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Abstract

Property-based testing (PBT) allows developers to
specify high-level properties that should hold for
a range of inputs, which are then automatically
generated by the testing framework. Despite its
theoretical appeal, PBT is not widely used in the
real world. To better understand how PBT is used
in practice, we present a qualitative and quantita-
tive study of 87 property-based tests written with
the Hypothesis framework in seven widely used
Python projects, including cpython, pandas, and
jax.

Our analysis reveals that while PBTs are relatively
rare in these repositories, they are often simple in
structure and highly effective at expressing func-
tional properties. The most common patterns in-
clude round-trip checks and comparisons against
test oracles, which account for a significant por-
tion of the test suite. We also observed a high rate
of custom generator usage (39.1%), but no use of
custom shrinking, suggesting strong defaults in Hy-
pothesis. The dataset was variable in stylistic and
structural choices, ranging from single-assertion
tests to complex hardware-dependent cases.

This study provides new insights into the prac-
tical use of PBT in Python, expands on prior
quantitative work with qualitative findings, and
identifies concrete implications for improving test-
ing frameworks and educational resources. We
conclude with recommendations for supporting
broader adoption of PBT and outline directions for
future research, including cross-language compar-
ison, automated annotation, and temporal analysis
of test evolution.

Note on the use of Generative Al in this Research Paper.
OpenAl’'s GPT-4! Large Language Model (LLM) was used
in a supporting role, both in the research and in the writing of
this paper. All LLM factual answers that played a significant
role in the research have been checked. No LLM answers
have been directly copied, they were used only as inspiration,
or to help solve small problems.

An Al-assisted spellchecker based on GPT-4 has been used in
writing this paper.

More information on the use of Generative Al can be found
in Section 4.5.

1 Introduction

Property-based testing (PBT) is an approach to software test-
ing in which general properties — expected relations or in-
variants about a program’s behavior — are specified and au-
tomatically tested with large amounts of input data. In this
way, developers get better guarantees about their code with-
out the need for resource-demanding tools like formal proofs.
Although this seems like the ideal way to do software test-
ing, practice shows that property-based testing is not widely

"https://openai.com/index/gpt-4-research/

# Test that the elements in the sorted list the same as the original list
@given(st.lists(st.integers(), min_size=1, max_size=10)
def test_merge_sort_same_elements(xs: list):
sorted_list = merge_sort(xs)
for elem in xs:
assert elem in sorted_list
assert len(sorted_list) == len(xs)

Figure 1: Example of a property-based test that checks whether the
elements in a sorted list are the same as in the original list.

adopted within the programming community. For example,
Hypothesis, the largest PBT framework for Python, is used by
just 4% of the Python user base, while pytest, the largest gen-
eral testing framework for Python, is used by 50% of Python
users [1].

Unlike traditional unit tests that test specific input-output
combinations, property-based tests focus on general rules or
invariants that should be true for all inputs and outputs in a
certain domain. A PBT framework generates these inputs au-
tomatically, based on some domain specification given by the
programmer.

In Python, the most widely used framework for property-
based testing is Hypothesis?. This framework allows devel-
opers to write property-based tests using decorators such as
@given, which automatically generate inputs based on an in-
put domain provided by the developer.

Figure 1 is an example of a simple Hypothesis test that
checks whether a custom sorting function retains all original
elements. The most important features of a property-based
test illustrated by this example are the following:

 a generator that generates lists of numbers,

« a filter that limits the size of these lists between 1 and
10,

 a system under test (SUT) for which a certain property
should hold, marked by merge_sort (xs), and

 assertions that check whether the given propositions
hold.

1.1 Terminology

Given the prior explanation of a basic example of a property-
based test, the formal definitions of the important components
of PBT can be understood:

Property-Based Testing. Given a system under test .S,
a domain of test data D, and a set of properties P =
{po, .-, Pm—1}, property-based testing is the process of au-
tomatically generating test data dg, dy, ...,d,—1 € D using a
generator and running a set of assertions A, to check that
p;j(z) or p;(z,y) holds, for either:

1. S(f(d;)), where f is some function that transforms the
generated data to an input for S, or

2. S(b), where d; is used to set up the environment for S
and b is some constant (possibly (),

such that x and y are some environmental variables or (some
transformations of) the generated input and the output of .5,
forall (4, ) € {0,...,n —1} x0,...,m — 1.

Zhttps://hypothesis.readthedocs.io/en/latest/


https://hypothesis.readthedocs.io/en/latest/

Property. A property p is a rule in the form of one of two
types:

1. Aninvariant p (x): a proposition on some data, x — usu-
ally the input or the output data of some system under
test — that should always be true.

2. A relation p(z,y): a proposition that relates two data,
z and y — usually the input data and the output data of
some system under test.

Assertion. Given some proposition ¢ (x), an assertion a,
is a function called from within a property-based test that
checks whether some proposition ¢(x) is true or false. Upon
calling the assertion a,(z) from a property-based test case, if
g(z) holds, the execution of the test case is continued. If g(x)
does not hold, the execution of the test case is stopped and
marked as failing.

System Under Test (SUT). A system under test .S is a code
entity for which some functionality is tested. It can be a func-
tion, a module, or a system. An SUT is usually called from a
test with some input z, such as S(x). If S is called without
any input, this can be denoted as S(0).

Strategy/Generator. Given a domain of test data D, a strat-
egy or generator is a programmatical construct that provides
n test data dy,dy,...,d,—1 € D, that are passed onto a
property-based test to create n test cases that test a set of
properties.

1.2 Research Context

Understanding how PBT is used in practice is essential to im-
proving its adoption. We need to know what its strengths and
limitations are and in what way it can fit the needs of the av-
erage programmer. A good starting point is to look at the
small portion of programs that do employ PBT: how is PBT
currently used?

While Corgozinho et al. [2] found that some PBT pat-
terns are used much more often than others in popular Python
projects using Hypothesis, these findings are based on a
mostly quantitative analysis of public repositories, though a
qualitative analysis leads to “results [that] are richer and more
informative,” [3]. Corgozinho et al. acknowledge the limita-
tions of their dataset and call for further research into both
Hypothesis and alternative PBT frameworks.

In this study we respond to that call by employing qual-
itative analysis techniques in combination with quantitative
analysis, to investigate how PBT is used in large Python
projects. This approach allows us to uncover nuanced pat-
terns in how developers implement property-based tests, be-
yond frequency counts. In addition, we compare our insights
to similar studies in other programming languages and PBT
frameworks.

We have chosen to study Hypothesis because it is a popu-
lar framework for property-based testing in Python, with mil-
lions of weekly downloads®. In this research paper, we will
answer the following research question:

How is property-based testing used in real-
world Python projects with Hypothesis?

3https://pypistats.org/packages/hypothesis

Corgozinho et al. [2] studied 86 property-based tests ran-
domly sampled from 30 different projects. In this study, we
investigate 87 property-based tests. The tests have not been
randomly sampled from the chosen projects, but rather all
property-based tests from the chosen projects are included.
In this way, we aim to obtain a deeper understanding of the
role of PBT in each individual project.

To answer the main research question, we have divided it
into four concrete sub-questions:

RQ1: For which purposes and in which parts of the code
base is Hypothesis used in real-world Python projects?
Contribution: The goal of this question is to list the main
roles that property-based tests have, especially in compar-
ison to other testing paradigms that are used within the
project. This information can be used to better understand
why property-based testing is used in general, which can pave
the way for improvements in property-based testing frame-
works.

RQ2: What high-level property categories are typically
tested using property-based testing in Python projects?
Contribution: This question is closely related to RQ1, in the
sense that it will reveal why developers use PBT. However, it
focuses on how individual tests are implemented, instead of
the meaning of the tests in the context of the projects.

RQ3: How are property-based tests structurally and stylis-

tically expressed?
Contribution: To answer this research question, we look at
the specific syntax used to express property-based tests, as
well as the structure of the tests. This will show how indi-
vidual tests are structurally designed and how complex they
are. This knowledge could form the basis for research on how
complex PBTs can be split into simpler ones to more easily
find bugs.

RQ4: How and why do developers utilize advanced Hy-
pothesis features, such as custom generation strategies and
explicit shrinkers, in real-world Python test-suites?
Contribution: Here, we aim to find out if Hypothesis is
mainly used in the ’basic’ form — i.e. using existing gener-
ators and shrinkers for basic data types (e.g. booleans, num-
bers, strings, and lists) — or whether developers implement
support for more advanced data types. Together with RQ3,
it answers the question of how complex property-based tests
typically are.

Similar research questions are answered by our colleagues
for different combinations of programming language and
frameworks. Their findings can be compared to ours to get
a deeper understanding of how property-based testing is used
in real-world software projects. The four other frameworks
researched are:

 proptest in Rust [4],

» quickcheck in Rust [5],

* jqwik in Java [6], and

e QuickCheck in Haskell [7].

The remainder of this paper is organized as follows. Sec-
tion 2 introduces key concepts in property-based testing. Sec-
tion 3 details the research methodology. Section 4 presents
the results, followed by a discussion of ethical considerations
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and challenges in Section 5. Section 6 provides an interpreta-
tion of the findings, and Section 7 concludes with answers to
the research questions and directions for future work.

2 Methodology

In exploring the use of property-based testing in Python
projects, we aim to go further than counting how often PBT is
used, and instead to see how it is used. This approach involves
constructing a dataset of real-world repositories (Section 2.1)
and, using the open coding approach to analyze the collected
tests (Section 2.2).

2.1 Dataset Collection

To understand how property-based testing is used in real-
world Python projects, we constructed a dataset of open-
source repositories that depend on Hypothesis. We used
the github-dependents-info tool* to retrieve all GitHub
repositories that list Hypothesis as a dependency, selecting
only those with at least 100 GitHub stars to ensure a base-
line of popularity and quality. This initial step, run on May 1,
2025, yielded 494 repositories.

Next, we filtered these repositories to keep only those
that appeared to contain at least two property-based tests.
This was determined by shallow-cloning each repository and
counting occurrences of the @given decorator in the source
code using a custom Python script®. While this heuristic may
find some false positives (e.g. code comments), it was a prac-
tical way to find PBT usage.

From the resulting 273 repositories, we manually selected a
smaller subset for qualitative analysis. Our selection consists
of seven repositories with 25 or fewer PBTs, which allows
us to completely examine all tests of the repositories within
the time frame of this project. We chose this approach to
gain better insights into how PBT is used in each individual
repository. The final set of repositories can be found in Figure
2.

The number of PBTs identified in each project varies sub-
stantially. Similarly, PBT density — defined as the number
of PBTs relative to the total number of tests — ranges from
0.073% in cpython to 0.500% in jax. Thus, the importance
of property-based testing seems to differ between reposito-
ries, giving us an interesting sample of Python repositories
that use PBT.

2.2 Data Analysis

To analyze the property-based tests, we used an open coding
strategy [8]. This method emphasizes iterative exploration of
the data to derive concepts and themes from the content itself.

We opted for a fully manual analysis of every collected
PBT as opposed to a fully automated or a hybrid approach
where the tests are scanned for pre-determined features. This
is because of the explorative nature of the research; we did
not know exactly what we were looking for in the tests be-
fore looking at the tests. Complete manual analysis allowed

*https://github.com/nvuillam/github-dependents-info

Shttps://github.com/DaKoning/hypothesis-dataset/blob/main/
filter_repos.py

Shttps://github.com/X AMPPRocky/tokei

us to notice patterns in the dataset without being confined to
the constrictions of a pre-established structure. Furthermore,
features such as custom assertions can be expressed in many
ways in code, making automated analysis needlessly complex
and time-consuming.

As such, we printed out all collected property-based tests
on paper. Then, we reviewed them manually, annotating fea-
tures and writing memos [8] for syntax and patterns that stood
out. Initial codes were written down for observable features
such as input generation strategies, test structure, types of
properties asserted, and relationships to other software ele-
ments.

As recurring concepts emerged, we revisited the tests to
validate and refine the codes and concepts. The concepts were
then structured into a spreadsheet where each row represents
an individual property-based test and each column captures a
specific feature, as illustrated in Figure 3. This tabular rep-
resentation allowed us not only to easily summarize the most
important findings but also to compare the use of PBT be-
tween testing frameworks. A full list of features and their
explanations can be found in Appendix A.

3 Results

In this section, we present the results of our qualitative anal-
ysis of property-based tests found in seven popular open-
source Python repositories. Due to space constraints, we can-
not discuss every detail here. A complete overview of how
we found and collected the property-based tests can be found
online’. The data set resulting from our analysis of all 87
property-based tests is also available [9]. We present the re-
sults of our qualitative analysis below, organized by research
question.

RQ1: For which purposes and in which parts of the code
base is Hypothesis used in real-world Python projects?

The purpose of the use of Hypothesis can largely be derived
from a few specific characteristics of the analyzed property-
based tests:

Presence of PBT. Hypothesis was used in small amounts
across the repositories, as indicated by the PBT density, as
shown in Figure 2. When it was used, this was always in a
file with a name that clearly indicated that it contained tests.
For 86 out of the 87 tests, the test name started with test_
(the exception being run from jax, which was the only test in
the class HypothesisTest, making its function clear).

Generalizing Unit Tests. Several repositories featured
PBTs that mirrored existing unit tests, sometimes appearing
side-by-side in the same file. This suggests an attempt to gen-
eralize preexisting examples with generated data.

Input Generation. As shown in Figure 4, the generated
inputs ranged from simple primitives to deeply nested or
project-specific structures, where integer values were by far
the most generated. One extreme example of complex input
generation was test_splash_attention in jax, which in-
volved generating multiple integers, tuples, data types, and
custom objects such as splash.SegmentIds, Mask, and

"https://github.com/DaKoning/hypothesis-dataset
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name description # GitHub stars LOC #tests | # PBTs | PBT density

cpython | Python language reference implementation 66,662 811,325 | 28,790 21 0.073%
pandas Data analysis and manipulation 45,288 508,034 | 18,452 15 0.081%
streamlit Creating Uls for data apps 39,121 120,890 | 3,567 6 0.168%
gradio Creating web Uls for ML models 37,778 78,413 762 2 0.262%
jax High-performance ML and computations 32,089 357,886 | 4,797 25 0.512%
spaCy Advanced natural-language processing 31,491 121,209 | 1,814 4 0.221%
numpy Array and numerical computing 29,386 265,442 | 6,905 14 0.203%

Figure 2: Summary of the collected Python repositories that make use of Hypothesis. LOC: number of lines of Python code in the repositories
as counted with tokei®. # tests: total number of tests in the repositories. # PBTs: number of property-based tests in the repositories. PBT
density: number of PBTs relative to the total number of tests. The number of tests and property-based tests are found using a custom script
that identifies tests by occurrences of def test_, and PBTs by occurrences of @(*.)given.

name | assertions | input |  category
test_base64 4 binary roundtrip
test_count 1 float testOracle
test_pickle 1 binary | objectCached

Figure 3: Example of how a spreadsheet is used to summarize find-
ings of PBT analysis.

function
type

set

dict
tuple
array
list
string
char
binary
number/scalar
float

int

bool

Figure 4: Frequencies of the types of inputs that are generated by
Hypothesis in the 87 analyzed property-based tests. Each of the 87
tests may have multiple generated input types, as the framework can
generated multiple inputs and input types that are a subtype of others
are included.

splash.BlockSizes. In total, 62 out of 87 tests generated
at least one input that was not a primitive.

As shown in Figure 6, 14 tests used Hypothesis to generate
the system under test, usually by sampling from a list of func-
tions. Figure 6 also shows that in 35 tests the generated inputs
were used directly, which means that some transformation of
the inputs took place in 52 tests.

Non-functional Properties. In most PBTs, the property
that was asserted was a functional one. However, in 9 cases,
PBTs checked non-functional properties of the SUT. This
means that the properties defined certain quality character-
istics that the system should have. For example, numpy’s

IS

test_operator_object_left® tests the performance of
binary operators by checking whether they can return a re-
sult within a recursion depth of 200:

@given(sampled_from(objecty_things),
sampled_from(
binary_operators_for_scalar_ints),
sampled_from(types + [rationall]))

def test_operator_object_left(o, op, type_):
try:
with recursionlimit (200):
op(o, type_(1))
except TypeError:
pass
Exceptions. 5 out of 87 property-based tests asserted that

the system under test throws an exception. In all of these
cases, asserting that an exception is thrown was only one of
the possible execution flows of the test. That is, we found
no tests that solely focused on asserting that an exception is
thrown.

We also found that an exception could be thrown directly
from the test function for 7 of the property-based tests. This
way, the PBT can fail without an assertion, with the additional
effect that its failure will be more obvious to the developer.

Tests in Development. We encountered different indicators
that certain tests or systems under tests were in development.
Such indicators included TODO markings or GitHub issue ref-
erences in test comments, tests that were marked as expected
to fail, and tests that were skipped.

One specific test that appeard indicate that
its SUT was in development, was gradio’s
test_is_in_or_equal_fuzzer. In this PBT, the de-
veloper utilized a test oracle — used for generating the result
expected from the SUT — which was almost identical to the
SUT itself. It seemed that the developer expected the imple-
mentation of the SUT to change in the future, and wanted to
ensure that specific behavior would remain functionally the
same.

to

RQ2: What high-level property categories are typically
tested using property-based testing in Python projects?
We identified 20 different categories that describe the proper-
ties that were tested by the PBT, as shown in Figure 5. Exist-

8©2025 NumPy Developers; All Rights Reserved
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differentPathsSameDestination — 3
idempotence I N 5
roundtrip I 15
testOracle IEEEEEEEEEEE——— 13
transformationinvariance m 1
additivity 2
monotonicity . 2
symmetry B 1
referenceConsistency NI S
systemEquivalence I 18
constructionintegrity I 13
equivalenceExtensionality mmmm 2
argumentidempotence . 2
outputjustification mm 1
postCondition I 15
exceptionGuarantee B 1
noException I 3
testByRunning mmmmmmm 4
objectCached IIEEEEE——— 7
recursionPerformance N 2

Figure 5: Frequencies of the PBT categories identified in analysis of
87 property-based tests. Each of the 87 tests may belong to multiple
categories.

ing literature’ provided us with the first 5 of these categories,
while we devised the others ourselves based on recurring pat-
terns and outstanding outliers. Many property-based tests fell
into multiple different categories, usually because they tested
multiple different properties or because the properties were
complex.

While the full list of categories can be found in Appendix
B, the following are the categories that were most prominent
in our analysis:

* Round-trip property: Found in 15 tests. These tests
test whether converting data back and forth (e.g. encod-
ing then decoding) preserves its original form.

e Oracle-based checking: Seen in a large number of
tests, with three main subcategories:

— testOracle (13 tests): A dedicated function pro-
vides the expected result.

— systemEquivalence (18 tests): A different imple-
mentation of the SUT is used for comparison.

— referenceConsistency (9 tests): The SUT is a
performance-optimized version of a reference im-
plementation, often relying on specialized hard-
ware.

* Post-condition: Identified in 15 tests. These tests assert
a simple condition that should always be true after run-
ning the system under test. For example, we found the
test test_map_set_del'" from streamlit:

| @given(m=stst.session_state(), key=stst.
USER_KEY, valuel=hst.integers())

“https://fsharpforfunandprofit.com/posts/
property-based-testing-2/
1°©2025 Snowflake Inc.

> def test_map_set_del(m, key, valuel):
3 m[key] = valuel

4 11 = len(m)

5 del m[key]

6 assert key not in m

7 assert len(m) == 11 - 1

This PBT asserts that the length of a map decreases by 1
after deleting an element.

* Construction Integrity: This property category, found
in 13 tests, is about checking that the data gathered from
an object after constructing it are consistent with the
data provided for its construction. As an example, take
test_dow_parametric from pandas!!

I def test_dow_parametric(self, ts, sign):
2 # GH 53738

3 ts = (

4 f"{sign}{str(ts.year).z£fill(4)}"
5 f'"-{str(ts.month).zfill (2)}"

6 f"-{str(ts.day).z£fill(2)}"

7 )

8 result = Timestamp(ts) .weekday()

9 expected = (
10 (np.datetime64(ts) - np.
datetime64("1970-01-01")).astype("

int64") - 4
11 ) % 7
12 assert result == expected

The test asserts that the weekday number gathered from
the construction of a Timestamp instance corresponds
to the weekday number calculated in the test based on
the input data.

RQ3: How are property-based tests structurally and
stylistically expressed?

The implementation of the property-based testing paradigm
differed between the repositories. Some tests were highly
minimalistic, while others involved long chains of logic, nu-
merous assertions, or interaction with complex infrastructure
(e.g. hardware-dependent behavior or parameterized config-
urations). Here, we present some important design choices
that stood out to us throughout the dataset. The frequencies
of these choices are summarized in Figure 6.

Assertions. The average number of assertions per test
ranged from 4.4 to 16.4, for the execution flow with the min-
imum and maximum number of assertions, respectively. 46
of the 87 tests used custom assertions, defined as asserting
mechanisms that do not originate in a library.

Test Input Origin. While all tests used Hypothesis to ran-
domly generated inputs, another origin of inputs are Hypoth-
esis examples. This method allows the programmer to specify
inputs that must always be tested on, in addition to the gen-
erated values. We saw Hypothesis examples implemented by
19 PBTs, which specified about 7 examples on average.

In addition, 22 tests were parameterized. Typically, some
inputs were fixed via parameterization, while others were
generated. This was common when all values of a certain
input type (e.g. booleans or enums) needed to be tested.

1©2025 Open source contributors.
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Figure 6: Distribution of 87 analyzed property-based tests across
key features: whether they use custom input generation, whether
they use custom assertions (not from a library), whether they use
custom shrinking, whether they are parameterized, whether they use
predefined examples (sets of inputs on which the tests should always
be run), whether they use dynamic generation (generation of inputs
within the test function), whether they use non-Hypothesis genera-
tion, whether the system under test is generated by Hypothesis, and
whether the generated values are directly passed to the system under
test.

Test Filtering and Skipping. We found the following
mechanisms to limit or skip the execution of tests. Their fre-
quencies can be found in Figure 7.

 Input filtering: Limiting the domain of input gen-
reatino, performed inside the generator itself, e.g.,
integers(min_value=0).

* Assumptions: These are runtime guards that abort a test
run early if a condition is not met.

e Explicit skipping: Used when tests are unfinished or
dependent on specific hardware. This was often used
in jax tests, to skip execution on GPUs due to known
issues.

e Preconditions: Applied as checks before running
the test, sometimes based on system state or ex-
ternal data availability. ~Example from cpython’s
test_same_str!%:

VALID_KEYS = _valid_keys(Q)

if not VALID_KEYS:

3 raise unittest.SkipTest("No time zone
data available™)

)

12©2025 Python Software Foundation; All Rights Reserved
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Figure 7: Frequencies of different methods of limiting or skipping
test execution found in analysis of 87 property-based tests. Each test
may have zero or more methods of limiting or skipping execution.

RQ4: How and why do developers utilize advanced
Hypothesis features, such as custom generation strategies
and explicit shrinkers, in real-world Python test-suites?
Input Generation. 34 out of 87 tests used a custom gen-
erator as opposed to a built-in generator. Custom generators
were often to construct domain-specific objects.

Additionally, we saw that 16 tests used some method other
than Hypothesis strategies to generate random values. Of-
ten, these values were created by a random method, not by a
method created for testing purposes.

Custom Shrinking. While shrinking — minimizing a fail-
ing test input to simplify debugging — is an important part of
property-based testing, we did not see any tests that imple-
mented a custom version of a shrinker.

Settings. Other advanced Hypothesis features, accessed
through the settings method, were not used much. They
were used, however, when the developer wanted to change
the amount of generated test examples or the time that the
PBT is allowed to take.

4 Discussion

This section discusses the key insights drawn from our analy-
sis of property-based tests (PBTs) across seven Python repos-
itories. We interpret the observed patterns, compare them
to existing work, reflect on technical challenges encountered
during the study, address potential limitations and biases in
our methodology, and discuss how this research was done re-
sponsibly.

4.1 Analysis of Results

A clear pattern emerging from our study is the dominance
of two test patterns: round-trip and test oracle tests. These
patterns are likely prevalent because they are conceptually
straightforward and relatively easy to implement. Round-trip
properties require a function and its inverse (or a way to undo
its effect), while test oracles offer a logical way of comparing
by defining or extracting expected outcomes. These patterns
reduce the burden on developers to come up with abstract in-
variants, making them a simple start for property-based test-
ing.


https://github.com/python/cpython/blob/483d130e504f63aaf3afe8af3a37650edcdb07a3/Lib/test/test_zoneinfo/test_zoneinfo_property.py#L241

We also observed two distinct styles of using Hypothesis’
input generation methods. In many tests, strategies were pro-
vided directly via decorators (e.g., @given(integers())).
However, several tests made use of dynamic generation
strategies from within the test body. This second approach
allows developers to generate inputs conditionally or de-
rive inputs based on computations or other generated val-
ues, thereby offering greater flexibility. This style seemed
to be particularly useful when test inputs are interdependent
or when constructing domain-specific structures.

Interestingly, we found that custom shrinking was not used
in any of the 87 tests. Hypothesis provides automatic shrink-
ing, which simplifies failing inputs for easier debugging. This
might because the difficulty of writing custom shrinkers in
Hypothesis is too high compared to the benefitis. Alterna-
tively, it is likely that the default shrinking is sufficient for
the needs of the developers, as the default shrinker (or “in-
ternal test-case reduction”) is generic enough to work on any
generator that a developer may write [10].

4.2 Answers to the Research Questions
Our subquestions were answered as follows:

RQ1: For which purposes and in which parts of the code
base is Hypothesis used in real-world Python projects?
Hypothesis is most frequently used for validating functional
components, such as encoders/decoders, data format checks,
and system improvement validators. It is rarely used for in-
tegration or system-level tests, but is often used to generalize
unit tests.

RQ2: What high-level property categories are typically
tested using property-based testing in Python projects?
The dominant categories were round-trip, test oracle, and
system equivalence. These are intuitive and low-effort to de-
fine, explaining their frequent use.

RQ3: How are property-based tests structurally and
stylistically expressed? Most tests used a Hypothesis dec-
orator with fixed strategies, though dynamic generation
within the test body also occurred frequently. Assertion
counts varied, and custom assertions were as common as
standard assertions. Custom examples, parameterization and
execution-flow restriction were also common.

RQ4: How and why do developers utilize advanced Hy-
pothesis features, such as custom generation strategies
and explicit shrinkers? Custom generation strategies were
used in more than a third of the tests, indicating that Hypothe-
sis makes generator design accessible. These generators were
often used to generate complex data structures, or even the
systems under test themselves. For shrinking, on the other
hand, we found no custom implementations, suggesting that
developers found the default shrinkers sufficient.

4.3 Comparison to Other Work

Our findings are in line with prior quantitative studies on PBT
in Python. In particular, Goldstein et al. and Corgozinho et
al. identified a low overall adoption of PBT and a skewed
distribution of test styles, which we also observed. However,
our study contributes additional qualitative insights into how

Hypothesis is used in practice, which may make way for im-
provements to PBT frameworks and support future research.

We also compared our results with concurrent research
into other property-based testing frameworks in different pro-
gramming languages [4] [5] [6] [7]. For example, in Rust
projects using quickcheck and proptest, a similar distri-
bution of assertion counts per test was observed -— slightly
more than half of all tests used a single assertion, mirroring
our findings. The same dominant test patterns — roundtrip and
test oracle -— also appeared frequently in Rust, although less
so in Java projects using jqwik, where other patterns were
more prominent.

Interestingly, custom generators were used in 39.1% of the
Python tests we analyzed — significantly more than in Rust
quickcheck (29.1%) or Java jqwik (36%). We think this is
in part thanks to the relative usability and expressiveness of
Hypothesis strategies, which make custom generation acces-
sible even for more complex inputs.

In contrast, custom shrinking was used far more frequently
in Rust quickcheck (20.9%) than in Python (0%), and was
also absent in Java jqwik. This suggests that custom shrink-
ing may be more accessible or necessary in languages and
frameworks where default shrinking is limited or less effec-
tive, or where the debugging workflow benefits more from
customized minimal inputs.

4.4 Threats to Validity

During our data collection, we encountered a number of tech-
nical challenges. First, our script for collecting PBTs relied
on the presence of the @given decorator, and thus may have
missed tests where Hypothesis was used in less conventional
ways. In addition, decorator expressions that spanned several
lines above the test definition were not reliably captured. Al-
though we manually included such tests in our analysis, this
limitation could be addressed in the future.

Secondly, we focused primarily on the content of the test
functions themselves, and not on attributes of the containing
class or module. As a result, some contextual information —
such as class-level parameters, assumptions, or test-skips —
may not have been fully incorporated into our analysis.

There are also several limitations to the methodology used
in this study. One notable challenge involved identifying
whether a test could be decomposed into multiple indepen-
dent properties. We attempted to label tests as decompos-
able if they included logically independent assertions. How-
ever, this classification may be imperfect: assertions that ap-
pear independent may be conceptually intertwined. Con-
versely, even when assertions are dependent, decomposing
them could improve clarity or maintainability. Addition-
ally, we observed more complex decomposition opportuni-
ties, such as when a test generates multiple SUTs from a list,
which could be split into multiple focused tests, or when the
assertions themselves can be broken down into smaller asser-
tions.

The open coding process itself may have introduced some
ambiguity. Assigning short codes to aspects of tests in-
evitably involves some personal interpretation. This can lead
to under- or over-generalization, especially when concepts
overlap. To mitigate this, we revised our annotations iter-



atively across multiple passes, which helped ensure greater
consistency.

Furthermore, subjectivity is inherent to qualitative re-
search. Although we did our best to make our procedures
transparent and reproducible, different researchers may inter-
pret the same tests differently based on experience, familiar-
ity with the domain, or personal coding practices. While we
believe our results are robust, replication by other researchers
would be valuable.

The set of repositories we studied was also limited in
scope. We selected seven prominent open-source Python
projects with a manageable number of PBTs to allow in-depth
qualitative analysis. However, the conclusions drawn may not
generalize to all Python codebases, particularly those that are
smaller, less tested, or have different development practices.

Finally, our workflow — where we first coded all tests on pa-
per and then structured the findings in a spreadsheet — proved
to be somewhat inefficient. We found that the most insight-
ful observations often arose not during a subsequent pass of
a single repository, but during comparative analysis across
repositories. Future studies could streamline the workflow by
integrating annotating and digitally structuring into a single
step, or by belaying reiteration until more cross-repository
context is gathered.

4.5 Responsible Research

We are committed to conducting our research responsibly and
ethically. We have taken the following steps to ensure that our
research is conducted in a responsible manner.

Licenses. Written software can be the intellectual property
of an organization or a person. As such, we have taken care to
make sure that all analyzed property-based tests fall under a
license that allows us to use and redistribute the source code.
All accessed source code was open source and available on
GitHub.

Each of the analyzed repositories falls under one of the fol-
lowing licenses:

* Python Software Foundation License Version 2
(cpython'?),

» BSD 3-Clause License (pandas'4),

» Apache License Version 2.0 (streamlit!’, gradio'®,
17
jax'’),

o The MIT License (spaCy'®), and

» NumPy Copyright license (numpy'?).

All of these licenses allow the source code to be freely dis-
tributed, as long as the copyright notices in the code are re-
tained. Since this research paper utilizes code snippets from
the repositories, we need to include the appropriate licenses.

Bhttps://github.com/python/cpython
“https://github.com/pandas-dev/pandas
Shttps://github.com/streamlit/streamlit
'Shttps://github.com/gradio-app/gradio
Thttps://github.com/jax-ml/jax
Bhttps://github.com/explosion/spaCy
"https://github.com/numpy/numpy

For this reason, the respective license can be found in a foot-
note whenever a code example is shown.

To make our research reproducible, the scripts that we
have written and used to collect property-based tests from
the repositories can be found online®®. The README file also
contains a note about where the licenses for the collected
property-based tests can be found when the scripts are run.

Generative AI. In this research, we saw Generative Al as a
tool that could make us more confident about our findings and
in our writing. That is why we used OpenAI’s GPT-4 Large
Language Model (LLM) in some situations to

* search for definitions (e.g. “What do you call the dis-
tance between the two closest rounded values?”),

* explain domain-specific concepts (e.g. “What is ‘splash
attention’ in jax?”),

* find inspiration in writing (e.g. ‘“What do you think
of the following first sentence of a research paper:
‘Property-based testing (PBT) is an approach to soft-
ware testing in which the functionality of (a part of) a
program is automatically tested with large amounts of
input data.””), or

* help solve technical issues (e.g. “powerpoint add python
code with syntax highlighting and line numbers”).

We never copied any answers generated by an LLLM, or pre-
sented its findings as our own. We double-checked all facts
that were of importance to our research.

We also used an Al-assisted spelling and grammar checker
based on GPT-4 in writing this paper.

All GPT-4 prompts written for this research can be found
in Appendix C.

5 Conclusions and Future Work

This section summarizes the key findings of our study, re-
flects on their implications for the use and development of
property-based testing (PBT) in Python, and outlines poten-
tial directions for future research.

5.1 Summary of Key Findings

Our study offers a detailed qualitative and quantitative anal-
ysis of 87 property-based tests across seven widely used
Python repositories that use the Hypothesis framework. The
tests varied in complexity, purpose, and design, but several
themes emerged.

We observed an askew distribution of property categories:
the majority of tests fell into well-understood and relatively
easy-to-construct patterns, most notably round-trip properties
and comparisons to oracles. These tests, while often sim-
pler in structure than other tests, seemed capable of capturing
meaningful functional properties and identifying subtle bugs
in their systems under test.

At the same time, we identified a subset of more complex
property-based tests that targeted specific edge cases or tested
complicated behavior — often involving custom generators or

Phttps://github.com/DaKoning/hypothesis-dataset



hardware-specific execution paths. These demonstrate the ex-
pressive power of PBT when used for testing more than ba-
sic invariants. This suggests that there is a spectrum of PBT
usage, from lightweight property checks to through example-
based specification.

This analysis enables us to address our central research
question:

How is property-based testing used in real-
world Python projects with Hypothesis?

We found that PBT is primarily used to test functional
correctness, particularly in mathematical modules, systems
that implement hardware-driven optimizations, and functions
with complex input patterns. To achieve this, simple patterns,
such as the roundtrip property and oracle-based testing were
often used, in addition to the custom generation of values.

5.2 Implications

Our findings suggest several opportunities for improving the
practical use of property-based testing. Firstly, better tool-
ing and educational resources could help lower the barrier
for writing more expressive and domain-specific properties.
Developers may benefit from templates that illustrate more
complex and effective PBT patterns.

Secondly, our results imply that some unit tests — especially
those with many similar test cases — could be replaced or aug-
mented with PBTs. The structure and coverage offered by
property-based tests may reveal more edge cases with less
code.

Thirdly, our findings indicate that better support and edu-
cational resources on custom shrinking may not be necessary.
It seems that the default shrinker in Hypothesis is sufficient
for most projects.

Finally, our observations on generator usage suggest a
promising area of research for test decomposition. In tests
where the generator also determines the system under test
(e.g., selecting from a list of possible implementations), these
could be split into separate tests per SUT, thereby improving
modularity and debuggability. Test decomposition may also
be relevant in tests where assertions are run based on a condi-
tional, or where assertions form a con- or disjunction that can
be broken up into simpler assertions.

5.3 Future Work

Based on this study, several directions for future research are
available:

* Repository Coverage. Extending the dataset to include
a broader and more diverse set of repositories would im-
prove the generalizability of our findings. This would
also help identify underrepresented usage patterns.

¢ Cross-Framework Comparison. Future work could
systematically compare PBT usage across programming
languages and frameworks, especially where different
abstractions or features influence developer choices.

e Automated Analysis. Using machine learning or nat-
ural language processing techniques to automate anno-
tation and classification could enable the study of much
larger data sets, which could lead to useful statistical in-
sights.

* Temporal Analysis. Studying the evolution of property-
based tests over time by analyzing Git commit histories
could reveal when and why PBTs are introduced, main-
tained, or abandoned, offering insights into their long-
term value in software projects.

* Decompose when multiple SUT functions

Overall, this study demonstrates that property-based test-
ing, even when used in small amounts, can provide high lever-
age for asserting program correctness. With further support
from the research and software testing community, its adop-
tion could grow significantly in Python and other program-
ming languages.
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A Analyzed Characteristics

We analyzed the collected property-based tests using a set of characteristics that we derived from the tests themselves. The full
list of characteristics is shown in Figure 1. Each characteristic is explained in the table, and we used these characteristics to
summarize our findings about the property-based tests.

Table 1: Full list of characteristics used to summarize findings about property-based tests.

characteristic explanation

link URL to the first line of the PBT in the analyzed commit of the
repository.

repo Name of the repository where the PBT is located.

name Name of the PBT.

summary Description of what the PBT tests for.

min_assertions
max_assertions
amt_assrts_dpndt_inp_size

assertions_independent
can_decompose_assertions
amt_sut_calls

is_local

test_level

is_nested
f _or_nf

tests_state_modification
category

has_assumptions
generated_input_type
is_input_filtered
is_input_sampled

uses_custom_generator

uses_dynamic_generation
uses_non_hypothesis_generation
amt_example_inputs
is_parameterized

generated_input_used_directly

uses_custom_shrinker
asserts_exceptions

can_throw_exception
uses_assert_close

uses_custom_assertion
uses_hypothesis_note

test_precondition

Minimum number of assertions ran if test completes.
Maximum number of assertions ran if test completes.

Whether the amount of assertions is dependent on the size of
the input.

Whether all assertions are independent.

Whether any pair of assertions is independent.

Maximum number of calls made to the system under test.
Whether the system under test is local (as opposed to a library).
Whether the PBT tests functionality, integration, or environ-
ment.

Whether the assertions are in a different function than the test.
Whether the tested property is functional, non-functional, or
both.

Whether the tested property involves modification of state.

The category that the tested property falls under.

Whether the test uses Hypothesis assumptions.

A list of inputs that are generated by Hypothesis.

Whether any generated input is filtered (i.e. the domain of the
input is restricted by some rule other than its type).

Whether any generated input is sampled from a list of possibil-
ities.

Whether the PBT uses a custom generator to create any of the
inputs, a custom generator is considered to be a generator that
is decorated with @hypothesis.composite or makes use of
non-Hypothesis functions to process the generated values.
Whether inputs are generated using Hypothesis from within the
test, as opposed to from decorator

Whether some other module is used to generate random data.
How many non-generated test cases are specified (if any).
Whether some inputs to the test come from a parameterization
decorator.

Whether the input is passed directly onto the SUT/environment
(if not, it is processed first).

Whether the PBT makes use of a custom shrinker.

Whether the test asserts that a certain exception is thrown by the
SUT.

Whether the test includes an exception-throwing clause.
Whether there is an assertion with specified tolerances (i.e. two
values are asserted to be close, but not necessarily equal).
Whether the test uses an assertion function that does not origi-
nate in a library.

Whether the PBT uses Hypothesis note to display a message
when the test fails.

What condition must be met for the PBT to be run (if any).

11



explicitly_functionally_system_dependent

deterministic_generation
member_test
generated_SUT

xfail
number_of_testcases

deadline (ms)

skip_test
has_test_helper

Whether the results of the test are explicitly shown to be af-
fected by hardware.

Whether data are deterministically generated by Hypothesis.
Whether the PBT is a member of a class.

Whether the system under test is generated by Hypothesis.

In which cases the test is expected to fail (if any).

Maximum number of test cases that may be generated by Hy-
pothesis.

Maximum time in milliseconds that Hypothesis is allowed to
run the test.

In which cases the test is skipped (if any).

Whether the he test uses another function that was defined for
testing purposes (but not a custom assertions or custom genera-
tor).

12



B Property-Based Test Categories

In this appendix, we present the categories of property-based tests (PBTs) that we identified in our analysis. These categories
are based on the characteristics of the tests and their intended purposes.

Some categories are taken from a blog post that is cited in the Hypothesis documentation?' (marked with *), while others are
devised by analyzing the tests and comparing them. Since not all categories described in the blog post are widely used [2], we
chose to only include the four categories that could be identified in the dataset.

The categories are explained in Table 2. Each category is designed to capture a specific aspect of the property-based tests,
such as their behavior under certain conditions or their relationship to the system being tested. The count column indicates how
many tests fall into each category. It is possible for one property-based test to belong to multiple categories, which is why the
count column in the table below does not add up to the total number of tests (87).

Table 2: Full list of categories used to classify property-based tests based on their properties.

name explanation count frequency

differentPathsSameDestination* Running operations in different orders yields the same result. 3 3.4%

idempotence™ The result of an operation does not change if it is ran multiple times. 5 5.7%

roundtrip* The result of applying an operation followed by its inverse to some 15 17.2%
data, results in the original data.

testOracle* A function defined for testing purposes provides the correct result for 13 14.9%
the system under test to give.

transformationInvariance* Some characteristic of the data does not change when the data is tran- 1 1.1%
formed.

additivity The sum of the results of an operation applied to two values is equal 2 2.3%
to the result of that operation applied to the sum of the values, i.e.
op(a) + op(b) = op(a +b).

monotonicity The results of the system under test do not change direction as its 2 2.3%
argument solely increases or solely decreases, i.e. the system under
test is a non-decreasing or non-increasing function.

symmetry Applying a function to some arguments has the same result as apply- 1 1.1%
ing it to the symmetric counterpart of those arguments.

referenceConsistency A reference implementation for the system under test provides the cor- 9 10.3%
rect result for the system under test to give. The system under test is
some optimization for the reference function and requires specialized
hardware or some extra setup.

systemEquivalence An alternative implementation of the system under test provides the 18 20.7%
correct result for the system under test to give.

constructionlntegrity The construction of an object based on some data results in an object 13 14.9%
that is consistent with the provided data.

equivalenceExtensionality Two objects are equal if and only if they have a specific characteristic 2 2.3%
in common, i.e. obj; = obj, <= obj;.x = obj,.T.

argumentIdempotence Applying a function to a value has the same result as ap- 2 2.3%
plying the function to that value as multiple arguments, i.e.
f(x) = flx,2) = fz,2,20) = ...

outputJustification The output of the system under test is consistent with the generated 1 1.1%
justification.

postCondition The output of the system under test always has a certain characteristic. 15 17.2 %

exceptionGuarantee The system under test always throws an exception in the provided cir- 1 1.1%
cumstances (input or environment).

noException The system under test never throws an exception in the provided cir- 3 3.4%
cumstances (input or environment).

testByRunning The system under test has its own direct means of passing or failing a 4 4.6%
test (e.g. through exceptions or assertions).

objectCached The system under test caches equal objects, such they have the same 7 8.0%
memory location.

recursionPerformance The system under test provides a satisfactory output within a certain 2 2.3%

recursion depth.

' https://fsharpforfunandprofit.com/posts/property-based-testing-2/
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C

Generative AI Prompts

In this appendix, we present every prompt that we wrote to a Large Language Model (LLM). The LLM that we used was
OpenAI’'s GPT-4. In favor of brevity, we have left out some code inputs and outputs (replaced with description between
<brackets>) and we have removed line breaks.

L]

“hypothesis strategies sampled from vs one of”

“Is there a name for functions that are inside a class (as opposed to not being part of a class)?”
“What’s going wrong in this overleaf table? <latex code of table>"

“overleaf does not know what \keepXColumns is”

“I would like to rewrite the sentence below without using the term “Swiss army knife", such that it sounds like it is the
perfect tool for software testing. “Although this sounds like the Swiss army knife of software testing, practice shows that
property-based testing is not widely adopted within the programming community."”

“What is the best tool for qualitative coding of open source software projects?”

“I’m doing research into how the property-based testing is used in practice. In particular, I will be looking into open-source
Python projects that use the Hypothesis framework. I want to use open coding for qualitatively analyzing the .py files. Do
you know of any software/tools that I can use to help me in this endeavor?”

“While running an Ubuntu executable, I'm getting the following error. Can you help me solve it? [13617] Error loading
Python lib ‘/tmp/_MEI7wkn5P/libpython3.12.50.1.0’: dlopen: /lib/x86_64-linux-gnu/libm.so.6: version GLIBC_2.38’ not
found (required by /tmp/_MEI7wkn5P/libpython3.12.50.1.0)”

“For my paper about PBT in Python using Hypothesis, I’ve written the following introduction. What do you think about
it? <first draft of Introduction section>"

“If sampling is defined as selecting n possibly equal elements from a finite domain, what would be a term for selecting n
distinct elements from an infinite domain?”

“Can you translate the following scopus query into ieee xplore? ( TITLE-ABS-KEY ( "property-based test*" ) OR TITLE-
ABS-KEY ( "property based test*" ) OR TITLE-ABS-KEY ( "property-test*" ) OR TITLE-ABS-KEY ( "property test*" )
) AND ( TITLE-ABS-KEY ( "in practice”" ) OR TITLE-ABS-KEY ( "real*world" ) OR TITLE-ABS-KEY ( "in the wild"

)"

“latexpdf underscore rendered as "

“powerpoint text add line numbers”

“powerpoint add python code with syntax highlighting and line numbers”
“What do you call the rule that tick(n) + tick(m) == tick(n+m)”

“What do you call the distance between the two closest rounded values? For example, this would be 100 if you round to
the nearest 100, or it would be 1 if you round to the nearest integer”

“Is there a better way to do the following in overleaf: <latex multicols list>"
“What does this do in python? scalarl = arr1[()]”
“In Excel, I have a column of lists of categories, and I want to find how many of each category I have. How do I do this?”

“overleaf escape @ sign in texttt”
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