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Abstract

This thesis is about pricing European options using a Fourier-based numeri-
cal method called the COS method under the rough Heston model. Besides
examining the efficiency and accuracy of the COS method for pricing options
under the rough Heston model, it is also investigated if the rough Heston model
produces the advantages of the so-called rough volatility models. To do so,
the characteristic function of the rough Heston model is derived, and the COS
method for the rough Heston model and also a Monte Carlo simulation scheme
is introduced. Throughout the thesis, the theoretical background of the rough
Heston model, the numerical techniques and some numerical experiments on
European option prices and implied volatility behaviors are presented. Also, a
calibration of the rough Heston model is performed using Artificial Neural Net-
works. As a result of this thesis, pricing of European options using COS method
is succeeded. Moreover, it is shown that the rough Heston model produces the
rough volatility behaviors as expected.

Keywords: option pricing, European options, rough Heston model, charac-

teristic function of the rough Heston model, rough volatility, COS method, Ar-
tificial Neural Networks, Monte Carlo simulation, fractional Brownian motion.
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1 Introduction

Financial markets like stock exchange markets are major driving forces for the
current economic systems worldwide. An option is a financial instrument that
is exchangeable on the exchange markets. It is a type of contract between some
parties and its value is determined according to the conditions of this contract
and the behavior of an underlying financial asset, e.g., stocks. Thus, the value
of an option is based on another financial asset. This implies that an option is
a type of financial derivative.

Determining the value of an option has been a significant problem for the quan-
titative finance. One solution for this problem is modelling the dynamics of an
option’s elements like stock, volatility, interest rate and etc. These models are
called the option pricing models and computing the value of an option is called
option pricing. In this thesis, we are going to concentrate on one of these models
that is called the rough Heston model.

The rough Heston model is an example of the so-called rough volatility models.
Rough volatility is a financial concept that aims to increase the accuracy of
option pricing models. The rough volatility models are a relatively new area of
the option pricing models. Thus, we work on an easier type of option, European
option, pricing in this thesis since we believe it is a better starting point.

The COS method is a numerical method that is used to compute the option
prices according to the related option pricing model. Our main work in this
thesis is deriving European option prices under the rough Heston model using
the COS method. Hence, our research question is: ”Is the COS Method an
efficient and accurate way of pricing European options under the rough Heston
model dynamics?”

In addition to pricing options, looking for a parameter set that fits into the
dynamics of the rough Heston model according to the real market prices of the
options is also an important stage of the option pricing process. This stage is
called calibration and we use Artificial Neural Networks for this stage. Thus,
we have also side objectives throughout this thesis, which are different than
answering the research question we determined. The objectives of this thesis
can be listed as:

e Exploring the rough volatility concept and its advantages,

e Deriving the rough Heston model dynamics from stylized facts of the elec-
tronic trading markets where European options are traded,

e Applying and evaluating the performance of the COS Method for pricing
European options under the rough Heston dynamics using MATLAB,

e Performing calibration to the real market option prices with Artificial
Neural Networks using Python,



e Examining the results of the numerical applications to observe if the ad-
vantages of the rough volatility is ensured.

Therefore, the aim of the thesis can be described as finding an alternative and
more accurate solution to the option pricing problem of the quantitative finance.
The contributions to this aim that are newly introduced in this thesis are an
application of the COS method for pricing European options under the rough
Heston model, an application of a newly introduced (Section 5.4) Monte Carlo
simulation that is used as a reference for European option pricing and the cali-
bration of the European option prices for the rough Heston model parameters.

In Section 2, a literature review of the background information needed for the
content in the thesis is given. First, a brief description of the options and option
pricing is given. Then, some knowledge about volatility and implied volatility
that is useful to understand the advantages of the rough volatility concept is
presented. Finally, the rough volatility concept which is the base of the rough
Heston model is explained by introducing the fractional Brownian motion and
the rough fractional stochastic volatility model.

In Section 3, after introducing the Hawkes Processes, the derivation of the rough
Heston model from the microstructural market interactions (and the following
facts of the electronic trading market) is presented.

In Section 4, to use for the COS method, the characteristic function of the
rough Heston model is derived. In Section 5, the numerical techniques that we
used in numerical application; the COS method, the fractional Adams method,
Volterra integral equation and Monte Carlo simulation is presented. And in
Section 6, the numerical experiments and results are shown.

In Section 7, the calibration stage is presented with some numerical results.

Finally, in Section 8, the thesis is concluded with a summary of the results
and some future research recommendations.



2 Literature Review

In this chapter, we present the prerequisite knowledge to understand how the
characteristic function of the rough Heston model is derived and how it is used
to price options. To do that, in Section 2.1, the basics of the option pricing and
the volatility modelling are shown. Then, in Section 2.2 rough volatility model
basics are presented with fractional Brownian Motion, also the rough fractional
stochastic volatility model is briefly explained.

2.1 Option Pricing and Volatility

An option is a right to trade an underlying asset in future with a pre-determined
price [21,39]. Options are one of the most sophisticated financial instruments
in the derivatives market. Thus, deciding the value of these instruments is a
significant problem of quantitative finance. The quantitative process to find the
value of the option is called option pricing.

Before going into the details of the option pricing, more details on how op-
tions work should be given. Since we will concentrate on the European type
options in this thesis, only the details of the European options will be given.
There are mainly two types of options which are the call options and the put op-
tions. Call options give the buyer the right to buy the underlying asset whereas
put options give the right to sell at a specified pre-determined price [21].

One important notification in this aspect is the fact that the buyer of the op-
tion does not have an obligation to exercise the option. This means that, if
exercising the option does not give profit to the buyer, then the option will not
be exercised and will be valueless. European options can only be exercised at
a specified date which we call the maturity time [21,39]. Hence, if we denote
the maturity time as 7T, price of the underlying asset as S, the pre-determined
price (strike price) as K and the value of the option as V, then,

Veat,r = maz (St — K, 0),

Vout,r = maz(K — S, 0),

are the fundamental value equations for the European options. These are called
the payoff functions [21] and they are shown in Figure 1.
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Figure (1) Payoff Functions

Following the payoff functions, some models are introduced in order to price
the options before the maturity time. The most well-known and popular one of
these functions is the Black-Scholes model offered by Fischer Black and Myron
Scholes in [6]. Even though, this model is known to have non-negligible problems
regarding the real-world market data, it is still the fundamental model used in
practice. In this model, the interest rate r and the volatility v is assumed to
be constant or a homogeneous function of time, and the stock price process is
assumed to follow a geometric Brownian motion (Brownian motion is explained
in detail in Section 2.2.1), so the dynamics of the stock price process, Sy, are

dSt = /j,tStdt + ’UtStth,

where g is called the drift and W; is the Brownian motion [21].

One important advantage of the dynamics of the Black-Scholes model is the
fact that it allows an analytical solution for the option prices. First, projection
of the Feynman-Kac theorem on option pricing should be briefly introduced.
This theorem presents a relationship between the value of the option and the
expectation of the payoff function, which is:

Vi = e "TOE[VE| F,

under the risk-free measure [21]. This relationship allows us to get an analytical
solution for the option pricing since we know the probability distribution of the
stock price process. Thus, from [21]

Vcall,t = eir(Tit)E[(ST - K)18T>K“Ft}7

which results in,

Veaity = S1®(dr) — Ke "D (dy),
where @ is the cumulative distribution function of a standard normal and
_ log(Si/K) + (r+ 30°)(T — 1)

d )
! oV —t




dgzdl—’l}\/T—t.

Similarly for the put options we have,

Voutt = Ke " T 0®(—dy) — Sp®(—dy).

The analytical solution of the Black-Scholes model is also useful to calculate the
implied volatility of the market or model price data. In general the volatility of
the future market is unknown, thus using the analytical solution of the Black-
Scholes model, the volatility that is implied by the market price and other
parameters can be found. This is called implied volatility [39]. Hence, if we call
the Black-Scholes analytical formula as Vg (vmarket, St, 7, t, K, T),

VBS(”marketa Sy, 11, K, T) =V

From this relationship, if we know the option price data, V;, then by applying
an inverse function, we can get the volatility value which is the implied volatil-
ity [39]. Implied volatility is an important tool for option pricing, since the
real market implied volatility behavior tends to have an overall shape [18,19].
The most well-known indicator of this behavior is the smile or skew shape of
the implied volatility - strike price graph as shown in Figure 2. We are going
to name this behavior as the implied volatility smile behavior throughout the
thesis.

Skew Smile

Implied Volatility
Implied Volatility

Strike Price Strike Price

Figure (2) Volatility Skew and Smile.

The Black-Scholes model has been a revolutionary mathematical model for
asset prices in the financial markets with derivative instruments. However, in
this classical model the volatility process is taken as constant or a deterministic
function of time. This results in an inconsistency between the model implied
volatilities and market implied volatilities. Because of this unrealistic scheme
of the volatility, new models with more sophisticated volatility dynamics called
stochastic volatility models like the Heston model [25] or the SABR model [22]



are introduced to solve this problem. One important aspect of these stochas-
tic volatility models is that the randomness of the volatility is generated with
Brownian motion. Even though these stochastic volatility models give more
realistic results, still these are not successful too on being consistent with the
empirical results obtained from European options.

Especially in equity markets, looking at the behavior of the empirical data
it is a generally accepted fact that the volatility surface of such markets has a
certain shape. This means that the level and orientation of the volatility sur-
face shape may change according to the situation, but the overall shape stays
the same [19]. The most traditional stochastic volatility models like the SABR
model and Heston model are designed to have a time-homogeneous volatility
process with parameters independent of time and price of the underlying asset.
However, this attempt to fit the real-world behavior of the market does not work
well. In [18] and [19], it is shown in detail that these models do not fit well to
the volatility surface.

One small experiment is done to give an example for this. At-the-money option
prices are computed for different maturity times under the Heston model. At-
the-money (ATM) options are options with strike price equal to the underlying
asset price at the moment of the trade meaning S; = K. Then, the implied
volatility for these option prices is computed. In Section 2.2.2, a relationship
between the ATM volatility skew (the derivative of the implied volatility with
respect to Zog(s%)) and maturity time shown by Fukasawa in [17] is explained
in detail. We will show the relationship for the Heston model and compare it
with the Fukasawa’s as shown in Figure 5.
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Figure (3) Heston model behavior

As we can see in Figure 5, the ATM skew tends to go to infinity for the real
market data at maturity time close to zero. However, for the experiment with
the Heston model shown in Figure 3, it is easily observed that the ATM skew
tends to converge to around 0.4 for this example. This result implies that the
Heston model does not reflect the ATM skew behavior of the real market data.
The details of this experiment and the relationship are given in Section 2.2.2
and 6.2.

2.2 Rough Volatility

This section is to show the foundations of the rough volatility models and why
they are significant to understand actual financial markets.

2.2.1 Fractional Brownian Motion

A new emerging area of research with fractional volatility models was one of the
essential steps that led to rough volatility models. Fractional volatility models
are basically generating the randomness of the volatility by a fractional Brow-
nian motion instead of the classical Brownian motion.

Before going into fractional Brownian motion, classical Brownian motion should



be presented briefly. Brownian motion is a real valued continuous stochastic pro-
cess with four main characteristics that define the process [39]. Hence, Brownian
motion,{W(¢) : t > 0},

e starts at ¢ = 0 with W (0) = 0.
e has a continuous mapping t — W (t).

e has increments which follow a normal distribution. Moreover, for 0 < s <
t, W(t) — W(s) ~N(0,t —s).

e has increments that are independent of each other.

As a result of these characteristics, Brownian motion also shows the martingale
property which makes it a critical component in the option pricing models [39].
To briefly explain, say there is a random sequence X,, as X1,..., Xny. The o-
algebra of these variables is represented by filtration F,,. Thus, F,, is the natural
filtration for X,,, meaning that X, is adapted to F;, and F,-measurable. Under
these conditions a stochastic process Y, is a martingale if E[Y,,|F,—1] = Y5,—1.

Fractional Brownian motion is a generalized version of Brownian motion where
the increments are not independent, unlike classical Brownian motion. It may
be defined by means of the Mandelbrot - van Ness representation [34],

W = i Uw (=) /2 (=)= Y v+ /Otu—s)H-l/?dWs .
(i)

H € (0,1) is called the Hurst parameter where if H = %, the process is classical
Brownian motion. I'(.) is the gamma function. The covariance function of the
fractional Brownian motion(fBM) can be shown to be

1
EWW = S (7 + [s*7 = [t = s|*).
Thus, it is trivial that if H < % the increments of the fBM have a negative
correlation and if H > % the increments of the fBM have a positive correlation.
One other increment relationship can be shown for any ¢t € R, dt > 0,q > 0, i.e.,

]E“thidt - WtH|q} = qutqHa

where K, is the moment of order q for the absolute value of a standard normal
variable [19]. Thus, it can be seen that the Holder property holds for any h < H
for the paths of the fBM with Hurst parameter H.

Holder Property If a function f on a Euclidean space has the Hélder property
which implies it is a-Holder continuous where C,« are nonnegative constants,
then

[f(@) = f(y)l < Cllz — yl|*

10



for all x,y in the domain of f. Having the Hdélder property means that for any
a > 0 the function is uniformly continuous and for a =1 the function satisfies
the well known Lipschitz condition.

To be able to show these aspects visually, a simulation of fractional Brown-
ian motion with different Hurst parameters is made. The movements of the
fBMs are presented in Figures 4 a,b,c,d,e. Especially, the decreasing roughness
with increasing Hurst parameter of the fBms can be clearly observed visually.

11
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Figure (4) Fractional Brownian motion with different Hurst parameters

One of the first proposals on fractional volatility was made in [8] by Comte
and Renault. By picking the Hurst parameter bigger than %, they wanted to
include long memory effects, since it was seen as a fact that volatility process has
a long memory property (more detailed information can be found in the analysis
n [11]). However, in [19], it is claimed that, looking at the autocorrelation
function’s asymptotic behaviour, long memory can not be seen as a fact. The
details of the fractional stochastic volatility (FSV) model offered by Comte and

12



Renault will not be discussed in this thesis since it is not directly related to the
topic.

2.2.2 Rough Fractional Stochastic Volatility Model

A milestone for the rough volatility model was the paper [19] written in 2014
by Gatheral, Jaisson and Rosenbaum claiming that the volatility is rough and
presenting the rough fractional stochastic volatility (RFSV) model. As a result
of the availability of high frequency data, they were able to get empirical results
showing that there is an approximately constant smoothness parameter which
implies the volatility in practice is rough. Volatility being rough means that it
follows a path like fractional Brownian motion with a Hurst parameter smaller
than 0.5 instead of the classical one with H = 0.5. As we can see in Figures 4
a,b,c,d,e, the fBM with small Hurst parameter has rougher movements whereas
the fBm with big Hurst parameter has smoother movements.

Before going into the details of [19], another pointer should be given. In [17],
Fukasawa found an interesting relationship for small maturity time. The ATM
volatility skew of a fractional stochastic volatility model with Hurst parameter
H has a form (1) ~ 7771/2 where v is the volatility skew and 7 is time to
maturity. This shows that the explosion of the ATM volatility skew as the ma-
turity time gets closer to zero is not directly implying the presence of jumps.
It is showed clearly in Figure 5 that in a case without jumps but with rough
fractional stochastic volatility, the explosion of the ATM volatility skew going
to infinity is observed when Fukasawa’s relationship applies. If H = 0.5, the
ATM volatility skew would be a straight line, while if H > 0.5, it would tend
to go to zero assuming Fukasawa’s relationship applies. Figure 5 is an oversim-
plification of the concept but rather is a good indicator of it. This means that
rough stochastic volatility is a second possibility in the case of the explosion
rather than the presence of jumps. A more solid version of the figure can be
seen in Section 6.2.

13
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Gatheral et al. first showed the roughness of the volatility in their paper [19]
with the help of an estimation of smoothness. Assuming the availability of N
discrete observations of the volatility with a mesh size of h on time grid [0, T):
V05 Vhy ooy Ukhy -, where k € {0, N}. N = |T/h], then for any g > 0 we define
m [19]:

N
1
m(q,h) = ¥ ; llog(vkn) — log(vi—1yn)|*-
For some s, > 0 and by > 0, it is assumed that as h — 0:
N%am(q, h) — by.

Using [37], it is known that within this assumption, the volatility process is
within the Besov generalized smoothness space By’ while it does not belong
to the any Besov generalized smoothness space of order greater than s,. Since
any function in By . has the Holder property with parameter h < s [19], the
Holder property with any parameter s < s, applies to the volatility process.
In our case it implies that s, is an estimation for the smoothness parameter,
hence for an fBM with Hurst parameter H, for any ¢ > 0, s, = H in probability
because of the Holder regularity explained in Section 2.2.1. Thus, to find the
empirical values for the Hurst parameter which also implies the smoothness,

14



this estimator is used by Gatheral et al in [19].

Besov Space Besov spaces are a generalization of the Sobolev function spaces,
which are used as a measure for the regularity (smoothness) of a function [30].
Thus, Besov spaces can be used as a smoothness indicator in our case too. There
are different definitions for the Besov spaces, we are going to follow the defini-
tions of classical Besov space and Besov space of generalized smoothness which
are given seperately in [7].

Regarding the classical Besov space, say a function f € RN where RN is the
N-dimensional real Euclidean space; A is a positive integer and h € RN, and
the iterated difference operator is defined as

A

AR (@) = 3 (~1)A (A) F(o -+ hi).

i=0

Following these and p > 0, ¢ < oo and s € (0,A) with s > ¢, where {, =
N(% —1), the Besov space B, , is the function space which consists of functions

f which are measurable in RN (LY :=space of measurable functions in RN ) such

as
dh 1
Mo = / Afflle, Iy o,
Pl = I8 rrsg)

with the case ¢ = oo,

._ [|AZf] e
= sup ——4
i<t |h]

[£18;

p,00

<0

For the Besov space of generalized smoothness, which is used in [37], and the
smoothness estimation we presented, first we need to define admissible functions.
Say there is a real function ® on the interval (0,1], if it is positive and monotone
on this interval and,

B(277) ~ ®(27%)  for everyj €N,

then, ® is admissible. Thus with the same conditions for the classical Besov
space and ® being an admissible function, the Besov space of generalized smooth-
ness B  is the function space which consists of functions f which are measur-
able in RN such that,

1
O(t)? 1
. 1= AR fII8 dt)s < oo
[flBs (/0 |ff|g” hF Lo g dt) s < oo,

with the case ¢ = oo,

[flBs . = sup t7°@(t) sup || AR fl|Lr < oo.
' 0<t<1 |h|<t
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As a result of an empirical estimation applied on DAX and Bund future con-
tracts and S&P and NASDAQ indices in [19] where m(q, A) from [19] is used
as the empirical counterpart of E[|log(va) — log(vp)|?], they reached the result
that the Hurst parameter can be taken constant as H ~ 0.1. According to this
result, the volatility process is obviously a rough process. Also in [5] and [33],
similar empirical findings are made to estimate the roughness of the volatility
which gave supporting results to [19].

After showing that the volatility is rough, Gatheral et al. introduced a model
called Rough Fractional Stochastic Volatility (RFSV) model where the log-
volatility is an Ornstein-Uhlenbeck process. At first, they suggested

log(vesn) — log(ve) = v(W/[, — W/,

where WH is a fBM and v is a positive constant, since it should be a volatility
model with constant smoothness and with a distribution similar to a Gaussian
process. However, this is problematic because it is an unsteady process ac-
cording to [19]. Choosing a fractional Ornstein-Uhlenbeck process solved this
problem and the model was given as:

vy = exp(Xy),

dX; = vdW}H — (X, — ),

where x € R and « is positive constant. For any € > 0, the volatility process
has the Holder property of order H — €, and since we know that H is accepted
as approximately 0.1, this process is rough.

The main difference between the FSV and RFSV models is obviously the dif-
ferent Hurst parameters which leads to different smoothness behaviour. The
FSV model has a Hurst parameter H > %, which creates a problem looking at
Fukasawa’s analysis [14] that is mentioned earlier. The observed term structure
has a behavior of approximate skew of 1/4/7. However, in Fukasawa’s analysis
with H > %, it can be seen that the volatility skew function should increase
with time to expiration. As a result, there is a contradiction with the volatil-
ity skew of FSV and the observed term structure. However, in [4], Bayer, Friz
and Gatheral developed a pricing model of a Rough Bergomi model which is a
specific case of RFSV model and it is an example of a better fit of the volatility

surface than with the FSV model.

Besides these models in [19], it is shown that the RFSV autocovariance function
is also better fitting with the empirical observations whereas the FSV autocovari-
ance function does not fit. Also, RSFV outperforms the well-known predictors
like the AR model in the forecasting applications, which also supports the claim
of the volatility being rough.
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3 The Rough Heston Model

In this section, a brief introduction to the Hawkes processes in Section 3.1 is
given since these processes are fundamental in the derivation of the rough Heston
model. Then, in Section 3.2, the microstructural foundations and the derivation
of the rough Heston model is presented.

3.1 The Hawkes Processes

Before continuing with the rough volatility processes, we need to introduce one
important aspect in the construction of the rough stochastic volatility processes,
the Hawkes processes that are introduced and developed by A.G. Hawkes with
D. Oakes in [23] and [24]. However, many types of point processes started to be
called Hawkes processes, which were different from the process derived in [23]
and [24]. Hence, we will define Hawkes processes as self-exciting temporal point
processes.

First, we need to define a point process. If a sequence of non-negative ran-
dom variables (t;)vien~ is such that ¢; < t;11, (t;)vien+ is said to be a simple
point process. Then, there is a counting process N(t) associated with the point

process:
N@t) = > Lyt
iEN*
In general, the terminology of the point process and counting process is inter-
changeable. The point processes may be characterised by a distribution function
of the next arriving point conditional on the past.

However, it is hard to work with these conditional probability distributions for
the point processes. Hence, besides the conditional probability distributions,
the intensity of the point process conditional to the past is often used. The
intensity process A of a point process adapted to the filtration JF; is defined as,
using h = At [29],

A(t) = limE

h

N(t+h) = N(t) ‘Ft].

The intensity function can be used to characterise the behavior of the point
process as self-exciting and self-regulating. If for every introduction of a new
point in the process, the conditional intensity function increases, then it is a
self-exciting process. If it decreases, then the point process is a self-regulating
process.

Following the information given above, the Hawkes Process is defined as [29]:
A(t)h + o(h), m=1
B(N(t +h) — N(t) = m|F,) = { o(h), m>1
1—=Xt)h+o(h), m=0
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Moreover, the univariate self-exciting Hawkes process is a point process N with
a conditional intensity function A given by, [29]:

A(t) = plt) + / ot — )dN,,

where p(t) is a deterministic base intensity and ¢(t) is a function for the pos-
itive influence from the past events of the point process to ensure that it is a
self-exciting process, so it is called the excitation function.

There are two frequently used examples for the excitation function [29]. The
first one is called exponential decay which is in the form ¢(t) = ae~ where a,
b are positive constants. The processes with this excitation function are also
called Hawkes Processes with exponentially decaying intensity. The other ex-
ample is called the power law function which is in the form ¢(t) = ﬁ with
parameters ¢,k and p are positive scalars.

One other important aspect for us to show about Hawkes processes is the rela-

tion, by definition, between the expectation of the intensity and the expectation

of the point process, i.e.
E[dN;] = E[A(s)]ds.

A simple proof [29]: Let’s define

It is trivial to show that

A(t) = limE

Thus,

resulting in,
E[dN] = g(s)ds = E[\(s)]ds.

3.2 Microstructural Foundations and the Rough Heston
Model

As mentioned in Section 2.2, it is expected to see a rough volatility behaviour
in real market. Additional to that, the so-called leverage effect is also seen as
a stylized fact in finance. The leverage effect is a phenomena observed in the
financial markets which is the negative correlation between the underlying asset
price returns and volatility increments [13]. El Euch, Fukasawa and Rosenbaum
were able to generate these effects using microstructural interactions between
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market agents in [13]. This is also an important paper in the sense that these
microstructural foundations lead to the rough Heston model.

Before getting into the microstructural foundations, we introduce a general-
ization for the rough Heston model presented in [14]. To do that, first the
dynamics in the classical Heston model without drift are shown with asset price
S and volatility v [21]:

dS; = S\ v dWr,

dvy = (0 — vy)dt + yv+/ved By,

where «,0, v and vy are positive parameters and W and B are two classical
Brownian motions with (dW;,dB;) = pdt. As a result of the microstructural
foundations that are explained in the derivation of the rough Heston model,
there is not a presence of drift. Thus, we concentrate on the no drift case of the
Heston model.

The Heston model is one of the most popular models because of its success
in representing the stylized facts of the low frequency data like fat tails, lever-
age effect or time-varying volatility. It also gives the availability to control the
implied volatility smile with the v parameter and the skew with the p, as a result
it gives reasonable fit for the implied volatility smile and skew [14]. Besides,
there is a formula for the characteristic function of the Heston model which
gives great advantage for the pricing purposes. However, it does not reflect the
rough behavior of the volatility, thus a version of the Heston model with rough
volatility is derived.

The rough Heston model can be derived fundamentally by implementing a ker-
nel (¢ —s)*~! to get the fractional Brownian motion into the volatility equation
(it will be explained in the following sections in more detail). As follows,

dS, = Si\/ud WV,

I !
V= vy + —— / (t —s8)* 190 — vy)ds + — / (t —8)* tyv\/usdBs, (2)
I'(a) Jo I'(a) Jo
with o € (1/2,1) determining the roughness of the volatility process, where
o= H +1/2. H is the Hurst parameter.

To show the typical micro behaviours of the market agents, a tick by tick price
model in the form of ultra high frequency dynamics is shown in [2]:

P,=N;" - N[, (3)
where N;r represents the number of upward jumps, IV, represents the number

of downward jumps in [0,¢] and P; is the price. The tick by tick price model
introduced in [13] is inspired by the Hawkes processes presented in [23]. A
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bi-dimensional Hawkes process is used to be the base of the tick by tick price

model:

(/\?—> _ <N+> _|_/t (Sol(t s) p3(t— 5)) (stJr> (4)

At wo o \w2(t—s) ¢a(t—s)) \dNg )"

This is a bivariate point process of the upward and downward jumps where
the A\; values are representing the jump intensity. Vector u contains positive
constants and non-negative ¢s are excitation functions described in Section 3.1
that forms the kernel matrix ¢. A very basic description of the fundamental
property of this process is the fact that the jump probabilities are associated
with the location of the past events. Thus, this model facilitates to generate
the bid-ask bounce effect, which is an effect commonly observed in financial
markets stating that the probability of a bid order to take place increases after
an ask order and vice versa. It can be done by choosing appropriate shapes
for ¢ functions that would result in a high probability of upward jump after a
downward jump and vice versa.

Developing the model, four essential facts of high frequency electronic trading
markets are encoded in [13]. These are:

1. As shown in [16], market movements are mostly generated by algorithms
reacting to other orders rather than real economic principles, which implies
that the markets are endogeneous.

2. There is no statistical arbitrage on the high frequency markets.

3. Asymmetric liquidity is observed, see [38]. To be more precise, the action
taking mechanism of buying and selling is not the same. Because of the
change of inventory size, after a buying order, a market maker tends to
raise the price by less than the amount that market maker tends to lower
after a selling order.

4. Metaorders are the most commonly seen transactions in the market and
are not carried out at once but split over time, see [1].

Encoding the Fact 1 into the tick by tick price model leads us to the so-called
nearly Unstable Hawkes processes (the stability condition is close to satura-
tion because of the high endogeneity) as explained in Section 3.2.2. Hence, we
can say that the spectral radius of the kernel matrix integral is close to 1, but
smaller [16]. Fact 2 and Fact 3 are also some specific modifications for the kernel
matrix. Fact 4 results in heavy tailed distributions for the ¢ functions [27].

To summarize the effects of the encoding facts, Fact 1, Fact 2 and Fact 3 results
in the classical Heston model of [25] by generating the leverage effect as will be
shown in Sections 3.2.2, 3.2.8 and 3.2.4, whereas Fact 4 constructs the rough
volatility which will lead to the rough Heston model.
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3.2.1 Hawkes Framework

Recalling the tick by tick price model that is described earlier in equations (3)
and (4) as the basis of the Hawkes framework, we need to clarify the intensity,
A/ dt is the probability of having an upward jump at time ¢ on [t, ¢+ dt]. Vector
W corresponds to exogeneous reasons and behaves as Poissonian, whereas the ¢
terms were explained earlier.

Finally, we define
Y1 @3 2 *
= Ry — M2(R
¢ (902 @4) + (R%)
as the kernel matrix.

3.2.2 Fact 2 and Fact 3

To encode the facts mentioned at the beginning of the Section 3.2, the param-
eters of the process need to be modified as in [13]. First, Fact 2 and Fact 3 will
be discussed.

Fact 2 states that there is no statistical arbitrage in the high frequency mar-
kets. This translates to the fact that the expected number of upward jumps and
expected number of downward jumps should be the same essentially, i.e.,

E[Nt+] = E[Nt_]'

In the Hawkes framework, it is known, by definition, that,

BN = [ B, BINT) = [ EDTas

(ERT) - () + [ (st =) esli =) (B0
E\ ] no o \p2(t—s) @a(t —s)) \E[A]]ds
Looking at these, equating the expectation of the intensity of the upward jump

and the intensity of the downward jump is a way to ensure there is no statistical
arbitrage. Thus, taking

and thus,

pt=p", o143 =02+ ps,

is encoding Fact 2 into the model.

Fact 3 basically says that the ask side is more liquid. Hence, it is more likely
to see a downward jump after a downward jump than an upward jump after an
upward jump. It translates to p1(z) < p4(z), which implies 3(z) > @a(z). To
implement this fact,

p3 = B2,
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is set, where 5 > 1.

These modifications project in the Hawkes framework as

d) — <901 6902 >
w2 1+ (B—1)ps)’

() =) [ o0 ().

with p as a positive scalar constant.

and

3.2.3 Fact1

To encode Fact 1, the population representation of the Hawkes processes pre-
sented in [24] and [13] is used. In this representation, the counting process N (%)
is considered as a population process. The population increases with migrants
incoming with a Poisson process with intensity . Also, each of these migrants
have children with the inhomogeneous Poisson process with intensity ¢. The
same applies to the children having children with the inhomogeneous Poisson
process with intensity ¢ and so on. This representation is also used and ex-
plained in more detail in Section 4.4.

Using this representation, N being the number of transactions, migrants be-
ing the exogenous orders and children being the endogeneous orders, for the
one-dimensional Hawkes process the degree of endogeneity is found to be the
L'-norm of the function that defines the influence of the past events of the point

process, ||¢||1.

This is explained in [26] using the population approach. The endogeneous
parameter ||¢||; represents the average number of the children of one person
in the one-dimensonal Hawkes process, average number of the grandchildren is
9|2, average number of the children of the grandchildren is ||4||3 and so on.
Thus, using the geometric series, the average number of total descendants of
this person is as follows,

kol

E>1

The degree of endogeneity is the proportion of the endogeneous orders to the
total number of orders and the number of descendants represents the number of
endogeneous orders. Hence, the proportion of number of descendants to total
number of people (which is the number of descendants plus one in this case
because there is only one migrant) represents the degree of endogeneity. As a
result, it is trivial to see that this proportion is equal to ||¢||;.
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Since Fact 1 represents the high endogeneity of the market, ||¢||; should be
close to 1 but smaller. This results in the case called nearly unstable Hawkes
process, which is also in parallel with the empirical results from [16].

The projection of this result into the bi-dimensional Hawkes process gives a
spectral radius of the kernel matrix integral close to 1, but smaller, to ensure
Fact 1:

s</0 6(5)ds) = Ileall1 + Bl 1.

where S is the spectral radius operator. Inspired by [27], to get to the spectral
radius, an asymptotic framework is used in [13]. It is done basically by indexing
the probability space by T' > 0, where the bi-dimensional Hawkes process is
defined on time interval [0,7]. Thus, the tick by tick price process N7 =
(NT:+, NT:7) may be redefined with intensity

AT 1 b or dNT-+
(/\tT,_ =pr | +/o ¢ (t—s) ANT~ )
With this modified process in the asymptotic framework, a first assumption is
made in [13] to provide the work done in the previous sections.

Assumption 3.1 We assume pur > 0 and

T _ (¢ B2
¢ =ard, ¢= <<P2 o1+ (B — 1)%’2) ’

where > 1 and ps are positive measurable functions with

s</0 6(s)ds) = [loxlls + Bllgalls = 1,

and ar is a positive increasing sequence converging to 1.

With Assumption 8.1, the Facts 1,2 and 3 are ensured with endogeneity ar,
which is close to 1 but smaller. We find

o T B o0 B
S(/O é (s)ds)—aTS(/O 6(s)ds) = ar.

3.2.4 The Heston Model

The convergence result of the asymptotic model found by encoding the Facts
1,2 and 3 leads to a Heston model similar to the one in [26], where § = 1 is
taken which is contradictory to the liquidity asymmetry, since liquidity asym-
metry implies 5 > 1 as in Section 3.2.2. Thus, directly taken from [13], two
new assumptions are made.
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Assumption 3.2 There exist positive parameters p, A\ and n, such that
T(1—ar) — A, pr=pu,
T—o0

and

S(/OOo zo(x)dr) =n < co.

¢T _ Z(¢T)*k

k>1

where (¢1)** fo T (s)(¢T)* = (t — s)ds for k > 1, (¢7)*F = ¢7.

We need to define

Assumption 3.3 The function ¥T is uniformly bounded and ¢ is differentiable
such that each component ¢;; satisfies ||¢};|loc < 00 and ||¢};]l1 < oo.

The technical details for these assumptions and how it leads to the following
theorem can be found in [13] and [26]. Following [26], if we take 8 = 1, the price
process is rescaled as follows after Assumptions 3.1, 3.2 and 3.3:

T,+ T,—
P _ NtT — NtT
tT — T .

The rescaled process under the time interval [0, 1] converges in law as T — o0
to a Heston model:

b =

/ JXaw,,

1—(Hs01||1—||<p2||

Y
dX, = (A“ X,)dt + — \/XtdBt,
m

with W and B being uncorrelated Brownian motlons. To project this result into
the case which we are interested in where g > 1, El Euch et al. presents the
following theorem directly taken from [13]:

Theorem 3.1 Under Assumptions 3.1, 3.2 and 3.3, as T tends to infinity,
the rescaled microscopic price

T,+ T,—
NtT — NtT
T K
converges in law for the Skorokhod topology to the following Heston model:

1 2 ¢
P = N / JX.dW,,
T (leall = 2l VI+8 Jo

A i 1 /1462
E((5+ 1)X X, )dt + o\ T3 VX.dB,

PtT: € [Ov 1]7

with

dX,
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where (W,B) is a correlated bi-dimensional Brownian motion with

1—
d(W, B); = 7Bdt

2(1+ 2)
Thus, as a result encoding Facts 1,2 and 3 results in a Heston model in the long
run with the leverage effect, because 5 > 1 implies a negative correlation. The
proof of Theorem 3.1 can be found in Appendiz C.

3.2.5 Fact 4 and Rough Heston Model

Fact 4 states that there are commonly seen metaorders in the high frequency
trading markets which are executed as numerous split in time rather than once.
This translates into the heavy-tailed behaviour of the kernel matrix as explained
in [27]. To briefly explain, metaorders that are split in time cause unexpected
orders to take place at unexpected times, this implies that an order with small
probability at a time has a greater probability than expected. Thus, it implies
that the probability distribution has a heavy-tailed behaviour.

Encoding Fact 4 does not change the fact that the Assumptions 3.1 applies.
However, even though Assumption 3.1 does not change, Assumption 3.2 needs
to be modified, as shown in [13], to ensure Fact 4 into the process.

Assumption 3.4 For C > 0 and a € (3,1), it follows that

axa/ Ai(s)ds — C.
T r—r0o0
Moreover, for some A* >0 and p > 0,
Ta(l —CLT) — A" >0, Tl_o‘,uT — U
T— o0 T— 00

It should be noted that the empirical results from [36] show that o is always
close to % in practice.

As a result of encoding the Facts 1,2,3 and 4 from the previous sections and
setting A = aA*/(CT(1 — a)), the following theorem is presented in [13]:

Theorem 3.2 Under Assumptions 3.1 and 3.4, the rescaled price,

1-— ar
e

Pt€“7 t € [Oa 1]7

converges in the sense of finite dimensional laws, as T — oo, to a rough Heston

model:
P, = ! 2 /t\/YdW
1= (ledll = e2dl) VI+8 Sy ¥V
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_ Lt e vodse L [T gamiy LA
Vo= g [ 0 M Ydse s [0 s VB,

with Yy being the unique solution and (W, B) is a correlated bi-dimensional Brow-
nian motion with
1-8

2(1+5?)
Also, the process Yy has Holder regularity oo — 1/2 — e for any e > 0.

d(W, B); =

The main modification different from Theorem 3.1 is the addition of the kernel
(t —s)®1 in the integrals of the stochastic volatility process which gives us the
Heston model with rough volatility. Thus, it can be said that Fact 4 includes
rough volatility into the process, because the kernel occurring is similar to the
one presented in the Mandelbrot-van Ness representation of the fractional Brow-
nian Motion shown in Equation (1).

Now, it is trivial to see that the Hurst exponent H for the rough Heston model
presented in [13] equals o — 1/2. From the empirical results of [3], it is known
that a € (1/2,1) is close to 1/2, which implies that the Hurst parameter is
close to zero meaning the volatility process is rough. Hence, the rough Heston
model is derived with microstructural foundations of the high frequency elec-
tronic trading markets.

As a final note, the convergence and the proof of Theorem 3.2 can be found
in [13]. Tt is not presented in this thesis, because to present the proof of Theorem
3.2, we would need a framework that is not presented in this thesis. However,
the proof of Theorem 3.2 is similar to the proof of Theorem 4.1 that is presented
in Appendiz A which is also a derivation of the rough Heston model.
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4 Characteristic Function of the Rough Heston
Model

To perform option pricing under the rough Heston model, pricing methods using
the characteristic function of the model seem a reasonable possibility since the
characteristic function of the rough Heston model is similar to the one of the
classical Heston model. However, it is not trivial to derive the characteristic
function of the rough Heston model, since using the same approach as used for
the classical Heston model does not work. The reason behind this is the fact
that the formula for the classical Heston model is found using its Markovian
property, but the roughening of the Heston model gives rise to the loss of the
Markovian property.

Let’s show the derivation of the characteristic function of the Heston model.
To do that, first, we need to present the pricing partial differential equation
(PDE) of the Heston model that is derived using the martingale property of
the discounted option price and the dynamics of the Heston model. Hence the
pricing PDE is given by [21],

oV 1,8V PV 1, L0V 8V oo
E+§US wﬁ-p’yuSvmﬁ-iv’y 14 W-H“Sﬁ—&-’y(@—v)%—ﬂ/—o,

where 7 is the interest rate and V is the option price.
Then, the fact that the Heston model is an Markovian affine process, as shown
in [21], is critical in the derivation of the Heston model characteristic func-

tion. Since from [12], we know that for the affine processes, the solutions of the
characteristic function,L p, satisfies the pricing PDE,

aLp 1 &Lp 2Ly 1 o ,?Lp 1 0Lp OLp
ot T2V apz TP epay T2V Hr=gv)gp t10-v)7,

2 ov?
where P(t) = logS(t).

—’I"Lp =0.

Now, under the affinity, the form of the characteristic function is as follows [21],
Lx(u,t,T) = exp(A(u, 7) + B(u, 7)P(t) + C(u, )v(t))

where 7 = T—t. Also, there are some initial conditions like A(u, 0) = 0,B(u, 0) =
iu and C(u,0) = 0 as in [21]. Putting this form inside of the pricing PDE, we
get the following ordinary differential equations (ODEs),

° % =0,
o £ =B(B-1)/2— (y—ywpB)C ++*2C?/2,

° (Zl—f:’yeé—i-r(B—l).
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The solution of these ODEs are also solvable and gives the solution as follows
21],

e B(u,7) = iu,
= __—Dqr .
o C(u,7) = Wg;m(’y — yvpiu — Dy),
—DqT
o r(iu—1)T+ %(’y — yvpiu — D) — %109(%)’

where D1 = /(v — yvpiu)? + (u? + iu)y2v? and g = %. Hence, we

have a solution for the characteristic function of the Heston model.

To derive the characteristic function of the rough Heston model, the microstruc-
tural properties are used in [14]. Thus, we need to give more detail about the
microstructural properties and the asymptotic behaviour of the rough Heston
model. However before going into the derivation, the Mittag-Leffler density
function should be introduced.

The Mittag-Leffler distribution is introduced in Section 4.1. Then, in Section
4.2 a new and proper baseline intensity is derived. After that a modified theory
for the Rough Heston model is introduced in Section 4.3. In Section 4.4 and
Section 4.5 the characteristic functions of the multidimensional Hawkes process
and the Rough Heston model are derived, respectively.

4.1 Mittag-Leffler Distribution

All the information for this section is based on the appendix of [14]. For z € C
and (o, B) € (R%)?, Eq 3, the Mittag-Leffler function is defined:

Zn
Bop(z) =) — .
= T(an + B)
For (a,7) € (0,1) x Ry, the Mittag-Leffler density function is given by
FE(t) = P By o (—tY), t>0,

and the cumulative density function is given by

t
P> = / fo7(s)ds, t>0.
0
Some properties that are important to us can also be shown as:

a, T a-1 a, a —(a+1)
() ~ ——t W) ~ ——t
P e T 0 et

and

0 1

FOY(t) =1—FEq 1 (—t® FOr(t) ~ ————t® 1-F*7(t
(1) =1-Baa(—3), P00 o gt (t
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And for « € (1/2,1), f*7 is square integrable with a Laplace transform where
z>0:

; v
Y (5) =
e =

where the notation . represents the Laplace transform.

4.2 A Proper Choice for the Baseline Intensity

Before starting to derive the characteristic function, a proper baseline intensity
jir, indexed by T > 0, should be formulated which will be useful later on. We
are working with the bidimensional Hawkes process, N7 = (NT-+ NT'~), again
indexed by same 7' > 0, with intensity:

T+ t
i = (o) =) (1) + [ 60 an.
t

To get a rough Heston model, the assumptions made in Section & still apply.
Thus, we can choose Mittag-Leffler functions with heavy-tailed distributions
for the excitation functions in kernel matrix ¢?. Mittag-Leffler functions are
chosen in [14] directly as the excitation functions since it is sufficient to find
functions which are suitable to excitation function properties and it makes the
computations relatively easier.

Definition 4.1(from [14]) There exist § > 0,1/2 < a < 1 and v > 0 such
that
ar =1-7T7%  ¢" =¢"y,

where

L (1B T a,l
= ? =a Y = ’7
X ﬁ+1<1 5) gl =arp, ¢=f

where f®! is the Mittag-Leffler density function.

Examining the behavior of P(X > x) at the limit, where X is a random vari-
able with the Mittag-Leffler distribution, it can be seen that it is a heavy-tailed
distribution. Looking at the given properties of the Mittag-Leffler density in
Definition 4.1, it is known that:

> Q
@ tydt - ————.
oz / 2
Thus, it is trivial that
limmﬁooe’\xP(X > x) = o0,
for every A > 0 which implies that we have a heavy-tailed distribution. With

Definition 4.1, since the two rows of the x are equal, it is now known that
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T+ _ \T,—
ALH = 2T

Now, following [14], we need to show that the intensity process should be a
non-constant Poisson intensity fir(t). Hence, we need to look for the asymp-
totic behavior of the renormalized intensity to provide the projection in our
rough Heston process, because with the given conditions the renormalized in-
tensity behaves like the volatility at the limit.

Since, by definition, E[NT] = ['E

o E[As]ds, the martingale property of the point
process N/ can be defined as:

t
MET Py =M = NT - /Afds,
0

following E[M['] = E[E[M[|Fo]] = E[M{] = 0. Thus, we have,
¢

t
1
AT = i (t) +/ o (t—s)ADTds + T8/, @l (t — s)(dMJF + BdM ™).
0

Let’s define
\I/T — Z(@T)*kv
E>1
where % behaves like introduced in Assumption 3.2. Now a lemma derived from
Wiener-Hopf equations, like in [36], is introduced before going further.

Lemma 4.1 (from [14]) Let g be a measurable locally bounded function from
R to R? and ¢ : R+ — M4(R) be a matriz valued with integrable components
such that S( fo (s)ds) < 1. Then there exists a unique locally bounded function

e from R to R? solution of
t
t +/ o(t —s)e(s)ds, t>0
0

given by

where ¥ =37, <, k.

Then, using Lemma 4.1, we have

t
DT = figp (t)+/ UL (t - s)ar(s ds+— \IJT Y(dMIT 4 BaMl).
0 0

We know that the intensity fir(t) should be of order p; from Assumption 3.4,
meaning that ir — pr, hence T'"%4r — u where pur = p7* ! and 4 is a
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positive constant. And from [19], it is known that the normalization for the
intensity should be

1—a

T T \T,+

C; = A s
Hr

where C}' is the renormalized intensity. Without this normalization, the limit
behavior of the intensity would degenerate. Defining,

BT = /tT LN B &
t \/T(/\Z",+ + 62/\5—), yu(1 + 5)27
we get
1-— t ¢
o = —— " (tT)+ / T(1—ar) T (T(t— ))“le ZACLIP / T(1—az)¥7 (T(t—s))/CTdBY .
0 T 0

In [14], it was shown that,
(1 —ar)TYY(T.) = ar >,

is obtained using the Laplace transform of the Mittag-Leffler density function.
Thus, as a result we have

1-— aT,&T(tT) /t ar fo0 (t— )NT( )d —|—1//t apfeY(t—s) CSTdBZ

0 ur 0

cf =

Since BT would converge to a Brownian motion in the limit (can be seen by
computing its quadratic variation), it is clear that taking fi = pr would mean
that CT in the limit would have an initial value equal to zero since ar — 1.
However, it is also possible to have a nontrivial initial value with a non-constant
intensity (which should be avoided). As a result of a convenient equality from the
proof of Theorem 4.1 and following computations that is presented in Appendix
A, a proper baseline intensity fi7 that would not give an initial value which is
zero and non-trivial is derived in [14]:

fir(t) = pr + fuT(l _1aT (1 - /Ot <PT(5)d3) - /Ot @T(S)d5>,

where £ > 0. It can be rewritten as:

fir(t) = pr + Epur (% /too p(s)ds ++T~ /Ot w(S)dS), (5)

which implies that the baseline intensity is a positive function assuring our
model to be well-defined.
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4.3 A New Theorem for the Rough Heston Model

Since there is a newly defined baseline intensity jir(¢) for the rough Heston
model and more specific kernel matrix defined with Mittag-Lefler functions,
Theorem 3.2 that we got from [13] should be modified. To derive a new theorem,
we need to look at the limiting behavior of the Hawkes process presented in the
previous sections. First, some definitions in [14] for ¢ € [0, 1] are needed:

1—ar 1—ar T Top
XE = NG AT =2t [T 2l =\ [T - )

This leads to:

Theorem 4.1 [14] Within the given kernel matriz and baseline intensity, (AT, X7, ZT)te[OJ]
converges in law under Skorokhod topology to (A, X,Z) as T goes to infinity:

t t 1
1 dB
A:Xz/sts(>, Z:/\/YS( S>,
t L 1 L dB?

where Y is the unique solution of:

— L ! _Sa—l _ s 1+62 L ‘ —Sa_l
V= g | ey | s [t T,

with
B! + 3B?

Jit®

(B, B?) is a bidimensional Brownian motion.

The proof of Theorem 4.1 can be found in [14] and in Appendiz A. This theo-
rem, showing that our Hawkes process has a differentiable limit with a derivative
behaving like a Cox-Ingersoll-Ross process (one of the option pricing processes
that has a behavior similar to Y;) and with a nonzero initial value, states that
the Hawkes process designed is suitable for the limiting volatility we look for.
In [14], a new microscopic price process is defined to get a new modified rough
Heston model:

0 /1— _. 61— 0 0
PL, =\ 5\~ (NG NG~ ENT T = f<ZT’+—ZT»->—XT’+,
2\ pre V- : 2 ple 2 2

for # > 0. For this microscopic price process a corollary using Theorem 4.1 is
derived:

Corollary 4.1 from [14], As T — oo the sequence of processes (Pl., ,)ic[0,1]
converges in law for the Skorokhod topology to

t t
1
Pnew,t = / vV v dWys — 5/ vsds,
0 0
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where v is the unique solution of the rough stochastic differential equation

[ 01 +p2) 1 [*
vy =0 +—/ t—8) Ly (0—v,)ds+ 7—/ t—s)*" 1\ /v dBs,
with (W,B) a correlated bidimensional Brownian motion whose bracket satisfies
1—
AW, B), = ——L_
2(1+ %)

Now, this corollary reflects the parameters of our rough Heston model and will
be used to find the characteristic function of the rough Heston model.

Proof of Corollary 4.1: [14] Using Theorem 4.1, it is trivial to see that the mi-

croscopic price process converges in law under the Skorokhod topology, PZ,, —
Pew as T — oo

t t
Prewt = \/g/ VY (dB! — dB?) — g/ Y,ds.
0 0

Defining v; = 0Y; and dW; = %(dBt1 — dB?), we have

w

t t
1
Prewt :/ VU, dW, — 7/ vsdsS,
0 2 /o
with

o= 0t [ o tao—visiy | S [t s,

and with trivial

AW, B =0,
2(1 + p?2)

. 1 2 1 5
since dW = 4B-—dB” ,1q qB = 48 +8dB°

V2 V1452

4.4 Characteristic Function of the Multidimensional Hawkes
Process

Hawkes and Oakes presented a cluster-based representation of the multidimen-
sional Hawkes process in [24]. This representation and its description with a
population approach is useful to understand how to derive the characteristic
function of the multidimensional Hawkes process.
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The cluster-based representation is shown now. Say N = (N' ..., N9) is a
d-dimensional Hawkes process with intensity:

A

1
t t
n=| | =u+ [ ot san.
d 0
)\t

with ¢ : R, — M9%(R,) is the kernel matrix with the properties given in
the previous sections and p : Ry — Ri. A population approach from [14]
is explanatory for the process. Say there are d types of individuals, and an
individual is a migrant or the child of an other individual. Thus, from time
t=0:

e Migrants of type k € {1,...,d} arrive with a non-homogeneous Poisson
process with rate ().

e From every migrant of type k € {1,...,d}, children of type j € {1,...,d}
are born with a non-homogeneous Poisson process with rate ¢; i (t).

e Again from every child of type k € {1, ...,d}, children of type j € {1,...,d}
are born with a non-homogeneous Poisson process with rate ¢; 5 (¢).

Define N with k € {1,...,d} as the number of people with type k up to time
t. To derive the characteristic function L(a,t) = E[exp(iaNy)] with ¢ > 0 and
a € R, we first define a new population setting inspired by [14]:

e Migrants of type j € {1,...,d} arrive with a non-homogeneous Poisson
process with rate ¢; 1 (t).

e From every migrant of type j € {1,...,d}, children of type [ € {1,...,d}
are born with a non-homogeneous Poisson process with rate ¢ ;(t).

e Again from every child of type j € {1, ...,d}, children of type I € {1, ...,d}
are born with a non-homogeneous Poisson process with rate ¢, ;(t).

Let’s call the corresponding point process of this population setting for a given
ke {1,...d} Ntk’], which is the number of people with type j up to time
t. It is easy to see that this is again a multidimensional Hawkes process with
(¢5.k)1<;<a instead of py since it has the same pattern where the only difference
is the Poisson rate of the migrants. Thus, its characteristic function is given by:

Lk(a,t) =E

eo:p<ia(]\~ff’j)1§j§d>] , t>0, acR%

Following [14], we return to the first population setting, define Nf’k as the
number of migrants of type k arrived up to time ¢. Also define TF < ... < TJ’:{M

t
as the arrival times of these migrants. Thus, the number of descendants with
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different types from a migrant of type k is represented by the second population

setting. Hence:
0,k 7,k,(1)
=N D D N
l<]<d1SlSN9J

where th ’kq’,(jl) are independent increments of (N7*) and also independent of
T

NO = (N°7k)1§k§d. Hence, we have:

E[exp(iaN;)|N°] = exp(ia.N?) H H

1<j<di<i<ND

E €~TP< a(N) kT(al)) < Sd>|N017

which implies
Elexp(iaN;)|N°] = exp(ia.Ny) H H Lj(a,t —T)).
1<j<d1<I< NP
Note that (TF, ~'~7lei,0,k) has the same law with the order statistics built from
iid variables (X7, ..., XNO,k) with density [14],
Mk (3)1595
Jo 1 (s)ds
With that we get:

t -
E[exp(iaN;)|N°] = exp(ia.NY) H (/0 Lj(a,t—s) Mk(s)ds) .

1<5<d fo 1 (s)
Moreover,
ia' ,LLk(S) !
H exp iLj(a,t —s)—4———ds—1 wi(s)ds |.

1<j<d Jo 1 (s)ds 0
It is trivial that

L(a,t) = exp( Z / (€' L;(a,t —s) — 1)/47'(8)6[3). (6)

1<5<d

Hence, from this relationship we can write the same as for the second population
setting:

Ly(a.1) —exp<2/ (6 Ly(a,t — ) = 1)64(5)d ) 7)

1<5<d
Now, define

D(a,t) = (emﬂ'Lj(a,t))lngd.
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As a result, the characteristic function of the multidimensional Hawkes process
is found.

Result [14] Using Equation (6) it is found that

L(a,t) = exp(/o (D(a,t —s) — 1),u(s)ds>,

where, using Equation (7), D:R% x Ry — C¢ is the solution of

D(a,t) = exp (ia + /t o*(s)(D(a,t —s) — 1)ds>
0
where ¢*(s) is the transpose of ¢(s).

4.5 The Characteristic Function of the Rough Heston Model

A generalization of the rough Heston model is given in [14] as

dS; = Sy\/odW,,

= i t — )t — v,)ds L t —8)* Iy o
vto+r(a)/0<t )1 (0 = v,)d +F(a)/0(t Jo 1oy JTadB,.

Now, it is easy to say that the rough Heston model that is found in Corollary
4.1 fits in this generalization. Taking dP; = d(logS;) and applying Ité formula
will give us the equation in Corollary 4.1.

The characteristic function of the rough Heston model is derived following [14].
First, we need to assign:

1-8 L [60+5%)
V2052 (i +8)%

Reminding ourselves from Definition 4.1 that v = (1 — ar)T?, in Section 4.3
we also showed that

V0:€97 p=

0 0
Pl =3 (NG = N5 = =12,
2u . : 2u :

converges in law to Py, in the Corollary 4.1. Define the characteristic function

of the bidimensional Hawkes process N7 as LT ((a,b),u) at time u. Also define
the characteristic function of Py, as Ly(a,uw). Thus, if we have

0 0 0
aJTr —ay | Lo _ alT_za, ap = —a iid -
20 2u 20
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LT ((af,az),tT) converges in law to L,(a,t). In the result of the previous
section the characteristic function for the multidimensional Hawkes process is
found. Hence [14]:

tT

L7 ((a},a7), tT)—exp< | ) (O (0 ). 47 -5)-1) (DT (af ), 4T )~ >)ds>,
0

where

D" ((ag,az).t) = 6$P< (af az) +/0 (D" ((ag,az),t =) = (1, 1))¢T(8)d8>7

with DT = (DT-+ DT:7) € M'*2(C). Then, in [14], a new variable Y7 is
defined:

YT(a7 )= (YT’Jr(a, .),YT’f(a7 D) = DT((a}',a;), 1) :[0,1] — M1X2(D).

Hence,

Y¥(a,t) = ewp( i(at,az) + T/o (YT(a,t —s) — (1, 1))</)T(Ts)ds>, (8)

and,

LT (af,a;,tT) = 6xp</0 (T“(YT’Jr(a,ts)1)+Ta(YT’(a,ts)1))(T1°‘ﬂ(5T))ds>.

Since we derived a proper equation for the baseline intensity in Section 4.2 and
we know from Section 4.2 that ¢ has a heavy-tailed distribution with

[e3 * «
oz /ﬁ ()dtm—_)moif(lfa)

by implementing Equation (5) it is trivial to see that

sT

= u(l + %s‘“(sT)“ /:o ap(u)du) + usyT ™ /OS o(u)du

Ta o0 sT
TV A(sT) = T' " *pp + T “pr (7/ w(U>du+vT‘a/ w(U)dU>
s 0

T

§ —a
Tjoo’“‘<1+ T1—a)’ )

Also T*(Y T (a,t) — (1,1)) converges to the solutions of a Volterra-type equation
which leads to the characteristic function of the rough Heston model. The so-
lution is based on a Taylor expansion of Equation (8), which can be seen in [14]
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and in Appendiz B resulting in the following theorem. Before introducing the
theorem, two definitions are needed to be shown.

Fractional integral of order r, for r € (0, 1], we write [14],

I f(t) = %r)/o (t — )"~ f(s)ds.

Fractional derivative of order r, for r € (0, 1], we write [14],

1 d

De" f(t) = F(l—r)dt/o (t—s)""f(s)ds.

Theorem 4.2 from [14] Consider the rough Heston model with a correlation
between the two Brownian motions p satisfying p € (—1/v/2,1/3/2]. For all
t >0 and fixed a € R, we have

Ly(a,t) = exp(0vIn'h(a,t) + voln'~*h(a,t)),

where h(a,.) is solution of the fractional Riccati equation given by

1 2
De“h(a,t) = 5(—a2—ia)—|—'y(iap1/—1)h(a,s)—|—(’y;) h*(a,s), In'"“h(a,0) =0,
which admits a unique continuous solution.

A curious thing about this theorem is the fact that in the derivation of the char-
acteristic function for the classical Heston Model, the classical Riccati equation
is solved. The difference for the rough Heston Model is the fact that it uses a
fractional Riccati equation instead of the classical one. This means that if we
take a = 1, it will project as the characteristic function of the classical Heston
model.

As a final note, the proof of Theorem 4.2 can be found in Appendiz B.
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5 Numerical Techniques

In this section, several methods that we used for the numerical application of
the option pricing under the rough Heston model will be shown. In Section
5.1, we explain the COS method which we use to derive the option prices using
the characteristic function. In Section 5.2, the fractional Adams Method to
numerically compute the characteristic function of the rough Heston model will
be shown. In Section 5.8 more practical details in order to compute the char-
acteristic function will be shown using the Volterra integral equation. Then, a
modified Monte-Carlo scheme to use as a reference for option pricing is shown
in Section 5.4.

To summarize, the mix of the first three methods are used in the pricing process
of the options. The Monte-Carlo simulation derives a confidence interval to be
used as a reference check for the option prices derived using the other meth-
ods. The Monte-Carlo scheme that is introduced in this thesis is a partly new
approach that is open to improvements.

5.1 The COS Method

For pricing of the European options, the Feynman-Kac Theorem’s version which
is related to the option pricing has a significant place. It is the basis of the
Fourier methods and Monte Carlo methods for the pricing of European options.
Since the COS Method that is going to be described is a Fourier method, we need
to present the risk-neutral valuation formula obtained via the Feynman-Kac
Theorem. As before, S(t) is the asset price at time ¢ and thus P(t) := logS(t)
with P(tg) =z, P(T) = y, where T is the maturity time and V (¢, x) being the
value of a European option:

Vto, x) = e "TE[V(T, y)|F (to)] = 67”/RV(T, y)fp(y)dy,

where 7 is the interest rate and 7 =T —to. fp(y) := fp(to,x;T,y) is the tran-
sition probability density.

The problem with this risk-neutral valuation formula is the fact that the tran-
sition probability density is not known in general. However, the characteristic

function is often known. Moreover, the characteristic function Lp(u) := Lp(u,t)
and the probability density function form a Fourier pair:

Lp(u) = /R e o (y)dy,

fo) = 5= [ € Lot

As an efficient Fourier method, the COS Method introduced in [15] is using this
relationship within the risk-neutral valuation formula for the pricing of vanilla
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options (options with a basic structure like European options). The result of
the derivation of the COS method can be described as:

N—-1 kn
V(to,x) =e "7y ’Re{Lp(b -

k=0

a
ik
a)emp( ik

)}-Hk, (9)

where N, a,b are decided by the user of the method, Hj is called the payoff
coefficient which will be explained and 3. is the sum operator with the first
term weighted by one-half. To get this result, first the risk-neutral valuation
formula’s integration range is truncated to [a,b] € R:

b
Vi(to,2) ~ Vito,z) = e / V(T 9) fr(y)dy.

From Fourier-cosine series, we know that:

o y—a
fe(y) = kZZO’Akcos(/mrb — a),

_ 2 b y—a

Ay = e fp(y)COS(kﬂ'ib_ a)dy.

Then, we define the truncated characteristic function, as

b
Lp(u) = / ¢ £ (y)dy ~ Lp(u).

Now, it is also trivial to see that

Re{Lp(e} = [ costuy +a)fols)dy.

which also applies for the truncated characteristic function. Thus,

_ 2 A km . a
A = P aRe{Lp(b — a)exp(—zkmib — a)}.

Replacing the truncated characteristic function with the actual one, gives us

= 2 km a _
Fp=——— L —ik ~ Ayg.
= aRe{ P e ”b_a>} "

Hence, by replacing A, with F},, and truncating the series summation, we have:

N-1
ZURDY 'Fieos(kri—) ~ fr(y).
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Thus, we can define

b N-1 -
Virlto,2) = " [ V() Y Frcos(in— )
a k=0 “
and
Hy = 2 /bV(T Jeos(kr L —%)d
=g g ) VT weoshry—dy.
resulting in
b—a P
Vir(to,z) = 5 67”};}’@-1{1@-

As a result we have Equation (9) [15]:

N-1
km a
~ —rT / .
V(to,x) = Vi(to,z) =€ ,;:0 Re{Lp(b — a)exp(—zlmrb — a)}.Hk.

One important aspect here is that the payoff coefficient Hy can be derived an-
alytically for vanilla options. Now, we are going to show an example of this
analytical solution for the European options as in [15].

Payoff Coefficient We start with adjusting the log-price setting by defining:

S(T)
T) = log=2
y(T) = log—=,
leading to

1 for a call,

V(T,y) = [a.K(e¥ —1)]T, where a =
—1 for a put,

where [.|T = maxz(.,0).

Now let’s define two functions on an integration range [c, d] C [a, b]:

d p—
Xk(c,d):/ eycos(lmz a)dy,

—a

a
)dy.

d
<pk(c,d)=/ cos(lmrz

From basic calculus these two cosine series coefficients are known in closed form,

[cos(kﬂd_a)ed—cos(kﬂc_ DYeet b sin(ler:Z)ed—

1
xk(e,d) = ———

1+(m)2 b_a b—CL b_a
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b—a

sin(km

cC—a

b—a
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and

[sin(lmd_“) — sin(kmg&2) |22 k#0

cpk(c, d) — b—a km
d—c k=0
Thus, for a < 0 < b:
b —
Hy can = 2 E a/o K(e¥ — 1)cos(k7rl;_ Z)dy
2
=—K b) — b
b_a (Xk(oa ) CPk(O, ))7
and
" —2/01((1 eos(kr ! —%)d
k,put—b_a . e’ )cos ﬂ-b—a Yy
2
= HK(—XH‘% 0) + ¢r(a,0)).

Also, it is trivial to see that for a < b < 0, Hycqu = 0 and for 0 < a < b,
¢ =a,d = b. The reverse of this relationship applies for the put options.

Integration Range Deciding the integration range [a, ] is also an issue that
is affecting the size of the numerical error made using the COS method. We are
not going to show how to decide this range in this thesis in detail since it can be
found in [15]. However there is a simple version to decide the integration range
which is also introduced in [15]:

[a,b] = [-LVT, LVT),

where L € [6,12].

5.2 The Fractional Adams Method

A first step to use the characteristic function of the rough Heston model in the
COS method is finding h(a,t) from Theorem 4.2 which is the solution of the
fractional Riccati equation:

De®h(a,t) = F(a,h(a,t)), In'"*h(a,0) =0,

with )
1
F(a,z) = 5(—a2 —ia) + vy(iapr — 1)x + %x?
To find the solution for this equation numerically we will use the fractional
Adams method presented in [9,10] by Diethelm, Ford and Freed. Following [14],
from the fractional integral given in Section 4.5, we have the following Volterra
equation:

h(a,t) = ﬁ /0 (t — $)°LF(a, h(a, 5))ds.
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Let’s define a regular time grid, (¢x)ren, where ty, = kA, and f(a,t) := F(a, h(a,t)).
Then, we have

1 tht1
O / (trsr — 9)* fa, 5)ds,

with

R tin—t t—t; ,
fla,t) = 22— flat;) + ———f(a,tj1), tE€ [tj,tj), 0<j<k.
tit1 =t ti+1 —t;

Thus, using the trapezoidal rule and well-known techniques from quadrature
theory for the fractional integral, we find the following approximation,

- 1 bet Sjt+1— S $—8; 2
hia.t - tooq—g)o— 1|24t — 2 I I B d
(a,tg+1) (o) /0 (trt1—s) [sjﬂ —, f(a”sj)+sj+1 =, fla,sj1)|ds,

where, with a manipulation of notation,
sp=kA, s€[sj,s541)

and as a straightforward solution of the integral, after messy calculations, we
have [14]:

hatis) = Y ageeaF(a, ha ) + anpa w1 Fa, h(a, teia)),

0<j<k
with
@j i1 = F(fj_m((k —J 42" (k) =20k —j+ D)), 1<5 <k,
Ao
ao,k+1 = m(kaﬂ —(k—a)(k+1)%),
and

Aa
Ak4+1,k+1 = m’

which are derived as the straightforward solutions of the integral.

The problem with this scheme is the fact that it is an implicit scheme. Thus,
as a substitution for the variable causing the implicit scheme, we will employ a
predictor resulting from a Riemann sum [14]:

WP (0, b)) = ﬁ / " (s — ) f(a, 5)ds,

where

fla,t) = f(a,ty), teltti1), 0<j<k
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Following, similarly,

hP(a,tk_H) = Z bj,k+1F(a7}Al(aatj))a
0<j<k

with

[e3%

- Y § a(k—4) < i<k,
bj k+1 F(a—|—1)((k JHD)*=(k—=j)), 0<j<k

Hence, our final scheme turns out to be [14]:

h(a,tern) = Y @i F(a, hla,ty)) + appr i Fa, b (a, tiga)).
0<j<k

5.3 Volterra Integral Equation

After applying the fractional Adams method, in order to find the characteristic
function numerically, inspired by [20], we use the Volterra integral equation.
In [20], it is showed that the fractional differential equation,

De“h(a,t) = F(a,h(a,t)), In*~*h(a,0) =0,

is applicable if and only if it satisfies the Volterra integral equation:

h(a,t) = ﬁ/o (t — ) F(a, h(a, 1))ds.

Hence, inspired by this relationship, it is trivial to see that the fractional deriva-
tive process and fractional integral process have counter effects on the function.
To clarify, In®De“h(a,t) = h(a,t).

The rough Heston characteristic function from Theorem 4.2, has both In'h(a,t)
and In'~%h(a,t) terms inside that need to be solved numerically. Since, we have
a mesh of h(a,t) obtained from the fractional Adams method, the numerical so-
lution of the first term In'h(a,t), which is the classic integral, is trivial. For
the second term, we can use the relationship between the fractional derivative
and fractional integral,

In'*~%h(a,t) = In* De®h(a,t) = In' F(a, h(a,t)).

Since, thanks to fractional Adams method, we have a discretization for h(a,t),
we can easily get a mesh for F'(a, h(a,t)) too. Thus, taking the classical integral
of F(a,h(a,t)) is also trivial. As a result of these, the value of the rough Heston
characteristic function can be computed numerically.

Finally, since the characteristic function of the rough Heston model can be

computed, it is also easy to apply the COS method that is explained in Section
5.1.
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5.4 Monte Carlo Simulation

In order to set a reference confidence interval for the European option prices
computed by the COS method, we apply a Monte-Carlo simulation for the rough
Heston model. To briefly explain Monte-Carlo simulation for option pricing, it
is a process that uses a discretization scheme for the option model dynamics. A
population of stock price results at maturity time, St, can be found with the
simulation. From this stock price values, we can find the payoff values of the
options, e.g. for call options, it is [S — K|T. From Feynman-Kac theorem, we
know that the option value is an expectation of the payoff values, so, by taking
the average of the payoff values we got from the simulations, we can have an
estimation of the option value. However, this result is not constant because of
the randomness in the dynamics. Thus, we prefer to have a confidence interval
for the option values.

For the stock price process of the generalized rough Heston model shown in
Equation (2), a basic discretization scheme is used:

Sit1 < Si + Siv/uiV Atz

where the maturity time T is meshed into N equidistant points implying 7" =
NAt, t; =iAt, Sy, :=S; and vy, := v;. For the dB; term, we use v Atz ; where
21, is a randon number generated from a standard Gaussian distribution.

We are going to present two different discretizations for the volatility process.
The first one is a more sophisticated approach which has a poor performance
in practice. We aim to suggest a starting point for the future research by pre-
senting it. The second discretization is a similar but simpler way which shows
a better performance.

We should remark that the first discretization uses two slightly different ap-
proaches for the different parts of the volatility process. Let’s concentrate on
the first term of the generalization of the rough Heston volatility process in
Equation (2):

1 t
Term; = Ta)/ (t —8)* 1y (0 — vs)ds.
0

For this term, the critical thing to realize is the fact that it has the same structure
as the fractional integral defined in Section 4. Thus, we use a discretization
scheme for the fractional integral inspired by the one shown in [35]. Again, the
same technique based on the trapezoidal rule from the quadrature theory used
in the fractional Adams method is used for this approach too. Let’s define:

ki = 7(9 - Ui)v
then

N
(A
Te?"ml = m ;Cl)iki
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where coefficients c; ; are defined as follows,

(14 a)N® — N 4 (N —1)1+e, i=0,
i =8 (N—i+1)He —2(N -t (N —i-1D*e 0<i<N,
1, i=N.

Now, let’s concentrate on the second term:

1 t
Terms ~ @/ (t — 8)* tyv\/vsdBs.
0

For this term, the same approach we used for the first term can not be used.
The reason behind this is the fact that the second term is a stochastic integral
in which the technique from the quadrature theory would not apply directly.
Thus, a different approach based on the product rule is used. From product
rule, we have the following relationship where I(t) is a real function,

(1) B()) = B)dI(t) + 1(H)dB (),
‘AﬂMB@»:AB@ﬂ@+AZ@M%L

z@mw:AB@m@+Auﬂw@.

Using this relationship, we can write that,
t t
/ (t—8)* 1By = (t —t)* " 'B; + / By(a —1)(t — 5)* 2ds
0 0

= /t By(a —1)(t — 5)* 2ds.
0

Then,
Bs(a—1)

B, = (t—s)

ds,
Using this, it can be written that,

1 ' N YN b t —5)* 2y /o o —1)ds
HMA@ )* v /U.dB, H®A@ )* 2y \/vsBs (o — 1)ds.

Thus,

1 ! a—2 _
@/0 (t — 8)* " “yv\/vsBs(a — 1)ds,

which is now similar to the first term. Hence, we can use the same technique
with the first term now. Let’s define:

l; == yw\/v;Bi(a — 1),

Termso ~
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with B; = B;_1 + 22,2»,1\/&, zo; = pz1;++/1 — p?e and € is a random number
generated by standard Gaussian distribution. Now, due to the different integra-
tion, there are some small changes in the constants of the discretization. After
the proper integration, it can be seen that,

At(x 1
Termsg = F ) ZCZZ i
(o —

where coefficients ¢y ; are defined as follows,

aN*~ 1 — N* 4+ (N - 1)%, i=0,
2= (N—i+1)*=2(N—-9)%+(N—-i—1)% 0<i<N,
1, i=N.

Hence, as a result the first discretization scheme for the volatility process can
be shown to be,

At)~ (At)*?
Ia+2) INa)ala—1)

This discretization is inspired from the fractional Adams method. However, we
neglect the implicit part of the method due to the huge computational cost in
practice. We believe that this might be a good starting point for the future
research.

Viei=Vi+ c1,iki + c2,il;-

One other problem is observed in practice for this discretization. The prob-
lem is that the option prices that we got from this discretization are unstable.
It means that the length of the confidence interval we got for every other simu-
lation fluctuates a lot. The mean of these discretizations also fluctuate. Thus,
we introduce a similar but simpler discretization using the left rectangle rule
instead of the trapezoidal rule. This approach leads to solutions with better
stability.

The only difference between these two discretizations is the coefficients due
to the integration differences. The integration for the left rectangle rule dis-
cretization is the same with the implicit part of the fractional Adams method.
Thus, for the first term of the volatility, we have,

N
(A~
T@Tml = m ; dl,ikh

where
di;=(N-)*=(N—-i—1)%, 0<i<N.

)

Similarly, for the second term, we have,

Ata 1
Termg = a—l de i
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where
dyj=(N—-i)*t - (N—i—-1)*" 0<i<N-1,

s

and
don_1=—1.

Finally, the second discretization scheme for the volatility process is as follows,

(At)*
Ia+1)

(At)a—l
I(a)(a—1)

The second discretization is used for the numerical experiments throughout the
thesis.

Vien =Vi + di,:ki + da il;.

5.4.1 Convergence of the Monte Carlo Simulation

To observe the convergence behavior of the Monte Carlo simulation with the
new scheme that we modified for the rough Heston model, an experiment is
done. This experiment is under the rough Heston model given in Equation (2)
with H = 0.1, and with parameter set:

r=0,~v=0.1, 6 =0.0398, v =0.3647, p = —0.5711, vy = 0.0175, Sy = 100.

In the first part of the experiment, the behavior of the European put option
prices with strike price, K = 100, and maturity time, 7" = 1, for different
numbers of Monte Carlo paths is observed. The European put option prices are
computed as a 95% confidence interval. Hence, the behavior of the upper and
lower limits of the confidence intervals with their mean is observed in Figure 6.
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Figure (6) 95% Confidence interval Monte Carlo simulation convergence
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It is clear that the length of the confidence interval tends to get smaller as
the number of paths increases. At around 10000 paths, we start to get a reason-
able confidence interval which gets better around 120000 paths which however,
gives a huge computational time. In Figure 6, we also see that the mean of the
CI tends to converge around 10000 number of paths.

In Figure 7, we present two more graphs to support our results where one is
observing the length of the confidence interval, while the other is concentrating
on the error of the mean. To calculate the error, we appointed a reference point
by making a simulation with 120000 paths. This simulation gave a 95% confi-
dence interval of [5.4065 — 5.4596] with a mean of 5.4331, which we accepted as
a reference point.

Looking at Figure 7.a, we see the decrease of the confidence interval length
with increasing number of Monte Carlo paths. In Figure 7.b, we see that for
the mean of the confidence interval, even for a small number of paths we get
reasonable errors smaller than 0.03 and increasing the number of paths has a
negligible effect on the amount of error. Since we are using Monte Carlo simula-
tion as a reference in our experiments, we can conclude that if the option price
of our interest is close to the mean of the confidence interval even if we have a
wide confidence interval, then the present option pricing technique is working
well.
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Figure (7) Supporting graphs for MC simulation convergence

In the second part of the experiment, we perform the same experiment but
change the number of time steps instead of the number of Monte Carlo paths.
Hence, under same conditions with the first part of the experiment, we observe
the 95% confidence interval with an increasing number of time steps in Figure
8.
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From Figure 8, we can conclude that after around 4000 time steps, increas-
ing the number of time steps does not have a strong effect on the length of
the confidence interval. Thus, we can say that the number of paths is more
significant in order to narrow down the confidence interval. Again, around 2000
time steps, the mean of the confidence interval tends to converge at a reasonable
amount.

Similar to the first part of the experiment, we have again supporting graphs
in Figure 9. The reference point that is used to calculate the error is also the
same as in the first part of the experiment.

We see in Figure 9.a that there is no convergence or not a regular pattern
for the length of the confidence interval. Thus, it supports our conclusion that
the number of time steps has less significance on narrowing down the confidence
interval. In Figure 9.b, we see that even for a smaller number of time steps,
the error for the mean price of the confidence interval is a sufficiently small
error. Thus, having a large number of time steps does not compensate for the
computational cost of it.

As a result of this experiment, we can say that our simulation is accurate enough
to use as a reference for other experiments, especially in the sense that the width
of the confidence interval is not significant in the case of having close results to
the mean of the confidence interval. Throughout the numerical experiment, it is
observed that the length of the confidence interval is not always narrow. Hence,
as the main method to price the European options, this Monte Carlo simulation
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performs poorly in the way that it has a large computation time in order to
achieve narrower confidence intervals. Thus, the convergence properties of the

simulation need to be improved.
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6 Numerical Experiments

In this section, some numerical experiments will be applied to test the feasibility
of the numerical application. In Section 6.1, the procedure and the results
of an European option pricing experiment is presented. In Section 6.2, some
other numerical experiments that are supporting to the advantages of the rough
Heston model are shown.

6.1 European Option Pricing Experiment

The generalization of the rough Heston model is given in Equation (2). Let’s
first give a parameter set for this version of the model:

r=0.3, y=0.1, § =0.3156, v = 0.331, p = —0.681, vy = 0.0392, Sy = 100,

where 7 is the constant interest rate. The first experiment using these parame-
ters aims to test the COS method and characteristic function that is explained
in the previous sections. We used different values for the o and compared the
results we got from the COS Method and Monte Carlo simulation. The tests
are done in MATLAB version R2019b.

By choosing a as 0.6, 0.99 and 1, we aim to see the differences between the
‘rougher’ rough Heston model, ’smoother’ rough Heston model and classic He-
ston model. Also, we want to observe the transition from the rough Heston
model to the classical Heston model for same parameters except a. We also
show results using a well-established classical Heston model characteristic func-
tion (from https://github.com/LechGrzelak/
QuantFinanceBook/tree/master/MatlabCodes) for the COS method in order
to test the numerical solution of the characteristic function. As a final note,
Monte Carlo simulation is done only for « = 0.6 and o = 0.99 and the results
are given as a 95% confidence interval.

In Table 1, the resulting prices of the experiment of the European call options
with maturity time, T'= 1. K represents the strike price of the option.
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European Call Option with T=1

K a=0.6 a=0.99 a=1 CHeston
MC COS MC COS COS COS

100 6.5393- 6.6198 6.6753- 6.7416 6.7417 6.7402
6.6688 6.7919

80 15.8708- 16.1349 16.0081- 16.2115 16.2116 16.2107
16.1700 16.3038

120 2.0842- 2.0529 2.1013- 2.1383 2.1384 2.1372
2.2267 2.2852
Table (1) European call option prices with maturity time 1




In Table 2, similarly we present the same results for the European put op-
tions with maturity time, T'= 1. Besides these, in Table 3 we present European
call option prices with strike price K = 100 for different maturity times.

European Put Option with T=1

K a=0.6 a=0.99 a=1 CHeston
MC COS MC COS COS COS

100 6.5355- 6.6198 6.7248- 6.7416 6.7417 6.7402
6.7076 6.7959

80 1.2079- 1.3186 1.3219- 1.3951 1.3952 1.3944
1.2879 1.4072

120 16.7991- 16.8692 16.7992- 16.9546 16.9547 16.9535
17.1215 17.0909
Table (2) European put option prices with maturity time 1

European Call Option with K=100

T a=0.6 a=0.99 a=1 CHeston
MC COS MC COS COS COS

0.5 5.1538- 5.2394 5.1589- 5.1971 5.1943 5.1934
5.3105 5.2670

2 7.2003- 7.2846 7.7376- 7.8051 7.8156 7.8134
7.3971 7.9999

5 5.0186- 5.0830 5.9945- 6.0210 6.0453 6.0433
5.2053 6.1218
Table (3) European call option prices with strike price 100

As a result of these tests, we can say that the COS method, with integration
range [-6,6] and number of cosine terms equal to 160, gives good results for
the at-the-money European option prices under the rough Heston model, if we
take the Monte Carlo simulations as our reference. There is also a consistency
between the COS method and Monte Carlo results for different maturity times
too. However, the consistency starts to disappear as we go to different strike
prices.

There is a consistency between the relationship of roughness too, meaning that
as « gets closer to 1, the option price gets closer to the option price under the
classical Heston model. In all cases, « = 0.99 gives similar results to a = 1
as expected and also a = 1 gives reasonably close results to the one with the
classical Heston characteristic function which implies that our approach to solve
characteristic function numerically is also acceptable. This also implies that the
reason for the loss of consistency between the COS method and Monte Carlo re-
sults is due to the poor performance of Monte-Carlo simulations at strike prices
80 and 120.
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6.1.1 Convergence of the COS Method

After the validation of the COS method, we applied a convergence experiment
for the COS method too. This experiment is also consisted of two parts like
the experiment for the convergence of Monte Carlo simulation in Section 5.4.1.
The parameter set for the experiment is:

r=07=15768, 0 =0.0398, v =0.3647, p = —0.5711, vy = 0.0175, Sp = 100.

The price results for this experiment is for put options with H = 0.1, T' =1
and K = 100.

In the first part of the experiment, we observe the convergence of the COS
method with increasing number of the cosine terms shown in Section 5.1. As a
result of this, we obtain a behavior of option price against the number of cosine
terms shown in Figure 10.
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Figure (10) Convergence of the COS method with increasing number of cosine
terms

Looking at Figure 10, we can say that the price of the option tends to
converge before 200 cosine terms. To get in more details with the convergence,
taking the option price result with 2'? cosine terms as reference, we have the
following Table 4:
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N 64 80 120 160 320 640
Abs. || 0.0433 0.0018 0.0046 9.0e-04 0 0
Er-
ror
Table (4) Absolute Error for the COS method with different number of cosine
terms

Table 4 implies that around 160 cosine terms, we have a sufficient conver-
gence for the option prices found with COS method. For the second part of the
experiment we concentrate on the effect of the number of time steps to calcu-
late the characteristic function instead of number of cosine terms. Again, under

same conditions, we obtain Figure 11. Looking at it, we see that around 2000
time steps, it tends to converge.
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Figure (11) Convergence of the COS method with increasing number of time

steps

One important note about the performance of the COS method is the low
computational time. By choosing the number of cosine terms as 160 and the
number of time steps as 2000 (good enough numbers for the convergence), the
price of an European option is computed in between 1 and 1.1 seconds. This
computation is done with MATLAB, using a Laptop PC with 2.20 GHz proces-
sor and 16 GB RAM. Thus, it can be said that the COS method is efficient.
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6.2 Other Numerical Experiments

It is explained in Section 2.2.2 and in [19] that the empirical studies about the
real-life market volatility show that the volatility should be rough. One way
to show this is found in the stylized facts about the implied volatility surface.
For the real market data, the general shape of the implied volatility surface is
observed to be similar for even different parameters. Thus, to show that the
rough Heston European option pricing model fits to the real market behavior
we will present two experiments. One is looking for the implied volatility smile
of the rough Heston model and the other is looking for the behavior of the at-
the-money volatility skew behavior from Fukasawa’s [17] shown in Section 2.2.2.

First, a parameter set for the rough Heston model is defined for these experi-
ments:

r=0,v=2, 0=0.0225 v =02, p=—0.6, vy = 0.0225, Sy = 100.

Then, let’s define log-moneyness, k,

K

k:= log(S—O).

Now, the smile behavior of the Black-Scholes implied volatility, g, of the rough
Heston European option prices under the rough Heston model with o = 0.6 for
different maturity times is shown in Figures 12 a,b:
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Figure (12) Rough Heston model implied volatility smiles

For the second experiment, to get to the Fukasawa’s relationship, we first
need to define the implied volatility at-the-money skew, which is the absolute
value of the partial derivative of the implied volatility to the log-moneyness
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when the log-moneyness is equal to zero. Hence, the ATM skew is given by:

9
8/€UBS

k=0

Thus, again using the European option prices under the rough Heston model

with a = 0.6 and under the classical Heston model, we find the behavior shown
in the graph in Figure 15.
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Figure (13) At-the-money skew behavior with changing maturity

As a result, observing Figure 12 and 13, European option prices achieved
by the COS method give a consistent result with the rough volatility behavior

described in Gatheral et. al.’s [19], implying that the behavior of the rough
Heston model is also consistent with the real-life market data.
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7 Calibration

In this section, the calibration process applied for the rough Heston model Euro-
pean option pricing is explained. In Section 7.1, a brief introduction to the cal-
ibration process in general is presented. In Section 7.2, the calibration method
that we used, ANNs, are shown. In Section 7.3, the optimization methods that
we used for the calibration is explained. Finally, in Section 7.4, the numerical
results of the calibration process is presented.

7.1 A Brief Introduction to Calibration Procedure

One essential problem with the financial option pricing models is the fact that
the model parameters that should be fitted to the real market option prices are
unknown. The calibration procedure is the stage of the option pricing process
that aims to solve this problem. It is a procedure which aims to estimate the
model parameters with the available market option prices. Sometimes instead
of the option prices, the related implied volatilities are used as the market data
for the calibration procedure [31]. We use both as an output, but we are going
to concentrate on the option prices in this section. The only change is the usage
of implied volatility instead of the option prices as the output.

The market option prices can be seen as functions of specific log-moneyness, k,
and time to maturity, 7 = T — ¢, and is denoted as V*(r, k), whereas the model
option price is denoted as V (7, k,©) with © being the parameter vector. For
the rough Heston model, we have the model parameters, © = [r, vg, p, 0,7, v, a].

The calibration procedure can be seen as an optimization problem where the dis-
tance between the market option price, V*(7, k), and the model option prices,
V(7,k,0) is minimized. Thus, we need an error measure first. In [31], the
difference between these two prices is used as an error measure given by,

e :=||V*(r,k) = V(r,k,0)|[, i=1,.,N,

where N is the number of available market data that is used for the calibration
procedure and [|.|| is a measure of distance. Thus, following [31], the total
difference is measured using a target function given by,

N
J(©) =Y wie; + A0,
=1

where w; is the weight, A is the regularization parameter. One example for the
target function is the mean squared error which is the case with w; = 1/N, the
measure of distance is ||.]|2 and A = 0. For the calibration procedure for option
pricing models, in general the weights of the at the money options are higher
since they are more liquid in the market [31].
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As a result, the calibration procedure is a minimization problem as follows,

argmin J(©

IEekn 2

with solutions giving the optimal parameter values that are minimizing the total
difference between the market data and model option prices. This is an over-
determined problem since N > n, so this problem is generally solved iteratively
until a stopping criterion is met [31].

7.2 Artificial Neural Networks

Machine learning is becoming a popular approach as a computational tool.
Thus, we used a machine learning based approach for solving the optimiza-
tion problem of the calibration procedure. Following [31] and [32], Artificial
Neural Networks (ANN) which are used to determine the optimal parameter
values for the rough Heston model are presented in this section.

Let’s first give a brief summary of the calibration procedure using ANNs step
by step [31]:

e Generate a data set for the input parameters for the financial model,

e Using the option pricing model compute the corresponding option prices
which are the output,

e With this data set train the ANNs, this is called the training phase,
e Evaluate the performance of the ANN, this is called the prediction phase,

e Using the market data as the input and doing a backwards pass with the
ANN, estimate model parameters, this is called the calibration phase.

In a standard ANN structure, there are three main components which are
the layers, neurons and the architecture of the network. The architecture de-
termines how the layers are located, and the layers consist of multiple neurons.
Throughout the training process, the weights and biases assigned to a neuron
are modified which made them ’learnable’. Thus, a neuron is the fundamental
unit of the ANN [32].

The layers are ordered one by one, and the adjacent layers are connected to
pass a signal. Thus, the output signal of a previous layer is the input signal for
the next one. There are an input layer, some hidden layers (might be one) and
an output layer, in which the signal may circuit in a cyclic or recurrent way [32].

The simplest version of the ANN is the multi-layer perceptron (MLP). A MLP
has at least three layers which are the input layer, the hidden layer and the
output layer. In our case, there are the rough Heston model parameters in the
input parameter, and the output signal of the output layer is the option price
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or the corresponding implied volatility. The parameter set of a MLP is defined
as,

C_)/ - (W13317W27BQ7 "'7WNvBN)a

where W; is the weight matrix and B; is the bias vector of the i-th layer and N
is the number of layers [32]. Thus, if we call the input of the ANN as z, and
the output of the ANN as y, we have the following function,

y(x) = F(x]0).

Now, we need to show what happens inside of a neuron. Let’s call the output
signal of the i-th neuron in the n-th layer as z*. Thus, we have the following

equation,
2 =" ( Z w?iz?_l + b?),
J

where w7; and b;" are the corresponding weight and bias in the weight matrix
and bias vector, and ¢(.) is called the activation function [32]. When n = 0,
we have the input layer and n = N, we have the output layer, otherwise we
are at the hidden layers. The aim of having an activation function is adding
non-linearity to the ANN and some examples of the activation function function
are as follows [32],

e Sigmoid, ¢(x) = 1—5-%’

e ReLu, ¢(z) = maz(x,0),
e Leaky ReLu, ¢(z) = max(z,ax), 0<a < 1.

An illustration of the neuron explained above is shown in Figure 14 [32].
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Figure (14) Neuron illustration
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An example of the MLP is the one with single hidden layer. The formula
for such MLP is given by,

Y= @2(2jwfz} —|—b2),
= (S w0,

and the illustration for this MLP can be seen in Figure 15 [32].
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Figure (15) An example of MLP

There are two main phases for the calibration using ANNs. The first phase
is called the forward pass in which the solution is learned, the second phase is
called the backward pass in which the calibration takes place.

7.2.1 The Forward Pass

The training and the prediction phases are done in the forward pass. In this
pass, the numerical method (the COS method in our case) that is used to price
the options is learned by the ANN. The learning is done with the optimization of
the MLP architecture, which is deriving optimal weights and biases, that gives a
mapping from the input to the output according to the numerical method that
is used [31].

To be more specific, we use the COS method to derive European option prices
from the rough Heston parameters. ANN also learns to derive the option prices
from the same rough Heston parameters using the learning methodology which
is called the rough-Heston-ANN. Besides, instead of option prices, we may use
the Black-Scholes implied volatilities as an output. We use Brent’s method to
derive the implied volatilities from the option prices, thus the ANN also learns
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Figure (16) Trainable layers for the training and calibration phase [31]

the Brent algorithm which is called IV-ANN. When, we use the implied volatil-
ities as the output in the calibration, we merge rough-Heston-ANN with the
IV-ANN to use one ANN instead of two seperate ANNs. This is called rough-
Heston-IV-ANN.

7.2.2 The Backward Pass

Until this section, we concentrated on the optimization of the ANN parameters
like the weights and the bias inside the neurons. Since we are doing the calibra-
tion phase in this pass, the parameters that are optimized are the parameters of
the rough Heston model. The corresponding objective function is the error mea-
sure between the market option prices and the model option prices (or implied
volatilities instead of option prices) [31]. Hence, again, we need an optimization
scheme for this pass.

During the training phase of the forward pass, the hidden layers are optimized
to train the ANN to give an optimal output for the corresponding input. In the
prediction phase, the hidden layers of the ANN are frozen, since this phase is
to evaluate the performance of the ANN [31].

During the calibration phase, the hidden layers are again frozen, but the in-
put layer becomes the learnable layer as can be seen in Figure 16. The hidden
layers are already trained in the forward pass, thus to get the optimal rough
Heston parameters, the input layer should be trained. As a result, from the out-
put (option prices or implied volatilities), we may get an optimal set of rough
Heston parameters in this phase. It should also be noted that the training
phase is computationally expensive, but done only once and off-line, whereas,
the calibration phase is computationally cheap and done on-line [31].
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7.3 Optimization

Both in the training phase and the calibration phase, optimization plays a sig-
nificant role for the ANNs. However, the training phase and the calibration
phase have different objectives and requirements, thus we are using different
optimization methods for both phases. For the training phase, Stochastic Gra-
dient Descent is used as an optimization method, whereas, for the calibration
phase the global optimizer Differential Evolution is used.

7.3.1 Stochastic Gradient Descent

In the training phase of the ANN, we have a high-dimensional, non-convex op-
timization problem due to the large numbers of weights in the neurons that
need to be optimized. Thus, Stochastic Gradient Descent is a popular choice
for the training phase of the ANN. We do not need a global optimum for this
phase, since it is enough to get a sufficiently low cost function value. Thus, a
high-quality local minima is not problematic.

In the Stochastic Gradient Descent algorithm, the optimization is done with
[31,32],

W+ W@
— 77(7’) 8W7
X ) oL
(i+1) (1) _ (22
b «—b n(1) R

for i=0,1, ..., N,

where L is the loss function (distance measure between the target value and
the output), 7 is called the learning rate and Np is the number of training
iterations. Using this algorithm, the optimal values for the weights W and
biases b are computed. Also, we need to note that there are different versions
of the Stochastic Gradient Descent, e.g., RMSprop and Adam [31].

7.3.2 Differential Evolution

Differential Evolution is an optimization process which gives a global optimum.
This is important for the calibration phase, since a specific set of parameters is
the objective of the calibration. There is no requirement for the specific initial
values, and the algorithm is population based without any derivatives [31].

There are four steps in the algorithm of Differential Evolution that we used [31]:

1. Initialization: Determine a lower and upper bound for the rough Heston
parameters. Then, generate a population with Np parameter vectors with
random positions between the lower and upper bounds,

(@1, @2, ceny @NP).
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2. Mutation: After initialization, a mutant candidate ©/ is derived for every
parameter vector as follows,

0, =0, + F.(6, — 0,),

where ©; is the i-th candidate, ©, and O, are randomly picked from the
population and ©, is the best candidate from the previous population.
F € [0, 0] is called the differential weight and it is used to determine the
step size of the evolution. Thus, large F' provides a larger search radius,
but it may give rise to slow convergence. The mutant candidates are called
the donor candidates and they create a new intermediate population.

3. Crossover: In this stage, a random pick of the mutated candidates that are
allowed in the next stage is chosen. For every ¢ € {0,1,..., Np} a random
probability, p; is used. Also, a crossover probability, Cr, is determined.
Then,

6/_/ _ {927 Di S CT?

©,;, otherwise.

If a donor candidate has a probability larger than crossover probability,
then it will be eliminated.

4. Selection: The left donor candidate, ©}, after the crossover stage, is com-
pared with the initial ©; according to their performances for the objective
function. Hence, if the donor candidate has an improved performance,
then ©; <— ©/ for the next generation.

The stages 2-4 are repeated creating new generations, until a pre-decided stop-

ping criterion is satisfied.

7.4 Numerical Results

Before showing the numerical results for the calibration procedure, the settings
used for the ANN method is presented.
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7.4.1 Calibration Settings

ANN Parameters Value Range Generating Method
m = K/S [0.6, 1.4] LHS
Time to maturity, 7 | [0.05, 3.0](year) LHS
r [0.0, 0.10] LHS
p [-0.90, 0.0] LHS
ANN Input 0 (0.01, 3.0] LHS
v (0.01, 1.0] LHS
0 (0.15, 0.50] LHS
13 (0.5, 1.0] LHS
@ (0.5, 1.0) LHS
ANN Output | European put price, V (0,0.6) COS
Table (5) Sampling range for the rough-Heston parameters; LHS means Latin

Hypercube Sampling, COS stands for the COS method.

Parameters Setting
Hidden layers 4
Neurons(each layer) 200
Activation ReLu
Optimizer Adam
Table (6) The configuration of the ANN.
Parameter Setting
Population size 60
Mutation Strategy Best candidate
Mutation (0.5, 1.0)
Crossover recombination 0.7
Convergence tolerance 0.01

Table (7)

The objective function used for rough Hesto
J(©)

From some initial experiments done by only

The setting of DE

n calibration is:

Z(VANN - VMark:et)2

calibrating 4 parameters (£, v and

r are fixed), some important conclusions that may be useful for future research

is presented:
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e There are some cases with multiple solutions. That is because movements
of two different parameters may have similar effects on the option price.
Thus, there may not be a global minimum over some error threshold.

e 0 is the most sensitive parameter, so it tends to dominate the calibration
accuracy.

e « is more sensitive than v and p.

e The effect of p to the option price is limited. Thus, a change in p has
small changes on the option price.

7.4.2 Calibration Test

To evaluate the performance of the ANN calibration for the rough Heston model,
we performed a test of ANN calibration with the rough-Heston-ANN and com-
pared its performance with a calibration process directly using the Differential
Evolution algorithm (which we call MATLAB-DE). This test is done using the
European option prices, not implied volatilities.

Since the aim of this test is evaluating the performance of the ANN calibration,
instead of real market option price data, we used a set of option prices derived
from the COS method for a pre-determined parameter set for every other case
and assigned them as the market prices. The parameter set is [y,0, v, p, &, a.

The market option prices are derived from these parameters for different m =
K/Sp, T and interest rate values. Thus, the result of the calibration procedure
is estimations of these six parameters. After performing 729 calibration cases,
the following results are achieved. The average calibration time for this test is
0.6055 seconds.

Parameter | Average Deviation from the Market Value
Y 0.2091
0 0.0199
v 0.1416
p 0.1038
13 0.0636
o} 0.0721

Table (8) Average deviation of the calibrated parameters from the pre-
determined market parameter

Now, we are going to examine only one specific case of these calibration
cases. The parameter set is:

v=0.2,6=0.15 v=03, p=—0.75, £ = 0.6, a = 0.7.
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The calibration process took 0.4562 seconds for this case and gave the following

results:
Parameter | Market value | Calibration Result | Absolute Difference
y 0.2 0.5672 0.3672
0 0.15 0.1123 0.0377
v 0.3 0.1298 0.1702
p -0.75 -0.5037 0.2463
¢ 0.6 0.7982 0.1982
« 0.7 0.7786 0.0786

Table (9) Calibrated parameters of one specific case.

The results in Table 8§ and Table 9 agrees with the conclusions we got from
the initial experiments. It can be seen that the calibrated parameters are not
perfect fit for the pre-determined market parameters. However, the important
thing is the performance of the calibrated parameters in computing the op-
tion prices. Thus, we need to compare the option prices resulting from the
pre-determined market parameters with the option prices resulting from the
calibrated parameters. Hence, the option prices for different 7, m = K/Sy and
interest rate values are computed for both of the parameter sets. For every
other 25 different cases, the absolute difference between the market and model
option prices is smaller than 5e — 4. This results in Figure 17.

020

Model Prices

o
S

DlIIS ] iD 0 iS 0 }D 0 }5
Market Prices

Figure (17) Option price comparison for pre-determined market parameters
and calibrated parameters. They are called market prices and model prices,
respectively.

The same calibration process is also done using directly the Differential Evo-
lution algorithm (MATLAB-DE) instead of the rough-Heston-ANN to evaluate
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the rough-Heston-ANN’s performance. The Differential Evolution algorithm is
applied in the MATLAB-DE as it is explained in Section 7.3.2. Only for the
mutation strategy, instead of the using the best initial parameter, a random
parameter is used, since this strategy gives better convergence. The time of the
calibration process using the MATLAB-DE algorithm varies from 6 to 10 hours
for the rough Heston parameters. This specific case took around 8.5 hours and
gave the following results:

Parameter | Market value | Calibration Result | Absolute Difference
ol 0.2 0.2611 0.0611
0 0.15 0.1504 0.0004
v 0.3 0.6890 0.3890
p -0.75 -0.2729 0.4771
¢ 0.6 0.6009 0.0009
e 0.7 0.5991 0.1009
Table (10) Calibration with Differential Evolution algorithm.

Looking at Table 10, it can be seen that even though for parameters -, 6 and
¢, the calibration is a good fit, for general, there is not a significant difference in
the accuracy comparing to the rough-Heston-ANN. Similar to what we do with
ANN calibration, the option prices for different cases are computed. Again the
difference of market and model option prices for every other case is smaller than
5e — 4, and Figure 18 is got.
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o
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Market Price

Figure (18) Option price comparison for pre-determined market parameters
and calibrated parameters with Differential Evolution.

According to these results, there is not a significant change between the cal-
ibration accuracy of the rough-Heston-ANN and the MATLAB-DE algorithm.
However, there is a huge difference between their computational times, which
implies that using ANN method instead of using directly the Differential Evolu-
tion algorithm for the rough Heston parameter calibration is more advantageous.
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7.4.3 Implied Volatility Behavior

In Section 6.2, the implied volatility behavior of the rough Heston model is ex-
amined. It is observed that the implied volatility behavior of the rough Heston
model is consistent with the market implied volatility behavior. In this section,
this result is going to be tested with calibrated parameters from the real mar-
ket data. For the calibration, DAX option prices of July 22, 2020 (taken from
eurexchange.com/exchange-en/markets/idx/dax/DAX-Options-139884) are used.

First, the implied volatility smile behaviors of the market and the rough Heston
model are compared for different maturity times. The model values are com-
puted using the calibrated parameters from the rough-Heston-ANN algorithm.
The results are presented in Figure 19.
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Figure (19) Market vs. Model implied volatility smiles using the rough Heston-
ANN calibration

In Figure 19, we can see that the calibrated parameters of the rough Heston
model is able to generate a reasonable fit for the smile behavior of the market
implied volatility.

For Figure 19, the parameters are calibrated with the rough-Heston-ANN algo-

rithm. We also produce the same results for the parameter calibration with the
rough-Heston-IV-ANN in Figure 20.
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Figure (20) Market vs. Model implied volatility smiles with calibration based
on implied volatility data.

Looking at Figure 19 and Figure 20, we see that the implied volatility values
of the rough-Heston-ANN calibration is a better fit numerically. Also, especially
for T = 0.42 and T = 0.92, the shape of the smile for the rough-Heston-ANN
case is better at reflecting the behavior of the market values. Thus, it can
be said that the rough-Heston-ANN calibration outperforms rough-Heston-IV-
ANN calibration for the DAX data we use. Thus, we continue to use the rough-
Heston-ANN calibration for the next results.

The second critical market implied volatility behavior is the ATM skew be-
havior that is explained in Section 6.2. The comparison of the market ATM
skew and the rough Heston model ATM skew is presented in Figure 21. From
this comparison, it can be seen that both the market data and the rough Heston
model under calibrated parameters show the expected ATM skew behavior. The
rough Heston model also generates a reasonable fit for the DAX market ATM
implied volatility skew.
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Figure (21) At-the-money skew of Market vs. Model.

Under the same calibration, by fixing other calibrated parameters and chang-
ing only «, we aim to show the effect of different o values on the ATM skew
behavior. For the DAX option prices, the calibrated alpha is relatively close to
1. In Figure 22, we present the behavior of the case with « close to 0.5 (the
'rougher’ case) and the case with a = 1 (the classical Heston model case).
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Figure (22) At-the-money skew behavior for different « values.
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From Figure 22, we see that for larger maturity times the effect of « is
limited. However, the critical advantage of the 'rougher’ case can be seen for
small maturity times. Even though, the ATM skew for the classical Heston is
numerically more close to the market ATM skew (this is due to the fact that the
calibrated « is closer to 1), both the market ATM skew and the rough Heston
ATM skew tends to go higher, while the classical Heston ATM skew tends to
converge around 0.8. As explained in [19], we see the tendency to go to infinity
as maturity time goes to zero for the average market ATM skew. Hence, the
rough Heston model is more advantageous compared to the classical Heston
at reflecting this property of the average market ATM implied volatility skew
behavior.
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8 Conclusion

Proposing an alternative method to price European options under the rough
volatility model called the rough Heston model is the main purpose in this the-
sis. The COS method introduced in [15] is a Fourier-based pricing method that
uses essentially the characteristic function of the option pricing model. The
rough Heston model is an option pricing model based on the properties of the
micro-interactions of the electronic trading market as shown in [13] and its char-
acteristic function is derived in [14]. Hence, the COS method is a good fit for
the option pricing under the rough Heston model and an efficient and accurate
European option pricing process is constructed throughout this thesis.

In Section 6.1, an experiment evaluating the performance of the COS method
European option pricing process that is proposed in this thesis is done. The
numerical techniques presented in Section 5.1, 5.2 and 5.3, is used for this ex-
periment. The performance of the COS method under the rough Heston model
is tested for different roughness levels of the volatility, for both put and call
options, for different maturity times and for different strike prices. As a result
of this experiment, it is showed that the pricing process gives coherent and ac-
curate results with reasonable time costs. Also, an experiment to evaluate the
convergence properties is performed. It is observed that within this reasonable
time costs, the COS method pricing results tend to converge. Hence, as a re-
sult of these experiments, it can be said that the COS method is a promising
alternative for European option pricing under the rough Heston model.

Besides the COS method, a Monte-Carlo scheme is also proposed in Section
5.4. The aim of this Monte-Carlo scheme is to derive a confidence interval for
European option prices under the rough Heston model that is going to be used
as a reference to evaluate the accuracy of the other pricing methods, e.g. the
COS method. It is showed that it has a good enough accuracy and convergence
property to use as a reference, especially for ATM options. However, a loss of ac-
curacy is also observed for different strike price values and it is computationally
expensive to get a narrow confidence interval. Thus, it is open to improvements.

The rough volatility models are complex and harder to work on, but they have
some better qualities over other option pricing models as explained in Section 2.
First, the real market data for option prices implies that the volatility behavior
is rough [19]. Also, as shown in Section 2.2, the implied volatility behavior
of the rough volatility models has a great resemblance to the market implied
volatility behavior. Hence, it can be said that the rough volatility models tend
to reflect the real market behavior. In Section 6.2, another experiment is per-
formed in order to examine if the rough Heston model shows the rough volatility
properties under the COS method pricing proposed in this thesis. As a result
of this experiment, the desirable market behavior of the rough volatility models
resembling the market behavior is achieved.
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Finally in Section 7, it is showed that using Artifical Neural Networks for the
calibration of the rough Heston model parameters is a preferable method. It
is a computationally cheap method after the learning process and it has also
a good accuracy for the calibrated parameters. Performing the calibration for
DAX market option prices, it is also showed that the rough Heston model op-
tion prices has a consistent implied volatility behavior with the market option
prices.

8.1 Further Research

In this section some further research is recommended for the option pricing
under the rough Heston model.

1. This thesis concentrates only on the Furopean option pricing under the
rough Heston model using the COS method. However, pricing of the other
type of options, e.g. American options, Asian options, exotic options, etc.
for the COS method may be performed in the future. The pricing process
for these type of options are not trivial.

2. The pricing PDE of the rough Heston model can be derived. Introducing
option pricing methods based on the PDE of the model for the rough
Heston model have a potential to increase the accuracy and efficiency of
the option pricing under the rough Heston model.

3. The mathematical background of the Monte-Carlo scheme proposed in
this thesis should be examined more. As a result of that, the convergence
behavior could be understood better or a modified version of the Monte-
Carlo scheme can be proposed. This new scheme may be a more robust
and stable version with better convergence properties.

4. Besides of the Monte Carlo scheme proposed in this thesis, a whole new
and better Monte-Carlo scheme can be proposed. Throughout the research
for the thesis, it is seen that there is a lack of research on the option pricing
models for the rough Heston model. Our intention was to use an already
proposed Monte Carlo scheme for this thesis, but it could not be found.
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Appendices

Appendix A Proof of Theorem 4.1

For the proof of Theorem 4.1, we follow the proof that is presented in [14]. First,
the C-tightness (C for space of continuous functions) of (X7, AT, Z7T) that are
defined in Section 4.8 is shown. Then, we look at the convergence of X7 and
VA

A.1 C-Tightness of (X7 AT ZT)

We know that,

t 1 t
A?’Jr = )\57_ = ﬂT(t)—F/ \PT(t—S)ﬂT(S)dS—Fm/ \IJT(t—S)(dMZ’++BdME’7)7
0 0

with M/ being the martingale defined in Section 4.2. Using the fact that M7T
is a martingale and fo(f *xg) = (fo f) * g, we see that

T T t s
E[NTH] = E[NT] = IE[/ AT+ ds) = / [LT(S)ds+/ \I'T(t—s)(/ iz (u)du)ds.
0 0 0 0
We can also show that
oo o0 TOL
[T @ds =14 Y [T = S en) = T
0 k>170 k>0 v
and we know that [ is a positive function, thus,

Toz+1

Bvi < | " r(s)ds(1 + | v < | ()i

0

From the definition of the baseline intensity, it is trivial to see that
1
/ fir(Ts)ds < T 1,
0

with ¢ being a positive constant. Thus, E[N2 "] < ¢I2 and,
EX{]=E[A]] <e

for each component. Also, we should note that every component is increasing,
thus have the same behavior in the context of tightness. The size of the max-
imum jump for both X7 and AT is 1;;’5, which goes to zero. As a result of
these, it can be stated that X7 and AT have C-tightness property.

For Z7, we know that,
(27,27 = diag(A"),
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which implies that Z7 is C-tight.

It is also important to show that, since,

1—a/T T

XI;T —AIT = TaM tT»

by definition. From Doob’s inequality we can show that,

E[sup| X{ — AT ?] < I *“E[MF]?.
te0,1]

Thus, using [MT, MT] = NT, it is easy to see that,

E[sup| X} — AT|?] < cT™*E[NE] < ¢T 2.
te[0,1]

As a result, we see that X/ — A7 has a uniform convergence to zero in prob-
ability. One other important note is that, as explained in [14], (X, Z) being a
possible limit of (X7, ZT), Z is a continuous martingale with [Z, Z] = diag(X).

We conclude this section with the following proposition.
Proposition A.1: The sequence (X7, AT, ZT) is C-tight with

sup [[Af = X[I| = 0,
tefo,1] T— 00

in probability. Also Z is a continuous martingale with [Z,Z] = diag(X).

A.2 Convergence of X7 and Z7

Before going into the convergence, we first show that, since,

AT’+ — AT’_
b
and,
sup [|A] — X[ = 0,
te[0,1] T—o0
we have,
T, T,—
sup || X, +—Xt | — o0
tefo,1] T— o0

This implies that the convergence X of X7'* is also the convergence of X7~

Now, we first look into a convenient equality that can be checked using Lemma
4.1. Tt is also important to note that fip is considered unknown for now. The
equality is,

t
M@+/W”F®M@%=w+wT
0 1—ar

+ a1 —g)/o Wt — )ds.
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Using convolution with ¢ for both sides of the equality and using the fact that
U7 % o7 = UT — T the left hand side of the equality becomes as follows,

t . T t s T A T
/o fr(s)p (t—s)ds+/0 /0 U (s — u)jr(u)dup’ (t — s)ds
= [ (o) - s+ [ (U= ) = ¢ = w))ir ()
0 0

= [T oo

The right hand side becomes,

[ €=t €= s (-6 [ o= [0~ w)duds

l—CLT

= (ur + Epr——) / ST (t — s)ds + pr(1 — €) / (W7 (¢ — u) — 7 (t — u))du.

1—aT

As a result, the equality becomes,

/Ot Ul (t—s)ip(s)ds = pré(1+ )/Ot ot (t—s)ds+urp(1-£) /Ot Ul (t—s)ds.

17£LT

Thus, the only possible solution for the baseline intensity jir is,

jir(t) = e+ €gur (= (1= /0 T (s)as) - /0 T (s)ds).

Now, we can apply the baseline intensity to )\;‘F’Jr from Section 4.2 as follows,

t 1 t
A?*:uTﬂLT/ \I/T(t—s)ds—l—ﬁpLT(l —/ W (t— s)ds)+
0 —ar 0

1

t
T _ T,+ T,—
75"‘1/0 WT (¢ — s)(dMT 4 BdMT).

Then, using Fubini’s theorem with the fact that fo(f *g) = (fo f) = g, we have,

t t t
/ N Fds = prt + MT/ UL (t — s)sds + fuT( G / Tt — s)sds)+
0 0 1-— ar 0

1

t
T T, T,—

Moreover, for ¢ € [0, 1], we have the following decomposition,

AT =T 4+ Ty + T3,
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where,
T1 = (1 — at)t,

T = /Ot T —ap)¥T(T(t — s))sds + f(t —T(1—ar) /t T (T(t - s))sds),

0
and,

Ty = t—s))(ZIF + pzT7)ds

WL = / T(1 - ar)u” (T

We know that,
T(1—ar)¥(T.) =apf",

then we can see that,

T / FO(t — s)sds + £( tf/ FE(t — s)sds),
T~>oo
and,

T, (t—8)(ZF + B2 )ds

— ;/ f‘l"\/
T—oo \/yu(l+ B)? Jo

Therefore, using Proposition A.1, we have,

t
/ FOY(t—s)sds+£(t / fOY(t—s)sds)+ / [ (t—s)(ZF+BZ] )ds

w/ 1+5

Similarly with theorem 3.2 in [27], we know that,

t
Xt:/ )/Sdsa
0

W/f

with Y satisfying,

Y, = F*7(t) + (1 — F* (1)) + s)(dZf + pdz;).

From Proposition A.1, we have,

[Z,Z]zfotmsG D),

and we know the existence of the bidimensional Brownian motion (B!, B?) with,

t t
Z5 = / VYdBL,  Z7 = / VY. dB2.
0 0
Hence, we define the Brownian motion B as follows,
_ B'+pB?
VI+BE

Finally, Y; satisfies,

_ na, a, 1+62 a,
Vo= P00 +60 - P 0) + /f (t — 5)y/VadB,.
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A.3 Final part of the proof
In [14], there is the following proposition with its proof in [13].

Proposition A.2: Let v,v,0 and Vi be positive constants, o € [1/2,1] and
B be a Brownian motion. The process V' is a solution of the following fractional
stochastic differential equation:

v = vo(1 = FO (1)) + 0F* (1) + v / ' F () dB,,
0

if and only if it is a solution of

1 t o=l g — b t — ) o
vt:vo—l—m/o (t—8)*""~(0 vs)ds+r(a)/0(t )T v usd Bs.

Furthermore, both equations admit a unique strong solution.

Thus, combining this proposition with the convergence of X”, Z7 and Propo-
sition A.1, we prove Theorem 4.1.

83



Appendix B Proof of Theorem 4.2

The proof of Theorem 4.2 follows the proof in [14]. The proof is done for

€ [0, 1], but it can be extended for any ¢ > 0. In this proof, first the process
YT (a,t) — (1,1) is controlled, then the convergence of this process is showed,
and finally the proof is finished with some last steps.

We are not going to show the controlling process in this thesis, because the
flow of the proof is not relevant for us. But, the resulting proposition of this
step will be presented.

Proposition B.1: For any t € [0,1],
YT (a,t) = (1,1)]] < e(a),

where c(a) is a positive constant independent from t and T.

B.1 Convergence of T%(Y 7T (a,t) — (1,1))

Before going into the convergence, let’s define x = %. It is known that the
complex logarithm is analytic on the set C/R~, then there exists ¢ > 0 such

that for any z € C with |z] < 1/2,

1
[log(14+2) —x + §x2| < clz|?.

Therefore, we have the following,

1

log(YT(a,t)) = YT (a,t) — (1,1) 2(YT(a,t) —(1,1))* = eT(a, 1),

with |7 (a,t)| < c(a)T—3*. Moreover, we may have |Y7(a,t) — 1| < 1 and

|YT-~(a,t)—1| < & for large enough T from Proposition B.1. Also, we can write
that,

i(a;, ar)+ T/o (YT (a,t —s) — (1,1))¢T (T's)ds

<cl@)T™ — 0.

T—o0

Now,

log(exp(i(a}, ar)+ T/Ot(YT(a,t —-s)— (1, 1))¢T(Ts)ds)),

is equal to

i(at,az) + T/O (YT(ayt — 5) — (1,1))6T (T's)ds,
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since for large enough T, the imaginary part of this expression has a norm
smaller than 7. Hence, following from the Equation (8),

Y¥(a,t) - (1,1) = %(YT(a, t) — (1,1))% + &7 (a, t) + ia/eT (1, —1)
—iarT2%(1,0) + T/t(YT(a,t —5)—(1,1))¢T(Ts)ds.
0

It is a known fact that,

ST (1) = aT%Mx,

k>1

thus using Lemma 4.1, we can get,

YT(a,t)—(1,1) = %(YT(a,t) —(1L,1))2 4+ (a,t) +iay/RT (1, —1) —iaxT2%(1,0)

CLTTO‘

2y

T 2 poy (g)y s 4 L1 tTa —8) [ (s)xds
+ /O<Y (0t =) = (LD (s) s + 2 /ew )£ (s)xd

0
tiaym 2L (1, ~1)F )y — iakT = L (1,0)F7 (t)x.
Y Y

Define,
o ot
5?(&,15) = %(YT(a,t)—(l,1))2+5T(a,t)fiaanza(l,O)+aT7T / {—,‘T(a,tfs)fo"”’(s)xds,
0
and
e(a,t) = _1/t(YT(a t—s5)—(1,1))2f*7(s)xds +ia n T 2YF*7(t)(1, B)
2 ) 2 0 ) ) X ﬂ+ 1 ) .

Thus, we can write,

YT (a,t) — (1,1) = €] (a, t) + €3 (a,t) + iay/KT (1, -1) — iamT*aFW(t)(l, B)+
72% Ol(YT(a,t —8) = (1,1))2% (s)xds.

Then, we set,
GT(av t) = (0T7+(a'7 t), QTV_(G’ t)) =T (YT(a’ t) - (17 1))7

and,
r(a,t) = T (e} (a,t) + €3 (a,t)).

From Proposition B.1, it can be seen that T%%¢¥ (a,t) and T?“¢7 (a, t) are uni-
formly bounded in ¢ and 7. Thus, 7% is also uniformly bounded in ¢ and 7.
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We have the following,

T =rT(a iav/k(1, — —iain T 1 t Ta,t—s))2f47(s)yds
07 .8) = 17 (oo R(1, <) i PO A5 [ (07 (o t=s)) 1 o).

Using Lemma A.3 from [14], it can be shown that 87 (a,t) is a Cauchy sequence.
With this knowledge, 67 (a,t) converges uniformly in t to (c,d) which are solu-
tions of the following,

. . K a, 1 ¢ a,
cla,t) =ia ﬁ—zamF 'y(t)—&—m/o (*(a,t—s)+d*(a,t—s)) f*7 (s)ds,
and,
I _; L a, L ! 2 _ 2 _ a,
d(a,t) = —iav/k—ia G+ l)vF "’(t)—i—m(ﬁJr 0 /0 (c*(a,t—s)+d*(a,t—s)) f*7 (s)ds.

B.2 Final part of the proof

In Section 4.5, we encountered the following argument in the process of deriving
the characteristic function for the rough Heston model,

LT (at,a7,tT) = exp(/o (Ta(YT’+(a,t—s)—l)—i—T”‘(YT’_(a,t—s)—l))(Tl_aﬂ(sT))ds>.

From the convergence in Appendiz B.1, we can see that,
(YT (a,t —s) = 1)+ T(Y " (a,t — s) — 1),

converges uniformly in t to ¢(a,t) + d(a,t). Also, from Section 4.5, we know
that T*=(tT) converges as T — oo to,

£ -a

Moreover, from Proposition B.1, we see that,
(T T (a,t =) = )+ TV (a,t = 5) = 1))(T' " f(sT)),
is controlled for ¢ € [0, 1] with,
|T(Y T (a,t —8) = 1) + T (a,t — s) — D|(Ta(sT)) < c(a)(1+s~%).

Now, applying the dominated convergence theorem, LT(a;7a;,tT) converges
to Ly(a,t),

Ly(a,t) = exp(/ot gla,s)(1+ ’yl"(lg—a)(t - s)fa)ds>7
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where g(a,t) = p(c(a, t) +d(a,t)). By a simple manipulation, we easily see that,
¢ o
Ly(a,t) = exp(/ g(a,s)ds + H—Inl_“g(a,t)).
0 v

Now, we need to show that ¢ is a solution for an integral equation. From
g(a,t) = p(c(a,t) + d(a,t)), it is trivial to see that,

gla,t) = p(B + 1)(c(a,t) — iay/k).

Hence,
— iaM e, 1+52 [ 2 par(p _
ola.t) = a0 + 5l [ (gfa,s)P e = s)as
t
—ag'l;—ﬁFo‘”(t) +ia \{f(il_'__ﬁf) /0 g(a,s)f*¥7(t — s)ds.

Using the definition of p and v from Section 4.5 and implementing the definition
of k, g(a,t) becomes,

2

0 ¢ v ¢
G =P @) iy [ gla, ) =s)ds+ i [ (o) =i,

which can also be written as,

2

g(a,t) = /0 (g(—a2 —ia) + iapvg(a, s) + ;—e(g(a, s))2> fO(t — s)ds.

Now, if we set h = %, we have,

Ly(a,t) = emp(/ot h(a, s)(0y + Uo(lf(zs);(;)ds),

where,

h(a,t) = /Ot (%(—a2 —ia) + tayprh(a, s) +

Using Lemma A.2 from [14], we can rewrite this as,

(w)?
2

1
De%h(a,t) = 5(—a2—ia)—|—v(iap1/—1)h(a,s)—|— h*(a,s), In'~“h(a,0) = 0.

Thus, Theorem 4.2 is proved.

87



Appendix C Proof of Theorem 3.1

For the whole proof of Theorem 3.1, we would need to present the whole frame-
work of the [13] that is not in this thesis. Thus by following [13], we are going
to give a more brief version of the proof. In the proof, first, P is rewritten in
a convenient way, then some convergence results from this rewriting is shown
and finally the proof is finished with some last steps.

C.1 Rewriting of PT

First, it is trivial to see that, we can rewrite the rescaled price Pg} /T as follows,

P _ NtT — N5 /tT AMT+ —amT— APt - a\F- +/fT ATt — £\ s,
T JTOTH — AT r 0 T

We can also show that,

t
AF AT = / ar(pi(t — 8) — oalt — 8))(ANT+ — ANT)
0
t t
= [ arOalt - )@MIF —aMI7) 4 [ ar(ialt - )T - AT ),
0 0

where \y = @1 — @o. Given that, I = Yokt ak\3F, and using Lemma 4.1, we
get,

t
AN = [ 0F (e s @I - aud),
0

Then, from Fubini theorem, we have,

[ —aras= [T e @@ - anr)
0 0 0

Thus, the rescaled price PL./T can be written as,

/ VeIt v el aw? - / / T (w)du)(dM, " —dM, ")+ / T () du(FT ),
T(i— s) 0

1 MT
where M = =4~ and,

o /tT dMT+ —dMT—
T —

VTOET = AE)

Therefore,
1
—pT = /\/ ctt el aw? — BT,
T (||801||1—\|<P2|| ‘
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where,

t [e']
RT = / / T (w)du(dM o — dML 7).
0 JT(t—s)

One important note is that R! converges to zero as T goes to infinity. This is
not going to be shown in this proof, but it can be seen in [13].
C.2 Convergence of (W1 BT]

We know from [13] that using the quadratic variation [WT, W7]; and [BT, BT],
converges in probability to t,

wT wt, — t, [BY,BT], — t.
T—o0

T—o0

Now, using the fact that [MT, MT] = diag(NT), it can be written that,
T T+ T,—
ANt — BdN,-
[WT, BT]t _ / s 6 s
o T )\Z,-i- +/\f’_ /\Z7+ +ﬁ2/\f’_
/t or+ — por-
B 0 /C?Hr + C?’i CSTHL + BZCSTa*

ds+ el

with

qo [ e
o T )\Z7+ +)\Z’_ )\ZH- +62)\Z,—
Then, using (M7, MT) = diag(f, A\T) and AT > 1, we can see that,

tT
1
T\2
_ <
E{(e})’] = El / TRTT 1)) S 2T 15

It is known from [1 ] at (CT:+,CT:7) converges in law for the Skorokhod
topology to (5— B— X) with the dynamics of X is as defined in Theorem
8.1. Thus, the term,

it —pe
VOt el Jelt + gol-

converges as T' — oo to,

_1-8
21+ %)
Then, finally,
T BT 1-p
W', By, » ———t.
SN
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C.3 End of the proof
Theorem 2.6 from [28] implies that,

t
/ Tt e aw?,
0

converges in law for the Skorokhod topology to,

t ol 9x,
S AW
L5

Thus, this ends the proof.
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