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Summary

Dynamic spectrum access employing cognitive radios has been proposed, in order
to opportunistically use underutilized spectrum portions of a heavily licensedelec-
tromagnetic spectrum. Cognitive radios opportunistically share the spectrum,while
avoiding any harmful interference to the primary licensed users. One majorcate-
gory of cognitive radios consists of is interweave cognitive radios. In this category,
cognitive radios employ spectrum sensing to detect the empty bands of the radio
spectrum, also known as spectrum holes. Upon detection of such a spectrum hole,
cognitive radios dynamically share this empty band. However, as soon as the primary
user appears in the corresponding band, cognitive radios have to vacate the band and
look for a new spectrum hole. This way, reliable spectrum sensing becomes a key
functionality of a cognitive radio network.

The hidden terminal problem and fading effects have been shown to limit the
reliability of spectrum sensing. Distributed cooperative detection has therefore been
proposed to improve the detection performance of a cognitive radio network. In
this thesis, a distributed detection scheme based on hard fusion of local results is
considered. Each cognitive radio senses the spectrum and sends the result to the
fusion center, and there the final decision is made about the presence orabsence of
the primary user. Note that, in general, cognitive radios are low-power sensors and
thus energy consumption becomes a critical issue.

In this thesis, several energy-efficient approaches are proposed, in order to min-
imize the maximum average energy consumption per sensor, while satisfying the
sensing reliability of the cognitive radio network. The sensing reliability is defined
by a lower bound on the probability of detection and an upper bound on the proba-
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Summary

bility of false alarm. This way, the primary user is protected from the cognitiveradio
transmitters interference and also the chance of losing spectrum access through er-
roneous detection of the primary user in an empty band is constrained. First,a cen-
soring scheme is considered where cognitive radios send their results to the fusion
center only if they are deemed to be informative. Second, a combined censoring and
truncated sequential sensing scheme is depicted which is shown to be more energy-
efficient than the former case due to the sensing energy reduction. And third, a
combined censoring and sleeping scheme is discussed where on top of censoring,
each cognitive radio switches off its sensing module with a specific sleeping rate, in
order to save energy both on transmission and sensing. It is shown that all the pro-
posed schemes, particularly combined censoring and sleeping as well as censored
truncated sequential sensing delivers significant energy savings. Further, we con-
clude that when a cognitive radio system is appropriately well-designed in terms of
energy efficiency, increasing the number of cooperative cognitive sensors, not only
improves the detection performance, but also reduces the average energy consump-
tion of individual cognitive radios.

Finally, an optimal fusion strategy for energy-constrained hard-fusionbased cog-
nitive radio networks is presented, which optimizes the network throughputsubject
to a constraint on the average energy consumption of individual radios and a con-
straint on the amount of interference to the primary user. It is shown that the majority
rule is either optimal or close to optimal in terms of the network throughput.
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Glossary

Mathematical Notation

x Scalarx
x Vectorx
X Matrix X
XT Transpose of matrixX
XH Hermitian transpose of matrixX
X−1 inverse of matrixX
ℜ{x} Real part ofx
ℑ{x} Imaginary part ofx
x̂ Estimate ofx
x̄ Average ofx
|x| Modulus ofx
⌊x⌋ Largest integer smaller or equal tox
⌈x⌉ Smallest integer larger or equal tox
E(x) Expectation of random variablex
Pr(x) Probability ofx
σ2

x Variance ofx
⊙ Hadamard (element-wise) product
H0 Absence of the primary user
H1 Presence of the primary user
h Channel gain
s Primary user signal modulus
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Glossary

si Primary user signal ati-th time slot
w Noise
E Calculated energy by the energy detector
Pf Local probability of false alarm
Pd Local probability of detection
λ Detection threshold
λ1 Lower detection threshold in censoring
λ2 Upper detection threshold in censoring
a Lower detection threshold in truncated sequential sensing
b Upper detection threshold in truncated sequential sensing
N Number of samples, Truncation Point
M Number of cognitive radios
Q Q-function
Cs Sensing energy per sample
Ct Transmission energy per bit
Γ(x) Gamma function
Γ(a,x) Incomplete gamma function
ρ Average censoring rate
µ Average sleeping rate
δ0 Average censoring rate when the primary user is absent
δ1 Average censoring rate when the primary user is present
γ Signal-to-Noise-Ratio (SNR)
π0 Pr(H0), probability of the primary user absence
π1 Pr(H1), probability of the primary user presence
QF Global probability of false alarm
QD Global probability of detection
DFC Final decision at the fusion center
α Probability of false alarm constraint
β Probability of detection constraint
Ts Sensing time
Tr Reporting time

Acronyms and Abbreviations

ASN Average sample number
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Glossary

AWGN Additive-white-Gaussian-noise
B Bayesian criteria
CR Cognitive radio, secondary user, cognitive sensor
FC Fusion center
FCC Federal Communications Commission
LLR Log-likelihood ratio (test)
LRT Likelihood ratio test
NP Neyman-Pearson criteria
OFDM Orthogonal frequency division multiplexing
PR Primary user, licensed user
SPRT Sequential probability ratio test
SNR Signal-to-Noise Ratio
TDMA Time-division-multiple-access
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Chapter 1

Introduction

In this thesis, we consider designing energy-efficient spectrum sensing algorithms for
cognitive radio networks. The purpose of this chapter is to motivate and introduce
the problems addressed in the thesis, and describe our main contributions and the
organization of the thesis.

1.1 Motivation

Wireless technologies have progressed rapidly during the recent years and have lead
to a high demand for electromagnetic spectrum. The radio spectrum has beentradi-
tionally regularized for exploitation by licensed users, but as is depicted in Fig. 1.1
this policy now results in spectrum scarcity [4]. Meanwhile, recent studieson spec-
trum utilization show that large parts of the licensed spectrum are highly underuti-
lized in vast geographical locations and time periods [1], [2], [3]. Figures 1.2 and 1.3
are examples of such studies. Dynamic spectrum access based on cognitive radios
has been proposed in order to opportunistically use these underutilized spectrum por-
tions [4]. Regulatory bodies are currently working on the standardization, regulation,
and modeling of such technologies with the goal of reaching a higher spectrum effi-
ciency and availability for future wireless technologies [5], [6], [7], [8]. This thesis
is inspired by the FCC Report and Order permitting the operation of networkscon-
sisting of low-power devices and sensors in the VHF-UHF band [5] as well as by
the IEEE 802.22 work group regulating the dynamic spectrum access for TV bands
and wireless microphones [8]. More recently, standardization of dynamicspectrum
sharing of the 2.36-2.4 GHz band for body sensor networks has been initiated by the
FCC [6] where all secondary users are consisting of low-power wireless devices.
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Figure 1.1: The NTIA’s Frequency Allocation Chart [5]

Figure 1.2: Measurement of Spectrum Utilization (0-6 GHz) in the Downtown Berkeley
[70]

1.1.1 Cognitive radio

Cognitive radios are wireless radios that opportunistically share the spectrum while
avoiding any imposed harmful interference to the primary licensed users. Depending
on the way that cognitive radios tackle the problem of interference to the primary
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Figure 1.3: Temporal Variation of the Spectrum Utilization (0-2.5 GHz)in the Downtown
Berkeley [70]. Green color represents licensed user inactivity.

user, three categories of cognitive radios are defined. These categories are underlay,
overlay and spectrum-sensing (or interweave) cognitive radios.

In underlay and overlay systems, the cognitive radios are transmitting at thesame
time with primary users within the same band, while keeping their interference below
a certain level as shown in Fig. 1.4. The difference between the underlayand overlay
cognitive radios is that in the underlay systems, cognitive radios need to access the
channel side information and in the overlay systems they need to have knowledge
about the codebook side information and messages that the primary users send [69].
Several techniques have been proposed in order to accomplish this task.For example,
an interference alignment scheme is considered in [85], in order to mitigate theeffect
of cognitive radio transmitters at the primary receiver, while cognitive transmitter
signals remain resolvable at the cognitive receivers. [83] proposed adecode-and-
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forward technique where the secondary transmitters and receivers are able to decode
the primary transmitter signal. The secondary transmitter regenerates the received
primary signal and combines it with the secondary signal with a normalization factor.
This data is then sent to the secondary receiver which can also be received by the
primary receiver. It is shown that with a proper choice of the normalized factor,
the outage probability of the primary transmitter remains the same or even better
than for the case without spectrum coexistence. An extension of this technique to a
case with multiple primary transmitters is considered in [84]. In [81] and [82],the
secondary user spectrum is shaped in order to limit the amount of interference made
to the primary user.

Frequency (f)

PR

CR

Figure 1.4: Underlay and overlay cognitive radios

Interweave cognitive radios, on the other hand, employ spectrum sensing to de-
tect the empty portions of the radio spectrum as shown in Fig. 1.5 (also known
as spectrum holes) at a certain time and geographical location. Upon detection of
such a spectrum hole, cognitive radios dynamically share this hole by adapting their
transmission power and modulation according to the available resources andthe sur-
rounding environment [78]. However, as soon as a primary user appears in the corre-
sponding band, the cognitive radios have to vacate the band. This way, transmission
is limited to the bands that are deemed to be empty in order to avoid interference
to the primary users. In order to accomplish these tasks, a harmonious cooperation
among cognitive users is required which is coordinated through a dedicated control
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channel [80]. In this thesis, our focus is on this category of cognitive radios and
whenever we talk about a cognitive radio, we mean an interweave cognitive radio. A
comparison of the different categories of cognitive radios is provided inTable 1.1 in
terms of required cognition level, pros, and cons.

Figure 1.5: Interweave cognitive radios

Type of Cognitive Radio Required Cognition Level Pros Cons
Interweave Knowledge of spectrum holes No knowledge about the pri-

mary user channel and sig-
nal is required. Partial knowl-
edge about the primary signal
such as cyclostationarity can
improve the sensing reliabil-
ity to an acceptable level.

Sensitive to the noise uncer-
tainty, RF front-end impair-
ments,...
Part of the time frame is
wasted on sensing.

Underlay Knowledge of the primary
channel

Concurrent transmission with
primary signal is possible.

Acquiring perfect primary
channel side information is
difficult.

Overlay Knowledge of the primary
signal codebook

Achieving higher rates than
the other two models.
Concurrent transmission with
primary signal is possible.

Acquiring knowledge of the
primary codebook needs total
cooperation from the primary
user.

Table 1.1: Comparison of the interweave, underlay, and overlay cognitive radios.

1.1.2 Spectrum sensing

Considering the cognitive radio tasks mentioned above, finding a spectrumhole is the
starting point for any cognitive activity. As such, reliable spectrum sensing becomes
a key functionality of a cognitive radio network. It needs to be highly reliable to
avoid any unacceptable interference to the primary user while fast to increase the
achievable throughput of the cognitive radio system. Spectrum sensing has been
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studied extensively in literature. Denotingr as the received signal vector,w as the
noise vector,s as the primary user signal vector andh as the channel gain vector
between the primary transmitter and cognitive sensor, the goal of spectrumsensing
is to solve a hypothesis testing problem as follows

H0 : r = w

H1 : r = h⊙s+w, (1.1)

whereH0 denotes the primary user absence,H1 denotes the primary user presence,
⊙ denotes the element-wise product.

Spectrum sensing techniques in order to solve (1.1) are generally categorized
as matched filtering, energy detection, and feature (e.g., cyclostationarity)detection
[12], [11]. Beyond these techniques, there are only a few sensing schemes such
as compressive spectrum sensing, [77], which are mostly under investigation at the
moment and are not yet adapted by the standardization bodies.

A matched filtering detection problem in general entails the following form

ℜ{sH ⊙hHr}
H1

R
H0

λ , (1.2)

whereλ is the sensing threshold,ℜ denotes the real part, and H is the hermitian op-
eration. Among the three main spectrum sensing categories, matched filtering gives
the best performance but as is shown in (1.2), requires complete prior knowledge
about the primary user signalsand the channel gainh which are not in general avail-
able at the cognitive sensor. Therefore, blind and semi-blind detection techniques
are generally employed by the cognitive radios.

Energy detection is one of the most common blind detection techniques that does
not need any prior information about the primary user signal and channel. The sensor
collects a fixed number of samples at each sensing period, calculates the energy of
these samples and compare it to a threshold in order to solve (1.1). DenotingN as
the number of collected samples, the energy detector becomes

E =
N

∑
i=1

|r i |
2

H1

R
H0

λ , (1.3)

wherer i is thei-th element of vectorr .
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The detection performance of any detection technique is determined by its prob-
ability of false alarm and detection, denoted byPf andPd, respectively. These prob-
abilities are defined as

Pf = Pr(H1|H0), (1.4)

Pd = Pr(H1|H1), (1.5)

wherePr denotes the probability. Therefore, the corresponding detection perfor-
mance for energy detection, becomes

Pf = Pr(E ≥ λ |H0), (1.6)

Pd = Pr(E ≥ λ |H1). (1.7)

A common approach in order to determine the sensing thresholdλ is to design the
system so as to satisfy a certain probability of false alarm. The constant false alarm
radar (CFAR) and Neyman-Pearson (NP) tests are two examples of suchproblem
formulations. In order to determineλ for the energy detector with these criteria
some information regarding the noise distribution is required. In general, thenoise
is assumed to be additive white Gaussian with zero mean and varianceσ2, which
is to be estimated by the cognitive sensor. Since the noise variance estimation is
erroneous, the sensing threshold is not exact and hence, below a certain signal-to-
noise-ratio (SNR), the energy detector fails to detect the signal, even with an infinite
number of samples [12].

The vulnerability of the energy detector to the noise variance estimation error
leads to employing more computationally demanding semi-blind approaches cate-
gorized as feature detection. Usually, primary user signals contain certainfeatures
such as a pilot signal, a certain covariance structure, cyclostationarity and so on
which can be used for detection. Ideally, such techniques are not susceptible to the
noise variance estimation error. A review of these techniques is presentedin [12]
and [79]. Here, we briefly depict a general view of the cyclostationarydetector as
the most common approach which is employed for spectrum sensing in cognitive
radios.
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Cyclostationary processes are random processes for which the statistical proper-
ties such as the mean and autocorrelation change periodically as a function of time
[72]. Many of the signals used in wireless communications and radar systemspos-
sess this property. Cyclostationarity may be caused by modulation and coding[72],
or it may be intentionally produced to help channel estimation, equalization or syn-
chronization such as the use of the cyclic prefix (CP) in an OFDM signal [73]. Here,
we explain one of the cyclostationary detection techniques which uses the second-
order time domain cyclostationary detector, [71].

A random processxk, k= 1, . . . ,N is wide-sense second-order cyclostationary if
there exists aK > 0 such that

µx(k) = µx(k+K), ∀k,

and
Rx(k,κ) = Rx(k+K,κ), ∀(k,κ),

whereµx(k)=E[xk] is the mean value of the random processxk, Rx(k,κ)=E[xkx∗k+κ ]

is the autocorrelation function, andK is called the cyclic period.
Due to the periodicity of the autocorrelationRx(k,κ), it has a Fourier-series rep-

resentation as follows [71],

Rx(k,κ) = ∑
α

Rα
x (κ)ejαk,

where the Fourier coefficients are

Rα
x (κ) = lim

N→∞

1
N

N−1

∑
k=0

Rx(k,κ)e− jαk,

with α called the cyclic frequency andRα
x (κ) called the cyclic autocorrelation func-

tion.
To check if Rα

x (κ) is null for a given candidate cycle, consider the following
estimator ofRα

x (κ)

R̂α
x (κ) =

1
N

N−1

∑
k=0

xkx
∗
k+κe− jαk

= Rα
x (κ)+ εα

x (κ) (1.8)

whereεα
x (κ) represents the estimation error which vanishes asN → ∞. Due to the

error εα
x (κ), the estimatorR̂α

x (κ) is seldom exactly zero in practice, even whenα
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is not a cyclic frequency. This raises an important issue about deciding whether a
given value ofR̂α

x (κ) is ”zero” or not. To answer this question statistically, we use
the decision-making approach of [71].

In general, we consider a vector ofR̂α
x (κ) values rather than a single value in

order to check simultaneously for the presence of cycles in a set of lagsκ.
Let κ1, ...,κτ be a fixed set of lags,α be a candidate cyclic frequency, and

R̂x =
[
ℜ{R̂α

x (κ1)}, ...,ℜ{R̂α
x (κτ)},

ℑ{R̂α
x (κ1)}, ...,ℑ{R̂α

x (κτ)}
]

represent a 1×2τ row vector consisting of cyclic correlation estimators from (1.8)
with ℜ andℑ representing the real and imaginary parts, respectively. If the asymp-
totic value ofR̂x is given asRx where

Rx =
[
ℜ{Rα

x (κ1)}, ...,ℜ{Rα
x (κτ)},

ℑ{Rα
x (κ1)}, ...,ℑ{Rα

x (κτ)}
]
,

we can writeR̂x = Rx+ εεεx where

εεεx =
[
ℜ{εα

x (κ1)}, ...,ℜ{εα
x (κτ)},

ℑ{εα
x (κ1)}, ...,ℑ{εα

x (κτ)}
]

is the estimation error vector.
In [71], the test statistic related to the cyclostationary detector has been derived

as follows
Df = NR̂xΣ̂ΣΣ−1

R̂H
x (1.9)

whereΣ̂ΣΣ is the covariance matrix of̂Rx. In [71], it is shown that the test statistic
Df under the hypothesisH0, has a central chi-squared distribution, while under the
hypothesisH1 follows a Gaussian distribution. Hence, for a largeN we can write

Df ∼

{

χ2
2τ under H0

N (NR̂xΣ̂ΣΣ−1
R̂H

x ,4NR̂xΣ̂ΣΣ−1
R̂H

x ) under H1
. (1.10)

Having the asymptotic distribution of the test statisticDf , we say that ifDf ≥ γ
we can declare thatα is a cyclic frequency for someκn and therefore the primary
user is present. Else, we declare thatα is not a cyclic frequency and thus the primary
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user is absent, which means that this band is empty and can be used by the cognitive
radio.

The probability of detection,Pd, and the probability of false alarm,Pf , can be
obtained as

Pf = Pr(D f ≥ γ |H0) =
Γ(γ/2,τ)

Γ(τ)
, (1.11)

Pd = Pr(D f ≥ γ |H1) = Q

(

γ −NR̂xΣ̂ΣΣ−1
R̂H

x
√

(NR̂xΣ̂ΣΣ−1
R̂H

x )

)

, (1.12)

whereΓ(a) is the gamma function andΓ(a,x) is the incomplete gamma function
(Γ(a,x) =

∫ ∞
x ta−1e−tdt).

Between feature and energy detection, energy detection is easier to implement
and has a smaller computational complexity, while feature detection needs more
computations but has a better performance particularly at low SNRs. A combina-
tion of the agile properties of energy detection and the reliability of cyclostationary
detection (as a feature detection technique) in order to achieve a fast andreliable
detection technique at low SNRs is considered in our paper on two-stage spectrum
sensing [68]. Due to its simplicity and mathematical tractability, in this thesis, en-
ergy detection is employed for channel sensing. Table 1.2 depicts a summarizes the
specifications, pros, and cons of the matched filtering, energy detection and feature
detection.

Sensing Technique Required Knowledge Pros Cons
Matched Filtering Knowledge of the primary

signal and channel
Optimal sensing performance Acquiring knowledge of the

primary signal and channel is
difficult in practice.

Energy Detection Knowledge of the noise vari-
ance

Very simple to implement,
Fast sensing

Vulnerable to the noise uncer-
tainty

Feature Detection Knowledge of some features
in the primary signal such as
cyclostationarity

Highly reliable sensing per-
formance

Complex in terms of imple-
mentation and computation,
Slower sensing compared to
the energy detection

Table 1.2: Comparison of the matched filtering, energy detection and feature detection.

1.1.3 Cooperative spectrum sensing

The hidden terminal problem and fading effects have been shown to limit the reli-
ability of a single user spectrum sensing. Imagine a cognitive sensor is blocked or
it is not located within the coverage range of a primary transmitter. It then failsto
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detect the presence of the primary user. On the other hand, the primary receiver may
be located within the coverage area of the cognitive transmitter. In such a situation,
the cognitive transmitter starts sending data while assuming the primary transmitter
is idle and thus interferes with the primary user signal. Further, due to fadingef-
fects, the primary user signal might not be strong enough to be detected. Similar to
the hidden terminal problem, this situation also leads to harmful interference to the
primary user.

Distributed cooperative detection has therefore been proposed to improve the
detection performance of a cognitive radio network [9], [10], by exploiting spatial
diversity among signal observations at spatially distributed sensors. Several dis-
tributed detection frameworks are discussed in [14], [15]. In terms of configuration,
distributed detection can be categorized under parallel, serial and tree configurations.
The tree configuration is very similar to multi-hop sensor networks which is notthe
focus of this thesis. Among the serial and parallel configurations which are depicted
in Figures 1.6 and 1.7, it is shown that the serial configuration has seriousreliabil-
ity issues due to a larger latency and its vulnerability to link failures. Therefore,
due to its simplicity, low delay and higher reliability, a parallel detection configura-
tion is considered in this thesis where each secondary radio continuously senses the
spectrum in periodic sensing slots. A local decision is then made at the radiosand
sent to the fusion center (FC), which makes a global decision about the presence (or
absence) of the primary user and feeds it back to the cognitive radios.

Several fusion schemes have been proposed in literature which can be catego-
rized under soft and hard fusion strategies [13],[14]. Soft fusion requires several bits
to be sent to the FC, while most of the hard fusion schemes require only one-bit trans-
missions. As a result, hard schemes are more energy-efficient than softschemes,i.e.,
hard schemes consume less energy than soft ones. Further, in this thesis, energy
detection is employed for channel sensing, which leads to a comparable detection
performance for hard and soft fusion schemes [10]. From the aboveconsiderations,
a hard fusion scheme is adopted in this thesis. AK-out-of-M fusion rule whereM
denotes the number of cooperating cognitive radios, is one of the most commonhard
fusion techniques. Employing this rule at the FC implies announcing the presence of
the primary user, in case at leastK cognitive radios out ofM decides for the presence
of the primary user. Special cases of this rule are the OR rule whereK = 1, the AND
rule whereK = M and the majority rule whereK = ⌈M

2 ⌉. The focus of this thesis in
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DFC

Figure 1.6: Parallel configuration for distributed spectrum sensing

Figure 1.7: Serial configuration for distributed spectrum sensing

Chapters 2, 3 and 4 is on the OR and the AND rule, while in Chapter 5, a general
K-out-of-M rule is considered as the decision fusion rule at the FC.

1.2 Problem Statement

As mentioned before, cooperative spectrum sensing improves the detection perfor-
mance of the cognitive radio network. However, such a gain in performance comes
with a resulting higher network energy consumption which is a critical factor ina
low-power radio system. Minimizing the network energy consumption for cognitive
radio networks is considered by us in [67], [24], [25], [26].

Although the network energy consumption is an important factor, considering
the fact that cognitive radios are in general low-power sensors, the individual energy
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consumption of each cognitive radio is a much more critical issue, because the max-
imum energy consumption of a low-power radio is limited by its battery. As a result,
designing energy-efficient spectrum sensing algorithms in order to limit the maxi-
mum energy consumption of a cognitive radio in a cooperative sensing framework is
the focus of this thesis.

In a cooperative spectrum sensing scenario, each cognitive radio consumes en-
ergy mainly on sensing the spectrum and then transmitting the raw or processed data
to the FC. Decision fusion based on the received raw data from the cognitive radios
is a centralized spectrum sensing scheme, which is the optimal scenario. However,
such a centralized scheme demands a large bandwidth and high energy consump-
tion for data transmission. On the other hand, decision fusion scenarios based on
processed data need a lower communication overhead and transmission energy con-
sumption. As mentioned earlier, processed data can be either one-bit hardresults or
quantized versions of some soft results such as log-likelihood ratios (LLRs). Denot-
ing Cs as the sensing energy per sample,Ñ as the number of samples which can be
either fixed or random,Ct as the transmission energy per bit andQ as the number
of quantized bits, the energy consumption of a cognitive radio at one sensing slot,
denoted byC, becomes

C= ÑCs+QCt . (1.13)

The goal of any energy-efficient spectrum sensing algorithm is to reduceC through
the reduction of the sensing energy,ÑCs or the transmission energy,QCt while sat-
isfying a certain detection performance constraint. In this thesis, a detectionperfor-
mance constraint is defined by a lower bound on the global probability of detection
and an upper bound on the global probability of false alarm of the cognitive radio
network. Such design constraints protect the primary user from harmfulinterference
by the cognitive radios and limit the throughput loss of the cognitive networkdue
to the false detection of the primary user, respectively. However, designconstraints
and problem formulations depend on the specific requirements of each scenario. In
this thesis, three energy-efficient techniques are proposed in order tominimize the
maximum average energy consumption per sensor in Chapters 2, 3, and 4.Further,
the throughput of the cognitive radio network is maximized for a network consist-
ing of energy-constrained cognitive radios in Chapter 5. Note that cognitive radios
also consume energy by receiving the final decision from the FC. However, since
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this value is constant over all the sensing periods, it has not been considered in the
energy model of (1.13).

Energy-efficient spectrum sensing algorithms can be categorized mainly under
censoring, sequential sensing, sleeping and clustering schemes. In thefollowing, a
review of related works and the state-of-the-art related to energy-efficient spectrum
sensing is considered for each category. Further, some of the availableliterature re-
lated to the optimization of spectrum sensing for energy-constrained cognitive radios
are reviewed at the end of following section.

1.3 Related work

1.3.1 Censoring and sleeping

The idea behind distributed detection with censoring sensors lies in the fact that not
all the local decision results are informative for the FC. Therefore, the transmission
energy can be saved by avoiding sensors with not-informative results from communi-
cating with the FC. DenotingT j as the decision statistic of thej-th sensor, censoring
is defined by a lower thresholdλ1 and an upper thresholdλ2 and the rule which dic-
tates no decision transmission in caseλ1 <T j < λ2. The definition of censoring may
be slightly modified depending on the scenario, but the main idea is similar to the
definition which is provided here.

Sleeping is another mechanism which achieves energy saving. Each sensor is
turned off with probabilityµ (the sleeping rate) in a sensing slot. This way, both
sensing and transmission energies are saved.

Censoring has been thoroughly investigated in wireless sensor networksand cog-
nitive radios [17, 18, 19, 20, 21, 22, 23, 26]. It has been shown that censoring is very
effective in terms of energy efficiency. In the early works, [19, 20, 21, 22], the design
of censoring parameters including lower and upper thresholds has beenconsidered
and mainly two problem formulations have been studied. In the Neyman-Pearson
(NP) case, the miss-detection probability is minimized subject to a constraint on the
probability of false alarm and average network energy consumption [20,21, 22]. In
the Bayesian case, on the other hand, the detection error probability is minimized
subject to a constraint on the average network energy consumption. It isshown
that when the constraint on the probability of false alarm is low enough (NP case)
or the probability of target presence is much lower than the one for target absence
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(Bayesian case), a single-threshold censoring policy is optimal. These works have
mainly considered a soft fusion scheme based on a likelihood ratio test (LRT) at the
FC.

A censoring scheme for cognitive radios is considered in [17] where a censoring
decision rule is employed to reduce the number of bits sent to the fusion centerand so
the bandwidth occupancy of the cognitive radio network. Each sensor calculates the
energy of the collected samples and if it is deemed informative, then a bit indicating
presence (“1”) or absence (“0”) of the primary user is sent to the FC.The informative
region is defined by a lower thresholdλ1 and an upper thresholdλ2. In caseλ1 <

E < λ2, no decision is made and no bit is sent to the FC. This way, the number
of transmissions is reduced and so is the transmission energy. However, this paper
looks at the problem only from a bandwidth point of view mainly trying to reduce
the communication overhead. No systematic problem formulation is provided in
order to design the system parameters. Furthermore, the fusion center in [17] makes
no decision in case it does not receive any results from the cognitive users which is
ambiguous in the sense that the FC has to make a final decision about the presence
(or absence) of the primary user.

In [23], analytical expressions for the sensing parameters are givenaccording to
an NP setup for both soft and hard fusion schemes, but unlike [19]-[22] no constraint
on the energy consumption is taken into account.

A combination of censoring and sleeping is considered in [18] with the goal
of maximizing the mutual information between the state of signal occupancy and
the decision state of the FC, but the energy efficiency of the system is not directly
addressed.

A combined sleeping and censoring scheme is considered by us in [24], [25],
[26], which can be viewed as the foundation of Chapter 4 in this thesis. Thecensor-
ing scheme in these papers is similar to the one in [17] with a modification that the
FC decides for the absence of the primary user in case that no result is received at
the FC. On top of censoring, a sleeping mechanism is proposed where each cogni-
tive radio turns off its sensing module with a probabilityµ. The probability of pri-
mary user presence or absence (Pr(H1) or Pr(H0)) is assumed to be known under
a knowledge-aided setup and unknown under a blind setup with the assumption that
Pr(H0) >> Pr(H1). The network energy consumption is minimized subject to a
constraint on the probability of detection and false alarm. This approach is shown to
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reduce the network energy consumption dramatically. To the best of our knowledge,
[26] is the first attempt to design a systematic energy-efficient algorithm forspec-
trum sensing in cognitive radio networks which laid a foundation for futureworks in
this area including a major part of this thesis. As mentioned earlier, [24], [25], [26]
are based on minimizing the network energy consumption. However, in low-power
sensor networks, the individual energy consumption of each sensor isa more critical
factor. Hence, in this thesis, minimizing the maximum average energy consump-
tion per sensor is considered as the objective function (in Chapters 2, 3,and 4) or
the average energy consumption of each cognitive radio is used as a constraint (in
Chapter 5).

A sensing node and a joint sensing and decision node selection scheme is consid-
ered in [75] and [76], respectively. The network energy consumptionis minimized
subject to a detection performance constraint defined as in [26], in order to determine
the sensing nodes from a pool of cognitive radios and further the decision nodes from
the selected sensing nodes. The decision nodes are the nodes which send their result
to the FC. Since the problem is to be solved by integer programming and such prob-
lems are in general NP hard, a convex relaxation is proposed in order to solve the
problem as a real problem and later on map the solution from[0,1] to {0,1}.

[86] considers censoring for a collaborative cyclostationary detectionscheme
in cognitive radio networks. The proposed cyclostationarity detection scheme is a
generalization of [71], where sensors send their test statistics to the FC for a final
decision about the presence or absence of the primary user. A similar censoring rule
as in [22] and [19] is employed, in order to only transmit the test statistics whichare
deemed to be informative. It is shown that this way, the communication overhead
reduces significantly, while the performance loss is low. One of the key advantages
of collaborative cyclostationary detection is its robustness to the noise uncertainties.
Incorporating the cooperative detection approach proposed in [86],in the combined
censoring and sleeping scheme of [26], gives an even more energy-efficient reliable
spectrum sensing technique at low SNRs.

1.3.2 Sequential sensing

Sequential detection as an approach to reduce the average number of sensors re-
quired to reach a decision is also studied comprehensively during the pastdecades
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. In the context
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of distributed detection, the sensor observations are either spatially or temporally
collected until the system comes up with a final decision [14], [35]. Intrinsicto ev-
ery sequential sensing scheme, is a stopping rule and a terminal decision rule. The
stopping rule is a function that determines when to stop collecting observationsand
therefore is a random variable. The terminal decision rule dictates which decision
has to be made after the sequential test has stopped [35]. Since either the individual
sensors or the FC can control the sequential test, two types of sequentialdetection
can be recognized. When the FC manages the sequential test, [28], [30], [31], [34],
[37], [40], [36], it either makes a decision or asks the sensors to senda new result.
When the sequential test is carried out at the sensors, each sensor accumulates the
samples sequentially and makes a decision about the presence or the absence of the
target and then sends a binary decision to the FC [44], [38], [27], [32]. The other
way to categorize sequential detection problems is based on the maximum number
of samples that can be collected. In this context, we can distinguish between infi-
nite horizon and finite horizon (or truncated) sequential detection [34] (the reader is
referred to [14], [34] for a thorough analysis of distributed sequential detection). In
[34], [33], each sensor collects a sequence of observations, constructs a summary
message and passes it on to the FC and all other sensors. A Bayesian problem for-
mulation comprising the minimization of the average error detection probability and
sampling time cost over all admissible decision policies at the FC and all possible
local decision functions at each sensor is then considered to determine theoptimal
stopping and decision rule. Further, algorithms to solve the optimization problem
for both infinite and finite horizon are given. In [36], an infinite horizon sequen-
tial detection scheme based on the sequential probability ratio test (SPRT) atboth
the sensors and the FC is considered. Wald’s analysis of error probability, [45], is
employed to determine the thresholds at the sensors and the FC.

The design of a distributed sequential detection network under a communication
bandwidth constraint is considered in [37]. Each sensor sends a quantized version of
its observation to the FC and then the SPRT is employed to make the decision to stop
or carry on sensing. The problem is formulated as to determine the distributionof
the bandwidth among the sensors, the quantizer design, and the FC decisionpolicy
in order to minimize the average sample number (ASN). Incorporating [37] to in-
crease the throughput of a cognitive radio system can be an interesting area of future
research. [32] presents a distributed sequential sensing scheme where each sensor
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performs an SPRT and makes a decision. The decision is then sent to the FC and
the FC announces the first incoming decision as the global decision. Henceforth, the
global probability of detection and false alarm is equal to the ones at each sensor.
This scheme can also be exploited to reduce the sensing and reporting time of the
cognitive radio network thereby increasing the network throughput whiledecreasing
the energy consumption.

A combination of sequential detection and censoring is considered in [42].Each
sensor computes the LLR of the received sample and sends it to the FC, if it is
deemed to be in a certain region. The FC then collects the received LLRs andas
soon as their sum is larger than an upper threshold or smaller than a lower threshold,
the decision is made and the sensors can stop sensing. The LLRs are sendin such a
way that the larger LLRs are sent sooner. It is shown that the number oftransmissions
considerably reduces and particularly when the listening cost is high, this approach
performs very well.

[31] proposes a sequential censoring scheme where an SPRT is employed by
the FC and soft or hard local decisions are sent to the FC according to a censoring
policy. It is depicted that the number of transmissions decreases but on theother
hand the ASN increases. Therefore, [31] ignores the effect of listening on the energy
consumption and focuses only on the transmission energy which for current low-
power radios is comparable to the sensing energy. Further, the FC may notreach a
decision in a reasonable time. Finally, the system in [31] asymptotically reachesa
specific detection performance as the number of sensors grows, but thisincurs a high
total energy consumption by the system.

[38] considers a distributed sequential sensing scheme where each sensor em-
ploys the SPRT and upon reaching a decision, a binary result is sent to theFC. The
FC then makes a final decision using aK-out-of-M rule. It is shown that for the same
detection error probability, the detection performance of this sequential scheme is
better than fixed-size sampling and furthermore the observation energy is proven to
be lower. The optimal sensing thresholds are found by an iterative algorithm that
solves a Bayesian risk problem.

Sequential spectrum sensing is also considered for cognitive radio design. An
infinite horizon SPRT is employed in [41], [40], [39], [30] for different sensing
techniques. It is shown that the sensing time dramatically reduces when employ-
ing sequential detection. The optimization of cognitive network throughput under a
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constraint on the miss-detection probability is solved in [28], [29] in order tofind
the optimal stopping and access policies. This approach is infinite horizon which
is a not a valid assumption considering the limited sensing time of cognitive radios.
Further, a binary result has to be sent to the FC for each collected observation sample
which entails a high transmission energy consumption. Nevertheless, the considered
optimization problem is matched to the cognitive radio system requirements and an
extension of [28] for the finite horizon case can also be considered.

In [27], the sensing thresholds that minimize the ASN are derived subject toa
constraint on the false alarm rate, miss-detection probability, outage probability and
interference level. This method is particularly designed for systems with real-time
traffic.

A truncated sequential sensing technique is employed in [44] to reduce the sens-
ing time of a cognitive radio system. The thresholds are determined such that a
certain probability of false alarm and detection are obtained. In this thesis, we are
employing a similar technique, except that in [44], after the truncation point, asingle
threshold scheme is used to make a final decision, while in this thesis, the sensor
decision is censored if no decision is made before the truncation point. Further, [44]
considers a single sensor detection scheme which is not reliable particularlydue to
the hidden terminal problem.

1.3.3 Clustering

A cluster-based and a confidence voting approach to energy-efficient distributed
sensing is proposed in [16]. In the cluster-based approach, a cognitive radio network
is divided into several clusters based on their geometric location. Each cognitive
radio sends its local decision to its assigned cluster head which makes a localcluster
decision and sends it to the fusion center. This way, the energy consumption reduces
due to the distance reduction by avoiding broadcasting every result to the fusion cen-
ter directly. In the confidence voting approach, each user sends its local decision to
the FC only if it is deemed confident enough. The secondary user looks for a consen-
sus among the other users and if its result is in accordance with the majority opinion,
it gains confidence, else its confidence level decreases. Each user can send its result
to the FC only if its confidence level is above a certain threshold. However,these
approaches are mainly protocol based schemes and the detection technique as well
as the underlying problem formulation for system design parameters are not given.
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1.3.4 Energy-constrained sensing

[65] considers the optimization of the cognitive radio network energy efficiency.
Energy efficiency is defined as the ratio of the average network throughput over
the average network energy consumption. Optimization of the energy efficiency is
considered for two cases. In the former case, energy efficiency is optimized in order
to findK in K-out-of-M rule, and in the latter case, the sensing threshold at the energy
detector is derived by optimizing the energy efficiency. However, the combined
optimization ofK, M as well as the sensing threshold is not considered. Further, no
typical performance constraint is considered for the optimization problem such as
the probability of detection which is inherent in a cognitive radio design technique.

1.4 Contributions and outline of the thesis

In this section, we explain in detail what is the outline of each chapter and what are
our key contributions.

Chapter 2

A fixed-sample size censoring scheme is considered in this chapter. Each cognitive
radio collects the same number of samples, calculates the energy of the samplesand
if the calculated energy is deemed informative, one decision bit is sent to the FC.
The calculated energy is informative, if it is lower than a lower threshold (λ1) or
larger than an upper threshold (λ2), otherwise, no decision is sent to the FC. This
way, the transmission energy of each cognitive radio is reduced. Our goal is to set
the sensing parameters includingλ1 andλ2 by minimizing the maximum average
energy consumption per sensor subject to a constraint on the probability of detection
and false alarm. This constraint is defined as a lower bound on the probability of
detection and an upper bound on the probability of false alarm. The main result of
this chapter is as follows

• For this approach, it is shown that a single-threshold censoring policy is opti-
mal in terms of energy consumption for both the OR and AND rule. Moreover,
a solution of the underlying problem is given for the OR and AND rule.
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Fixed-size censoring is used as a benchmark for comparison in Chapter 3where
a sequential censoring scheme is introduced.

Chapter 3

This chapter is one of the major contributions of this thesis. In this chapter, for the
first time, a combination of censoring and sequential sensing is introduced.The idea
behind the censored truncated sequential spectrum sensing is to reducethe sensing
energy as well as transmission energy of each cognitive radio, by introducing a se-
quential sampling technique. The contributions of this section are as follows

• A combination of censoring and truncated sequential sensing is proposedto
save energy. The sensors sequentially sense the spectrum before reaching a
truncation point,N, where they are forced to stop sensing. If the accumulated
energy of the collected sample observations is in a certain region (above an
upper threshold,a, or below a lower threshold,b) before the truncation point,
a decision is sent to the FC. Else, a censoring policy is used by the sensor,
and no bits will be sent. This way, a large amount of energy is saved for both
sensing and transmission. In our thesis, it is assumed that the cognitive radios
and fusion center are aware of their location and mutual channel properties.

• In terms of cognitive radio system design, the probability of detection limits
the harmful interference to the primary user and the false alarm rate controls
the loss in spectrum utilization. The ideal case yields no interference and full
spectrum utilization, but it is practically impossible to reach this point. Hence,
current standards determine a bound on the detection performance to achieve
an acceptable interference and utilization level [8]. Our goal is to minimize
the maximum average energy consumption per sensor subject to a specific
detection performance constraint which is defined by a lower bound on the
global probability of detection and an upper bound on the global probability
of false alarm. To the best of our knowledge such a min-max optimization
problem considering the average energy consumption per sensor has not yet
been considered in literature.

• Analytical expressions for the underlying parameters are derived andit is
shown that the problem can be solved by a two-dimensional search for both
the OR and AND rule.
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• To reduce the computational complexity for the OR rule, a single-threshold
truncated sequential test is proposed where each cognitive radio sends a deci-
sion to the FC upon the detection of the primary user.

At the end of the chapter, several numerical results are provided whichshow that
censored truncated sequential sensing outperforms censoring in terms of energy-
efficiency for low-power cognitive radios and for the desired range of the detection
performance. The material presented in Chapter 2 and Chapter 3 were published in
part in the following journal and conference publications:

• S. Maleki and G. Leus, “Censored Truncated Sequential Spectrum Sensing for
Cognitive Radio Networks,” IEEE Journal on Selected Areas in Communica-
tions, vol.31, no.3, pp.364,378, March 2013

• S. Maleki and G. Leus, “Censored truncated sequential spectrum sensing for
cognitive radio networks,” 17th International Conference on Digital Signal
Processing (DSP), 2011, vol., no., pp.1,8, 6-8 July 2011

Chapter 4

In this chapter, a combination of sleeping and censoring is introduced. On top of the
fixed-size censoring as presented in Chapter 2, each sensor turns off its sensing mod-
ule with probabilityµ (sleeping rate) at each sensing period. This way, a great deal
of energy is saved on sensing and transmission. As in Chapter 2 and Chapter 3, the
goal is to minimize the maximum average energy consumption per sensor subjectto
a lower bound on the probability of detection and an upper bound on the probability
of false alarm. In this chapter, first the combined sleeping and censoring scheme is
presented, followed by an analysis and problem formulation and severalnumerical
results. Further, a case study based on IEEE 802.15.4 ZigBee is considered to evalu-
ate the performance of the proposed approach for a practical scenario. Contributions
of this chapter are as follows

• A combined sleeping and censoring scheme is proposed where each sensor
turns off its sensing module with probabilityµ at each sensing period. In
case the sensor is on, then a censoring policy is employed in order to send
the decisions to the FC. In case the calculated energy is more than an upper
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threshold,λ2, the decision is that the primary user is present. If the calculated
energy turns out to be lower than a lower threshold,λ1, then a decision is sent
to the FC indicating the absence of the primary user. Else, no decision is made
and nothing is sent to the FC.

• The underlying detection performance indicators including the global proba-
bility of false alarm and detection are derived for the OR and the AND rules.

• The problem is defined so as to minimize the maximum average energy con-
sumption per sensor subject to a lower bound on the probability of detection
and an upper bound on the probability of false alarm. As indicated before,such
a min-max optimization problem has never been considered for the problem
of energy-efficiency optimization in cognitive radio systems.

• It is shown that the optimal average energy consumption per sensor is obtained
when the lower threshold is zero (λ1 = 0) for the OR rule and approaching in-
finity (λ1 → ∞) for the AND rule. These are the same results as in fixed-size
censoring in Chapter 2, but the beauty of the results in this chapter is that the
same results holds with a combination of censoring and sleeping. This way,
one of the three underlying arguments of the optimization problem including
λ1, λ2 andµ is relaxed and the problem reduces to a two-dimensional opti-
mization problem.

• It is shown that on top of reducing the main problem to a two-dimensional
problem, using the interactions betweenλ2 andµ, the problem can be reduced
to a line-search problem overµ.

Chapter 5

This chapter considers the optimization of hard-combining cooperative spectrum
sensing for energy-constrained cognitive radios. The goal is to find the optimalK-
out-of-M fusion rule. AK-out-of-M rule is a hard fusion rule which decides for the
presence of the primary user if at leastK cognitive radios report the presence of a
primary user to the FC. Note that the previously considered OR and AND rules are
special cases of theK-out-of-M rule whereK = 1 andK = M, respectively. The
contributions of this chapter are as follows
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• The throughput of the cognitive radio network is maximized subject to a con-
straint on the global probability of detection and energy consumption per cog-
nitive radio in order to determine the optimal number of cognitive usersM and
K.

• It is shown that the underlying problem can be solved by a bounded two-
dimensional search.

• It is assumed that the cognitive radios send their results to the FC in a time-
division-multiple-access (TDMA) manner. Therefore, by optimizing the num-
ber of cognitive radiosM, the reporting time of the cognitive radio and thus
the network throughput is optimized.

The following journal and conference papers are published based onthe material
presented in this chapter:

• S. Maleki, S. P. Chepuri and G. Leus, “Optimization of hard fusion based
spectrum sensing for energy-constrained cognitive radio networks”, Physical
Communication (Elsevier Journal), Available online 20 July 2012, ISSN 1874-
4907

• S. Maleki, S. P. Chepuri and G. Leus, “Energy and throughput efficient strate-
gies for cooperative spectrum sensing in cognitive radios,” IEEE 12thInterna-
tional Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2011, pp.71,75, 26-29 June 2011

• S. Maleki, S. P. Chepuri and G. Leus, “Optimal hard fusion strategies for cog-
nitive radio networks,” IEEE Wireless Communications and Networking Con-
ference (WCNC), 2011, pp.1926,1931, 28-31 March 2011

Chapter 6

In this chapter, the conclusions of Chapters 2, 3, 4 and 5 are drawn andthe main
results are reviewed. Further, a couple of ideas for future works arepresented in this
chapter.



Chapter 2

Fixed-Size Censoring

Abstract

A fixed-sample size censoring scheme is considered in this chapter as bench-
mark for comparison of the censored truncated sequential technique which is
proposed in Chapter 3. To design the underlying sensing parameters, the max-
imum average energy consumption per sensor is minimized subject to a lower
bounded global probability of detection and an upper bounded false alarm
rate. This way, both the interference to the primary user dueto miss detection
and the network throughput as a result of a low false alarm rate are controlled.
To solve this problem, it is assumed that the cognitive radios and fusion center
are aware of their location and mutual channel properties.

2.1 Introduction

Reliable spectrum sensing is a key functionality of a cognitive radio network. The
hidden terminal problem and fading effects have been shown to limit the reliability
of spectrum sensing. Distributed cooperative detection has therefore been proposed
to improve the detection performance of a cognitive radio network [9], [10]. Due to
its simplicity and small delay, a parallel detection configuration [14], is considered in
this chapter where each secondary radio continuously senses the spectrum in periodic
sensing slots. A local decision is then made at the radios and sent to the fusion
center (FC), which makes a global decision about the presence (or absence) of the
primary user and feeds it back to the cognitive radios. A dedicated control channel
is considered to convey messages from the cognitive radios to the FC. Several fusion
schemes have been proposed in the literature which can be categorized under soft and
hard fusion strategies [14], [13]. Hard schemes are more energy efficient than soft
schemes, and thus a hard fusion scheme is adopted in this chapter. More specifically,
two popular choices are employed due to their simple implementation: the OR and
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the AND rule. The OR rule dictates the primary user presence to be announced by the
FC when at least one cognitive radio reports the presence of a primary user to the FC.
On the other hand, the AND rule asks the FC to vote for the absence of the primary
user if at least one cognitive radio announces the absence of the primary user. In
this chapter, energy detection is employed for channel sensing which is a common
approach to detect unknown signals [13], [11], and which leads to a comparable
detection performance for hard and soft fusion schemes [10].

Energy consumption is another critical issue. The maximum energy consump-
tion of a low-power radio is limited by its battery. As a result, energy-efficientspec-
trum sensing limiting the maximum energy consumption of a cognitive radio in a
cooperative sensing framework is the focus of this chapter. A fixed-sample size cen-
soring scheme is considered as a benchmark (it is simply called the censoringscheme
throughout the rest of the chapter) where each sensor employs a censoring policy af-
ter collecting a fixed number of samples. The censoring policy in this case works
based on a lower threshold,λ1 and an upper threshold,λ2. The decision is only be-
ing made if the accumulated energy is not in(λ1,λ2). For this approach, it is shown
that a single-threshold censoring policy is optimal in terms of energy consumption
for both the OR and AND rule. Moreover, a solution of the underlying problem is
given for the OR and AND rule.

2.2 Related work to censoring

Censoring has been thoroughly investigated in wireless sensor networksand cogni-
tive radios [17, 18, 19, 20, 21, 22, 23, 26]. It has been shown thatcensoring is very
effective in terms of energy efficiency. In the early works, [19, 20, 21, 22], the design
of censoring parameters including lower and upper thresholds has beenconsidered
and mainly two problem formulations have been studied. In the Neyman-Pearson
(NP) case, the miss-detection probability is minimized subject to a constraint on the
probability of false alarm and average network energy consumption [20,21, 22]. In
the Bayesian case, on the other hand, the detection error probability is minimized
subject to a constraint on the average network energy consumption. It isshown
that when the constraint on the probability of false alarm is low enough (NP case)
or the probability of target presence is much lower than the one for target absence
(Bayesian case), a single-threshold censoring policy is optimal. Our fixed-sample
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size censoring scheme is different from these works in several aspects. First, they
have mainly considered a soft fusion scheme based on a likelihood ratio test(LRT)
at the FC while in this chapter, hard fusion OR and AND rules are considered. Sec-
ond, the optimization problem in this chapter is different from the NP or Bayesian
problems. Third, it is shown that in our scheme the optimal lower threshold is always
zero and forth, an explicit solution of the underlying problem is given which has not
yet been presented in the earlier works. A combination of censoring and sleeping
is considered in [18] with the goal of maximizing the mutual information between
the state of signal occupancy and the decision state of the FC, but the energy effi-
ciency of the system is not directly addressed. Censoring for the specific application
of cognitive radio is considered in [17], [23], [26]. In [17], a censoring rule similar
to the one in this chapter is considered in order to limit the bandwidth occupancy of
the cognitive radio network. Our fixed-sample size censoring scheme is different in
two ways. First, in [17], the FC makes no decision in case it does not receive any
decision from the cognitive radios which is ambiguous, since the FC has to make a
final decision, while in this chapter, the FC reports the absence of a primaryuser, if
no local decision is received at the FC. Second, we give a clear optimization problem
and expression for the solution while this is not presented in [17]. In [23], analyt-
ical expressions for the sensing parameters are given according to anNP setup for
both soft and hard fusion schemes, but unlike [19]-[22] no constraint on the energy
consumption is taken into account. As a result, our optimization problem is different
than the one in [23].

2.2.1 Organization

In this chapter, first, we introduce the system model, problem formulation andanal-
ysis for the OR rule in Section 2.3. An extension of censoring to the AND rule
is considered in Section 2.4. The performance analysis of the fixed-size censoring
considered in this chapter, will be presented together with the results of truncated
sequential censoring in Chapter 3, Section 3.5. The conclusions of Chapters 2 and 3,
are drawn in Section 3.6.
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2.3 Fixed-size censoring analysis and problem formulation

A fixed-size censoring scheme is discussed in this section as a benchmark for the
main contribution of the thesis in Chapter 3, which studies a combination of sequen-
tial sensing and censoring. A network ofM cognitive radios is considered under
a cooperative spectrum sensing scheme. A parallel detection configuration is em-
ployed as shown in Fig. 2.1. Each cognitive radio senses the spectrum and makes
a local decision about the presence or absence of the primary user andinforms the
FC by employing a censoring policy. The final decision is then made at the FC by
employing the OR rule. The AND rule will be discussed in Section 2.4. Denotingr i j

to be thei-th sample received at thej-th cognitive radio, each radio solves a binary
hypothesis testing problem as follows

H0 : r i j = wi j , i = 1, ...,N, j = 1, ...,M

H1 : r i j = hi j si +wi j , i = 1, ...,N, j = 1, ...,M (2.1)

wherewi j is additive white Gaussian noise with zero mean and varianceσ2
w. hi j

andsi are the channel gain between the primary user and thej-th cognitive radio
and the transmitted primary user signal, respectively. We assume two models for
hi j andsi . In the first model,si is assumed to be white Gaussian with zero mean
and varianceσ2

s , andhi j is assumed constant during each sensing period and thus
hi j = h j , i = 1, . . . ,N. In the second model,si is assumed to be deterministic and
constant modulus|si | = s, i = 1, . . . ,N, j = 1, . . . ,M andhi j is an i.i.d. Gaussian
random process with zero mean and varianceσ2

h, j . Note that the second model actu-
ally represents a fast fading scenario. Although each model requires adifferent type
of channel estimation, since the received signal is still a zero mean Gaussian random
process with some variance, namelyσ2

j = |h j |
2σ2

s +σ2
w for the former model and

σ2
j = s2σ2

h j +σ2
w for the latter model, the analyses which are given in the following

sections are valid for both models. The SNR of the received primary user signal at
the j-th cognitive radio isγ j = |h j |

2σ2
s /σ2

w under the first model andγ j = s2σ2
h, j/σ2

w

under the second model. Furthermore,hi j si andwi j are assumed statistically inde-
pendent.

An energy detector is employed by each cognitive sensor which calculatesthe
accumulated energy overN observation samples. Note that under our system model
parameters, the energy detector is equivalent to the optimal LLR detector [13]. The
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Figure 2.1: Distributed spectrum sensing configuration

received energy collected over theN observation samples at thej-th radio is given
by

E j =
N

∑
i=1

|r i j |
2

σ2
w

. (2.2)

When the accumulated energy of the observation samples is calculated, a cen-
soring policy is employed at each radio where the local decisions are sentto the FC
only if they are deemed to be informative [26]. Censoring thresholdsλ1 andλ2 are
applied at each of the radios, where the rangeλ1 < E j < λ2 is called the censoring
region. At thej-th radio, the local censoring decision rule is given by







send 1, declaringH1 if E j ≥ λ2,

no decision ifλ1 < E j < λ2,

send 0, declaringH0 if E j ≤ λ1.

(2.3)

It is well known [13] that under such a model,E j follows a central chi-square
distribution with 2N degrees of freedom underH0 andH1. Therefore, the local
probabilities of false alarm and detection can be respectively written as

Pf , j = Pr(E j ≥ λ2|H0) =
Γ(N, λ2

2 )

Γ(N)
, (2.4)

Pd, j = Pr(E j ≥ λ2|H1) =
Γ(N, λ2

2(1+γ j )
)

Γ(N)
, (2.5)

whereΓ(a,x) is the incomplete gamma function given byΓ(a,x) =
∫ ∞

x ta−1e−tdt,
with Γ(a,0) = Γ(a).
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DenotingCs, j andCt, j to be the energy consumed by thej-th radio in sensing
per sample and transmission per bit, respectively, the average energy consumed for
distributed sensing per user is given by,

Cj = NCs, j +(1−ρ j)Ct, j , (2.6)

whereρ j = Pr(λ1 < E j < λ2) is denoted to be the average censoring rate. Note
that Cs, j is fixed and only depends on the sampling rate and power consumption
of the sensing module whileCt, j depends on the distance to the FC at the time of
the transmission. Therefore, in this chapter, it is assumed that the cognitiveradio
is aware of its location and the location of the FC as well as their mutual channel
properties or at least can estimate them. Definingπ0 =Pr(H0), π1 =Pr(H1), δ0, j =

Pr(λ1 < E j < λ2|H0) andδ1, j = Pr(λ1 < E j < λ2|H1), ρ j is given by

ρ j = π0δ0, j +π1δ1, j , (2.7)

with

δ0, j =
Γ(N, λ1

2 )

Γ(N)
−

Γ(N, λ2
2 )

Γ(N)
, (2.8)

δ1, j =
Γ(N, λ1

2(1+γ j )
)

Γ(N)
−

Γ(N, λ2
2(1+γ j )

)

Γ(N)
. (2.9)

DenotingQc
F andQc

D to be the respective global probability of false alarm and
detection, the target detection performance is then quantified byQc

F ≤α andQc
D ≥ β ,

whereα andβ are pre-specified detection design parameters. Our goal is to deter-
mine the optimum censoring thresholdsλ1 andλ2 such that the maximum average
energy consumption per sensor, i.e., maxj Cj , is minimized subject to the constraints
Qc

F ≤ α andQc
D ≥ β . Hence, our optimization problem can be formulated as

min
λ1,λ2

max
j

Cj

s.t.Qc
F ≤ α , Qc

D ≥ β . (2.10)

In this section, the FC employs an OR rule to make the final decision which is
denoted byDFC, i.e.,DFC = 1 if the FC receives at least one local decision declaring
1, elseDFC = 0. This way, the global probability of false alarm and detection can be
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derived as

Qc
F = Pr(DFC = 1|H0) = 1−

M

∏
j=1

(1−Pf , j), (2.11)

Qc
D = Pr(DFC = 1|H1) = 1−

M

∏
j=1

(1−Pd, j). (2.12)

Note that since all the cognitive radios employ the same upper thresholdλ2, we can
state thatPf , j = Pf defined in (2.4). As a result, (2.11) becomes

Qc
F = 1− (1−Pf )

M. (2.13)

Since the FC decides about the presence of the primary user only by receiving
“1”s (receiving no decision from all the sensors is considered as absence of the pri-
mary user) and the sensing time does not depend onλ1, it is a waste of energy to send
zeros to the FC and thus, the optimal solution of (2.10) is obtained byλ1 = 0. Note
that this is only the case for fixed-size censoring, because the energy consumption of
each sensor only varies by the transmission energy while the sensing energy is con-
stant. This way (2.8) and (2.9) can be simplified toδ0, j = 1−Pf andδ1, j = 1−Pd, j ,
and we only need to derive the optimalλ2. Since there is a one-to-one relation-
ship betweenPf andλ2, by finding the optimalPf , λ2 can also be easily derived as
λ2 = 2Γ−1[N,Γ(N)Pf ] (whereΓ−1 is defined over the second argument). Consider-
ing this result and definingQc

D = H(Pf ), the optimal solution of (2.10) is given by
Pf = H−1(β ) as is shown in Appendix 2.A.

When the received SNR of the primary user by the cognitive radios can beas-
sumed to be the same, the local probabilities of detection will be all the same, i.e.,
Pd, j = Pd = G(F−1(Pf )), and thusQc

D = 1− (1−Pd)
M = 1− (1−G(F−1(Pf )))

M.
This way the optimalPd is Pd = 1− (1−β )M and the optimalPf is given byPf =

F(G−1(1−(1−β )1/M)). Note that such an assumption is considered a good assump-
tion if the difference between the SNRs is less than 1 dB which holds in many prac-
tical situations [51], particularly when the cognitive radios are far from the primary
user, while are relatively close to each other. Furthermore, by increasing the SNR,
the optimalPf decreases and so does the maximum average energy consumption per
sensor. Therefore, one suboptimal solution of (2.10) is to assume that theSNR for all
the cognitive radios is equal to the minimum SNR and to find the sensing parameters
using the earlier mentionedPf andPd. This way we are certain that the probabil-
ity of detection constraint is satisfied becauseβ ≤ Qc

D(γmin = min{γ1, . . . ,γM}) ≤
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Qc
D(γ1, . . . ,γM). Although, the censoring scheme gives a considerable energy saving

as shown in Section 3.5, it only relies on the transmission energy minimization.

2.4 Extension to the AND rule

So far, we have mainly focused on the OR rule. However, another rule which is also
simple in terms of implementation is the AND rule. According to the AND rule,
DFC = 0, if at least one cognitive radio reports a zero, elseDFC = 1. This way the
global probabilities of false alarm and detection, can be written respectively as

Qc
F,AND = Pr(DFC = 1|H0) =

M

∏
j=1

(δ0, j +Pf , j), (2.14)

Qc
D,AND = Pr(DFC = 1|H1) =

M

∏
j=1

(δ1, j +Pd, j). (2.15)

Similar to the case for the OR rule, the problem is defined so as to minimize the
maximum average energy consumption per sensor subject to a lower boundon the
global probability of detection and an upper bound on the global probabilityof false
alarm.

The optimization problem for the censoring scheme considering the AND rule at
the FC, becomes

min
λ1,λ2

max
j

Cj

s.t.Qc
F,AND ≤ α , Qc

D,AND ≥ β . (2.16)

whereCj is defined in (2.6). Since the FC decides for the absence of the primary
user by receiving at least one zero and the fact that the sensing energy per sample
is constant, the optimal upper thresholdλ2 is λ2 → ∞. This way, cognitive radios
censor all the results for whichE j > λ1, and as a result (2.14) and (2.15) become

Qc
F,AND = Pr(DFC = 1|H0) =

M

∏
j=1

δ0, j , (2.17)

Qc
D,AND = Pr(DFC = 1|H1) =

M

∏
j=1

δ1, j . (2.18)
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whereδ0, j = Pr(E j > λ1|H0) andδ1, j = Pr(E j > λ1|H1). Since the thresholds are
the same among the cognitive radios, we haveδ0,1 = δ0,2 = · · · = δ0,M = δ0. Since
there is a one-to-one relationship betweenλ1 andδ0, by finding the optimalδ0, the
optimalλ1 can be easily derived. As shown in Appendix 3.E, we can derive the op-
timal δ0 asδ0 = α1/M. We can confirm this result intuitively by considering the fact
that by maximizingδ0, δ1, j is maximized and so isρ j , and the maximumδ0 is equal
to α1/M, which is independent from SNR. This result is very important in the sense
that as far as the feasible set of (2.16) is not empty, the optimal solution of (2.16)
is independent from the SNR. Note that the maximum average energy consumption
per sensor still depends on the SNR viaδ1, j and is reducing as the SNR grows.

2.5 Summary and conclusions

In this chapter, a censoring scheme has been discussed where each sensor employs a
censoring policy to reduce the energy consumption. We defined our problem as the
minimization of the maximum average energy consumption per sensor subject to a
global probability of false alarm and detection constraint for the AND and the OR
rules. The optimal lower threshold is shown to be zero for the censoring scheme in
case of the OR rule while for the AND rule the optimal upper threshold is shownto
be infinity. Further, an explicit expression was given to find the optimal solution for
the OR rule and in case of the AND rule a closed form solution has been derived.

The fixed-sample size censoring scheme which has been presented in this chapter
is used as a benchmark in the following Chapter, where a combination of censoring
and sequential sensing approaches is discussed which optimizes both the sensing and
the transmission energy.
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Appendix 2.A Optimal solution of (2.10)

Since the optimalλ1 = 0, (2.8) and (2.9) can be simplified toδ0, j = 1−Pf and
δ1, j = 1−Pd, j and so (2.10) becomes,

min
λ2

max
j

[
NCs, j +(π0Pf +π1Pd, j)Ct, j

]

s.t. 1− (1−Pf )
M ≤ α , 1−

M

∏
j=1

(1−Pd, j)≥ β . (2.19)

Since there is a one-to-one relationship betweenλ2 andPf , i.e.,λ2= 2Γ−1[N,Γ(N)Pf ]

(whereΓ−1 is defined over the second argument), (2.19) can be formulated as [46,
p.130],

min
Pf

maxj
[

NCs, j +(π0Pf +π1Pd, j)Ct, j
]

s.t. 1− (1−Pf )
M ≤ α , 1−∏M

j=1(1−Pd, j)≥ β .
(2.20)

DefiningPf = F(λ2) =
Γ(N,

λ2
2 )

Γ(N) andPd, j = G j(λ2) =
Γ(N,

λ2
2(1+γ j )

)

Γ(N) , we can writePd, j as

Pd, j = G j(F−1(Pf )). Calculating the derivative ofCj with respect toPf , we find that

∂Cj

∂Pf
=

∂
[
Ct, j(π0Pf +π1Pd, j)

]

∂Pf
=Ct, jπ0+

∂Pd, j

∂Pf
≥ 0, (2.21)

where we use the fact that

∂Pd, j

∂Pf
=

− 1
2NΓ(N)

2Γ−1[N,Γ(N)Pf ]
N−1e2Γ−1[N,Γ(N)Pf ]/2(1+γ j )I{2Γ−1[N,Γ(N)Pf ]≥0}

− 1
2NΓ(N)

2Γ−1[N,Γ(N)Pf ]N−1e2Γ−1[N,Γ(N)Pf ]/2I{2Γ−1[N,Γ(N)Pf ]≥0}

= e2Γ−1[N,Γ(N)Pf ](1/2(1+γ j )−1/2) ≥ 0. (2.22)

Therefore, we can simplify (2.20) as

min
Pf

Pf

s.t. 1− (1−Pf )
M ≤ α , 1−∏M

j=1(1−Pd, j)≥ β .
(2.23)

which can be easily solved by a line search overPf . However, sinceQc
D is a mono-

tonically increasing function ofPf , i.e.,Qc
D = H(Pf ) = 1−∏M

j=1(1−G j(F−1(Pf )))
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and thus∂Qc
D

∂Pf
=

∂Qc
D

∂Pd, j

∂Pd, j

∂Pf
= ∏l=M

l=1,l 6= j(1−Pdl)
∂Pd, j

∂Pf
≥ 0, we can further simplify the

constraints in (2.23) asPf ≤ 1− (1−α)1/M andPf ≥ H−1(β ). Thus, we obtain

min
Pf

Pf

s.t.Pf ≤ 1− (1−α)1/M, Pf ≥ H−1(β ).
(2.24)

Therefore, if the feasible set of (2.24) is not empty, then the optimal solutionis given
by Pf = H−1(β ).





Chapter 3

Censored Truncated Sequential Sensing

Abstract

A censored truncated sequential spectrum sensing technique is considered as
an energy saving approach. To design the underlying sensingparameters, the
maximum average energy consumption per sensor is minimizedsubject to a
lower bounded global probability of detection and an upper bounded false
alarm rate. This way both the interference to the primary user due to miss
detection and the network throughput as a result of a low false alarm rate
are controlled. To solve this problem, it is assumed that thecognitive radios
and fusion center are aware of their location and mutual channel properties.
We compare the performance of the proposed scheme with a fixed-sample size
censoring scheme under different scenarios and show that for low-power cog-
nitive radios, censored truncated sequential sensing outperforms censoring.
It is shown that as the sensing energy per sample of the cognitive radios in-
creases, the energy efficiency of the censored truncated sequential approach
grows significantly.

3.1 Introduction

As in Chapter 2, a hard combining cooperative spectrum sensing technique based on
the OR and the AND rule is considered in this chapter. Further, as in the restof the
thesis, energy detection is employed for channel sensing.

As mentioned earlier, energy consumption is a critical issue in cognitive radio
networks. The maximum energy consumption of a low-power radio is limited by
its battery. In this chapter, we are focusing on designing an energy-efficient algo-
rithm for spectrum sensing. The spectrum sensing module consumes energy in both
the sensing and transmission stages. In the previous chapter, we have introduced a
technique in order to reduce the transmission energy. To achieve a better energy-
efficiency, in this chapter and also in Chapter 4, we try to reduce both sensing and
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transmission energy.

A combination of censoring and truncated sequential sensing is proposedto save
energy. The sensors sequentially sense the spectrum before reachinga truncation
point, N, where they are forced to stop sensing. If the accumulated energy of the
collected sample observations is in a certain region (above an upper threshold, a, or
below a lower threshold,b) before the truncation point, a decision is sent to the FC.
Else, a censoring policy is used by the sensor, and no bits will be sent. Thisway, a
large amount of energy is saved for both sensing and transmission. In thischapter, it
is assumed that the cognitive radios and fusion center are aware of their location and
mutual channel properties.

Our goal is to minimize the maximum average energy consumption per sensor
subject to a specific detection performance constraint which is defined bya lower
bound on the global probability of detection and an upper bound on the global prob-
ability of false alarm. In terms of cognitive radio system design, the probabilityof
detection limits the harmful interference to the primary user and the false alarm rate
controls the loss in spectrum utilization. The ideal case yields no interference and
full spectrum utilization, but it is practically impossible to reach this point. Hence,
current standards determine a bound on the detection performance to achieve an ac-
ceptable interference and utilization level [8]. To the best of our knowledge such a
min-max optimization problem considering the maximum average energy consump-
tion per sensor has not yet been considered in literature.

3.1.1 Related work to sequential sensing

Sequential detection as an approach to reduce the average number of sensors re-
quired to reach a decision is also studied comprehensively during the pastdecades
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. In the context
of distributed detection, the sensor observations are either spatially or temporally
collected until the system comes up with a final decision [14], [35]. Intrinsicto ev-
ery sequential sensing scheme, is a stopping rule and a terminal decision rule. The
stopping rule is a function that determines when to stop collecting observationsand
therefore is a random variable. The terminal decision rule dictates which decision
has to be made after the sequential test has stopped [35]. Since either the individual
sensors or the FC can control the sequential test, two types of sequentialdetection
can be recognized. When the FC manages the sequential test, [28], [30], [31], [34],



3.1. Introduction 39

[37], [40], [36], it either makes a decision or asks the sensors to senda new result.
When the sequential test is carried out at the sensors, each sensor accumulates the
samples sequentially and makes a decision about the presence or the absence of the
target and then sends a binary decision to the FC [44], [38], [27], [32]. The other
way to categorize sequential detection problems is based on the maximum number
of samples that can be collected. In this context, we can distinguish between infi-
nite horizon and finite horizon (or truncated) sequential detection [34] (the reader is
referred to [14], [34] for a thorough analysis of distributed sequential detection). In
[34], [33], each sensor collects a sequence of observations, constructs a summary
message and passes it on to the FC and all other sensors. A Bayesian problem for-
mulation comprising the minimization of the average error detection probability and
sampling time cost over all admissible decision policies at the FC and all possible
local decision functions at each sensor is then considered to determine theoptimal
stopping and decision rule. Further, algorithms to solve the optimization problemfor
both infinite and finite horizon are given. This chapter is different from [34] and [33]
in the sense that we first consider a sequential detection scheme at each sensor and
assume no communications among the sensors. Second, the optimization problemin
this chapter is an energy optimization problem and is constrained, while in [34], [33],
the problem is different and is unconstrained. In [36], an infinite horizon sequential
detection scheme based on the sequential probability ratio test (SPRT) at both the
sensors and the FC is considered. Wald’s analysis of error probability,[45], is em-
ployed to determine the thresholds at the sensors and the FC. Our sensing scheme is
different, since we consider a truncated sequential detection and our thresholds are
determined based on an energy optimization problem which do not lead to Wald’s
thresholds. The design of a distributed sequential detection network under a commu-
nication bandwidth constraint is considered in [37]. Each sensor sendsa quantized
version of its observation to the FC and then the SPRT is employed to make the de-
cision to stop or carry on sensing. The problem is formulated as to determine the
distribution of the bandwidth among the sensors, the quantizer design, and the FC
decision policy in order to minimize the average sample number (ASN). Incorporat-
ing [37] to increase the throughput of a cognitive radio system can be aninteresting
area of future research. [32] presents a distributed sequential sensing scheme where
each sensor performs an SPRT and makes a decision. The decision is thensent to
the FC and the FC announces the first incoming decision as the global decision.
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Henceforth, the global probability of detection and false alarm is equal to the ones
at each sensor. This scheme can also be exploited to reduce the sensing and report-
ing time of the cognitive radio network thereby increasing the network throughput
while decreasing the energy consumption. A combination of sequential detection
and censoring is considered in [42]. Each sensor computes the LLR of the received
sample and sends it to the FC, if it is deemed to be in a certain region. The FC then
collects the received LLRs and as soon as their sum is larger than an upper thresh-
old or smaller than a lower threshold, the decision is made and the sensors canstop
sensing. The LLRs are send in such a way that the larger LLRs are sentsooner. It is
shown that the number of transmissions considerably reduces and particularly when
the listening cost is high, this approach performs very well. However, this chapter
employs a hard fusion scheme at the FC, our sequential scheme is finite horizon, and
further a clear optimization problem is given to optimize the energy consumption.
[31] proposes a sequential censoring scheme where an SPRT is employed by the FC
and soft or hard local decisions are sent to the FC according to a censoring policy. It
is depicted that the number of transmissions decreases but on the other hand the ASN
increases. Therefore, [31] ignores the effect of listening on the energy consumption
and focuses only on the transmission energy which for current low-power radios is
comparable to the sensing energy. In this chapter, we consider the energy of both
sensing and transmission and optimize the overall energy consumed by eachsensor.
Further, since our sequential scheme is truncated, a decision will alwaysbe made
by the FC, while in [31], the FC may not reach a decision in a reasonable time. Fi-
nally, the system in [31] asymptotically reaches a specific detection performance as
the number of sensors grows, but this incurs a high total energy consumption by the
system. As shall be shown later on, in our sequential censoring scheme, the energy
consumption saturates when the number of cognitive radios increases. [38] consid-
ers a distributed sequential sensing scheme where each sensor employs the SPRT
and upon reaching a decision, a binary result is sent to the FC. The FC then makes a
final decision using a K-out-of-M rule. It is shown that for the same detection error
probability, the detection performance of this sequential scheme is better thanfixed-
size sampling and furthermore the observation energy is proven to be lower. The
optimal sensing thresholds are found by an iterative algorithm that solves aBayesian
risk problem.

Sequential spectrum sensing is also considered for cognitive radio design. An
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infinite horizon SPRT is employed in [41], [40], [39], [30] for different sensing
techniques. It is shown that the sensing time dramatically reduces when employ-
ing sequential detection. The optimization of cognitive network throughput under a
constraint on the miss-detection probability is solved in [28], [29] in order tofind
the optimal stopping and access policies. This approach is infinite horizon which
is a not a valid assumption considering the limited sensing time of cognitive radios.
Further, a binary result has to be sent to the FC for each collected observation sample
which entails a high transmission energy consumption. Nevertheless, the considered
optimization problem is matched to the cognitive radio system requirements and an
extension of [28] for the finite horizon case can also be considered. In[27], the
sensing thresholds that minimize the ASN are derived subject to a constrainton the
false alarm rate, miss-detection probability, outage probability and interference level.
This method is particularly designed for systems with real-time traffic. A truncated
sequential sensing technique is employed in [44] to reduce the sensing time ofa cog-
nitive radio system. The thresholds are determined such that a certain probability of
false alarm and detection are obtained. In this chapter, we are employing a similar
technique, except that in [44], after the truncation point, a single threshold scheme is
used to make a final decision, while in this chapter, the sensor decision is censored if
no decision is made before the truncation point. Further, [44] considers asingle sen-
sor detection scheme while we employ a distributed cooperative sensing system and
finally, in this chapter an explicit optimization problem is given to find the sensing
parameters.

3.1.2 Organization

The remainder of this chapter is organized as follows. In Section 3.2, the sequential
censoring scheme system model and problem formulation for the OR rule. Analyt-
ical expressions for the underlying system parameters are derived and the optimiza-
tion problem is analyzed in Section 3.3. In Section 3.4, sequential censoringschemes
are presented and analyzed for the AND rule. We discuss some numericalresults in
Section 3.5. Conclusions are finally posed in Section 3.6.
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3.2 System Model and Problem Formulation

Unlike Chapter 2, where each user collects a specific number of samples, inthis
section, each cognitive radio sequentially senses the spectrum and uponreaching
a decision about the presence or absence of the primary user, it sendsthe result
to the FC by employing a censoring policy as introduced in Chapter 2. The final
decision is then made at the FC by employing the OR rule. The AND rule will
be covered in Section 3.4. Here, a censored truncated sequential sensing scheme is
employed where each cognitive radio carries on sensing until it reachesa decision
while not passing a limit ofN samples. We defineζn j = ∑n

i=1 |r i j |
2/σ2

w = ∑n
i=1xi j

andai = 0, i = 1, . . . , p, ai = ā+ iΛ̄, i = p+1, ...,N andbi = b̄+ iΛ̄, i = 1, ...,N,
whereā= a/σ2

w, b̄= b/σ2
w, 1< Λ̄ < 1+γ j is a predetermined constant,a< 0, b> 0

andp= ⌊−a/σ2
wΛ̄⌋ [44]. We assume that the SNRγ j is known or can be estimated.

This way, the local decision rule in order to make a final decision is as follows






send 1, declaringH1 if ζn j ≥ bn andn∈ [1,N],

continue sensing ifζn j ∈ (an,bn) andn∈ [1,N),

no decision ifζn j ∈ (an,bn) andn= N,

send 0, declaringH0 if ζn j ≤ an andn∈ [1,N].

(3.1)

Fig. 3.1 depicts (3.1) schematically.
The probability density function ofxi j = |r i j |

2/σ2
w underH0 andH1 is a chi-

square distribution with 2 degrees of freedom. Thus,xi j becomes exponentially dis-
tributed under bothH0 andH1. Henceforth, we obtain

Pr(xi j |H0) =
1
2

e−xi j /2I{xi j≥0}, (3.2)

Pr(xi j |H1) =
1

2(1+ γ j)
e−xi j /2(1+γ j )I{xi j≥0}, (3.3)

whereI{xi j≥0} is the indicator function.
Definingζ0 j = 0, the local probability of false alarm at thej-th cognitive radio,

Pf , j , can be written as

Pf , j =
N

∑
n=1

Pr(ζ0 j ∈ (a0,b0), ...,ζn−1 j ∈ (an−1,bn−1),ζn j ≥ bn|H0), (3.4)

whereas the local probability of detection,Pd, j , is obtained as follows

Pd, j =
N

∑
n=1

Pr(ζ0 j ∈ (a0,b0), ...,ζn−1 j ∈ (an−1,bn−1),ζn j ≥ bn|H1). (3.5)
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Figure 3.1: Truncated sequential sensing procedure

Denotingρ j to be the average censoring rate at thej-th cognitive radio, andδ0, j

andδ1, j to be the respective average censoring rate underH0 andH1, we have

ρ j = π0δ0, j +π1δ1, j , (3.6)

where

δ0, j = Pr(ζ1 j ∈ (a1,b1), ...,ζN j ∈ (aN,bN)|H0), (3.7)

δ1, j = Pr(ζ1 j ∈ (a1,b1), ...,ζN j ∈ (aN,bN)|H1). (3.8)

The other parameter that is important in any sequential detection scheme is the
average sample number (ASN) required to reach a decision. DenotingNj to be a
random variable representing the number of samples required to stop sensing, and
this includes announcing the presence or absence of the primary user before the
truncation point or reaching the truncation point where the sensing automatically
stops, the ASN for thej-th cognitive radio, denoted as̄Nj=E(Nj), can be defined as

N̄j = π0E(Nj |H0)+π1E(Nj |H1), (3.9)
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where

E(Nj |H0) =
N

∑
n=1

nPr(Nj = n|H0)

=
N−1

∑
n=1

n[Pr(ζ0 j ∈ (a0,b0), ...,ζn−1 j ∈ (an−1,bn−1)|H0)

− Pr(ζ0 j ∈ (a0,b0), ...,ζn j ∈ (an,bn)|H0)]

+ NPr(ζ0 j ∈ (a0,b0), ...,ζN−1 j ∈ (aN−1,bN−1)|H0), (3.10)

and

E(Nj |H1) =
N

∑
n=1

nPr(Nj = n|H1)

=
N−1

∑
n=1

n[Pr(ζ0 j ∈ (a0,b0), ...,ζn j ∈ (an−1,bn−1)|H1)

− Pr(ζ0 j ∈ (a0,b0), ...,ζn j ∈ (an,bn)|H1)]

+ NPr(ζ0 j ∈ (a0,b0), ...,ζN−1 j ∈ (aN−1,bN−1)|H1). (3.11)

Denoting againCs, j to be the sensing energy of one sample andCt, j to be the
transmission energy of a decision bit at thej-th cognitive radio, the total average
energy consumption at thej-th cognitive radio now becomes

Cj = N̄jCs, j +(1−ρ j)Ct, j . (3.12)

DenotingQcs
F andQcs

D to be the respective global probabilities of false alarm and
detection for the censored truncated sequential approach, we define our problem as
the minimization of the maximum average energy consumption per sensor subjectto
a constraint on the global probabilities of false alarm and detection as follows

min
ā,b̄

max
j

Cj

s.t.Qcs
F ≤ α , Qcs

D ≥ β . (3.13)

As in (2.11) and (2.12), under the OR rule that is assumed in this section, the
global probability of false alarm is

Qcs
F = Pr(DFC = 1|H0) = 1−

M

∏
j=1

(1−Pf , j), (3.14)
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and the global probability of detection is

Qcs
D = Pr(DFC = 1|H1) = 1−

M

∏
j=1

(1−Pd, j). (3.15)

Note that sincePf ,1 = · · ·= Pf ,M, it is again assumed thatPf , j = Pf in this section.
In the following subsection, analytical expressions for the probability of false

alarm and detection as well as the censoring rate and ASN are extracted.

3.3 Parameter and Problem Analysis

Looking at (3.4), (3.5), (3.6) and (3.9), we can see that the joint probability dis-
tribution function of p(ζ1 j , ...,ζn j) is the foundation of all the equations. Since
xi j = ζi j −ζi−1 j for i = 1, ...,N, we have,

p(ζ1 j , ...,ζn j) = p(ζ2 j , ...,ζn j|ζ1 j)p(ζ1 j)

= p(ζ3 j , ...,ζn j|ζ1 j ,ζ2 j)p(ζ2 j |ζ1 j)p(ζ1 j)

= .

= .

= p(ζn j|ζ1 j , ...,ζn−1 j)...p(ζ1 j)

= p(xn j)p(xn−1 j)...p(x1 j). (3.16)

Therefore, the joint probability distribution function underH0 andH1 becomes

p(ζ1 j , ...,ζn j|H0) =
1
2ne−ζn j/2I{0≤ζ1 j≤ζ2 j ...≤ζn j}, (3.17)

p(ζ1 j , ...,ζn j|H1) =
1

[2(1+ γ j)]n
e−ζn j/2(1+γ j )I{0≤ζ1 j≤ζ2 j ...≤ζn j}, (3.18)

whereI{0≤ζ1 j≤ζ2 j ...≤ζn j} is again the indicator function.
The derivation of the local probability of false alarm and the ASN underH0

in this chapter are similar to the ones considered in [44] and [43]. The difference
is that in [44], if the cognitive radio does not reach a decision afterN samples, it
employs a single threshold decision policy to give a final decision about the presence
or absence of the cognitive radio, while in this chapter, no decision is sentin case
none of the upper and lower thresholds are crossed. Hence, to avoid introducing a
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cumbersome detailed derivation of each parameter, we can use the results in[44] for
our analysis with a small modification. However, note that the problem formulation
in this chapter is essentially different from the one in [44]. Further, since inthis
chapter the distribution ofxi j underH1 is exponential like the one underH0, unlike
[44], we can also use the same approach to derive analytical expressions for the local
probability of detection, the ASN underH1, and the censoring rate.

DenotingEn to be the event whereai < ζi j < bi , i = 1, ...,n− 1 andζn j ≥ bn,
(3.4) becomes

Pf , j =
N

∑
n=1

Pr(En|H0). (3.19)

where the analytical expression forPr(En|H0) is derived in Appendix 3.A.
Similarly for the local probability of detection, we have

Pd, j =
N

∑
n=1

Pr(En|H1), (3.20)

where the analytical expression forPr(En|H1) is derived in Appendix 3.B.
DefiningRn j = {ζi j |ζi j ∈ (ai ,bi), i = 1, ...,n}, Pr(Rn j|H0) andPr(Rn j|H1) are

obtained as follows

Pr(Rn j|H0) =
1
2nJ(n)an,bn

(1/2), n= 1, ...,N, (3.21)

Pr(Rn j|H1) =
1

[2(1+ γ j)]n
J(n)an,bn

(1/2(1+ γ j)), n= 1, ...,N, (3.22)

whereJ(n)an,bn
(θ) is presented in Appendix 3.C and (3.10) and (3.11) become

E(Nj |H0) =
N−1

∑
n=1

n(Pr(Rn−1 j |H0)−Pr(Rn j|H0))+NPr(RN−1 j |H0)

= 1+
N−1

∑
n=1

Pr(Rn j|H0), (3.23)

E(Nj |H1) =
N

∑
n=1

n(Pr(Rn−1 j |H1)−Pr(Rn j|H1))+NPr(RN−1 j |H1)

= 1+
N−1

∑
n=1

Pr(Rn j|H1). (3.24)
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With (3.23) and (3.24), we can calculate (3.9). This way, (3.7) and (3.8) can be
derived as follows

δ0, j = Pr(RN j|H0) =
1

2N J(N)
aN,bN

(1/2), (3.25)

δ1, j = Pr(RN j|H1) =
1

[2(1+ γ j)]N
J(N)

aN,bN
(1/2(1+ γ j)). (3.26)

We can show that the problem (3.13) is not convex. Therefore, the standard
systematic optimization algorithms do not give the global optimum for ¯a and b̄.
However, as is shown in the following lines, ¯a and b̄ are bounded and therefore,
a two-dimensional exhaustive search is possible to find the global optimum. First
of all, we havea < 0 andā < 0. On the other hand, if ¯a has to play a role in the
sensing system, at least oneaN should be positive, i.e.,aN = ā+N∆ ≥ 0 which gives
ā ≥ −N∆. Hence, we obtain−N∆ ≤ ā < 0. Furthermore, definingQcs

F = F (ā, b̄)
andQcs

D = G (ā, b̄), for a givenā, it is easy to show thatG −1(ā,β )≤ b̄≤ F−1(ā,α)

(whereF−1 andG −1 are defined over the second argument).
Before introducing a suboptimal problem, the following theorem is presented.
Theorem 1. For a given local probability of detection and false alarm (Pd andPf )

andN, the censoring rate of the optimal censored truncated sequential sensing(ρcs)
is less than the one of the censoring scheme (ρc).

Proof. The proof is provided in Appendix 3.D.
We should note that, in censored truncated sequential sensing, a large amount

of energy is to be saved on sensing. Therefore, as is shown in Section 3.5, as the
sensing energy of each sensor increases, censored truncated sequential sensing out-
performs censoring in terms of energy efficiency. However, in case that the trans-
mission energy is much higher than the sensing energy, it may happen that censoring
outperforms censored truncated sequential sensing, because of a higher censoring
rate (ρcs > ρc). Hence, one corollary of Theorem 1 is that although the optimal
solution of (2.10) for a specificN, i.e., Pd = 1− (1− β )1/M andPf = H−1(β ), is
in the feasible set of (3.13) for a resulting ASN less thanN, it does not necessarily
guarantee that the resulting average energy consumption per sensor ofthe censored
truncated sequential sensing approach is less than the one of the censoring scheme,
particularly when the transmission energy is much higher than the sensing energy
per sample.

Solving (3.13) is complex in terms of the number of computations, and thus
a two-dimensional exhaustive search is not always a good solution. Therefore, in
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order to reach a good solution in a reasonable time, we seta < −N∆ in order to
obtaina1 = · · ·= aN = 0. This way, we can relax one of the arguments of (3.13) and
only solve the following suboptimal problem

min
b̄

max
j

Cj

s.t.Qcs
F ≤ α , Qcs

D ≥ β . (3.27)

Note that unlike Section 2, here the zero lower threshold is not necessarilyoptimal.
The reason is that although the maximum censoring rate is achieved with the lowest
ā, the minimum ASN is achieved with the highest ¯a, and thus there is an inherent
trade-off between a high censoring rate and a low ASN, and a zeroai is not nec-
essarily the optimal solution. Since the analytical expressions provided earlier are
very complex, we now try to provide a new set of analytical expressions for different
parameters based on the fact thata1 = · · ·= aN = 0.

To find an analytical expression forPf , j , we can deriveA(n) for the new paradigm
as follows

A(n) =
∫

...
∫

Γn

I{0≤ζ1 j≤ζ2 j ...≤ζn−1 j}dζ1 j ...dζn−1 j
. (3.28)

Since 0≤ ζ1 j ≤ ζ2 j ...≤ ζn−1 j anda1 = · · ·= aN = 0, the lower bound for each
integral isζi−1 and the upper bound isbi , wherei = 1, ...,n−1. Thus we obtain

A(n) =
∫ b1

ζ0 j

∫ b2

ζ1 j

...
∫ bn−1

ζn−2 j

dζ1 jdζ2 j ...dζn−1 j , (3.29)

which according to [43] is

A(n) =
b1bn−2

n

(n−1)!
, n= 1, ...,N. (3.30)

Hence, we have

Pf , j =
N

∑
n=1

pnA(n), (3.31)

andpn =
e−bn/2

2n−1 . Similarly, forPd, j , we obtain

B(n) =
∫ b1

ζ0 j

∫ b2

ζ1 j

...
∫ bn−1

ζn−2 j

dζ1 jdζ2 j ...dζn−1 j

=
b1bn−2

n

(n−1)!
, n= 1, ...,N, (3.32)
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and thus

Pd, j =
N

∑
n=1

qnB(n), (3.33)

whereqn = e−bn/2(1+γ j )

[2(1+γ j )]n−1 . Furthermore, we note that fora1 = · · · = aN = 0, A(n) =

B(n) = b1bn−2
n

(n−1)! , n= 1, ...,N.
It is easy to see thatRn j occurs underH0, if no false alarm happens until then-th

sample. Therefore, the analytical expression forPr(Rn j|H0) is given by

Pr(Rn j|H0) = 1−
n

∑
i=1

piA(i), (3.34)

and in the same way, forPr(Rn j|H1), we obtain

Pr(Rn j|H1) = 1−
n

∑
i=1

qiA(i). (3.35)

Putting (3.34) and (3.35) in (3.23) and (3.24), we obtain

E(Nj |H0) = 1+
N−1

∑
n=1

{

1−
n

∑
i=1

piA(i)

}

, (3.36)

E(Nj |H1) = 1+
N−1

∑
n=1

{

1−
n

∑
i=1

qiA(i)

}

, (3.37)

and inserting (3.36) and (3.37) in (3.9), we obtain

N̄j = π0

(

1+
N−1

∑
n=1

{

1−
n

∑
i=1

piA(i)

})

+π1

(

1+
N−1

∑
n=1

{

1−
n

∑
i=1

qiA(i)

})

. (3.38)

Finally, from (3.34) and (3.35), the censoring rate can be easily obtainedas

ρ j = π0

(

1−
N

∑
i=1

piA(i)

)

+π1

(

1−
N

∑
i=1

qiA(i)

)

. (3.39)

Having the analytical expressions for (3.27), we can easily find the optimalmax-
imum average energy consumption per sensor by a line search overb̄. Similar to
the censoring problem formulation, here the sensing threshold is also bounded by
Qcs

F
−1(α) ≤ b̄ ≤ Qcs

D
−1(β ). As we will see in Section 3.5, censored truncated se-

quential sensing performs better than censored spectrum sensing in termsof energy
efficiency for low-power radios.
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3.4 Extension to the AND rule

So far, we have focused on the OR rule. However, another rule which isalso simple
in terms of implementation is the AND rule. According to the AND rule,DFC = 0,
if at least one cognitive radio reports a zero, elseDFC = 1. This way the global
probabilities of false alarm and detection, can be written respectively as

Qcs
F,AND = Pr(DFC = 1|H0) =

M

∏
j=1

(δ0, j +Pf , j), (3.40)

Qcs
D,AND = Pr(DFC = 1|H1) =

M

∏
j=1

(δ1, j +Pd, j). (3.41)

Similar to the case for the OR rule, the problem is defined so as to minimize the
maximum average energy consumption per sensor subject to a lower boundon the
global probability of detection and an upper bound on the global probabilityof false
alarm.

The optimization problem for the censored truncated sequential sensing scheme
with the AND rule, becomes

min
ā,b̄

max
j

Cj

s.t.Qcs
F,AND ≤ α , Qcs

D,AND ≥ β . (3.42)

whereCj is defined in (3.12). Similar to the OR rule, we have−N∆ ≤ ā< 0. Defin-
ing Qcs

F,AND =FAND(ā, b̄) andQcs
D,AND = GAND(ā, b̄), for a givenā, we can show that

G
−1
AND(ā,β )≤ b̄≤ F

−1
AND(ā,α) (whereF

−1
AND andG

−1
AND are defined over the second

argument). Therefore, the optimal ¯a andb̄ can again be derived by a bounded two-
dimensional search, in a similar way as for the OR rule. Note that, as in theORrule,
single threshold detection is not necessary optimal for the AND rule in censored
truncated sequential sensing. However, to decrease the computational complexity, a
sub-optimal line search with a single threshold is possible. In this case, the related
parameters can be obtained byb→ ∞.

3.5 Numerical Results

A network of cognitive radios is considered for the numerical results. Insome of
the scenarios, for the sake of simplicity, it is assumed that all the sensors experience
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the same SNR. This way, it is easier to show how the main performance indica-
tors including the optimal maximum average energy consumption per sensor, ASN
and censoring rate changes when one of the underlying parameters of the system
changes. However, to comply with the general idea of the paper, which is based on
different received SNRs by cognitive radios, in other scenarios, thedifferent cogni-
tive radios experience different SNRs. Unless otherwise mentioned, theresults are
based on the single-threshold strategy for censored truncated sequential sensing in
case of the OR rule.

In Fig. 3.2 the maximum energy consumption per sensor is optimized forγ =

0dB, 0.1≤ β < 1, M = 5,Cs j = 1 andCt j = 10,α = 0.1, andπ0 = 0.2, 0.8, and it is
compared with the reference energy consumption where only censoring isemployed
by the cognitive radios. As we can see, the proposed censored truncated sequential
scheme reduces the maximum energy consumption per sensor for both low and high
π0 as well as over the whole range of the detection probability constraint. Further, it
is shown that the censored sequential scheme gives a higher energy efficiency than its
censoring counterpart, particularly at high probability of detections. It isalso shown
that asπ0 increases, the maximum energy consumption per sensor decreases mainly
due to a higher censoring rate.

Fig. 3.3 shows the optimal censoring rate versusβ for the same scenario. Clearly,
it is shown that the optimal censoring rate for higherπ0 is higher and further it is
shown that the optimal censoring rate is slightly higher for censoring than for cen-
sored sequential sensing.

The optimal ASN versusβ for the scenario of Fig. 3.2 is shown in Fig. 3.4.
We can see that asπ0 increases the optimal ASN also increases which is expected
due to the smaller probability of primary user appearance. Further, if the probability
of detection increases, the ASN decreases, because the thresholdb̄ is lower for the
higher detection rates and thus, cognitive radios sooner reach a decision.

Fig. 3.5 depicts the optimal maximum average energy consumption per sensor
versus the number of cognitive radios for the OR rule. The SNR is assumedto be
0 dB, N = 10,Cs = 1 andCt = 10. Furthermore, the probability of false alarm and
detection constraints are assumed to beα = 0.1 andβ = 0.9 as determined by the
IEEE 802.15.4 standard for cognitive radios [8]. It is shown for both high and low
values ofπ0 that censored sequential sensing outperforms the censoring scheme.
Looking at Fig. 3.6 and Fig. 3.7, where the respective optimal censoring rate and
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Figure 3.2: Optimal maximum energy consumption per sensor versusβ

optimal ASN are shown versus the number of cognitive radios, we can deduce that
the lower ASN is playing a key role in a lower energy consumption of the censored
sequential sensing. Fig. 3.5 also shows that as the number of cooperatingcognitive
radios increases, the optimal maximum average energy consumption per sensor de-
creases and saturates, while as shown in Fig. 3.6 and Fig. 3.7, the optimal censoring
rate and optimal ASN increase. This way, the energy consumption tends to increase
as a result of ASN growth and on the other hand inclines to decrease due tothe cen-
soring rate growth and that is the reason for saturation after a number of cognitive
radios. Therefore, we can see that as the number of cognitive radios increases, a
higher energy efficiency per sensor can be achieved. However, after a number of
cognitive radios, the maximum average energy consumption per sensor remains al-
most at a constant level and by adding more cognitive radios no significant energy
saving per sensor can be achieved while the total network energy consumption also
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Figure 3.3: Optimal censoring rate versusβ

increases.

Figures 3.8, 3.9 and 3.10 consider a scenario whereM = 5, N = 30, Cs, j = 1,
Ct, j = 10,α = 0.1, β = 0.9 andπ0 can take a value of 0.2 or 0.8. The performance of
the system versus SNR is analyzed in this scenario for the OR rule. The maximum
average energy consumption per sensor is depicted in Fig. 3.8. As for theearlier
scenario, censored sequential sensing gives a higher energy efficiency compared to
censoring. While the optimal energy variation for the censoring scheme is almost the
same for all the considered SNRs, the censored sequential scheme’s average energy
consumption per sensor reduces significantly as the SNR increases. Thereason is
that as the SNR increases, the optimal ASN dramatically decreases (almost 50% for
γ = 2 dB andπ0 = 0.2). This shows that as the SNR increases, censored sequential
sensing becomes even more valuable and a significant energy saving persensor can
be achieved compared with the one that is achieved by censoring. Since theSNR
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Figure 3.4: Optimal ASN versusβ

changes with the channel gain (|h j |
2 under the first model orσ2

h, j under the second
model), from Fig. 3.8, the behavior of the system with varying|h j |

2 or σ2
h, j can be

derived, if the distribution of|h j |
2 or σ2

h, j is known.

Figures 3.11 and 3.12 compare the performance of the single threshold censored
truncated sequential scheme with the one assuming two thresholds, i.e, ¯a andb̄ for
the OR rule. The idea is to find when the double threshold scheme with its higher
complexity becomes valuable. In these figures,M = 5, N = 10, γ = 0 dB, Ct =

10, π0 = 0.2, 0.8, andα = 0.1, while β changes from 0.1 to 0.99. The sensing
energy per sample,Cs in Fig. 3.11 is assumed 1, while in Fig. 3.12 it is 3. It is
shown that as the sensing energy per sample increases, the energy efficiency of the
double threshold scheme also increases compared to the one of the single threshold
scheme, particularly whenπ0 is high. The reason is that whenπ0 is high, a much
lower ASN can be achieved by the double threshold scheme compared to the single



3.5. Numerical Results 55

2 4 6 8 10 12 14 16 18 20
10

11

12

13

14

15

16

Number of cognitive radios

E
n

e
rg

y

 

 

sequential censoring, π
0
=0.8

censoring, π
0
=0.8

sequential censoring, π
0
=0.2

censoring, π
0
=0.2

Figure 3.5: Optimal maximum average energy consumption per sensor versus number of
cognitive radios

threshold one. This gain in performance comes at the cost of a higher computational
complexity because of the two-dimensional search.

Fig. 3.13 depicts the optimal maximum average energy consumption per sensor
versus the number of samples for the OR rule and for a network ofM = 5 cogni-
tive radios where each radio experiences a different channel gain and thus a different
SNR. Arranging the SNRs in a vectorγγγ = [γ1, . . . ,γ5], we haveγγγ =[1dB, 2dB, 3dB,
4dB, 5dB]. The other parameters areCs= 1,Ct = 10,π0 = 0.5, α = 0.1 andβ = 0.9.
As shown in Fig. 3.13, by increasing the number of samples and thus the total sens-
ing energy, the sequential censoring energy efficiency also increases compared to the
censoring scheme. For example, if we define the efficiency of the censored truncated
sequential sensing scheme as the difference of the optimal maximum averageenergy
consumption per sensor of sequential censoring and censoring divided by the opti-
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Figure 3.6: Optimal censoring rate versus number of cognitive radios

mal maximum average energy consumption per sensor of censoring, the efficiency
increases approximately three times from 0.06 (forN = 15) to 0.19 (forN = 30).

In Fig. 3.14, the sensing energy per sample isCs = 1 while the transmission
energyCt changes from 0 to 100. The goal is to see how the optimal maximum
average energy consumption per sensor changes withCt for the or rule and for a
network ofM = 5 cognitive radios withγγγ =[1dB, 2dB, 3dB, 4dB, 5dB]. The other
parameters of the network areN = 30, π0 = 0.5, α = 0.1 andβ = 0.9. The best
saving for sequential censoring is achieved when the transmission energy is zero.
Indeed, we can see that as the transmission energy increases the performance gain of
sequential censoring reduces compared to censoring. However, in low-power radios
where the sensing energy per sample and transmission energy are usuallyin the same
range, sequential censoring performs much better than censoring in termsof energy
efficiency as we can see in Fig. 3.14.
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Figure 3.7: Optimal ASN versus number of cognitive radios for the OR rule

Fig. 3.15 depicts the optimal maximum average energy consumption per sensor
versus the sensing energy per sample for both the AND and OR rule. For the sake
of simplicity and tractability, the SNRs are assumed the same forM = 50 cognitive
radios. The other parameters are assumed to beN = 10, Ct = 10, π0 = 0.5, γ =

0 dB, α = 0.1 andβ = 0.9. For both fusion rules, the double threshold scheme is
employed. We can see that the OR rule performs better for the low values ofCs.
However, asCs increases the AND rule dominates and outperforms the OR rule,
particularly for high values ofCs. The reason that the OR rule performs better than
the AND rule at very low values ofCs is that the optimal censoring rate for the OR
rule is higher than the optimal censoring rate for the AND rule. However asCs

increases, the AND rule dominates the OR rule in terms of energy efficiency due to
the lower ASN.

The optimal maximum average energy consumption per sensor versusπ0 is in-
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Figure 3.8: Optimal maximum average energy consumption per sensor versus SNR

vestigated in Fig. 3.16 for the AND and the OR rule. The underlying parameters are
assumed to beCs = 2, Ct = 10, N = 10, M = 50, γ = 0 dB, α = 0.1 andβ = 0.9.
It is shown that as the probability of the primary user absence increases,the optimal
maximum average energy consumption per sensor reduces for the OR rulewhile it
increases for the AND rule. This is mainly due to the fact that for the OR rule,we
are mainly interested to receive a ”1” from the cognitive radios. Therefore, asπ0 in-
creases, the probability of receiving a ”1” decreases, since the optimalcensoring rate
increases. The opposite happens for the AND rule, since for the AND rule, receiving
a ”0” from the cognitive radios is considered to be informative.
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Figure 3.9: Optimal censoring rate versus SNR

3.6 Summary and conclusions

In Chapters 2 and 3, we presented two energy-efficient techniques for a cognitive
sensor network. First, a censoring scheme has been discussed whereeach sensor
employs a censoring policy to reduce the energy consumption. Then a censored
truncated sequential approach has been proposed based on the combination of cen-
soring and sequential sensing policies. We defined our problem as the minimization
of the maximum average energy consumption per sensor subject to a globalprob-
ability of false alarm and detection constraint for the AND and the OR rules. The
optimal lower threshold is shown to be zero for the censoring scheme in caseof the
OR rule while for the AND rule the optimal upper threshold is shown to be infin-
ity. Further, an explicit expression was given to find the optimal solution forthe OR
rule and in case of the AND rule a closed form solution has been derived.We have
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Figure 3.10: Optimal ASN versus SNR for the OR rule

further derived the analytical expressions for the underlying parameters in the cen-
sored sequential scheme and have shown that although the problem is notconvex, a
bounded two-dimensional search is possible for both the OR rule and the AND rule.
Further, in case of the OR rule, we relaxed the lower threshold to obtain a linesearch
problem in order to reduce the computational complexity.

Different scenarios regarding transmission and sensing energy per sample as well
as SNR, number of cognitive radios, number of samples and detection performance
constraints were simulated for low and high values ofπ0 and for both the OR rule
and the AND rule. It has been shown that under the practical assumption of low-
power radios, sequential censoring outperforms censoring. We conclude that for high
values of the sensing energy per sample, despite its high computational complexity,
the double threshold scheme developed for the OR rule becomes more attractive.
Further, it is shown that as the sensing energy per sample increases compared to the
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Figure 3.11: Optimal maximum average energy consumption per sensor versus probability
of detection constraint,β , for the OR rule andCs = 1

transmission energy, the AND rule performs better than the OR rule, while forvery
low values of the sensing energy per sample, the OR rule outperforms the AND rule.
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Appendix 3.A Derivation of Pr(En|H0)

IntroducingΓn = {ai < ζi j < bi , i = 1, ...,n−1} andpn =
1

2n−1 e−bn/2, we can write

Pr(En|H0) =
∫

...
∫

Γn

∫ ∞

bn

1
2ne−ζn j/2I{0≤ζ1 j≤ζ2 j ...≤ζn j}dζ1 j ...dζn j

= pn

∫

...
∫

Γn

I{0≤ζ1 j≤ζ2 j ...≤ζn−1 j}dζ1 j ...dζn−1 j . (3.43)

DenotingA(n) =
∫
...
∫

Γn

I{0≤ζ1 j≤ζ2 j ...≤ζn−1 j}dζ1 j ...dζn−1 j
, we obtain

A(n) =







b1bn−2
n

(n−1)! , np+1
1

[
f (n−1)
aaan−1

0
(bn−1)− I{n≥3}∑n−3

i=0
(bn−1−bi+1)

n−i−1

(n−i−1)! 2ie
bi+1

2 Pr(Ei+1|H0)
]
, nq+1

p+2
[

f (n−1)
aaan−1

0
(bn−1)−∑n

i=0 f (n−1−i)

ψψψn−1
i,an−1

(bn−1)2ie
bi+1

2 Pr(Ei+1|H0)
]
, nN

q+2

,

(3.44)

whereny
x denotesn = x,x+ 1, . . . ,y− 1,y, and aaan−1

0 = [a0, . . . ,an−1]. Denoting
q to be the smallest integer for whichaq ≤ b1 < bq, andc and d to be two non-
negative real numbers satisfying 0≤ c< d, an−1 ≤ c≤ bn andan ≤ d, η0 = 0, ηηηk =

[η1, ...,ηk], 0≤ η1 ≤ ...≤ ηk, the functionsf (k)ηηηk
(ζ ) and the vectorψψψn

i,c in (3.44) are
as follows

f (k)ηηηk
(ζ ) = ∑k−1

i=0
f (k)i (ζ−ηi+1)

k−i

(k−i)! + f (k)k

f (k)i = f (k−1)
i , i = 0, ...,k−1, k≥ 1

f (k)k =−∑k−1
i=0

f (k−1)
i

(k−i)! (ηk−ηi+1)
k−i , f (0)0 = 1, (3.45)

ψψψn
i,c =







[bi+1, ...,bi+1
︸ ︷︷ ︸

q

,aq+i+1, ...,an−1,c
︸ ︷︷ ︸

n−q−i

], i ∈ [0,n−q−2]

[bi+1, ...,bi+1,c
︸ ︷︷ ︸

n−i

], i ∈ [n−q−1,s−1]

bi+1111n−i , i ∈ [s,n−2]

, (3.46)

with s denoting the integer for whichbs < c≤ bs+1 and f (0)ηηηk
(ζ ) = 1.
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Appendix 3.B Derivation of Pr(En|H1)

Introducingqn =
1

[2(1+γ j )]n−1 e−bn/2(1+γ j ), we can write

Pr(En|H1) =
∫

...
∫

Γn

∫ ∞

bn

1
[2(1+ γ j)]n

e−ζn j/2(1+γ j )I{0≤ζ1 j≤ζ2 j ...≤ζn j}dζ1 j ...dζn j

= qn

∫

...
∫

Γn

I{0≤ζ1 j≤ζ2 j ...≤ζn−1 j}dζ1 j ...dζn−1 j . (3.47)

DenotingB(n) =
∫
...
∫

Γn

I{0≤ζ1 j≤ζ2 j ...≤ζn−1 j}dζ1 j ...dζn−1 j
, and using the notations of Ap-

pendix 3.A, we obtain

B(n) =






b1bn−2
n

(n−1)! , np+1
1

[
f (n−1)
aaan−1

0
(bn−1)− I{n≥3} ∑n−3

i=0
(bn−1−bi+1)

n−i−1

(n−i−1)! [2(1+ γ j)]
ie

bi+1
2(1+γ j ) Pr(Ei+1|H1)

]
, nq+1

p+2

[
f (n−1)
aaan−1

0
(bn−1)−∑n−3

i=0 f (n−1−i)

ψψψn−1
i,an−1

(bn−1)[2(1+ γ j)]
ie

bi+1
2(1+γ j ) Pr(Ei+1|H1)

]
, nN

q+2

.

(3.48)
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Appendix 3.C Analytical expression forJ(n)an,bn
(θ)

Underθ > 0, n≥ 1 and 0≤ ζ1 j ≤ ... ≤ ζn j, ζi j ∈ (ai ,bi), i = 1, ...,n, the function

J(n)an,bn
(θ) is defined as (3.49), where using the notations of Appendix 3.A, we have

(3.50) withI (0) = 1 and (3.51), [44].

J(n)an,bn
(θ)=

n

∑
i=1

θ−i[ f (n−i)
aaan−i

0
(an)e

−θan− f (n−i)
aaan−i

0
(bn)e

−θbn
]
− I{n≥2}

n−2

∑
k=0

g(k)an,bn
(θ), (3.49)

g(k)c,d =







I (k)
[
θ k−ne−θbk+1 −∑n−k

i=1 θ−i f (n−k−i)
bk+1111n−k−i

(d)e−θd
]
, c≤ b1, k∈ [0,n−2]

I (k) ∑n−k
i=1 θ−i

[
f (n−k−i)
ψψψn−i

k,c
(c)e−θc− f (n−k−i)

ψψψn−i
k,d

(d)e−θd
]
, c> b1, k∈ [0,s−1]

I (k)
[
θ k−ne−θbk+1 −∑n−k

i=1 θ−i f (n−k−i)
bk+1111n−k−i

(d)e−θd
]
, c> b1, k∈ [s,n−2]

,

(3.50)

I (n) =







f (n)aaan
0
(bn)− I{n≥2}∑n−2

i=0
(bn−bi+1)

n−i

(n−i)! I (i), n∈ [1,q]

f (n)aaan
0
(bn)−∑n−2

i=0 f (n−i)
ψψψn

i,an
(bn)I (i), n∈ [q+1,∞)

. (3.51)
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Appendix 3.D Proof of Theorem 1

Assume thatPf andPd are the respective given local probability of false alarm and
detection. Denotingρc as the censoring rate for the optimal censoring scheme (2.24),
we obtain 1−ρc = π0Pf +π1Pd, and denotingρcs as the censoring rate for the opti-
mal censored truncated sequential sensing (3.13), based on what we have discussed
in Section 2, we obtain 1−ρcs= π0(Pf +L0(ā, b̄))+π1(Pd +L1(ā, b̄)). Note that
Lk(ā, b̄), k = 0,1, represents the probability thatζn ≤ an, n = 1, . . . ,N underHk

which is non-negative. Hence, we can conclude that 1− ρcs ≥ 1− ρc and thus
ρc ≥ ρcs.
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Appendix 3.E Optimal solution of (2.16)

Since the optimalλ2 → ∞, (3.40) and (3.41) can be simplified toQc
F,AND = δ M

0 and
Qc

D,AND = ∏M
j=1 δ1, j and so (2.16) becomes,

min
λ1

max
j

[
NCs, j +(π0(1−δ0)+π1(1−δ1, j))Ct, j

]

s.t.δ M
0 ≤ α ,

M

∏
j=1

δ1, j ≥ β . (3.52)

Since there is a one-to-one relationship betweenλ1 andδ0, i.e.,λ1= 2Γ−1[N,Γ(N)δ0]

(whereΓ−1 is defined over the second argument), (3.52) can be formulated as [46,
p.130],

min
δ0

maxj
[

NCs, j +(π0(1−δ0)+π1(1−δ1, j))Ct, j
]

s.t.δ M
0 ≤ α , ∏M

j=1 δ1, j ≥ β .
(3.53)

Definingδ0 = FAND(λ1) =
Γ(N,

λ1
2 )

Γ(N) andδ1, j = GAND,j(λ1) =
Γ(N,

λ1
2(1+γ j )

)

Γ(N) , we can write

δ1, j asδ1, j = GAND, j(F−1(δ0)). Calculating the derivative ofCj with respect toδ0,
we find that

∂Cj

∂δ0
=

∂
[
Ct, j(π0(1−δ0)+π1(1−δ1, j))

]

∂δ0
=−Ct, jπ0+

∂ (1−δ1, j)

∂δ0
≤ 0, (3.54)

where we use the fact that

∂δ1, j

∂δ0
=

− 1
2NΓ(N)

2Γ−1[N,Γ(N)δ0]
N−1e2Γ−1[N,Γ(N)δ0]/2(1+γ j )I{2Γ−1[N,Γ(N)δ0]≥0}

− 1
2NΓ(N)

2Γ−1[N,Γ(N)δ0]N−1e2Γ−1[N,Γ(N)δ0]/2I{2Γ−1[N,Γ(N)δ0]≥0}

= e2Γ−1[N,Γ(N)δ0](1/2(1+γ j )−1/2) ≥ 0. (3.55)

Therefore, we can simplify (3.53) as

max
δ0

δ0

s.t.δ M
0 ≤ α , ∏M

j=1 δ1, j ≥ β .
(3.56)

SinceQc
D,AND is a monotonically increasing function ofδ0, i.e.,Qc

D,AND =HAND(δ0)=

∏M
j=1(GAND, j(F

−1
AND(δ0))) and thus

∂Qc
D,AND
∂δ0

=
∂Qc

D,AND
∂δ1, j

∂δ1, j

∂δ0
= ∏l=M

l=1,l 6= j(δ1l )
∂δ1, j

∂δ0
≥ 0,
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we can further simplify the constraints in (3.56) asδ0 ≤ α1/M andδ1, j ≥ H−1(β ).
Thus, we obtain

max
δ0

δ0

s.t.δ0 ≤ α1/M, δ1, j ≥ H−1(β ).
(3.57)

Therefore, if the feasible set of (3.57) is not empty, then the optimal solutionis given
by δ0 = α1/M(β ).



Chapter 4

Combined Censoring and Sleeping

Abstract

In conventional distributed sensing approaches, as the detection performance
improves with the number of radios, so does the network energy consumption.
However, since cognitive radios are mostly low-power radios, the individual
energy consumption of each radio is a more critical issue than the total energy
consumption. In the previous chapters, we have introduced afixed-size cen-
soring and a truncated sequential censoring scheme in orderto minimize the
maximum average energy consumption per sensor. In this chapter, we consider
a combined sleeping and censoring scheme as an energy-efficient spectrum
sensing technique for cognitive sensor networks. Our objective is to mini-
mize the maximum energy consumption per sensor subject to constraints on
the detection performance, by optimally choosing the sleeping and censoring
design parameters. The constraint on the detection performance is given by
a minimum target probability of detection and a maximum permissible proba-
bility of false alarm. Depending on the availability of prior knowledge about
the probability of primary user presence, two cases are considered. The case
where a priori knowledge is not available defines the blind setup; otherwise
the setup is called knowledge-aided. By considering a sensor network based
on IEEE 802.15.4/ZigBee radios, we show that significant energy savings can
be achieved by the proposed scheme.

4.1 Introduction

In this chapter, we consider a distributed spectrum sensing system comprising of
a fusion center (FC) and a number of cognitive sensors that carry outsensing in
dedicated, periodic sensing slots. Energy detection is used for spectrumsensing in
this chapter. The sensing results of each cognitive radio are collected atthe FC,
which makes a global decision on the occupancy of the channel using a fusion rule.
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Schemes based on soft and hard fusion have been considered in the past [10] (the
reader is referred to [14] for an extensive treatment of distributed detection). It has
been shown in [10] that the performance of hard fusion schemes is comparable to that
of soft fusion schemes in a number of practical settings. We shall hence limitour
attention to hard decision based spectrum sensing, since the energy costof sending
one bit per decision is smaller than sending multiple bits per decision for a soft
decision scheme.

We propose a combination of sleeping and censoring as an energy savingmecha-
nism for spectrum sensing. In this scheme, when in sleep mode, each radioswitches
off its sensing transceiver and incurs no observation costs or transmission costs. Cen-
soring involves transmitting detection results only when they are in a certain infor-
mation region. Our goal is to minimize the maximum average energy incurred by the
individual cognitive radios to perform spectrum sensing while maintaining a global
detection performance by determining the optimum sleeping and censoring parame-
ters. The constraints on the detection performance are specified by a minimumtarget
probability of detection and a maximum permissible probability of false alarm. We
consider two cases based on the availability of prior knowledge about the probability
of primary user presence. For the case that the prior probabilities are not available,
a blind setup is defined. When the prior probabilities are available, a knowledge-
aided setup is described. Systematic algorithms for obtaining the optimum sleeping
and censoring parameters are proposed for both setups. We then consider a network
of IEEE 802.15.4/ZigBee radios to evaluate the efficiency of our proposed scheme.
Resulting simulation results show that large energy savings can be obtained incom-
parison to traditional spectrum sensing schemes.

4.1.1 Related works

Censoring has been considered in the context of wireless sensor networks and cog-
nitive radios [17], [19], [20], [21], [22] and shown to be effective in saving energy.
The design of censoring regions under different optimization settings related to the
detection performance has been considered in [19]-[22] for minimization of the miss
detection probability with constraints on the false alarm rate and the network energy
consumption. Further, [19], [20] and [22] consider minimization of the detection
error probability subject to the network energy consumption. The combination of
sleeping and censoring was considered in [18], with the goal of maximizing the mu-
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tual information between the state of signal occupancy and the decision stateof the
fusion center. Censoring for cognitive radios is considered in [17] where a censoring
decision rule similar to our scheme is employed to reduce the number of bits sent
to the fusion center and so the bandwidth occupancy of the cognitive radionetwork.
Our scheme is different in three ways. First, we consider a combination of sleeping
and censoring and give closed-form analytical expressions for the probability of de-
tection and false alarm. Second, we give a clear problem formulation and necessary
algorithms to solve the problem in order to design the sensing parameters whichis
not given in [17]. Third, in [17], only the knowledge-aided setup is considered for
analysis while we also consider the blind setup. Finally, the fusion center in [17]
makes no decision in case it does not receive any results from the cognitive users
which is ambiguous in the sense that the FC has to make a final decision about the
presence (or absence) of the primary user. In this chapter, if no results are reported
to the FC, we assume that the primary user is not present. A sleeping technique
is employed in [54] where the sleeping policy is controlled by learning from the
past channel observations. As shall be shown, the optimization problems resulting
from our work differ from these mentioned past works; we lay constraints on the
detection performance while the maximum average energy consumption per sensor
is minimized.

4.1.2 Organization

The remainder of the chapter is organized as follows. In Section 4.2, we describe
distributed spectrum sensing based on sleeping and censoring and formulate energy-
efficient distributed sensing as an optimization problem for the blind and knowledge-
aided setups. Expressions for the global probability of detection and false alarm are
then derived in Section 4.3. In Section 4.4, the problem is analyzed and system-
atic algorithms are proposed to solve the underlying optimization problems for both
setups. We present numerical results to show the energy savings obtained by the
proposed scheme in Section 4.6. Conclusions are drawn in Section 4.7.

4.2 System Model

The basics of the system model including the primary user signal distribution,noise,
channel gain and hypothesis definitions in this chapter are the same as the ones in
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Chapters 2 and 3, which are introduced in Section 2.3 as in (2.1). An energy detector
is employed by each cognitive sensor that calculates the accumulated energy overN
observation samples. The received energy collected over theN observation samples
at the j-th radio is given by

E j =
N

∑
i=1

|r i j |
2

σ2
w

. (4.1)

Afterwards a censoring policy is employed at each radio [19], [22]. Censoring
thresholdsλ1 andλ2 are applied at each of the radios. The rangeλ1 < E j < λ2 is
called the censoring region. At thej-th radio, the local censoring decision rule is
given as 





send 1, declaringH1 if E j ≥ λ2,

no decision ifλ1 < E j < λ2,

send 0, declaringH0 if E j ≤ λ1.

(4.2)

It is well known that under the model (4.1),Ei follows a central chi-square dis-
tribution with 2N degrees of freedom underH0 andH1, [13].

Based on the above decision rule, the local probabilities of false alarm andde-
tection can be respectively written as

Pf , j = Pr(E j ≥ λ2|H0) =
Γ(N, λ2

2 )

Γ(N)
(4.3)

and

Pd, j = Pr(E j ≥ λ2|H1) =
Γ(N, λ2

2(1+γ j )
)

Γ(N)
(4.4)

whereΓ(a,x) is the incomplete gamma function given byΓ(a,x) =
∫ ∞

x ta−1e−tdt,
with Γ(a,0) = Γ(a).

In order to achieve more energy saving, on top of censoring, a sleepingpolicy is
applied. Each sensor turns of its sensing module with a sleeping rate denotedby µ.
This way, we make sure that in average at each sensing period,(1− µ)M users are
ON. DenoteCs, j andCt, j to be the energy consumed by thej-th radio in sensing per
sample and transmission per bit, respectively. Our cost function is then given by the
average energy consumed per sensor as follows

Cj = (1−µ)(NCs, j +Ct, j(1−ρ j)), (4.5)

whereρ j = Pr(λ1 < Ei < λ2) is denoted to be the censoring rate.
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We shall assume thatµ 6= 0 andρ j 6= 0. The sensing energyCs, j constitutes the
energy consumed in listening and collecting one observation sample. The transmis-
sion energyCt, j is the energy required to transmit the one-bit local decision to the
FC.

DenoteQD andQF to be the respective global probability of detection and false
alarm. The target detection performance is then quantified by:QF ≤ α andQD ≥

β . Here,α andβ are pre-specified detection design parameters. In practice, it is
desirable to haveα close to zero andβ close to unity. These conditions respectively
ensure that the cognitive sensor network can exploit empty channels andthat primary
users are not interfered with. Our goal is to determine the optimum sleeping rate
µ and the censoring thresholdsλ1 andλ2 such that maxj Cj in (4.5) is minimized
subject to the constraintsQF ≤ α andQD ≥ β . Note thatρ j is a function ofλ1 and
λ2. Hence our optimization problem can be formulated as follows:

min
µ,λ1,λ2

maxj Cj

s.t.QF ≤ α , QD ≥ β .
(4.6)

Depending on the prior knowledge about the respective prior probabilities,π0 =

Pr(H0) andπ1 = Pr(H1), of the hypothesesH0 andH1, we consider two different
cases.

4.2.1 Blind Problem Formulation

First, we assume thatπ0 andπ1 are unknown, and thatπ1 is much smaller thanπ0,
reflecting channel under-utilization. Therefore, we assumeπ0 → 1. In this case,
we can follow the definition of [22] for the censoring rate under the blind Neyman-
Pearson (NP) setup

ρNP
j = Pr(λ1 < E j < λ2|H0).

Using (4.3), we may writeρNP
j as

ρNP
j =

Γ(N, λ1
2 )

Γ(N)
−

Γ(N, λ2
2 )

Γ(N)
. (4.7)

where we can seeρNP
1 = ρNP

2 = · · · = ρNP
M = ρNP. This way we obtainC1 = C2 =

· · · = CM = CNP DenotingQNP
D andQNP

F to be the respective global probability of
detection and false alarm under the blind setup, (4.6) becomes
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min
µ,λ1,λ2

CNP

s.t.QNP
F ≤ α , QNP

D ≥ β .
(4.8)

4.2.2 Knowledge-Aided Problem Formulation

Here, we assume thatπ0 andπ1 are known. In practice, estimates ofπ0 andπ1 can
be obtained via spectrum measurements. In this case, we can follow the definition of
[22] for the censoring rate under the knowledge-aided Bayesian (B) setup

ρB
j = Pr(λ1 < E j < λ2)

= π0Pr(λ1 < E j < λ2|H0)+π1Pr(λ1 < E j < λ2|H1)

= π0δ0, j +π1δ1, j (4.9)

whereδ0, j andδ1, j can be written using (4.3) and (4.4) as

δ0, j = Pr(λ1 < E j < λ2|H0)

=
Γ(N, λ1

2 )

Γ(N)
−

Γ(N, λ2
2 )

Γ(N)
, (4.10)

δ1, j = Pr(λ1 < E j < λ2|H1)

=
Γ(N, λ1

2(1+γ j )
)

Γ(N)
−

Γ(N, λ2
2(1+γ j )

)

Γ(N)
. (4.11)

DenoteQB
D andQB

F to be the respective global probability of detection and false
alarm under the knowledge-aided setup. Hence, our optimization problem becomes

min
µ,λ1,λ2

maxj CB
j

s.t.QB
F ≤ α , QB

D ≥ β .
(4.12)

In the following section, we derive analytically the expressions forQNP
D , QNP

F ,
QB

D andQB
F .
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4.3 Detection Performance Analysis

Each cognitive radio that is awake listens to the channel in dedicated sensing slots.
An awake cognitive radio computes the received signal energy and locally decides
on the presence or absence of the licensed system based on the decisionrule in (4.2).
If it comes up with a decision, then it sends its decision result to the FC. The FC
employs an OR rule to make the final decision denoted byDFC. That is,DFC = 1
if the FC receives at least one local decision declaring 1, elseDFC = 0. The AND
rule is discussed in Section 4.5. Let the number of awake cognitive radios beL. The
probability of false alarm for the blind setup,QNP

F can now be written as

QNP
F = Pr(DFC = 1,L ≥ 1|H0)

=
M

∑
L=1

Pr(DFC = 1,L|H0)

=
M

∑
L=1

Pr(L|H0)Pr(DFC = 1|H0,L)

=
M

∑
L=1

(

M
L

)

µM−L(1−µ)L

× Pr(DFC = 1|H0,L)

=
M

∑
L=1

(

M
L

)

µM−L(1−µ)L

× [1−
L

∏
j=1

(1−Pf , j)], (4.13)

wherePf , j is given by (4.3). In the above expression,Pr(L|H0) is the probability
that there areL cognitive radios awake conditioned on hypothesisH0. Since,Pf ,1 =

Pf ,2 = · · ·= Pf ,M = Pf , using the binomial expansion theorem, we obtain

QNP
F = 1− [1− (1−µ)Pf ]

M. (4.14)

This can be easily explained by the OR rule based global probability of falsealarm
when consideringPNP

f l =(1−µ)Pf to be the local probability of false alarm including
the censoring and sleeping policies.

The global probability of detection for the blind setup,QNP
D , can be derived in a
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similar way. We have

QNP
D = Pr(DFC = 1,L ≥ 1|H1)

=
M

∑
L=1

Pr(DFC = 1,L|H1)

=
M

∑
L=1

Pr(L|H1)Pr(DFC = 1|H1,L)

=
M

∑
L=1

(

M
L

)

µM−L(1−µ)L

× [1−
L

∏
j=1

(1−Pd, j)]

(4.15)

wherePd, j is given by (4.4). This also can be explained by the OR rule based global
probability of detection when consideringPNP

dl j = (1− µ)Pd, j to be the local proba-
bility of detection including the censoring and sleeping policies.

DenotingPB
f l = (1− µ)Pf to be the local probability of false alarm including

the censoring and sleeping policies, the global probability of false alarm for the
knowledge-aided scenario,QB

F , can be written as

QB
F = Pr(DFC = 1,L ≥ 1|H0)

= 1−
{

1−PB
f l

}M

= 1−
{

1− (1−µ)Pf
}M

, (4.16)

wherePf is given by (4.3).
DenotingPB

dl j = (1−µ)Pd, j to be the local probability of detection including the
censoring and sleeping policies, the global probability of detection for the knowledge-
aided scenario,QB

D, can be derived in a similar way. We obtain

QB
D = Pr(DFC = 1,L ≥ 1|H1) (4.17)

=
M

∑
L=1

(

M
L

)

µM−L(1−µ)L × [1−
L

∏
j=1

(1−Pd, j)]

wherePd, j is given by (4.4).
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In the following section, we analyze the optimization problems (4.8) and (4.12)
given the expressions for the constraints derived in this section and we propose an
algorithm to solve them.

4.4 Problem Analysis

In this section, first (4.12) is analyzed in order to find a systematic solution for the
system parameters, namely the sleeping rate and censoring thresholds forthe two
setups. Later we show that a modified version of the solution given for (4.12) can be
used as a solution for (4.8).

To analyze (4.12), it is more convenient to rewrite it in the following format

min
µ,λ1,λ2

max
j
(1−µ)

[
NCs, j +Ct, j(1−ρB

j )
]

s.t. 1− [1− (1−µ)Pf ]
M ≤ α (4.18)

M

∑
L=1

(

M
L

)

µM−L(1−µ)L × [1−
L

∏
j=1

(1−Pd, j)]≥ β .

Since the FC only decides for the presence of the primary user by receiving ”1”s,
sending ”0”s is not optimal in terms of energy efficiency. Therefore,λ1 = 0 is the
optimal solution of (4.18). Using this result, we can relax one of the argumentsof
the problem. Whenλ1 = 0, we obtain

1−δ0 = Pf ,

1−δ1, j = Pd, j . (4.19)

Hence, (4.18) is given by

min
µ,λ2

max
j
(1−µ)

[
NCs, j +Ct, j(π0Pf +π1Pd, j)

]

s.t. 1− [1− (1−µ)P2
f ]

M ≤ α
QB

D ≥ β . (4.20)

Since changing the order of min and max operations does not change the optimal
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solution of (4.20), we can rewrite the problem as follows

max
j

min
µ,λ2

(1−µ)
[
NCs, j +Ct, j(π0Pf +π1Pd, j)

]

s.t. 1− [1− (1−µ)P2
f ]

M ≤ α
QB

D ≥ β . (4.21)

Assume thatµ is fixed toµ∗. Then (4.21) will reduce to the following problem

max
j

min
Pf

(1−µ∗)
[
NCs, j +Ct, j(π0Pf +π1Pd, j)

]

s.t.Pf ≤
1− (1−α)1/M

(1−µ∗)

QB
D ≥ β . (4.22)

DefiningF(λ2) =
Γ(N,

λ2
2 )

Γ(N) , we can writePd asPd, j = F(λ2/(1+γ j)). Calculating

the derivative ofCB
j with respect toPf , we find that

∂CB
j

∂Pf
=(1− µ∗)

∂
[
Ct, j (π0Pf+π1Pd, j )

]

∂Pf
=

(1−µ∗)
[
Ct, jπ0+

∂Pd, j

∂Pf

]
≥ 0 where we used the fact that∂Pd, j

∂Pf
≥ 0. Therefore we can

write (4.22) as follows

min
Pf

Pf

s.t.Pf ≤
1− (1−α)1/M

(1−µ∗)

QB
D ≥ β (4.23)

Looking at (4.23) we can find that

F(G−1(β ))≤ Pf ≤ α
′
/1−µ∗ (4.24)

whereG(λ2) = QB
D and α ′

= 1− (1− α)1/M. Thus, we find that for everyµ∗,
P∗

f = F(G−1(β )). Therefore, our optimization problem reduces to the following
unconstrained line search problem

max
j

min
µ

(1−µ)
[
NCs, j +Ct, j(π0F(G−1(β ))+π1F(G−1(β )/(1+ γ j))

]
(4.25)

Looking carefully at (4.25), we find that we can use the same optimization problem
for the blind setup by consideringπ0 = 1 (π1 = 0). In other words, the blind setup is
just a special case of the knowledge-aided setup. This is the approach that we will
adopt in the simulations for both setups.
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4.5 Extension to the AND Rule

As in Chapters 2 and 3, here we analyze the performance of the combined sleeping
and censoring for the AND rule. Here, we provide the analysis for the knowledge-
aided case. The analysis for the blind problem formulation is then straightforward.
According to the AND rule,DFC = 0, if at least one cognitive radio reports a zero,
elseDFC = 1. This way, the global probabilities of false alarm and detection are as
follows

QB
F,AND = Pr(DFC = 1|H′) (4.26)

=
M

∏
j=1

[

µ +(1−µ)(δ0, j +Pf , j)
]

(4.27)

=
M

∏
j=1

[

1− (1−µ)(1−δ0, j −Pf , j)
]

, (4.28)

QB
D,AND = Pr(DFC = 1|H1) (4.29)

=
M

∏
j=1

[

µ +(1−µ)(δ1, j +Pd, j)
]

(4.30)

=
M

∏
j=1

[

1− (1−µ)(1−δ1, j −Pd, j)
]

. (4.31)

SincePf 1 = Pf 2 = · · · = Pf M = Pf andδ01 = δ02 = · · · = δ0M = δ0 the global
probability of false alarm becomes

QB
F,AND =

[

µ +(1−µ)(δ0+Pf )
]M

(4.32)

=
[

1− (1−µ)(1−δ0−Pf )
]M

(4.33)

We define our problem in order to find the underlying arguments (λ1,λ2,µ),
so as to minimize the maximum average energy consumption per sensor subject
to a constraint on the probabilities of false alarm and detection. As in the previous
scenarios, the constraints on the probabilities of false alarm and detection are defined
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by an upper boundα and a lower boundβ respectively. This way, the problem is
written as follows

min
µ,λ1,λ2

maxj CB
j

s.t.QB
F,AND ≤ α , QB

D,AND ≥ β .
(4.34)

Since, the FC decides forH0 only by receiving zeros, the optimal solution of
(4.34) is attained byλ2 → ∞. This way, the global probabilities of false alarm and
detection reduce to

QB
F,AND =

[

1− (1−µ)(1−δ0)
]M

, (4.35)

QB
D,AND =

M

∏
j=1

[

1− (1−µ)(1−δ1, j)
]

. (4.36)

Inserting (4.35) and (4.36) in (4.34) and relaxingλ2 using the fact thatλ2 → ∞
is optimal, we obtain

min
µ,λ1

maxj(1−µ)(NCs, j +Ct, j(1−ρB
j ))

s.t.
[

1− (1−µ)(1−δ0)
]M

≤ α , ∏M
j=1

[

1− (1−µ)(1−δ1, j)
]

≥ β ,
(4.37)

whereρB
j = π0δ0+π1δ1, j . Since there is a one-to-one relation betweenλ1 andδ0,

we can rewrite (4.37) as follows

min
µ,δ0

maxj(1−µ)(NCs, j +Ct, j(1−π0δ0+π1δ1, j))

s.t.
[

1− (1−µ)(1−δ0)
]M

≤ α , ∏M
j=1

[

1− (1−µ)(1−δ1, j)
]

≥ β ,
(4.38)

For a givenµ = µ∗, (4.38) becomes

min
δ0

maxj(1−µ∗)(NCs, j +Ct, j(1−π0δ0+π1δ1, j))

s.t.
[

1− (1−µ∗)(1−δ0)
]M

≤ α , ∏M
j=1

[

1− (1−µ∗)(1−δ1, j)
]

≥ β .
(4.39)

Sinceδ1, j is a monotone increasing function ofδ0, the optimal solution of (4.39)
is obtained by solving the following problem
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max
δ0

δ0

s.t.
[

1− (1−µ∗)(1−δ0)
]M

≤ α , ∏M
j=1

[

1− (1−µ∗)(1−δ1, j)
]

≥ β .
(4.40)

Therefore, if the feasible set of (4.40) is not empty, then the maximumδ0 in this
feasible set, determines the optimalδ0. From the first constraint in (4.40), we find
δ0 ≤ 1− 1−α1/M

1−µ∗ . AssumingQB
D,AND = G(µ ,δ0), we have∂G(µ,δ0)

∂δ0
= ∂G(µ,δ0)

∂δ1, j

∂δ1, j

∂0
≥

0, where we used the fact that∂G(µ,δ0)
∂δ1, j

≥ 0. This way, from the second constraint

in (4.40), we obtainδ0 ≥ G−1(µ∗,β ), where the inverse function is defined over the
second argument inG(µ ,δ0). Based on this discussion, (4.40) reduces to

max
δ0

δ0

s.t.G−1(µ∗,β )≤ δ0 ≤ 1− 1−α1/M

1−µ∗ .
(4.41)

Therefore, if the feasible set of (4.41) is not empty then the optimalδ0 is obtained
by δ0 = 1− 1−α1/M

1−µ∗ . Inserting the optimalδ0 for a givenµ in (4.38), we obtain the
following line search problem in order to determine the optimalµ and consequently
δ0 andλ1.

min
µ

maxj(1−µ)(NCs, j +Ct, j(1−π0(1− 1−α1/M

1−µ )−π1Fj,AND(1− 1−α1/M

1−µ )))

(4.42)
whereFj,AND(δ0) = δ1, j(δ0). In search for the optimalµ, we should note thatµ ≤

α1/M which comes from the fact that 1− 1−α1/M

1−µ ≥ 0 and alsoG(µ ,1− 1−α1/M

1−µ )≥ β .

4.6 Numerical Results

4.6.1 Case Study for IEEE 802.15.4/ZigBee

Here, a case study is considered in order to verify the performance of the proposed
combined sleeping and censoring scheme. A Chipcon CC2420 transceiver based
on the IEEE 802.15.4/ZigBee standard [48] is considered to compute the energy
consumption in sensing and transmission. This low-power radio with a data rate
upto 250 Kbps is aimed to work as a wireless personal area network up to ranges of
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100 m. Our cognitive sensor network comprises of such radios arranged in a circular
field with a radius of 70 m, uniformly distributed along the circumference with the
FC located in the center. We model the wireless channel between the cognitive
sensor and the FC using a free-space path loss model. This means that the signal
power attenuation is inversely proportional to the square of the distanced between
the transmitter and receiver.

The energy consumption analysis that is presented here is based on the transceiver
model developed in [49]. The sensing energy for each decision consists of two parts:
the energy consumption involved in listening over the channel and making the deci-
sion and the energy consumption of the signal processing part for modulation, signal
shaping, etc. The former contribution depends on the number of samples taken dur-
ing the detection time. We chooseN = 5, corresponding to a detection time of 1
µs. Considering the fact that the typical circuit power consumption of ZigBee is
approximately 40 mW, the energy consumed for listening is approximately 40 nJ.
The processing energy related to the signal processing part in the transmit mode for
a data rate of 250 kbps, a voltage of 2.1 V, and current of 17.4 mA is approximately
150 nJ/bit. Since we use one bit per decision, the sensing energy of eachcognitive
sensor isCs = 190 nJ [24], [25].

The transmitter dissipates energy to run the radio electronics and the power am-
plifier. Following the model in [49] and [50], to transmit one bit over a distance d,
the radio spends:

Ct(d) =Ct−elec+eampd
2 (4.43)

whereCt−elec is the transmitter electronics energy andeamp is the amplification re-
quired to satisfy a given receiver sensitivity level. Assuming a data rate of250 kbps
and a transmit power of 20 mW,Ct−elec= 80 nJ. Theeamp to satisfy a receiver sen-
sitivity of -90 dBm at an SNR of 10 dB is 40.4 pJ/m2 [24], [25].

Two sets of values were chosen for the a priori probabilities:π0 = 0.2,π1 = 0.8
andπ0 = 0.8,π1 = 0.2. In Fig. 4.1, we show the optimal maximum average energy
consumption per sensor for different values of the probability of detection constraint,
β . Here,M = 5, SNR= 10 dB andα = 0.1. As is clear, a combined sleeping and
censoring scheme consumes less than half the energy as would be consumed if a
distributed spectrum sensing such as in [10] were employed. Furthermore,we see
that whenπ0 is much higher thanπ1, the blind setup gives a performance close to
the one of the knowledge-aided setup.
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Figure 4.1: Comparison of energy consumption for different setups.

In Fig. 4.2, we show the optimal maximum average energy consumption per
sensor as the number of cognitive sensors in the network is increased. Here,α = 0.1
andβ = 0.9. Without sleeping or censoring, the maximum energy consumption per
sensor scales linearly with the number of cognitive sensors. However witha sleeping
and censoring scheme, the optimal maximum energy consumption reduces as the
number of cognitive radios increases. Again, it is shown that the blind setup gives a
lower bound of the system energy consumption for a certain detection performance.

Fig. 4.3 shows the optimal censoring and sleeping rate for different values of
the probability of detection constraintβ andα = 0.1. Since the sensing energy of a
ZigBee network is much higher than its transmission energy, the optimal value for
the sleeping rate is attained atµmax for different values ofβ . That is why in Fig. 4.3,
the sleeping rate is shown to have the same value for different a priori probabilities
π0 andπ1 as well as for the blind setup. However, it is shown that the censoring
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Figure 4.2: Energy scaling with number of cognitive sensors for different setups.

rate changes with the a priori probabilities. It is clear that the optimal censoring rate
increases withπ0 and is the largest for the blind setup (π0 = 1).

In Fig. 4.4, we finally show how the optimal censoring and sleeping rates change
with respect to the number of users forα = 0.1 andβ = 0.9. For this figure, the blind
setup is used for the simulations. It is shown that as the number of users increases,
the optimal sleeping rate increases dramatically in order to keep the system energy
consumption as stable as possible. However, the optimal censoring rate saturates
after a limited number of users.

4.6.2 Performance comparison of the OR and AND rules

A performance comparison of the OR and AND rules is considered in this sec-
tion. Unless mentioned otherwise, the setup is the same as the case study for IEEE
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Figure 4.3: Optimal censoring and sleeping rate for different setups

802.15.4/ZigBee. In all the simulations, the number of cognitive radios isM = 5, the
number of samples isN = 5 and the SNR isγ = 10 dB.

In Figures 4.5, 4.6 and 4.7, the optimal average energy consumption per sensor
is depicted versus the probability of primary user absence,π0. In these figures,
the probability of false alarm constraintα = 0.1, and the probability of detection
constraintβ = 0.9,0.99, and 0.8 respectively, in Figures 4.5, 4.6 and 4.7. We can
see, asπ0 increases, the average energy consumption per sensor reduces forthe OR
rule, while for the AND rule, it increases. The reason is that, in the lower values ofπ0

for the OR rule, on average, a higher number of transmissions occur compared to the
higher values ofπ0, because the FC in the case of the OR rule only receives 1s from
the users. In contrast to the OR rule, for the AND rule, the probability that cognitive
users transmit their results to the FC increases by increasingπ0, since the probability
of sending 0s to the FC increases. Therefore, the average energy consumption per
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Figure 4.4: Optimal censoring and sleeping rate with number of cognitive radios for the
blind setup

sensor decreases and increases withπ0, for the OR and AND rules, respectively.

Further, in Fig. 4.5, an interesting behavior in optimal average energy consump-
tion per sensor is shown withπ0. We can see that forπ0 < 0.5, the AND rule out-
performs the OR rule, while forπ0 > 0.5, it is vice versa, and forπ0 = 0.5, both
rules almost behave the same. The same behavior can be shown to happen when
α +β = 1. We can see in Figures 4.6 and 4.7, that with increasing or decreasingβ ,
the crossing point where the OR rule starts to outperform the AND rule movesto the
right or the left ofπ0 = 0.5.

Figures 4.8 and 4.9 show the optimal average energy consumption per sensor ver-
sus the transmission energy as the distance between cognitive radios changes from
0 to 70 m for ZigBee. In other words, these figures depict the performance of the
combined censoring and sleeping scheme as the ratioCs/Ct decreases for the OR
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Figure 4.5: Optimal average energy consumption per sensor versus the probability of pri-
mary user absence forα = 0.1 andβ = 0.9

and the AND rules. The other parameters in these figures areα = 0.1, β = 0.99,
π0 = 0.2 for Fig. 4.8,π0 = 0.8 for Fig. 4.9,M = 5, N = 5 andγ = 10 dB. We can
see that in Fig. 4.8 where the probability that the sensors send a 0 to the FC for the
AND rule is low compared to the case of sending 1s for the OR rule, the AND rule
outperforms the OR rule significantly.

In contrast to the case in Fig. 4.8, in Fig. 4.9, the probability of primary user
absence isπ0 = 0.8 and therefore the probability of sending 0s to the FC for the
AND rule is much higher compared to the scenario in Fig. 4.8 and thus, by increasing
the transmission energy,Ct , the average energy consumption per sensor increases
dramatically for the AND rule and after a certainCt , the performance of the AND
rule becomes lower than the one for the OR rule in terms of energy efficiency.

In Fig. 4.10, the optimal average energy consumption per sensor is depicted ver-
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Figure 4.6: Optimal average energy consumption per sensor versus the probability of pri-
mary user absence forα = 0.1 andβ = 0.99

sus the sensing energyCs for π0 = 0.2 andπ0 = 0.8, in order to compare the per-
formance of the OR and the AND rules. In this figure,M = 5, N = 5, γ = 10 dB,
α = 0.1 andβ = 0.99, but unlike previous scenarios, a general radio technology is
assumed whereCt = 1 andCs changes from 0 to 10. We can see that the AND rule
outperforms the OR rule asCs increases, which is a similar behavior as the ones in
Figures 4.8 and 4.9. Therefore, for the constraints considered in this figure, the AND
rule seems a better choice compared to the OR rule, particularly when the sensing
energy is much higher compared to the transmission energy. However, as we have
seen in the previous figures, the value ofπ0 plays a big role in determining the opti-
mal rule whenα = 0.1 andβ = 0.9. These constraints are basically defined as the
cognitive radio system requirements by the current standards. For these values, as
we observe this section, the OR rule is optimal forπ0 > 0.5 while the AND rule is
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Figure 4.7: Optimal average energy consumption per sensor versus the probability of pri-
mary user absence forα = 0.1 andβ = 0.8

optimal forπ0 < 0.5.

4.7 Summary and conclusions

We presented an energy-efficient distributed spectrum sensing technique based on
the combination of censoring and sleeping policies. Depending on the knowledge
of the a priori probability of primary user presence, a Neyman-Pearson(blind setup)
and Bayesian (knowledge-aided setup) formulation was obtained with the goal of
minimizing the maximum average energy consumption per sensor subject to a global
detection performance constraint for the OR and the AND rules. We then derived
analytical expressions for the global probabilities of detection and false alarm for
each setup and each rule. In seeking a systematic solution for the obtained optimiza-
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Figure 4.8: Optimal average energy consumption per sensor versus the transmission energy
with α = 0.1, β = 0.99, Cs = 190nJ andπ0 = 0.2

tion problems, we showed that the resulting optimization problem can be reduced to
a line search problem for both setups and both rules.

We considered a case study with IEEE 802.15.4/ZigBee radios for numerical
results. It was shown that the average energy consumption per sensoris reduced
significantly. We further compared the performance of the OR and the AND rule in
terms of energy efficiency. It was shown that as the ratio between sensing energy and
transmission energy increases, the AND rule can perform much better thanthe OR
rule for some specific detection performances. However, depending onthe probabil-
ity of a primary user being absent, the sensing energy, the transmission energy and
the detection performance constraint, sometimes the OR rule preforms better than
the AND rule, particularly when the probability of primary user absence is high and
sensing and transmission energies are either comparable or the transmissionenergy
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Figure 4.9: Optimal average energy consumption per sensor versus the transmission energy
with α = 0.1, β = 0.99, Cs = 190nJ andπ0 = 0.8

is higher than the sensing energy. For desired constraints in cognitive radio system,
the OR rule performs better than the AND rule forπ0 > 0.5 while the AND rule
performs better than the OR rule forπ0 < 0.5.
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Figure 4.10: Optimal average energy consumption per sensor versus the sensing energy with
α = 0.1, β = 0.99, Ct = 1



Chapter 5

Optimization Hard Fusion Strategies

Abstract

The detection reliability of a cognitive radio network improves by employing
a cooperative spectrum sensing scheme. However, increasing the number of
cognitive radios entails a growth in the cooperation overhead of the system.
Such an overhead leads to a throughput degradation of the cognitive network.
Since current cognitive radio networks consist of low-power radios, the en-
ergy consumption is another critical issue. In the previouschapters, we have
optimized the average energy consumption per sensor subject to certain detec-
tion performance constraints for the OR and the AND rules. Inthis chapter,
throughput optimization of the hard fusion based sensing using the K-out-of-M
rule is considered. We maximize the throughput of the cognitive radio network
subject to a constraint on the probability of detection and energy consumption
per cognitive radio in order to derive the optimal number of users, the optimal
K and the best probability of false alarm. The simulation results based on the
IEEE 802.15.4/ZigBee standard, show that the majority ruleis either optimal
or almost optimal in terms of the network throughput.

5.1 Introduction

In this chapter, we consider a cognitive radio network where each cognitive user
senses a specific frequency band in a fixed sample size detection period and makes
a local decision about the primary user presence. The results are then sent to a
fusion center (FC) in consecutive time slots by employing a time-division-multiple-
access (TDMA) approach. The final decision is made at the FC. Although, several
fusion schemes have been proposed in literature [14],[33], we consider a hard fusion
scheme due to its improved energy and bandwidth efficiency. Among them, the
OR and AND rules have been studied extensively in literature. The OR and AND
rules are special cases of the more generalK-out-of-M rule with K = 1 andK = M,
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respectively. In aK-out-of-M rule, the FC decides the target presence, if at leastK
out ofM sensors report to the FC that a target is present [14].

Optimization of theK-out-of-M rule based spectrum sensing is considered in
this chapter. The optimalK and optimalM is derived for a throughput optimization
setup. The sensing time of the individual cognitive radios is given but the reporting
time which is directly related to the number of cognitive users is unknown.

The throughput of the cognitive radio network is maximized subject to a con-
straint on the global probability of detection and energy consumption per cognitive
radio in order to determine the optimal number of cognitive usersM andK. It is
shown that the underlying problem can be solved by a bounded two-dimensional
search. As we will discuss later, the reporting time of the cognitive radio system is
directly proportional toM and thus by deriving the optimalM, the reporting time is
also optimized.

5.1.1 Related works

Cooperative spectrum sensing optimization is studied extensively in the literature.
The sensing-throughput trade-off is studied in [55], [56]. The optimalsensing time
is determined by maximizing the cognitive radio throughput subject to the probabil-
ity of detection constraint in [55]. An extended version of [55] includingK as an
argument of optimization is discussed in [56]. This chapter is different from [56],
in the sense that in our throughput optimization setup with a given sensing time,
the combined optimization of the reporting time andK is discussed, and further the
energy consumption per cognitive radio is included as an additional constraint in
this chapter. [57] depicts an optimal spectrum sensing scheme where the sensing
efficiency of a cognitive radio network is maximized subject to an interference con-
straint. The sensing efficiency is defined as the transmission time divided by the
total cognitive radio time frame. However, this work also ignored the effectof the
reporting time on the sensing efficiency of the cognitive radio network.

The reporting time optimization is studied in [58], [59]. [58] optimizes the cog-
nitive radio network throughput subject to a detection probability constraint in order
to find the optimal sensing and reporting time. An extension of [58] to a general K-
out-of-M rule based spectrum sensing is considered by us in [59]. The difference is
that in [59] and this chapter, the sensing time is assumed to be given. In this chapter,
a combined optimization ofM andK is given while optimization ofK is ignored
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in [58] and [59]. In contrast to [59], we include a constraint on the energy con-
sumption per cognitive radio in this chapter. As shall be shown in Section 5.3,this
additional constraint requires new algorithms to solve the problem. [65] considers
the optimization of the cognitive radio network energy efficiency. Energy efficiency
is defined as the ratio of the average network throughput over the average network
energy consumption. Optimization of the energy efficiency is considered for two
cases. In the former case, energy efficiency is optimized in order to findK and in
the latter case, the sensing threshold at the energy detector is derived byoptimizing
the energy efficiency. However, the combined optimization ofK, M as well as the
sensing threshold is not considered. Further, no typical performance constraint is
considered for the optimization problem such as the probability of detection which
is inherent in a cognitive radio design technique.

5.1.2 Organization

The remainder of this chapter is organized as follows. The considered cooperative
sensing configuration and its underlying system model are presented in Section 5.2.
The problem formulation is discussed and analyzed in Section 5.3. We depictsome
numerical results based on the IEEE 802.15.4/ZigBee standard in Section 5.4and
draw our conclusions in Section 5.5.

5.2 System Model

We consider a network withM identical cognitive radios under a cooperative spec-
trum sensing scheme. Each cognitive radio senses the spectrum periodically and
makes a local decision about the presence of the primary user based on itsown ob-
servations. To avoid any false detections of the secondary users instead of a primary
user, the secondary users are silent during the sensing period. The local decisions
are to be sent to the FC in consecutive time slots based on a TDMA scheme. The
FC employs a hard decision fusion scheme over a soft fusion one due to its higher
energy and bandwidth efficiency along with a reliable detection performance that is
asymptotically similar to that of a soft fusion scheme [10].

To make local decisions about the presence or absence of a primary user, each
cognitive radio solves a binary hypothesis testing problem, by choosingH1 in case
the primary user is present andH0 when the primary user is absent. Denotingr i
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as thei-th sample received by the cognitive radio,wi as the noise andsi as the pri-
mary user signal, the hypothesis testing problem can be represented by thefollowing
model,

H0 : r i = wi , i = 1, . . . ,N

H1 : r i = si +wi , i = 1, . . . ,N
(5.1)

where the noise and the signal are assumed to be i.i.d. Gaussian random processes
with zero mean and varianceσ2

w andσ2
s , respectively, and the received signal-to-

noise-ratio (SNR) is denoted byγ = σ2
s

σ2
w
.

Each cognitive radio employs an energy detector in which the accumulated en-
ergy ofN observation samples is compared with a predetermined threshold denoted
by λ as follows

E =
N

∑
i=1

|r i |
2

H1

R
H0

λ . (5.2)

For a large number of samples we can employ the central limit theorem, and the
decision statistic is distributed as [10]

H0 : E ∼ N (Nσ2
w,2Nσ4

w),

H1 : E ∼ N (N(σ2
w+σ2

s ),2N(σ2
w+σ2

s )
2).

(5.3)

DenotingPf andPd as the respective local probabilities of false alarm and detec-
tion, Pf = Pr(E ≥ λ |H0) andPd = Pr(E ≥ λ |H1) are given by

Pf = Q

(

λ −Nσ2
w

√

2Nσ4
w

)

, Pd = Q

(

λ −N(σ2
w+σ2

s )
√

2N(σ2
w+σ2

s )
2

)

. (5.4)

The reported local decisions are combined at the FC and the final decisionre-
garding the presence or absence of the primary user is made according to acertain
fusion rule. Several fusion schemes have been discussed in literature [33]. Due to its
simplicity in implementation, lower overhead and energy consumption, we employ
a K-out-of-M rule to combine the local binary decisions sent to the FC. Thus, the
resulting binary hypothesis testing problem at the FC is given by,I = ∑M

i=1Di < K
for H0 and I = ∑M

i=1Di ≥ K for H1, whereDi is the binary local decision of the
i-th cognitive radio which takes the binary value ‘0’ if the local decision supports
the absence of the primary user and ‘1’ for the presence of the primary user. For
the sake of analytical simplicity, we assume that all the cognitive radios experience
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the same SNR and each cognitive radio employs an identical thresholdλ to make
the decision. Such an assumption on the SNR is a valid assumption when the SNR
difference is less than 1 dB [51]. This way, the global probability of falsealarm (QF)
and detection (QD) at the FC are given by

QD =
M

∑
i=K

(
M
i

)

Pi
d(1−Pd)

M−i ,

QF =
M

∑
i=K

(
M
i

)

Pi
f (1−Pf )

M−i .

(5.5)

We can rewrite (5.5) using the binomial theorem as follows,

QF = 1−ψ(K−1,Pf ,M)

QD = 1−ψ(K−1,Pd,M)
(5.6)

whereψ is the regularized incomplete beta function as follows,

ψ(K, p,n) = I1−p(n−K,K+1)

= (n− K)

(
n
K

)∫ 1−p

0
tn−K−1(1− t)K dt

DenotingPx as the local probability of detection or false alarm andQx as the
global probability of detection or false alarm, we can definePx = ψ−1(K,1−Qx,M)

as the inverse function ofψ in the second variable.

Each cognitive radio employs periodic time frames of lengthT for sensing and
transmission. The time frame for each cognitive radio is shown in Fig. 5.1. Each
frame comprises two parts namely a sensing time required for observation andde-
cision making and a transmission time denoted byTx for transmission in case the
primary user is absent. The sensing time can be further divided into a time required
for energy accumulation and local decision making denoted byTs and a reporting
time where cognitive radios send their local decisions to the FC. Here, we employ
a TDMA based approach for reporting the local decision to the FC. This way, we
avoid collisions among the reported data from the cognitive radios. Hence,denoting
Tr as the required time for each cognitive radio to report its result, the total reporting
time for a network withM cognitive radios isMTr .
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Figure 5.1: Cognitive radio time frame

Considering the above structure of a cognitive radio time frame, we define the
throughput of the cognitive radio network,RCR, by

RCR =π0

(
T −Ts−MTr

T

)

(1−QF)C0Pr(success|H0)

+π1

(
T −Ts−MTr

T

)

(1−QD)C1Pr(success|H1) (5.7)

whereC0 andC1 are the cognitive radio capacity underH0 andH1, respectively,
π0 = Pr(H0), π1 = Pr(H1) andPr(success|Hi), i = 0,1 is the probability that the
cognitive radio can successfully send its data to the cognitive receiver upon the de-
tection of a spectrum hole or miss detection of a primary user. Upon the correct
detection of a spectrum hole, since the whole bandwidth is free for the cognitive ra-
dio, Pr(success|H0)→ 1, but in case of miss detection of a primary user, since the
bandwidth is almost occupied completely by the primary user,Pr(success|H1)→ 0.
This way, the second part ofRCR is negligible. Therefore, in this chapter, after nor-
malizing with π0 andC0, the first part ofRCR denoted byR is considered as the
throughput of the cognitive radio network and is given by

R=

(
T −Ts−MTr

T

)

(1−QF). (5.8)

The energy consumption of each cognitive radio is another critical elementin
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a low-power cognitive radio network. DenotingPs and Pt to be the sensing and
transmission power respectively, the average energy consumption at each cognitive
radio,E, is defined as follows

E =PsTs+PtTr +π0(1−QF)Pt(T−Ts−MTr)+π1(1−QD)Pt(T−Ts−MTr). (5.9)

Note that here we assume that the transmission power to report the results to the FC
and the data transmission power are the same. This assumption is particularly valid
in situations where the FC is the data receiver as well or the transmission power of
the cognitive transmitter is constant.

In the following section, a throughput optimization setup is considered to op-
timize theK-out-of-M rule based spectrum sensing subject to a constraint on the
probability of detection and average energy consumption per cognitive radio.

5.3 Analysis and Problem Formulation

The cooperative sensing performance improves with the number of cognitive users.
However, a larger number of cooperating users leads to a higher reporting time and
hence a lower network throughput. Further, in a low-power cognitive radio network,
the energy consumption of each cognitive radio is constrained. Therefore, it is de-
sirable to find the optimal number of users and fusion rule that satisfies a certain
detection performance and energy consumption by optimizing the cognitive radio
network throughput. The cognitive radio throughput depends on the specific choice
of the K-out-of-M rule. In this section, we consider a setup where the network
throughput is maximized subject to a constraint on the probability of detection and
energy consumption per cognitive radio to find the system parameters including the
number of users, the optimalK-out-of-M rule and the probability of false alarm.

The sensing-throughput trade-off has been extensively studied in literature, e.g.[55,
56, 57]. However, the combined reporting time andK-out-of-M rule optimization
attracted less attention while it is a critical factor in the cognitive radio throughput.
Reducing the reporting time leads to an increase in the throughput of the cognitive
radio network. In a TDMA based scheme, the reporting time directly corresponds to
the number of cognitive radios. As such,M becomes an argument of the optimization
in the following discussions. Here, we fix the sensing time,Ts, and focus on optimiz-
ing the reporting timeMTr whereTr =

1
Rb

, with Rb the cognitive radio transmission



104 Optimization Hard Fusion Strategies

bit rate. The other important factor is the parameterK in theK-out-of-M rule. For a
givenM, it is shown that different values ofK lead to different throughputs. Thus,
the optimization ofK along withM is an important issue in cognitive network de-
sign. Naturally, also the local sensing threshold,λ , which is related to the local
probability of false alarm,Pf , is part of the optimization problem. Avoiding harm-
ful interference to the primary user is one of the requirements of a cognitive radio
network. Cognitive radios interfere with the primary user if they miss the detection
of the primary user. Therefore, it is desirable that the probability of detection is
lower bounded. Finally, most cognitive radio networks consist of low-power radios.
Hence, the energy consumption of each cognitive radio should also be constrained.
To summarize, we define our problem as an optimization of the network throughput
overK, M andPf (or λ ) subject to the constraint on the probability of detection and
average energy consumption per cognitive radio as follows:

max
M,K,Pf

(
T −Ts−MTr

T

)

(1−QF)

s.t. QD ≥ β

1≤ M ≤

⌊
T −Ts

Tr

⌋

1≤ K ≤ M

E ≤ Emax

(5.10)

whereE is defined in (5.9) andEmax is the energy constraint.

For a givenM andK, the optimization problem reduces to

max
Pf

(1−QF)

s.t. QD ≥ β
E ≤ Emax

(5.11)

which can be further simplified to

min
Pf

QF

s.t.Pd ≥ ψ−1(K−1,1−β ,M)

E ≤ Emax



5.4. Numerical Results 105

and is equivalent to finding the minimumPf in the feasible set of the problem. Since
the probability of false alarm grows with the probability of detection, the minimum
Pf considering the probability of detection constraint is thePf that satisfiesPd =

ψ−1(K−1,1−β ,M). In this case,Pf is given by

Pf = Q

(

Nσ2
s +Q−1(ψ−1(K−1,1−β ,M))

√

2M(σ2
s +σ2

w)
2

√

2Mσ4
w

)

(5.12)

SinceQF andQD increase asPf grows,E decreases withPf . Therefore, from the
energy viewpoint, the probability of false alarm is desired to be as high as possible.
The minimumPf in this case is the one that satisfiesE = Emax. DenotingPf (β ) as
thePf that satisfiesPd = ψ−1(K −1,1−β ,M) andPf (Emax) as thePf that satisfies
E = Emax, the optimalPf denoted byP̃f is P̃f = max{Pf (β ),Pf (Emax)}.

InsertingP̃f in (5.10) for a givenK, we obtain a line search optimization problem
as follows

max
M

(
T −Ts−MTr

T

)

(1− Q̃f )

s.t. 1≤ M ≤

⌊
T −Ts

Tr

⌋ (5.13)

whereQ̃f = 1−ψ(K −1, P̃f ,M). Similarly insertingP̃f in (5.10) for a givenM, we
obtain a line search optimization problem as follows

max
K

(
T −Ts−MTr

T

)

(1− Q̃f )

s.t. 1≤ K ≤ M

(5.14)

Since bothM andK are bounded, a two-dimensional search utilizing (5.10) can
be carried out if bothM andK are unknown. Further, employing (5.13) and (5.14),
an alternating optimization algorithm is possible that in general converges faster than
a two-dimensional search, but is suboptimal.

5.4 Numerical Results

A cognitive radio network with several secondary users is consideredfor the simula-
tions. A Chipcon CC2420 transceiver based on the IEEE 802.15.4/ZigBeestandard
is considered to compute the sensing and transmission power as well as the data rate
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[24]. Our cognitive radio network comprises of such radios arrangedin a circular
field with a radius of 70 m. This way, the data rate isRb = 250 Kbps, the sensing
power isPs= 2.1V × 17.4mA and the transmission power isPt = 20 mW [24]. Each
cognitive radio accumulatesN = 275 observation samples in the energy detector to
make a local decision. In [52], it is shown that forN ≥ 250, the normal approxima-
tion of the calculated energy underH0 andH1 performs close to the real values. The
received SNR at each cognitive user is assumed to beγ =−7dB. Unless mentioned
otherwise, we takeT = 105µsec,Ts = 45 µsec andTr = 1/Rb = 4 µsec. The con-
straints are defined so as to satisfy the current cognitive radio standardrequirements
[66].

Fig. 5.2 depicts the optimal throughput versusEmax for β = 0.9,0.95 andπ0 =

π1 = 0.5. Note that sinceTs is given, here the throughput is normalized with respect
to T −Ts instead ofT. We can see that asEmax increases, the optimal throughput
increases up to a certain point. After this point the optimal throughput becomes
saturated. The reason is that asEmax increases, for a givenM and K, Pf (Emax)

decreases up to a point after which max{Pf (β ),Pf (Emax)}= Pf (β ) and the optimal
point becomes independent fromEmax. Asβ increases,Pf (β ) also increases, thus the
turning point where max{Pf (β ),Pf (Emax)} changes fromPf (Emax) to Pf (β ) occurs
for a lowerEmax.

In Fig. 5.3, the optimal throughput versus the probability of detection con-
straint,β , is considered for different values ofπ0 andEmax. In this figure,El ,max

andEu,max denote the lower and upper bounds on theEmax for the considered range
of β . For example, in caseπ0 = 0.2, for Emax less than 1970 nJ, the feasible set of
(5.10) is empty and forEmax more than 2100 nJ, the optimal throughput does not
increase anymore. It is depicted that asπ0 increases,El ,max increases as well. As-
sume that for a certainπ0, Emax, M andK, we defineβ = Pf (Emax) and we chose
β as the probability of false alarm of the system. We keep all the parameters the
same and only increase theπ0. Since in a cognitive radio system,QF ≪ QD, we
obtain (1−QF)Pt(T −Ts−MTr) ≫ (1−QD)Pt(T −Ts−MTr). Therefore, by in-
creasingπ0, we increase the larger term more than that we decrease the smaller
term and soE increases and passesEmax. That is why we need to increaseEl ,max

in order to make (5.10) feasible for a higherπ0. Furthermore, we can see that as
β decreases, the optimal throughput increases up to a certain point after which the
optimal throughput saturates to a certain level. With a similar explanation as given



5.4. Numerical Results 107

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280 2300
0.75

0.8

0.85

0.9

0.95

1

 

 

E
max

 [nJ]

N
o

rm
a

li
z
e

d
 m

a
x
im

u
m

 t
h

ro
u

g
h

p
u

t

β = 0.9
β = 0.95

Figure 5.2: Optimal throughput versusEmax

for Fig. 5.2, for the highest feasibleβ in the rangeEl ,max≤ Emax≤ Eu,max, we have
max{Pf (β ),Pf (Emax)}= Pf (β ). As β decreases,Pf (β ) also decreases and thus the
optimal throughput increases up to the point where max{Pf (β ),Pf (Emax)} becomes
Pf (Emax). After that point, the optimal throughput becomes independent fromβ .

Fig. 5.4 depicts the throughput versus the number of cognitive users andK for
a detection constraint equal toβ = 0.97, Emax= 2300 nJ andπ0 = 0.5. It is shown
that the optimal throughput is a quasi-concave function ofM andK and thus there is
a unique optimal point. The mathematical investigation of quasi-concavity is subject
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Figure 5.3: Optimal throughput versus probability of detection constraint

of future work. Further, it is evident that the choice ofM andK has a dramatic impact
on the cognitive network throughput.

In Fig. 5.5, the optimalM andK are depicted versus the probability of detection
constraint. In this figure,T = 0.5 msec andEmax=6500 nJ. It is shown that for the
desired range of the detection rate constraint, the majority rule is either optimal or
nearly optimal.

Fig. 5.6 depicts the optimalM andK versusEmax. In this figure,T = 0.5 msec
andβ = 0.95. We can see that similar to the previous scenario, the majority rule is
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Figure 5.4: Throughput versusM andK

optimal.

5.5 Summary and conclusions

In this chapter, the network throughput is maximized subject to a detection rateand
energy constraint in order to find the optimal reporting time,K and probability of
false alarm. We have shown that the problem can be solved by a bounded two-
dimensional search. It is also shown that as the energy constraint reduces, the optimal
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throughput also reduces while reducing the probability of detection constraint for the
same energy constraint leads to a higher throughput. Furthermore, we have shown
that in the desired range of the probability of detection constraint, the majority rule
is either optimal or nearly optimal in terms of the cognitive network throughput.
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Chapter 6

Conclusions and Future Works

In this chapter, we draw the conclusions and review the main achieved results of
Chapters 2, 3, 4 and 5. We further propose some ideas for future works.

6.1 Chapters 2, 3 and 4

In this thesis, the problem of energy-efficiency for spectrum sensing incognitive
radio networks was considered. A cognitive radio network was definedas a set
of M cognitive radios which receive conditionally independent observationsfrom a
primary user and cooperatively decide about the presence or absence of the primary
user by making a final decision at the fusion center (FC) based on the received local
decisions of each sensor at the FC. It was elaborated that in this process, each user
spends energy on sensing as well as transmitting the local decision to the FC.

In Chapters 2, 3 and 4, we developed three techniques in order to minimize the
maximum average energy consumption per sensor. Denotingφ as the set of parame-
ters defining the associated sensing policy,Cj(φ) as the average energy consumption
of the j-th cognitive radio which employsφ as sensing parameters,QD(φ) as the
global probability of detection andQF(φ) as the probability of false alarm, we de-
fined our problem as follows

min
φ

max
j

Cj(φ)

QF(φ)≤ α
QD(φ)≥ β

It was elaborated that the lower bound (β ) on the probability of detection, rep-
resents an upper bound on the amount of interference made to the primary user, and
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the upper bound (α) on the probability of false alarm, represents a lower bound on
the cognitive network throughput.

In Chapter 2, a fixed-size censoring scheme was considered. The local decision
rule of each cognitive radio was defined based on a censoring policy where each sen-
sor could only make a decision if the calculated energy is less than a lower threshold
(λ1) or larger than an upper threshold (λ2). Therefore, in this caseφ = (λ1,λ2). It
was shown that for the OR rule, the optimal lower threshold is zero (λ1 = 0) and for
the AND rule, the optimal upper threshold is infinity (λ2 → ∞). Further, an explicit
expression was given to find the optimal solution for the OR rule and in case of the
AND rule, a closed form solution has been derived.

We proposed our novel censored truncated sequential spectrum sensing scheme
in Chapter 3. We let each sensor sequentially collect the observation samples instead
of the fixed-sample size paradigm of Chapter 2. Each sensor calculated the energy
of the collected samples until a certain point and compared it with a lower threshold
at timei (ai) and an upper threshold at timei (bi). In case that the calculated energy
passed any of these thresholds, a decision was made, otherwise a new sample was
collected for a new comparison. In case the sensor could not reach a decision by
time N (truncation point), the sensing process stopped and no decision was made.
This way, both the transmission and sensing energy consumption of each cognitive

radio was optimized. In this caseφ =

{

(ai ,bi), i = 1, . . . ,N

}

.

We further derived the analytical expressions for the underlying parameters in
the censored sequential scheme and showed that although the problem is not convex,
a bounded two-dimensional search is possible for both the OR rule and the AND
rule. Further, in case of the OR rule, we relaxed the lower threshold to obtain a line
search problem in order to reduce the computational complexity.

Different scenarios regarding transmission and sensing energy per sample as well
as SNR, number of cognitive radios, number of samples and detection performance
constraints were simulated for low and high values ofπ0 and for both the OR rule
and the AND rule. It has been shown that under the practical assumption of low-
power radios, sequential censoring outperforms censoring. We can conclude that
for high values of the sensing energy per sample, despite its high computational
complexity, the double threshold scheme developed for the OR rule becomes more
attractive. Further, it was shown that as the sensing energy per sample increases
compared to the transmission energy, the AND rule performs better than the ORrule,
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while for very low values of the sensing energy per sample, the OR rule outperforms
the AND rule.

A combined censoring and sleeping scheme was depicted in Chapter 4. Each
sensor turned off its sensing module with sleeping rateµ, and if it was on, a censoring
policy as introduced in Chapter 2 was employed in order to send the local decisions
to the FC. In this case,φ = (µ ,λ1,λ2). Similar to the fixed-size censoring, it was
shown that the optimal average energy consumption per sensor is attained by λ1 = 0
for the OR rule andλ1 → ∞ for the AND rule. This way, the number of arguments
for optimization has reduced to two.

In seeking a systematic solution for the obtained optimization problems, we
showed that the resulting optimization problem can be reduced to an unconstrained
line search problem overµ for both the OR and AND rule.

We considered a case study with IEEE 802.15.4/ZigBee radios for numerical
results. It was shown that the average energy consumption per sensoris reduced
significantly. We further compared the performance of the OR and the AND rule in
terms of energy efficiency. It was shown that as the ratio between sensing energy and
transmission energy increases, the AND rule can perform much better thanthe OR
rule for some specific detection performances. However, depending onthe probabil-
ity of a primary user being absent, the sensing energy, the transmission energy and
the detection performance constraint, sometimes the OR rule preforms better than
the AND rule, particularly when the probability of primary user absence is high and
sensing and transmission energies are either comparable or the transmissionenergy
is higher than the sensing energy. For desired constraints in cognitive radio system,
the OR rule performs better than the AND rule forπ0 > 0.5 while the AND rule
performs better than the OR rule forπ0 < 0.5.

One of the very interesting results for all the presented energy-efficient algo-
rithms in Chapters 2, 3 and 4 was that increasing the number of cognitive radios,
leads to a reduction in the average energy consumption per sensor which isof high
importance for low-power radios. Therefore, increasing the number ofcognitive
radios (with conditionally independent observations), not only increases the detec-
tion performance and reliability of a cognitive radio network, but also leadsto lower
energy consumption in each radio by employing any of the proposed or presented
energy-efficient techniques in this thesis.
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6.2 Chapter 5

In this chapter, we have tried to find an answer to the question of the optimalK-out-
of-M rule in a cognitive radio network. In search for such an answer, we defined
our problem so as to maximize the network throughput subject to a constrainton the
probability of detection and average energy consumption per sensor. Asin the pre-
vious scenarios, the constraint on the probability of detection puts an upper bound
on the amount of interference made to the primary user by cognitive radios while
the constraint on energy consumption makes sure that the system has enough re-
sources able to perform sensing and data transmission with an acceptable reliability
and quality.

We have shown that the problem can be solved by a bounded two-dimensional
search over the number of cognitive radiosM and the fusion rule parameterK. We
have also shown that as the energy constraint reduces, the optimal throughput also
reduces while reducing the probability of detection constraint for the same energy
constraint leads to a higher throughput. Furthermore, we have shown that in the
desired range of the probability of detection constraint, the majority rule is either
optimal or nearly optimal in terms of the cognitive network throughput.

6.3 Suggestions for Future Works

6.3.1 Energy harvesting spectrum sensing

In this thesis, it is assumed that the cognitive radios consist of low-power sensors
with a fixed battery level. In the current low-power wireless sensors, it ispossible
to include some energy harvesting techniques in order to gain energy fromdifferent
sources such as solar batteries [88], [89], [90]. These techniquesare particularly
important for real-time applications, where we need reliable resources in order to
accomplish a task. Designing spectrum sensing algorithms for energy harvesting
cognitive radio is a very good potential of research for future work [91], [92], [93].

6.3.2 Energy-efficient feature detection

We have employed energy detection as the spectrum sensing technique throughout
this thesis. Although the energy detector is very simple to implement and mathemat-
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ically easy to track, at the low SNRs, the detection performance of energy detectors
reduces significantly and below a certain SNR (depending on the noise uncertainty),
they are not able to detect the primary user signal. Feature detectors on theother
hand, try to detect certain features of the primary user signal such as cyclostationar-
ity. This way, they tackle the problem of low performance at low SNRs due to the
noise uncertainty. In general, feature detectors are harder to implement and demand
a much higher sensing time than energy detectors. This way, the energy consumption
due to sensing increases significantly and at the same time, the network throughput
reduces due to a lower transmission time. [86] considers a collaborative cyclostation-
ary detection with censoring which reduces the transmission energy of the cognitive
radio system. Designing energy-efficient feature detectors which also offer a good
throughput is a nice area for future research.

6.3.3 Energy and computational efficient wide-band spectrumsensing

In this thesis, we have focused on spectrum sensing in narrow-band channels. How-
ever, at a system level, spectrum sensing over a wide-band spectrum isoften more
desirable. First, a cognitive radio can have an overview of the available resources
over a wide band of frequencies and can adapt its transmission to the bestones.
Second, in case that a currently accessed band becomes unavailable, moving to the
next band is faster and the agility of the sensing increases. Third, the transmission
scheme in a cognitive radio might need a wide band of frequencies, which can e.g.
be obtained by OFDM modulation. In this case, virtually only wide-band sensing
can be a solution to find available resources. Several techniques have been proposed
to perform wide-band spectrum sensing including sub-Nyquist sampling recovery
techniques [12]. However, energy-efficient design of wide-band spectrum sensing is
almost a non-touched area of research. Since the computational complexityof cur-
rent wide-band sensing techniques is high, energy-efficient or bettercomputationally
efficient wide-band sensing is also an open area of research. [94] considers this is-
sue from a MAC layer viewpoint where each sensor based on its availableenergy
resources, decides weather to sense, where in the spectrum to sense and weather
to access by maximizing the throughput. However, this scheme is based on multi-
channel narrow-band sensing which is different than the wide-band sensing schemes
where the whole wide band of frequencies is considered at the same time.
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6.3.4 Agile search schemes

As we mentioned earlier, a cognitive radio should be able to switch to a new spectrum
hole in case the current accessed band becomes available. This process should be fast
while reliable to save energy and increase the cognitive radio throughput.Agility of
search schemes are particularly important in real-time applications where cognitive
radios can not wait for a long time to transmit their data. Designing fast and reliable
spectrum hole search schemes such as the one in [87] is also a good direction for
further research.

6.3.5 Energy-efficient cross layer design

Note that in this thesis, we did not address the design of protocols employed inthe
cognitive sensor network - in particular, the medium access protocol thatindividual
sensors use to transmit their detection results to the FC. Optimizing the design of the
protocol jointly with spectrum sensing could lead to additional energy savings [95],
[96]. For example, in case of the OR rule in censored truncated sequential sensing,
the whole sensing process can be stopped as soon as one cognitive radio reports one.

6.3.6 Energy-efficient decentralized spectrum sensing

Decentralized spectrum sensing without fusion center is a growing research topic
[97, 98, 99]. Such schemes are particularly important when energy resources are
limited. In general, each sensor either makes a local decision by employing its own
information as well as its immediate neighborhood information (diffusion techniques
[101]) or participates in reaching a consensus among all the sensors (consensus tech-
niques [100]). Energy-efficient design of distributed estimation algorithmsis consid-
ered for example in a selective communication approach presented in [64],which is
based on the optimal selective transmission policy in energy-constrained sensor net-
works discussed in [102]. Energy-efficient design of decentralizedspectrum sensing
without fusion center, employing selective transmission or other energy saving tech-
niques is also a good topic for further investigation.
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Samenvatting

Deze thesis richt zich op het dynamisch gebruik van het spectrum door middel van
cognitieve radios, om op een opportune manier toegang te verkrijgen tot het spectrum
dat bijna volledig gelicentieerd is. Cognitieve radios delen het spectrum op een op-
portune wijze en proberen zo weinig mogelijk schadelijke interferentie te genereren
voor de primaire gelicentieerde gebruikers. Een belangrijke klasse van cognitieve
radios bestaat uit zogenaamde verweven cognitieve radios. In die klasse tasten de
cognitieve radios het spectrum af op zoek naar lege spectrale banden ook wel gaten
genaamd. Als zo een spectraal gat wordt ontdekt, wordt dit dynamisch verdeeld on-
der de cognitieve radios. Maar zodra er een primaire gebruiker in dit gatopduikt,
moeten de cognitieve radios deze band zo snel mogelijk verlaten en op zoek gaan
naar een nieuw gat. Op die manier is het aftasten van het spectrum een belangrijke
functionaliteit van een cognitief radionetwerk.

De betrouwbaarheid waarmee het spectrum kan worden afgetast wordt beperkt
door verscholen zenders en variaties in propagatiekanalen. Gedistribueerde detectie
met behulp van meerdere sensoren kan echter de detectie van gaten verbeteren. In
deze thesis wordt zo een gedistribueerd detectiesysteem gebaseerd opharde detectie
onderzocht. Iedere cognitieve radio tast het spectrum af en zendt zijnresultaat naar
een fusiecentrum, waar de uiteindelijke beslissing wordt genomen of er eenprimaire
gebruiker aanwezig is of niet. Merk op dat cognitieve radios veelal sensoren zijn met
een laag vermogen en dus speelt het energieverbruik een belangrijke rol.

In deze thesis worden verschillende energie-efficinte methodes voorgedragen om
het spectrum af te tasten. De voorgestelde methodes minimaliseren het maximale
energieverbruik per sensor zonder de detectiebetrouwbaarheid vanhet cognitieve ra-
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dionetwerk te schaden. Deze betrouwbaarheid wordt gedefinieerd door middel van
een minimale detectiekans en een maximale kans op een vals alarm. Op die manier
wordt de primaire gebruiker beschermd tegen de interferentie van de cognitieve ra-
dio en wordt de kans op het missen van een spectraal gat door een foute detectie
beperkt. Ten eerste wordt er een censuurtechniek voorgesteld waarbij cognitieve ra-
dios enkel informatieve boodschappen naar een fusiecentrum sturen.Ten tweede
wordt er een combinatie aangedragen van de censuurtechniek en een eindige-lengte
sequentile detectietechniek. Deze combinatie is energiezuiniger dan de purecensu-
urtechniek omwille van de reductie van de detectie-energie. Ten derde wordt er een
combinatie onderzocht van de censuurtechniek en een slaapmechanisme waarbij de
cognitieve radios, naast het niet versturen van onbeduidende informatie, zichzelf met
een bepaalde zogenaamde slaapkans uitschakelen om op die manier energie te be-
sparen, detectie-energie zowel als transmissie-energie. In de thesis wordt aangetoond
dat met alle voorgestelde technieken veel energie kan bespaard worden, vooral dan
met de combinatie van de censuurtechniek en de eindige-lengte sequentile detecti-
etechniek en de combinatie van de censuurtechniek en het slaapmechanisme. Verder
wordt er geconcludeerd dat wanneer een cognitief radiosysteem op de juiste manier
energiezuinig wordt ontworpen, dan zal een toename van het aantal samenwerkende
gebruikers niet alleen het detectieresultaat verbeteren maar ook het gemiddelde en-
ergieverbruik van de individuele sensoren verminderen.

Tenslotte wordt er een optimale fusietechniek voorgesteld voor cognitieve ra-
dionetwerken gebaseerd op energiezuinige harde fusie. Deze techniek optimaliseert
de datasnelheid behoudens een beperking van het gemiddelde energieverbruik van de
individuele radios en een beperking van de interferentie die de primaire gebruikers
ondervinden. Het is aangetoond dat de meerderheidsregel optimaal ofbijna optimaal
is wat betreft de datasnelheid.
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