parameter values did not seem to affect
the OVL.

(a) (b)

Figure 6.8: Type 1 Backward Sampling OVL Box-Plots.
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Additionally, the likelihood weights of the observed values did not seem to influence the
efficiency either. Both the Pearson correlation coefficient being equal to 0.0003 and the
graphical representation in figure 6.9 imply that in type 1 Backward Sampling OVL
values are not affected by how likely or unlikely the children’s values are.

Figure 6.9

Efficiency In terms of the algorithm’s execution time, type 1 Backward Sampling was
once again comparable to Forward Sampling, averaging at 0.0035 seconds with a 7 ·10−5

seconds margin of error on a 95% confidence level.

(a) (b)

Figure 6.10: Type 1 Backward Sampling time Box-Plots (unmarried parents).

6.4. Type 2 Backward Sampling
We divided the scope of evaluating type 2 Backward Sampling by focusing on either the
existence of arcs between children or lack thereof.

The DAG structure of the first scenario where children are not directly connected is
presented in figure 6.11.
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U1 U2

U0

. . . Um

Figure 6.11: DAG structure of type 2 Backward Sampling without arcs between children.

The number of children in the context of the first scenario of case 2 Backward Sampling
took values 2, 3, 4, 5.

On the other hand, to consider the presence of arcs between nodes we follow a DAG
structure presented in figure 6.12. The illustrated DAG includes six children of U0. For
DAGs with fewer children, we remove the necessary nodes in the reverse order of the
node numbering.

U1 U3 U5

U0

U2 U4 U6

02|1 06|5

04|3

Figure 6.12: DAG structure of type 2 Backward Sampling with arcs between children.

The number of children in the context of this scenario of case 2 Backward Sampling took
values 3, 4, 5, 6. We will divide the results for Type 2 Backward Sampling based on the
graph structure used to obtain them.

6.4.1. First Case
The first case covers the scenario where children have no arcs between them.

Effectiveness From the boxplots in figure 6.13a we can see that the majority of OVLs
were very high, with a total average of 0.9518 with a 5 · 10−4 margin of error on 95%
confidence level.

In the same figure however, we can observe that despite the general increase of OVL
with larger sample sizes, there was a significant number of low OVL values. The number
of children, on the other hand, seems to have negligible effect on the OVL values. Figure
6.13b illustrates how higher Gaussian Copula Parameters lead to lower tails to the OVL
distribution.

In order to assess the causes of the instances with poor performance let us explore the
figure 6.14. This figure includes the Number of Importance Samples and we can clearly
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(a) (b)

Figure 6.13: Type 2 Backward Sampling OVL Box-Plots (Case 1).

see that the low OVL outliers can be found for a combination of smaller Importance
Sample Sizes, and larger Parameter values. For parameters 0.5, 0.6, 0.7 the Simulations
conducted with Importance Sample Size of 100 were the ones that feature a significant
number of problematic results. For higher parameter values, even simulations with Size
500 Importance Sample were often inaccurate.

Figure 6.14

Furthermore, Likelihood of Observation was a factor that contributed slightly to the
inaccurate results. In figure 6.15 we have a scatter-plot of the Observations Weights and
OVL values. The distribution of weights had a very heavy tail and thus we have cut the
x-axis at point x = 20. We can see that, for larger values of the weights, the distribution
of OVL starts to shift to incorporate more outliers and showcases a larger variance.
The difference may be weak and quite gradual with a Pearson coefficient approximately
equal to −0.155, but it is also quite clear, as for weights smaller than 2 there were no
significantly low values of OVL.
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Figure 6.15

Efficiency Let us now have a look at the time efficiency of type 2 Backward Sampling
for each of the first case of DAG structures.

In figure 6.16a it is illustrated that neither the number of children nor the sample size
influences the algorithm’s runtime significantly. The algorithm is generally fast but
slower than the previous sampling types, which is to be expected given that now SIR
plays a central role in our sampling procedure. The total average runtime of 0.0082
seconds and 1 · 10−4 seconds of margin of error on a 95% confidence level. However, in
the same figure we can see that there were some consistent outliers in which simulation
took more than 2 seconds to execute.

The same exact behavior is observed in figure 6.16b, where we additionally see that
copula parameters do not affect execution time.

(a) (b)

Figure 6.16: Type 2 Backward Sampling time Box-Plots (Case 1).

The reason for these elevated execution times in some cases was the factor of Importance
Sample Size. In figure 6.17 one can observe how all of the simulations that took more
than a second to complete belong to those that had 105 importance samples. On the
other hand, the algorithm was quite fast for even 103 importance samples which, as
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seen in subsection 6.4.1, was effective in reliably obtaining high OVL values for even the
larger parameter values.

Figure 6.17

6.4.2. Second Case
Effectiveness The results for the second DAG structure were quite similar but with
a relative improvement in effectiveness and smaller lower tails of the OVL distribution.
The average of all OVL values was 0.9565 with a 3 · 10−4 margin of error on a 95%
confidence level. Just like in the first case, there was a relative increase of OVL values
for larger sample sizes, while number of children did not seem to affect the accuracy of
the algorithm.

Furthermore, there was a slight decrease of OVL for larger Gaussian Copula parameters,
but once again, the main variable causing erroneous results was low Importance Sample
Sizes. Both of the aforementioned impacts are illustrated in figure 6.18. For more figures
the reader may refer to appendix A.

Figure 6.18

Weights in this scenario were also relevant. In figure 6.19a we have limited the weight-
axis to (0,20). For larger values of Observation Weights, the values of OVL seem to
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become more concentrated towards 1 and feature smaller lower tails. On the other hand,
for smaller values of the weights, we have a larger variance of OVL and a higher frequency
of miss-estimation. To highlight this, we additionally present figure 6.19b, where the
weight-axis was cut to (0, 2). In this second figure it is more clear how for observation
with significantly low likelihood, SIR has a higher chance of under-performing.

(a) (b)

Figure 6.19: Type 2 Backward Sampling (Second Case) OVL - Weight Scatter Plots.

Efficiency Efficiency results of type 2 Backward Sampling for the second DAG struc-
ture were elevated, yet comparable to those corresponding to the first structure. The
average of the algorithm’s runtime was 0.0093 seconds with a margin of error of 1 · 10−4

seconds on a 95% confidence level.

While neither the number of samples nor the Gaussian copula parameters had an effect
on execution time, the number of children and the number of Importance samples had
a clear influence. This effect is illustrated in figure 6.20.

Figure 6.20
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6.5. Secondary Backward Sampling Results
For testing Secondary Backward Sampling we follow a DAG structure presented in figure
6.21. The illustrated DAG includes six children of U2, three of which are type 2 children.
For DAGs with less type 1 or type 2 children we remove the necessary nodes in the
reverse order of the node numbering.

U1

U2U3 U4

U5

U8U6

U7

23|1 24|1

25|14

27|6

Figure 6.21: DAG structure of Secondary Backward Sampling.

The values used for the numbers of children were:

1. For type 1 children: 0, 1, 2, 3.
2. For type 2 children: 1, 2, 3.

Effectiveness Secondary Backward Sampling incorporates integration over the com-
mon arterial ancestor between the node we wish to sample and its type 2 children. This
poses an additional layer of difficulty which we expect to affect our results.

Indeed, we observed a substantial drop in performance compared to the previous sam-
pling types. The total average of OVL values through all of the simulations was 0.8571
with a 7 ·10−4 margin of error on a 95% confidence level. Despite this lower performance,
there are certain factors that contribute more than others to this, which in a realistic
setting the user may want to consider.

Due to the incorporation of type 1 children in the importance sample and to the integra-
tion over the copula density factors corresponding to type 2 children, OVL values did
not seem to be noticeably affected by the number of type 1 children. Type 2 children
on the other hand showed a strong effect with a steep decrease in algorithmic perfor-
mance being observed for three type 2 children. These results are illustrated in figure
6.22a.

Gaussian Copula parameter values also played a central role in the algorithm’s perfor-
mance. As seen in figure 6.22b, the effect of parameter values was negligible for one or
two type 2 children, yet for three type 2 children, we observed a clear decrease in OVL
values for larger copula parameters. This could be attributed to the fact that the third
type 2 child belongs to a separate arterial branch than the other two. Consequently,
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(a) (b)

Figure 6.22: Secondary Backward Sampling OVL Box-Plots.

there is no copula containing all three type 2 children in its marginals or conditioning
set. Hence, the integration errors for the weights in importance sampling become more
detrimental.

It should also be underlined that the weights were estimated through approximations by
103 Monte-Carlo estimates. It would be a valid assumption that increasing the number
of Monte-Carlo samples would be more beneficial in a more realistic setting.

Furthermore, both the number of samples and the number of importance samples had
a slight yet clear effect on the OVL values. Most prominent was that of the number of
importance samples. These effects are illustrated in figure 6.23.

Figure 6.23

Let us now study how the likelihood weights of the observed values influenced the OVL.
In figure 6.24 we can observe that the effect seems to be small yet similar to that of the
second DAG case of type 2 Backward Sampling; for extraordinarily small likelihoods,
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OVL values are more likely to be also smaller.

Figure 6.24

Efficiency We will now discuss the time-efficiency of the Secondary Backward Sam-
pling Algorithm. Initially we expected Secondary Backward Sampling to be much slower
than any other type of sampling due to the need to calculate each SIR weight indepen-
dently through Monte-Carlo integration. Indeed the execution times were elevated with
an average of 20.5 seconds with a 0.3 seconds margin of error on a 95% confidence
level.

(a) (b)

Figure 6.25: Secondary Backward Sampling Time Box-Plots.

It should be noted that Secondary Backward Sampling was the only sampling type
in which parallelization of SIR weight calculation was not possible through vectorized
commands. For this reason, Secondary Backward Sampling execution time results cannot
be compared to those of other sampling types.

In figure 6.25a we can see that the number of type 1 children did not strongly affect
the execution time, while for higher number of type 2 children execution time became
noticeably more elevated. On the other hand, in figure 6.25b, it is shown that the
parameter values did not influence execution either, which is natural. In both figures, we
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observe that there seem to be a lot of extraordinarily high outliers for every case. These
can be attributed to the number of importance samples, as we will next discuss.

Figure 6.26

In figure 6.26, the strong effect of importance samples on execution time is clear. While
for 103 or less samples the execution time was less than 15 seconds, for 104 importance
samples a significant proportion of simulations took more than a minute to execute.
Especially compared to the effect of the number of Importance Samples on the run-time,
the number of final samples was not quite as influential.

6.6. Bilateral Sampling Results

U1Uπ2
Uπ3

U2U3 U4

U5

U8U6

U7

π22|1π32|1π2

23|1 24|1

25|14

27|6

15|4

Figure 6.27: DAG structure of Bilateral Sampling.

For testing Bilateral Sampling we follow a DAG structure presented in figure 6.27. This
DAG includes three parents and five children of U2, three of which are type 2 children
which are type 1 children of U1, the arterial parent of U2. For DAGs with less type 1
or type 2 children or parents we remove the necessary nodes in the reverse order of the
node numbering.
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The simulation variables that were used for Bilateral Sampling were:

1. The size of the sample, taking values : 50, 100, 500, 103, 104.
2. The size of the importance sample : 100, 500, 103, 104.
3. The number of type 1 children, taking values : 0, 1, 2.
4. The number of type 2 children, taking values : 1, 2, 3.
5. The number of parents, taking values : 1, 2, 3.
6. The Gaussian Copula parameter, taking values : 0.5, 0.6, 0.7, 0.8, 0.9.

Effectiveness Let us now look at the results concerning the accuracy of bilateral
sampling. In this case we expect the OVL values to be somewhat lower than other
sampling types given that we generally had a larger sum of parents and children to
incorporate in SIR. On the other hand, given that weights do not require integration over
parental values (due to these being fixed by the observed values), we can expect Bilateral
Sampling to perform somewhat better than Secondary Backward Sampling.

These expectations where met, with the total average of OVL values averaging at 0.8872
with a 5 · 10−4 margin of error on a 95% confidence level.

(a) (b)

Figure 6.28: Bilateral Sampling OVL Box-Plots.

In figure 6.28a we can see the number of type 1 children affected very slightly the OVL
distribution while the number of type 2 children was much more clear. Unsurprisingly,
the best performance was seen for only a single type 2 child. However, the performance
for two type 2 children was comparable or even worse than that for three type 2 children.
While at first glance this may seem counter-intuitive, the reason behind this phenomenon
is once again the arterial branches that include type 2 children. In both cases we have
two arterial branches but in the second one, the second and the third child are part of
the same branch and belong to the same copula. In the network in figure 6.27 we can
see that this copula is C15|4. The existence of this copula ”stabilizes” the weights in SIR
and shifts them more strongly towards the true value.

Figure 6.28b illustrates the expected effect of the number of parents on the performance
of Bilateral Sampling. For more parents the OVL values become smaller. Despite the
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inclusion of all parental values in the importance sample, the number of parents is still
relevant for the performance due to the fact that parents Uπ2 , Uπ3 , as showcased in figure
6.27, are dependent on the type 2 children. Hence, due to the SIR weights not containing
the values of Uπ2 , Uπ3 , SIR fails to incorporate fully the relationship between them and
the type 2 children.

Overall, neither the number of samples nor the number of importance samples made
an enormous change to the OVL distribution. As illustrated in figure 6.29, while there
was a small increase in OVL for both larger number of samples and larger number
of importance samples, the effects were less prominent than those of other simulation
variables.

Figure 6.29

The most influential of the variables to the performance of Bilateral Sampling was the
value of the Gaussian Copula Parameters. In figures 6.30a and 6.30b one can observe
how the sub-optimal performance becomes more significant for higher parameter values,
along with larger numbers of parents and type 2 children.

(a) (b)

Figure 6.30: Bilateral Sampling OVL Box-Plots based on Gaussian Copula Parameter Values.

Efficiency Let us now discuss the efficiency of the Bilateral Sampling Algorithm. The
execution times were quite low with an average of 0.0156 seconds with a 7 ·10−4 seconds
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margin of error on a 95% confidence level.

In figure 6.31a one can observe how both the number of type 1 and type 2 children
contributed in longer execution times. The effect however was slightly more clear for
type 2 children. In figure 6.31b, it is also illustrated how the number of parents did not
affect the execution time of the Bilateral Sampling algorithm.

(a) (b)

Figure 6.31: Bilateral Sampling time Box-Plots.

Figure 6.32 portrays the relationship between number of samples, number of impor-
tance samples and execution times. The algorithm’s runtime did not display substantial
changes for the different sample sizes. On the other hand, the effect of the number of im-
portance samples was major, especially for the case of 104 importance samples. Despite
this relationship, all execution times remained under 0.15 seconds.

Figure 6.32

6.7. Choice of Importance Sample
Of central interest to our work is the choice of Importance Sample for SIR, when such
choice is needed. We tested the performance of our methodology for different Importance
Sample choices in the scope of Bilateral Sampling because it provides us with the the
maximum number of such choices, namely:
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Choice 1 : Choosing the Forward Sample as an Importance Sample.
Choice 2 : Choosing a Backward Sample on the maximum possible number of type 1

children as an Importance Sample.
Choice 3 : Choosing a uniformly distributed sample as an Importance Sample.

The first choice is the one already discussed in our theory of subsection 4.1.3, and the
one that corresponds to the previously discussed results for Bilateral Sampling.

We tested the performance for the other two cases and in what follows we will discuss
the results.

Overall, the first choice of importance sample was also the one that performed the best.
The other two were significantly worse, with the choice of type 1 children being better
than the uniform sample one. In table 6.1 we can see the total sample averages for each
Importance Sample Choice.

Choice OVL 95% Confidence Interval
Forward 0.8872 ±5 · 10−4

Backward 0.79 ±1 · 10−3

Uniform 0.775 ±1 · 10−4

Table 6.1: Comparison of OVL averages between the three Importance Sample choices for Bilateral
Sampling

In figure 6.33 we see a comparison of the scatter plots of OVL and likelihood weights
for each importance sample choice. We observe how both for the uniform or the Back-
ward Sample, we have a significant number of low OVL values throughout the range of
weights.

(a) (b) (c)

Figure 6.33: Bilateral Sampling time Box-Plots.

The culprit behind these cases of severe miss-estimation was a combination of elevated
Gaussian Parameter values and large number of Parents. This effect is illustrated in
figure 6.34. We find that for high parameter values, even the case of two parents un-
derpeforms severely for the last two Importance Sample Choices. For three parents, the
algorithm fails completely to capture the correct distribution for either choice.

The effect of Parameter values falls in line with what we have observed in section 6.6.
There, for the choice of the Forward Sample as the Importance Sample, Parameter Values
was the most influential variable for the algorithm’s performance.
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(a) (b) (c)

Figure 6.34: Bilateral Sampling time Box-Plots.

The effect of the number of parents is less intuitive. In section 6.6 we discussed the rele-
vance of parental values on the SIR weights. In that scenario parents were included in the
Importance Sample. When choosing a uniform or Backward sample as our Importance
Sample we exclude parental values this is no longer the case.

Hence the negative effect of larger numbers of parents is exacerbated in our failure to
incorporate their values in the importance sample on top of not being able to include
their effect on type 2 children in the corresponding part of the weights.

We conclude that choosing the Forward Sample as the Importance Sample for SIR is the
optimal choice for Bilateral Sampling.

6.8. Discussion
In this section we will discuss in detail the general results presented in the previous
sections.

Choice OVL 95% Confidence Interval
Forward Sampling 0.9687 ±5 · 10−4

Type 1 Backward Sampling 0.9686 ±5 · 10−4

Type 2 Backward Sampling (Case 1) 0.9518 ±5 · 10−4

Type 2 Backward Sampling (Case 2) 0.9565 ±3 · 10−4

Secondary Backward Sampling 0.8571 ±7 · 10−4

Bilateral Sampling 0.8872 ±5 · 10−4

Table 6.2: Comparison of OVL averages between the different sampling algorithms.

Overall we have seen the OVL averages presented in table 6.2. It is clear that the best
performing algorithms are Forward Sampling and type 1 Backward Sampling. This is
clearly because of how samples in both algorithms are sampled directly and not through
the use of SIR.

Next performance-wise were the two cases for type 2 Backward Sampling followed by
Bilateral Sampling.

An important remark is that Case 2 of type 2 Backward Sampling performed better than
the first case, albeit slightly. A reason behind this is the inclusion of an additional type
1 child to the importance sample. Additionally, the presence of multiple type 1 children
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on the same arterial branches, and in extension the existence of conditional copulas,
makes SIR weights more biased towards the ”true” weight. We have touched upon this
relevance of arterial branches when discussing the results in Bilateral Sampling, where
we saw a slightly elevated performance for three type 2 children than two.

Lastly, Secondary Backward Sampling produced the worst results out of all sampling
types. This was due to the integration over the possible values of their parents, for which
an estimate was used causing deviations from the true weights.

In a larger scale of PCBN inference problems, the worse performance of Secondary
Backward Sampling does not pose a significant issue to our problem. This is due to the
following reasons:

• In a ”reasonably” connected artery, there is a limited number of nodes that have
type 2 children. One can expect that for most applications with 20 node PCBNs
that the number of nodes having type 2 children be between 0 and 5.

• In a ”reasonably” connected artery, there is a limited number of type 2 children a
node can have. Each node in a 20 node PCBN that has type 2 children, can be
expected to have one or sometimes two type 2 children.

• In a ”reasonably” connected artery, there is a limited number of nodes with type 2
children that need to be Secondary Backward Sampled. In order for a Secondary
sample to be required, condition (B2) needs to be met, which implies the existence
of an incoming arc specifying a copula conditioned on an arterial node. This is a
very specific condition which very often is not met.

For all three specified reasons, a ”reasonable” connectivity of the artery refers to a
sensibly sparse enough DAG structure. In practice, the application of PCBNs can be
expected to be for less dense DAGs, both due to realistic assumptions on the conditional
dependency structures of BNs, but also the existence of model more suited to dense
graphs, such as Vine Copulas.

Thus, for practical applications, the somewhat lower performance of Secondary Back-
ward Sampling has a smaller effect on the final output of sample propagation.

Let us now comment on the time-efficiency of the different sampling types. In figure 6.3
the different averages are presented. It is clear how Forward Sampling and both types
of Backward Sampling are the most efficient ones, all of which requiring on average
less than 0.01 seconds. Bilateral Sampling, albeit somewhat less efficient, still produces
results with excellent speed.

On the other hand, the calculated execution times for Secondary Backward Sampling
are not comparable to the other sampling types. This is because of the aforementioned
inability to use vectorized commands for the calculation of the SIR weights. If vector-
ization were possible, the average of the algorithm’s runtime would be much closer to
the averages of other sampling types.

Considering that Secondary Backward Sampling is not needed often in sample propa-
gation, the elevated time is not an issue. In a practical setting of a PCBN inference
problem for a DAG with 50 nodes and 4 nodes that require to be Secondary Backward
Sampled, using the same system specifications used for our testing, inference can be
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Choice OVL 95% Confidence Interval
Forward Sampling 0.00303 ±7 · 10−5

Type 1 Backward Sampling 0.0035 ±7 · 10−5

Type 2 Backward Sampling (Case 1) 0.0082 ±1 · 10−4

Type 2 Backward Sampling (Case 2) 0.0093 ±1 · 10−4

Secondary Backward Sampling 20.5 ±3 · 10−1

Bilateral Sampling 0.0156 ±7 · 10−4

Table 6.3: Comparison of Run-time averages between the different sampling algorithms (seconds).

expected to take less than four minutes. We could expect the time to take close to
four minutes if we choose that both the number of samples and number of importance
samples be 104.

A more sensible choice would be to limit the number of importance samples to 103.
We have seen for both Backward, Secondary Backward and Bilateral Sampling, that
for 103 importance samples, the effectiveness of sampling remains excellent, while the
expected execution time in Secondary Backward Sampling plummets to 10 seconds. In
this scenario the same 50 node PCBN inference problem would take less than a minute
to solve though Sample Propagation.

The user can choose the most sensible number of importance samples to balance ac-
ceptable algorithmic complexity with required accuracy levels. However, given that the
number of samples does not significantly affect Secondary Backward Sampling execution
times, a larger number is recommended.



7
General PCBN Inference

In this chapter we will discuss the ability of extending our proposed methodology for
single-arterial PCBN inference to problems applied on the general PCBNs, that is, in
PCBNs whose graph structures feature multiple arteries.

We recall from chapter 4 that the single-artery inference methodology involves the prop-
agation of Forward, Backward, Secondary Backward and Bilateral Samples through the
artery during the Forward and Backward Propagation Phases. This propagation follows
closely the arterial paths.

For a general DAG structure, which includes multiple arteries, we wish to propagate
samples through the trails that connect query and evidence nodes that possibly lie in
different arteries. We need to consider two important points:

• The arcs joining arteries can only be assigned with conditioned copulas.

• There can be multiple distinct connections between arteries.

Due to the first point we will need to consider trails that are not arterial. The connecting
arcs from one artery to another are always assigned conditional copulas.

We illustrate this first point with the example in figure 7.1. For arteries A1 and A2 to be
connected we must have an arc from a node in VA1 to a node in VA2 or other way around.
In the figure we can see the arc U2 → U3, where U3 belongs to A1, has a parent in this
artery and this parent is the first in the parental ordering of U3. The copula assigned to
the arc U2 → U3 has to be the conditional copula.

The second point of interest is the fact that there can be multiple connections between
arteries. In figure 7.2, we can see an example of a PCBN in which arteries A1 and A2 are
connected through two arcs, namely U2 → U4 and U6 → U9. The DAG of this PCBN is
restricted, and if we wish to conduct sample propagation from one artery to the other, it
is clear that both connections between these arteries must be taken into account.

Note that each of the connections between two arteries A1 and A2 are v-structures. One
of the parents belongs to one artery while the other parent and the node with converging
connection belongs to the other artery. We call such v-structures arterial links.

109
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U1

U3

U2

... ...

A1 A2

Figure 7.1: Illustration of the type of connections between two arteries.

U1

U3 U4 U5

U6

U2

U7 U8

U9

A1 A2

24|1

69|8

Figure 7.2: Illustration a PCBN featuring three different connections between the same arteries.

Definition 7.0.1 (Arterial Links). Let (G ,O,F ,C ) be a PCBN with and A1,A2 two
arteries in G . A converging connection of the form U1 → U2 ← U3 is called an arterial
link (between A1 and A2) if for U2 ∈ VA1 either of the following is true:

• U1 ∈ paA1(U2) and U3 ∈ VA2

• U2 ∈ paA1(U2) and U1 ∈ VA2

By definition, one of the two parents in an arterial link is the arterial parent of the
converging node and thus belongs to the same artery. On the other hand, the other
parent must belong to a different artery that U2. The connecting arc between two
arteries is the most crucial for propagating the sample from one artery to another, hence
we focus on the converging node and the parent from the other artery.
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Definition 7.0.2 (Link Nodes). Let (G ,O,F ,C ) be a PCBN with and A1,A2 two
arteries in G . Assume that U1 → U2 ← U3 is an arterial link with U2 ∈ VA1 , U1 ∈
paA1(U2) and U3 ∈ VA2 .

Then:

• U1 is called a transmitter (link) node,

• U2 is called a receiver (link) node
• U1 and U2 will be referred to as link nodes.

For example, in the PCBN of figure 7.2 the two connections are defined by the following
arterial links:

U1 → U4 ← U2,

U6 → U9 ← U8.

For the first arterial link, the receiver node U4 belong to the first artery, while U1 is its
arterial parent and the transmitter node U2 belongs to the second artery. In the second
arterial link, the receiver link U9 and its arterial parent U8 belong to the second artery,
while the transmitter node U6 to the first.

In our proposed procedure for general PCBN inference, propagation from one artery
to another would be done by initially conducting arterial PCBN inference on the first
artery. For the next step, a procedure similar to arterial PCBN sample propagation
would be conducted for the second artery, with the inclusion of all arterial links.

U1

U4 U5

U6

U2

U7 U8

U9

24|1

69|8

Figure 7.3: Illustration of the inclusion of v-structures for cross-arterial sample propagation.

In figure 7.3 an example of the additional stage related to the propagation from A1 → A2

in the PCBN of figure 7.2 is shown. The process requires propagation in the first artery
for obtaining the samples of A1 ’s nodes that belong to arterial links, conditioned on the
evidences in A1. These are included in the next stage, when performing inference in the
second artery using single artery propagation for A2.
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Remark. We note that a receiver link node may have multiple extended arterial parents.
As the focus lay in the link nodes, this does not influence our approach for multi-arterial
sample propagation. We can instead treat all extended arterial parents the same way we
treat the receiver’s arterial parent. Hence we will include them in the modified sample
propagation procedure of the second artery.

7.1. Sampling Modifications
As we will see in the next section, the Modified Arterial Sample Propagation Procedure
differs only when sampling nodes in the artery that are arterial links.

In this section we will examine ways we can modify the sampling algorithms from chapter
4 to be applied to such nodes.

Let us start with a simple example in figure 7.4. We assume that the final arterial
propagation samples of the nodes U1 and U3 have been obtained. Now we wish to
sample U2. This is the simplest transmitter node sampling problem.

U1

U3

U2
23|1

Figure 7.4: Elementary example of link node sampling.

In this simple example the required sample can be obtained through the h-function
recursion of copula C24|1. That is:

û2 = h−1
12 (u1, h

−1
23|1(U, u3|1)) = h−1

23|1(U, u3|1)

where U ∼ U(0, 1). The second equality is due to the independence between U1 and
U2.

If instead we have a final sample of U2 and wish to propagate towards node U3 we have
a receiver node sampling problem. In this simple example, we can obtain the required
sample of U3 through Forward Sampling using a uniform sample of U1.

Next we will explore how sampling algorithms are modified for nodes that belong to
arterial links. The general approach to including nodes from other arteries falls in line
with the sampling theory introduced in chapter 4. The main difference is the inclusion
of all nodes from the different artery with which the node is directly connected, i.e. it
belongs to the node’s Markov Boundary, which is defined in definition 2.2.3.

7.1.1. Link Node Sampling
Consider U1 being a link node from artery A2 and assume that we need to sample U1

using one of the sampling algorithms from chapter 4 while incorporating the information
arriving to U1 from the other arteries it is connected to.

An example that we will use in this section is presented in figure 7.5. In this network
U4 is both a receiver and a transmitter node.
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U1

U4U3

U6

U2

U5

24|1

43|1 45|2

Figure 7.5: Reference example for link node sampling.

To modify the sampling algorithms for multiple arteries, the inclusion of U1’s Markov
Boundary nodes that belong to different arteries is needed. These need to be included
additionally to the nodes that are considered in chapter 4.

The modification in Case 2 Backward, Secondary Backward and Bilateral sampling, be
done by multiplying the SIR weights by the product of all copula densities assigned to
incoming and outgoing arterial link arcs. When sampling link node U1 belonging to
artery A2, such product will be of the form:∏

Ui∈paA1
(U1)

ci1|Ki1

∏
Ui∈chA1

(U1)

c1i|K1i
. (7.1)

In the example presented in figure 7.5, this product is equal to:

c24|1c45|2

as these copulas correspond to links between two arteries.

To modify the Case 1 Backward Sampling, we will need to obtain the samples through
SIR instead of the h-function recursion. As the importance sample the original Forward
or Case 1 Backward Samples are used and then the assigned unnormalized weights will
be equal to the product 7.1.

The SIR sampling will not be needed in Forward Sampling of receiver nodes that are
not transmitter nodes. In this case, we can conduct Forward Sampling as usual, by
using the h-function recursion of the copula with maximum conditioning set. This can
be observed in the example shown in figure 7.5. If U5 was not present in this DAG then
U4 would be a receiver node and not a transmitter, hence its Forward Sample would be
done through the h-function recursion of copula C24|1.

In all cases, if the conditioning set Kij of a copula Cij|Kij
includes nodes from arteries

besides A1 or A2, then integration of the weights must be conducted over the values of
those nodes, in the same way that Secondary Sampling integrates the weights over the
values of the arterial diverging ancestor.

Additionally, if the conditioning set Kij of a copula Cij|Kij
includes extended arterial

parents of U1, while U1 is being neither Forward nor Bilaterally Sampled, then U1’s
extended arterial parents must also be integrated out.

To showcase the previous cases that require integration consider as an example of the
network from figure 7.6. Here the copula C24|01 is conditioned on variable U0, which
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belongs to a different artery, as well as the extended arterial parent U1 of U4. In this ex-
ample, to conduct (Case 1) Backward Sampling of U4 we must use SIR. The importance
sample will be the original arterial Case 1 Backward Sample obtained through copula
C46 and the respective SIR unnormalized weights equal to:

w = c45|2

∫
[0,1]2

c24|01du0du1.

U1

U4U3

U6

U2

U5

U0

24|01

04|1

43|1 45|2

Figure 7.6: Example for integration over nodes from other arteries during modified sampling.

7.1.2. Non-Link Node Sampling
During the modified Arterial Propagation from A1 to A2, nodes of A2 whose Markov
Boundary includes nodes in A1, must include the latter in their sampling. This does
not only happen for the link nodes of A2 but also for extended arterial parents of
receiver link nodes of A2, as the respective transmitter nodes belong to their Markov
Boundaries.

An example that we will use in this segment is presented in figure 7.7. In this example,
U3 is part of the arterial link U3 → U6 ← U4 and has U4 in its Markov Blanket. Hence,
we must include U4 in its sampling

U1

U3U2

U5 U6

U4
32|1

46|3

Figure 7.7: Reference example for non-link node sampling.

Assume that we wish to sample U1, which has a receiver node U2 ∈ chGA
(U1) as its

extended arterial child. Because transmitters are part of the Markov Boundary (they are
parents of common child receivers) their inclusion to sampling is only relevant when the
the receiver is also required for sampling. This is because a transmitter will be dependent
on U1 only conditioned on the converging connection formed by the receiver.

Therefore, in the following three scenarios the transmitter is not included:
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• Forward Sampling of non-link nodes will never include transmitters.
• Backward Sampling of non-link nodes will not include transmitters if the receiver

common child is a type 2 child.
• Bilateral Sampling of non-link nodes will not include transmitters if the receiver

common child is excluded from Bilateral Sampling.

In each of these three cases, the receiver node U2 is not included in the sampling of
U1. If the common child between U1 and a transmitter is excluded from the sampling
procedure, we cannot add the connected transmitter as the converging connection of
U2.

In figure 7.8 we can see an example of a network in which both non-link nodes U1

and U3 have the transmitter node U2 in their Markov Boundary. Let us illustrate the
aforementioned exceptions to U2’s exclusion from the sampling of either U1 or U3.

Forward Sampling of either U1 or U3 excludes U2. U4 is a type 2 child of U3, hence
neither U2 nor U4 are included in U3’s Backward Sampling. Lastly, the Bilateral Sample
bbil1→4 of U1 excludes U4, hence we will also not include U2.

U3

U1

U4

U2

34|1

24|13

Figure 7.8: Example for non-link node sampling that illustrates exceptions to the inclusion of
transmitter nodes.

As in case of Link Node sampling for Case 2 Backward, Secondary Backward and Bilat-
eral Sampling we incorporate each transmitter U3 by including the copula density c32|K32

in the product of SIR unnormalized weights.

Once again, for Case 1 Backward Sampling, inclusion of transmitters must be done
through SIR and using the product of copulas assigned to link arcs as unnormalized SIR
weights.

As in Link Node Sampling, integration over variables in the conditioning set K32 not
belonging to in either A1 or A2 is required. Additionally, when performing Backward
or Secondary Backward Sampling in case when K32 contains parents of U1, those must
also be integrated out, since they should not to be included in U1’s sampling.

7.2. Multiple Artery Propagation
In this section we will discuss the road-map of Sample Propagation between different
arteries.

We have already mentioned in the introduction of this chapter the outline of Propagation
between two arteries A1 and A2 with corresponding sets of evidences E1 and E2. We
wish to perform inference in artery A2 that includes all evidences.
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First the single arterial sample propagation in GA1 as presented in chapter 4 is performed.
Then we proceed to do the same for GA2 with the inclusion of arterial links.

Propagation in GA2 remains the same as described in chapter 4, with the only differences
being the modification of sampling algorithms proposed in the previous section. The
resulting final samples will be the inference samples that include both E1 and E2.

7.2.1. Full Propagation
So far we showed how to conduct sample propagation from one artery to another. Now
we wish to conduct inference through multiple arteries. In the general scenario of a
PCBN, the model will have a number of arteries α, A1 . . .Aα. The connectivity between
these arteries in a PCBN will be represented by an undirected graph where each node
is an artery and each arc represents the existence of active arterial link.

Example 7.2.1. In figure 7.9a we can see an example of a PCBN with four arteries,
corresponding to roots U1, U2, U3 and U6 of the PCBN. The PCBN also features three ar-
terial links, and figure 7.9b contains the visual representation of the connections between
arteries.

U1 U2 U3

U4 U5 U6

U7 U8

A1 A2 A3

A4

24|1 25|3

58|6

(a) Multi-arterial PCBN.

A1

A2

A3

A4

(b) Arterial connections in PCBN of figure 7.9a.

Figure 7.9: Example of the graphical representation of Arterial connections.

In the simple example of figure 7.9, it is straightforward to perform inference, given the
ability to propagate samples from all arteries to A1.

Let us denote the final propagation samples in artery A1 conditioned on the evidences
E1, E2, . . . , En as SA1

2,...,n, where E1, E2, . . . , En refers to the evidence variables that be-
long to the arteries A1,A2, . . . ,An, respectively. This notation may also be used to refer
to the inference problem fQ1|E1,...,En directly, where Q1 is the set of query variables that
belong to artery A1.

With the set notation we can consider the inference problem SA1
1,2,3,4 in the PCBN in

figure 7.9. A1 is only connected to artery A2, hence the final samples that A2 must send
to A1 are SA2

2,3,4, which contain the information of evidences E2, E3, E4.
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To calculate SA2
2,3,4, A2 must receive samples conditioned on E3, E4 from its connected

arteries. A1 cannot send such samples to A2, hence only A3 sends the samples SA3
3,4.

Finally, the samples SA3
3,4 are calculated by the single inter-arterial propagation from A4

to A3. In this case A4 sends its single-arterial final samples SA4
4 .

The Multi-Arterial Propagation procedure is presented in the compact form below:

SA4
4 ⇝ SA3

3,4 ⇝ SA2
2,3,4 ⇝ SA1

1,2,3,4

In figure 7.10 we can see a graphical representation of the sample propagation.

A1 A2 A3 A4

SA4
4

SA3
3,4SA2

2,3,4

Figure 7.10: Graphical representation of the inter-arterial propagations required for calculating
SA1
2,3,4.

The previous example was a very simple one because the undirected graph corresponding
to the connectivity between arteries was serial. The same approach could be used for
PCBNs whose arterial undirected graph representations are polytrees (no loops).

In a general PCBN this may not be the case, and this poses a main problem in building
a comprehensive method for sample propagation in general PCBNs that feature multiple
arteries.

Therefore, more research is needed to successfully describe this problem.





8
Trail Properties of Arteries

In this section we will discuss some crucial results about the Properties of trails in
arteries and extended arteries. The focus will lay on how the existence of certain arcs in
the DAG imply the existence of other arcs, as well as the ability to restrict the possible
parental orderings.

This work is mostly relevant for the inference stage of PCBNs. The results in this
chapter are closely related to the ones presented in Horsman [36], where methods to find
parental orderings which do not lead to the need of integrations in restricted DAGs are
introduced.

The following proposition is a simple observation about the extended arterial density.

Proposition 8.0.1. Let (G ,O,F ,C ) be a restricted PCBN with an artery A .

For every U1, U2, U3 ∈ VA such that C12;3 ∈ C , then either C31 ∈ C or C13 ∈ C .

Proof. We have U1 → U2 due to C12;3 ∈ C . This implies that U3 ∈ pa(U2) and U3 <2 U1.
Therefore:

C32 ∈ C .

Since both U1, U3 belong to the same artery corresponding to root U , then

∃ U1
1 , . . . U

n1−1
1 , U1

3 , . . . , U
n3−1
3 ∈ V

such that:
U → U1

1 → · · · → Un1−1
1 → Un1

1 ≡ U1

U → U1
3 → · · · → Un3−1

3 → Un3
3 ≡ U3

We can assume that these are the shortest such trails, hence they have no chords.

Let U ′ ≡ U i
1 = U j

3 be the earliest common ancestor of U1, U3. Indeed the earliest common
ancestor of U1 and U3 exists because the arterial root U is a common ancestor.

Assume that U1, U3 ̸= U ′, hence neither U1 ∈ pa(U3) nor U3 ∈ pa(U1) hold. Then there
exists the trail:

U2 ← U1 ← · · · ← U i+1
1 ← U ′ → U j+1

3 → · · · → U3 → U2

119
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which consists only of serial connections and the diverging connection U i+1
1 ← U ′ → U j+1

3 .
This trail is visualized in the following graph. Because U1, U3 ̸= U ′, the length of the
trail is strictly larger than three and because U ′ is the earliest common ancestor of U1

and U3, there are no chords in the trail.

U ′

U i+1
1 U j+1

3
. . . . . .Un1−1

1 Un3−1
3

U1 U3

U2

12|3 32

Thus, this trail is an active cycle in G if U1 and U3 are not connected. Therefore, either
U1 ∈ pa(U3) or U3 ∈ pa(U1).

Proposition 8.0.1 implies that all v-structures created by the first two parents, according
to the parental ordering of a node, are coupled. Another way to gain an intuitive
understanding behind this, is to notice that the existence of copula C12|3 implies the
necessity of being able to calculate the conditional margin: u1|3. Due to U1 and U3

belonging to the same artery, they are not independent of each other as they have a
common ancestor, the root of the artery. Therefore, we need the specification of copula
C13 or copula C31 to be able to calculate this conditional margin.

This result cannot be extended to any two parents of U2, not even when the assumption
that they are consecutive parents in ordering of parents of U2 is made. For a counterex-
ample we can see the PCBN in figure 8.1, in which U2 and U3 are consecutive parents
of U4 according to its parental ordering, however the v-structure formed by the incom-
ing arcs U2 → U4 and U3 → U4 is not coupled, despite the graph being a restricted
DAG.

U1

U2 U3

U4

12 13

14

24|1 34|12

Figure 8.1: Counterexample for the extension of proposition 8.0.1.

Next, we take a closer look at some properties that are implied by the existence of arcs
between two nodes of which one is a type 1 child of the other.
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Lemma 8.0.2. Let (G ,O,F ,C ) be a restricted PCBN with an artery A and let Ui ∈ VA ,
U0 a type 1 child of Ui. Then, for every Uj ∈ anA (U0) ∩ deA (Ui), we have:

Uj ∈ paGA
(U0) with Uj <0 Ui.

Proof. Note that U0 being a type 1 child of Ui implies that Ui ∈ anA (U0).

First, we will show that in order for such a Uj to exist, Ui cannot be the arterial parent
of U0.

- Assume that Ui is an arterial parent of U0, hence Ui ∈ paA (U0). For Uj ∈ anA (U0)
we will show that Uj /∈ deA (Ui).

Since U0 is the type 1 child of Ui then Ui is the only arterial parent of U0. Since
Uj ∈ anA (U0) then Uj is either equal to Ui or it is an arterial ancestor of Ui.
Therefore, Uj cannot be an arterial descendant of Ui.

We will prove this lemma by induction on the order of Ui in the parental order of U0.

• We showed that Ui cannot be first in the parental order of U0. Let us assume it is
the second. We will show that any node Uj ∈ anA (U0) ∩ deA (Ui) satisfies:

Uj ∈ paGA
(U0) with Uj <0 Ui.

Ui is the second node in U0’s parental order, hence the specified copula of the arc
Ui → U0 is of the form Ci0|j. We see that Uj ∈ paA (U0) with specified copula Cj0.
Uj satisfies Uj ∈ paGA

(U0).

Since Ui is the second in the parental order of U0 then by proposition 8.0.1, either
Cij ∈ C or Cji ∈ C .

If Cji ∈ C , then Uj → Ui and we have the following DAG structure:

Uj

UiU0

jij0

i0|j

Therefore Ui /∈ anA (U0), which contradicts the initial assumptions for Ui.

Hence, Cij ∈ C which entails that Uj ∈ deA (Ui). Furthermore, given that Uj is
the arterial parent of U0, Uj ∈ anA (U0). Therefore Uj ∈ anA (U0) ∩ deA (Ui).

In this case Uj ∈ paGA
(U0) with Uj <0 Ui.

There are no other variables Ul that meet the conditions because Uj is the only
node in anA (U0) ∩ deA (Ui).

• Let us assume that the lemma holds for all nodes Ui up to the n’th in the parental
order of U0.
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We will prove the lemma holds for the n+1’th, denoted as Ui, element in the
parental order of U0. We will show that if U0 is a type 1 child of Ui, any node
Uj ∈ anA (U0) ∩ deA (Ui) satisfies:

Uj ∈ paGA
(U0) with Uj <0 Ui.

Due to Ui ∈ anA (U0) we have a path between Ui and U0 that consists of only serial
connections, whose arcs are assigned with unconditional copulas, i.e.:

Ui → Ui1 → · · · → Uim → U0 (8.1)

with Uij ∈ paA (Uij+1
).

- We will show that since Ui → U0 then also Ui1 → U0.

If it was not the case then the following trail would be present:

U0 ← Ui → Ui1 → · · · → Uim → U0,

such that the sub-trail Ui1 → · · · → U0 is the shortest such sub-trail (hence has no
chords). If Ui1 is not a parent of U0, this trail’s length is at least five so it would
be an active cycle. Thus Ui1 → U0.

- We will now show that Ui1 <0 Ui.

Assume that the above is not the case, hence Ui <0 Ui1 . Then the copula Ci10|Ki10
,

assigned to arc Ui1 → U0, contains Ui in its conditioning set Ki10.

Since the PCBN is assumed to be restricted then it must be that copulas required
to calculate the following conditional margin

ui1|Ki10

are specified. We will show that computation of such conditional margin is not
possible if Ui <0 Ui1 .

Due to Uim ∈ paA (U0), Uim ∈ Ki10 and Uim is the first in the parental order of
U0. This means that at least one of the nodes Ui2 , . . . , Uim is part of Ki10. In the
calculation of the conditional margin ui1|Ki10

some of these nodes may be omitted
from Ki10 due to conditional independencies, but at least one such node will be
conditionally dependent of Ui1 given the rest of the nodes. Let these nodes be:

Uι1 , . . . , Uιk

Due to Ui being the arterial parent of Ui1 , Ui1 is also dependent of Ui conditional
on the rest of the nodes in Ki10. This means that neither Ui nor Uιj nodes can be
omitted from the calculation of the conditional margin.

However, the arc Ui → Ui1 is assigned with the unconditional copula Cii1 , meaning
that the calculation of ui1|Ki10

cannot be done. This violates the assumption of a
restricted PCBN. Meaning that Ui1 <0 Ui.
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By repeated use of the inductive assumption on Ui1 , and for all nodes in the arterial
path between Ui1 and U0, we have that Ul ∈ paGA

(U0) and Ul <0< Ui1 <0 Ui, for
l = 2 . . .m.

Ui

U2

U3

U4

. . .

U0

i0|2, 3, 4 . . .

20|3, 4 . . .

30|4, . . .

40| . . .

Figure 8.2: Visual representation of lemma 8.0.2. Green arcs and specified copulas are the ones
implied by the arc Ui → U0.

We can observe the justification of lemma 8.0.2 in PCBN in figure 8.2. The existence
of arc Ui → U0 implies the existence of all arcs Uj → U0 for Uj being nodes that are
arterial descendants of Ui and arterial ancestors of U0. Furthermore, the lemma provides
us with the relative positions of these nodes in the parental order of U0.

Next we will show a similar results for type 2 children. Both the statement and proof are
similar to those corresponding to lemma 8.0.2, however they are treated separately due to
differences caused by the structural distinction between type 1 and type 2 children.

Lemma 8.0.3. Let (G ,O,F ,C ) be a restricted PCBN with an artery A and let Ui ∈ VA ,
U0 a type 2 child of Ui. Then, for Uj ∈ paA (Ui), we have:

Uj ∈ paGA
(U0) with Uj <0 Ui.

Proof. U0 being a type 2 child of Ui, by definition implies that Ui /∈ anA (U0).

In order for U0 to be a type 2 child of Ui, Ui cannot be the arterial parent of U0, hence
U0 is not first in the parental order.

We will prove this lemma by induction on the position of Ui in the parental order of U0.
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• First assume Ui is the second in the parental order of U0.

This means that the copula specified to the arc Ui → U0 is of the form Ci0|j, which
implies that Uj ∈ paA (U0) and copula Cj0 is specified.

By proposition 8.0.1, either Cij ∈ C or Cji ∈ C .

If Cij ∈ C , then Ui → Uj and we have the following DAG structure:

Ui

UjU0

ij

j0

i0|j

Therefore Ui ∈ anA (U0), which is not possible as U0 is a type 2 child of Ui.

This means that Cji ∈ C which entails that Uj ∈ paA (Ui). Furthermore, given
that Uj is the arterial parent of U0, Uj ∈ paGA

(U0) with Uj <0 Ui.
• Let the lemma hold for Ui being nth or earlier in the parental order of U0.
• We will prove that this lemma holds for Ui which is n+1th element of the parental

order of U0.

Due to Ui /∈ anA (U0) we have a path between Ui and U0 composed of only serial
connections and a single diverging connection. All arcs are assigned with uncon-
ditional copulas, i.e.:

Ui ≡ Ui0 ← Ui1 ← · · · → Uim → Uim+1 ≡ U0

with a diverging connection being present in the trail.

- We will show that Ui1 → U0.

If that is not true we have a following loop without chords or converging connec-
tions:

U0 ← Ui ← Ui1 ⇋ Ui2 → Uim . . . U0

If the edge Ui1 → U0 is not present in the DAG, the previous trail contains no
chords and its length is greater or equal to five, making it an active circle. However
we need a restricted DAG, hence Ui1 → U0.

- We will now show that Ui1 <0 Ui.

Assume that Ui <0 Ui1 . Then the copula Ci10|Ki10
contains Ui in its conditioning

set Ki10.

In order to have a restricted PCBN we must be able to use the specified copulas
to calculate the following conditional margin

ui1|Ki10
.

We will show that this is not possible for Ui <0 Ui1 .
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Due to Uim ∈ paA (U0), Uim ∈ Ki10. This means that at least one of the nodes
Ui2 , . . . , Uim is part of Ki10. In the calculation of the conditional margin ui1|Ki10

some of these nodes may be omitted from Ki10 due to conditional independencies,
but at least one such node will be conditionally dependent of U1 given the rest of
the nodes. Let these nodes be:

Uι1 , . . . , Uιk

Due to Ui being the arterial child of Ui1 , Ui1 is also dependent of U1 conditional
on the rest of the nodes in Ki10. This means that neither Ui nor Uιj nodes can be
omitted from the calculation of the conditional margin.

However, the arc Ui → Ui1 is assigned with the unconditional copula Cii1 , meaning
that the calculation of ui1|Ki10

cannot be done. This violates the assumption of a
restricted PCBN. Meaning that Ui1 <0 Ui.

Let Um ∈ paA (U0) for which Um ̸= Ui1 holds; Um is also part of the same con-
ditioning set Ki10. Furthermore, Ui1 is dependent on at least one of the nodes
Ui2 , . . . , Uim present in Ki10 given Ui, as there exists a trail not blocked by Ui. The
specified copula between Ui1 and Ui is Ci1i, and not conditioned on any other node.
Hence it is impossible to calculate the conditional marginal using the specified
copulas and thus Ui1 has to come before Ui in the parental order of U0.

Therefore we have proven that the arterial parent Uj ≡ Ui1 of Ui satisfies:

Ui1 ∈ paGA
(U0) with Ui1 <0 Ui

Let us illustrate graphically the lemma 8.0.3. In figure 8.3 we can see how the existence
of arc Ui → U0 implies the existence of the arc Uj → U0 when Uj being the arterial parent
of Ui. Furthermore, the lemma provides us with information on the relative positions of
Ui and Uj in the parental order of U0.

...

Um

...

Uj U0

Ui

i0|j, . . .

j0| . . .

Figure 8.3: Visual representation of lemma 8.0.3. The green arc and specified copulas are the ones
implied by the arc Ui → U0.
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We may immediately extend lemma 8.0.3 to include all arterial ancestors of Ui that are
arterial descendants of the arterial diverging node Um. The result follows by recursive
application of lemma 8.0.3 to each arterial parent until Um is reached. Moreover, we can
prove a stronger result which is the basis of our proposed methodology of parental order
specification.

Theorem 8.0.4. Let GA be an extended artery and U1 ∈ VA , U2 ∈ chGA
(U1). Let the

unique arterial trail from U1 to U2 be:

U1 = Ui0 ⇋ Ui1 ⇌ · · ·⇌ Uim−1 ⇌ Uim = U2

where all connections are either serial or diverging.

Then:

• Uik ∈ paGA
(U1) ∀k = 1, . . . ,m− 1 and

• Uik <1 Uik+1
∀k = 1, . . . ,m− 2.

Proof. Due to the trail being the unique arterial trail joining U1 and U2, and the fact that
arteries are trees, we can deduce that the trail is composed of the most of one diverging
connection and serial connections. This trail does not contain converging connections.

First we prove the theorem in the case when all connections are serial. Then the trail is
of the form

U1 → Ui1 → · · · → Uim−1 → U2.

Note that the opposite direction is not possible as U2 is a child of U1.

Due to the trail being arterial, U1 is an arterial ancestor of U2, hence U2 is a type 1 child
of U1. Therefore, due to lemma 8.0.2,

• Uik ∈ paGA
(U1) ∀k = 1, . . . ,m− 1 and

• Uik <1 Uik+1
∀k = 1, . . . ,m− 1.

Let us now consider the case where a single diverging connection is present in the trail.
Then, the trail takes the following form, where Uil is the arterial diverging node of the
trail.

U1 ← Ui1 · · · ← Uil−1
← Uil → Uil+1

· · · → Uim−1 → U2

Because each arc in this trail is arterial, it clearly follows that U1 /∈ anA (U2), hence U2

is a type 2 child of U1. Now applying lemma 8.0.3, we deduce that Ui1 ∈ paGA
(U2) and

Ui1 <2 U1.

If Ui1 ̸= Uil , then U2 is also a type 2 child of Ui1 and again by application of lemma 8.0.3
we get that Ui2 ∈ paGA

(U2) and Ui2 <2 Ui1 <2 U1.

Recursive applications of lemma 8.0.3 leads to:

{U1, Ui1 , . . . , Uil−1
, Uil} ⊆ paGA

(U2), (8.2)
Uil <2 Uil−1

<2 · · · <2 Ui1 <2 U1. (8.3)
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If Uil = Uim−1 the theorem’s statement has been shown. Otherwise, we notice that Uil

being the only diverging node in the trail implies that Uil ∈ anA (U2). Therefore U2 is a
type 1 child of Uil and lemma 8.0.2 can be applied, proving that:

{Uil+1
, . . . , Uim−1} ⊆ paGA

(U2), (8.4)
Uim−1 <2 Uil−1

<2 · · · <2 Uil+1
<2 Uil . (8.5)

Using results 8.2 and 8.4 we arrive at the theorem’s statement:

• Uik ∈ paGA
(U1) ∀k = 1, . . . ,m− 1 and

• Uik <1 Uik+1
∀k = 1, . . . ,m− 1.

Before discussing the impact of this theorem a graphical representation in a small exam-
ple is shown. Let us consider the network in figure 8.4. The arterial arcs are in red. The
blue arcs to U9 from U1 and U8 imply the existence of all green arcs. The arc U2 → U9

follows from the existence of U1 → U9. The arcs from U4 and U6 to U9 are consequences
of the arc U8 → U9. Lastly, all reminding arcs are implied by existence of both blue
arcs. Additionally, the theorem provides us with the following orderings:

U7 <9 U5 <9 U3 <9 U4 <9 U6 <9 U8

U7 <9 U5 <9 U3 <9 U2 <9 U1

We deduce that the first three elements in the parental ordering of U9 must be U7, U5

and U3, implying that K59 = {U7} and K39 = {U7, U5}. Next in the parental order of
U9 could have either U2 or U4. Then the next candidates would be either U1 and U4 if
we had chosen U2 previously, or U2 and U6 if we had chosen U4.

Theorem 8.0.4 provides with a fundamentally different approach to understanding the
structure of restricted DAGs and available parental orderings. The approach of Horsman
[36] relied on the definitions of B-sets. Theorem 8.0.4 uses instead on a ”valid” artery
choice and the trail structure of that artery. In this context, ”valid” choice we refer to a
choice of the fist element in the parental order of every node in the network, for which
proper collection of parental orders O exists. If it does exist, then theorem 8.0.4 provides
us with a fast way of calculating all possible parental orders in the network.

Studying methods of finding such ”valid” artery choices in a given restricted DAG would
be needed to facilitate the implementation of theorem 8.0.4 for parental order calculation.
This research topic remains open and is left as future research.

Corollary 8.0.5. Let GA be an extended artery and U1, U2 ∈ VA such that U2 be a type
2 child of U1 with specified copula C12|K12. Assume that Ui is the arterial diverging node
in the trail between U1 and U2. Then:

Uj ∈ K12 ∀Uj ∈ (anA (U1) ∩ deA (Ui)) ∪ {Ui}

Proof. The corollary follows immediately from theorem 8.0.4 upon the observation that
all of the nodes in (anA (U1) ∩ deA (Ui)) ∪ {Ui} are part of the arterial trail between U1

and U2.
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Figure 8.4: Illustration of theorem 8.0.4.

This corollary is central to motivate exclusion of type 2 children from Backward Sampling.
Each of the nodes in (anA (U1)∩ deA (Ui))∪ {Ui} is part of the conditional set of copula
C12|K12 . For U2’s inclusion in Backward Sampling of U1, the Backward Samples of nodes
in (anA (U1) ∩ deA (Ui)) ∪ {Ui} would be required, which do not abide by the order of
Backward Sampling.



9
Conclusions and Future Research

Our work draws to a close and we summarize the key findings, their implications, and
the contributions to the field. This thesis includes an exhaustive study of inference
problems in Pair Copula Bayesian Networks, a pivotal topic in the evolution of Bayesian
Network Inference theory and dependence modeling. Building upon fundamental to
the field concepts such as Variable Elimination and Belief Propagation, we expand the
mathematical scope of Bayesian Network inference approaches. By introducing several
open research questions, we additionally pave the way for future exploration in this
domain.

The goals of this thesis were to construct a robust mathematical foundation for PCBN
inference and to develop algorithms that perform inference on PCBN sub-structures
called arteries. Additionally, we aimed to offer comprehensive insights on simplification
of inference problems through pruning, as well as a possible methodology for conducting
inference in general PCBN models.

In chapter 4 we introduced the concepts of arteries and constructed the Sample Propaga-
tion methodology for single-arterial PCBN inference. Through sequential calculation of
Forward, Backward, Secondary Backward and Bilateral Samples, the information about
evidence nodes can be propagated to the query nodes to compute their requested condi-
tional distributions. The outlined methodology constitutes a sample-based extension of
Pearl’s Belief Propagation algorithm, implemented in PCBNs with the incorporation of
Variable Elimination theory.

A core characteristic of our proposal is the improved efficiency through the ability to
exclude nodes that are not required in the Sample Propagation processes, both through
exclusion of UBI and USBI nodes and through the proposed PCBN pruning, explored
in chapter 5.

Pruning led to the simplification of the inference problem through the removal of nodes
and arcs from the network, without disturbing the conditional distributions of query
variables given evidence variables. In comparison to root pruning in the general case
of Bayesian Networks, our pruning algorithm exploits key features of PCBNs to remove
more nodes and obtain a smaller network, subsequently leading to faster and easier
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implementations of Sample Propagation.

The core attributes of our single-arterial Sample Propagation methodology include:

• Granularity: Due to the sequential aspect of Belief/Sample Propagation our al-
gorithm’s scope has a high level of detail, finely breaking down propagation into
sampling of individual nodes. This also means that the algorithm is easily scalable
in parallel environments, boosting its efficiency

• Scalability: Regardless of the number of query variables, the algorithm only per-
forms sample propagation once, making it more efficient for finding multiple con-
ditional distributions given the same evidence.

• Minimal number of integrations: Compared to Pearl’s Algorithm, our methodology
avoids computation of messages that are unnecessary to obtain the final result.

• Ability to have distributional evidence: Instead of constant values, evidence can
take the form of probability distributions that pose a shift from the marginal
distribution in the PCBN. Sample Propagation can easily incorporate this type of
evidence by using samples from the evidence distribution.

We conducted a thorough test of our methodology by performing a simulation study.
We assessed the effectiveness and efficiency of our sampling algorithms.This simulation
study is discussed in detail in chapter 6. The results were very positive, illustrating that
for relatively low expected execution times, the algorithms manage to sample effectively
from the theoretical distribution.

We conclude that in systems similar to ours, this algorithm can be expected to handle
inference problems on 50 node PCBNs in less than four minutes, under the most demand-
ing tested simulation settings. With some sensible concessions to those settings, the time
efficiency can be increased by a factor of four, with negligible losses in accuracy.

In chapter 7 we present a generalization of the single-arterial Sample Propagation for its
application in multiple-artery PCBNs. While not conclusive, this work examines all core
aspects necessary for the future study of multi-arterial PCBN inference through Sample
Propagation. The scope of the chapter extends for inference problems in PCBNs whose
inter-arterial connectivity can be represented by a polytree. When this condition is not
met, certain theoretical problems arise which are left open for future research.

Lastly, this thesis includes a supplementary chapter on trail properties of arterial struc-
tures, culminating in the proof of Theorem 8.0.4. This theorem ensures the existence
of certain arcs in restricted DAGs, as well as rules that the parental orders must abide
by. This Theorem plays a central role to the motivation behind the distinction between
type 1 and type 2 children in chapter 4, but it also extends to a comprehensive and
intuitive approach for finding the possible parental orders in a PCBN, given an arterial
structure.

Let us now include several open research questions introduced by our work which hold
particular significance for the field. These questions are listed for further exploration,
marking potential directions for future research.

1. Further testing of arterial propagation.
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This thesis provided a detailed testing phase in which the performance of sampling
algorithms was compared for different sampling parameters. However, the time-
frame of this thesis limited the testing that could be done to this algorithm. More
specifically, the following are topics which could prove interesting for future study:

• Finding and proving convergence rates of sampling algorithms based on Sam-
ple Size and Importance Sample Size with incorporation of parameters such
as number of children-parents and copula parameter values.

• Additional research on the choice of the Importance Sample in Secondary
Backward and Bilateral Sampling will also be essential for efficient imple-
mentations. Despite the Forward Sample choice performing best on average,
for specific DAG structures or copula parameters/evidence this might not be
true. A heuristic could be instead considered for such cases.

2. Testing the methodology for multiple arteries.

Despite having proposed an approach for multiple arterial PCBNs in chapter 7, the
methodology remains untested. Some additional Parameters that may be relevant
when assessing performance in multiple arteries could be

• Number of arterial links between arteries.
• Number of arteries in the PCBN
• Number of arteries that contain evidence in the PCBN.

3. Investigating ways to test non Gaussian dependency structures.

To compare the results of our methodology with the true distribution, knowing
the latter is essential. Gaussian Bayesian Networks are the only continuous BN
family for which an analytical solution to inference problem is known.

Therefore, Gaussian copulas posed a clear restriction that we needed to abide by
for the simulation study of this thesis. Gaussianity has several properties such
as symmetry and less extreme tail dependencies which might influence positively
the effectiveness of our algorithms and testing them using different copulas can
provide deeper insights.

Hence, a deeper understanding of how to compare these more complex dependency
structures is required to assess the performance in such cases.

4. Investigating the use of distributional evidence.

We have mentioned previously that the choice of a sample-based approach allows
non-deterministic evidence to be part of the inference problem. This can be done
by sampling from the evidence distribution and using those samples as Forward,
Backward Secondary Backward and Bilateral Samples to be used in the Sample
Propagation procedure.

During our testing only constant evidences were considered and the research on
the effect of stochastic evidence remains open for future investigation.

5. Researching the generalization of Multi-Arterial Sample Propagation in arterial
structures that are not polytrees.
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There are clear issues that arise under the presence of active loops in the arterial
connections. Loops are easily dealt with in the scope of arteries, however the
same problems present in Pearl´s Algorithm are relevant when the active loops
are formed using different arteries.

6. Incorporation of Theorem 8.0.4 in parental ordering finding. The current method-
ology calculates the full parental order of each node in the PCBN before moving
on to other nodes. In order to use Theorem 8.0.4 however, it is required to have an
arterial structure meaning that we need to have the first parent of each parental
order for all nodes.

The problem of finding the different arterial structures deviates significantly from
the scope of the algorithm proposed in Horsman [36]. If an efficient solution is
found for this problem however, application of Theorem 8.0.4 could prove a more
effective way to provide all possible parental orderings in the DAG.

7. Implementation of Sample Propagation algorithms.

Integration of our proposed algorithms in PCBN inference in programming pack-
ages would simplify the implementation process, encourage wider adoption, and
contribute to advancements in Bayesian Network inference across various fields of
research.
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A
Effectiveness Results

In this appendix we summarize the effectiveness results of the simulation study of chapter
6, focusing on the distribution of the Overlapping Coefficient (OVL) values and how
it is affected by other parameters such as number of samples or Gaussian Parameter
values.

We will present the figures along with the respective sample averages, for each sampling
type.

A.1. Forward Sampling
Unmarried Parents
In this segment, the results of Forward Sampling are collected, for the DAG structure
exhibiting parents that do not contain arcs between them. This DAG structure is illus-
trated in figure 6.3a.

(a) (b)

Figure A.1: Forward Sampling OVL plots (Unmarried Parents).
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Sample Size OVL 95% CI
50 0.936 (0.935, 0.937)

100 0.954 (0.953, 0.955)
500 0.978 (0.978, 0.979)

1000 0.984 (0.984, 0.985)
10000 0.992 (0.992, 0.992)

Table A.1: Table of average OVL by Sample
Size in Forward Sampling (Unmarried

Parents).

Param. OVL 95% CI
0.5 0.970 (0.968, 0.971)
0.6 0.970 (0.969, 0.971)
0.7 0.968 (0.967, 0.970)
0.8 0.969 (0.968, 0.970)
0.9 0.968 (0.967, 0.969)

Table A.2: Table of average OVL by
Parameters in Forward Sampling (Unmarried

Parents).

Parents OVL 95% CI
1 0.970 (0.969, 0.971)
2 0.969 (0.968, 0.970)
3 0.969 (0.968, 0.970)
4 0.968 (0.967, 0.969)
5 0.969 (0.968, 0.970)

Table A.3: Table of average OVL by number of Parents in Forward Sampling (Unmarried Parents).

Married Parents
Here we collect the result for the second DAG structure in Forward Sampling, in which
parents are connected by arcs. This DAG structure is illustrated in figure 6.3b.

(a) (b)

Figure A.2: Forward Sampling OVL plots (Married Parents).
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Figure A.3

Sample Size OVL 95% CI
50 0.936 (0.934, 0.937)

100 0.953 (0.952, 0.954)
500 0.979 (0.978, 0.979)

1000 0.984 (0.984, 0.984)
10000 0.992 (0.992, 0.993)

Table A.4: Table of average OVL by Sample
Size in Forward Sampling (Married Parents).

Param. OVL 95% CI
0.5 0.969 (0.968, 0.970)
0.6 0.969 (0.968, 0.970)
0.7 0.969 (0.967, 0.970)
0.8 0.969 (0.968, 0.971)
0.9 0.968 (0.967, 0.969)

Table A.5: Table of average OVL by
Parameters in Forward Sampling (Married

Parents).

Parents OVL 95% CI
1 0.969 (0.968, 0.970)
2 0.969 (0.968, 0.970)
3 0.969 (0.968, 0.970)
4 0.969 (0.967, 0.970)
5 0.968 (0.967, 0.969)

Table A.6: Table of average OVL by number of Parents in Forward Sampling (Married Parents).
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A.2. Type 1 Backward Sampling

(a) (b)

Figure A.4: Type 1 Backaward Sampling OVL plots.

Figure A.5

Sample Size OVL 95% CI
50 0.934 (0.933, 0.936)

100 0.953 (0.952, 0.954)
500 0.979 (0.978, 0.979)

1000 0.985 (0.984, 0.985)
10000 0.993 (0.992, 0.993)

Table A.7: Table of average OVL by Sample
Size in Type 1 Backward Sampling.

Param. OVL 95% CI
0.5 0.968 (0.967, 0.970)
0.6 0.970 (0.968, 0.971)
0.7 0.968 (0.967, 0.969)
0.8 0.969 (0.968, 0.970)
0.9 0.968 (0.967, 0.970)

Table A.8: Table of average OVL by
Parameters in Type 1 Backward Sampling.
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Children OVL 95% CI
1 0.969 (0.968, 0.970)
2 0.969 (0.967, 0.970)
3 0.969 (0.968, 0.970)
4 0.968 (0.967, 0.969)

Table A.9: Table of average OVL by number of children in Type 1 Backward Sampling.

A.3. Type 2 Backward Sampling

Uncoupled Children
In this segment, the results of Type 2 Backward Sampling are collected, for the DAG
structure exhibiting children that do not contain arcs between them. This DAG structure
is illustrated in figure 6.11.

(a) (b)

Figure A.6: Type 2 Backward Sampling OVL plots by number of children (Uncoupled Children).
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(a) (b)

Figure A.7: Type 2 Backward Sampling OVL plots by number of importance samples (Uncoupled
Children).

Figure A.8

Sample Size OVL 95% CI
50 0.925 (0.924, 0.926)

100 0.942 (0.941, 0.943)
500 0.961 (0.960, 0.962)

1000 0.965 (0.964, 0.966)
10000 0.969 (0.969, 0.970)

Table A.10: Table of average OVL by
Sample Size in Type 2 Backward Sampling

(Uncoupled Children).

Param. OVL 95% CI
0.5 0.956 (0.955, 0.957)
0.6 0.955 (0.954, 0.956)
0.7 0.954 (0.953, 0.955)
0.8 0.952 (0.951, 0.953)
0.9 0.946 (0.944, 0.947)

Table A.11: Table of average OVL by
Parameters in Type 2 Backward Sampling

(Uncoupled Children).
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Children OVL 95% CI
1 0.954 (0.953, 0.955)
2 0.954 (0.953, 0.955)
3 0.951 (0.950, 0.953)
4 0.951 (0.950, 0.952)

Table A.12: Table of average OVL by
number of children in Type 2 Backward

Sampling (Uncoupled Children).

L OVL 95% CI
100 0.926 (0.924, 0.927)
500 0.955 (0.955, 0.956)

1000 0.961 (0.961, 0.962)
10000 0.967 (0.967, 0.968)

Table A.13: Table of average OVL by
Importance Sample Size (L) in Type 2

Backward Sampling (Uncoupled Children).

Coupled Children
In this segment, the results of Type 2 Backward Sampling are collected, for the DAG
structure exhibiting children that contain arcs between them. This DAG structure is
illustrated in figure 6.12.

(a) (b)

Figure A.9: Type 2 Backward Sampling OVL plots by number of children (Coupled Children).
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(a) (b)

Figure A.10: Type 2 Backward Sampling OVL plots by number of importance samples (Coupled
Children).

Figure A.11

Sample Size OVL 95% CI
50 0.928 (0.927, 0.929)

100 0.945 (0.945, 0.946)
500 0.965 (0.965, 0.966)

1000 0.969 (0.969, 0.970)
10000 0.974 (0.974, 0.975)

Table A.14: Table of average OVL by
Sample Size in Type 2 Backward Sampling

(Coupled Children).

Param. OVL 95% CI
0.5 0.957 (0.956, 0.957)
0.6 0.957 (0.956, 0.957)
0.7 0.957 (0.956, 0.957)
0.8 0.957 (0.956, 0.957)
0.9 0.956 (0.955, 0.957)

Table A.15: Table of average OVL by
Parameters in Type 2 Backward Sampling

(Coupled Children).
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Children OVL 95% CI
1 0.958 (0.957, 0.959)
2 0.957 (0.956, 0.958)
3 0.956 (0.955, 0.956)
4 0.955 (0.954, 0.956)

Table A.16: Table of average OVL by
number of children in Type 2 Backward

Sampling (Coupled Children).

L OVL 95% CI
100 0.937 (0.936, 0.938)
500 0.959 (0.958, 0.959)

1000 0.963 (0.963, 0.964)
10000 0.967 (0.967, 0.968)

Table A.17: Table of average OVL by
Importance Sample Size (L) in Type 2

Backward Sampling (Coupled Children).

A.4. Secondary Backward Sampling

(a) (b)

Figure A.12: Secondary Backward Sampling OVL plots by number of type 1 children.

(a) (b)

Figure A.13: Secondary Backward Sampling OVL plots by number of type 2 children.
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(a) (b)

Figure A.14: Secondary Backward Sampling OVL plots by number of Importance Samples.

Figure A.15

Sample Size OVL 95% CI
50 0.844 (0.843, 0.846)

100 0.853 (0.852, 0.855)
500 0.862 (0.860, 0.863)

1000 0.862 (0.861, 0.864)
10000 0.864 (0.862, 0.866)

Table A.18: Table of average OVL by
Sample Size in Secondary Backward

Sampling.

Param. OVL 95% CI
0.5 0.903 (0.903, 0.904)
0.6 0.890 (0.889, 0.891)
0.7 0.879 (0.878, 0.880)
0.8 0.856 (0.854, 0.858)
0.9 0.757 (0.754, 0.759)

Table A.19: Table of average OVL by
Parameters in Secondary Backward Sampling.
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Ch. #1 OVL 95% CI
0 0.853 (0.851, 0.854)
1 0.854 (0.853, 0.856)
2 0.860 (0.859, 0.862)
3 0.861 (0.860, 0.863)

Table A.20: Table of average OVL by
number of type 1 children in Secondary

Backward Sampling.

Ch. #2 OVL 95% CI
1 0.920 (0.920, 0.921)
2 0.904 (0.904, 0.905)
3 0.747 (0.745, 0.748)

Table A.21: Table of average OVL by
number of type 2 children in Secondary

Backward Sampling.

L OVL 95% CI
100 0.846 (0.844, 0.847)
500 0.859 (0.858, 0.860)

1000 0.861 (0.860, 0.863)
10000 0.862 (0.861, 0.864)

Table A.22: Table of average OVL by Importance Sample Size (L) in Secondary Backward Sampling.

A.5. Bilateral Sampling
In this segment we attach the figures related to our simulation study of Bilateral Sam-
pling. We note that these figure refer to Bilateral Sampling with the Forward Sample
serving as the Importance Sample.

(a) (b)

Figure A.16: Bilateral Sampling OVL plots by number of type 1 children.
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(a) (b)

Figure A.17: Bilateral Sampling OVL plots by number of type 2 children.

(a) (b)

Figure A.18: Bilateral Sampling OVL plots by number of parents.

(a) (b)

Figure A.19: Bilateral Sampling OVL plots by number of importance samples.
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Figure A.20

Sample Size OVL 95% CI
50 0.884 (0.883, 0.886)

100 0.886 (0.885, 0.888)
500 0.888 (0.887, 0.889)

1000 0.888 (0.887, 0.890)
10000 0.889 (0.888, 0.890)

Table A.23: Table of average OVL by
Sample Size in Bilateral Sampling.

Param. OVL 95% CI
0.5 0.955 (0.955, 0.956)
0.6 0.940 (0.940, 0.840)
0.7 0.916 (0.915, 0.916)
0.8 0.868 (0.867, 0.869)
0.9 0.757 (0.755, 0.759)

Table A.24: Table of average OVL by
Parameters in Bilateral Sampling.

Ch. #1 OVL 95% CI
0 0.884 (0.883, 0.885)
1 0.889 (0.888, 0.890)
2 0.889 (0.888, 0.890)

Table A.25: Table of average OVL by
number of type 1 children in Bilateral

Sampling.

Ch. #2 OVL 95% CI
1 0.933 (0.933, 0.934)
2 0.850 (0.848, 0.851)
3 0.879 (0.878, 0.880)

Table A.26: Table of average OVL by
number of type 2 children in Bilateral

Sampling.

Parents OVL 95% CI
1 0.944 (0.944, 0.945)
2 0.884 (0.883, 0.885)
3 0.834 (0.832, 0.835)

Table A.27: Table of average OVL by
number of parents in Bilateral Sampling.

L OVL 95% CI
100 0.886 (0.885, 0.887)
500 0.888 (0.887, 0.889)

1000 0.888 (0.886, 0.889)
10000 0.887 (0.886, 0.889)

Table A.28: Table of average OVL by
Importance Sample Size (L) in Bilateral

Sampling.





B
Efficiency Results

This appendix is the collection of the effectiveness results in chapter 6. We focus on
the execution time of each algorithm and how different simulation parameters affect its
distribution.

B.1. Forward Sampling

Unmarried Parents

(a) (b)

Figure B.1: Forward Sampling plots of execution time (Unmarried Parents).
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Sample Size Time (s) 95% CI
50 0.0044 (0.0042, 0.0045)

100 0.0052 (0.0050, 0.0.0055)
500 0.0064 (0.0062, 0.0066)

1000 0.0084 (0.0081, 0.0086)
10000 0.0430 (0.0420, 0.0440)

Table B.1: Table of average execution time
by Sample Size in Forward Sampling

(Unmarried Parents).

Param. Time (s) 95% CI
0.5 0.014 (0.013, 0.015)
0.6 0.014 (0.013, 0.014)
0.7 0.014 (0.013, 0.014)
0.8 0.014 (0.013, 0.014)
0.9 0.013 (0.013, 0.014)

Table B.2: Table of average execution time
by Parameters in Forward Sampling

(Unmarried Parents).

Parents Time (s) 95% CI
1 0.0052 (0.0049, 0.0055)
2 0.0095 (0.0090, 0.0099)
3 0.0140 (0.0130, 0.0140)
4 0.0180 (0.0170, 0.0190)
5 0.0210 (0.0200, 0.0220)

Table B.3: Table of average execution time by number of parents in Forward Sampling (Unmarried
Parents).

Married Parents

(a) (b)

Figure B.2: Forward Sampling plots of execution time (Married Parents).
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Sample Size Time (s) 95% CI
50 0.0077 (0.0075, 0.0080)

100 0.0078 (0.0075, 0.0081)
500 0.0096 (0.0094, 0.0098)

1000 0.0120 (0.0120, 0.0130)
10000 0.0640 (0.0630, 0.0660)

Table B.4: Table of average execution time
by Sample Size in Forward Sampling

(Married Parents).

Param. Time (s) 95% CI
0.5 0.020 (0.019, 0.021)
0.6 0.020 (0.019, 0.021)
0.7 0.020 (0.019, 0.021)
0.8 0.020 (0.019, 0.021)
0.9 0.021 (0.019, 0.022)

Table B.5: Table of average execution time
by Parameters in Forward Sampling (Married

Parents).

Parents Time (s) 95% CI
1 0.0051 (0.0048, 0.0053)
2 0.0130 (0.0120, 0.0130)
3 0.0210 (0.0200, 0.0220)
4 0.0280 (0.0270, 0.0290)
5 0.0350 (0.0330, 0.0360)

Table B.6: Table of average execution time by number of Parents in Forward Sampling (Married
Parents).

B.2. Type 1 Backward Sampling

(a) (b)

Figure B.3: Type 1 Backaward Sampling plots of execution time.
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Sample Size Time (s) 95% CI
50 0.0017 (0.0016, 0.0018)

100 0.0017 (0.0017, 0.0018)
500 0.0020 (0.0019, 0.0021)

1000 0.0024 (0.0023, 0.0025)
10000 0.0083 (0.0081, 0.0085)

Table B.7: Table of average execution time
by Sample Size in Type 1 Backward

Sampling.

Param. Time (s) 95% CI
0.5 0.0032 (0.0031, 0.0034)
0.6 0.0032 (0.0030, 0.0033)
0.7 0.0032 (0.0031, 0.0035)
0.8 0.0032 (0.0031, 0.0034)
0.9 0.0032 (0.0030, 0.0033)

Table B.8: Table of average execution time
by Parameters in Type 1 Backward Sampling.

Children Time (s) 95% CI
1 0.0010 (0.00097, 0.0011)
2 0.0023 (0.00220, 0.0024)
3 0.0038 (0.00370, 0.0040)
4 0.0058 (0.00560, 0.0060)

Table B.9: Table of average execution time by number of children in Type 1 Backward Sampling.

B.3. Type 2 Backward Sampling

Uncoupled Children

(a) (b)

Figure B.4: Type 2 Backward Sampling plots of execution time by number of children (Uncoupled
Children).
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(a) (b)

Figure B.5: Type 2 Backward Sampling plots of execution time by number of importance samples
(Uncoupled Children).

Sample Size Time (s) 95% CI
50 0.0073 (0.0071, 0.0076 )

100 0.0079 (0.0076, 0.0082)
500 0.0084 (0.0081, 0.0087)

1000 0.0084 (0.0081, 0.0086)
10000 0.0089 (0.0087, 0.0092)

Table B.10: Table of average execution time
by Sample Size in Type 2 Backward Sampling

(Uncoupled Children).

Param. Time (s) 95% CI
0.5 0.0084 (0.0081, 0.0086)
0.6 0.0082 (0.0080, 0.0085)
0.7 0.0082 (0.0079, 0.0084)
0.8 0.0082 (0.0079, 0.0085)
0.9 0.0079 (0.0077, 0.0082)

Table B.11: Table of average execution time
by Parameters in Type 2 Backward Sampling

(Uncoupled Children).

Children Time (s) 95% CI
1 0.0048 (0.0047, 0.0049)
2 0.0070 (0.0068, 0.0072)
3 0.0094 (0.0091, 0.0096)
4 0.0120 (0.0110, 0.0120)

Table B.12: Table of average execution time
by number of children in Type 2 Backward

Sampling (Uncoupled Children).

L Time (s) 95% CI
100 0.0014 (0.0014, 0.0015)
500 0.0025 (0.0025, 0.0025)

1000 0.0037 (0.0036, 0.0037)
10000 0.0250 (0.0250, 0.0250)

Table B.13: Table of average execution time
by Importance Sample Size (L) in Type 2

Backward Sampling (Uncoupled Children).
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Coupled Children

(a) (b)

Figure B.6: Type 2 Backward Sampling plots of execution time by number of children (Coupled
Children).

(a) (b)

Figure B.7: Type 2 Backward Sampling plots of execution time by number of importance samples
(Coupled Children).

Sample Size Time (s) 95% CI
50 0.0091 (0.0089, 0.0094)

100 0.0091 (0.0089, 0.0094)
500 0.0092 (0.0089, 0.0095)

1000 0.0092 (0.0089, 0.0094)
10000 0.0099 (0.0096, 0.0100)

Table B.14: Table of average execution time
by Sample Size in Type 2 Backward Sampling

(Coupled Children).

Param. Time (s) 95% CI
0.5 0.0094 (0.0091, 0.0097)
0.6 0.0094 (0.0091, 0.0096)
0.7 0.0093 (0.0091, 0.0096)
0.8 0.0092 (0.0090, 0.0095)
0.9 0.0092 (0.0090, 0.0095)

Table B.15: Table of average execution time
by Parameters in Type 2 Backward Sampling

(Coupled Children).
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Children Time (s) 95% CI
1 0.0048 (0.0047, 0.0049)
2 0.0082 (0.0081, 0.0084)
3 0.0100 (0.0100, 0.0100)
4 0.0140 (0.0140, 0.0140)

Table B.16: Table of average execution time
by number of children in Type 2 Backward

Sampling (Coupled Children).

L Time (s) 95% CI
100 0.0024 (0.0024, 0.0024)
500 0.0034 (0.0034, 0.0034)

1000 0.0046 (0.0046, 0.0046)
10000 0.0270 (0.0270, 0.0270)

Table B.17: Table of average execution time
by Importance Sample Size (L) in Type 2
Backward Sampling (Coupled Children).

B.4. Secondary Backward Sampling

(a) (b)

Figure B.8: Secondary Backward Sampling plots of execution time by number of type 1 children.

(a) (b)

Figure B.9: Secondary Backward Sampling plots of execution time by number of type 2 children.
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(a) (b)

Figure B.10: Secondary Backward Sampling plots of execution time by number of Importance
Samples.

Sample Size Time (s) 95% CI
50 21 (20, 22)

100 20 (20, 21)
500 22 (21, 22)

1000 20 (20, 20)
10000 20 (19, 20)

Table B.18: Table of average execution time
by Sample Size in Secondary Backward

Sampling.

Param. Time (s) 95% CI
0.5 20 (19, 20)
0.6 20 (19, 20)
0.7 20 (20, 20)
0.8 23 (22, 23)
0.9 20 (20, 20)

Table B.19: Table of average execution time
by Parameters in Secondary Backward

Sampling.

Ch. #1 Time (s) 95% CI
0 20 (19, 20)
1 21 (20, 22)
2 20 (19, 20)
3 22 (21, 23)

Table B.20: Table of average execution time
by number of type 1 children in Secondary

Backward Sampling.

Ch. #2 Time (s) 95% CI
1 11 (10, 11)
2 17 (17, 17)
3 34 (33, 34)

Table B.21: Table of average execution time
by number of type 2 children in Secondary

Backward Sampling.

L Time (s) 95% CI
100 0.7 (0.7, 0.71)
500 3.5 (3.5, 3.5)

1000 7 (6.9, 7)
10000 71 (70, 72)

Table B.22: Table of average execution time by Importance Sample Size (L) in Secondary Backward
Sampling.
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B.5. Bilateral Sampling

(a) (b)

Figure B.11: Bilateral Sampling plots of execution time by number of type 1 children.

(a) (b)

Figure B.12: Bilateral Sampling plots of execution time by number of type 2 children.

(a) (b)

Figure B.13: Bilateral Sampling plots of execution time by number of parents.
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(a) (b)

Figure B.14: Bilateral Sampling plots of execution time by number of importance samples.

Sample Size Time (s) 95% CI
50 0.016 (0.016, 0.016)

100 0.015 (0.015, 0.015)
500 0.015 (0.015, 0.015)

1000 0.015 (0.015, 0.015)
10000 0.017 (0.017, 0.017)

Table B.23: Table of average execution time
by Sample Size in Bilateral Sampling.

Param. Time (s) 95% CI
0.5 0.016 (0.015, 0.017)
0.6 0.016 (0.015, 0.017)
0.7 0.016 (0.015, 0.017)
0.8 0.016 (0.015, 0.017)
0.9 0.016 (0.015, 0.017)

Table B.24: Table of average execution time
by Parameters in Bilateral Sampling.

Ch. #1 Time (s) 95% CI
0 0.012 (0.012, 0.012)
1 0.015 (0.015, 0.015)
2 0.019 (0.019, 0.019)

Table B.25: Table of average execution time
by number of type 1 children in Bilateral

Sampling.

Ch. #2 Time (s) 95% CI
1 0.0096 (0.0095, 0.0097)
2 0.0150 (0.0150, 0.0150)
3 0.0220 (0.0220, 0.0220)

Table B.26: Table of average execution time
by number of type 2 children in Bilateral

Sampling.

Parents Time (s) 95% CI
1 0.015 (0.015, 0.015)
2 0.016 (0.015, 0.016)
3 0.016 (0.016, 0.016)

Table B.27: Table of average execution time
by number of parents in Bilateral Sampling.

L Time (s) 95% CI
100 0.0045 (0.0045, 0.0045)
500 0.0061 (0.0061, 0.0061)

1000 0.0080 (0.0080, 0.0081)
10000 0.0440 (0.0440, 0.0440)

Table B.28: Table of average execution time
by Importance Sample Size (L) in Bilateral

Sampling.
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