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1 A B S T R A C T

Short-term solar forecasting is essential for the large-scale application of solar en-
ergy and is necessary for the operation of power plants, energy trading, and grid
balancing. The main cause of uncertainty in solar forecasting is cloud movement,
which can be observed by All-Sky Images. The spatial layout and temporal dy-
namics of clouds cannot be extracted by conventional cloud modelling approaches
utilising image analysis techniques, leading to inaccurate predictions of the interac-
tion with solar radiation. In this study an categorization method is made based on
sky conditions and from that five classes are made. The goal of this classification
method is to improve the 21-minute irradiance predictions which are made with an
deep learning model. The outcome of the 21-minute deep learning model will get
compared with the Persistence, Smart Persistence and ARIMA model. This classi-
fication method and irradiance prediction are applied for location Folsom, Califor-
nia and Delft, Netherlands. The irradiance predictions based on sky classification
showed an improvement of 8.6% for location Delft and 29.3% for location Folsom
when the same dataset sizes are used. The irradiance prediction were also done
for various dataset sizes and compared per location. Finally, it provides a way for-
ward to improve the classification method and deep learning models to anticipate
short-term irradiance in the future.

vii





C O N T E N T S

1 abstract vii
2 introduction 1

3 background 3

3.1 Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2.1 Position of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2.2 Solar radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.3 Clear Sky Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Irradiance forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.1 Statistical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.2 All sky images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Weather classification methods . . . . . . . . . . . . . . . . . . . . . . . 13

3.5.1 Image thresholding methods . . . . . . . . . . . . . . . . . . . . 15

3.5.2 Clear-sky modeling . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . 24

3.7.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7.3 Deep learning layers . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7.4 Deep learning model training . . . . . . . . . . . . . . . . . . . . 28

4 methodology 31

4.1 Pre-processing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Classification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Roadmap through the classification . . . . . . . . . . . . . . . . 32

4.2.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Prediction model architectures . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Roadmap through the prediction models . . . . . . . . . . . . . 37

4.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 39

5 results 43

5.1 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Classification sensitivity analysis . . . . . . . . . . . . . . . . . . 45

5.2 Prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Results without classification . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Results with classification . . . . . . . . . . . . . . . . . . . . . . 48

5.2.3 Prediction sensitivity analysis . . . . . . . . . . . . . . . . . . . 49

6 discussion 53

6.1 Classification comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 All Sky Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Prediction comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

a appendix 67

a.1 Minutely MAE and Quantile 95% per Class . . . . . . . . . . . . . . . . 67

ix





L I S T O F F I G U R E S

Figure 3.1 The five layers of the Atmosphere, with the given height and
temperature range per layer. Image from Annsky [2022]. . . . 3

Figure 3.2 Illustration on how to find the location of the sun in relation
to the earth. The Observer is the specific location at Earth
and the Object is the sun. In order to do this the Altitude
(a) angle and Azimuth angle (A) must be known Smets et al.
[2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 3.3 The sun path of two specific days the at the location Delft,
the Netherlands. The inner circles represents the radius at a
specific Zenith angle (θ) and the circles turned clockwise rep-
resents the Azimuth angle (A). Figure is made with Python
3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 3.4 The Direct Normal Irradiance (DNI), which is the irradiance
perpendicular to the sun and the Diffuse Horizontal Irradi-
ance (DHI) which is the reflected irradiance on that same
point. Combine the DNI and DHI and the Global Horizon
Irradiance (GHI) can be found and measured by the pyra-
nometer. Figure obtained from Hukseflux [2006] . . . . . . . . 6

Figure 3.5 The Clear Sky Irradiance (CSI) for the first of August 2021 in
Delft projected against the real GHI during that day. Figure
is made with Python 3.9. . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3.6 The steps that are made to become a cloud from a water
vapor. Air becomes cooler and adhere to dust, then cloud
droplets are made. The light cloud droplet accumulate and
clouds are created Novati [2022]. . . . . . . . . . . . . . . . . . 8

Figure 3.7 The ten different cloud classification illustrated. The classi-
fication is done based on height and cloud characteristics.
Palubicki [2020] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.8 The four forecast horizon for irradiance forecasting with the
time step and the used application. Kumari and Toshniwal
[2020] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.9 Overview of the prediction of solar irradiance methods with
there spatial coverage and time horizon made by V.A. Mar-
tinez Lopez. Each time horizon has there own goal. Image
based on work of Blanc [2017], Kazantzidis [2017] and NREL
[2016]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.10 The visualized difference between (a) the RBG pixel and (b)
the HSV pixel, image from Popov et al. [2018]. . . . . . . . . . 13

Figure 3.11 The ASI that gets converted into an RGB matrix which can
be used for programming in Python. . . . . . . . . . . . . . . . 13

Figure 3.12 The mask layer of the ASI at the TU Delft. These mask layer
will be used on top of the ASI to calculate the final CC. The
mask layer will not be taken into account for calculating the
final CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.13 Overview of the different cloud covers expressed in oktas,
from Skull [2017]. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



xii list of figures

Figure 3.14 (A) The threshold value calculated for an fish-eye ASI and the
outcome of the binary ASI. Note that the mask background is
not yet taken into account. (B) The threshold value calculated
for an flattened ASI and the outcome of the binary ASI. Note
that the mask background is not yet taken into account. (C)
Example of an gray scaled image where the maximum inter-
class variation is found to find the specific threshold value
for this image when using the Otsu threshold value Szelag
[2020]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.15 The Superpixel segmentation method explained in 5 steps.
First will the ASI gets flattened. Second will the SPS method
by applied. Third the mask applied. Fourth the final thresh-
old image is made. Finally the CC % can get calculated. . . . 18

Figure 3.16 The visual method of how to find the X and Y coordinate of
the sun in an All Sky Image. . . . . . . . . . . . . . . . . . . . 19

Figure 3.17 Global overview of the difference between Artificial Intelli-
gence (AI), Machine Learning (ML) and Deep learning (DL).
Jawahar and Anoop [2022] . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.18 Visually explaination of the Support Vector Machine method,
image from Dabakoglu [2018] . . . . . . . . . . . . . . . . . . . 21

Figure 3.19 Example of the SVR, to show how it works and visualize the
used terms. Image taken from Sharp [2020] . . . . . . . . . . . 22

Figure 3.20 An example of how the k-means segmentation method works.
It is an unsupervised learning method, so non-labeled data
comes in and the method labels the data. Above images from
Chhabria [2021]. The lower images are example of the ap-
plied k-means clustering method on an ASI. . . . . . . . . . . 23

Figure 3.21 An example of how the Artificial Neural Networks (ANN)
looks like when it would be drawn. Part of the Figure taken
by Dertat [2017]. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.22 An example of how the zoomed in Node looks like when it
would be drawn and when an Activation function is added.
Figure taken by Dertat [2017]. . . . . . . . . . . . . . . . . . . 25

Figure 3.23 Activation functions in comparison. Red curves stand for, re-
spectively,(a) Sigmoid,(b) hyperbolic tangent, (c) ReLU, and
(d) Softplus functions. Their first derivative is plotted in blue.
Figure taken from Roffo [2017]. . . . . . . . . . . . . . . . . . . 27

Figure 3.24 An Example of how the convolutional layers works for an
RGB image with 6 by 6 pixel size that goes through six 2D
kernel (filters), from these multiplication two feature maps
are created. Than feature map values can be passed through
the activation function, which in this example is the ReLU
function with an bias (b). From this an 3 by 3 by 2 output is
given. Image from Ng [2018] . . . . . . . . . . . . . . . . . . . 27

Figure 3.25 An example of the two different pooling layers techniques,
maximum pooling (left part) and average pooling (right part).
Image from Ng [2018] . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.26 An example of the pooled that gets flattened to a flatten layer.
This is needed to find the final 1D output value from the
model. Image from Biswal [2022] . . . . . . . . . . . . . . . . 28

Figure 4.1 All the equipment needed for making the all sky images and
the extra information, located at the TU Delft, the Netherlands. 31

Figure 4.2 (a) Overview of the amount of data per month that is used
for the location Delft. (b) Overview of the amount of data
per month that is used for the location Folsom. . . . . . . . . . 32



list of figures xiii

Figure 4.3 The real sunpath of the ASI’s for the day 1st April in 2021.
In figure 4.2(A), the sunpath of one day is shown for the
images of that day. Figure 4.2(b) shows how the sun path
would actually look like. In Figure 4.2(c) the both images are
merged together so one could see the difference between the
real sun path and the theoretical. . . . . . . . . . . . . . . . . 33

Figure 4.4 Four examples of the cropped image of where the sun in the
image is located and the thresholded cropped image, to see
how the sun gets detected. . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.5 The overview of how the cloud cover is calculated for all
the ASI’s. First one needs to find out whether the sun is
blocked or not, then is there are cloud pixels in the image or
not. Finally, the CC can be found for all the images. In
this example the most two left images will be considered
as blocked sun and the most right two images as sun not
blocked with clouds. . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.6 Overview of how the ARIMA FIFO system works to make
the 21-min GHI predictions. For every 21-min prediction,
a 500 historical dataset is used which shifts throughout the
dataset via the FIFO method. . . . . . . . . . . . . . . . . . . . 38

Figure 4.7 This graphic shows the convolutional neural network that
was utilised in the deep learning model to extract visual fea-
tures. Figure made by Doodkorte [2021] and slightly adjusted. 38

Figure 4.8 This graphic shows the auxiliary dense neural network that
was utilised in the deep learning model. Figure made by
Doodkorte [2021] and slightly adjusted. . . . . . . . . . . . . . 39

Figure 4.9 This graphic shows the total overview of the deep learn-
ing prediction mode that was utilised in the deep learning
model. Figure made by Doodkorte [2021] and slightly ad-
justed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.1 Overview of the distributions of the classification over the 5

classes for location Delft & Folsom. . . . . . . . . . . . . . . . . 43

Figure 5.2 Difference distribution (in oktas) of CC algorithm and with
the manual observation for (a) location Delft and (b) location
Folsom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.3 The two example where the CC algorithm misclassified the
CC %. (a) ASI is taken 4:19 (UTC) in the morning of the fifth
of August in 2021. (b) ASI is taken 4:40 (UTC) in the morning
of the 19th of August in 2021. . . . . . . . . . . . . . . . . . . 45

Figure 5.4 The Variability Index (VI) shown as box-and-whiskers plot
for all the data and per class for location Delft on the left and
location Folsom on the right. . . . . . . . . . . . . . . . . . . . 46

Figure 5.5 Overview how the classes are classified based on the Kc and
CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 5.6 The 21-minute predictions of the 4 models namely: Persis-
tence model, Smart Persistence model, ARIMA model & CNN
model. The final outcome of the MAE per minute for the four
prediction models for location Delft. . . . . . . . . . . . . . . . 48

Figure 5.7 The 21-minute predictions of the 4 models namely: Persis-
tence model, Smart Persistence model, ARIMA model & CNN
model. The final outcome of the quantile 95% per minute for
the four prediction models for location Delft. . . . . . . . . . . 48

Figure 5.8 The 21-minute MAE of the baseline model (SP) against the
CNN model when the classification is applied beforehand
against when the classification for Class E is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 51



xiv list of figures

Figure 5.9 The 21-minute quantile 95% of the baseline model (SP) against
the CNN model when the classification is applied before-
hand against when the classification for Class E is not ap-
plied, so afterwards classified. . . . . . . . . . . . . . . . . . . . 51

Figure 6.1 The outcome of the Hartmann [2020] classification applied
for location Delft and Folsom. . . . . . . . . . . . . . . . . . . . 54

Figure A.1 The 21-minute MAE of the baseline model (SP) against the
CNN model when the classification for Class A is applied
beforehand against when the classification is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure A.2 The 21-minute quantile 95% of the baseline model (SP) against
the CNN model when the classification for Class A is applied
beforehand against when the classification is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure A.3 The 21-minute MAE of the baseline model (SP) against the
CNN model when the classification is applied beforehand
against when the classification for Class B is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure A.4 The 21-minute quantile 95% of the baseline model (SP) against
the CNN model when the classification is applied before-
hand against when the classification for Class B is not ap-
plied, so afterwards classified. . . . . . . . . . . . . . . . . . . . 68

Figure A.5 The 21-minute MAE of the baseline model (SP) against the
CNN model when the classification is applied beforehand
against when the classification for Class C is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure A.6 The 21-minute quantile 95% of the baseline model (SP) against
the CNN model when the classification is applied before-
hand against when the classification for Class C is not ap-
plied, so afterwards classified. . . . . . . . . . . . . . . . . . . . 69

Figure A.7 The 21-minute MAE of the baseline model (SP) against the
CNN model when the classification is applied beforehand
against when the classification for Class D is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure A.8 The 21-minute quantile 95% of the baseline model (SP) against
the CNN model when the classification is applied before-
hand against when the classification for Class D is not ap-
plied, so afterwards classified. . . . . . . . . . . . . . . . . . . . 69

Figure A.9 The 21-minute MAE of the baseline model (SP) against the
CNN model when the classification is applied beforehand
against when the classification for Class E is not applied, so
afterwards classified. . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure A.10 The 21-minute quantile 95% of the baseline model (SP) against
the CNN model when the classification is applied before-
hand against when the classification for Class E is not ap-
plied, so afterwards classified. . . . . . . . . . . . . . . . . . . . 70



L I S T O F TA B L E S

Table 3.1 overview of the cloud percentage can be converted to oktas. . 14

Table 4.1 The image’s pixel intensity values, excluding the region sur-
rounding the sun among the 200 pictures. . . . . . . . . . . . . 34

Table 4.2 The overview of the five ASI classification based on the Cloud
Cover and Clear Sky Index. . . . . . . . . . . . . . . . . . . . . 35

Table 5.1 The final outcome of the classification for both location Delft
& Folsom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 5.2 The final classification performance based on the recall, pre-
cision & F-score for both locations. . . . . . . . . . . . . . . . . 44

Table 5.3 The prediction results for the four different models in com-
parisons based on the MAE, RMSE, nMAE, nRMSE and FS
for location Delft. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.4 The prediction results for the four different models in com-
parisons based on the MAE, RMSE, nMAE, nRMSE and FS
for location Folsom. . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.5 The results of the MAE per classification for the four predic-
tion models for location Delft. For the CNN model 2 pre-
dictions were made. The first one ’CNN: class afterwards’
is when the classification is done after the prediction. The
second one ’CNN: class forwards’ is when the classification
is done before the prediction. . . . . . . . . . . . . . . . . . . . 49

Table 5.6 The total improvement for making classifications forwards
and afterwards based on a dataset of 19000 at the location
Delft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.7 The total improvement for making classifications forwards
and afterwards based on a dataset of 9900 at the location
Folsom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 5.8 Results of the total improvement when all data per classifi-
cation is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 5.9 Results of the total improvement when making classes of
three instead of five for location Delft, Folsom and combined. 50

Table 5.10 The performance of the CNN-Main model compared to the
CNN-Main models with the ablation of inputs is depicted. . . 52

Table 6.1 Comparing between the studies of Xie and Yiren [2019] and
Kazantzidis et al. [2012a] and this research based on the dif-
ference in oktas with the CC algorithm compared to manual
observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 6.2 How the best performing classification method of Hartmann
[2020] is made . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xv





L I S T O F A C R O N Y M S

UV Ultra Violet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DNI Direct Normal Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

DHI Diffuse Horizontal Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . 6

GHI Global Horizontal Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . 6

AM Air Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

a Altitude angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A Azimuth angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CSI Clear Sky Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Kc Clear Sky Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

PV PhotoVoltaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

NWP Numerical Weather Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 9

GFS Global Forecast System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ECMWF European Centre for Medium-Range Weather Forecasts . . . . . . . . . 10

MM5 Fifth-Generation Penn State/NCAR Mesoscale Model . . . . . . . . . . . 10

WRF Weather Research and Forecasting . . . . . . . . . . . . . . . . . . . . . . . 10

ASI All Sky Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

PM Persistence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

SPM Smart Persistence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

AR Auto Regressive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Integrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

MA Moving Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ARIMA Auto Regressive Integrated Moving Average . . . . . . . . . . . . . . . . 2

SVR Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CC Cloud Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

RGB Red-Green-Blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

HSV Hue-Saturation-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

SYNOP (surface synoptic observations) . . . . . . . . . . . . . . . . . . . . . . . . 15

SPS Superpixel Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

DL Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ML Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

AI Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SVM Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

SVR Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

NN Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ANN Articifial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CNN Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 1

kNN k-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ReLU Rectified Linear Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

SGD Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

UTC Coordinated Universal Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ADF Augmented Dickey Fuller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

FIFO First In First Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

MAE Mean Average Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

STC Standard Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ADF Augmented Dickey Fuller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

MSE Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

RMSE Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xvii



xviii list of tables

nMAE normalized Mean Average Error . . . . . . . . . . . . . . . . . . . . . . . . 40

nRMSE normalized Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . 40

FS Forecast Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Adam Adaptive moment estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

NWS National Weather Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

CI Clearness Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

VI Variability Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



2 I N T R O D U C T I O N

Reason of research: Over the last ten years, the capacity of photovoltaic installations
has increased exponentially. In 2012, the total worldwide capacity was around
101 GW of electricity capacity. In the end of 2022, the total worldwide capacity
is almost 1,200 GW IEA-PVPS [2017]. The global electricity generation capacity is
expected to be around 14,700 GW by 2050, from which is expected that around
45% of the renewable energy generation is from solar EERE [2022]. This indicated
that the growth is already phenomenal, but expected to increase much more in
the upcoming years. Due to the increase in photovoltaic generated electricity, the
demand for making accurate irradiance predictions also increases. This is mainly
due to the intermittency of the solar energy that gets generated. The solar energy
is at every location on Earth different and does not generate energy all day long on
a specific location. On top of that, the biggest factor apart from the location of the
sun that can change the outcome of the solar energy at a specific point on earth are
clouds. It is critical to know how much solar energy can be generated to electricity
in order to maintain grid stability, optimise energy control tactics, and create energy
trading algorithms.

Since the solar energy is location dependent and can change abruptly, it is necessary
to make very short term irradiance prediction and on a small spatial (few hundred
metres) and temporal scale. All sky images can be used to make short term irradi-
ance prediction on a small spatial and temporal scale. The use of all sky images to
make short term irradiance has gained popularity over the last recent years due to
promising prediction results.

In order to train Deep Learning (DL) models for irradiance predictions, patterns
must be extracted from both single point data and sky images. Convolutional Neu-
ral Networks (CNNs) are a particular class of Neural Network that can handle 2D
inputs like images LeCun et al. [1989]). In addition to Convolutional Neural Net-
works (CNN), Convolutional Neural Network + Long Short-Term Memory network
(CNN+LSTM) Siddiqui et al. [2019] and 3D convolutional neural network (3D-CNN)
are two more advanced model designs that can be used to extract relevant data from
a series of all sky images Wei et al. [2019].

Apart from the short term irradiance predictions, the development and deployment
of all sky image devices has made it possible to continuously gather data on the
cloud cover state. Kazantzidis et al. [2017] presented a method for the detection of
clouds and the calculation of the entire cloud coverage, given that colour is the main
characteristic that enables the visual recognition of clouds on the sky. Xie and Yiren
[2019] used an CNN model with an labeled training set of the cloud cover for the all
sky images to made an indication of the cloud cover in the test set. The calculated
cloud cover can be used as an direct input in the DL model (Zuo et al. [2022]) or can
be used to classify the ASI in to groups based on sky conditions Kazantzidis et al.
[2012a]. When the location of the clouds in the image are known, Chow et al. [2011]
measures the temporal dynamics of the clouds that the camera sees, calculates their
current trajectory, and predicts where the clouds will be in the future.

This study made use of the prior work of Doodkorte [2021], which made an CNN
prediction model for 21-minutes. From this research became clear that predicting
the interaction between solar irradiance and clouds in the sky remains a complex

1



2 introduction

problem, especially for partly clouded conditions. To obtain more insight and a
possible improved solution to this problem the following question will be answered:

What is the maximum improvement of the CNN 21-minute irradiance predictions model
when making classification based on sky conditions first?

Aim of the research: The goal of this research is to first classify the all sky images
into five separate groups based on sky conditions. These separate groups will then
make 21-minute irradiance predictions. The reason for 21-minute predictions is
that for energy trading, the electricity can be traded 5 minutes before delivery of a
15-minutes contract. Since there is some expected time to make the prediction, the
total prediction time is chosen to be 21-minutes. These irradiance predictions will be
done for the location Delft in the Netherlands and for Folsom in the United States,
which is made publicly available by Pedro et al. [2019]. Four prediction models will
be used to make the 21-minute predictions. The first model is the best performing
(lowest Mean Average Error over 21-minutes) DL model from the work of Dood-
korte [2021]. This model is an CNN model with as input the original measured
irradiance and the clear sky irradiance. The other three models are the Persistence
model, the Smart Persistence model and the Auto Regressive Integrated Moving
Average (ARIMA) time series model. Apart from the research question various other
contributions are:

• A comparison of four different 21-minute prediction models outcomes for two
different locations.

• A classification algorithm that can make five separate groups based on the
cloud cover and clear sky index.

• The 21-minute predictions will get minutely projected and compared based
on the MAE and quantile 95% based on the MAE.

• The 21-minute CNN model will get compared with: 1. the CNN model with
cloud cover as extra input, 2. the CNN model but then extra images added to
the dataset and 3., when HSV images are used instead of the RGB images as
input.

Structure of the research: The structure of this research is as follows. First in Chap-
ter 3, the needed background information will be explained in order understand
the classification process and the prediction models that are used. After that in
Chapter 4, the classification process and the final prediction models are shown. On
top of that, a performance evaluation is made for the classification method as the
prediction models. For those two methods the results will get presented in Chapter
5. Finally, this research gets discussed and the conclusion will be given in Chapter
6.



3 B A C KG R O U N D

3.1 meteorology
The layers of gases that surround a planet or other celestial body are referred to as
atmosphere. The atmosphere guards life on Earth from incoming Ultra Violet (UV)
radiation, maintains the Earth warm through insulation, and suppresses tempera-
ture extremes between day and night Brown [2022]. The study of the atmosphere,
atmospheric phenomena, and atmospheric influences on our weather is known as
meteorology. Meteorology, focuses on atmospheric factors connected to present or
near-future situations, up to multiple days ahead Coleman and Law [2015]. There
are multiple meteorological elements describing the atmosphere such as solar en-
ergy, air pressure & temperature, humidity, precipitation amount and type, wind
direction and strength, and cloud cover. The Earth’s atmosphere is composed of
around 78% nitrogen, 21% oxygen, and 1% other gases. These gases are present
through five different layers: troposphere, stratosphere, mesosphere, thermosphere,
and exosphere, as shown in Figure 3.1. These five layers are characterised by dis-
tinct characteristics such as temperature and pressure. The Exosphere is the layer
furthest from the earth, with a distance between 700 to 10,000 km. After that, the
thermosphere, mesosphere and stratosphere follows. The layer that starts at ground
level with the earth is called the troposphere. Practically all influences on solar ra-
diation before reaching earth in the troposphere. It contains 99 percent of the water
vapour of the atmosphere, hence most clouds form here Russel [2015].

Figure 3.1: The five layers of the Atmosphere, with the given height and temperature range
per layer. Image from Annsky [2022].
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3.2 sun
The Sun is a star at the center of our solar system. Without the Sun, there would be
no life on earth. Scientists studying the beginnings of life on Earth refer to Earth’s
optimal positioning in relation to the Sun as a necessary component in creating the
conditions that allow life on Earth. The presence of the Sun is important due to the
radiation it releases Buis [2020].

3.2.1 Position of the Sun

The Earth makes one rotation around its own axis every 23 hours and 56 minutes
while it also makes one full rotation around the sun in 365 days, 5 hours, 59 minutes
and 16 seconds May [2021]. This means that the position of the Sun in relation to the
earth changes all the time. As shown Figure 3.2, the Sun is the object that needs to
get located from the observer point. The observer point is a specific point on earth,
for Example Delft, the Netherlands. From observer (location on earth) point of view,
the object (the Sun) is moving over the Celestial sphere during the day. The celestial
sphere is an imaginary sphere with the earth at its center. When this celestial sphere
goes specifically through the North and South it is called the Meridian. In order
to find the location of the object from the observer point, two angles must be used.
The first one is the ’Altitude angle (a)’ (also called the elevation angle), which is
the angular elevation of the sun above the horizontal plane. The angle range is
between 90

◦ and minus 90
◦, where the negative values are below the horizon so not

visible for that specific location at the observer point. When a is 90
◦ it is at Zenith,

which corresponds to the point in the sky where the vertical intersects the celestial
sphere. The other angle is the ’Azimuth angle (A)’, which is the angle formed by
the projected line of sight on the horizontal plane Smets et al. [2015]. The angle
range is between 0

◦ and 360
◦. The angle increases clockwise and start North at 0

◦.
So, 90

◦, 180
◦ and 270

◦, represents the East South and West.

Figure 3.2: Illustration on how to find the location of the sun in relation to the earth. The
Observer is the specific location at Earth and the Object is the sun. In order to
do this the Altitude (a) angle and Azimuth angle (A) must be known Smets et al.
[2015].

When the location of the sun can be found, the total sun path for a whole year on a
specific location can be found. In Figure 3.3, the path of the Sun with respect to the
A angle and Zenith angle (θ) is shown. The moment of the year has influence on
the amount of daylight received along a specific location during a finite period of
time. For the location Delft, is shown that the sun path in the summer (2022-07-01),
is much longer compared to the sun path in the winter (2022-01-01). Apart from
that, the analemma loops are shown. A Solar analemma loop is a plot that depicts
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the position of the Sun in the sky at a single place and time of day over the course
of a year, shaped like the number 8 Kher [2022].
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Figure 3.3: The sun path of two specific days the at the location Delft, the Netherlands. The
inner circles represents the radius at a specific Zenith angle (θ) and the circles
turned clockwise represents the Azimuth angle (A). Figure is made with Python
3.9

3.2.2 Solar radiation

Solar radiation is the energy released by the Sun and transmitted as electromag-
netic waves across space. The Sun emits energy in the form of short-wave radiation,
which is attenuated in the atmosphere by clouds and absorbed by gas molecules
or suspended particles. The spectral irradiance is the power density at a particular
wavelength. Combining the whole range of wavelengths with this spectral irradi-
ance is the solar radiation. Solar radiation reaches land surfaces after travelling
through the atmosphere and is reflected or absorbed EERE [2021]. The atmosphere
influences the final irradiance outcome that reaches Earth. The distance that sun-
light must travel through the atmosphere to reach the surface of the earth is the
most crucial factor that controls the solar irradiance under clear sky circumstances
Smets et al. [2015]. When the Sun is at its zenith (directly overhead), this distance
is the shortest. The optical Air Mass (AM) is defined as the ratio of the sunlight’s
actual travel length to this close distance. The spectrum is known as the AM1 spec-
trum when the Sun is at its zenith (θ = 0) and the optical air mass is unity. The
spectrum outside the atmosphere is called the AM0 spectrum, since no atmosphere
is traversed there Smets et al. [2015]. In Equation 3.1, the AM spectrum formula is
shown.

AM :=
1

cos θ
(3.1)

This Equation, however, does not take the curvature of the Earth into account Smets
et al. [2015]. This Equation indicates that solar radiation varies in strength and
spectral distribution depending on the location on the Earth and the Sun’s position
in the sky. The reference solar spectral distribution is the AM1.5 spectrum, as de-
scribed in International Standard IEC 60904-3 60904-3 [2008]. This AM1.5 is used as
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the Standard Test Conditions (STC), together with the irradiance of 1000W/m2 and
a cell temperature of 25

◦Smets et al. [2015].

This atmospheric interaction results in two different forms of irradiance. The first
one is the Direct Normal Irradiance (DNI), which is the measured irradiance at
the surface perpendicular (normal) from the sun, so only the irradiance from a
straight line of the sun to the surface. The second form of irradiance is Diffuse
Horizontal Irradiance (DHI), which is all the irradiance measured due to scattering
in the atmosphere Vignola et al. [2017]. A pyranometer is an instrument used to
measure the GHI, as shown in Figure 3.4. The pyranometer has multiple thermopile
temperature sensors, which are sensors that can measure temperature from distance.
Due to the difference in temperature between the sensors, the radiation intensity can
get calculated. With these sensors the pyranometer can measure the incoming GHI
at the specific location Stoffel et al. [2010].

Figure 3.4: The Direct Normal Irradiance (DNI), which is the irradiance perpendicular to the
sun and the Diffuse Horizontal Irradiance (DHI) which is the reflected irradiance
on that same point. Combine the DNI and DHI and the Global Horizon Irra-
diance (GHI) can be found and measured by the pyranometer. Figure obtained
from Hukseflux [2006]

When combining the DNI with the altitude of the sun and the DHI, the Global
Horizontal Irradiance (GHI) can be calculated as shown in Equation 3.2.

GHI = DNI ∗ cos(as) + DHI (3.2)

The GHI is the total irradiance from the sun coming at a specific point from a
horizontal surface on the earth. The biggest factor apart from the location of the
sun that can change the outcome of the GHI at a specific point on earth are clouds.
The measured GHI can change up to 70 % in a time range of only 5 seconds Barbieri
et al. [2017]. Therefore, it is discussed in more detail in the following section 3.3.
First, the situation when the clouds are neglected will get further explained in the
next subsection 3.2.3.
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3.2.3 Clear Sky Irradiance

The absence of visible clouds throughout the entire sky dome is expressed as a
clear sky condition, and Clear Sky Irradiance (CSI) is the irradiance (GHI) that oc-
curs during these conditions Reno and Hansen [2015]. The CSI is in research widely
used since it can be used as a reference value to the real GHI and to make irradi-
ance predictions, which will be explained in Section 3.4. The most common CSI
models are empirical models, which indicates that it uses solar geometry inputs
and atmospheric parameter inputs to model the expected CSI at a specific loca-
tion Antonanzas-Torresa et al. [2019]. There are many methods that calculate the
expected CSI. That is why Antonanzas-Torresa et al. [2019] reviewed seventy CSI
models and verifies the results based on the irradiance in clear sky condition of
two meteorological stations. One of the best performing models is the Simplified
Solis Ineichen [2008], which will be used in this research. The input for this model
consist of the location and the time frame. The output then gives the predicted CSI
at the given location for that given time frame. In Figure 3.5, an example is given of
the CSI outcome in comparison with the actual GHI for that day.
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Figure 3.5: The Clear Sky Irradiance (CSI) for the first of August 2021 in Delft projected
against the real GHI during that day. Figure is made with Python 3.9.

In Figure 3.5, one can see that the Measured GHI is sometimes higher than the
CSI. This can happen when there are partly cloudy conditions. This means that
the sky is partly clear and partly clouded. The influence of the clouds can increase
the measured GHI in combination with the solar elevation angle. When photons
scatter from water droplets in clouds close to the direct irradiance route, enhanced
irradiance zones are created. This phenomena is called cloud enhancement and
when this occurs the measured GHI can give higher outcomes than the clear sky
irradiance Jarvela and Kari Lappalainen [2018]. With the CSI and the measured
GHI, one can calculate the Clear Sky Index (Kc), which is the measured GHI at
ground level divided by the estimated GHI in clear sky conditions at ground level
Kato [2016], as shown in Equation 3.3.

Kc(t) =
GHI(t)measured

GHI(t)CSI
(3.3)
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The Kc will become important in irradiance forecasting, which will get explained in
Section 3.4.

3.3 clouds
Clouds are formed of floating water drops or ice crystals in the sky. The water
drops are too little to see. They have decomposed into a gas known as water vapour.
The air becomes cooler as the level of water vapour in the atmosphere rises. The
colder air encourages water droplets to adhere to substances like dust, ice, or sea
salt May [2017]. The development of small globules is called the creation of cloud
droplets, which occurs when water droplets attach to dust. Cloud droplets are light
in weight and accumulate as they drift, merging with air to form the frothy shapes
we see hung in the sky known as clouds Zuckerman [2019]. The steps involved in
turning water vapour into a cloud are also shown in Figure 3.6.

Figure 3.6: The steps that are made to become a cloud from a water vapor. Air becomes
cooler and adhere to dust, then cloud droplets are made. The light cloud droplet
accumulate and clouds are created Novati [2022].

Clouds exist in all shapes and sizes. Clouds get either classified based on the height
of the clouds above the Earth’s surface (high, intermediate or low), or classified (and
named) on their distinguishing features. The group of high clouds are between 5

to 13 km above the Earth’s surface, the middle group between 2 to 7 km and the
low group between 0 and 2 km above the surface UCAR [2019]. As already stated,
the names of the clouds refers to the type of clouds. From this four types can be
divined. The first variety is called ’Cirro,’ which is a Latin term that means ”hair
curl.” Cirro-form clouds are whitish and hair-like clouds consisting largely of ice
crystals that are usually high clouds. Strato-form clouds are named after the Latin
word for ”layer” because they are frequently broad and spread out, resembling a
blanket. The third variety is referred to as a ’Nimbus,’ which is the Latin word for
rain. The final variety is called ’Culumo,’ which means ’pile up,’ and it resembles
white fluffy cotton botton balles and demonstrate vertical motion or thermal uplift
of air in the atmosphere NWS [2022b]. Based on the height and the four cloud
characteristics, the clouds can be classified into ten groups, as shown in Figure 3.7.

3.4 irradiance forecasting
Solar irradiance forecasting is an essential topic in renewable energy generation.
Forecasting of solar irradiance increases the photovoltaic system development and
operation while providing numerous economic benefits to energy companies Alzahra-
nia et al. [2017]. Since it is expected that in 2050 around 45% of the renewable
electricity generation is from solar, the importance of solar irradiance forecasting
increases as well EERE [2022]. The forecast horizon can be categorized into four
groups, as shown in Figure 3.8. Long term irradiance prediction is from a couple of
month until years ahead. Long term GHI prediction is crucial for PhotoVoltaic (PV)
power plant site selection and installation Coimbra and Kleiss [2013]. Medium-term
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Figure 3.7: The ten different cloud classification illustrated. The classification is done based
on height and cloud characteristics. Palubicki [2020]

forecasting, which predicts for around one week in advantage, assists in making
power plant maintenance schedules. Short-term forecasting, with a time step of 48

to 72 hours, is critical for decision making in areas such as demand, supply balance
and unit commitment. The final group is very short term irradiance predictions,
which is essential for system monitoring, so these predictions are a few seconds up
to a couple of minutes Kumari and Toshniwal [2021]. In this research the focus lays
on the very short term irradiance predictions.

Figure 3.8: The four forecast horizon for irradiance forecasting with the time step and the
used application. Kumari and Toshniwal [2020]

Apart from the duration of the prediction, the spatial scale of the area also needs
to get established. Different methods can be used regarding the spatial scale. For
global scale, Numerical Weather Prediction (NWP) is the most common method.
NWP models explain the main physical processes in the atmosphere, surface, and
in the soil. They account for their impact on the temporal evolution of model vari-
ables such as pressure, temperature, wind, water vapour, clouds, and precipitation
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Visser et al. [2022]. Two examples are the Global Forecast System (GFS) and the
European Centre for Medium-Range Weather Forecasts (ECMWF). On mesoscale (1
to 100 km) level, two NWP methods are commonly used. The Fifth-Generation
Penn State/NCAR Mesoscale Model (MM5) employs a terrain-following coordinate,
solves finite-difference equations using a time-split approach, and supports multi-
ple nesting. The other one is the Weather Research and Forecasting (WRF), which
is supported as a community model under ongoing development and incorporates
characteristics from other mesoscale models, notably MM5. WRF can be thought
of as a follow-up model to the MM5 Diagne et al. [2013]. Another method for
mesoscale predictions is the use of satellite images and meteorology data Perez
et al. [2010]. The final scale is microscale (0 to 1 km) and the two most common
methods for making short term irradiance predictions are statistical models or All
Sky Images (ASI) based models, in combination with meteorological data. The final
overview is shown in Figure 3.9. Since the goal of this research is to make short
term irradiance prediction on microscale, the time series models and all sky images
will get a broader explanation in respectively subsection 3.4.1 and 3.4.2.

Figure 3.9: Overview of the prediction of solar irradiance methods with there spatial cover-
age and time horizon made by V.A. Martinez Lopez. Each time horizon has there
own goal. Image based on work of Blanc [2017], Kazantzidis [2017] and NREL
[2016].

3.4.1 Statistical models

A statistical model is a collection of assumptions about the probability distribution
that produced some observed data Taboga [2021]. Statistical models use historical
time series solar irradiance data to develop forecasting models Aguiar and Dı́az
[2018]. Besides the historical time series of the solar irradiance, also other time se-
ries data could be added which are correlated to the future outcome of the solar
irradiance. These correlated time series are meteorological parameters that have
influence on the measured solar irradiance. The models that only take the histori-
cal solar irradiance into account will be handled. Statistical time series models are
regression lines based on the historical data points it received. The most straight-
forward is the simple linear regression model, with the forecast variable yt and a
single predictor variable xt.

yt = α + β1xt + εt (3.4)

The coefficients α and β1 represent the line’s intercept and slope and the εt the
random error Hyndman and Athanasopoulos [2018]. When taking more than one
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predictor variables, the regression becomes a multiple regression model and when
the relationship between the forecast variable and predictor variable becomes non-
linear, the regression model becomes non-linear.

A baseline model is required for any time series forecasting situation. The perfor-
mance baseline offers a sense of how well all other models will perform on the
problem. The guidelines of the baseline model is that is should be simple (does not
require much training time or intelligence), fast (to implement and requires little
computational effort) and repeatable (generates the same predicted output given
the same input) Brownlee [2016].

On top of the question of whether time series is a linear or non-linear line and
a multiple regression model or not, it is important to consider whether the time
series is stationary or differencing. A stationary time series is one whose statistical
characteristics are independent of the observation time. A stationary time series will
not exhibit any long-term predictable trends Hyndman and Athanasopoulos [2018].
Stationarity indicates that the mean and variance do not change over time. When
the time series is stationary, it is expected that the prediction accuracy will increase
Hyndman and Athanasopoulos [2018]. In reality, this is not always the case for the
time series. For that reason, when the time series is non-stationary, differencing
will be used. With differencing the differences between successive observations can
make a non-stationary time series stationary Hyndman and Athanasopoulos [2018].

A common used model which implements differencing for time series analysis is the
ARIMA model. The final ARIMA model has three variables. ARIMA(p,d,q), where
p is the number of lag observations, d is the number of times the observations are
differentiated and the q is the size of the moving average window Brownlee [2017].

The three parts of the ARIMA(p,d,q) will get explained one by one. The first one is
the Auto Regressive (AR) model, which checks if the variable in the time series gets
regressed by itself over time, as shown in equation 3.5.

Yt = α + β1Yt−1 + β2Yt−2 + ... + βpYt−p + ϵ1 (3.5)

Where α is the constant and ϵ is white noise. White noise is a discrete signal with
zero mean and finite variance Carter and Bruce [2009]. The Yt is a multiple regres-
sion but with lagged values of as predictors. It can be written as an AR(p) model, an
AR model of order p. t is the number of time steps Hyndman and Athanasopoulos
[2018].

The second part of the model is the Integrated (I). I(p) is the amount of times
that the ARIMA model gets differentiated. The purpose of differencing it to make
the time series stationary. These variable p can be found with the Augmented
Dickey Fuller (ADF) method. The ADF method is a common statistical test used
to test whether a given Time series is stationary or not Prabhakaran [2019]. The
null hypothesis of the ADF is that the time series is non-stationarity. If the null
hypothesis is rejected, the ARIMA model will get differentiated and the ADF test
will be done again. If it is concluded that the time series is stationary, the test’s
p-value (exceedance probability) is less than the significance level (0.05).

The last part is the Moving Average (MA), which uses the average over the his-
torical time series. MA(q) is the amount of historical time ’q’ that will be taking
into consideration as used moving average for making predictions Hyndman and
Athanasopoulos [2018]. The formula is shown in Equation 3.6.

Yt = α + ϵt + ϕ1ϵt−1 + ϕ2ϵt−2 + ... + ϕqϵt−q (3.6)
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With ϕ the weight of the specific time step and each number of MA(q) can be viewed
as a weighted moving average of the previous several predicted errors. Now that
the three parts of the total model are explained separately, the final ARIMA(p,d,q)
formula can be seen in equation 3.7.

Yt = α + β1Yt−1 + β2Yt−2 + ... + βpYt−pϵt + ϕ1ϵt−1 + ϕ2ϵt−2 + ... + ϕqϵt−q (3.7)

The outcome of this method is the future values that are getting estimated with
the forecasted errors (AR) and a linear combination of previous measured values
(MA) Hans [2019]. This method is non-stationary, which means that the mean and
variance changes over time.

The ARIMA model is also used for making irradiance predictions. In the paper of
Kanagasundaram et al. [2019], they compared the long short-term memory (LSTM)
method which is a Deep Learning method to the outcome of the ARIMA time series
for long term irradiance predictions. The outcome was that the LSTM approach
outperformed the ARIMA time series with only 2% when the Root Mean Squared
Error (RMSE) values gets compared. Comparing the RMSE is a common method to
calculate and compare the error metric for numerical predictions. Moreover, Hans
[2019] did a comparison for the short term irradiance prediction among other the
ARIMA model. The prediction were for 15 minutes, 1 hour and 3 hours. The
outcome was that the Persistence Model (PM) outperforms the ARIMA model for
those three time frames. The PM uses the most recent time step to make predictions
over future time steps. So, for the irradiance predictions it uses the most recent GHI
time step to make future GHI predictions. In this paper a temporal resolution of 1

minute was used.

3.4.2 All sky images

All sky images (ASI), in other papers sometimes called whole sky images, are im-
ages that are being made with a fish-eye camera directed perpendicular to the sky.
Normally, photographs are then taken at a fixed time interval. ASI can be used
for making irradiance forecasting and to make weather classification based on the
ASI’s, which will get further explained in Section 3.5.

To be able to use the ASI, it is important to understand the basic principles of
images and how they are interpreted by a program. An image is build up into
pixels. A pixel is in digital imaging the smallest 2-dimensional (squared) grid item
that can hold some specific information of an image Zhang and Gourley [2009].
The value of that specific pixel is dependent on the color representation method.
Two of the most widely used color representation methods in computer graphics
are Red-Green-Blue (RGB) color space or the Hue-Saturation-Value (HSV) color space.
The RGB pixel can be visualized as a 3D-square which consist of 3 values between
[0 : 255] in the Red, Green and Blue spectrum as shown in Figure 3.10(a). This
would indicate that a red pixel is (255, 0, 0), a green pixel (0, 255, 0) and a fully blue
pixel (0, 0, 255). For a gray scale (black-white) image the pixel would range between
[0 : 255] in only one dimension, namely the gray dimension. The HSV scale gives a
numerical reading of the image that matches the color names it contains Chin [2021].
Hue is measured in degrees from 0 to 360, Value and Saturation range both from
0 : 100, which gives the visualized pixel shown in 3.10(b). So, both colored pixels
are 3 Dimensional. When the saturation value is zero, the image would appear as a
grayscaled image.

All the pixels combined form the ASI. The final implementation of the ASI that gets
converted to an RGB matrix for programming in Python is shown in Figure 3.11.
Note that the X-direction ’Width’ is from left to right and the Y-direction ’Length’
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Figure 3.10: The visualized difference between (a) the RBG pixel and (b) the HSV pixel,
image from Popov et al. [2018].

from top to bottom. The final matrix of an image is dependent on the size of the
image. The matrix structure is namely: (Number of pixels in row, Number of pixels
in column, Number of dimensions), which is in the ASI example of Figure 3.11:
(1536, 1536, 3). In this example the number of dimensions in an RGB image is equal
to three.

Figure 3.11: The ASI that gets converted into an RGB matrix which can be used for program-
ming in Python.

The solar irradiance forecast is more difficult on cloudy days because of the large
fluctuations in the solar irradiance at very low levels, that is why implementing ASI
in irradiance predictions are interesting Gao and Liu [2022]. In these ASI the clouds
can get detected and improve the model’s predictions. On top of that, the movement
of clouds from the ASI can also be found by employing digital image processing
technologies and computing the displacement of clouds in the photographs of the
sky Kunert et al. [2016]. All these implementations of the ASI’s are done with
various deep learning techniques which will get further explained in Section 3.7.

3.5 weather classification methods
There are many methods to classify the sky conditions in specific groups. As ex-
plained in Section 3.3, the clouds can be classified into ten different groups based
on their height and cloud characteristics only. Heinle and A. Macke [2010] found a
way to make the classification of the ten different clouds based on ASI’s, to combine
some classification in the same group, for that reason consisting of seven groups in-
stead of ten. This was done by choosing twelve specific image features to find the
differences between the classified groups. The features are the Red and Blue mean
of the RGB image. Furthermore the Blue (from the RGB image) Skewness, Energy,
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Entropy, Contrast, Homogenity. Then the difference in Red-Blue, Red-Green and
Green-Blue. Finally the last feature is the Cloud Cover. This method was also ap-
plied in the paper of Kazantzidis et al. [2012a], where they improved the Cloud
Cover (CC). The CC is the percentage of detected clouds in an image, as shown in
Equation 3.8.

CC =
Cloud Pixels

Cloud Pixels + Sky Pixels
(3.8)

The background mask of the image is not taken into account when calculating the
CC. The background mask are the pixels in the ASI which are neither sky or cloud.
This could be all other things that disturb the ASI and the mask of the location at
TU Delft is shown in Figure 3.12.

Figure 3.12: The mask layer of the ASI at the TU Delft. These mask layer will be used on
top of the ASI to calculate the final CC. The mask layer will not be taken into
account for calculating the final CC.

Based on the CC, the ASI’s can get separated into clear sky images, partly sky
images and overcast images. Apart from the CC percentage, another method to
classify the amount of clouds in the sky is via oktas. Okta is a measurement method
broadly used in meteorology which can describe the amount of cloud cover in the
sky at a specific moment. 0 okta indicates a zero % CC and 8 oktas means a fully
clouded sky so 100% Skull [2017]. The overview is shown in Figure 3.13

The reason for the use of oktas is that this can get classified well by human obser-
vation, whereas the exact percentage of the clouds in the sky becomes difficult. The
total overview of how the CC can get converted to oktas is shown in Table 3.1.

Percentage of cloud Okta
0 0

0 < % < 12.50 1

12.50 ≤ % < 25 2

25 ≤ % < 37.5 3

37.5 ≤ % < 50 4

50 ≤ % < 62.5 5

62.5 ≤ % < 75 6

75 ≤ % < 87.5 7

87.5 ≤ % < 100 8

Table 3.1: overview of the cloud percentage can be converted to oktas.
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Figure 3.13: Overview of the different cloud covers expressed in oktas, from Skull [2017].

Different techniques can be used to calculate the CC. Common methods for find-
ing the CC are image thresholding, clear-sky modeling and some machine learning
methods like k-means segmentation, support vector machine and k-Nearest Neigh-
bor. The first two methods will get explained one by one in this section, while the
last three methods will be explained in Section 3.6.

3.5.1 Image thresholding methods

In order to study the outcome of an image, thresholding is commonly used. Thresh-
olding is a sort of image segmentation method in which the pixels of an image are
converted into binary pixels. This indicated that the outcome of the image is in
black (for finding the CC this would be a no cloud pixel) and white (for finding CC
this would be a cloud pixel). As previously explained in subsection 3.4.2, the pixel
range is between [0 : 255] for an RGB image. The value that makes the distinction
between a white and black pixel when thresholding is called the threshold value.
Multiple threshold techniques can be used for this. One of those threshold tech-
niques is fixed threshold. For RGB images, a common fixed threshold method is to
look at the differences between the Red-Green-Blue dimensions. Long et al. [2006]
found the red-to-blue ratio of 0.6 as the fixed threshold value to find the CC in
an ASI. More specifically, pixels are categorized as cloudy if their red-to-blue ratio
(R/B) > 0.6 and as cloud-free if it is lower. There were about 100 ASI’s used in the
training image set to detect this ratio. Kreuter et al. [2009] founded a similar ratio
of 1.3 between blue-to-red (B/R instead of R/B). So, B/R > 1.3 means cloud, lower
no cloud. For this analysis 3903 images where used, and the outcome was that 73%
of the images where in agree within one okta compared with the (surface synoptic
observations) (SYNOP) observations. SYNOP are 3-hourly weather observation made
by the World Meteorological Organization were they check the sky cover, state of
the sky, cloud height and other meteorological data. Weather observations made
by both manned and automated weather stations are reported using the numerical
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code SYNOP. The calculated CC in the paper of Heinle and A. Macke [2010] was
done with a fixed threshold of: R − B > 30, so clouded when higher than 30 and
no cloud when lower than 30. Another technique that can be used is to normalize
the image pixels according to there Red and Blue and then find a threshold value
Yamashita et al. [2014]. Normalization means that the RGB values are converted
to values between zero and one instead of [0:255]. The used index is called the
sky index and shown in Equation 3.9. Values less than 0.23 indicate the presence of
clouds led to the creation of the clouds detection.

Sky index =
Bpixel − Rpixel

Bpixel + Rpixel
(3.9)

By calculating the Haze index (Equation 3.10) , Crisosto [2019] combined information
from the green channel with that from the red and blue channels to improve cloud
detection of the Sky index.

Haze Index =
((B + R)/2)− G
((B + R)/2) + G

(3.10)

Fixed threshold techniques can also be used for HSV images. Souza-Echer et al.
[2006] used the saturation value to find a mean and variance threshold value for
detecting a cloud pixel. With this method a lower and upper threshold value was
found to only detect ASI which are completely clear from clouds or completely
clouded. The findings indicate that the method has an accuracy of better than 94%
for clear sky ASI and 99% for overcast ASI in determining the CC state. Whereas
Jayadevan et al. [2015] used the findings of Yamashita et al. [2014] to calculate the
normalized saturation value for HSV images.

It is also possible to apply multiple thresholds in one image. This method is called
the multi color criterion, since all the three image pixel ranges are taken into account.
Kazantzidis et al. [2012b] The cloud pixel gets detected when:

R < 140&R > G + 70&R > B + 120.

It could be possible that the desired threshold is per ASI different, since the weather
situation differs throughout the year. When instead of one ASI, there is a whole
dataset for a year of ASI’s available from which the CC will need to get calculated,
other methods were the threshold value automatically differs per ASI could be used.
One method that automatically calculates the threshold value per ASI is the Otsu’s
threshold method. The algorithm returns a single intensity threshold in its most
basic form, dividing pixels into the foreground and background classes, or in the
case of ASI into clouds and sky. This threshold is established by maximising inter-
class variation or, alternatively, minimising intra-class intensity variance Otsu [1979].
The classes refer to the colour distribution created in the image by the threshold
technique. Finding this maximum inter-class variation is shown in Figure 3.14 (c).
The maximum inter-class variation can be found be finding the optimal value based
on the range of pixels and the amount of pixels per side. When for both sides
this is maximized, the maximum inter-class variation is found and the threshold
value can be calculated. This threshold technique is only usable for gray scaled
images and was used by Zhena et al. [2017] to detect the clouds in the ASI, so the
cloud forecasting could be predicted. Before using the Otsu method, it is important
that the fish-eyed ASI gets flattened first. The fisheye image is a projection of a
dome onto a plane, so the image is circular and distorted. Flattening an image
means to remove such distortion leading to a standard rectilinear image. When
this is not done, the pixel count of the black mask has a large influence on the
on the distribution of the pixel intensity, which influences the final Otsu threshold
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value. Due to this influence of the mask, the Otsu threshold value will appear lower
compared to the flattened image where the influence of the mask is minimal. For
that reason, the fish-eye ASI’s first needs to get flattened. In Figure 3.14(a & b), one
can see the difference between the outcome for an fish-eye ASI compared with an
flattened ASI.

Figure 3.14: (A) The threshold value calculated for an fish-eye ASI and the outcome of the
binary ASI. Note that the mask background is not yet taken into account. (B)
The threshold value calculated for an flattened ASI and the outcome of the
binary ASI. Note that the mask background is not yet taken into account. (C)
Example of an gray scaled image where the maximum inter-class variation is
found to find the specific threshold value for this image when using the Otsu
threshold value Szelag [2020].

All the methods discussed up until now could be classified as global threshold
methods, which indicates that the threshold method is the same value for the whole
image. Apart from global thresholding, the threshold value can also differ through-
out the image. The method when multiple threshold values will be used through-
out the image is called the local threshold method. Liu et al. [2015] compared the
global Otsu threshold method from Otsu [1979] with the fixed threshold method
from Heinle and A. Macke [2010] and two local threshold methods. The first local
threshold methods divided the image into 16 equally divided blocks and each local
threshold will get calculated yang Jun et al. [2010]. The other technique is to divide
an image into smaller blocks called superpixels. When applying local thresholding
to each superpixel, results in the Superpixel Segmentation (SPS) method proposed
by Liu et al. [2015]. This method will get explained in five steps and these steps are
shown in Figure 3.15. The first step is that the fish-eyed ASI needs to get flattened
first, for the same reason as previously explained for the Global Otsu threshold
method. The second step is that the image will gets divided into local parts with
the SPS technique. The SPS method splits an image into a number of intermittent
blocks based on contour continuity, brightness similarity, and texture similarity Ren
and Malik [2003]. For these ’superpixels’ the threshold value needs to be found. For
each superpixel the Otsu threshold value and the superpixel threshold value will
be calculated. Since the Otsu threshold method only works for grayscaled images,
the third step is to grayscale the ASI before applying the threshold method. The
final calculation for finding the threshold value is found with Equation 3.11.

Tlocal = (1/2)Tglobal + (1/2)TSuperpixel (3.11)

So, for every superpixel that is made the final local threshold value is based on the
superpixel threshold and the global Otsu threshold value of the whole image. The
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fourth step is to add the flattened background mask on the thresholded ASI. This is
to make sure that the background will not get categorised as cloud. The final step
is to calculate the CC of the ASI.

Figure 3.15: The Superpixel segmentation method explained in 5 steps. First will the ASI
gets flattened. Second will the SPS method by applied. Third the mask applied.
Fourth the final threshold image is made. Finally the CC % can get calculated.

Each method has their own limitations. One of those limitations is that there is no
difference being made between the thicknesses of the clouds, while the thickness
can influence the final irradiance output arriving at the desired location. Further-
more, sometimes the clouds on the ASI appears somewhat more darker and for that
reason that pixels could get classified as sky instead of clouds. On the other hand,
the white sun could also get detected as clouds because of its white light. Also, the
used camera’s and aerosols differ per location when using this kind of techniques,
for that reason, the specific optimal threshold values could differ per location/cam-
era. Lastly, the pixel intensities change during the day as a result of shifting sun
zenith angles, especially at the beginning and end of the sun when the sun comes
up or goes down. Since the solar irradiance in that time frame is relatively low and
the error high, it is common practice not to include this part in the final dataset in
order to increase the accuracy.

When there is a dataset of multiple ASI’s available, finding the CC for those im-
ages can be done with multiple method’s. When multiple techniques are used for
one dataset of images it is called Hybrid thresholding. Different threshold tech-
niques can for example work better on ASI’s where the sun is blocked or not Zuo
et al. [2022]. This final CC algorithm that is used in this research is explained in
subsection 4.2.1.

3.5.2 Clear-sky modeling

Clear-sky modeling is another method in order to find the CC in ASI’s. For clear-
sky modeling, it is first necessary to create a library of clear sky background images
with a range of solar elevation angles Yang et al. [2016]. This would consist of
images where only the sky would appear and no clouds. The next step is to add the
location of the sun in the images. For that, first the position of the sun with the a &
A angles needs to be calculated. Then the position of the sun needs to get translated
to the X & Y coordinate in the ASI. The fisheye lens that is used for making the
ASI’s adopts an angular projection, which means the distance from the center of
the image is proportional to the angle around the projection sphere Schneider et al.
[2009]. For that reason, the following Equation can be applied to find the X and Y
coordinate.
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Xsun = Xcenter − Rimage ∗ sin(a) ∗ cos(A)

Ysun = Ycenter + Rimage ∗ cos(a) ∗ cos(A)
(3.12)

With Xcenter & Ycenter as the center of the image, Rimage the radius of the image and
the altitude (a) and Azimuth (A) angles. In order to apply this Equation 3.12, it is
important that the ASI is first flipped because the output of the image is mirrored
with the reality. If the ASI is not flipped, then the West would be at the right side
of the image and the East at the left side. Then the ASI gets rotated with the North
as the highest middle point of the image, in order to correctly apply the Equation’s
of 3.12. Finally, the time of information of the sun angles needs to correspond with
the time of the ASI that is used and the sun can be located as shown in Figure 3.16.
However, it can only give a rough estimate of the true sun location due to the optics
and mirror surface distortion Alessandro Niccolai [2020]. , which are unknown in
the current work as well as in many industrial settings.

Figure 3.16: The visual method of how to find the X and Y coordinate of the sun in an All
Sky Image.

When the location of the sun is found, one can start to create the final clear sky
background library. This library consist of all the ASI’s when there would be no
clouds and for all the sun positions in the image throughout the day. When the
library is created, the difference between the clear sky background and the real ASI
at the same time can be compared. With the differences in the images the cloud
cover can get calculated. Chauvin et al. [2015] worked with the clear-sky library
and calculated the CC by comparing the clear-sky image from the library with the
real ASI at the same moment. Subtracting the differences between the clear-sky
image from the real ASI can detect the clouds in the image. This method performs
well when the are less clouds in the sky, but the algorithm’s success rate drops to
less than 10% when there are more than 40% of clouds in the sky vault compared to
the real situation. Yabuki et al. [2014] did a comparable study, but just looked at the
R/B differences between the clear sky background and the ASI. On top of that, there
is also an extra cloud classification applied. This indicated that the clouds can get
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classified into three kind of clouds based on the R/B differences between the clear
sky background and the ASI. The bigger the difference, the thicker the cloud. The
advantage of this technique is that it is better to detect clouds in situations when
there are not much or thick clouds. Also, it is now possible to make differences in
the kind of cloud thickness in the air. The disadvantages is that it works less well
when there are much clouds in the ASI and that the problem of the light at the
beginning and end of the day is just like with thresholding still a problem. For that
reason, this method will not be applied in this research.

3.6 machine learning
Artificial Intelligence (AI) is a technology that gives robots and systems the abil-
ity to mimic the problem-solving and decision-making capabilities of the human
mind IBM [2020]. Machine Learning (ML) is a subset of AI, where in ML comput-
ers can learn from data without being explicitly programmed. Making a distinction
between traditional programming and ML can be helpful. In conventional program-
ming, the rules that specify how the programme should operate on a computer or
other machine are written explicitly by the programmer. However, a ML model
picks up the rules from the data. These guidelines do not require specific writing.
The ML model’s necessary code still needs to be written, though Pramoditha [2021].
DL is a subset of ML in which multilayered neural networks learn from data. So,
an example of something that is ML but not DL is an model that learn from data
without the use of an neural networks. This can be for example be a classification
method like the Support Vector Machine which will get explained more broadly
later on. The total overview of the relationships between these three terms are
shown in Figure 3.17.

Figure 3.17: Global overview of the difference between Artificial Intelligence (AI), Machine
Learning (ML) and Deep learning (DL). Jawahar and Anoop [2022]

The function of ML can be divided into three groups. It may be descriptive, which
generally is used to understand what the system is and what is does, to find the
structure and relationships between the data. The system may be predictive, in
which case it will make forecasts of the outcome of the data based on the historical
data. This can either be used for making a classification or regression model. The
last option is prescriptive, in which case the system will utilise the information to
recommend possible courses of action Malone et al. [2020].

The subcategories of ML can also be divided into three groups. The first category
is supervised ML. In these models, labeled data sets are used to train ML models,
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allowing them to make a correlation between the inputs and the labels in order to
become more accurate over time. As an illustration, an algorithm might be trained
with images of dogs and other objects that have all been identified by humans,
and the computer would then learn how to recognise images of dogs on its own.
The other other category is unsupervised ML, a programme scans unlabeled data
for patterns. Unsupervised machine learning has the ability to identify patterns
or trends that individuals are not consciously seeking. For instance, by examin-
ing online sales data, an unsupervised ML software could determine the various
customer groups making purchases. The last category is reinforcement ML. By
setting up a reward system, reinforcement ML teaches computers through trial and
error to choose the best action. By letting the machine know when it made the
appropriate choices, reinforcement learning can train models to play games or train
autonomous vehicles to drive. Over time, the machine will understand what actions
to take Malone et al. [2020].

Some of these ML methods are also used in ASI classification or irradiance predic-
tion. One of these methods for making classifications is called the Support Vector
Machine (SVM). The SVM’s primary goal is to draw a optimal line (called a hy-
perplane) that divides the data into classes. The SVM looks for lines between the
classification from which the margin line is maximum, ensuring that the classifi-
cation is maximally isolated from one another. This method is visually shown in
Figure 3.18.

Figure 3.18: Visually explaination of the Support Vector Machine method, image from
Dabakoglu [2018]

The SVM is a supervised ML method, so for this method it is important that the
used data is already labeled. This would mean that when SVM will be used for
ASI’s, then these images first needs to get classified into groups. This same method
can be used for making prediction instead of classifications, named the Support
Vector Regression (SVR) method. The SVR seeks to match the best line within a
threshold value, in contrast to other Regression models that aim to reduce the error
between the real and predicted value. The flexibility of SVR allows us to decide
how much error in our model is acceptable, and it will locate a suitable line (or
hyperplane in higher dimensions) to fit the data. The hyperplane in Figure 3.19 is
illustrated as wixi. The boundary lines (or margin lines) are the decision boundaries
of the hyperplane. The boundary lines can be adjusted to give our model the re-
quired level of accuracy Sharp [2020]. The distance between the boundary line and
the hyperplane is the threshold value (ε). The hyperplane is the actual prediction
line, so forecasts continuous output Raj [2020]. When a data point falls outside the
boundary lines, the deviation from the boundary lines gets denoted as ξ. These
deviation will be taken into consideration for the final objective function to create
the best fitted line in the end. An example of a linear SVR is shown in Figure 3.19.
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Figure 3.19: Example of the SVR, to show how it works and visualize the used terms. Image
taken from Sharp [2020]

A similar kind of method compared to the SVM is called the k-Nearest Neigh-
bor (kNN), which calculates the likelihood that a data point will belong to one group
or another based on which group the data points closest to it do Christopher [2021].
When the images are already classified, is it possible to use the SVM and kNN meth-
ods to classify new images in the already existing groups. This was done by Li et al.
[2021], where they selected 5863 images for training the classifier into four groups
and used 1465 images for testing the effectiveness of the methods. The accuracy for
both these methods is above the 95% overall. It is however more common that ASI
are not labeled, so unsupervised methods can be used better. In that case it is better
to use the k-means segmentation method.

k-means segmentation

K-means segmentation is relatively simple unsupervised ML and image segmenta-
tion method. Image segmentation refers to the splitting of a digital image into a
number of separate areas, each having a set of superpixels (groups of pixels) and
other related pixels Chauhan [2019]. The K-means segmentation method is an unsu-
pervised learning method, which is an algorithm that learns from unlabeled data by
identifying patterns among examples and classifying them appropriately because it
lacks prior labelled material to draw on.

The K-means algorithm is a widely used image processing technique for ASI to
separate sections of clouds or clear sky in a given image based on their similarity
in colour Blazek and Pata [2015]. The method that is used for this is algorithm is
shown in Equation 3.13.

J =
k

∑
j=1

n

∑
i=1

∥∥∥x(j)
i − cj

∥∥∥2
(3.13)

In the Equation J refers to the objective function, k to the number of clusters, n
to the number of used cases, xi the specific case (or pixel) and finally the centroid
of cluster cj. The

∥∥∥x(j)
i − cj

∥∥∥ is the distance function, so the distance between one
specific pixel and the centroid of one cluster. In the case of an image, the Euclidean
distance formula is employed to determine the separation between two points on a
2D plane, which can be seen in Equation 3.14.
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Figure 3.20: An example of how the k-means segmentation method works. It is an unsuper-
vised learning method, so non-labeled data comes in and the method labels the
data. Above images from Chhabria [2021]. The lower images are example of the
applied k-means clustering method on an ASI.

d =

√
(x1 − x2)

2 + (y1 − y2)
2 (3.14)

After calculating the distance, the centroid of all the objects in the clusters needs
to get calculated. An example of the k-means segmentation method is shown in
Figure 3.20. In this example the ASI with K=3 is projected, which indicates that the
image gets classified into three groups (so K is the amount of clusters). Apart from
the k-means clustering method there is also the k-means++ approach. The only
difference is that the centroids are placed in a more intelligent manner with the
k-means++ approach Arthur and Vassilvitskii [2007]. The k means++ removes the
drawback of K means which is it is dependent on initialization of centroid. For that
reason the k-means++ will get further explained, as al the previous steps of the k-
means++ and k-means clustering method are the same. The beginning point of the
centroid is at random when the k-means++ method is used. The results of the first
centroids that were chosen at random are now used to determine the new centroid
in the following scenario. The formula will iterate through the image numerous
times in order to find the global lowest sum of squares. It is written as the number
of cases ’n’ in the Equation 3.13. The better the centroid is chosen, the higher the
compactness of the data points (in case of images, the more pixels with the same
values), the lesser the distance from the centre to the data points.

Blazek and Pata [2015] used this method to classify the clouds in the ASI into the ten
different cloud classifications as explain in Section 3.3. Other studies mainly used
the k-means ++ method in satellite images instead of ASI’s Goswami and Bhandari
[2011].
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These methods are not DL methods, since for DL methods the use of Neural Net-
works (NN) are used, which will get explained in the next section 3.7.

3.7 deep learning
As previously shown in Figure 3.17, DL is subset of ML, while ML is a subset of
AI. A model is called a DL model when there are multiple NN layers in the model.
Information in a human’s brain is transmitted via neurons. They communicate
between various brain regions and between the brain and the rest of the nervous
system through electrical impulses and chemical signals NIOH [2022]. NN is a
mathematical model that mimics the operating principle of neurons in the human
brain. In computer models these NN’s are called Articifial Neural Networks (ANN)
and will be explained in the next subsection 3.7.1.

3.7.1 Artificial Neural Network

Every ANN model start with an input layer, then a number of hidden layers, and
finally an output layer. Each node in one layer is linked to the other nodes in the
layers around. A node is a specific data point and is working as a single neuron. In
an ANN network, these nodes are connected via edges. As shown in Figure 3.21,
ANN figures commonly shows the node as a small circle, while the edge, which
is the connections between those nodes, are usually drawn as arrows. The data
goes from input to output, this is also shown with the arrow direction. By adding
more hidden layers, which are the layers between the input and output layers, the
network is made deeper Dertat [2017]. The hidden layers is the reason for calling
this kind of models a DL model.

Figure 3.21: An example of how the Artificial Neural Networks (ANN) looks like when it
would be drawn. Part of the Figure taken by Dertat [2017].

In this example shown in Figure 3.21, the data is only able to move through the
network from the input to the output. This are called feed-forward NN systems.
On the other hand, for feedback systems is it possible for data to move both sides
inside the network. Insight those systems it will become important to give certain
weights to the nodes between the input and the output, as shown in Figure 3.22.

A specific node runs a nonlinear activation function on the weighted sum of its
inputs. An activation function is a function that is incorporated into an ANN to aid
in the network’s learning of complicated patterns in the input data. It receives all the
output signals from the nodes and transforms it into a form with a upper and lower
limit that is used as the input for the node after it Sharma [2017]. The activation
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Figure 3.22: An example of how the zoomed in Node looks like when it would be drawn
and when an Activation function is added. Figure taken by Dertat [2017].

function determines what signals should be sent to the following neuron. Without
activation functions, a NN is essentially just a linear regression model Gupta [2020].

This process is carried out for each node, and the ultimate output—the signal flow-
ing from left to right—is determined. Learning the weights connected to each edge
in this deep neural network requires training Dertat [2017]. The equation for a par-
ticular node is shown in Equation 3.15. The inputs were combined and processed
by a nonlinear activation function.

z = f (b + x · w) = f

(
b +

n

∑
i=1

xiwi

)
(3.15)

With x the node, w the weighted value, n the number of inputs for the node and
b the bias. In Equation 3.15 it is important to acknowledge the added bias to the
node. Along with the weighted total of the inputs to the neuron, the bias is an
extra parameter in the neural network that is implemented to modify the output.
Therefore, bias is a parameter that improves the model in achieving the best fit for
the provided data Sharma [2017].

3.7.2 Activation functions

There are different kinds of activation functions used in DL models. Before going
into detail about the different kinds of activation functions, it is first important to
find out what the desired features (or not) are for an activation function.

The first thing that is desired is that the activation function is zero-centered. This
is because then the gradients do not shift to a particular (positive of negative) direc-
tion. Also, when the activation is zero-centered it would indicate that the mean of
the activation is also around zero which creates normalized data that creates faster
convergence Jain [2019]. Apart from that, since the activation function is applied
millions of times throughout the model, it is desired that it is computational in-
expensive. In addition, since gradient descent is a method used to train neural
networks, the model’s layers must be differentiable. At last, the feature which is
not wanted is the Vanishing Gradient problem. The problem that occurs when
the weights between the layers become really small and are not able to change the
values in the upcoming layers. This influences the training of the NN. When the
models wants to decrease the loss in the model, it adjusts the weights in the layers to
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improve the outcome. When the weights can barely change the values in the layers,
it will become more difficult to optimize the output values. Since the loss function
is first calculated and then the weights get adjusted from the output until the input
(so backwards going through the model), it is called backwards propagation. Since
the layers gets multiplied with each other, the Vanishing Gradient problem is espe-
cially a problem for the beginning layers. On the other hand, the same problem
can occur the other way around, this is called Exploding Gradient problem. The
earlier in the layers that one wants to change the weights, the bigger the values can
get multiplied with each other and creates to much change in the values. This also
results in non optimal results.

The first activation function that will be discussed is the Sigmoid function, which is
of the most popular non-linear activation functions. The Sigmoid function changes
values between 0 and 1, as shown in Figure 3.23(a). The problem with this method
is that it results in vanishing gradient problems, since it saturates at zero for large
negative values and at one for large positive values. Furthermore, it is not zero-
centered which makes it computationally demanding. This technique is typically
applied to binary classification issues. This is because the Sigmoid function returns
values in the range of 0 and 1, which can be interpreted as probability that a data
point belongs to a specific class.

The second one is the Tanh function. The tanh function and the sigmoid function
are quite similar, the only difference is the symmetry around the origin, which
solves the problem of not being zero-centred (as shown in Figure 3.23(b)), but does
not solve the vanishing gradient problem.

When solving multiclass classification, the Softplus function can be employed, that
is why the Softmax function is frequently referred to as a concatenation of different
Sigmoids. The chance that a data point belongs to each distinct class is returned by
this function. The output layer of a network created to solve a multiclass problem
would contain the same number of neurons as classes in the goal Gupta [2020].

Finally, the last activation function that will be discussed is the Rectified Linear
Unit (ReLU) function. The ReLU function’s primary advantage over other activa-
tion functions is that it does not simultaneously trigger all of the neurons, which
makes it far more computationally efficient than the Sigmoid and Tanh functions
Gupta [2020]. As shown in Figure 3.23(c), it only triggers it’s positive values. Also,
since the partial derivative is either 0 or 1 it will not cause the Vanishing Gradient
problem. The only problem is that since it is not zero centred but the activation
function will not learn from the negative input, so the change will only be in the
positive direction. For that reason the only used activation function is this research
is the ReLU activation function.

3.7.3 Deep learning layers

Up until now, it was common that neurons of the layer are connected to every
neuron of its preceding layer. This is called a dense layer. However, when images
want to be used in the DL model, the dense layers are not sufficient to use. A
more common method to extract sufficient data from images are with convolutional
layers.

Convolutional layers

Convolutional layers detect the important features and patterns due to certain filters
from which the model can learn. The name for these kind of models are CNN. The
idea of how the convolutional layer works is shown in Figure 3.24. The input data
that goes into the model is an RGB image (so 3 dimensions) with the size of 6 by 6.
The RGB image gets multiplied with the filters and from this the feature maps gets
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Figure 3.23: Activation functions in comparison. Red curves stand for, respectively,(a) Sig-
moid,(b) hyperbolic tangent, (c) ReLU, and (d) Softplus functions. Their first
derivative is plotted in blue. Figure taken from Roffo [2017].

created. To be more precise, the filter is consistently applied from top to bottom,
left to right, to each overlapping portion or filter-sized patch of the incoming data.
If the filter is intended to find a certain kind of feature in the input, then applying
it consistently throughout the entire input image gives the filter the chance to find
that feature wherever in the image Brownlee [2020]. Finally, with these filters the
model can find certain patterns and similarities in images. On these feature maps
an activation filter can be applied, the use of an activation function is previously
explained and in the example of Figure 3.24 the ReLU function is used.

Figure 3.24: An Example of how the convolutional layers works for an RGB image with 6 by
6 pixel size that goes through six 2D kernel (filters), from these multiplication
two feature maps are created. Than feature map values can be passed through
the activation function, which in this example is the ReLU function with an bias
(b). From this an 3 by 3 by 2 output is given. Image from Ng [2018]

In order to improve the final accuracy of the model, it can be expected that the RGB
input images are usually of bigger size. As a results, it can be expected that the
amount of filters (and size), amount of feature maps (and size) and the amount of
output blocks also increases. In order to increase the training speed and make the
model more efficient pooling & flatten layers can be used Jeong [2019].
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Pooling & Flatten layers

First, the Pooling layer will be discussed. The pooling layer is a method that de-
crease the size of a feature map. A pooling layer often comes after a convolutional
layer in a CNN. Typically, a pooling layer is added to speed up computation and
strengthen some of the identified features. There are various forms of pooling. The
two most popular pooling techniques for CNN’s are max pooling and average pool-
ing. In max pooling, the highest value of the chosen window is used to build a
reduced map from each patch of a feature map. In average pooling, the average
value of the chosen window is used from each patch of a feature map Pokhrel
[2019]. These two different pooling methods are shown in Figure 3.25.

Figure 3.25: An example of the two different pooling layers techniques, maximum pooling
(left part) and average pooling (right part). Image from Ng [2018]

After the pooling layer, it is common to use a flatten layer. The flatten layer makes
the data inside the model flattened, so the output is 1D. This is important since the
final output of the model should also be in 1D. Figure 3.26 shows how the Pooled
2D layer then gets flattened. With this flattened layer the dense layers can be used
to come to the final output value which one wants to receive from the model.

Figure 3.26: An example of the pooled that gets flattened to a flatten layer. This is needed to
find the final 1D output value from the model. Image from Biswal [2022]

3.7.4 Deep learning model training

After the model is made, it is finally possible to start training it. The goal of training
the model is to get the most accurate outcome of the model. For a prediction model,
the difference between the actual values and the predicted values should be as
small as possible. This could be checked with the Mean Average Error (MAE),
Root Mean Squared Error (RMSE) or the 95% quantile. How these performances
are specifically evaluated will get further explained in subsection 4.3.2. In this
subsection the emphasis lays on how the model gets trained in order to improve
the final outcome. This is done in five steps.
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Step 1 is to split the data into a training & test dataset. The training data is the data
that is used to train the model. The test data is to check how the model performs
on data is not used for the training. With the test dataset the model outcome can
get validated. How the data gets split between training & test data is for every
model different. According to empirical research, using 70–80% of the data for
training and the remaining 20–30% for testing yields the most sufficient outcomes.
Gholamy et al. [2018] Within this 20-30% test data, sometimes an extra split is made
for testing the outcome and after that validate the outcome.

Step 2 is the Forward propagation. At first, a linear combination of inputs and
weights per step are made. Secondly, a non-linear function is applied in the form
of an activation function, which introduced non-linearity into the NN. This can go
through various deep layers before finally get the output.

Step 3 is calculating the loss function. The loss can be determined by calculating
the difference between the output of the model and the actual results from the
test data. Different loss function’s can be used for this dependent on which kind
of model is used. In this research the Mean Squared Error (MSE) is used as loss
function, since it penalizes larger errors more than smaller errors.

Step 4 is the minimization of the loss function. This can be done with the back-
propagation technique, the chain rule is applied to compute gradients all the way
to the inputs of the network and then update the weights Brownlee [2021]. The gra-
dients can then be used by an optimization algorithm to update the model weights.
A method to do this is Stochastic Gradient Descent (SGD), which is an optimiza-
tion method for reducing the models predictive loss with respect to the training
dataset. The problem of SGD is that it has a constant learning rate, which is the tun-
ing parameter that that specifies the step size at each iteration. For that reason, the
Adaptive moment estimation (Adam) optimization of the loss function method will
be used. Adam computes adaptive learning rates, is computional efficient, requires
little memory and compared to other optimizer methods almost always performs
best Kingma and Ba [2014].

Step 5 is to repeat this process until the loss function is minimized. The amount
of times this process is done is called epochs. It is important to find the optimal
numbers of epochs in order to make the most accurate predictions. To less epochs
would underfit the dataset, while to many epochs would overfit the dataset. The
right amount of epochs is found when the training set outcome of the model is in the
same outcome range as the test outcome. The right amount of epochs can be found
when controlling the validation set loss with the outcome of the training loss. When
the amount of epochs have been reached that the validation and training set reaches
the same outcome, the tf.keras.callbacks.EarlyStopping() function in Python can be
used to stop the model from running more epochs, in order to prevent overfitting.





4 M E T H O D O LO GY

4.1 pre-processing data
First, all the data was obtained in Delft, a city in the Netherlands. More specifically,
the equipment’s that where needed to do the measurements where all located at
the rooftop of ’Combined heat power plant’ (Warmtekrachtcentrale) at the Technical
University of Delft. The latitude and longitude of this location are (52.011, 4.357).
In Figure 4.1, one can see the used equipment of the brand Schreder. The first one is
the ASI-16 which makes the All-Sky Images (ASI) every minute of the day. A single
image is saved as a 3D matrix with a width of 1536 pixels, a height of 1536 pixels,
and a depth of 3 colour channels. The second equipment is the pyranometer, which
measured the GHI for every 15 seconds at this location. The last equipment is the
temperature and humidity sensors, which data will not be used. The irradiance
incoming time step is not the same as the incoming ASI’s. Also, the ASI’s stops
with making images when the sun goes down, while the irradiance appears every
15 seconds. In order to combine the information correctly, the irradiance input was
converted into 1 minute data for all the moments that there where ASI’s being made.
There are two ways of doing this. Either the average over the whole minute is taken
or a single measurement at the top of the minute. In this research the average over
the 4 time steps within the 1 minute is used.

Figure 4.1: All the equipment needed for making the all sky images and the extra informa-
tion, located at the TU Delft, the Netherlands.
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Apart from the measured GHI, also the clear sky GHI was calculated at the location
of the TU Delft. As previously explained in subsection 3.2.3, the Simplified Solis
model was one of the best performing CSI models, so is used in this research. The
’get clearsky()’ method found in the pvlib Python library was used to retrieve the
1-minute clear sky GHI Holmgren et al. [2018]. With the CSI and the measured GHI,
the Kc at that same moment can also be calculated, which will be used to make the
classification between the different weather conditions.

The last step of pre-processing the data is to make all the data correspond with the
Coordinated Universal Time (UTC). This is done to prevent making errors between
the winter and summer time. Also, it is easier to implement other dataset in the
same model. The final amount of data time steps for the locations Delft is 313729.
The data starts at 26th of March in 2021 and stops at the 8th of October in 2022.
In between some data has been lost (24th of February 2022 until 9th of July) since
the ASI-16 was not working properly. The overview of the amount of data that
is used per month this is shown in Figure 4.2(a). The longest day of the year in
Netherlands, Delft is 21th of June and the shortest 21th of December. Since only the
data where potential irradiance could be measured is taken into consideration, the
distribution for number of data points per month is clearly projected as the amount
of sun minutes per month.

To validate the model, extra input information is used of the MSc thesis of Dood-
korte [2021]. This is the irradiance and ASI for all 1 minute data from California,
the Folsom area Pedro et al. [2019]. The clear sky irradiance is calculated with the
same method as for the location Delft. The extracted data is from all the data of
2016 and consist totally of 260610 time steps. The overview of the amount of data
that is used per month this is shown in Figure 4.2(b). The longest day of the year in
California, Folsom is 21th of June and the shortest 21th of December (same as Delft).
Also here, only the data where potential irradiance could be measured is taken into
consideration. More detailed information about this dataset can be found in the
MSc thesis of Doodkorte [2021].

Figure 4.2: (a) Overview of the amount of data per month that is used for the location Delft.
(b) Overview of the amount of data per month that is used for the location Fol-
som.

4.2 classification process

4.2.1 Roadmap through the classification

For the final classification process it is first important that the CC will be found for
all ASI’s. The CC will get calculated for all the ASI’s that are used in the dataset.
The final algorithm that is used to calculate the CC is shown in Figure 4.5 and will
be explained step by step.
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For the original ASI, it is important that the location of the sun in the image will
be found. As previously explained in subsection 3.5.2, the position of the sun at
a specific location can be translated into X & Y coordinates with Equation 3.12.
Before this Equation can be used, it is first important that the ASI first gets flipped
and rotated with the North as the highest middle point of the image. For the data
at the location Delft, the images needed to get flipped first and after that rotated
with 24 Degrees. Apart from that, the camera is not exactly perpendicular directed
to the sky. The camera is 2 degrees tilted towards the East. This means that the sun
position in the sun is slightly different than the exact location according to Equation
3.12. This means that the sun path in the ASI’s are different then how they would
go when the ASI was pointed perpendicular to the sky. An example of the sun path
actual sun path versus the expected sun path of April the 12th of 2021 is shown
in Figure 4.3. For that reason, the center value of the sun path is not exactly the
middle of the image, but slightly shifted in the West direction.

When the position of the sun in the image is found, the next step is to make a
cropped image of only the location of the sun can be made. According to Alessan-
dro Niccolai [2020], when the camera is projected correctly the average pixel error
for the exact sun location is 7.87 pixels with a standard deviation of 5.80 pixels. This
was based on 20,394 ASI’s. This indicates a 99% accuracy in the range of 30 pixels
(based on the confidence interval of 99%). On the other hand, in the paper of Zuo
et al. [2022], a radius of 80 pixels around the center of sun was enough to detect
sun locations of the 150 ASI’s that where used. For that reason, the cropped image
is made with a radius of the 80 pixels around the location of the sun.

Figure 4.3: The real sunpath of the ASI’s for the day 1st April in 2021. In figure 4.2(A), the
sunpath of one day is shown for the images of that day. Figure 4.2(b) shows
how the sun path would actually look like. In Figure 4.2(c) the both images are
merged together so one could see the difference between the real sun path and
the theoretical.

When the cropped image is made, the next step is to detect whether the sun is
blocked by clouds or not. This is done with a fixed threshold value over the cropped
ASI. The fixed threshold value will be at 210. The threshold value of 210 is based
on the research of Zuo et al. [2022], where they looked for the minimum threshold
value which still gets classified as a sun for 200 cropped ASI’s. So, values above
210 will be detected as sun and values below 210 will be detected as not sun. Four
examples of how the sun gets detected in the cropped images are shown in Figure
4.4. From the thresholded images one can now detect whether the sun is shining
or not. The size of the sun changes throughout the day in an ASI, whereas the sun
appears smaller in the beginning and end of the day. In order to always detect the
sun throughout the day, the smallest sun will be considered as minimum range to
get classified as sun, which is 5% of the cropped image (pixel size of around 18x18).
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Figure 4.4: Four examples of the cropped image of where the sun in the image is located and
the thresholded cropped image, to see how the sun gets detected.

For the situation that the sun is blocked by clouds, so there is no sun visible in
the cropped image, one can use another threshold method for the whole ASI. With
this threshold method the CC ratio can be calculated for the situation that the sun
is blocked with clouds. This method used the red-to-blue ratio of 0.6 as the fixed
threshold value to find the CC in ASI, which is based on the findings of Long et al.
[2006]. More specifically, pixels are categorized as cloudy if their red-to-blue ratio
(R/B) > 0.6 and as cloud-free if it is lower.

On the other hand, when the sun is not blocked with clouds, it is important to find
out whether there are still cloud pixels detected in the ASI or not (see Figure 4.5).
In order to answer this question it is important to look at the mean pixel intensity
of the images with the area around the sun excluded. This means that the mean
pixel intensity is calculated for images where the cropped sun location part is not
taken into consideration. The mean pixel intensity can be calculated with Equation
4.1.

Pixel intensitymean =

(
Value pixel ∗ Npixels

)
(

255 ∗ Npixels

) (4.1)

Since the RGB values range between [0 : 255], the mean pixel intensity gets divided
by 255 to only get values between [0 : 1]. For this method, the mean pixel intensity
for 200 ASI’s were used. These images where already classified as sun not blocked
by clouds, so either partly clouded or clear sky images. For these images the mean
pixel intensity is calculated and the values are shown in Table 4.1.

Statistical features Clear sky Partly clouded
Average 0.345 0.420

Max 0.397 0.483
Min 0.297 0.354

Table 4.1: The image’s pixel intensity values, excluding the region surrounding the sun
among the 200 pictures.

When the mean pixel intensity is below 0.354, this would indicate that the ASI is
classified as an clear sky image. Since that is the lowest value of the partly clouded
sky conditions. This would give an CC % of zero, since it is assumed that below the
mean pixel intensity of 0.354, the ASI can be classified as a clear sky image. There
are with this method always ASI’s which are clear sky but does not get detected.
For these images the CC can still be calculated via the last step.
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The last step is when the sun is not blocked with clouds but there are still cloud
pixels in the ASI present. For this situation the SPS method of Liu et al. [2015] is
used, as previously explain in subsection 3.5.1.The final outcome of how the CC is
calculated for all the ASI’s is shown below in Figure 4.5.

Figure 4.5: The overview of how the cloud cover is calculated for all the ASI’s. First one
needs to find out whether the sun is blocked or not, then is there are cloud pixels
in the image or not. Finally, the CC can be found for all the images. In this
example the most two left images will be considered as blocked sun and the
most right two images as sun not blocked with clouds.

The cloud cover algorithm is partly based on the algorithm of Zuo et al. [2022]. The
difference is that in this research when the sun is not blocked and there are cloud
pixels the SPS method of Liu et al. [2015] instead of the global Otsu threshold.

Once the CC is calculated, it will become important to find the Kc at that same time
moment. The Kc can be found by looking at the CSI and the measured irradiance at
a given time moment (as explained in subsection 3.2.3. The ASI’s will get classified
into five categories and are based on the CC and Kc at the specific time moment.
The overview of the classification is shown in Table 4.2.

Classification Cloud Cover (CC) Clear Sky Index (Kc)
A Clear sky 0 < CC < 0.25 Kc > 0.75
B Partly clouded high irradiance 0.25 < CC < 0.75 Kc > 0.75
C Partly clouded medium irradiance 0.25 < CC < 0.75 0.4 < Kc < 0.75
D Partly clouded low irradiance 0.25 < CC < 0.75 Kc < 0.4
E Overcast sky 0.75 < CC < 1 Kc < 0.4

Table 4.2: The overview of the five ASI classification based on the Cloud Cover and Clear
Sky Index.

This classification method can finally be used to categories the data for final irradi-
ance predictions. First the performance evaluation of this classification method will
get explained in the next subsection 4.2.2.

4.2.2 Performance evaluation

The performance of the classification method will be evaluated by looking into the
three different variables. The first variable is recall, which measures the quantity of
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the classification. The question that can be answered with the recall variable in this
case is: ’From all the images that could get classified, how many of those images
will get classified correctly?’ The answer on this question is a quantity, since with
this answer one will known if a image is classified at all. The formula for the Recall
is shown Equation 4.2.

Recall =
TP

TP + FN
(4.2)

For this classification variable the True Positive (TP) refers to the amount of images
that are classified correctly, whereas the False Negative (FN) refers to the amount of
images that are not classified but should be classified in a class.

The second variable that is the precision. The precision variable measures the qual-
ity of the classification. The question that can be answered with the precision vari-
able in this case is: ’From the images that are classified, how many of those images
are classified correctly?’ The answer will give inside in the quality of the classifica-
tion. The formula for the precision is shown in Equation 4.3.

Precision =
TP

TP + FP
(4.3)

For this classification variable, the TP refers to the amount of images that are classi-
fied in the correct classification. The FP refers to the images that are classified, but
in the wrong classification.

The last variable is the F-score. For a classification model is it important to mea-
sure both the quality and quantity, for that reason the F-score is introduced. The
Equation 4.4 shown the formula that can be used for calculating the F-score.

Fscore =
1

1
2

(
1

Precision + 1
Recall

) =
2 × precision × recall
( precision + recall )

(4.4)

The outcome of the Recall and Precision can be used for the outcome of the F-score.
The F-score is the harmonic mean of those two variables Harikrishnan [2019]. With
the F-score, a final outcome can be given on how well the classification model has
performed. All the three variables can have a value between zero (worst classifier)
and one (best classifier).

Furthermore, in order to look at the differences of the classification for multiple
locations, an extra variable will be explained which is the Variability Index (VI). The
”length” of the measured irradiance plotted against time divided by the ”length”
of the clear sky irradiance plotted against time can be thought of as the variability
index Stein et al. [2012]. The VI is the difference of the measured GHI between a
given time range divided by the difference of the CSI for that same time range, as
shown in Equation 4.5.

VIt =
|
(

GHIMeasured
t − GHIMeasured

(t+1)

)
|

|
(

GHICSI
(t+1) − GHICSI

(t+1)

)
|

(4.5)

In this research, the VI is chosen to be done an a time range of 1 minute. Since the
data is processed by the minute, the VI for every minute can be made. With the VI
one can see what the minutely difference is between the time steps. With this vari-
able one can compare if the sky conditions for different locations and classification
are changing fast or not.
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4.3 prediction model architectures

4.3.1 Roadmap through the prediction models

For the final prediction model, four different methods are used. These models
will be explained one by one. In order to evaluate the prediction models by one
another it is first important to find a baseline model. As explained in subsection
3.4.1, the guidelines of a baseline model is that it should be simple to implement,
fast and repeatable. A commonly used baseline model for irradiance predictions is
the Persistence Model (PM).

Baseline model

The PM uses the most recent time step to make predictions over the future time
steps. So, for the irradiance predictions it uses the most recent GHI time step to
make future GHI predictions, as shown in equation 4.6.

GHI(t + ∆t)predicted = GHI(t = 0)measured (4.6)

So, the persistence model uses the GHI input at time t to make irradiance predic-
tions for all the future GHI prediction steps. On top of the PM, there is also an
Smart Persistence Model (SPM). The SPM adjusts the PM’s output by applying the
Kc (see equation 3.3) to future time steps, which can be seen in equation 4.7.

GHI(t + ∆t)predicted = Kc(t = 0) ∗ GHI(t + ∆t)clear (4.7)

For the SPM the clear sky index at time t = 0 will be multiplied with the given clear
sky irradiance. The SPM and PM are in line with the guidelines that are needed
for a baseline model. However, since the sky condition at time t will be taken into
account, it is expected that the SPM outperforms the PM. For that reason, the SPM
will be used as the final baseline model.

Auto Regressive Integrated Moving Average (ARIMA) model

The third prediction model which will be used is the ARIMA model. The ARIMA
model is a common used time series prediction model which is already explained
in subsection 3.4.1. For this model it is important to have a set of historical GHI
data that can be used to make the 21-min GHI predictions. The historical dataset in
order to make this 21-min predictions is chosen to contain 500 historical GHI data
points. This is historical data set of 500 is based on the finding of Hans [2019], which
stated that little improvement in forecast predictions can be obtained by increasing
the dataset with more than one day of data for 15 minute and 1 hour time series
predictions. The minutely dataset of 500 corresponds on average to one day of data.
When using this 500 historical GHI data points for multiple prediction over time,
the First In First Out (FIFO) method will be used. This means that when making a
new prediction at a given time t, the t − 500 will be removed from the dataset and
the ’new’ t − 1 will be added. This is shown in Figure 4.6.

Apart from the dataset, it is also important to find the right ARIMA(p,d,q) variables
for making the predictions. This will be explained in subsection 4.3.2. In this
research, the variables are found with the pmdarima.autoarima() function in Python,
which automatically discover the optimal order for an ARIMA model.
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Figure 4.6: Overview of how the ARIMA FIFO system works to make the 21-min GHI pre-
dictions. For every 21-min prediction, a 500 historical dataset is used which shifts
throughout the dataset via the FIFO method.

Convolutional Neural Networks (CNN) model

The fourth prediction model that will be used is the CNN model. For this model the
input of the ASI’s are needed to make future predictions. The used CNN model
is based on the MSc thesis of Doodkorte [2021]. First the pixels in the ASI gets
rescaled, so normally the values of an RGB image will go from [0:255], but in the
CNN model the values will vary between [-1:1]. Then, convolutional blocks are used
to take the ASI images and extract useful information from them. Four CNN blocks
make up the entire convolutional network, with the number of filters increasing and
the filter size decreasing. This is done to extract more data from the ASI. Including
more filters extracts more detailed information from the ASI. The final layer is a
flatten layer, which converts the three dimensional layers to one. To extract more
complexity from the image, the flattened output from the CNN blocks is then fed
into two dense layers. The final overview of the used CNN network is shown in
Figure 4.7.

Figure 4.7: This graphic shows the convolutional neural network that was utilised in the
deep learning model to extract visual features. Figure made by Doodkorte [2021]
and slightly adjusted.

Apart from that, the GHI and CSI are used as input variables and is the auxiliary
data of this model. In the MSc thesis of Doodkorte [2021] multiple input variables
were used to check the performance outcome of the CNN prediction model. The
results showed that the CNN model with the input variables of only the ASI, GHI
and CSI resulted in the lowest Mean Average Error (MAE), which is a function that
is used for finding the average magnitude of error which will further analysed in
subsection 4.3.2. For that reason this research uses the GHI and CSI as auxiliary
input data.
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So, the measured GHI and CSI comprise the auxiliary data. The auxiliary data
first gets normalized, this is done by scaling and shifting all the input data into a
distribution centered around 0 with a standard deviation of 1. As shown in Figure
4.8, a dense NN with two layers is employed to accomplish this. The first layer
consist of 16 units, while the second layer consist of 8 units.

Figure 4.8: This graphic shows the auxiliary dense neural network that was utilised in the
deep learning model. Figure made by Doodkorte [2021] and slightly adjusted.

So, the final dense layer consist of 8 units. The auxiliary data with size (1X8) will
get concatenated with the CNN input (1x64). This results in an concatenated layer
of (1X72). The final forecast is based on the concatenated vector. Then two dense
layers will be used, the first dense layer consist of 64 units and the second one
consist of 32 units. The vector has 22 distinct dense layers with a single unit each,
representing the forecast horizon of 0 to 21 minutes. Total overview of all the layers
are displayed in Figure 4.9 and below in chronological order.

Figure 4.9: This graphic shows the total overview of the deep learning prediction mode that
was utilised in the deep learning model. Figure made by Doodkorte [2021] and
slightly adjusted.

4.3.2 Performance evaluation

For the performance evaluation of the prediction models, first the loss function of
the CNN model must be chosen. The loss function is used to update the internal
weights in the model in order to improve the final prediction. The used loss function
is the MSE and is shown in Equation 4.8.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (4.8)

Where Yi refers to the measured GHI, Ŷi to the predicted GHI and n to the number
of predictions taken into consideration. The squared difference between the pre-



40 methodology

dicted and measured values causes the MSE loss function to penalise greater errors
more severely than tiny errors. Additionally, it has already been established that
MSE loss functions outperform other loss functions and display promising results
when used with ASI images for short-term GHI predictions Paletta et al. [2021a].
The problem with the MSE is the unit, which is W2/m4 and not the standard In-
ternational System of Units (SI). Measurements that are in the correct SI are the
MAE and the Root Mean Squared Error (RMSE), with both the unit of W/m2. The
Equations 4.9 & 4.10 shows how the MAE and RMSE can get calculated.

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (4.9)

RMSE =

√√√√ n

∑
i=1

(
Ŷi − Yi

)2

n
(4.10)

The MAE and the RMSE can both be used to diagnose the variation in the errors
in a set of forecasts. The RMSE will always be larger or equal to the MAE. The
greater difference between them, the greater the variance in the individual errors in
the sample. If the RMSE=MAE, then all the errors are of the same magnitude.

In order to better compare the relative difference between predictions for other
locations and with other papers, the normalized Mean Average Error (nMAE) &
normalized Root Mean Squared Error (nRMSE) are calculated and shown in Equa-
tions 4.11 & 4.12.

nMAE =
MAE

GHImean
measured

(4.11)

nRMSE =
RMSE

GHImean
measured

(4.12)

The GHImean
measured is the mean of all measured GHI in the used datasets. For location

Folsom all measured GHI is for the year 2016. However, for location Delft, there
is no available consecutive year of data available, for that reason all measured GHI
will be used. For the location Delft this is 263.5W/m2, whereas for the location
Folsom it is 411.4W/m2.

Apart from the whole MAE over the 21-minute predictions, it is also interesting to
look at the MAE for each time step over the 21-minute prediction. This is done to
compare different models how they perform for the minutely prediction compari-
son. The formula for the MAE per timestep is shown in Equation 4.13.

MAEτ =
1

nτ

n

∑
t=1

∣∣Yi − Ŷi
∣∣ (4.13)

Where τ represent the specific timestep one wants to calculate, so nτ is the amount
of predictions for timestep τ.

Another method to control the performance relative to each other is the Forecast
Skill (FS). The FS uses the baseline model to compare with the other models used
in the research Paletta et al. [2021a]. In this research the FS is done based on the
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difference in MAE over the whole forecast horizon compared to other models and
shown in Equation 4.14.

FS =
MAEbase − MAEnew

MAEbase
(4.14)

With this, the other models can get quickly compared with the baseline model based
on the positive (or negative) difference with the baseline model.

However, the FS based on averaged errors (in this case on the MAE) and other
indicators offer little insight into the model’s capacity to forecast infrequent but
significant big errors Paletta et al. [2021b]. For that reason the 95% quantile error
based on the sorted list of MAE is also calculated to assess this component of the
projections. For example, when you would have a 95% quantile of 100 W/m2 based
on the MAE, then 95% of the MAE’s in the dataset would be 100 W/m2 or lower.
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5.1 classification results
The classification final results for both the location Delft and Folsom are depicted
in Table 5.1. In this table one can see the total amount of data points that are used
for making the classification for both situations. As one can see, there is a clear
distribution between the classes itself and between the locations. On top of that, in
Figure 5.1 is the classification distributed showed for both locations. Futhermore, it
is important to note that an extra class named ’class 2 (partly) is added. This class is
the combined Class B, C & D and will be used later on in the prediction sensitivity
analysis in Section 5.2.3.

Delft Folsom Combined
Total 313729 260610 574339

Class A (clear) 82048 171520 253568

Class B (Partly clouded high irradiance) 49720 19253 68973

Class C (Partly clouded medium irradiance) 25096 20116 45212

Class D (Partly clouded low irradiance) 19738 9973 29711

Class E (overcast) 79655 23973 103628

Class 2 (partly) 94554 49342 143896

Classified 82% 94% 87%

Table 5.1: The final outcome of the classification for both location Delft & Folsom.

Figure 5.1: Overview of the distributions of the classification over the 5 classes for location
Delft & Folsom.

One can see that for the location Folsom, the clear sky situation of Class A is almost
2
3

th
of the time in a year. Whereas for the situation Delft is a little more than 1

4
th

of the time. However, for the situation in Delft, the distribution between clear sky,
partly clouded and overcast situations is fairly even. This difference in distribu-
tion for both locations were expected, since both distributions are in line with the
regional yearly weather conditions KNMI [2021] & Spark [2016].

43
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In order to calculate the Recall & Precision, 250 random ASI’s were used and than
manually checking with a researcher if the classification was in the correct class
(TP). For calculating the Recall one wants to know for how many of the images
could get classified are classified correctly. This is the case for 84.0% of the time as
shown in the calculation below for location Delft.

Recall = TP
TP+FN = 200

238 = 84.0%

For precision one wants to look at the images that are already classified, if they are
classified correctly. The calculation for location Delft is shown below.

Precision = TP
TP+FP = 200

212 = 94.3%

Then finally the F-score can be calculated by combining the outcome of the precision
& recall. The final calculation for location Delft is shown in the next line and the
final classification performance for both locations is shown in Table 5.2.

F-score = 2∗ Precision ∗ Recall
( Precision + Recall ) =

2∗0.943∗0.840
0.943+0.840 = 88.9%

Delft Folsom
Recall 84.0% 93.3%

Precision 94.3% 89.4%
F-Score 88.9% 91.2%

Table 5.2: The final classification performance based on the recall, precision & F-score for
both locations.

In Table 5.2, one can see that the Recall performance of location Folsom is higher
whereas the Precision of location Delft is higher. Due to the high number of clear
days in the location Folsom, the number of expected misclassifications is also lower.
This is clearly shown in the Recall performance. Since the classification method
is made for location Delft, it was also expected that the Precision for that location
would be higher. However, the performance of the Precision for location Folsom
is still convenient, which results in an overall higher F-score compared to location
Delft.

In addition, on the calculation of the CC an extra validation is applied. In this
analysis, for the 250 ASI’s that are used for validation, the difference between CC
from the algorithm and the manual observation is shown in Figure 5.2. First, the
CC outcome from the algorithm will get converted to oktas as shown in Table 3.1
in Section 3.5. The CC difference is shown in Oktas, which means that when the
difference in oktas in Figure 5.2 is zero, the algorithm outcome is in line with the
manual observation.

Figure 5.2: Difference distribution (in oktas) of CC algorithm and with the manual observa-
tion for (a) location Delft and (b) location Folsom.
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In Figure 5.2, one can see that for 95.6% of the times the difference between manual
observation and the CC algorithm is within 2 oktas for location Delft and 92% for
location Folsom. This results in a higher precision for location Delft compared to
Folsom. For location Delft, there are also 2 ASI’s which have a difference of 8 oktas.
In both these situations the CC algorithm calculated a CC of 0 okta while in the
manual observation a sky situation of 8 oktas where obtained. Both ASI’s were
made early in the morning and are shown in Figure 5.3. These both ASI’s should
exactly get classified as ’no-class’, but in this case got classified as Class A (clear
sky). This is because the kc is higher than 0.75 while the actual cloud cover is 8

okta.

Figure 5.3: The two example where the CC algorithm misclassified the CC %. (a) ASI is
taken 4:19 (UTC) in the morning of the fifth of August in 2021. (b) ASI is taken
4:40 (UTC) in the morning of the 19th of August in 2021.

Apart from the CC, one can also look at the VI for both locations and for the dif-
ferent classes. When the VI is 1, it indicates that the minutely difference in GHI
between the clear sky situation and the measured situation is exactly the same.
When the VI is smaller than one, it indicates that the measured GHI difference is
smaller than for clear sky. This would indicate that the measured GHI over time is
not changing much. When the VI is higher than one, it indicates that the measured
GHI changes more than the Clear Sky conditions, which can indicate a difference
in the sky situation. Also, a higher VI overall means that the model is more difficult
to predict, since the GHI changes per minute are higher Hartmann [2020]. From
Figure 5.4 becomes clear that the overall VI is higher for location Delft compared
to location Folsom, when the box-and-whiskers plots for both locations and classes
will get compared.

5.1.1 Classification sensitivity analysis

The classification was done based on the Clear Sky Index (Kc) and the Cloud Cover
(CC). For these two variables it is important to find the boundary values which
separates the classes from each other. In Figure 5.5, one can see which combination
of Kc with the CC corresponds to which class. There are however also combinations
were there is no classification made. This is the case for relatively low CC (< 0.25)
and the Kc lower than 0.75. This is done since it is expected that when the Kc and
CC are low, the specific time moment will get incorrectly classified as clear sky.
The same holds for the moments with CC higher than 0.75 and Kc higher than 0.4.
The amount of sky covered by clouds and irradiance have an inverse connection,
according to early researchers Kimball [1919]. For that reason, it is expected that
there are not much situations with low CC and low kc or high CC and high kc.
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Figure 5.4: The Variability Index (VI) shown as box-and-whiskers plot for all the data and
per class for location Delft on the left and location Folsom on the right.

When these situation do occur, it is expected that the CC is calculated incorrectly.
For that reason, when these situations occur they get classified as ’No Class’.

Figure 5.5: Overview how the classes are classified based on the Kc and CC.

The boundary values of the CC are based on the amount of Okta’s. Where Class
A (clear sky) is classified for a CC up until 2 Okta’s, which corresponds to 25%
CC. The other boundary value is for 6 okta’s, which corresponds to 75% CC. This
boundary values are chosen based on the National Weather Service (NWS). They
state that between 0 and 2 Okta’s, the sky can be classified as clear sky, between
2 and 6 Oktas partly clouded and between 6 and 8 Oktas overcast NWS [2022a].
This distribution is also applied in the paper of Kazantzidis et al. [2012a]. It is
however also possible to make the boundary at 1 okta and 7 okta. For example, Li
and Lam [1999] did research on the climatic parameters and their applications in
the classification of sky condition and used the boundary values of 1 and 7 okta
to make classes for clear sky, partly clouded and overcast. The boundary values
for the kc are different when it gets compared with multiple papers. Mathiesen
and Kleissl [2011] classified kc < 0.4 as cloudy conditions and when the kc was
around 0.75 or higher, the sky condition is classified as clear sky, since the future
predictions correlated well with the clear sky irradiance. Between those two values,
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the partly clouded conditions, is the situation with the highest RMSE when making
irradiance predictions due to the irradiance variation (caused by the partly clouded
conditions). Instead of the kc, most papers use the Clearness Index (CI), which is
the fraction of the actual total irradiance the theoretical maximum irradiance during
the same period. The maximum CI is one, while the kc can also be higher than one.
Cucumo et al. [2007] used the boundary values of 0.2 and 0.65 based on the CI. Li
and Lam [1999] used the boundary values of 0.15 and 0.7, and Muneer et al. [2007]
used the clear sky boundary value of 0.6. However, Lauret et al. [2022] compared
the solar forecast outcomes of the kc with the CI, and showed that the use of the
kc gave a higher FS when comparing the prediction loss based on the RMSE. For
this reason, the kc will be used to make the classifications. Finally, to change the
boundary values of the CC and kc will make the ’no class’ condition smaller and
the Recall higher (more ASI’s gets classified). The problem is that the increase of
Recall can decrease the Precision of the model, since it is expected that more errors
(wrong classified images) occur in the ’no-class’ area.

5.2 prediction results

5.2.1 Results without classification

For the prediction results, first one will look at the situation when no classification
are used. When the situation without classification first gets analysed for both
location, it can get compared with the situation when the classification is used. The
results of the MAE, RMSE, nMAE, nRMSE and FS for the four prediction models
are depicted in 5.3 for the location Delft.

Model MAE
[
W/m2] RMSE

[
W/m2] nMAE nRMSE FS [%]

Smart Persistence (= baseline) 55.36 116.79 21% 44.3% 0

Persistence 57.76 118.65 21.9% 45% −4.3%
ARIMA 67.86 89.34 25.8% 33.9% −23.6%

CNN 44.28 84.03 16.8% 31.9% 20%

Table 5.3: The prediction results for the four different models in comparisons based on the
MAE, RMSE, nMAE, nRMSE and FS for location Delft.

From the table becomes clear that the CNN models performs best, with an 20% FS
improvement for the whole prediction for 21-minutes compared to the SP model.
This is also the case when there will be looked at the minutely performs of the
MAE in Figure 5.6 and the quantile 95% in Figure 5.7. On the other hand, the FS
of the persistence and ARIMA are negative, which indicates that the SP model are
performing better over the 21-minute prediction based on the MAE. Furthermore,
from Table 5.3 one can see that the RMSE of the ARIMA model is lower than the
baseline model, while the MAE is higher. The greater difference between the MAE
and RMSE indicates a greater variance in the individual errors. This is also what
can be see in Figure 5.7 when looking at the quantile 95%. After around 8 minutes,
the quantile 95% of the SP model becomes higher than the ARIMA model, while the
MAE per minute for the ARIMA (as depicted in Figure 5.6) is higher for all minutes.
However, when this gets compared to the CNN model, the overall performance of
the CNN still remains the best compared to the other three models.

Also, the prediction for the location Folsom was done and the results are depicted
in Table 5.4.

Also for the situation of Folsom, the CNN outperforms all other prediction models.
It is interesting to compare the outcome of the nMAE and nRMSE of the location Fol-
som in Table 5.4 with the outcome of location Delft in Table 5.3. Since the mean GHI
for the location Folsom is 411.4W/m2 while the mean GHI for Delft is 263.5W/m2
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Figure 5.6: The 21-minute predictions of the 4 models namely: Persistence model, Smart
Persistence model, ARIMA model & CNN model. The final outcome of the MAE
per minute for the four prediction models for location Delft.
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Figure 5.7: The 21-minute predictions of the 4 models namely: Persistence model, Smart Per-
sistence model, ARIMA model & CNN model. The final outcome of the quantile
95% per minute for the four prediction models for location Delft.

and the overall MAE for location Delft is higher than the location Folsom. When
the nMAE of the CNN model will get compared, one can see that for location Delft
the nMAE is 2.9 times higher than for situation Folsom!

5.2.2 Results with classification

For the results with classification the four prediction models will get compared
with the outcome of the MAE per classification. As previously explained, the clas-
sification of done based on 5 groups, where Class A represents clear sky, group E
overcast and Class B, C, D partly clouded. In Table 5.5, the results of the four predic-
tion models per classification for location Delft is shown. For the CNN model two
predictions were made. The first one ’CNN: class afterwards’ is when the classifi-
cation is done after the prediction. This indicates that the prediction is done based
on the whole dataset, and after the prediction all the outcomes are labeled in the
classes. The second one ’CNN: class forwards’ is when the classification is done
before the prediction. To compare these two with each other one can see the im-
provement of the prediction when the classification is applied before the prediction
is done.

It is important to note that the results for the CNN forwards and afterwards that
are showed in Table 5.5 are done with a dataset of 19000. This is because Class D
(for location Delft) only has an dataset of that size. The outcome of the prediction
with other sizes of datasets are shown in subsection 5.2.3. The comparison between
the CNN when making prediction forwards and afterwards per class are shown in
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Model MAE
[
W/m2] RMSE

[
W/m2] nMAE nRMSE FS [%]

Smart Persistence (= baseline) 27.12 75.22 6.6% 18.3% 0

Persistence 39.68 79.73 9.6% 19.3% −46.3%
ARIMA 46.89 58.54 11.4% 14.2% −72.9%

CNN 23.87 54.12 5.8% 13.2% 12%

Table 5.4: The prediction results for the four different models in comparisons based on the
MAE, RMSE, nMAE, nRMSE and FS for location Folsom.

Model Class A Class B Class C Class D Class E
Smart Persistence (baseline) 32.4 108.71 92.21 56.40 30.99

Persistence 43.84 104.21 98.61 57.21 31.61
ARIMA 65.06 104.26 112.33 60.25 36.64

CNN: class afterwards 43.50 90.25 87.84 54.04 31.97
CNN: class forwards 30.94 86.26 86.60 48.10 29.29

Table 5.5: The results of the MAE per classification for the four prediction models for location
Delft. For the CNN model 2 predictions were made. The first one ’CNN: class
afterwards’ is when the classification is done after the prediction. The second one
’CNN: class forwards’ is when the classification is done before the prediction.

5.6. The total improvement for classifying the data before making predictions for
this dataset is 8.6%.

Model Class A Class B Class C Class D Class E Total
CNN: afterwards 43.50 90.25 87.84 54.04 31.97 61.52
CNN: forwards 30.94 86.26 86.60 48.10 29.29 56.24
Improvement 28.7% 4.4% 1.4% 11% 8.4% 8.6%

Table 5.6: The total improvement for making classifications forwards and afterwards based
on a dataset of 19000 at the location Delft .

This same analysis is done for the location Folsom. It is important to note that the
results for the CNN forwards and afterwards that are showed in Table 5.5 are done
with a dataset of 9900. This is because Class D (for location Folsom) only has an
dataset of that size. The total improvement for classifying the data before making
predictions for this dataset is 29.3%, as shown in Table 5.7.

For every class (A till E) the minutely MAE and quantile 95% are plotted for the lo-
cation Delft and are shown in the Appendix A.1. One can see that also for minutely
data over the whole 21-minute prediction, that when the data is classified first the
outcome improved when it gets compared to the SP model and the CNN that gets
classified afterwards.

5.2.3 Prediction sensitivity analysis

Sensitivity for five classes

Table 5.6 in subsection 5.2.2 already showed the improvement when for all classifi-
cation a dataset of 19000 is used. The same is showed for Folsom where a dataset
of 9900 was used, as shown in Table 5.7. In this section, for the sensitivity analysis
based on the five classes that are being made, three different datasets will be used.
The first dataset will consist of all the available data per classification for location
Delft. In Table 5.8 this dataset is called ’Delft total (after/for)wards’. This indicated
that the amount of data that gets compared per class is not equally divided. The
same will be done for the location Folsom, this dataset is named ’Folsom total (af-
ter/for)wards’. Finally, a combined dataset named ’Combined (after/for)wards’ is
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Model Class A Class B Class C Class D Class E Total
CNN: afterwards 47.25 63.5 78.76 62.75 35.27 57.47
CNN: forwards 24.76 46.56 60.56 44.86 26.52 40.62
Improvement 47.6% 26.7% 23.1% 28.5% 24.8% 29.3%

Table 5.7: The total improvement for making classifications forwards and afterwards based
on a dataset of 9900 at the location Folsom.

made for location Delft & Folsom to have a prediction dataset. All the results with
the total improvement per dataset is shown in Table 5.8.

Datasets Class A Class B Class C Class D Class E Total improvement [%]
Delft total afterwards 29.81 74.36 80.23 44.68 30.23
Delft total forwards 27.14 74.56 77.85 44.98 29.57 2.1%
Folsom total afterwards 20.35 46.39 60.88 47.42 28.16

Folsom total forwards 17.05 39.3 59.08 44.83 24.55 9.1%
Combined afterwards 29.6 71.25 79.48 49.11 31.67
Combined forwards 24.1 68.6 75.47 47.05 29.43 6.3%

Table 5.8: Results of the total improvement when all data per classification is used.

One can see that the improvement for all locations are positive when the data gets
classified first before making predictions. It is important to note that this is even
the case when the amount of data is not of the same size. For the combined dataset
it can be expected that the total improvement lays between the two datasets.

Sensitivity for three classes

Besides the classification that is done based on the five classes, classifications have
also been done on the basis of three classes. This is done by combining Class B,C,D
into one partly clouded class namely Class 2. The three classes are separated as
Class A (clear sky), Class 2 (partly clouded) and Class E (overcast). Five different
datasets are used for making these predictions. The first prediction is done for
location Delft where the dataset consist of 79000 time steps. This is done since this
is the maximum amount of data that all classification can have the same amount of
data. The class is called ’79000 Delft (after/for)wards’. The second dataset consist
of 23000 time steps for location Folsom for the same reason as the previous one. For
the third dataset the location will get combined and a dataset of 100,000 time steps
can be made. The last two datasets consist of all the available data per classification,
and the afterwards prediction consist of all available data without classification.
This is done for location Delft and Folsom. The results of these five datasets are
shown in Table 5.9.

Dataset Class A Class 2 Class E Total improvement [%]
79000 Delft afterwards 29.93 74.31 30.38
79000 Delft forwards 27.92 50.82 29.63 19.5%
23000 Folsom afterwards 22.27 60.99 35.18
23000 Folsom forwards 18.66 67.28 24.77 6.5%
100.000 Combined afterwards 27.28 64.28 29.41
100.000 Combined forwards 26.64 48.96 27.59 14.7%
Total Delft afterwards 29.81 65.50 30.23
Total Delft forwards 27.14 46.04 29.57 18.2%
Total Folsom afterwards 20.35 52.55 28.16
Total Folsom forwards 17.05 43.77 24.55 15.5%

Table 5.9: Results of the total improvement when making classes of three instead of five for
location Delft, Folsom and combined.
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It is interesting to compare the improvement of Class 2 to the improvement of
Classes B, C & D. When the ’Total Delft (after/for)wards’ dataset will be taken as
example, the total improvement of 5 classes is 2.1% while for 3 classes it is 18.2%.
This while the only difference is made in Class 2, since Class A and E are the same
for the five and three classes. This indicates that the overall improvement with only
three classes is more than for five classes for location Delft. To go in more detail, also
the MAE per time step and quantile 95% are taken into consideration. In Figure 5.8,
one can see the MAE per time step for the whole 21-minute prediction. The overall
improvement is significantly greater compared to the minutely improvement for
classes B, C & D shown in Figures A.3, A.5 & A.7. The same is done with the
quantile 95% for class 2 and is shown in Figure 5.9 which can be compared with the
quantile 95% of classed B, C & D shown in Figure A.4, A.6 & A.8.
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Figure 5.8: The 21-minute MAE of the baseline model (SP) against the CNN model when the
classification is applied beforehand against when the classification for Class E is
not applied, so afterwards classified.
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Figure 5.9: The 21-minute quantile 95% of the baseline model (SP) against the CNN model
when the classification is applied beforehand against when the classification for
Class E is not applied, so afterwards classified.

For location Folsom, the same comparing can be done by looking at the difference
between Class 2 and the previous Classes B, C & D. First, for the dataset of 23000,
the class 2 for the Folsom location does not even improve. However, when all the
data is used, the total outcome class 2 when classify before predictions improves
the outcome. It could be the case that a bigger dataset is required to get the desired
improvement for partly clouded conditions, since more different weather conditions
are classified in this group.

However, for both locations, the total improvement when making three classes is
bigger than when making five classes. When three classes will be made, the datasets
also increases. It could be possible that when the total classification dataset on a
specific location increases the total improvement.
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Ablation Sensitivity

For the ablation sensitivity, different input variables are used to the make 21-minute
predictions. These results with get compared with the original CNN model, named
’CNN- Main’, when no classifications are applied. This CNN-main model is all the
data that is available for location Delft. ’CNN - HSV’ is made with the same dataset,
the only difference is that the original input consists of RGB images whereas for
this model the images are HSV (differences are explained in subsection 3.4.2. For
the third model, which is called ’CNN - CC’, the CC is added as an extra variable
with the same dataset as ’CNN - Main’. For the final prediction all the available
data is used to make predictions for only the location Delft. So, the training data of
Delft & Folsom are combined to make predictions only for the location Delft.

Model MAE [M/m2] nMAE FS [%]
CNN - Main 44.28 16.8% 0

CNN - HSV 61.27 23.3 −38.4%
CNN - CC 45.51 17.3% −2.8%
CNN - All 48.55 18.4 −9.6%

Table 5.10: The performance of the CNN-Main model compared to the CNN-Main models
with the ablation of inputs is depicted.

As shown in Table 5.10, all the other results compared to the CNN-main results in
a negative FS. This indicates that there is no improvement based on the final MAE
outcome for the 21-minute prediction. Even when all data for both locations will
be used as training set for testing the outcome of location Delft, results in worse
outcomes.
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6.1 classification comparison
In this section the outcome of the classification model will get compared with other
papers. First of all, it is important to go into detail about the classification method
that is used in this research. For this research the CC algorithm of Zuo et al. [2022] is
used and slightly adjusted. The adjustment is that for partly clouded conditions, the
SPS method of Liu et al. [2015] is used instead of the global Otsu threshold method.
This was done because the paper of Liu et al. [2015] showed more promising results
which were also in line with my own findings during this research. The paper of
Zuo et al. [2022] used the algorithm as directly input for the prediction model. This
means that the algorithm was not validated and no classification were made with
the CC outcome.

For that reason, other papers needs to be used to compare the classification outcome.
Two papers that made classification based on CC in ASI’s are Kazantzidis et al.
[2012a] and Xie and Yiren [2019]. In the first paper the classification for the CC was
done in the same way as this research. Which is classifying the ASI’s into three
groups based on the CC. This approach yields 83% within 1 okta and 94% within 2

oktas of the examined images that, respectively, agree to within 1 and 2 oktas with
visual weather measurements at a nearby meteorological station. The paper of Xie
and Yiren [2019] yields 80.6% within 1 okta and 93.9% within 2 oktas. In this paper
the CC is found via a CNN model (i.e., the optimised U-Net model) that detect the
clouds in the ASI’s. The input of the CNN model were 400 labeled ASI’s. The label
corresponds to the amount of oktas that corresponds to the cloud situation in the
ASI. The total cumulative difference between the two papers and this research are
shown in Table 6.1.

Okta difference This study: Delft This study: Folsom Xie and Yiren [2019] Kazantzidis et al. [2012a]
0 53.6% 50% 44.9% Unknown
1 87.2% 73.6% 80.6% 83%
2 95.6% 92% 93.9% 94%

Table 6.1: Comparing between the studies of Xie and Yiren [2019] and Kazantzidis et al.
[2012a] and this research based on the difference in oktas with the CC algorithm
compared to manual observation.

For calculating Clear Sky Index (kc), the Simplified Solis method of Ineichen [2008]
is used. The Simplified Solis method is one of the most broadly used clear sky
calculation methods. In the paper of Antonanzas-Torresa et al. [2019], 70 different
Clear sky models where compared and this method was one of the best performing
methods. On top of that, in the pvlib-python algorithms this is one of the three
clear sky models that can be used, while the other two performed worst in the
comparison paper of Antonanzas-Torresa et al. [2019].

However, other methods to classify images could also have been applied. In the
paper of Hartmann [2020], six different methods to categories the sky conditions
are compared and analysed. In this methods, the cloud cover was not used as in-
put for making the classifications. However, the cloud cover is used for validating
afterwards if the classification of the sky conditions were done correctly. For the six
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methods that were used, all the sky conditions are classified, which would result
in an Recall of 100% in this research (number of classified divided by total num-
ber). The Recall in this research varies between 82% for location Delft and 94% for
location Folsom. The validation was done by dividing the sky conditions into three
groups based on the cloud cover. The groups were clear sky (0 to 1 okta), partly
clouded (1 to 7 okta) & overcast (7 to 8 okta). The method with the highest precision
(correctly classified/total classified) was 81.3%. The precision in this research varies
between 95% for location Delft and 91% for location Folsom. The most accurate
method from the paper of Hartmann [2020] makes the 5 classes based on the CSI
and the VI, as shown in Table 6.2.

Class VI CSI
Clear < 2 ≥ 0.5

Overcast < 2 < 0.5
Mild 2 < VI < 5 n.a

Moderate 5 ≤ VI < 10 n.a
High ≥ 10 n.a

Table 6.2: How the best performing classification method of Hartmann [2020] is made

This classification can also be applied for the location of Delft and Folsom and are
shown in Figure 6.1.

Figure 6.1: The outcome of the Hartmann [2020] classification applied for location Delft and
Folsom.

6.1.1 All Sky Camera

The All Sky Camera is the Camera that is used for making the All Sky Images.
In this research, the same method has been used to calculate the CC and kc in
order to make classifications of the sky conditions. For both locations, the All
Sky Camera creates every minute a circular fish-eye image of the sky. The output
for both locations is an RGB image with the pixel size of 1536 by 1536. For this
reason, it is assumed that the classification method can be applied for both locations.
However, in the paper of Wacker et al. [2015], the method of Kazantzidis et al.
[2012a] was applied to calculate the CC at 4 different locations. The outcome of
the results were very location dependent. When the algorithm is site-specifically
trained ,it has been reported that over 90% of the images were correctly categorised.
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The mean success rate drops significantly to 50% to 80% when the algorithm is
applied to the remaining sites. The reason could be due to the randomness of the
image selection process, the type of used All Sky Camera and the researchers ability
to classify the images. However, the results of two of the same camera’s on different
locations gave similar results.

On the other hand, the calibration of the Camera is also important in order to find
the exact location of the sun in the ASI. Urquhart et al. [2015] found a method to
calibrate the ASI in order to track the solar position in the images for an All Sky
fish-eye camera. The results showed calibration performance ranged from 0.94 to
1.24 pixels RMSE. It is however first important that the camera is set up completely
straight to the sky, which is not the case for the location Delft.

6.2 prediction comparison
In the previous research done by Doodkorte [2021], an extended study comparison
is done for the used CNN model on the location Folsom. The study comparison was
done with the papers of Paletta et al. [2021a] and Kong et al. [2020]. The comparison
was done based on the geographical location, Pre-processing, hardware limitations,
forecast horizon, the input variables, dataset, deep learning architecture and the
hyperparameters.

For the geographical location was stated that the CNN model for location Folsom
performs better for clear sky conditions and worst for overcast situations because
there are many more clear sky situations than overcast. This is indeed true when
all the data is used for making this predictions. However, when the predictions
are made with the same data size, the overcast prediction is better compared to
the clear sky condition for the location Folsom. When this get compared with
the location Delft, one can see that the total irradiance prediction for clear sky
outperforms the overcast condition. This means that overall the model is able to
better predict the clear sky conditions compared to the overcast conditions. When
the clear sky outcome of Folsom gets compared with Delft, one can see that the
overall predictions of Folsom outperforms location Delft. This is probably the case
due to the less variance that occur during the day in the weather conditions for
location Folsom compared to Delft. This becomes also clear when looking at the
VI for both locations. With a low VI, the expected predictability increases and the
model can make more accurate predictions. This becomes also clear from Figure
6.1, since the total amount of situations which get classified as high are relatively
more for location Delft compared to location Folsom.

For the pre-processing part, the biggest difference is the image input. For this re-
search and Kong et al. [2020], the image input was 64x64x3 (RGB), whereas for
Paletta et al. [2021a] the image input was 128x128x1 (grayscaled). It is expected that
higher sky resolutions ASI’s performs better, but on the other hand performs col-
ored images better than grayscaled. Ideally, high resolutions colored ASI’s would
be implemented, but the problem that occurs are the hardware limitations. In this
study, there was no availability of a powerful computer. Apart from that, the in-
crease of resolutions would increase the computational time of the model. Since
multiple predictions for both locations needed to be made and there was no pow-
erful computer available, the input of the images were chosen to have the size of
64x64x3 (RGB).

The forecast horizon is for many papers different. However, most of the papers
that make very short irradiance predictions are in the range of 0 to 30 minutes.
The reason for 21-minutes in this research is explained in Chapter 2. In addition,
this 21-minute forecast range is chosen to compare the results with the MSc thesis
of Doodkorte [2021]. Within this short forecast horizon, the most common time
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frequency are 1-minute. However, Kong et al. [2020] uses a time frequency of 30

seconds.

Furthermore, in this research multiple datasets and datasets sizes are used. It is
generally known that overall more data for DL models results in better predictions.
This is also shown in this research and of Doodkorte [2021]. However, using the data
of multiple locations in order to improve the prediction on one location decreases
the final outcome, which is shown in this research. On the other hand, the input
quality of the data can also improve the predictions. This can be done via three
methods. The used input variables will change, the way of normalization of the
variables change or a change in which data points are specifically used. In the MSc
thesis of Doodkorte [2021] various input variables were tried in order to improve the
final prediction. With the used CNN model, the clear sky irradiance and measured
GHI came out to be the best performing prediction model. However, various papers
use the CC as input for making irradiance predictions, as for example the paper
of Zuo et al. [2022]. In those papers, there is no comparison made between the
outcome with and without CC. In this study, the CC was used as extra input, but
the performance gave an -2.8% FS compared to the CNN- Main model. The last
method to improve the quality of input is applied by making classification of the
sky conditions before making irradiance predictions. Also, due to the classification
method, the normalization per prediction is automatically changing. This is because
the normalization happens inside the DL model, so for a different set of input a
different normalization variation is applied.

At last, another important factor for the irradiance predictions is the DL architecture.
In the MSc thesis of Doodkorte [2021] came out that the CNN model outperformed
the RNN. However, other papers showed that the use of an RNN could improve the
final irradiance predictions. This was also shown by Paletta et al. [2021a], were a
LSTM-CNN structure outperforms the CNN-structure. The LSTM is used in order
to keep track of past information when multiple images are implemented instead
of one image. So, it is expected that DL models which uses a sequence of ASI’s can
improve the final irradiance predictions. However, in this research this is not done.

6.3 future work
In the previous two sections the classification method and prediction method were
discussed. In this section one can see how the areas of concern can be addressed
for future work. The most important points for the future work of this research are:

• A sequence of 5 or more high resolution color images and multiple past mea-
sured irradiances as input in order to improve the final irradiance predictions.

• An improved classification model which can classify all sky conditions situa-
tions.

• An improved classification model that can distinguish thick and thin clouds
from each other.

During this research it was important to find out if it was possible to improve the
final irradiance prediction when making sky classification first. This DL model use
however only the input of one ASI at the time. It is not known if the classification
method would still improve the outcome when a sequence of ASI are used to make
predictions. It could also be possible that a hybrid of DL models could be used
for different classes. This is also not tried before in other research up until now.
On the other hand, the classification method could still be approved. First of all,
it is important to use a classification method which can classify all sky conditions
throughout the year. Up until this moment, it was not possible to receive sufficient
precision results when classifying all sky conditions.
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Furthermore, it should be possible to distinguish between thick and thin clouds in
the ASI, which is already done by Ghonima et al. [2012]. In the paper of Masuda
et al. [2019] found even a way to retrieve the optical cloud thickness from ASI by
using an CNN model. The optical cloud thickness could than be used to predict
the cloud movement. Chow et al. [2011] found a promising method to make this
prediction of the cloud movement. When this both methods could be implemented
in a DL model to make irradiance prediction, it is expected that the irradiance pre-
dictions will get improved. This is however not yet accomplished in any research.

At last, there are at this moment also other DL methods that can be used for inter-
preting the ASI’s. Video prediction algorithms which forecast future visuals based
on a series of past images Guen and Thome [2020], are promising techniques. An-
other interesting approach is employing DL to quickly and effectively solve NWP
problems Li et al. [2020]. Consequently, it is anticipated that new techniques will be
created in the upcoming years.

6.4 conclusion
In order to maintain grid stability when more PV installations will get integrated
into the electricity net, the importance of short term irradiance predictions are ex-
pected to increase. The irradiance prediction is location dependent and the biggest
influence of variance in the outcome are the clouds. This indicates that the irradi-
ance predictions are sky condition dependent. For that reason, in this study first a
classification method is applied to classify the ASI into five groups based on sky con-
ditions. During this study the classification method and the irradiance predictions
were elaborated for two different locations. The total improvement when making
classifications before making the irradiance prediction on all the data for location
Delft was 2.1% and for location Folsom 9.1 %. However, when this were applied
for three classes, the total improvement on all the available data for location Delft
was 18.2% and Folsom 15.5%. Furthermore, when using the cloud cover as extra
input variable for the DL model didn’t improve the final outcome compared to the
main model. The same applies for using the data for both locations to make the
irradiance predictions on one location. Up until now, the use of classifying the all
sky images before making irradiance predictions is not done before. For that rea-
son, it is important to find out if this could also by applied on different DL models
in order to improve the final prediction outcome. To conclude, the control of solar
power plants will be made easier with the help of very short-term irradiance predic-
tions by the use DL models. This will lessen the issues related to the intermittency
of renewable energy sources like solar energy. As a result, PV energy will be even
better received, making it easier for it to be integrated into power networks and
assisting in the transformation of the energy industry to an electric system devoid
of emissions.
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Stoffel, T., Renné, D., Myers, D., Wilcox, S., Sengupta, M., George, R., and Turchi, C.
(September 2010). Best practices handbook for the collection and use of solar
resource data. NREL.

Szelag, M. (May 2020). Evaluation of cracking patterns in cement composites—from
basics to advances: A review. Materials.

Taboga, M. (2021). Statistical model,lectures on probability theory and mathematical
statistics. Kindle Direct Publishing.

UCAR (2019). Cloud types. Center for Science Education.

Urquhart, B., Kurtz, B., and Kleissl, J. (January 2015). Sky camera geometric calibra-
tion using solar observations. Atmospheric Measurements Techniques.

Vignola, F., Michalsky, J., and Stoffel, T. (2017). Solar and infrared radiation Measure-
ments. CRC Press, Boca Raton.

Visser, L., Lorenz, E., Heinemann, D., and Sarka, W. G. (2022). Comprehensive Renew-
able Energy. Elsevier, Delft University of Technology.
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Figure A.1: The 21-minute MAE of the baseline model (SP) against the CNN model when the
classification for Class A is applied beforehand against when the classification is
not applied, so afterwards classified.
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Figure A.2: The 21-minute quantile 95% of the baseline model (SP) against the CNN model
when the classification for Class A is applied beforehand against when the clas-
sification is not applied, so afterwards classified.
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Figure A.3: The 21-minute MAE of the baseline model (SP) against the CNN model when
the classification is applied beforehand against when the classification for Class
B is not applied, so afterwards classified.
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Figure A.4: The 21-minute quantile 95% of the baseline model (SP) against the CNN model
when the classification is applied beforehand against when the classification for
Class B is not applied, so afterwards classified.
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Figure A.5: The 21-minute MAE of the baseline model (SP) against the CNN model when
the classification is applied beforehand against when the classification for Class
C is not applied, so afterwards classified.
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Figure A.6: The 21-minute quantile 95% of the baseline model (SP) against the CNN model
when the classification is applied beforehand against when the classification for
Class C is not applied, so afterwards classified.
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Figure A.7: The 21-minute MAE of the baseline model (SP) against the CNN model when
the classification is applied beforehand against when the classification for Class
D is not applied, so afterwards classified.
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Figure A.8: The 21-minute quantile 95% of the baseline model (SP) against the CNN model
when the classification is applied beforehand against when the classification for
Class D is not applied, so afterwards classified.
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Figure A.9: The 21-minute MAE of the baseline model (SP) against the CNN model when
the classification is applied beforehand against when the classification for Class
E is not applied, so afterwards classified.
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Figure A.10: The 21-minute quantile 95% of the baseline model (SP) against the CNN model
when the classification is applied beforehand against when the classification for
Class E is not applied, so afterwards classified.
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