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Abstract

With the rapidly growing world population and improving living standards of upcoming
economies, the demand for fresh food is increasing vastly. Greenhouses have proven to be
very effective in increasing crop yield since they offer a sheltered environment that can be
controlled. Greenhouse growers need to take care of many processes, among which are max-
imising the crop yield while using as little resources as possible and controlling the indoor
climate. An approach to alleviating demand for experienced growers is to automate processes
within the greenhouse that aid in setpoint generation and setpoint tracking. Existing litera-
ture has presented multi-level architectures to cope with the two different timescales on which
the two greenhouse subsystems act, i.e., the crop and greenhouse indoor climate subsystem.
Current approaches in literature employ model-based techniques, which need tedious cali-
bration per considered situation due to the influences of the local weather, environment and
highly non-linear underlying physical processes. Therefore, these model-based approaches
are scarcely used in the horticultural sector. Thus, this thesis proposes a data-driven control
scheme that deals with long-term crop production control while taking into account resource
usage.

The proposed control scheme uses temporal and functional decomposition of the overall prob-
lem to accommodate the different timescales on which the greenhouse indoor climate sub-
system and crop subsystem act. With the focus on the entire growing season, this thesis
emphasises the importance of the climate strategy for crop production control. The aim
of this thesis is threefold. Firstly, a non-linear simulator model for the crop dynamics has
been selected, adapted, and calibrated, using the Autonomous greenhouse challenge (AGC)
dataset. Secondly, the overall crop production control problem has been decomposed into a
hierarchical structure, including two subproblems with different objectives, acting on different
timescales and using different system representations. The communication protocol between
the two layers has been determined, and the setpoint tracking controller is established for the
lower layer and tested on a benchmark temperature reference trajectory. Thirdly, the Data-
enabled predictive control (DeePC) algorithm is leveraged for the crop production control
problem and compared in simulation against a conventional Economic model predictive con-
trol (EMPC) setpoint generating controller. Both use the aforementioned established setpoint
tracking controller for controlling the greenhouse towards the generated climate strategies.
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In simulation, it is shown that the DeePC setpoint generating controller results in a climate
strategy that results in a lower crop yield by 1.51% when compared to the EMPC climate
strategy and 0.54% less when compared to the predefined benchmark reference trajectory.
Furthermore, the resource usage needed for the climate strategy proposed by the DeePC set-
point generating controller uses 1.75% more heating resources when compared to the EMPC
setpoint generating controller and 11.1% more when compared to a predefined temperature
setpoint trajectory. The DeePC climate strategy results in 7.92% and 5.27% less electricity
use when compared to the EMPC and predefined benchmark climate strategy, respectively.
The DeePC climate strategy CO2 usage is 11.4% less when compared to the EMPC climate
strategy CO2 usage and 20.8% less when compared to the predefined benchmark climate
strategy.

The decrease in resource usage compensates for the lower crop yield of the DeePC climate
strategy. According to the metric of net economic profit, the DeePC generated climate-
strategy outperforms the benchmark climate strategy and EMPC climate strategy.
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Chapter 1

Introduction

1-1 Motivation and problem formulation

The demand for food is ever increasing due to the world population growth and the increased
living standard of many [2]. The world population is expected to increase to almost 10 billion
people by 2050 [3]. One of the Sustainable development goals (SDG) is to end world hunger
and ensure food security and nutritious food for humanity [4]. One approach to fulfilling this
goal is to up-scale food production and make it more efficient using modern technology.

Glass greenhouse cultivation is the standard in the Netherlands since the greenhouse offers a
favourable and protected environment for the crop in which the climate can be controlled [5].
Greenhouses have proven to yield high crop volumes per unit production area with efficient
water use [6]. In the Netherlands alone, 1.5 billion tonnes of food are produced annually in
glass greenhouses [7]. Energy, water, CO2 and land are the four primary resources that are
used for crop production [8].

Even though growing crops in greenhouses is beneficial, much energy is used. The Dutch
horticultural sector amounts to 5% of the fossil fuel emissions in the Netherlands [7]. The
Dutch government and the horticultural sector have signed an incentive to strive towards a
CO2 reduction of 3.5 megatonnes and climate-neutral glass greenhouse food production by
2040 [9] [10]. Optimal control policies can increase the efficiency of crop cultivation, i.e., water
and energy use [7]. In this way, automatic control of the greenhouse-crop system helps tackle
the growing food demand sustainably.

Another issue in the greenhouse sector is the need for experienced growers that manage all
aspects of greenhouse crop production [11], especially in the trend that greenhouse production
is implemented increasingly in developing countries [12]. Greenhouse growers need to make
complex decisions that maximise crop yield while minimising resources. Automatic control can
support the growers in this process [13]. Also, less experienced growers can then more easily
operate greenhouse systems by employing more automated control strategies. In this way,
the demand for and and shortage of the scarcely available experienced growers is alleviated.
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2 Introduction

Optimal control policies based on descriptive models of the system have proven their use in
the control of complex industrial processes and systems [14]. Therefore, it has also been an
often-used direction of research to control the indoor greenhouse climate [15]. However, both
the indoor climate and crop are challenging to model systems which require extensive model
calibration for each considered situation, depending on the greenhouse system, crop type,
weather and location, amongst other aspects [16].

Since data has become more abundant, industrial process control has shifted towards data-
driven control techniques. Also, Artificial intelligence (AI) algorithms have been widely stud-
ied in horticultural practices. However, these horticultural applications are primarily limited
to plant observation activities [13]. The use of the data-driven methods for crop cultivation
control is still limited [17]. Therefore, a gap in the research is the application of data-driven
techniques for crop cultivation control. A novel data-driven control policy is the so-called
Data-enabled predictive control (DeePC). It combines state estimation, output prediction,
and optimal control calculation in one single optimisation based only on the system’s measured
input and output data. DeePC can accommodate a comprehensible system representation,
cost function description and constraint implementation, and seems a promising data-based
control scheme.

The above research directions and goals can be defined formally into the following research
objective:

Design a data-driven control scheme that maximises crop production and uses
the greenhouse actuators as efficiently as possible over the complete span of the
growing season.

Therefore, this thesis aims to contribute to the implementation of a particular data-driven
method for long-term crop control while minimising energy usage. This project thus provides
a step towards automatically operated greenhouses for crop cultivation control to alleviate
the demand for and shortage of experienced growers, helping increase crop production in glass
greenhouses while using resources and inputs like energy, water, land and labour optimally.

1-2 Research question

The following research question is defined.

How can the novel DeePC algorithm be employed for the crop production con-
trol problem over the entire growing season to maximise the crop yield while
minimising the control costs, using a long-term weather prediction?

The following sub-research questions are defined:

• What model will be implemented as ground truth, and what will be the
benchmark against which the proposed controllers are compared?
The performance of the data-driven control scheme will be evaluated, and as such, a
simulator that acts as the ground truth for the crop subsystem is needed. Selecting a
suitable model and adapting it to the system and data is the first step to answering the
research question.
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1-3 Thesis contributions 3

• How will the different timescales on which the greenhouse subsystems act
be dealt with?
The greenhouse system includes two subsystems, i.e., the slow crop subsystem and the
fast greenhouse indoor climate subsystem. The overall problem spans over the entire
growing season. Hence, a scheme to handle the two different timescales is needed to
ensure the overall problem is tractable while including both timescales.

• How will the novel DeePC algorithm be implemented to maximise the crop
yield?
The novel DeePC algorithm is presented initially as a setpoint tracking control scheme
without exogenous inputs to the system. Therefore, the algorithm needs to be leveraged
to apply to the considered greenhouse-crop system and control problem.

1-3 Thesis contributions

From the research objectives, as stated in the previous section, the main goal of this project is
to develop a data-driven control scheme that controls crop production over the entire growing
season while minimising resource use and employing a long-term weather prediction. The
following thesis contributions can be stated, following the research objectives and the results
in simulation.

• Extension and calibration of an available non-linear, mechanistic crop model
to include all eight types of modern greenhouse actuators present in the
Autonomous greenhouse challenge (AGC).
In this thesis, a non-linear model has been selected to use as a ground truth simulator
for the crop subsystem to assess the performances of the proposed setpoint generating
controllers. The original model is adapted to fit the considered system and calibrated
to fit the data.

• Design of a two-layer control architecture that deals with the greenhouse-
crop system’s different dynamical time scales.
A two-layer control scheme is proposed to deal with the two subsystems that act on
different timescales. The upper layer operates at a slow sampling rate and uses a long
prediction to generate optimal climate setpoints to account for foreseen weather circum-
stances. These climate setpoints are the reference greenhouse indoor air temperatures
that influence crop growth. The lower layer tracks these climate setpoints, which oper-
ates at a faster sampling rate and ensures the greenhouse indoor climate is controlled.

• An Economic model predictive control (EMPC) controller that generates
temperature setpoints to control the tomato crop in the greenhouse.
The data-driven control scheme this thesis proposes is compared to an equivalent model-
based scheme, which employs an EMPC setpoint generating controller in the upper
layer. The EMPC controller uses the entire growing season as the prediction horizon in
a shrinking horizon implementation and can control crop production.

• Design of a leveraged DeePC control scheme that generates temperature
setpoints to control the tomato crop in the greenhouse.
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4 Introduction

This work presents a leveraged DeePC setpoint generating controller in the upper layer
of the overall control scheme, capable of controlling crop production. This work is the
first to employ the DeePC framework to output setpoints while considering an economic
objective.

1-4 Thesis outline

The remainder of this thesis is structured as follows. In Chapter 2, the greenhouse-crop system
at hand is introduced, and the scope of the thesis is given. Furthermore, the model used as
ground truth and the proposed architecture into which the proposed controllers fit are shown.
In Chapter 3, the controller used to obtain the actual control costs and greenhouse-crop states
over the entire growing season is introduced, and the benchmark results obtained with this
controller are shown. In Chapter 4, the first reference air temperature generating controller
is presented. The preliminary results of this EMPC-type controller are shown. The second
setpoint generating controller and accompanying preliminary results are shown in Chapter 5.
This is a DeePC-type controller. The performances of the resulting synthesised controllers
are then compared against the benchmark in simulation in Chapter 6. Finally, in Chapter 7,
the research questions are answered, and recommendations for future work are given.
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Chapter 2

Problem definition

In this chapter, the overall problem that this thesis considers will be introduced. The main
focus is the crop yield of a greenhouse tomato crop. Therefore, first, the physical greenhouse
system with tomato crop is described. Then, the mathematical model taken as the simulator
ground truth is defined and how the model is adapted to, and calibrated with the available
real-life data. The overall problem is decomposed into subproblems for tractability, and the
control architecture on which the rest of this thesis is based is introduced.

2-1 The greenhouse-crop system

2-1-1 Assumptions and scope

The greenhouse-crop system is a non-linear, strongly coupled system, and many different
types exist around the world, varying in either greenhouse or crop type. The thermodynamic
variables within the greenhouse indoor climate subsystem are under the strong influence of
the weather as exogenous inputs. In the literature, models ranging from very detailed process
descriptions within the greenhouse to models describing just one thermodynamic variable are
presented [15]. The crop subsystem is a complex biological system, with models ranging from
describing individual cells to models describing just one crop biological variable. To arrive at
a complete greenhouse-crop system description that is used for this thesis, and suitable for
control purposes, the following most significant assumptions are made:

1. The greenhouse air is assumed a perfectly stirred tank, i.e., all thermodynamic variables
are considered spatially constant.

2. The tomato crop is considered a big-fruit, big-leaf entity, i.e., it will be modelled in a
so-called medium-grained fashion. Hence, there are only two measurable outputs, one
variable describing the total mass of the tomato fruits and one variable representing the
total mass of the leaves.

Master of Science Thesis M. van Duijn



6 Problem definition

3. The fruit quality is considered constant.

4. Actuator setpoints are reached, e.g., the heating pipe temperature that the controller
generates is the heating pipe temperature that is realised.

5. Perfect sensor data is assumed, implying that the sensor data that is used does not
contain measurement noise or any other faults.

6. A single harvesting moment at the end of the growing season is considered.

The following aspects are focused on within this thesis, which does not encompass all aspects
within crop control.

1. This thesis focuses on the greenhouse indoor climate, not the soil milieu, i.e., it is
assumed the crop system is well fertilised and irrigated.

2. The influence of pests and diseases is ignored.

3. The greenhouse-crop system description and modelling are considered for the outdoor
climate of the Netherlands and a Venlo-type greenhouse.

4. Air temperature is considered the primary thermodynamic variable, influencing crop
growth the most [13].

2-1-2 System description

The greenhouse system consists of the greenhouse indoor climate subsystem and the crop
subsystem, depicted schematically in Figure 2-1 below.

Figure 2-1: The greenhouse system consists of the indoor climate subsystem, the crop subsystem
and the external input systems that are the actuators as control inputs and the weather as
exogenous inputs.
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2-1 The greenhouse-crop system 7

The two subsystems in the greenhouse influence each other via the processes of photosynthesis,
respiration and transpiration. As considered in this work, the subsystems include multiple
types of variables, as depicted in Figure 2-2 below. This description is an adapted description
of the description that is used later on as ground truth and matches the used dataset [18].

Figure 2-2: The variables of interest per subsystem.

The climatic variables of interest of the indoor climate subsystem are given by yg in (2-1)
below. These are the three climatic variables, present in the majority of the available indoor
climate models [19]

yg =

 TAir
CAir
AHAir

 , (2-1)

where TAir, CAir and AHAir denote the air temperature in [C◦], greenhouse air CO2 levels in
[g m-2], and greenhouse air absolute humidity in [g m-3], respectively.

The crop variables of interest are given by yc in (2-2) below

yc =


mB
mF
mL
D

 , (2-2)

where mB, mF, mL and D denote the assimilate buffer dry weight in [g m-2], total crop fruit
dry weight in [g m-2], total crop leaf dry weight in [g m-2], and the crop stage, respectively.
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8 Problem definition

The control input vector to the greenhouse is given in (2-3) below

ugh =



TPipe,1
TPipe,2
φLee
φWind
CInj
L
SO1
SO2


, (2-3)

where TPipe,1, TPipe,2, are the heating pipe temperatures of the upper and lower pipe system in
[◦C]. Furthermore, φLee and φWind denote the leeward and windward side window opening in
[%], CInj denotes the CO2 injection rate in [g s-1m-3], L denotes the light intensity in [W m-2],
and SO1 and SO2 denote the screen opening of the temperature and climate screens in [%].
The eight control inputs that act on the greenhouse system act directly on the greenhouse
indoor climate sub-system, i.e., ugh = ug. The control input vector ugh is changed with
respect to [18], which only consisted of four control inputs.

The control inputs that act directly on the crop subsystem are denoted by uc in (2-4) below

uc =

 L
SO1
SO2

 , (2-4)

The exogenous inputs that act on the greenhouse are given by the vector vgh in (2-5) below

vgh =


COut
AHOut
TOut
IGlob
wOut

 , (2-5)

where COut is the outside CO2 concentration in [g m-3], AHOut is the outside air absolute
humidity in [g m-3], TOut is the outside air temperature in [◦C], IGlob is the solar radiation
in [W m-2], and wOut is the wind speed in [m s-1]. The five exogenous inputs that act on the
greenhouse system act directly on the greenhouse indoor climate subsystem, i.e., vgh = vg.

The exogenous inputs that act directly on the crop subsystem are denoted by vc and given
in (2-6) below

vc = [IGlob]. (2-6)

2-1-3 Data preprocessing

The data that has been used in this thesis for modelling and control purposes is from the
Autonomous greenhouse challenge (AGC) of 2019. The dataset contains data on the green-
house indoor climate, weather variables, crop status and used controls. The data were col-
lected during a 6-month tomato growing season in the Netherlands [13].
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2-1 The greenhouse-crop system 9

The data is not immediately applicable for the chosen system description type. Hence, the
data preprocessing steps will be explained in this section. The dataset that has been used is
the dataset of the Automatoes team, one of the five teams that competed in the AGC and
won.

NaN data points

Some parts of the greenhouse indoor climate dataset and weather variables dataset contain
many NaN data points. The missing entries that the NaN covers are fixed by linear interpo-
lation between the two adjacent data points that have data. This is justified because only 71
NaN data points are present per variable, which is 0.15% of the total available measurements
per variable.

Preprocessing of the control input data

To circumvent actuator dynamics in the control schemes, either the desired actuator setpoints
or the realised actuator setpoints need to be used, and the difference between them should
be neglected. In this thesis, the desired setpoints have been used as data, not the realised
setpoints. It is assumed that the desired actuator setpoints are realised. This was done
because in the dataset of the realised setpoints, some of the control inputs only contained
NaN entries. Some other issues in the control input data are elaborated on per control input
below. If a certain control input is not mentioned, the data is used without preprocessing or
important note.

Heating pipe temperatures Heating pipe temperature measurements minima were 0 [◦C]
which is impossible since then the heating pipes would cool the greenhouse as the heating
pipe temperature is then lower than the greenhouse temperature. Therefore, the heating
pipe temperature data points were raised by 20 ◦C. The 20 ◦C was chosen because then the
minimal and maximum values of the measurements coincide with the ground truth model [18].

Window openings The assumption is made that the control scheme has knowledge of the
windward and leeward side window openings, since the window openings on different sides of
the greenhouse with respect to the wind have different influence upon the ventilation [20].

CO2 injection rate The CO2 injection rate CInj in the dataset is defined in [kg ha-1 h-1].
The following conversion formula has been used to change it to the unit of [g s-1 m-2] that is
used in the non-linear models that describe the system.

CInj = 1
3.6 · 104 C̃Inj, (2-7)

where CInj is the CO2 injection rate in [g-1m-2] and C̃Inj is the CO2 injection rate in [kg
ha-1h-1].
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10 Problem definition

Artificial lighting In the AGC, two lighting systems, Light emitting diode (LED) and High
pressure sodium (HPS), are used. Since the LED and HPS lighting systems work using
different mechanisms, this needs to be taken into account. For the control schemes, the
total intensity of both lighting systems has been used. The total intensity is converted from
µmolm-2 to Wm-2 by the average conversion factor of 48.19 [Wm-2 µmol-1]. For the conversion
factors, the reader is referred to Section 6-1-2.

Preprocessing of the available crop data

The AGC dataset includes only the measured fruit dry weight, from day 65 onwards, with
data samples about every five days after the 65th day. Due to the nature of the non-linear
model for which the AGC data will be used, the data is appended with mF = 5 before the
65th day. The non-linear model needs mF 6= 0 to simulate, and a non-zero fruit dry weight
is also required for the respiration. At the planting date, tomato plants already have a small
albeit non-zero fruit and leaf dry weight [21]. If a particular crop variable is not mentioned,
the data is used without preprocessing or important note.

Crop data interpolation The crop measurements have been interpolated for corresponding
sampling rates for further use in model calibration, model identification and controller design.
Crop measurements are costly to gather in reality since it is a manual process and labour
intensive [22].

Fruit dry weight The dataset contains measurements of the total fruit fresh weight, and the
Dry matter content (DMC) per measurement instance k. The total fruit dry weight is then
calculated by

mF(k) = CDMC(k) · m̃F(k), (2-8)
where m̃F is the total fruit fresh weight in [gm-2] and mF is the total fruit dry weight in [gm-2]
and CDMC is the DMC at measurement instance k.

Leaf dry weight The AGC dataset does not contain measurements on the leaf dry weight.
However, the leaf dry weight is the most important crop variable that couples the crop sub-
system to the greenhouse indoor climate subsystem. How this is dealt with will be explained
in Section 2-2-3.

Processing of the greenhouse indoor climate measurements

If a specific greenhouse indoor climate variable is not mentioned, then the data is used without
preprocessing or important note.

Air CO2 concentration The CO2 measurements are in [ppm], while the mechanistic non-
linear crop model uses CO2 in [gm-3]. The conversion factor below is used [24].

CAir = 0.0409 · C̃AirMWCO2 , (2-9)

where C̃Air is the CO2 concentration in [ppm], CAir is the CO2 concentration in [gm-3] and
MWCO2 is the molecular weight of CO2.
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2-1 The greenhouse-crop system 11

Air absolute humidity The available humidity measurements are the humidity deficit in the
unit [gm-3], which will be introduced in Section A-0-1, and the relative humidity in [%]. The
system description as used in this thesis needs the humidity measurements in terms of the
absolute humidity of the unit [gm-3]. The conversion from the humidity deficit and relative
humidity to absolute humidity is presented below [23].

AHAir = RHAirHDAir
100−RHAir

, (2-10)

Implementation of the weather

Weather measurements of the following variables used as exogenous inputs to the greenhouse
are available in the AGC dataset: TAir, AHOut, wOut, IGlob. These weather measurements
are implemented directly.

Outside CO2 concentration There are no measurements available of the outside CO2 con-
centration. The average outside CO2 concentrations are in the range of 410 ppm [24], which
results in an average outside CO2 concentration of 0.55 [gm-3]. For the simulation and control
purposes a standard normal distribution variable times 0.01 is added to this constant value
at each sampling time.

2-1-4 Current practice and benchmark

To compare the proposed controllers that generate reference temperatures, a benchmark
reference temperature is selected. This is based on the current practice in the horticultural
sector.

Current practice

Reference temperatures that come from the seed companies are given to the growers that
regulate towards these reference temperatures or deviate from it if the setpoints cannot be
realised. The reference temperatures or so-called growing guidelines are predetermined and
are subdivided into tomato growing stages that last a set number of days.
Since the guidelines differ per tomato type, the growing conditions presented in the section
below are taken from the literature.

Optimal tomato growing conditions

Table (2-1) below shows the optimal growing temperatures that have emerged from the vast
amount of simulation and growing results in the literature on tomatoes [25].

Period Lower limit [◦C] Optimal [◦C] Upper limit [◦C]
Day 15 24 32
Night 13.5 20 27

Table 2-1: Optimal growing temperatures for tomatoes
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12 Problem definition

Benchmark set-up

This reference temperature trajectory is chosen as the benchmark set-up to compare the
proposed temperature generating controllers with.

Figure 2-3: Daily benchmark reference temperature.

As can be seen, the diurnal temperature setpoint is higher than the nocturnal temperature
setpoint.

2-2 Mechanistic non-linear crop model as ground truth

This section describes the crop model that has been used as ground truth to compare and
validate the different control methods.

The greenhouse indoor climate model that is adapted and calibrated for a day of measurements
is described in Section A-0-1. This model has not been used to control over the entire season,
but it can be used for control purposes that consider only a day’s worth of simulation.

Both models have been adapted and calibrated. The adapted versions will be given, and the
changes, when compared to the original model, will be stated.

2-2-1 Crop mathematical model

The chosen crop model non-linearly describes the underlying physical processes that govern
the growth of the tomato plant. The adapted version to include all actuator types present in
the AGC dataset, is given.

The rate of change of the assimilate buffer weight ṁB is given by

ṁB = P − b
(
fgFmF + vgL

mL
z

)
− b
(
rFmF + rL

mL
z

)
, (2-11)

where mB denotes the assimilate buffer dry weight in [g m2], P is the crop photosynthesis
rate in [g s-1 m-2], b is the buffer switching function [-], f is the fruit assimilate requirement
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2-2 Mechanistic non-linear crop model as ground truth 13

quotient [-], gF is the relative fruit growth rate [s-1], mF is the total fruit dry weight [g m-2],
v is the vegetative requirement quotient [-], gL is the relative fruit growth rate [s-1], mL is the
total leaf dry weight [g m-2], z is the leaf fraction of vegetative dry weight [-], rF is the relative
fruit respiration rate [s-1], and rL is the relative leaf respiration rate [s-1], respectively.

The crop photosynthesis rate P is given by

P = Pml
I

p1 + I

Cppm
p2 + CAir

, (2-12)

where Pm is the maximum photosynthesis rate [g s-1m-2], l is the Leaf area index (LAI)
correction function [-], I is the Photosynthetically active radiation (PAR) [µmol s-1m-2], p1
and p2 are photosynthesis parameters, Cppm is the CO2 concentration [ppm], and CAir is the
CO2 concentration [g m-3], respectively.

The LAI correction function is given by

l =

(
mL
wR

)m
1 +

(
mL
wR

)m , (2-13)

here, mL is the leaf dry weight per ground area [g m-2], and wR [g m-2] and m [-] are LAI
correction function parameters.

The PAR I is given by
I = ηmpIGlob, (2-14)

where η is the radiation conversion factor [-], mp [µmol J-1] is the conversion factor from Watt
to µmol, and IGlob is the solar radiation [W m-2], respectively.

The CO2 [ppm] Cppm is given by

Cppm = 106RG
MCO2patm

(TAir + T0)CAir, (2-15)

where RG is the universal gas constant [Jmol-1K-1], MCO2 is the molar mass of CO2 [kg], patm
is the atmospheric air pressure [kPa], TAir is the greenhouse indoor air temperature [◦C], and
T0 is the absolute zero [◦C], respectively.

The buffer switching function b is given by

b = 1− e−b1mB , (2-16)

where b1 [m2g-1] is a buffer switching parameter and mB is the assimilate buffer dry weight in
[g m-2]. When the assimilate buffer is almost empty, b tends to zero and when the assimilate
buffer is almost full, b tends to one, governing the switching between the different biomasses
within the crop.

The relative fruit growth rate gF and relative leaf growth rate gL are given by

gF = (f1 − f2DP)Q
TAir−TG

10
G , (2-17)

gL = gFv1e
v2(TAir−v3), (2-18)
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14 Problem definition

where f1 [s-1] and f2 [s-1] are fruit growth rate coefficients, QG [-] is the Q10-value for the
temperature effect on the fruit growth rate, TG [◦C] is the growth rate reference temperature,
and v1 [-], v2 [◦C-1] and v3 [◦C] are vegetative fruit growth ratio coefficients.

The relative fruit respiration rate rF and relative leaf respiration rate rL are given by

rF = MFQ
TAir−TG

10
R , (2-19)

rL = MLQ
TAir−TG

10
R , (2-20)

where QR [-] is the Q10-value for the temperature effect on the maintenance respiration, and
MF [s-1] and ML [s-1] are the fruit and leaf maintenance respiration coefficients, respectively.

The rate of change in fruit dry weight ṁF is given by

ṁF =
(
bgF − (1− b)rF

)
mF, (2-21)

here, the fruit growth is represented by the first term on the right-hand side and the fruit
respiration is represented by the second term on the right-hand side.

The rate of change of leaf dry weight on the crop ṁL is given by

ṁL =
(
bgL − (1− b)rL − hL

)
mL, (2-22)

Here, the leaf growth is represented by the first term on the right-hand side and the leaf
respiration is represented by the second term on the right-hand side.

The rate of change in the crop development stage Ḋ is given by

Ḋ = d1 + d2 + ln
(
TAir
d3

)
+ d4t, (2-23)

where d1 [s-1], d2 [s-1], d3 [◦C], and d4 [-] are plant development rate parameters, and t is the
time [s].

The continuous-time dynamical model for the greenhouse crop is then given by

ẏc = fc(yg,yc,ug,v, t). (2-24)

Crop model alterations

In (2-21) and (2-22), the terms that represent the harvest of the fruits and the pruning of the
leaves are left out. Furthermore, compared to [18], the fruit and leaf harvest coefficients and
the total harvest of fruits and leaves are left out of the model.

The original model by [18] implements a continuous harvesting relationship, whereas in reality,
the harvesting takes place at discrete time instances [26]. Crop management decisions such
as leaf pruning, fruit harvesting and truss and stem density management actions are only
valuable for describing the crop development when the considered crop is described in a fine-
grained fashion, meaning that the individual tomatoes and leaves are modelled [13]. This is
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2-2 Mechanistic non-linear crop model as ground truth 15

not the case for this thesis, and hence any intermediate harvesting decisions and actions are
omitted, and a single harvest at the end of the season is assumed [27].

In the AGC dataset, the desired stem density and number of trusses are available [13], but not
the number of tomatoes per truss. Therefore, to make the data compatible with the chosen
model, again, a single harvest at the end of the season is considered.

2-2-2 Discretisation of the Continuous-time (CT) model

The crop and greenhouse indoor climate models as described in Section 2-2-1 and Section
A-0-1 are CT models discretised using an Euler discretisation, which is given in (2-25) below

y(k + 1) = y(k) + τ ẏ(k), (2-25)

where τ is the sampling time. Here, y can be either crop or greenhouse indoor climate outputs.

2-2-3 Model calibration

The adapted crop model is calibrated using the measured climate outputs, exogenous inputs
and control input data. The general calibration cost function JGen that is minimised for the
parameter calibration is given below

JGen(wh, yhj , p) =
L∑
h=1

M∑
i=1

N∑
j=1

wh
(
ŷh (ti, p)− yhj (ti)

)2
,

p∗ = arg min JGen(wh, yhj , p),

(2-26)

where L, M and N denote the number of outputs, time instances and replicates per time
instance, respectively [28]. wh denotes the relative weight for each output, ŷh(ti, p) denotes
the simulated output yh at time ti and yhj(ti) denotes, at time ti, the jth measurement
replicate of yh.

Crop model calibration

The crop model has been calibrated using the AGC data. Since the AGC measurement data
includes only the fruit dry weight mF, the crop model is calibrated only using the fruit dry
weight as output.

Since the crop exhibits slow dynamics, the calibration of the crop model needs to be performed
over the entire growing season [18].

The calibration cost function for the crop model calibration, which is a simplified version of
(2-26) is given by

J(mF, p) =
L∑
h=1

(m̂F (t, p)−mF (t))2 ,

p∗ = arg min J(mF, p),
(2-27)

where L is the time instance of the lastmF measurement of the growing season, m̂F (t, p) is the
mF prediction at time instance t for chosen parameter vector p, and mF (t) is the measured
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16 Problem definition

mF at time instance t. The resulting optimisation problem is a non-linear program and solved
using the Matlab fmincon solver. The non-linear program is due to the non-linear model
that is used to obtain m̂F.

Since only the fruit weight was available, not all crop model parameters have been tuned.
The parameters that were used in the calibration procedure are given in Section B-1.

Calibrated fruit weight The resulting simulated fruit weight which emerges from the cali-
brated non-linear model can be seen in Figure 2-4 below.

(a) Calibrated mF.
(b) Other crop measurements and model, from [1].

Figure 2-4: Calibrated non-linear crop model fruit weight.

There is no exact match between the simulated mF and the measured mF. This can be
explained by the fact that the model uses a big-fruit, big-leaf description whereas in reality
the tomato crop is an intricate and complicated biological system encompassing more than
just two output variables. Therefore, the model might not describe all processes or be able
to capture the true dynamics of the underlying processes of the tomato crop. However, the
order of magnitude is the same.

Relationship fruit weight and leaf weight from calibrated crop model Since no measure-
ments were available of the leaf dry weight, the simulation results of mL using the calibrated
model can be used to draw some conclusions on the modelled relationship between mF and
mL.

The emerging relationship betweenmF andmL from this model is thatmL andmF are almost
proportional, which agrees with real-life experiments and the literature on this topic [1] [21].
This is presented in Figure 2-5 below.
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2-3 Problem decomposition 17

(a) Model relationship mF and mL.

(b) Other crop measurements and model from [1].

Figure 2-5: Other crop measurements and model, from [1]. From these two plots, the propor-
tional relationship between mF and mL is confirmed. This proportional relationship also emerges
from the calibrated non-linear crop model.

From Figure 2-5 it can be seen that in real-life, a proportional relationship between mF and
mL is present as well. The contours of the leaf dry weight per experiment number are shaped
almost identically as the contours of the fruit dry weight per experiment number, only with
different measurement values.

2-3 Problem decomposition

The dynamics of the greenhouse climate variables operate on a timescale of minutes to hours,
whereas the crop dynamics operate on a timescale of days. To ensure all dynamics are
captured when the problem is approached in a one-layer control structure, the problem needs
to operate at the fast dynamical timescale, meaning that the optimisation problem might
become intractable over long optimisation periods. The long optimisation period is, on the
other hand, needed to capture the crop dynamics. Therefore, shifting towards a decomposed
structure can overcome this tractability issue [29].
The decomposition of the overall system under control occurs via different approaches: func-
tional decomposition, temporal decomposition or spatial decomposition. The basis of func-
tional decomposition is assigning functionally different control objectives to the subsequent
different layers in a hierarchical dependence [30]. Temporal decomposition occurs when ei-
ther the systems’ dynamics are characterised on different timescales or when the disturbances
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18 Problem definition

evolve on different timescales. Spatial decomposition occurs when the system includes two
spatially individual components that are linked.
Hierarchical optimal control can be useful in at least two types of control problems. The
first is when the overall system under control exhibits dynamic behaviour that evolves in two
different timescales. The second is whenever the optimisation and control algorithms compute
the optimal targets and the effective control actions at different rates [29]. The greenhouse-
crop cultivation control problem is characterised by dynamics on different timescales: the
fast climatic dynamics and crop physiological processes, and the slow crop growth processes.
The two-layer structure that emerges from the dynamics’ two timescales can be extended to
multiple levels.
The subproblems can all be assigned their respective control objective and submodel. A
typical information structure is for the upper layer to determine the setpoints for the lower
layer to track [31].
In this section, the two decomposition types are introduced. Hereafter, the control architec-
ture into which the remainder of this thesis fits is presented, along with the linear models
used later on in this thesis.

2-3-1 Temporal system decomposition

Two-timescale systems are commonly referred to as singularly perturbed systems [29]. The
considered system (2-25) can be decomposed into two separate systems, that are linked via
several, arbitrary interconnecting variables, into{

xs(ks + 1) = f s(xs(ks),xf (ks),u(ks),ds(ks), ks),
ys(ks) = gs(xs(ks),xf (ks),u(ks),ns(ks), ks),

(2-28)

{
xf (kf + 1) = ff (xs(kf),xf (kf),u(kf),df (kf), kf),
yf (kf) = gf (xs(kf),xf (kf),u(kf),nf (kf), kf),

(2-29)

where f s : Rns
x × Rns

x → Rns
x and for the slow subsystem x(ks) ∈ Rns

x , u(ks) ∈ Rns
u ,

y(ks) ∈ Rns
y , d(k) ∈ Rns

d and n(ks) ∈ Rns
n and for the fast subsystem ff : Rnf

x × Rn
f
x → Rn

f
x

and x(kf) ∈ Rnf
x , u(kf) ∈ Rnf

u , y(kf) ∈ Rnf
y , d(kf) ∈ Rnf

d and n(kf) ∈ Rnf
n , where all the

symbols denote the standard variables and n is measurement noise. ns
x, ns

u, ns
y and nf

x, nf
u,

nf
y denote the dimensions of the state vector, input vector and output vector of the fast and

slow subsystem, respectively. The overall system under control can be decomposed in more
than two layers, giving rise to the following description for subsystem i{

xi(t+ 1) = f i(xi(t),xj(t), . . . ,xNs ,u(t),di(t), t),
yi(t) = gi(xi(t),xj(t), . . . ,xNs ,u(t),ni(t), t),

(2-30)

with Ns denoting the number of subsystems.

2-3-2 Functional system decomposition

When two sub-problems with different control objectives are treated in separate control layers,
functional decomposition takes place [30]. The layers should include various types of partial
objectives. The objectives can consist of economic criteria and tracking criteria, for example.
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2-3 Problem decomposition 19

A two-layer structure is often adopted with the upper layer calculating the reference setpoints
that the lower level must track. The upper layer is then the so-called supervisory constraint
control layer, and the lower layer is the direct control layer. Then, the initial conditions for
the lower level Dynamic real-time optimisation (DRTO) are estimated by measurements of
the process [31].

The general formulation of the two layered DRTO-problem is as follows.

min
us

gh(ks)
J s
(
xs(ks),us(ks),ds(ks),xf(ks), N s

h

)
,

s.t. xs(js + 1) = f s(xs(js),us(js),ds(js)),∀js = ks, . . . , ks +N s
h − 1,

xs(ks) = xs
0,

ys(js) = gs(xs(js),us(js),ds(js)), ∀js = ks, . . . , ks +N s
h − 1,

us(js) ∈ U s, ∀js = ks, . . . , ks +N s
h − 1,

xs(js) ∈ X s,∀js = ks, . . . , ks +N s
h − 1,

ys(js) ∈ Ys,∀js = ks, . . . , ks +N s
h − 1,

(2-31)

where J s = Jeco in DRTO. The general lower layer optimisation problem is then given by

min
uf

gh(kf)
J f
(
xf(kf),uf(kf),df(kf),xs(ks), N f

h

)
,

s.t. xf(jf + 1) = f f(xf(jf),uf(jf),df(jf)), ∀jf = kf , . . . , kf +N f
h − 1,

xf(kf) = xf
0,

yf(jf) = gf(xf(jf),uf(jf),df(jf)), ∀jf = kf , . . . , kf +N f
h − 1,

uf(jf) ∈ U f , ∀jf = kf , . . . , kf +N f
h − 1,

xf(jf) ∈ X f ,∀jf = kf , . . . , kf +N f
h − 1,

yf(jf) ∈ Y f ,∀jf = kf , . . . , kf +N f
h − 1,

(2-32)

where J f = J track in DRTO.

2-3-3 Control architecture

The proposed control architecture is shown in Figure 2-6 below. This control architecture
decomposes the overall problem of controlling the crop towards maximum fruit yield while
minimising the resource usage with a temporal system decomposition and a functional system
decomposition as discussed above.
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Figure 2-6: Proposed control architecture.

here, M s
c and M s

g are the crop control model and indoor climate control model used for the
upper layer setpoint generating control scheme, M f

c and M f
g are the crop control model and

indoor climate control model used for the lower layer setpoint tracking control scheme, and
P l

c and P l
g are the crop system plant prediction model and indoor climate plant prediction

model at lower layer sampling times, respectively.
The other upper layer entities seen in the figure represent the following, all at upper layer
sampling time ks. T̄Air(ks) is the reference greenhouse indoor air temperature generated by
the upper layer control regime at time instance ks. v̂s(ks) is the upper layer weather prediction
with sampling time τ s. ŷg→c(ks) is the upper layer greenhouse indoor climate output vector
passed to the upper layer crop model, ŷc→g(ks) is the upper layer crop output vector passed
to the upper layer greenhouse indoor climate model.
The other lower layer entities seen in the figure represent the following, all at lower layer
sampling time kf . v̂(kf) is the lower layer weather prediction with sampling time τ l. ŷg→c(kf)
is the lower layer greenhouse indoor climate output vector passed to the lower layer crop
model, ŷc→g(kf) is the lower layer crop output vector passed to the upper layer greenhouse
indoor climate model. v(kf) is the lower layer true weather. u(kf) is the control input vector
as calculated by the lower layer control regime that is implemented on the simulation models
that act as plant. yc(ks) and yg(ks) are the measured simulated crop and greenhouse indoor
climate outputs that are measured on the lower layer and send each upper layer sampling
time ks to the upper layer control regime.
The upper layer does not contain a plant description; the plant descriptions are used in the
lower layer. Hence an upper layer plant description is ominous.
In this setting, the upper or lower layer models can be swapped when better system descrip-
tions become available.
To summarise, the upper layer control regime uses system descriptions with a larger sampling
time and long-term weather predictions to generate greenhouse indoor air temperature set-
points that are sent to the lower layer control regime. Two control strategies are proposed for
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2-3 Problem decomposition 21

this upper layer control regime. The lower layer control regime is a linear Model predictive
control (MPC) setpoint tracking controller that uses the same linear model for the greenhouse
indoor climate subsystem for control and simulation but uses a linear crop model for control
and a non-linear crop simulation model.

Sampling time choice

To separate the overall problem, which is to maximise yield while keeping control inputs
small, suitable models need to be constructed to use per layer.

The upper layer problem sampling time needs to be as large as possible to optimise over a large
time horizon, preferably the entire growing season, while keeping computation time as small
as possible. A large sampling time is needed for the crop model simulation. Furthermore,
the sampling rate needs to capture the dynamical trends of the fast dynamical indoor climate
subsystem. Therefore, an upper layer sampling time τ s = 6 hours has been chosen for the
upper layer models. The different diurnal and nocturnal dynamics of the greenhouse indoor
climate are correctly captured using this sampling time.

The lower layer models need to capture the fast dynamics of the indoor climate subsystem.
Since the AGC data has a sampling time of 5 minutes and also the non-linear model employs
a sampling rate of 5 minutes, a lower layer sampling time τ f = 5 minutes has been chosen.

The effect of the different sampling rates can be seen in Figures 2-14 to 2-17.

Communication

The communication protocol between the two layers needs to be established to implement
the multilayer control schemes. The basic communication rules are given as follows, where
the time instants are defined in terms of the fast timescale, i.e., the time instants with super-
or subscript f, from the lower, faster-moving layer [32].

Basic rules:

1. At every instant kf , each level is supposed to know the current value of its state and
control;

2. At time vsks the high level communicates to the low level its current control value us(ks)
and the references

(
x̄s(kf), ūu(kf)

)

Switching

In Figure 2-7 below, a schematic representation can be seen of the switching moment between
the upper layer and lower layer.

Master of Science Thesis M. van Duijn



22 Problem definition

Figure 2-7: Switching protocol with extended previous reference trajectory. With ks the current
upper layer time instance, kf the current lower layer time instance, N f

i the number of implemented
lower layer iterations per upper layer iteration ks, N f

h the lower layer prediction horizon, vs = N f
i

the number of lower layer iterations per upper layer iteration and N s
i the number of implemented

upper layer iterations.

where ks the current upper layer time instance, kf the current lower layer time instance, N f
i

the number of implemented lower layer iterations per upper layer iteration ks, N f
h the lower

layer prediction horizon, vs = N f
i the number of lower layer iterations per upper layer iteration

and N s
i the number of implemented upper layer iterations.

Note that in this communication scheme, the assumption is made that after the last lower layer
iteration, the system is ’paused’ while the upper layer recalculates the greenhouse indoor air
reference temperature trajectory over the season. This is acceptable if the calculation time
per upper layer iteration is significantly less than the time an upper layer iteration needs,
which is the case. On average, the calculation time of one upper layer iteration amounts to
approximately 1 minute, while the time one upper layer iteration encompasses is 6 hours, and
the time one lower layer iteration encompasses is 5 minutes.

Proposed control schemes and models in the architecture

Several aspects of the control architecture overview above need to be filled with either a
system representation or a control scheme. The proposed control schemes will be explained
in this section.

• For the upper layer setpoint generating scheme and system representation, two con-
trollers are proposed. The first proposed controller is a linear Economic model pre-
dictive control (EMPC), with a corresponding linear greenhouse model, elaborated in
Chapter 4. The second proposed controller is a leveraged Data-enabled predictive con-
trol (DeePC) controller with corresponding data-based system representation, elabo-
rated in Chapter 5.
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• For the lower layer setpoint control regime, linear MPC is implemented, elaborated in
Chapter 3.

• For the lower layer plant description of the crop subsystem, the non-linear calibrated
mechanistic model is used. For the lower layer plant description of the greenhouse
indoor climate subsystem, the same linear model for control and simulation is used.

2-4 Model use in the control architecture

In this section, the linear models used for the MPC control schemes as mentioned above
are derived and characterised. The linear models are compared to the measurement data
and against each other. Last, the model mismatch between the linear crop models and the
non-linear crop model is characterised.

2-4-1 Prediction-error method (PEM) identified linear models

Besides implementing data-driven control methods and calibrating a mechanistic model to
the available data to investigate whether it is possible to control the greenhouse system during
the entire crop cycle, simple Linear time-invariant (LTI) models have been identified using
the PEM [33].

To obtain the state-space system matrices, the following objection function is minimised.

JN(y, A,B,C,D) =
N∑
t=1

e2(t), (2-33)

where the difference between the predicted output and the measured output at time t is
denoted by e(t). N denotes the number of samples.

Model characteristics

In Table 2-2, the model characteristics of the different identified models can be found. The
following number of states per model resulted in the models with the best fit.

Sampling time 5min 6h

yg yc ygh yg yc ygh

Number of states 3 4 7 3 4 5

Table 2-2: Number of states of the PEM identified linear models.
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Step response analysis

The step response analysis in this section will cover the greenhouse indoor climate subsystem
and is performed for the linear model with sampling time τ f = 5min.

For the crop subsystem, the following variable types can be considered as ’inputs’ to the system
for a step response analysis: uc, vc and yg→c. The crop subsystem is considered separately,
since a step response analysis cannot be spoken of but rather a temperature dependency that
lasts over the entire season.

For the greenhouse indoor climate subsystem, the following variable types that can be con-
sidered as ’inputs’ to the system will be covered in this specific type of step response analysis:
uc, vc and yc→g.

For this step response analysis, all variables, except the variable considered for the step
response, will be kept not at their minimal values but rather at the measured values for the
specific day in the season the step response is considered for. This is because it is not a
regular dynamical system, e.g., closing the windows is not giving no input but also giving an
input.

First, the variables will be considered individually, but also the control inputs will be consid-
ered together. The weather type of variables will be considered individually and together as
well.

The step responses for the first day of the growing season are depicted in Figures 2-8 to 2-13
below, to illustrate the influence of the different variables. Thereafter, the step responses are
quantified.

M. van Duijn Master of Science Thesis



2-4 Model use in the control architecture 25

In Figure 2-8 below, the "step response" of TAir to TPipe1,2 and φLee,Wind can be seen.

(a) "Step response" of TAir to TPipe1,2. (b) "Step response" of TAir to φLee,Wind.

Figure 2-8: "Step response" of TAir to TPipe1,2 and φLee,Wind 1st day of the season.

In Figure 2-9 below, the "step response" of TAir to SO1,2 and L can be seen.

(a) "Step response" of TAir to SO1,2. (b) "Step response" of TAir to L.

Figure 2-9: "Step response" of TAir to SO1,2 and L 1st day of the season.
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In Figure 2-10 below, the "step response" of TAir to CInj and combined u can be seen.

(a) "Step response" of TAir to CInj. (b) "Step response" of TAir to u.

Figure 2-10: "Step response" of TAir to CInj and combined u 1st day of the season.

In Figure 2-11 below, the "step response" of TAir to TOut and COut can be seen.

(a) "Step response" of TAir to TOut. (b) "Step response" of TAir to COut.

Figure 2-11: "Step response" of TAir to TOut and COut 1st day of the season.
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In Figure 2-12 below, the "step response" of TAir to AHAir and wOut individually can be seen.

(a) "Step response" of TAir to AHOut. (b) "Step response" of TAir to wOut.

Figure 2-12: "Step response" of TAir to AHOut and wOut 1st day of the season.

In Figure 2-13 below, the "step response" of TAir to IGlob individually and v together can be
seen.

(a) "Step response" of TAir to IGlob. (b) "Step response" of TAir to v.

Figure 2-13: "Step response" of TAir to IGlob and combined v 1st day of the season.
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The step responses are quantified in Table 2-3 below.

Table 2-3: An overview of the heating capacities per control input type in the greenhouse.

Actuator type
Time to reach daily max(TAir) +1 ◦C rise
Min
[min] Day Max

[min] Day Avg
[min] Avg [min]

TPipes 20 161 945 151 336 94
φLee,Wind 220 30 1030 54 627 240
SO1,2 215 56 980 151 668 253
L 20 161 1020 84 704 195
CInj 10 161 955 151 475 33
All 10 161 605 151 98 12

The first five columns with values are calculated per day. Per actuator type, the actuators
are set to the mode that heats the greenhouse the most and it is measured daily how many
minutes it takes to reach the daily maximum temperature. The day for which it takes the
least and most amount of time and the respective times are given as well. Furthermore, the
average daily time it takes per actuator type to reach the maximum temperature also given.
The second five columns with values show the times it takes per actuator type to heat the
greenhouse air with one degree. This is calculated for every sampling instance in the green-
house.

2-4-2 Model mismatch

In this section, first, the linear PEM-identified models are compared to the data they have
been identified with, in Figure 2-15 to Figure 2-17 below. Then, the PEM-identified crop
models are compared to the calibrated non-linear crop model that will be used as a ground
truth simulator in terms of the temperature dependency.

PEM models and data comparison

Figure 2-14: Linear PEM identified model TAir comparison.
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Figure 2-15: Linear PEM identified model CAir comparison.

Figure 2-16: Linear PEM identified model AHAir comparison.

Figure 2-17: Linear PEM identified model mF comparison.

It can be concluded that the model with the smallest sampling time matches the measurement
data the best, while the model with the longest sampling time still captures the overall trend
of the dynamics but shows quantitatively different behaviour.
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Temperature dependency different crop models

The crop model is dependent on different variables; however since this thesis aims to gen-
erate greenhouse indoor air temperature setpoints for the overall problem, the temperature
dependency is of importance.

Figure 2-18: Temperature dependency of the non-linear crop model (left) and the linear crop
model (right) with sampling time τs = 6h.

The dynamics of the linear crop model do not resemble the dynamics of the non-linear model.
Therefore, using the linear model in the upper layer EMPC setpoint generating controller
can lead to a different temperature strategy than is optimal for the non-linear model. This is
acceptable because, in reality, there is also a model mismatch.

2-5 Conclusive remarks on the problem definition

In this chapter, the problem has been introduced. Some conclusive remarks concerning to the
interpretation of implementing these tools in the remainder of this work can be made.

The greenhouse-crop system has been introduced, the available data has been manipulated
to use, and the benchmark to which the synthesised controllers will be compared is defined.
The benchmark has been selected based on the literature. However, it can be noted that
it does not change during the season, which would not apply in real life when considering
the changing weather conditions. Hence, this influences the performance of this benchmark
strategy.

A non-linear crop model has been introduced that is compatible with the set-up of the system
description mentioned above. The adapted version is given, and it is calibrated. Note that
the calibration was performed only over the fruit dry weight, using one dataset. Furthermore,
note that for true crop control, this crop system representation is not sufficient in the broad
sense since all crop control mechanisms that result from crop management decisions such as
pruning and harvesting are omitted. However, for crop control via the greenhouse indoor
climate strategy, it is sufficient.

The overall crop production control has been decomposed to make the overall problem
tractable and to be able to employ the faster changing dynamical greenhouse indoor climate
to control the slow varying dynamical crop system. The established communication protocol
is based on the different timescales and sends the upper layer generated setpoints to track
to the lower layer. Note that the lower layer main goal is to track the upper layer generated
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reference, i.e., it is assumed that the generated setpoint can achieve the highest performance
in crop yield and resource usage. This neglects the possible model mismatch and might hence
result in performance degradation. This model degradation originates from the different mod-
els used in this thesis, of which the linear models are introduced and characterised after the
control architecture has been set. The linear models show correct correspondence to the data
that has been used to identify the models.

This chapter has proposed the tools, scope, and framework used for the controller synthesis
in the remainder of this thesis. The aforementioned issues are considered, but the efficiency
of different controllers for crop production control via the greenhouse indoor climate strategy
can be investigated with said tools.
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Chapter 3

Tracking Model predictive
control (MPC)

Thus far, the different model-based system representation’s of the greenhouse-crop cultivation
system have been presented. Also, the overall problem has been decomposed via temporal
system decomposition and spatial decomposition into a two-layered structure shown in Figure
2-6. This chapter describes the synthesis and evaluation of the setpoint tracking controller in
the lower layer subproblem, which will be a Quadratic Programming (QP) MPC controller.
The chapter starts with the introduction of the MPC framework and used linear model.
Hereafter the MPC problem will be recast into the used QP framework. Subsequent sections
will then present the obtained results of the lower layer controller tracking the benchmark
greenhouse indoor air reference temperature trajectory and analyse them before moving on
to the other setpoint generating generating controllers.

3-1 MPC framework

MPC uses a model description of the system under control. The algorithm calculates the
optimal control input over the prediction horizon to reach an objective, which is often a
reference tracking objective, which is depicted in Figure 3-1. Without loss of generality, a
system is often represented with the following non-linear state-space representation

x(k + 1) = f(x(k),u(k)),
y(k) = g(x(k),u(k)),

(3-1)

where x(k) ∈ Rnx is the system state vector, u(k) ∈ Rnu is the control input vector and
y(k) ∈ Rny is the system output vector at time k. f : Rnx×Rnx → Rnx and g : Rnx×Rnx →
Rny are the system state evolution and system output functions.

Thus, when an explicit system model is available, an optimisation problem can be solved at
timestep k that is subject to the state and control input constraints and the system dynamics
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Figure 3-1: MPC scheme.

[34]. The general optimisation problem for the non-linear MPC case is given in (3-2) below.

min
u

JN(x,u, r) =
N−1∑
k=0

` (x(j),u(j), r(j)) + Vf (xN , rN ) ,

s.t. x(j + 1) = f(x(j),u(j)), ∀(j) ∈ {k, . . . , k +N − 1},
y(j) = g(x(j),u(j)), ∀(j) ∈ {k, . . . , k +N − 1},
x0 = x̂(j),
u(j) ∈ U , ∀(j) ∈ {k, . . . , k +N − 1},
x(j) ∈ X , ∀(j) ∈ {k, . . . , k +N − 1},

(3-2)

here JN (x,u, r) is the to-be minimised cost function. The first term, `(xj ,uj , rj) is the stage
cost which is computed at each prediction time index j and Vf(xN , rN ) is the terminal cost
at the end of the prediction horizon, j = N .

N ∈ Z>0 is the prediction horizon, u = (uk, · · · ,uk+N−1) are the control input vectors and
arguments of the optimisation problem, x = (xk . . .xk+N−1) are the predicted state vectors,
y = (yk . . .yk+N−1) are the predicted system output vectors and r = (rk, . . . , rk+N−1) are
the output reference trajectory vectors. Furthermore, the initial state x0 for the optimisation
problem is the state estimation x̂(k) at time instance k at which the optimisation problem
is solved. If full state information is available, x̂(k) = x(k). If no full state information is
available, the state is often estimated via an observer. U and X are the control input and the
state constraint sets, respectively.

The non-linear MPC algorithm is then given in Algorithm (1) below [35].
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Algorithm 1 MPC algorithm
Input: System functions f(x(k),u(k)), prediction horizon N , constraint sets U and X ;

1: Obtain initial state estimate x̂(k).
2: Solve (3-2) for the optimal input sequence u∗ = (u∗0, · · · ,u∗N−1).
3: Apply only the first input u(k) = u∗0.
4: Set k to k + 1.
5: Return to 1.

3-2 Linear Discrete-time (DT) state-space prediction model

For the lower layer setpoint tracking controller, a linear state-space description is used as
introduced in Chapter 2. The prediction model that has been used is given by{

x(k + 1) = Ax(k) +Buu(k) +Bvv(k),
y(k) = Cx(k),

(3-3)

where y(k) is obtained by stacking y = [yg yc]> as given by (2-1) and (2-2), x(k) are
internal states, u(k) are all the eight control inputs to the greenhouse as given by ugh in (2-3)
and v(k) are the five weather exogenous inputs to the greenhouse as given by vgh in (2-5).

As mentioned in Chapter 2, the dimensions of the implemented state-space system description
are as follows. A ∈ R7×7, Bu ∈ R7×8, Bv ∈ R7×5 and C ∈ R5×7, and the sampling time for
the implemented system description is, as mentioned in Chapter 2, τ l = 300 [s]. The pole
locations of the linear system are plotted in Figure 3-2 below.

Figure 3-2: Pole locations of the used greenhouse linear model for the lower layer setpoint
tracking control.

All but one pole are located in the interior of the unit circle. Except for the pole that
numerically resides on the unit circle, the system would be stable. The corresponding natural
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frequencies and damping ratios per pole are

ωn =
∣∣∣∣ ln(z)
τ l

∣∣∣∣ =



9.63 · 10−8

4.29 · 10−5

1.27 · 10−4

2.52 · 10−4

5.76 · 10−4

1.17 · 10−3

1.17 · 10−3


, ζn = −cos((∠z)) =



1
1
1
1
1

0.96
0.96


, (3-4)

As can be seen, five of the seven of the modes are critically damped with damping ratio of 1.

3-2-1 Augmented system

Extra tracking error states are added to obtain an augmented system that takes into account
the deviation of the reference. The extra states q(k) are given by

q(k + 1) = (y(k)− r(k)), (3-5)

The augmented system’s matrices are given by

[
x(k + 1)
q(k + 1)

]
=
[
A 0nx×ny

C 0ny×ny

] [
x(k)
q(k)

]
+
[

Bu

0ny×nu

]
u(k) +

[
Bv

0ny×nv

]
v(k) +

[
0nx×ny

−I

]
r(k),

y(k) =
[
C 0nx×ny

] [x(k)
q(k)

]
,

(3-6)
The state-space formulation of the augmented system is given by{

x̃(k + 1) = Ãx̃(k) + B̃uu(k) + B̃vv(k) + B̃rr(k),
y(k) = C̃x̃(k),

(3-7)

where variables with a tilde denote augmented system variables. It can also be rewritten as{
x̃(k + 1) = Ãx̃(k) + B̃ũ(k),
y(k) = C̃x̃(k),

(3-8)

where B̃ is given by

B̃ =
[

Bu Bv 0nx×ny

0ny×nu 0ny×nv −Iny×ny

]
, (3-9)

and the augmented input vector ũ is given by

ũ =

u(k)
v(k)
r(k)

 , (3-10)

The dimensions of the state-space matrices of the augmented system are as follows. Ã ∈
R(nx+ny)×(nx+ny), B̃u ∈ R(nx+ny)×(nu), B̃v ∈ R(nx+ny)×(nv), B̃r ∈ R(nx+ny)×(ny), C̃ ∈ R(ny)×(nx+ny)

and D̃ ∈ R(ny)×(nx+ny). With abuse of notation, the remainder of this chapter uses variables
without tilde to denote the augmented system, which will be used further on.
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3-3 QP controller design

Since a linear state-space system description is employed, the optimisation problem can be
recast into a QP problem to increase the problem’s solving speed; a QP program can be solved
in polynomial time [36].

The cost function to be minimised in order to track the temperature in the greenhouse is
defined in (3-11)

JN (x,u, r) =
kf+N−1∑
jf=kf

x(jf)>Qcx(jf), (3-11)

where Qc is the state cost matrix that contains tuning variables in this control setting. Qc is
set as diag([0, 0, 0, 0, 0, 1, 0, 0, 0, 0]), to penalise the deviation from the reference temperature
trajectory. Note that this results in a positive semi-definite cost and also no terminal cost is
implemented. Here, superscript f denotes that the problem deals with the lower layer, fast-
dynamical system. N is the control horizon, which is equal to the prediction horizon in this
case. For this application, N = 12, a control horizon of 1 hour, seemed a good compromise
between speed and performance.

The optimisation problem for the MPC controller is given by

u∗N = argmin
uN

JN (xN ,uN ) ,

s.t. x(jf + 1) = Ax(jf) +Buu(jf) +Bvv(jf) ∀jf = kf , . . . , kf +N − 1,
y(jf) = Cx(jf) ∀jf = kf , . . . , kf +N − 1,
Au,uu(jf) ≤ bu,u ∀jf = kf , . . . , kf +N − 1,
Au,lu(jf) ≥ bu,l ∀jf = kf , . . . , kf +N − 1,
Ay,uy(jf) ≤ by,u ∀jf = kf , . . . , kf +N − 1,
Ay,ly(jf) ≥ by,l ∀jf = kf , . . . , kf +N − 1,
x(kf) = x0.

(3-12)

Note that in this setting, full state information is assumed and also the short-term weather
prediction will be identical to the real implemented weather, i.e., v̂gh = vgh. The problem
can be rewritten as a QP problem by rewriting the sequence of outputs x(1), · · · ,x(N) as
a linear combination of the vector of control inputs uN , exogeneous inputs vN , references
rN , and the current state x(k) so the equality constraint can be eliminated. This is done as
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follows:

xN =


Bu 0 . . . 0
ABu Bu . . . 0
...

... . . . ...
AN−1Bu AN−2Bu . . . Bu


︸ ︷︷ ︸

Γu
N

uN +


A
A2

...
AN


︸ ︷︷ ︸

Γx
N

x(k)

+


Bv 0 . . . 0
ABv Bv . . . 0
...

... . . . ...
AN−1Bv AN−2Bv . . . Bv


︸ ︷︷ ︸

Γv
N

vN +


Br 0 . . . 0
ABr Br . . . 0
...

... . . . ...
AN−1Br AN−2Br . . . Br


︸ ︷︷ ︸

Γr
N

rN ,

(3-13)

The vector of control inputs is defined as

uN =

 u(k)
...

u(k +N − 1)

 , (3-14)

the vector of exogenous inputs is defined as

vN =

 v(k)
...

v(k +N − 1)

 , (3-15)

yN is defined as

yN =

 y(k)
...

y(k +N − 1)

 , (3-16)

and rN is defined as

rN =

 r(k)
...

r(k +N − 1)

 , (3-17)

in the same manner as uN . The cost function JN can now be rewritten as follows.

JN = x>N

 Qc
. . .

Qc


︸ ︷︷ ︸

Q

xN , (3-18)

Now, using (3-13), the cost function for the QP of the augmented system is given by

VN =
(
Γuu + ΓvvN + Γxx(k) + ΓrrN

)>
Q
(
Γuu + ΓvvN + Γxx(k) + ΓrrN

)
= u>NHuN + c(x(k))>uN + V,

(3-19)
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where the quadratic term matrix for the augmented system H, and the linear term matrix
for the augmented system c(x(k)) are given by

H =
(
ΓuuN

)>
Q
(
ΓuuN

)
, (3-20)

c(x(k)) = 2
(
v>NΓv + r>NΓr + x(k)>Γx

)
. (3-21)

Note that the quadratic cost matrixH used in this problem formulation is not positive definite
but rather positive semi-definite due to the positive semi-definite Q and Qc.

The constraints on the control inputs and system outputs can also be rewritten as linear
inequalities in terms of the free variable uN . The constraints are combined for every timestep:

 Ay,u
. . .

Ay,u

xN = Ay,uyN ≤

 by,u
...
by,u

 = βy,u,

 Au,u
. . .

Au,u

uN = Au,uuN ≤

 bu,u
...

bu,u

 = βu,u,

 Ay,l
. . .

Ay,l

xN = Ay,lyN ≤

 by,l
...
by,l

 = βy,l,

 Au,l
. . .

Au,l

uN = Au,luN ≤

 bu,l
...
bu,l

 = βu,l.

(3-22)

Then, again using (3-13), the constraints are written as


Ay,uΓ̃u

Ay,lΓ̃l

Au,u
Au,l

uN ≤


βy,u −Ay,uΓ̃xx(k)−Ay,uΓ̃vvN −Ay,uΓ̃rrN
βy,l −Ay,lΓ̃xx(k)−Ay,lΓ̃vvN −Ay,lΓ̃rrN

βu,u
βu,l

 , (3-23)

where Ay,l and Au,l accommodate the rewriting of the greater than inequality constraint to
a smaller than inequality constraint. Ay,u, Ay,l are the constraint matrices for the upper and
lower constraints on the outputs, respectively. by,u and by,l are the upper and lower bounds
on the outputs. These can be employed to induce bounds on the climate conditions such
that the climate cannot be harmful for the tomato crop. The Γ’s in (3-23) with tildes denote
the same Γ’s as in (3-13) only with system matrix C times every entry to obtain the output
vector over the entire prediction horizon in QP form.
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The constraints on the control inputs are set as follows

20
20
0
0
0
0
0
0


︸ ︷︷ ︸
bu,l

≤



TPipe,1
TPipe,1
φLee
φWind
CInj
L
SO1
SO2


︸ ︷︷ ︸

u

≤



80
80
100
100

1 · 106

50
100
100


︸ ︷︷ ︸

bu,u

, (3-24)

to match the minimal and maximal actuator values. The windward side window opening is
kept to maximally half the leeward side window opening, to diminish the different effect of
the ventilation rate on the windward side. This is implemented as

2φLee(jf) ≥ φWind(jf), ∀jf = kf , . . . , kf +N f
h − 1, (3-25)

and put into QP form in Aφ and bφ.

Summarising, the output-feedback control law in QP form that tracks the reference air tem-
perature is given by

u∗N = argmin
uN

uTNHuN + f(x(k))TuN ,

s.t.

Au,u
Au,l
Aφ

uN ≤

βu,u
βu,l
βφ

 , (3-26)

where the use of the output constraints is omitted, since the tracking achieves the desired
reference temperature very well.

In the receding horizon approach, just the first element of u∗N is implemented and the QP
problem is solved again at every timestep k ∈ {1, . . . , N}.

Algorithm 2 Temperature setpoint tracking linear MPC algorithm
Input: System matrices (A,Bu, Bv, C,D), prediction horizon N , constraint sets U and X ;

1: Obtain initial state estimate x̂(k).
2: Solve (3-26) for the optimal input sequence u∗ = (u∗0, · · · ,u∗N−1).
3: Apply only the first input u(k) = u∗0.
4: Set k to k + 1.
5: Return to 1.

3-4 QP benchmark results

In this section, the results from the synthesised tracking controller for the benchmark ref-
erence temperature trajectory will be shown. The results can be divided into the following
parts: the tracking capabilities, the control costs associated with this particular tracking, the
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resulting fruit yield and net economic profit. In this chapter, only the tracking capabilities,
associated control costs and resulting fruit yield are presented. The net economic profit is
only introduced in Chapter 6 in the comparison section that compares the three reference
temperature trajectories. First, the tracking capabilities of the designed linear QP MPC con-
troller are presented. Note that the model used for the controller design is the same as the
plant prediction model, and full state information is available; there is no model mismatch.

3-4-1 Tracking capabilities

The QP MPC controller can track the benchmark greenhouse indoor air reference temperature
over the entire season. To illustrate this, three days are shown in Figure 3-3, one at the
beginning, middle, and end of the growing season. Also, the corresponding weather exogenous
inputs, calculated optimal control inputs and the tracked greenhouse indoor air temperature
are shown, for the first and last day of the growing season.

Figure 3-3: Three days in the season with tracked TAir.

The tracking accuracy of the controller is expressed in terms of the Root mean square error
(RMSE):

RMSE =

√√√√∑N l
iN

u
i

k=1 (r1,k − y1,k)2

N l
iN

u
i

, (3-27)

which is RMSE = 0.0871 ◦C.

The tracking error for three selected days is shown in Figure 3-4 below.

Figure 3-4: Three days in the season with tracking error.
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3-4-2 Control costs

The associated calculated optimal controls for the two days are presented in this section. To
illustrate the effect of the weather on the generated control inputs, the weather variables for
the first and last day of the growing season are shown as well.

The outside air temperature at the beginning and end of the season are presented in Figure
3-5 below.

(a) TOut for the 1st day of the season. (b) TOut for the 165th day of the season.

Figure 3-5: TOut for the first and last day of the season.

The global radiation at the beginning and end of the season are presented in Figure 3-6 below.

(a) IGlob for the 1st day of the season. (b) IGlob for the 165th day of the season.

Figure 3-6: IGlob for the first and last day of the season.

The calculated optimal heating pipe inputs are presented in Figure 3-7 below.
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(a) TPipe1 and TPipe2 for the 1st day of the season. (b) TPipe1 and TPipe2 for the 165th day of the season.

Figure 3-7: TPipe1 and TPipe2 for the first and last day of the season.

The calculated optimal window openings for the beginning and end of the season are presented
in Figure 3-8 below.

(a) φLee and φWind for the 1st day of the season. (b) φLee and φWind for the 165th day of the season.

Figure 3-8: φLee and φWind, the leeward and windward side window openings, for the first and
last day of the season.

The calculated optimal screen openings are presented in Figure 3-9 below.

(a) SO1 and SO2 for the 1st day of the season. (b) SO1 and SO2 for the 165th day of the season.

Figure 3-9: SO1 and SO2 for the first and last day of the season.

The calculated optimal light intensity and CO2 injection rate are presented in Figure 3-10
below.
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(a) CInj and L for the 1st day of the season. (b) CInj and L for the 165th day of the season.

Figure 3-10: CInj and L for the first and last day of the season. It can be seen that the lights
are used as heating source.

The outside CO2 concentration, humidity and wind speed at the beginning and end of the
season are presented in Figure 3-11 below.

(a) COut, AHOut and wOut for the 1st day of the season. (b) COut, AHOut and wOut for the 165th day of the
season.

Figure 3-11: COut, AHOut and wOut for the first and last day of the season.

M. van Duijn Master of Science Thesis



3-5 Conclusive remarks on tracking QP MPC 45

Fruit yield

The resulting fruit yield as simulated by the non-linear model as plant is presented in Figure
3-12 below.

Figure 3-12: Fruit yield resulting from the benchmark reference trajectory.

The amount of kg fresh tomato weight resulting from tracking the predefined reference tem-
perature trajectory is 807 kg when considering the same greenhouse production compartment
as the Autonomous greenhouse challenge (AGC).

3-5 Conclusive remarks on tracking QP MPC

In this chapter, the lower layer setpoint tracking controller has been synthesised. Some
remarks on the further use are made.

The designed QP MPC temperature setpoint tracking controller will be identical for both
upper layer setpoint generating controllers. This is because this controller is merely used to
follow the proposed climate strategy and to calculate which controls are needed to achieve
the proposed climate strategy.

The controller can achieve the benchmark reference temperature trajectory of 20 degrees at
night and 24 degrees by day during the entire growing season under changing weather circum-
stances. For further use, the upper layer control strategies can infer reference temperatures
that are not easily compatible with the weather conditions at that time, e.g., a very high tem-
perature setpoint at the beginning of the season. Thus from these preliminary benchmark
results, it cannot be concluded that every climate strategy is achievable by this lower layer
setpoint tracking controller.

The controls are now merely calculated to track the proposed temperature setpoints. However,
to achieve optimal performance in terms of resource usage, a term could be included that
penalises the control input. However, since the focus is to test which upper layer control
strategy proposes the optimal climate strategy, this trade-off in the lower layer is omitted.

It can be concluded that the synthesised controller is usable for comparing the climate strategy
generating controllers.
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Chapter 4

Upper layer setpoint generating Model
predictive control (MPC)

Up until now, the greenhouse indoor climate subsystem and crop subsystem were described
using different models. The overall crop production control problem was decomposed into a
two-layered structure. A linear MPC controller was described and implemented for a bench-
mark greenhouse indoor air reference temperature. In this chapter, an Economic model
predictive control (EMPC) controller will be synthesised that generates reference greenhouse
indoor air temperatures that will be tracked by the lower layer controller of the overall de-
composed problem. First, the applicable EMPC theory will be described and leveraged for
the particular crop production problem in Section 4-1 and Section 4-2. Then, the results in
combination with the lower layer setpoint tracking controller will be presented in Section 4-3.

4-1 EMPC theory

For non-linear systems, the traditional quadratic cost that is encountered in tracking MPC
can logically be replaced by some economic criterion. In this way, output constraints can be
directly integrated in the optimisation objective [37].
EMPC unifies the economic optimisation of a system with a receding horizon policy [38]. The
main difference with nominal tracking MPC is the more general cost function of the form

Jeco = ‖q(u)‖ − ‖y‖, (4-1)

where q(u) represents the control input costs and y is some expression of the economic revenue
related to the process outputs. The cost function can be any cost function with some economic
parameters.
The economic goal functions encountered in the optimisation problem for the crop cultivation
control problem vary in the exact implementation. Generally, they include a type of expression
of the dry matter production, the control input costs, control input rates and sometimes
penalty functions on the different control inputs [39].
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4-2 Fruit yield maximisation EMPC

In this section, the theory will be used for the crop production problem at hand. First, the
used prediction model, which has been introduced briefly in Chapter 2, will be covered again.
Then, the used cost metric and constraints, and the implications of these aspects will be
presented.

4-2-1 Prediction model

For the upper layer setpoint generating MPC controller, a linear state-space description of
the greenhouse system, as introduced in Chapter 2 has been adopted{

xs
gh(ks + 1) = As

ghxs
gh(ks) +Bs

ughus
gh(ks) +Bs

vghvs
gh(ks),

ys
gh(ks) = Cs

ghxs
gh(ks),

(4-2)

here superscript s denotes the upper layer, slow-varying subproblem variables, the subscript
gh denotes that the entire greenhouse system is considered, xs

gh(k) are internal states, us
gh(k)

are all the eight control inputs to the greenhouse and vs
gh(k) are the five weather exogenous

inputs to the greenhouse and ys
gh(k) are the five outputs of the greenhouse. Since the states

are internal states, they do not have a physical meaning. They are not full-state measurable.
Since the state needs to be estimated only once every six hours, once per upper layer iteration,
this does not have big implications if the state estimation is not perfect.

As mentioned in Chapter 2, the dimensions of the implemented state-space system description
are as follows. As

gh ∈ R7×7, Bs
ugh ∈ R7×8, Bs

vgh ∈ R7×5 and Cs
gh ∈ R5×7, and the sampling

time for the implemented system description is, as mentioned in Chapter 2, τ s = 6 [h]. The
pole locations of the linear system are plotted in Figure 4-1 below.

Figure 4-1: Pole locations of the used greenhouse linear model for the upper layer setpoint
tracking control.

All poles are within the unit circle, except one that numerically lies on the unit circle. The
system would be stable if not for the pole located on the unit circle. The corresponding
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natural frequencies and damping ratios per pole are

ωn =
∣∣∣∣ ln(z)
τ l

∣∣∣∣ =


6.9 · 10−13

1.2 · 10−5

1.2 · 10−5

1.7 · 10−5

1.7 · 10−5

 , ζn = −cos((∠z)) =


−1
0.32
0.32
0.97
0.97

 , (4-3)

here, the negative damping would imply that the system is unstable. However, this negative
damping corresponds to the fruit weight and leaf weight dynamics; it originates from the
pole furthest from the origin. The notion of stability does not apply directly to these kind
of dynamics. Thus, it will not have any implications on the climate control. The natural
frequencies of the linear system used for the upper layer crop production control are smaller
when compared to the natural frequencies of the linear system used in the lower layer climate
control, which were stated in Chapter 3.

4-2-2 Cost metric for EMPC

The upper layer economic optimisation considers the fruit weight mF and the control costs
over the entire growing season. A single harvest is considered at the end of the growing season,
giving rise to a shrinking horizon. The general aforementioned economic cost function is then
as follows for the particular crop production control problem as described in this thesis

J(us
gh) =

Ns
i −k

s+1∑
js=1

(
`cost(js)

)
−mF(N s

i ), (4-4)

In the above equation, mF(N s
i ) is the total fruit dry weight at the end of the season, N s

i = 664
is the number of upper layer iterations to cover the whole growing season from the beginning,
and js is the jth time instance in the upper layer prediction. Furthermore, ks is the current
time instance and `cost(js) is the stage cost associated with the calculated control inputs per
upper layer prediction time instance js and given below.

`cost(js) = (us
gh(js))>Rs

ughus
gh(js), (4-5)

where Rs
ugh is the control cost matrix for the upper layer subproblem and given by Rugh,s =

diag([1, 0, 0, 106, 1, 1, 0, 0]). The economic cost of the actuators that were implemented in-
cludes the costs for the electricity of the lighting system and the heating energy consumption
of the two heating pipe systems, in accordance with the economic performance metric in [22].
Hence, the economic control costs induced by the usage of the temperature and black-out
screens and the opening of the windows is neglected.

This cost function is a non-convex cost function due to the second term representing the
economic revenue from the fruit yield.

4-2-3 EMPC constraints for crop production control

The variables occurring in the EMPC optimisation need to be constrained. The controls are
constrained in a similar fashion as in Chapter 3, and restated for clarity in (4-6). In the
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EMPC scheme, the outputs of the greenhouse indoor climate are constrained as well. This is
due to the fact that the optimisation problem is predicting over the entire growing season and
might find an optimum with corresponding to-be tracked greenhouse indoor climate variables
that are harmful to the crop at the current time. The crop outputs are not constrained, as
these are maximised.

The constraints on the greenhouse indoor climate variables are set to


15
0
0
0
0


︸ ︷︷ ︸
blow

ygh,s

≤


TAir
CAir
AHAir
mF
mL


︸ ︷︷ ︸

ygh,s

≤


30
50
10

1 · 106

1 · 106


︸ ︷︷ ︸
bupp

ygh,s

,



20
20
0
0
0
0
0
0


︸ ︷︷ ︸
blow

ugh,s

≤



TPipe,1
TPipe,1
φLee
φWind
CInj
L
SO1
SO2


︸ ︷︷ ︸

ugh,s

≤



80
80
100
100

1 · 106

50
100
100


︸ ︷︷ ︸
bupp

ugh,s

, (4-6)

here 15 ◦C and 30 ◦C for TAir are chosen according to the tomato growing temperatures as
described in Chapter 2. The bounds for CAir and AHAir are set to prevent unfavourable
conditions for the tomato crop. The upper bounds on the fruit and leaf dry weight are set
very high to approximate no bound, and the lower bound for the crop outputs are set to zero
since negative fruit or leaf dry weight is not possible in reality. The bounds on the control
inputs are determined by the minimum and maximum values the actuators can achieve. The
upper and lower bound matrices for the entire prediction horizon are then constructed as
follows.

βupp
ygh,s =

b
upp
ygh,s
...

bupp
ygh,s

 , βlow
ygh,s =


blow

ygh,s
...

blow
ygh,s

 , (4-7)

βupp
ugh,s =

b
upp
ugh,s
...

bupp
ugh,s

 , βlow
ugh,s =


blow

ugh,s
...

blow
ugh,s

 , (4-8)

where bupp
ugh,s is repeated N s

i − ks + 1 times. The constraint matrices over the entire growing
season are given by

Aupp
ygh,sΓugh,s

Alow
ygh,sΓugh,s

Aupp
ugh,s

Alow
ugh,s

uN ≤


βupp

ygh,s −A
upp
ygh,sΓxgh,s(ks)x(k)−Aupp

ygh,sΓvgh,s

βlow
ygh,s −A

low
ygh,sΓxgh,s(ks)x(k)−Alow

ygh,sΓvgh,s

βupp
ugh,s

βlow
ugh,s

 , (4-9)

where Aupp
ygh,s and Alow

ygh,s accommodate the rewriting of the greater than inequality constraint
to a smaller than inequality constraint. The constraint matrices are structured in the same
manner as described in Chapter 3, only with Aupp

ygh,s , Alow
ygh,s , A

upp
ugh,s , Alow

ugh,s , Γugh,s , Γvgh,s ,
Γxgh,s(ks) and Γrgh,s with the system matrices of the used upper layer greenhouse system
prediction model. The difference is only that the respective matrices shrink along with the
shrinking horizon implementation.
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4-2-4 EMPC optimisation problem and algorithm for crop production control

The optimisation problem that is solved in one upper layer iteration ks is given by

min
us

JN(xNs
h
,ugh,v

s
gh) =

Ns
i −k

s+1∑
js=1

(
`cost(js)

)
−mF(N s

i ),

s.t. xgh(js + 1) = Aghxgh(js) +Bughugh(js) +Bvghvgh(js), ∀js ∈ {ks, . . . , ks +N s
h − 1},

ygh(js) = Cghxgh(js), ∀js ∈ {ks, . . . , ks +N s
h − 1},

xs
gh(0) = x̂gh(ks),

ugh(js) ∈ U s
gh, ∀js ∈ {ks, . . . , ks +N s

h − 1},
xgh(js) ∈ X s

gh, ∀js ∈ {ks, . . . , ks +N s
h − 1},

(4-10)
here JN(xNs

h
,ugh,v

s
gh) is the to-be minimised cost function. The first term, `(xj ,uj , rj) is the

stage cost which is computed at each prediction time index j and Vf(xN , rN ) is the terminal
cost at the end of the prediction horizon, j = N s

h.

The EMPC algorithm for the crop production problem is then given in Algorithm (3) below
[35].

Algorithm 3 EMPC for crop production control algorithm
Input: System matrices (As

gh, B
s
ugh , B

s
vgh , C

s
gh, D

s
gh), prediction horizon N s

h, constraint sets
U s

gh and X s
gh, weather prediction vs

gh;
1: Obtain initial state estimate x̂gh(ks).
2: Solve (4-10) for the optimal input sequence (us

gh)∗ =
(
(us

0)∗, · · · , (us
Ns

h
)∗
)
and correspond-

ing optimal greenhouse indoor climate outputs.
3: Apply only the first input ugh(ks) = (u∗gh,0).
4: Set ks to ks + 1.
5: Return to 1.

When the crop production is controlled in this one-layered approach, the fast dynamics of
the greenhouse indoor climate are not taken into consideration. To ensure the indoor climate
variables are taken care of, the climate control extra layer is needed that operates at sampling
time τ f .

4-2-5 EMPC in the two-layer crop production control problem

Following the one-layer optimisation, the two-layer algorithm for the crop production control
problem with setpoint generating upper layer EMPC controller is given in Algorithm (4). In
contrast to the one-layer approach, the two-layer optimisation can deal with the slow and fast
dynamics of the greenhouse system and employ a prediction horizon that spans the whole
growing season.
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Algorithm 4 EMPC two-layer crop production control problem algorithm
Input: System matrices (As

gh, B
s
ugh , B

s
vgh , C

s
gh, D

s
gh), upper layer prediction horizon N s

h, con-
straint sets U s

gh, Ys
gh and X s

gh, weather prediction vs
gh, lower layer prediction horizon N f

h
constraint sets U f

gh and X f
gh;

1: Obtain initial state estimate x̂gh(ks).
2: Solve (4-10) for the optimal input sequence (us

gh)∗ =
(
(us

0)∗, · · · , (us
Ns

h
)∗
)
and cor-

responding optimal greenhouse indoor air reference temperature trajectory T ∗Air =
(T ∗Air,0, · · · , T ∗Air,N−1)

3: Sample first reference T ∗Air,0 to lower layer sampling rate.
4: for kf ∈ {1, . . . , N f

i }
a: Obtain initial state estimate x̂gh(kf

gh).
b: Solve (3-2) for the optimal input sequence (uf

gh)∗ =
(
(uf

0)∗, · · · , (uf
N f

h
)∗
)
.

c: Apply only the first input u(kf) = (uf
gh,0)∗.

d: Set kf to kf + 1.
e: Return to 4.

5: end for
6: Set ks to ks + 1 and update initial state estimate x̂gh(ks).
7: Return to 1.

4-3 EMPC fruit maximisation results

The two-layer approach for crop production control is implemented, of which the results are
presented in this section. The setpoint generating EMPC algorithm results are divided into
the climate strategy, resource usage, fruit yield and net economic profit.

4-3-1 EMPC climate strategy results

In Figure 5-4 below, the generated reference temperatures over the entire season are shown.

Figure 4-2: Reference temperatures generated by EMPC controller over the entire growing
season.

Here, the output constraint set Ys
gh implements the upper and lower bound on the generated

reference temperature by TAir ≥ 15◦C and TAir ≤ 30◦C, which the generated temperature
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setpoints satisfy. The weekly averages for the generated EMPC greenhouse indoor air tem-
perature setpoints and corresponding average other greenhouse indoor variables are shown in
Figures 4-3 to 4-5 below.

Figure 4-3: Weekly average of TAir,ref and realised TAir, resulting from the EMPC climate
strategy.

Figure 4-4: Weekly average of CAir that accompanies the tracked TAir,ref , resulting from the
EMPC climate strategy.

Figure 4-5: Weekly average of AHAir that accompanies the tracked TAir,ref , resulting from the
EMPC climate strategy.
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It can be noted that the tracking performs worse at the end of the growing season. This can
be explained due to the larger difference between the nocturnal and diurnal setpoints. The
cooling cannot be achieved in the available time with these fluctuations.

4-3-2 EMPC resource usage

The weather conditions, crop conditions and climate strategy vary throughout the growing
season and the calculated control inputs to follow the EMPC climate strategy vary accordingly.
For illustrative purposes, the optimal controls calculated by the lower layer setpoint tracking
controller are depicted for the first and last day of the growing season in Figures 4-6 to 4-9
below.

The calculated optimal heating pipe inputs are presented in Figure 4-6 below.

(a) TPipe1 and TPipe2 1st day of the season. (b) TPipe1 and TPipe2 166th day of the season.

Figure 4-6: TPipe1 and TPipe2 first and last day of the season, resulting from the EMPC climate
strategy.

The calculated optimal leeward side and windward side window openings, φLee and φWind,
for the beginning and end of the season are presented in Figure 4-7 below.

(a) φLee and φWind 1st day of the season.
(b) φLee and φWind 166th day of the season, resulting
from the EMPC climate strategy.

Figure 4-7: φLee and φWind, the leeward and windward side window openings, for the first and
last day of the season, resulting from the EMPC climate strategy.

The calculated optimal screen openings are presented in Figure 5-10 below.
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(a) SO1 and SO2 1st day of the season. (b) SO1 and SO2 166th day of the season.

Figure 4-8: SO1 and SO2 first and last day of the season, resulting from the EMPC climate
strategy.

The calculated optimal light intensity and CO2 injection rate are presented in Figure 4-9
below.

(a) CInj and L 1st day of the season. (b) CInj and L 166th day of the season.

Figure 4-9: CInj and L first and last day of the season, resulting from the EMPC climate strategy.

4-3-3 EMPC fruit yield results

The fruit yield resulting from the EMPC climate strategy on the ground truth crop simulator
is presented in Figure 4-10 below.

Figure 4-10: Fruit yield, resulting from the EMPC climate strategy.
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The resulting amount of fresh tomatoes from the EMPC strategy is 815 kg for the particular
greenhouse department considered in this thesis and the Autonomous greenhouse challenge
(AGC). This is more than the crop yield resulting from the benchmark reference temperature
strategy. The benchmark reference temperature strategy yielded 806 kg of fresh tomatoes.

4-4 Conclusive remarks on fruit maximisation EMPC

In this chapter, the upper layer EMPC controller is presented that generates reference tem-
peratures that are sent to the climate tracking controller. Some conclusive remarks on the
interpretation of this controller will be given before this controller will be compared to the
novel Data-enabled predictive control (DeePC) setpoint generating controller in the next
chapter.

The model-based two-layered control scheme that uses an EMPC setpoint generating con-
troller and MPC setpoint tracking controller is capable of controlling the crop production.
The effectiveness depends on the accuracy of the model description, which was covered in
Chapter 2.

The temperature strategy resulting from the EMPC controller tends to a higher reference
temperature nearing the end of the growing season. This is logical when considering the
weather conditions, which imply hotter outside air temperature and higher global radiation
at the end of the growing season.

The controller generated reference temperatures fluctuate more at the end of the season when
compared to the reference temperatures at the beginning of the season. This can indicate
harsher control strategies needed to achieve these setpoints.
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Chapter 5

Upper layer setpoint generating
Data-enabled predictive

control (DeePC)

So far, the overall system has been introduced according to a non-linear crop model and
linear climate models. The overall problem has been decomposed into two layers, of which
the lower layer employs a setpoint tracking Model predictive control (MPC) controller which
has been described. The first controller that generates the reference air temperatures has
been discussed, which is an Economic model predictive control (EMPC) controller. In this
chapter, the second setpoint generating controller will be synthesised, which is a leveraged
DeePC controller. First, the DeePC preliminary theory will be introduced in Section 5-1.
Hereafter, it will be leveraged for a new type of DeePC controller in Section 5-2. Last, the
preliminary results will be discussed in Section 5-3.

5-1 DeePC theory

The novel DeePC algorithm, as presented in [40], uses a parametric-free system description
to compute optimal controls in a receding horizon fashion, while using real-time output feed-
back. It replaces the system identification, state estimation and future trajectory prediction
with one single optimisation problem. The algorithm allows the implementation of input and
output constraints, useful for safety criteria. The formal equivalence with MPC for determin-
istic Linear time-invariant (LTI) systems has been proven. This section first introduces the
systems’ behavioural theory. Then, the DeePC algorithm is presented.

5-1-1 Systems behavioural theory

Behavioural system theory is employed in DeePC for the used non-parametric system repre-
sentation. Behavioural system theory considers the subspace of the signal space in which the
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trajectories of the dynamical system exist. In contrast with classical system theory, where
particular system representations are employed, this theory describes dynamical systems in
the more general terms of their behaviour. A dynamical system is captured by the following
definitions [41], taken directly from [40]:

Definition 5.1 (Dynamical system). A dynamical system is a 3-tuple (Z≥0,W,B) where
Z≥0 is the discrete-time axis, W is a signal space, and B ⊆WZ≥0 is the behaviour.

Definition 5.2 (Linear dynamical system). (Z≥0,W,B) is linear if W is a vector space and
B is a linear subspace of WZ≥0 .

Definition 5.3 (Time invariant dynamical system). (Z≥0,W,B) is time invariant if B ⊆ δB
where δ : WZ≥0 is the forward time shift defined by (δw)(t) = w(t+1) and δB = {δw|w ∈ B}.

Definition 5.4 (Complete dynamical system). (Z≥0,W,B) is complete if B is closed in the
topology of pointwise convergence.

Lm+p are the class of systems (Z≥0,Rm+p,B) that satisfy the definitions (5.2)-(5.4), where
m, p ∈ Z≥0. Furthermore, dynamical system W of (Z≥0,Rm+p,B) is finite-dimensional if it
satisfies (5.2)-(5.3) [42]. Proceeding, only the behaviour B is used to denote a dynamical
system Lm+p.

The two so-called identifiability conditions are formulated that are needed and sufficient for
LTI systems to describe the dynamical system from data [42]:

Definition 5.5 (Controllable). A system B ∈ Lm+p is controllable if for every T ∈ Z≥0, w
1 ∈

BT , w
2 ∈ B there exists signal w ∈ B and T ′ ∈ Z≥0 such that wt = w1

t for 1 ≤ t ≤ T and
wt = w2

t−T−T ′ for t > T + T ′.

Definition 5.6 (Persistently exciting of order L). Let L, T ∈ Z≥0 such that T ≥ L. The
signal u = col(u1, . . . , uT ) ∈ RTm is persistently exciting of order L if the Hankel matrix

HL(u) :=

u1 · · · uT−L+1
... . . . ...
uL · · · uT

 (5-1)

is of full row rank.

Definition (5.5) implies that any two trajectories of a controllable behavioural system can be
patched together in finite time. Definition (5.6) implies that the full dynamics of the systems’
behaviour is captured by an output sequence that results from exciting the system with a
persistently exciting input signal.

Equivalence of representations

The dynamical system’ behavioural representation B is equivalent to, amongst other para-
metric system representations, the Discrete-time (DT) state-space representation denoted
by B(A,B,C,D) = {col(u, y) ∈ (Rm+p)Z≥0 | ∃x ∈ (Rn)Z≥0s.t. σx = Ax + Bu, y =
Cx+Du}.
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5-1 DeePC theory 59

The following notions are needed to collect the data for the parametric-free system representa-
tion of dynamical system B. The state-spaceminimal representation is the input/output/state
(I/S/O) representation of smallest order n(B). The lag `(B) of a dynamical system is de-
fined as the smallest integer number ` ∈ Z≥0 such that O`(A,C) := col(C,CA, . . . , CA`−1),
the observability matrix, has rank n(B). The number of data points T must be at least
(nu + 1)(t + n(B) − 1) to satisfy the condition of persistence of excitation. Last, the lower
triangular Toeplitz matrix TN (A,B,C,D) consisting of (A,B,C,D) is defined by

TN (A,B,C,D) :=


D 0 · · · 0
CB D · · · 0
... . . . . . . ...

CAN−2B · · · CB D

 . (5-2)

Then, the equivalence of representations relies on the following two lemmas [41]:
Lemma 5.1 (Unique system state). Let B ∈ Lm+p and B(A,B,C,D) a minimal I/S/O
representation. Let Tp, Tf ∈ Z>0 with Tp ≥ `(B) and col(uini, ufut, yini, yfut) ∈ BTp+Tf . Then
there exists a unique xini ∈ Rn(B) such that [43]

y = ON (A,C)xini + TN (A,B,C,D)ufut (5-3)

Lemma 5.2 (Fundamental Lemma). Consider a controllable system B ∈ Lm+p. Let T, t ∈
Z>0, and w = col(u, y) ∈ BT . Assume u to be persistently exciting of order t+ n(B). Then
colspan(Ht(w)) = Bt.

Lemma (5.1) implies that, given a sufficiently long window of initial system data col(uini, yini),
the state to which the input sequence uini drives the system is unique. Also, if the system
matrices (A,B,C,D) and the input trajectory u and corresponding output trajectory y are
known, the initial system state trajectory xini can be computed. The Fundamental Lemma
(5.2) implies that a persistently exciting input sequence generates a finite length output
sequence that can construct any output trajectory of a controllable LTI system.

5-1-2 DeePC algorithm

Data collection

DeePC uses a parametric-free system representation which consists of offline measured se-
quence of input and output data ud = col(u1, · · · ,uT) ∈ RTnu and yd = col(y1, · · · ,yT) ∈
RTny with the assumption that ud is persistently exciting. The data is put into Hankel matrix
form and split into two parts, the so-called past data and future data, as follows

[
Up
Uf

]
=



u1 u2 . . . uT−Tp−Tf+1
...

... . . . ...
uTp uTp+1 . . . uT−Tf

uTp+1 uTp+2 . . . uT−Tf+1
...

... . . . ...
uTp+Tf uTp+Tf+1 . . . uT


, (5-4)
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For the input data and output data, this results in[
Up
Uf

]
:= HTp+Tf

(
ud
)
,

[
Yp
Yf

]
:= HTp+Tf

(
yd
)
, (5-5)

where Up ∈ R(Tpnu)×(T−Tp−Tf+1), the past input data consists of the first Tp block rows of
HTp+Tf (ud) and Uf ∈ R(Tfnu)×(T−Tp−Tf+1), the future input data, consists of the last Tf block
rows of HTp+Tf (ud). Similar for the past output data Yp ∈ R(Tpny)×(T−Tp−Tf+1) and the future
output data Yf ∈ R(Tfny)×(T−Tp−Tf+1). The subscript p denotes the past data that is used for
initial condition estimation of the underlying system state, and the subscript f denotes the
future data that is used to predict the future system trajectories. The data needs to satisfy
the following condition: T ≥ (nu + ny + 1)(Tp + Tf + ny)− 1.

Using the Fundamental Lemma presented in [40], the dynamical system B can be described
parametric-free if there exists g ∈ RT−Tp−Tf+1 such that

Up
Yp
Uf
Yf

 g =


uini
yini
ufut
yfut

 . (5-6)

Furthermore, if Tp ≥ `(B), the uniqueness result which is presented in [40] implies that a
unique xini ∈ Rn(B) exists for which the output y is uniquely determined. Future system
trajectories can be predicted given an initial trajectory col(uini,yini) ∈ Bini and the offline
collected data Up, Uf , Yp and Yf . Also, given a desired reference output trajectory y, the
corresponding feed-forward control input sequence u can be computed.

DeePC algorithm

The optimisation problem solved in the DeePC algorithm is then given by

min
g,u,y

Tf−1∑
k=0

(
‖yk − rt+k‖2Q + ‖uk‖2R

)
,

s.t.


Up
Yp
Uf
Yf

 g =


uini
yini
ufut
yfut

 ,
uk ∈ U , ∀k ∈ {0, . . . , Tf − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tf − 1},

(5-7)

where Np ∈ Z>0 is the prediction horizon, r = (r0, r1, . . . , rNp) ∈ (Rny )Z≥0) the reference
trajectory, col(uini,yini) ∈ BTp the past input/output data, U ⊆ Rnu the input constraint
set, Y ⊆ Rny the output constraint set, Q ∈ Rny×ny the output cost matrix, R ∈ Rnu×nu the
input cost matrix.

The key difference with the equivalent MPC optimisation problem is that the Input-output
(I/O) samples completely replace the system model and state estimate in the optimisation
problem. The DeePC algorithm is now given by
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Algorithm 5 DeePC algorithm
Input: col(ud,yd) ∈ BT , reference trajectory r ∈ RNp , past input/output data
col (uini,yf) ∈ BTf , constraint sets U and Y, and performance matrices Q and R

1: Solve (5-7) for g?.
2: Compute the optimal input sequence u? = Ufg

?.
3: Apply input (u(t), . . . ,u(t+ s)) = (u?0, . . . ,u?s) for some s ≤ Np − 1.
4: Set t to t+ s and update uini and yini to the Tf most recent input/output measurements.
5: Return to 1.

A schematic representation of the DeePC algorithm is presented in Figure 5-1

Figure 5-1: DeePC scheme.

5-2 Fruit yield maximisation DeePC

In this section, the DeePC formulation is leveraged to perform the fruit yield maximisation in a
parametric-free form. First, the future crop output prediction using the systems’ behavioural
theory is implemented. Then, future TAir,ref trajectories using a leveraged DeePC algorithm
are shown. For the fruit yield maximisation subproblem, a sampling time of Ts = 6[h] is used
to match the sampling time of the upper layer EMPC implementation.

5-2-1 DeePC greenhouse-crop system description

The crop production control problem includes, besides the inputs and outputs, also the
exogenous weather inputs. When considering the problem in the setting that the consid-
ered system is the crop subsystem, the greenhouse indoor climate outputs are also imple-
mented as exogenous inputs. Here, data Hankel matrices are constructed of the recorded
exogenous input signals vd

g = col(vg(1), . . . ,vg(T )) and greenhouse indoor climate signals
yd

g = col(yg(1), . . . ,yg(T )) as follows

HTp+Tf
(vg) :=

 vg(1) · · · vg(T − Tp − Tf + 1)
... . . . ...

vg(Tp + Tf) · · · vg(T )

 , (5-8)
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HTp+Tf
(yg) :=

 yg(1) · · · yg(T − Tp − Tf + 1)
... . . . ...

yg(Tp + Tf) · · · yg(T )

 . (5-9)

As such, the data are partitioned in the same manner into past and future parts as[
Vp
Vf

]
:= HTp+N

(
vd
)
,

[
Yg,p
Yg,f

]
:= HTp+N

(
yd

g

)
, (5-10)

and then the equality constraints in (5-7), that are the parametric-free system representations,
are changed to 

Ug,p
Yc,p
Vg,p
Yc,p
Ug,f
Vg,f
Yg,f


g =



ug,ini
yc,ini
vg,ini
yg,ini
ug,fut
vg,fut
yg,fut


, (5-11)

One would expect yc,ini, vc,fut, uc,ini and uc,fut since the crop subsystem is the considered sys-
tem in the fruit maximisation subproblem. However, the greenhouse indoor climate variables
yg are influenced by all weather variables and all greenhouse actuators, which in turn influence
the crop dynamics. Therefore, not yc,ini, vg,fut, uc,ini and uc,fut but rather yg,ini, vg,fut, ug,ini
and ug,fut are included in the parametric-free system representation. This is also to include
the control cost forecast depending on the long-term weather prediction into the upper layer
control problem. When all other trajectories are known, this system representation can be
used to predict future outputs yc,fut, by solving for g via a least-squares minimisation. Vice-
versa, if desired future outputs yc,fut are known, corresponding future inputs ug,fut can be
calculated. In Figures 5-2a to 5-2b, the future crop output prediction via the parametric-free
system representation at the beginning and end of the growing season is shown.

(a) Predicted crop outputs by DeePC and sys ID linear
model at the beginning of the growing season.

(b) Predicted crop outputs by DeePC and sys ID linear
model at the end of the growing season.

Figure 5-2: DeePC future crop output prediction capabilities compared to the linear identified
model and measurement data at the beginning and end of the growing season.

The prediction is accurate because measurements of the crop over the entire season are used for
the offline system representation construction. Because of the long sampling time, which leads
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to only 664 data points for the whole season, this can be implemented without tractability
issues. It can be concluded that the prediction is accurate enough to use for DeePC fruit
yield maximisation.

5-2-2 DeePC crop production control algorithm

After the parametric-free system representation has been adapted to fit the greenhouse-crop
system, the leveraged optimisation problem and corresponding algorithm for the crop pro-
duction control DeePC will be presented in this section. First, the optimisation problem will
be given, then the parameter choices are elaborated on. Finally, the issues corresponding to
the implementation over the entire season are mentioned.

Crop production control DeePC

First, the optimisation problem for the linear deterministic case will be given. Hereafter,
the optimisation problem for the non-linear or stochastic case will be shown, which is ulti-
mately implemented due to the stochastic nature of the exogenous inputs and the non-linear
behaviour of the system at hand.

Linear crop production control DeePC To employ the DeePC setting for fruit yield opti-
misation, the following optimisation problem set-up needs to be solved:

min
g

Tc,f−1∑
k=0

(
‖uk‖2R

)
− CFYc,fg(Tc,f),

s.t.


Ug,p
Yc,p
Vg,p
Yg,p
Vg,f

 g =


ug,ini
yc,ini
vg,ini
yg,ini
vg,fut

 ,
uk ∈ U , ∀k ∈ {0, . . . , Tc,f − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tc,f − 1}.

(5-12)

Here, the first term represents the costs associated with the controls and the second term
represents the revenue obtained from from the fruit weight. CF is a weighing factor for the
fruit dry weight revenue, and Yc,fg(Tc,f) denotes the last entry of the vector Yc,fg, which is
the predicted mF at the end of the prediction horizon.

Non-linear or stochastic crop production control DeePC When the DeePC scheme is used
for non-linear or stochastic systems, the optimisation with strict equality constraints might
not be able to find a solution. The greenhouse-crop system is under influence of the stochastic
weather exogenous inputs. Therefore, the equality constraints are softened, resulting in the

Master of Science Thesis M. van Duijn



64 Upper layer setpoint generating DeePC

following optimisation procedure:

min
g

Tc,f−1∑
k=0

(
‖uk‖2R

)
− CFYc,fg(Tc,f)

+ λVg,p‖Vc,pg − vc,ini‖22 + λVg,f‖Vc,fg − vc,fut‖22

s.t.

Ug,p
Yc,p
Yg,f

 g =

ug,ini
yc,ini
yg,ini


uk ∈ U ,∀k ∈ {0, . . . , Tc,f − 1},
yk ∈ Y, ∀k ∈ {0, . . . , Tc,f − 1},

(5-13)

here, λVg,p and λVg,f are regularisation parameters.

Parameter choices

In the crop production control DeePC setting, multiple parameters need to be chosen and
tuned. The parameters are the time parameters needed to split the measured data into past
and future parts and the costs on the different variables in the leveraged DeePC algorithm.

Choice of time parameters To predict the future crop outputs, the following values were
chosen: Tc,p = 4, Tc,f = 87 and Tc = 664. These values were chosen such that measurements
of the entire growing season were used and to satisfy the condition Tc ≥ (nuc +nyg→c +nvc +
1)(Tc,p + Tc,f + nyc)− 1.

This results in DeePC data matrices with the following dimensions. Ug,p ∈ R(nugTc,p)×(Tc−Tc,p−Tc,f+1),
Yc,p ∈ R(nycTc,p)×(Tc−Tc,p−Tc,f+1), Vg,p ∈ R(nvgTc,p)×(Tc−Tc,p−Tc,f+1), Yg,p ∈ R(nygTc,p)×(Tc−Tc,p−Tc,f+1),
Ug,f ∈ R(nugTc,f)×(Tc−Tc,p−Tc,f+1), Yc,f ∈ R(nycTc,f)×(Tc−Tc,p−Tc,f+1), Vg,f ∈ R(nvgTc,f)×(Tc−Tc,p−Tc,f+1),
Yg,f ∈ R(nygTc,f)×(Tc−Tc,p−Tc,f+1)

Tuning of weighing parameters The parameter that sets the relation between the control
costs and the output costs is CF. A value of CF = 3 · 104 resulted in temperature setpoints
that are reasonable.

The control cost matrix R has been set to R = diag([1, 0, 0, 106, 1, 1, 0, 0]), to penalise the
actuators that are taken into account in the final cost metric. These actuators are the heating
pipe systems, the lights and the CO2 injection.

λVg,p = λVg,f were set to 104.

Seasonly DeePC issues

When implementing the crop production control DeePC for the entire season, some issues
are encountered that correspond to the assumptions and conditions that are placed on the
data due to the particular DeePC data-based framework. These issues are the initialisation
at the beginning of the season, the shrinking horizon implementation and the effect of not
optimising over the entire growing season for the first 574 DeePC iterations.
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DeePC initialisation Data is available for 166 days of the growing season. For the upper
layer subproblem with corresponding sampling time, this means there are data trajectories
with 664 time instances. At time instance ks = 1, an additional Tc,p measurement time
instances are needed for the first Tc,p iterations to be able to pass initial trajectories to the
DeePC algorithm. This is accommodated for by taking the first Tc,p entries of yc, u, v, yg,
flipping them and appending them at the beginning of the dataset, as schematically depicted
in Figure 5-3 below.

Figure 5-3: DeePC data manipulation so that the first Tc,p iterations also possess initial tra-
jectories. Nseason is the total number of iterations for the whole growing season. At the first
time instance the problem is solved, ks = 1, Tp datapoints are needed, as yc,ini, uini, vc,ini and
yg,ini are needed in 5-13. In the picture, it is shown that this is circumvented by taking the first
available Tp datapoints and flipping them.

Note that the ratios in the figure do not correspond to the true implemented ratios.

Accommodation scheme for final fruit weight maximisation When maximising the fruit
yield, the time the final iteration of the prediction horizon represents is of importance. This
is because, in reality, the fruit weight does not always increase but at times also decreases
due to maintenance respiration. The iteration to maximise for is the 3rd time instance of the
day, which is the end of the midday.
Due to the nature of the DeePC set-up, not the entire growing season can be used for the
upper layer fruit maximisation procedure. This is because of the conditions that are imposed
on the T parameters in the DeePC set-up. Hence, here an accommodation scheme is needed.
Therefore, not a fixed prediction horizon Tc,f is used, but rather an alternating one, given by
Tc,f = [Tk . . . Tk︸ ︷︷ ︸

144x

Tend]. Here, Tk = [87 86 85 84] and Tend = [83 . . . 1].

Shrinking horizon DeePC When the algorithm proceeds, at some point, the DeePC imple-
mentation needs to have a shrinking horizon implementation, as can be seen in the paragraph
above. The shrinking horizon DeePC implementation and its implications will be presented
in this section.
When a shrinking horizon is implemented, the data matrices Ug,p, Yc,p, Vg,p and Yg,p that
are used to estimate the current state do not change in dimension. The data matrices that
are used to predict the future outputs Ug,f , Yc,f , Vg,f and Yg,f do change in dimension with
changing horizon. This happens as follows:

HTp+Tf
(d) :=


d1 · · · dT−Tp−Tf +1
... . . . ...

dTp+Tf
· · · dT

 , (5-14)
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here, d is any offline collected data trajectory ug, yc, vg or yg. The Hankel matrix used at
iteration ks is the entire matrix depicted in (5-14), and the Hankel matrix used at iteration
ks + 1 is the down-right part of the previous data matrix.

The resulting two-layer crop production control including the upper layer setpoint generating
DeePC controller is then given in Algorithm 6 below.

Algorithm 6 DeePC two-layer crop production control problem algorithm
Input: col(ud

g ,y
d
c ,y

d
g ,v

d
g ) ∈ BT , constraint sets U s and Ys, and performance matrices Q and

R

1: Solve (5-13) for g?.
2: Compute optimal greenhouse climate outputs y?g = Yg,fg

?.
3: Send air temperature reference TAir,ref to lower layer.
4: for kf ∈ {1, . . . , N f

i }
a: Obtain initial state estimate x̂gh(kf

gh).
b: Solve (3-2) for the optimal input sequence (uf

gh)∗ =
(
(uf

0)∗, · · · , (uf
N f

h
)∗
)
.

c: Apply only the first input u(kf) = (uf
gh,0)∗.

d: Set kf to kf + 1.
e: Return to 4.

5: end for
6: Set ks to ks+1 and update ug,ini, yc,ini, vg,ini and yg,ini to the Tini most recent input/output

measurements.
7: Return to 1.
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5-3 Fruit maximisation DeePC results

The results for the setpoint generating DeePC algorithm are divided into the climate strategy,
resource usage, fruit yield and net economic profit. These results will be presented in this
section.

5-3-1 DeePC climate strategy results

In Figure 5-4 below, the generated reference temperatures over the entire season are shown.

Figure 5-4: Reference temperatures generated by DeePC over the entire growing season.

Here, the output constraint set Ys implements the upper and lower bound on the generated
reference temperature by TAir ≥ 15◦C and TAir ≤ 30◦C, which the generated temperature
setpoints satisfy. The weekly averages for the generated DeePC greenhouse indoor air tem-
perature setpoints and corresponding average other greenhouse indoor variables are shown in
Figures 5-5 to 5-7 below.

Figure 5-5: Weekly average of TAir,ref , resulting from the DeePC climate strategy.
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Figure 5-6: Weekly average of CAir that accompanies the tracked TAir,ref , resulting from the
DeePC climate strategy.

Figure 5-7: Weekly average of AHAir that accompanies the tracked TAir,ref , resulting from the
DeePC climate strategy.

5-3-2 DeePC resource usage

Over the season, the weather conditions but also the climate strategy varies. Thus, the
calculated control inputs vary too. Not every day of the season will be shown, but rather the
control inputs calculated by the lower layer setpoint tracking controller to obtain the DeePC
climate strategies for the first and last day of the growing season are shown, as these days
vary the most in terms of weather conditions and crop conditions. The calculated optimal
heating pipe inputs are presented in Figure 5-8 below.

(a) TPipe1 and TPipe2 1st day of the season. (b) TPipe1 and TPipe2 165th day of the season.

Figure 5-8: TPipe1 and TPipe2 for the first and last day of the season, resulting from the DeePC
climate strategy.
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The calculated optimal window openings are presented in Figure 5-9 below.

(a) φLee and φWind 1st day of the season. (b) φLee and φWind 165th day of the season.

Figure 5-9: φLee and φWind for the first and last day of the season, resulting from the DeePC
climate strategy.

The calculated optimal screen openings are presented in Figure 5-10 below.

(a) SO1 and SO2 1st day of the season. (b) SO1 and SO2 166th day of the season.

Figure 5-10: SO1 and SO2 for the first and last day of the season, resulting from the DeePC
climate strategy.

The calculated optimal light intensity and CO2 injection rate are presented in Figure 5-11
below.

(a) CInj and L 1st day of the season. (b) CInj and L 165th day of the season.

Figure 5-11: CInj and L for the first and last day of the season, resulting from the DeePC
climate strategy.
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The heating pipes and lights are less used at the end of the season. The windows are used to
a greater extent to cope with the warmer weather conditions imposed by the hotter outside
temperature and higher global radiation. Also, the screens and lights are employed to control
the greenhouse indoor climate towards the setpoints.

5-3-3 DeePC fruit yield results

The fruit yield resulting from the DeePC climate strategy on the ground truth crop simulator
is presented in Figure 5-12 below.

Figure 5-12: Fruit yield, resulting from the DeePC climate strategy.

The amount of kg fresh tomato weight resulting from the DeePC strategy is 802 kg for the
considered greenhouse compartment.

5-4 Conclusive remarks on fruit yield maximisation DeePC

It has been shown that the computational burden incurred by using DeePC instead of model-
based equivalents is higher [44]. However, when using the DeePC setting in the upper layer
of the crop production control problem, this is not a big issue since the time elapsed by one
upper layer iteration is six hours. The average computation time of the DeePC algorithm over
the season is 41 seconds, thus not incurring too much delay in the control of the greenhouse.
During the calculation time of the new setpoint, the old setpoint can be used as the current
setpoint until the setpoint is updated in the next lower layer iteration.

The DeePC cannot predict the future outputs over the entire growing season due to the impli-
cations imposed by the DeePC set-up, which is contradicting with the original control design
objective. This states that the overall problem spans the whole growing season. However, the
proposed control architecture with the DeePC is able to handle the two timescales that are
present. Moreover, the prediction horizon of the upper layer spans multiple weeks. It can be
argued that this is long enough for the slow timescale dynamical system and long enough to
take into account the long-term weather prediction.

When the entire growing season of crop data is used for the parametric-free system representa-
tion of the crop subsystem, the data must be collected somewhere in the past of a greenhouse
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compartment with the crop. This implies that the data used to describe the greenhouse sys-
tem at hand does not originate from the true system under control, meaning that there is a
description mismatch.
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Chapter 6

Performance comparison

The performances of the two setpoint generating controllers are evaluated and compared
against the predefined benchmark reference temperature trajectory in this chapter. The
performance metrics used to compare the results are in terms of the generated climate strategy
by the controllers, resource usage, fruit yield and net economic profit.

6-1 Comparison metrics

6-1-1 Climate strategies

The most important aspects of the climate strategy are the temperature strategy, and whether
the setpoint tracking controller achieves the devised temperature strategy outputted by the
upper layer setpoint generating controller. For the two setpoint generating controllers’ average
CO2 and humidity levels, the reader is referred to Chapter 4 and Chapter 5.
The weekly average temperatures were presented already in the chapters that introduce the
setpoint generating controllers. In Figure 6-1 below, they are plotted together for comparison.

Figure 6-1: Generated reference greenhouse indoor air temperatures by the different setpoint
generating controllers and realised greenhouse indoor air temperatures.
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The Root mean square error (RMSE) of the greenhouse indoor air temperature is 0.942 ◦C for
the Economic model predictive control (EMPC) setpoint generating controller and 0.535 ◦C
for the Data-enabled predictive control (DeePC) setpoint generating controller. This implies
that the climate strategy that the EMPC controller generates is less suitable for the time of
the season. The RMSE for the predefined benchmark reference temperature is 0.087 ◦C.

6-1-2 Resource use and costs

The resource usages are calculated from the implemented control cost. The control costs
used in the cost function do not yet represent true resource usages or incurred economic costs
by the actuators, which will be the metric used to compare the methods. Therefore, the
control costs need this conversion to true economic costs. From the Autonomous greenhouse
challenge (AGC) evaluation, the metrics of interest are:

• Heating energy usage [MJ]

• Electricity energy usage [kWh]

• Daily CO2 dosage [g m-2].

From the above measures, the following three efficiencies are deduced:

• Energy use efficiency for heat [MJ kg-1 tomato]

• Energy use efficiency for electricity [kWh kg-1 tomato]

• CO2 use efficiency [kg CO2 dosage kg-1 tomato].

The calculations from the applied control input vectors to resource usage are explained in the
sections below. The used greenhouse data considered a greenhouse with production area of
Aprod = 62.5 [m2] and total area of Agh = 96 [m2] [13]. The height taken for the calculations
is Hgh = 6 [m] [45].

Heating energy consumption

The heating energy consumptions by the two heating pipe systems are derived as follows.
First, the heat release [W m-2] from the two heating pipes are calculated as [13]:

QPipes = 0.62(TPipe,1 − TAir) + 2.1(TPipe,2 − TAir). (6-1)

Hereafter, the heat release QPipes is converted to [MJ day-1].
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Electricity consumption

The electricity consumption by the artificial lighting system is calculated by converting the
measured electricity consumption to kWh. The data on which the control strategies are based
includes two lighting systems, High pressure sodium (HPS) and Light emitting diode (LED)
lighting. However, the calculated optimal control inputs only give optimal lighting settings
for one lighting system. The two lighting systems of the data both have different electricity
consumption rates, LED even per light colour. Since the control schemes calculate only one
lighting setting, an average electricity consumption rate is chosen, which is the average of the
HPS electricity consumption rate and the average LED electricity consumption rate.

LED electricity consumption rates [Wm-2]:

• Blue: 7.27

• Red: 25.3

• Farred: 6.23

• White: 22.72.

This results in an average LED electricity consumption rate when assuming all colours occur
evenly in the LED light, of: 15.38 [W m-2].

The average electricity consumption of the lighting system is then EC = 48.19 [Wm-2].
Hereafter, the electricity consumption is converted to kWh.

Economic costs by implemented actuator controls

From the resource usages of heating energy, electricity and CO2, economic costs are calculated
by multiplying the usages with given prices. The following prices are used. Electricity has
an on-peak price of €0.08 per kWh (07:00-23:00 h) and an off-peak price of €0.04 per kWh
(23:00-7:00 h). Heating energy has a fixed price of € 0.03 per kWh. Last, CO2 costs € 0.08
per kg up to 12 [kg m-2] and € 0.20 per kg above 12 [kg m-2] [13].

In this thesis, the controllers did not take into account the different electricity costs at dif-
ferent times. Hence, the performance metric might be skewed. However, it is insightful for
comparison purposes between the controllers since none of the controllers takes the cost into
account. Thus both controllers have the performance degradation due to this fact. In Ta-
ble 6-1 below, the calculated resource usages and accompanying efficiencies for the EMPC
and DeePC setpoint generating controllers and the predefined benchmark reference setpoint
trajectory are presented.
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Table 6-1: An overview of the resource use efficiency per setpoint generating controller.

TRef
generating controller

Heat Electricity CO2

Usage
[MJ]

Efficiency
[MJ kg-1]

Usage
[kWh]

Efficiency
[kWh kg-1]

Usage
[kg]

Efficiency
[kg kg-1]

Benchmark 1.258·104 15.6 1.670·104 21.1 640 0.79
EMPC 1.374·104 16.9 1.718·104 21.1 572 0.70
DeePC 1.398·104 17.4 1.582·104 19.7 507 0.63

It is noted that the climate strategy of the EMPC setpoint generating controller results in
medium efficient heating energy usage, less efficient electricity usage and medium efficient
CO2 usage. The DeePC setpoint generating controller results in the least efficient heating
energy usage according to the chosen metrics. However it also results in the most efficient
electricity and CO2 usages. The predefined benchmark reference temperature results in the
most efficient heating energy usage, medium electricity usage efficiency and the least efficient
CO2 usage.

6-1-3 Fruit yield revenue

Since in this problem setting, a single harvest at the end of the growing season is considered,
the price for the tomatoes is based on the final price according to the used dataset. The price
is 2€ per kg tomato [13].
In Figure 6-2 below, the resulting fruit yields from the three climate strategies are presented.

Figure 6-2: Resulting fruit yield from the climate strategies obtained from the setpoint generating
EMPC and DeePC controllers and the predefined benchmark reference trajectory.

The two setpoint generating controllers, EMPC and DeePC, result in higher fruit yield rate
during the season and lesser fruit yield rate near the end of the season. This could be explained
by the fruit respiration. Also, it can be seen that the benchmark temperature strategy results
in a smoother fruit yield rate but in a lesser fruit yield rate at the very end of the season.
This could be explained by some modelling error in the ground truth model.
It can be concluded that the different climate strategies result in comparable fruit yields at
the end of the growing season. The DeePC climate strategy results in 802 kg, the EMPC
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climate strategy results in 815 kg and the predefined benchmark climate strategy results in
806 kg.

6-1-4 Net economic profit

The net economic profit is the revenue minus the costs associated with the implemented
controls. In Table 6-2 below, the economic measures for the two setpoint generating con-
trollers and predefined benchmark reference trajectory are presented. These are calculated as
described in Section 6-1-2.

Table 6-2: Total costs, total income, and net profit (€/m2) for temperature generating control
strategies. Calculations were performed according to 6-1-2.

TRef generating controller Total cost
[€/m2]

Total income
[€/m2]

Net profit
[€/m2]

Benchmark 20.27 25.82 5.55
EMPC 21.00 26.08 5.08
DeePC 19.19 25.68 6.49

It can be concluded that according to these metrics, the DeePC setpoint generating controllers
results in the most profit, mainly because the economic costs incurred by the actuators are
the least of the three control strategies.

6-2 Discussion

As stated in Section 6-1-1, the climate strategy generated by the EMPC controller might
be the least suitable since the RMSE of the EMPC controller is the highest. Since the
average temperature generated by the EMPC controller is higher at the end of the season,
which would be expected when taking into account the higher outside temperature and higher
global radiation, this less suitable climate strategy can be explained by the strong fluctuations
in the nocturnal and diurnal setpoints.

The resource usage accompanying the DeePC generated climate strategy is 1.75% higher
for the heating when compared to the EMPC controller and 11.1% higher compared to the
predefined benchmark climate strategy. Even though the average temperature of the climate
strategy generated by the DeePC is, overall, lower than the average temperature of the climate
strategy generated by the EMPC controller, the heating usage is somewhat higher. This can
be explained by the fact that the nocturnal setpoints of the DeePC climate strategy at the
beginning of the season are higher than those of the EMPC climate strategy, resulting in
more required heating power. The average temperature of the DeePC climate strategy is
only significantly lower than the average temperature of the EMPC climate strategy after
half of the season. At this point in time, not as much heating power is required due to
the weather conditions that result in warmer greenhouse indoor climate conditions. When
compared to the benchmark temperature strategy, the required heating power is even higher
because the benchmark temperatures are not very harsh and lie more towards the seasonal
average.
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The DeePC resource usage for electricity is 7.92% less when compared to the EMPC con-
troller electricity use and 5.27% less when compared to the predefined benchmark climate
strategy. The lighting is less for the DeePC climate strategy when compared to the EMPC
and predefined benchmark climate strategy also due to the lower average temperature, since
the lighting systems were also used as heating sources.

The used CO2 by the DeePC generated climate strategy is 11.4% less than the used CO2 for
the EMPC climate strategy and 20.8% less than the used CO2 for the predefined benchmark
climate strategy. This can be due to multiple factors. The lower crop yield of the DeePC
strategy might partially be explained by this.

The fruit yield analysis has been performed using a non-linear mechanistic calibrated crop
model that describes the underlying physical processes of the crop. The fruit yield obtained
by the setpoint generating DeePC controller obtains 1.51% fewer tomatoes than the setpoint
generating EMPC controller and 0.54% fewer tomatoes than the predefined reference climate
strategy. Both the DeePC and the EMPC controllers use different system descriptions than
the non-linear crop model that is used as a plant prediction model. This can result in a
different temperature strategy than the optimal one for the respective prediction model.

Overall it can be stated that, even though the DeePC strategy results in a slightly lesser fruit
yield, the decrease in resource usage compensates for this in the overall economic criterion of
net profit.
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Chapter 7

Conclusion and discussion

7-1 Conclusions

This thesis aimed to assess whether the crop production can be controlled by data-driven con-
trol methods, maximising the fruit yield while minimising the resource usage and employing
a long-term weather prediction. Accordingly, the applicability of the novel Data-enabled pre-
dictive control (DeePC) algorithm has been investigated in a proposed hierarchical structure.
This work has focused on implementing control strategies on the long-term control of the crop
instead of merely the daily greenhouse indoor climate control. As such, the proposed control
scheme includes the effect of the long-term crop dynamics and weather dynamics throughout
the season while the short-term greenhouse indoor climate dynamics are also considered. The
three subquestions, accompanying the main research question as introduced in Chapter 1, are
recalled to analyse whether the proposed control scheme accomplishes the set requirements.

• What model will be implemented as a ground truth and what will be the
benchmark against which the proposed controllers are compared?
In Section 2-2, the non-linear, mechanistic model that describes the crop as a separate
subsystem in the greenhouse is introduced [18]. The model needed to describe the un-
derlying physical processes. The crop model has been chosen to describe the tomato
crop in a so-called medium-grained fashion, i.e., the tomatoes and leaves are modelled
as one weight. This is to keep the dimensionality of the overall crop production control
problem workable. To this end, the non-linear crop model has been adapted to include
all modern greenhouse controls that were present in the Autonomous greenhouse chal-
lenge (AGC) dataset. The main selection criterion for the non-linear crop model was
that the greenhouse indoor climate variables and crop variables are described in the
same manner as the dataset does. Thereafter, the non-linear crop model has been cal-
ibrated to use as a ground truth model for the proposed setpoint generating controller
comparison.

• How will the different timescales on which the greenhouse subsystems act
be dealt with?
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The proposed controllers employ a two-layer structure that is introduced in Section 2-3-
3. The architecture arises from a temporal and functional decomposition of the overall
problem. Here, the upper layer operates at a slower sampling rate and generates climate
setpoints which the faster-operating lower layer will track. As such, both timescales are
incorporated in the overall problem while addressing multiple objectives. In this work,
the focus is on the upper layer control. Hence, the lower layer controller will be a Model
predictive control (MPC) controller which is an often-used technique in the greenhouse
climate setpoint tracking control as found in the literature [15] [39] [46]. This lower
layer setpoint tracking controller is introduced in Chapter 3. Subsequently, the model-
based Economic model predictive control (EMPC) control algorithm for the setpoint
generation has been proposed in Chapter 4 that will be compared against the DeePC
setpoint generating controller, introduced in Chapter 5.

• How will the novel DeePC algorithm be implemented to maximise the fruit
yield?
The DeePC algorithm has been described for setpoint tracking in a fashion similar to
setpoint tracking MPC. To this aim, the DeePC algorithm has been extended to include
two types of exogenous inputs: the weather variables and the greenhouse indoor climate
variables that act on the crop subsystem. With the available data and the conditions
imposed by the DeePC set-up, the prediction horizon of the DeePC algorithm does
not span the entire growing season. However, it does span a longer time period than
is possible with a one-layer approach that implements the timescale of the lower layer.
After the two types of exogenous inputs are included, the cost function has been adapted
to the economic type of cost function and the stochastic nature of the weather variables.

The hierarchical decomposition of the overall problem can be employed to include different
control techniques for the upper layer or lower layer when desired. One drawback of the
DeePC method for crop production control over the entire growing season is that crop mea-
surement data is needed at each time instance that the problem is solved again to update
the initial trajectories. This is costly and perhaps impossible to acquire at the chosen upper
layer sampling time since it is currently measured manually [13]. Moreover, it can be con-
cluded that even though DeePC has shown to be computationally heavier than the equivalent
MPC [44], for the long-term crop production control problem this is not a problem since the
upper layer timescale operates at such a slow sampling rate that the computation time of
the setpoint is significantly less than the time expired during one upper layer instance. Con-
cluding, this thesis has identified that the DeePC algorithm can control the crop production,
maximising the fruit yield while minimising the control resource usage when it is implemented
in a hierarchical fashion.

7-2 Recommendations

The conventional EMPC and newly DeePC setpoint generating controllers can achieve suffi-
cient fruit growth via the outputted reference greenhouse indoor air temperatures. However,
multiple aspects could be further explored or improved. To improve the applicability of the
data-driven control scheme for the crop production control problem, a further study could
assess the following topics.
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• Control cost prediction implementation: To decrease the resource usage further
in terms of the economic costs implied by them, a distinction could be made between
the peak hours and off-peak hours of the and electricity costs. To extend further, a
prediction could be implemented that uses a forecast of the electricity and fuel cost to
include in the optimisation to take cost fluctuations into account over the long term.

• Crop management: One of the main challenges in crop production control is how to
manipulate the crop characteristics, e.g., plant load, stem density, such that the long-
term crop objective of the best tomatoes is achieved. A medium-grained model has been
used that does not describe the individual fruits, stems and leaves in this work. The
proposed structure and control scheme can be implemented for a more detailed crop
simulator which can then be employed to also output crop management decisions [1].
Also, the crop can be employed in the greenhouse indoor climate control since the crop
influences the climate via the processes of photosynthesis, respiration and transpiration.

• Weather implementation: In this thesis, the weather prediction for the upper layer
is different from the weather prediction used for the lower layer. However, within the
lower layer itself, the weather prediction is identical to the true implemented weather.
To make the problem more realistic, different weather conditions than those predicted
should be implemented.

• Chance-constrained MPC: Similarities can be seen between building climate man-
agement and greenhouse indoor climate management. In this thesis, the stochastic na-
ture of the weather variables was not considered. Certain control schemes implemented
in the building climate management employ chance-constrained MPC and could be used
as an inspiration for the greenhouse indoor climate control [47] [48]. In this way, the
stochastic weather variables are accounted for which can improve the results of the
controllers.

• Lower layer setpoint tracking control: In this work, the lower layer MPC controller
uses positive semi-definite quadratic cost on the control inputs. This results in a non-
unique set of solutions in the lower layer setpoint tracking problem since then the overall
problem is ill-posed. To overcome this, a scheme can be implemented that penalises the
deviation of the target control inputs in a positive definite manner to ensure offset-free
control whenever disturbances are present [49] [50]. Implementing a quadratic cost on
the control inputs instead of the difference between the control inputs and the target
control inputs results in a trade-off between tracking accuracy and resource usage.

• System representation update: In this work, the system representation that is used
for the setpoint generating and setpoint tracking controllers is the same over the entire
growing season. Multiple extensions regarding the system representation update could
improve the results, which include:

– Update of the crop system representation as soon as more recent crop measure-
ments become available. The crop exhibits different dynamics throughout the
season due to the increasing biomass. Furthermore, the crop data that is initially
used for the system representation is measured offline, meaning the data does not
originate from the same greenhouse compartment. Hence updating will make the
representation of the considered crop more accurate. The update could regard
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either the data-driven DeePC description or the identified linear models that are
used in the EMPC setpoint generating controller. This will result in an online type
of controller, like Online data-enabled predictive control (ODeePC) or adaptive or
online MPC schemes [51].

– Use of a variable upper layer sampling time to account for the phenomenon that
the daytime in the winter is not the same as the daytime in summer. Hence, a
scheme that accommodates this in the nocturnal and diurnal setpoint generation
can be implemented.
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Appendix A

Non-linear greenhouse indoor climate
model

A-0-1 Greenhouse indoor climate mathematical model

A non-linear mechanistic climate model has been selected and adapted to include the eight
types of modern greenhouse actuators for the greenhouse indoor climate. However, the cal-
ibration procedure for the Autonomous greenhouse challenge (AGC) dataset did not render
a model with the same parameters over the entire season that was capable of describing the
greenhouse indoor climate over the entire season.

The model has been selected as it included TAir, CAir and AHAir as main variables, which
is needed to match the AGC dataset used for this thesis. Furthermore, the mathematical
formulations that describe the rate of change in these thermodynamic variables are based on
the physical relations between the different variables within the greenhouse. Among which
are ventilation and crop evaporation. It included a range of modern actuators but needed
adaptation to include all eight types of modern greenhouse actuators present in the AGC
dataset.

In this section, the adapted equations are given, after which the adaptations are stated and
explained.

Greenhouse air temperature rate of change ṪAir

ṪAir = 1
CAir

(
QVent +QCovscr +QPipe1 +QPipe2 +QSun +QTrans +QCond +QLamp

)
,

(A-1)
where QVent [J m-2s-1] is the ventilative heat loss, QCovscr [J m-2s-1] is the conductive heat
loss through the cover and screens, QPipe1 [J m-2s-1] is the heat gain due to heating pipe
system 1, QPipe2 [J m-2s-1] is the heat gain due to heating pipe system 2, QSun [J m-2s-1] is
the radiative heat gain, QTrans [J m-2s-1] heat loss due to crop transpiration, QCond [J m-2s-1]
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is the heat gain due to condensation at the cover, and QLamp [J m-2s-1] is the heat gain due
to the artificial lighting.

The heat loss due to ventilation QVent is given by

QVent = kv(TOut − TAir), (A-2)

here, kv is the ventilation heat transfer coefficient [W◦C-1m-2], TOut is the outside air tem-
perature [◦C], and TAir is the greenhouse indoor air temperature [◦C].

The ventilation heat transfer coefficient kv is given by

kv = ρacpΦv, (A-3)

where ρa is the specific mass of air [kg m-3], cp is the air specific heat at constant pressure
[J◦C-1kg-1], and Φv is the ventilation flux [m s-1]. The adapted ventilation flux, to include
the screens, is given by

Φv =
(

(1−(1−PScr1)(100−SO1))(1−(1−PScr2)(100−SO2))
)(

σφLee
1 + χφLee

+ζ+ξφWind

)
w+ψ,

(A-4)
where σ [%-1], χ [%-1], ζ [-], ξ [%-1] and ψ [m s-1] are ventilation rate parameters, and φLee [%]
and φWind [%] are the window openings on the leeward and windward side of the greenhouse.

The adapted conductive heat loss through the cover and screens QCovScr is given by

QCovScr = kr

(
(1− (1− PQScr1)(1− SO1

100 ))(1− (1− PQScr2)(1− SO2
100 ))

)
1 +

(
(1− (1− PQScr1)(1− SO1

100 )) + (1− (1− PQScr2)(1− SO2
100 ))

) , (A-5)

where the greenhouse cover and the screens are modelled as three heat conductors in a series
composition [52]. PQScr1 [-] and PQScr2 [-] are the heat conductances of the temperature (SO1)
and climate (SO2) screens, respectively.

The heat gain due to heating pipe system 1 QPipe1 [Wm-2] and the heat gain due to heating
pipe system 2 QPipe2 [Wm-2] are given by

QPipe1 = α1(TPipe1 − TAir), QPipe2 = α2(TPipe2 − TAir), (A-6)

where αi [Wm-2 ◦C-1] is the pipe air heat transfer coefficient for heating pipe system i, TPipe1
[◦C] is the temperature of the upper heating pipe system, and TPipe2 [◦C] is the temperature
of the lower heating pipe system.

The adapted heat transfer coefficient of heating pipe system i to TAir α is given by

αi = υi

√
τPipe,i +

√
|TAir − TPipe,i|, (A-7)

where υi [W m-2 ◦C-3/4] and τPipe,i [◦C-1/2] are heat transfer coefficient parameters of the two
heating pipe systems.

The heat gain due to the solar radiation QSun is given by

QSun = η

(
1− (1− τScr1)

(
1− SO1

100

))(
1− (1− τScr2)

(
1− SO2

100

))
IGlob, (A-8)
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where τScr1 [-] and τScr2 [-] are the transmissivities of the blackout and energy screens, and
IGlob is the solar global radiation [W m-2].

The heat loss due to the crop transpiration QTrans is given by

QTrans = −λE, (A-9)

here λ [J g-1] is the water vaporisation energy, and E [g s-1 m-2] is the crop transpiration rate.

The water vaporisation energy λ is given by

λ = l1 − l2TAir, (A-10)

where l1 [J g-1] and l2 [J g-1◦C-1] are water vaporisation energy coefficients.

The crop transpiration rate E is given by

E = sηIGlob + ρacpDAirgb

λ

(
s+ γ(1 + gb

g

) , (A-11)

where s [kPa◦C-1] denotes the slope of the saturated water vapour pressure curve, Dg [kPa]
denotes the greenhouse air vapour pressure deficit, gb [ms-1] denotes the leaf boundary layer
conductance, γ [kPa◦C-1] denotes the apparent psychometric constant, and g [ms-1] denotes
the leaf conductance.

The slope of saturated water vapour pressure curve s is given by

s = s1T
2
Air + s2TAir + s3, (A-12)

where s1 [kPa ◦C-3], s2 [kPa ◦C-2] and s3 [kPa ◦C-1] are coefficients of the saturated water
vapour pressure curve.

The greenhouse air vapour pressure deficit Dg [kPa] is given by

DAir = p∗Air − pAir, (A-13)

where p∗Air is the air saturated vapour pressure [kPa] and pAir is the the greenhouse air vapour
pressure [kPa]. These are given by

p∗Air = a1e
a2TAir

a3+TAir , (A-14)

pg = ΛTAirAHAir, (A-15)

where a1 [kPa], a2 [-] and a3 [◦C] are saturation vapour pressure parameters.

The leaf conductance g [mm s-1] is given by

g = g1

(
1− g2e

−g3IGlob

)
e−g4CAir , (A-16)

where g1 [mm s-1], g2 [-], g3 [s m2 µmol-1] and g4 [m3g-1] are leaf conductance parameters.

The heat gain due to condensation at the greenhouse cover QCond is given by

QCond = λ

1 + ε
Mc, (A-17)
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The condensation mass flow at the greenhouse cover Mc is given by

MC =
{
m1 |Tg − Tc|m2 (WAir −W ∗c ) , if Wg > W ∗c ,
0, if Wg ≤W ∗c ,

(A-18)

where m1 [g s-1 m-2] and m2 [-] are mass transfer parameters, WAir [-] is the greenhouse
air humidity ratio at vapour pressure pAir, and W ∗c is the cover humidity ratio at saturated
vapour pressure p∗Air. These are given by

WAir(p) = ωpAir
patm − pAir

, (A-19)

W (p) = ωp∗Air
patm − p∗Air

, (A-20)

where ω [-] is a humidity ratio parameter and patm is the atmospheric air pressure [kPa].

The heat gain due to the lamps QLamp [W m-2] is given by

QLamp = ηPEff
L

100 , (A-21)

where PEff [Wm-2] is the electric power efficiency of the artificial lighting, and L [%] is the
percentage of switched on lights.

Greenhouse air CO2 concentration rate of change ĊAir

The greenhouse air CO2 concentration change ĊAir is given by

ĊAir =
(
VAir
AAir

)−1(
Φv(COut − CAir) + CInj +R− µP

)
, (A-22)

where
(
VAir
AAir

)−1
is the average greenhouse height.

Greenhouse air absolute humidity rate of change ˙AHAir

The greenhouse air absolute humidity change ˙AHAir is given by

˙AHAir =
(
VAir
AAir

)−1(
E − Φv(AHAir −AHOut)−Mc

)
, (A-23)

The continuous-time dynamical model for the greenhouse climate is then given by

ẏg = gg(yg,yc,ug,v). (A-24)
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The rationale behind the alterations

Modern greenhouses encompass a wide variety of actuators to control the indoor climate,
besides the four control inputs originally included in the model by [18]. The AGC included
eight actuators. Thus, to be able to calibrate the model to the AGC data and deploy this
data for system identification techniques, the non-linear model needed adaptation.

The rate of change of the greenhouse soil temperature TSoil is omitted since there are no
measurements available of this variable, and the mathematical description merely depends
on the deep soil temperature TDeep of which also no data is available. The outward heat flux
through the soil that is missed by ommitting TSoil as a greenhouse climate model state can
be accounted for in the calibration of kr, the conductive heat loss through the cover. The
heating pipe temperatures TPipe1 and TPipe2 are directly incorporated in the rate of change
of the greenhouse air temperature ṪAir, omitting the heating system model.

Furthermore, QSun and QCovScr are adapted to include the screens, QPipe2 is added in a similar
fashion as QPipe1 to include the second heating pipe system and QLamp is added to include
the lamps [52].
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Appendix B

Model parameters

B-1 Crop non-linear model calibrated parameters

Symbol Description Unit Nominal value Calibrated value
η Radiation conversion factor - 0.7 0.3345
τScr1 Transmittivity of the energy curtain - - 0.1053
τScr2 Transmittivity of the black-out curtain - - 0.3042
b1 Buffer switching function coefficient m2g-1 2.7 0.9851
bF Fruit respiration requirement coefficient - - 0.1041
d1 Plant development rate parameter s-1 2.1332·10−7 2·10−7

d2 Plant development rate parameter s-1 2.4664·10−7 1.9731·10−8

d3 Plant development rate parameter ◦C 20.0 -
d4 Plant development rate parameter - 7.4966·10−11 1.852·10−7

f Fruit assimilate requirement quotient - 1.20 1.7469·10−12

f1 Fruit growth rate coefficient s-1 8.1019·10−7 1.8382 ·10−6

f2 Fruit growth rate coefficient s-1 4.6296·10−6 3.5201 ·10−7

m Leaf area index (LAI) correction function parameter - 2.511 0.9587
MCO2 CO2 molar mass kg 0.0044 -
MF Fruit maintenance respiration coefficient s-1 1.157·10−7 6.7656·10−6

ML Vegetative maintenance respiration coefficient s-1 2.894·10−7 1.9023·10−6

mp Watt to µmol conversion factor µmol J-1 4.57 1.6674
p1 Net-photosynthesis parameter g m-3 577 249.2543
p2 Net-photosynthesis parameter g s-1m-2 221 21.3008
patm Atmospheric air pressure kPa 101.0 -
PL Light parameter µmol J-1m-2 - 144.2043·104

Pm Maximum photosynthesis rate g s-1m-2 2.2538 ·10−3 277.0579
QG Fruit growth rate temperature Q10-value - 1.0 0.4852
QR Maintenance respiration Q10-value - 2.0 0.1775
RG Gas constant J mol-1K-1 8.3144 -
T0 Absolute zero ◦C 273.15 -
TG Growth rate temperature effect reference temperature ◦C 20.0 4.6010
v Vegetative assimilate requirement quotient - 1.23 0.3334
v1 Vegetative fruit growth ratio parameter - 1.3774 2.46
v2 Vegetative fruit growth ratio parameter ◦C -0.168 -1·10−8

v3 Vegetative fruit growth ratio parameter ◦C 19.0 -
Vgh
Agh

Average greenhouse height m 3 -
wR LAI correction function parameter g m-2 32.23 7.9711
z Leaf fraction of vegetative dry weight - 0.6081 657.5746
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B-2 Greenhouse indoor climate non-linear model

Symbol Description Unit Nominal value Calibrated value
γ Apparent psychometric constant kPa ◦C-1 0.067 -
ε Inside outside cover heat resistance ratio - 3.0
ζ Ventilation rate parameter - 2.7060·10−5 -
Λ Pressure constant N m ◦C-1g-1 0.46152 -
µ CO2CH2O molar weight fraction - 1.4467 -
ν Ventilation rate parameter %-1 3.68·10−5 -
η Radiation conversion factor - 0.7 0.3345
ξ Ventilation rate parameter %-1 6.3233·10−5 -
ρa Specific mass of air kg m-3 1.29 -
σ Ventilation rate parameter %-1 7.1708 ·10−5 -
τ Pipe air heat transfer coefficient parameter ◦C-1/2 3.0 -
τScr1 Transmittivity of the energy curtain - - 0.1053
τScr2 Transmittivity of the black-out curtain - - 0.0.3042
υ Pipe air heat transfer coefficient parameter W m-2 0.74783 -
χ Ventilation rate parameter %-1 0.0156 -
ψ Ventilation rate parameter ms-1 7.4·10−5 -
ω Humidity ratio parameter - 0.622 -
a1 Saturation vapour pressure parameter kPa 0.611 -
a2 Saturation vapour pressure parameter - 17.27 -
a3 Saturation vapour pressure parameter ◦C 239 -
CAir Air specific heat at constant pressure J kg-1K-1 1·103 -
Cp Specific heat of water at constant pressure J ◦C-1m-2 4180 -
g1 Leaf conductance parameter mm s-1 20.3
g2 Leaf conductance parameter - 0.44
g3 Leaf conductance parameter s m2 µmol-1 2.5·10−3

g4 Leaf conductance parameter m3g-1 3.1·10−4

gb Boundary layer conductance mm s-1 10
kr Roof heat transfer coefficient W ◦C-1 m-2 7.9 -
l1 Vaporisation energy coefficient J g-1 2.501·106 -
l2 Vaporisation energy coefficient J g-1 ◦C-1 2.381·103 -
m1 Mass transfer parameter g s-1m-2 1.0183·10−3 -
m2 Mass transfer parameter - 0.33 -
MP Watt to µmol conversion factor µmol J-1 4.57 -
PEff Light parameter to heat - -
PG Photosynthetically active radiation (PAR) to global radiation ratio - 0.475 -
PQScr1 Cover screen heat parameter - -
PQScr2 Cover screen heat parameter - -
s1 Saturated water vapour pressure curve slope parameter kPa ◦C-1 1.8407·10−4 -
s2 Saturated water vapour pressure curve slope parameter kPa ◦C-2 9.7838·10−4 -
s3 Saturated water vapour pressure curve slope parameter kPa ◦C-3 0.051492 -
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List of Acronyms

AGC Autonomous greenhouse challenge
AI Artificial intelligence
CT Continuous-time
DeePC Data-enabled predictive control
DMC Dry matter content
DRTO Dynamic real-time optimisation
DT Discrete-time
EMPC Economic model predictive control
HPS High pressure sodium
I/O Input-output
I/S/O input/output/state
LAI Leaf area index
LED Light emitting diode
LTI Linear time-invariant
MPC Model predictive control
ODeePC Online data-enabled predictive control
PAR Photosynthetically active radiation
PEM Prediction-error method
QP Quadratic Programming
RMSE Root mean square error
SDG Sustainable development goals
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Nomenclature

List of Symbols

Variables
Au,l Lower constraint matrix on inputs Quadratic Programming (QP) form
Au,u Upper constraint matrix on inputs QP form
Ay,l Lower constraint matrix on outputs QP form
Ay,u Upper constraint matrix on outputs QP form
Ã Augmented state-space matrix A
A State-space matrix A
Au,l Lower constraint matrix on inputs
Au,u Upper constraint matrix on inputs
Ay,l Lower constraint matrix on outputs
Ay,u Upper constraint matrix on outputs
AHAir Greenhouse indoor absolute humidity
AHOut Outside air absolute humidity
βlow

ugh,s Lower bounds on greenhouse system inputs over entire prediction horizon
βlow

ygh,s Lower bounds on greenhouse system outputs over entire prediction horizon
βupp

ugh,s Upper bounds on greenhouse system inputs over entire prediction horizon
βupp

ygh,s Upper bounds on greenhouse system outputs over entire prediction horizon
βu,l Lower on inputs in QP form
βu,u Upper on inputs in QP form
βy,l Lower on outputs in QP form
βy,u Upper bounds on outputs in QP form
Alow

ugh,s Lower constraint matrix for greenhouse system inputs over entire prediction horizon
Alow

ygh,s Lower constraint matrix for greenhouse system outputs over entire prediction horizon
Aupp

ugh,s Upper constraint matrix for greenhouse system inputs over entire prediction horizon
Aupp

ygh,s Upper constraint matrix for greenhouse system outputs over entire prediction horizon
B System behaviour

Master of Science Thesis M. van Duijn



98 Nomenclature

B̃ Augmented state-space matrix B
B̃u Augmented state-space matrix Bu

B̃v Augmented state-space matrix Bv

B State-space matrix B
blow

ugh,s Lower bounds on greenhouse system inputs
blow

ygh,s Lower bounds on greenhouse system outputs
bupp

ugh,s Upper bounds on greenhouse system inputs
bupp

ygh,s Upper bounds on greenhouse system outputs
bu,l Lower on inputs
bu,u Upper on inputs
Bu State-space matrix Bu

Bv State-space matrix Bv

by,l Lower on outputs
by,u Upper bounds on outputs
c(x(k))> Linear terms cost function QP controller
c̃(x(k))> Linear terms cost function QP controller
C̃ Augmented state-space matrix C
C̃Air CO2 concentration in original unit
C̃Inj CO2 injection rate original unit
C State-space matrix C
CAir Greenhouse indoor CO2 concentration
CDMC Dry matter content (DMC)
CF Fruit dry weight importance factor
CInj CO2 injection rate
COut Outside CO2 concentration
δ Forward time shift operator
D̃ Augmented state-space matrix D
D Crop stage
D State-space matrix D
ff System state rate of change function fast subproblem
f s System state rate of change function slow subproblem
gf System output rate of change function fast subproblem
gs System output rate of change function slow subproblem
Γu
N Linear relation matrix from input to output

Γv
N Linear relation matrix from exogenous input to output

Γx
N Linear relation matrix from state to output

Γ̃u Linear relation matrix from input to output augmented system
Γ̃v Linear relation matrix from exogenous input to output augmented system
Γ̃x Linear relation matrix from state to output augmented system
gc Crop non-linear model function
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gg Greenhouse indoor climate non-linear model function
HL(u) Hankel matrix of signal u of order L
H̃ Quadratic terms cost function QP controller
H Quadratic terms cost function QP controller
HDAir Greenhouse indoor air humidity deficit
IGlob Global radiation
Ina×nb

Identity matrix with na rows and nb columns
J Cost function
` Stage cost per time instance
` System lag
λVc,f Regularisation parameter for future weather data
λVc,p Regularisation parameter for past weather data
L Class of systems
λ Eigenvectors
M f

c Crop control model for the fast subproblem
M f

g Greenhouse indoor climate control model for the fast subproblem
M s

c Crop control model for the slow subproblem
M s

g Greenhouse indoor climate control model for the slow subproblem
MWCO2 Molecular weight CO2

P f
c Crop prediction model for the fast subproblem
P f

g Greenhouse indoor climate prediction model for the fast subproblem
P s

c Crop prediction model for the slow subproblem
P s

g Greenhouse indoor climate prediction model for the slow subproblem
mB Assimilate buffer dry weight
m̃F Total fruit fresh weight
mF Total fruit dry weight
mL Total leaf dry weight
n Measurement noise
n System order
N f

h Lower layer prediction horizon
N f

i Number of implemented lower layer iterations per upper layer iteration
N s

h Upper layer prediction horizon
N s

i Number of implemented upper layer iterations
nu Dimension of input vector
nv Dimension of exogenous input vector
nx Dimension of state vector
ny Dimension of output vector
N Prediction horizon
0na×nb

Zeros matrix with na rows and nb columns
p Parameter vector for the non-linear crop or greenhouse indoor climate model
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PL Lighting system intensity
φLee Leeward side window opening
φWind Windward side window opening
q Extra error states
Q Rewritten output cost matrix
Qc Output cost matrix
r Reference vector
R Set of real numbers
R Input cost matrix
Rugh,s Upper layer control cost matrix
RHAir Greenhouse indoor air relative humidity
SO1 Temperature screens opening
SO2 Climate screens opening
T̄Air Greenhouse indoor air reference temperature
Tk Shrinking horizon lengths
T Toeplitz matrix
τ Sampling time
τ f Sampling time fast subproblem
τ s Sampling time slow subproblem
TAir Greenhouse indoor air temperature
TOut Outside air temperature
TUpp Lower heating pipe system temperature
TUpp Upper heating pipe system temperature
TRef Reference temperature
u Input vector
u∗ Optimal control input vector
uf Input vector fast subproblem
us Input vector slow subproblem
uc Crop subsystem inputs
ugh Greenhouse system inputs
ug Crop subsystem inputs
yfut Future output trajectory
U Input constraint set
ũ Augmented input vector
ufut Future input trajectory
Uf Input data Hankel matrix to predict future output
uini Initial input trajectory
Up Input data Hankel matrix to estimate current state
Yf Output data Hankel matrix to predict future output
yini Initial output trajectory
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Yp Output data Hankel matrix to estimate current state
v Exogenous input vector
vf Exogenous vector fast subproblem
vs Exogenous vector slow subproblem
vc Crop subsystem exogenous outputs
vfut Future exogenous trajectory
vgh Greenhouse system exogenous outputs
vg Crop subsystem exogenous outputs
vini Initial exogenous input trajectory
v̂f Weather prediction fast subproblem
v̂s Weather prediction slow subproblem
∈ In
Ṽx Constant terms cost function QP controller
Vx Constant terms cost function QP controller
Vf Exogenous input data Hankel matrix to predict future output
Vf Terminal cost
Vp Exogenous input data Hankel matrix to estimate current state
W Signal space
wOut Wind speed
wh Relative weight for each output
x State vector
xf State vector fast subproblem
xs State vector slow subproblem
xc Crop subsystem states
xgh Greenhouse system states
xg Crop subsystem states
x̂ State vector estimate
X State constraint set
x̃ Augmented state vector
x0 Initial state vector
y Output vector
yf Output vector fast subproblem
ys Output vector slow subproblem
yc Crop subsystem outputs
ygh Greenhouse system outputs
yg Crop subsystem outputs
ŷhj Simulated output yh at time ti
Y Output constraint set
yhj jth measurement replicate of yh at time ti
Z Set of complex numbers
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