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Summary

Dynamic spectrum access employing cognitive radios has been proposeder
to opportunistically use underutilized spectrum portions of a heavily liceakssd
tromagnetic spectrum. Cognitive radios opportunistically share the speatihita,
avoiding any harmful interference to the primary licensed users. One Taier
gory of cognitive radios consists of is interweave cognitive radios. ildategory,
cognitive radios employ spectrum sensing to detect the empty bands ofdibe ra
spectrum, also known as spectrum holes. Upon detection of such auspduile,
cognitive radios dynamically share this empty band. However, as sooe psittary
user appears in the corresponding band, cognitive radios havedate\the band and
look for a new spectrum hole. This way, reliable spectrum sensing becarkey
functionality of a cognitive radio network.

The hidden terminal problem and fading effects have been shown to limit the
reliability of spectrum sensing. Distributed cooperative detection hasftinergeen
proposed to improve the detection performance of a cognitive radio retwar
this thesis, a distributed detection scheme based on hard fusion of lochs ries
considered. Each cognitive radio senses the spectrum and sendsutteto the
fusion center, and there the final decision is made about the preseabseasrce of
the primary user. Note that, in general, cognitive radios are low-powsiose and
thus energy consumption becomes a critical issue.

In this thesis, several energy-efficient approaches are propiosedier to min-
imize the maximum average energy consumption per sensor, while satisfying the
sensing reliability of the cognitive radio network. The sensing reliability isnéefi
by a lower bound on the probability of detection and an upper bound on ¢tapr



Summary

bility of false alarm. This way, the primary user is protected from the cogmnidivie
transmitters interference and also the chance of losing spectrum acaasghtler-
roneous detection of the primary user in an empty band is constrained.aFGest;
soring scheme is considered where cognitive radios send their results fisstbn
center only if they are deemed to be informative. Second, a combinedrcenand
truncated sequential sensing scheme is depicted which is shown to be ragyg-en
efficient than the former case due to the sensing energy reduction. Audd &h
combined censoring and sleeping scheme is discussed where on togsoficgn
each cognitive radio switches off its sensing module with a specific sleegi@gim
order to save energy both on transmission and sensing. It is showrilttieg pro-
posed schemes, particularly combined censoring and sleeping as wetswed
truncated sequential sensing delivers significant energy savingsheEuwe con-
clude that when a cognitive radio system is appropriately well-designednis tef
energy efficiency, increasing the number of cooperative cognitinease, not only
improves the detection performance, but also reduces the averagy eanasump-
tion of individual cognitive radios.

Finally, an optimal fusion strategy for energy-constrained hard-fusi@ed cog-
nitive radio networks is presented, which optimizes the network throughyhjiect
to a constraint on the average energy consumption of individual radhg &on-
straint on the amount of interference to the primary user. It is shown thatdjority
rule is either optimal or close to optimal in terms of the network throughput.
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Mathematical Notation

Scalarx

Vectorx

Matrix X

Transpose of matriX

Hermitian transpose of matrix
inverse of matrixxX

Real part ofx

Imaginary part ok

Estimate ofx

Average ofx

Modulus ofx

Largest integer smaller or equalxto
Smallest integer larger or equalxo
Expectation of random variable
Probability ofx

Variance ofx

Hadamard (element-wise) product
Absence of the primary user
Presence of the primary user
Channel gain

Primary user signal modulus
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Primary user signal atth time slot

Noise

Calculated energy by the energy detector

Local probability of false alarm

Local probability of detection

Detection threshold

Lower detection threshold in censoring

Upper detection threshold in censoring

Lower detection threshold in truncated sequential sensing
Upper detection threshold in truncated sequential sensing
Number of samples, Truncation Point

Number of cognitive radios

Q-function

Sensing energy per sample

Transmission energy per bit

Gamma function

Incomplete gamma function

Average censoring rate

Average sleeping rate

Average censoring rate when the primary user is absent
Average censoring rate when the primary user is present
Signal-to-Noise-Ratio (SNR)

Pr(2%), probability of the primary user absence

Pr(.71), probability of the primary user presence

Global probability of false alarm

Global probability of detection

Final decision at the fusion center

Probability of false alarm constraint

Probability of detection constraint

Sensing time

Reporting time

Acronyms and Abbreviations

ASN

Average sample number
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AWGN
B

CR
FC
FCC
LLR
LRT
NP
OFDM
PR
SPRT
SNR
TDMA

Additive-white-Gaussian-noise

Bayesian criteria

Cognitive radio, secondary user, cognitive sensor
Fusion center

Federal Communications Commission
Log-likelihood ratio (test)

Likelihood ratio test

Neyman-Pearson criteria

Orthogonal frequency division multiplexing
Primary user, licensed user

Sequential probability ratio test
Signal-to-Noise Ratio
Time-division-multiple-access
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Chapter 1

Introduction

In this thesis, we consider designing energy-efficient spectrum geaigjorithms for
cognitive radio networks. The purpose of this chapter is to motivate armtlunte
the problems addressed in the thesis, and describe our main contributtbtisean
organization of the thesis.

1.1 Motivation

Wireless technologies have progressed rapidly during the recestgedhave lead
to a high demand for electromagnetic spectrum. The radio spectrum hasdien
tionally regularized for exploitation by licensed users, but as is depictedyinl A
this policy now results in spectrum scarcity [4]. Meanwhile, recent stuztiespec-
trum utilization show that large parts of the licensed spectrum are highlyrutirde
lized in vast geographical locations and time periods [1], [2], [3]. Fegur.2 and 1.3
are examples of such studies. Dynamic spectrum access based onveagitds
has been proposed in order to opportunistically use these underutilizettisp por-
tions [4]. Regulatory bodies are currently working on the standardizatgulation,
and modeling of such technologies with the goal of reaching a higher speetffi-
ciency and availability for future wireless technologies [5], [6], [7]. [Bhis thesis
is inspired by the FCC Report and Order permitting the operation of netveoriks
sisting of low-power devices and sensors in the VHF-UHF band [5] dsaseby
the IEEE 802.22 work group regulating the dynamic spectrum accesd/foamds
and wireless microphones [8]. More recently, standardization of dyngjpeictrum
sharing of the 2.36-2.4 GHz band for body sensor networks has bitiateith by the
FCC [6] where all secondary users are consisting of low-power vgsalevices.
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Figure 1.1: The NTIA's Frequency Allocation Chart [5]
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Utilization(%) | 54.4 | 35.1 76 | 025 | 0128 46

[F;%;Jre 1.2 Measurement of Spectrum Utilization (0-6 GHz) in the DowwtoBerkeley

1.1.1 Cognitive radio

Cognitive radios are wireless radios that opportunistically share thérgpewhile
avoiding any imposed harmful interference to the primary licensed usepgeriaing
on the way that cognitive radios tackle the problem of interference to iheapr
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Figure 1.3, Temporal Variation of the Spectrum Utilization (0-2.5 GHiz)the Downtown
Berkeley [70]. Green color represents licensed user wigcti

user, three categories of cognitive radios are defined. These dategre underlay,
overlay and spectrum-sensing (or interweave) cognitive radios.

In underlay and overlay systems, the cognitive radios are transmitting sdnine
time with primary users within the same band, while keeping their interference belo
a certain level as shown in Fig. 1.4. The difference between the undertbgverlay
cognitive radios is that in the underlay systems, cognitive radios need¢ssathe
channel side information and in the overlay systems they need to have kigawle
about the codebook side information and messages that the primary erse{§3].
Several techniques have been proposed in order to accomplish thidasikample,
an interference alignment scheme is considered in [85], in order to mitigaef¢ioe
of cognitive radio transmitters at the primary receiver, while cognitivestratier
signals remain resolvable at the cognitive receivers. [83] propossta@de-and-
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forward technique where the secondary transmitters and receieeablarto decode

the primary transmitter signal. The secondary transmitter regenerates éedec
primary signal and combines it with the secondary signal with a normalizatitorfa

This data is then sent to the secondary receiver which can also beeedsi the
primary receiver. It is shown that with a proper choice of the normalizetbf,

the outage probability of the primary transmitter remains the same or even better
than for the case without spectrum coexistence. An extension of thisigeehio a

case with multiple primary transmitters is considered in [84]. In [81] and [B#],
secondary user spectrum is shaped in order to limit the amount of interéeneade

to the primary user.

PR: Primary User
CR: Cognitive User

Frequency (f)

Figure 1.4 Underlay and overlay cognitive radios

Interweave cognitive radios, on the other hand, employ spectrum getosite-
tect the empty portions of the radio spectrum as shown in Fig. 1.5 (also known
as spectrum holes) at a certain time and geographical location. Uporicieteic
such a spectrum hole, cognitive radios dynamically share this hole byiagl#peir
transmission power and modulation according to the available resourcéssesd-
rounding environment [78]. However, as soon as a primary useeappethe corre-
sponding band, the cognitive radios have to vacate the band. This aagmtission
is limited to the bands that are deemed to be empty in order to avoid interference
to the primary users. In order to accomplish these tasks, a harmoniousratop
among cognitive users is required which is coordinated through a dedlicatérol
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channel [80]. In this thesis, our focus is on this category of cognitakos and
whenever we talk about a cognitive radio, we mean an interweave cagratho. A
comparison of the different categories of cognitive radios is providdalie 1.1 in
terms of required cognition level, pros, and cons.

PR: Primary User
CR: Cognitive User

CR CR
CR
. . . . —>

Frequency (f)

Figure 1.5. Interweave cognitive radios

Type of Cognitive Radio Required Cognition Level Pros Cons

Interweave

Knowledge of spectrum holes

No knowledge about the pri-|
mary user channel and sig
nal is required. Partial knowl-
edge about the primary signal
such as cyclostationarity carn
improve the sensing reliabil-
ity to an acceptable level.

Sensitive to the noise uncer
tainty, RF front-end impair-
ments,...

Part of the time frame is
wasted on sensing.

Underlay

Knowledge of the primary
channel

Concurrent transmission with|
primary signal is possible.

Acquiring perfect primary
channel side information is:
difficult.

Overlay

Knowledge of the primary
signal codebook

Achieving higher rates than|
the other two models.
Concurrent transmission with|

primary signal is possible.

Acquiring knowledge of the
primary codebook needs tota|
cooperation from the primary
user.

Table 1.1 Comparison of the interweave, underlay, and overlay cogiadios.

1.1.2 Spectrum sensing

Considering the cognitive radio tasks mentioned above, finding a speletieris the
starting point for any cognitive activity. As such, reliable spectrumisgrisecomes
a key functionality of a cognitive radio network. It needs to be highly rédiab

avoid any unacceptable interference to the primary user while fast tcasethe
achievable throughput of the cognitive radio system. Spectrum senamtpden
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studied extensively in literature. Denotingas the received signal vectev,as the
noise vectors as the primary user signal vector ahdas the channel gain vector
between the primary transmitter and cognitive sensor, the goal of spestmsing
is to solve a hypothesis testing problem as follows

B r=w
JA4 r=hos+w, (1.1)

where 7 denotes the primary user absengé, denotes the primary user presence,
© denotes the element-wise product.

Spectrum sensing techniques in order to solve (1.1) are generally dageho
as matched filtering, energy detection, and feature (e.g., cyclostatiorg@iggtion
[12], [11]. Beyond these techniques, there are only a few sensimgnses such
as compressive spectrum sensing, [77], which are mostly under iratstigat the
moment and are not yet adapted by the standardization bodies.

A matched filtering detection problem in general entails the following form

O{s"onr} = A, (1.2)
o

whereA is the sensing threshold] denotes the real part, and H is the hermitian op-
eration. Among the three main spectrum sensing categories, matched filiegag g
the best performance but as is shown in (1.2), requires complete poardage
about the primary user signgahnd the channel gaimwhich are not in general avail-
able at the cognitive sensor. Therefore, blind and semi-blind detectibnitees
are generally employed by the cognitive radios.

Energy detection is one of the most common blind detection techniques that does
not need any prior information about the primary user signal and chahnmesensor
collects a fixed number of samples at each sensing period, calculatesetigg eh
these samples and compare it to a threshold in order to solve (1.1). Dehbéiag
the number of collected samples, the energy detector becomes

N I

&= lerilz Z A, (1.3)
i= o

wherer; is thei-th element of vector.
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The detection performance of any detection technique is determined bylits pro
ability of false alarm and detection, denoted®yandPy, respectively. These prob-
abilities are defined as

Pt = Pr(/1|2%), (1.4)

Py = Pr(4].4), (1.5)

wherePr denotes the probability. Therefore, the corresponding detectionrperfo
mance for energy detection, becomes

P = PI’(é‘7 > A |=%)7 (16)

Py =Pr(& > A|A4). (1.7)

A common approach in order to determine the sensing thresh@do design the
system so as to satisfy a certain probability of false alarm. The constamfalsn

radar (CFAR) and Neyman-Pearson (NP) tests are two examples opsoialem
formulations. In order to determink for the energy detector with these criteria
some information regarding the noise distribution is required. In generahdilse

is assumed to be additive white Gaussian with zero mean and vargnaeehich

is to be estimated by the cognitive sensor. Since the noise variance estimation is
erroneous, the sensing threshold is not exact and hence, belowas signal-to-
noise-ratio (SNR), the energy detector fails to detect the signal, even mittfiiaite
number of samples [12].

The vulnerability of the energy detector to the noise variance estimation error
leads to employing more computationally demanding semi-blind approaches cate-
gorized as feature detection. Usually, primary user signals contain ctgtdimes
such as a pilot signal, a certain covariance structure, cyclostationadtg@mn
which can be used for detection. Ideally, such techniques are napilde to the
noise variance estimation error. A review of these techniques is presaente?|
and [79]. Here, we briefly depict a general view of the cyclostationl@tgctor as
the most common approach which is employed for spectrum sensing in cegnitiv
radios.
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Cyclostationary processes are random processes for which the stbfisbiger-
ties such as the mean and autocorrelation change periodically as a furfdiioe o
[72]. Many of the signals used in wireless communications and radar sypt@sns
sess this property. Cyclostationarity may be caused by modulation and ¢a@ding
or it may be intentionally produced to help channel estimation, equalizatiomer sy
chronization such as the use of the cyclic prefix (CP) in an OFDM sigi3&l Here,
we explain one of the cyclostationary detection techniques which usesdbedse
order time domain cyclostationary detector, [71].

A random processy, k=1,...,N is wide-sense second-order cyclostationary if
there exists & > 0 such that

l’lX(k) = le(k+ K)7 \V/k,

and
Re(k, k) = Ru(k+ K, k), Y(K, k),

wherepi (k) = E[x¢] is the mean value of the random procregR(K, K ) = E XX, |
is the autocorrelation function, aris called the cyclic period.

Due to the periodicity of the autocorrelati®(k, k), it has a Fourier-series rep-
resentation as follows [71],

Wk K) =S RS K)elak,

a

where the Fourier coefficients are

o 1Nl jak
RY (k )_Ilm—ZRXkKe

with o called the cyclic frequency ari®f (k) called the cyclic autocorrelation func-
tion.

To check ifRY(k) is null for a given candidate cycle, consider the following
estimator ofRY (k)

1 N-1 1k
R0 = § 3 Where
K=

= RE(K)+£7(K) (L8)

wheree{ (k) represents the estimation error which vanishell as . Due to the
error£2(k), the estimatoR? (k) is seldom exactly zero in practice, even when
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is not a cyclic frequency. This raises an important issue about decidiether a
given value ofR? (k) is "zero” or not. To answer this question statistically, we use
the decision-making approach of [71].
In general, we consider a vector Bf (k) values rather than a single value in
order to check simultaneously for the presence of cycles in a set oklags
Letks,...,K; be afixed set of laggy be a candidate cyclic frequency, and

Ry= [O{RY (k) } oo, O{RY (K1)
D{R{ (K1)}, ... D{R{ (k) }]

represent a X 2t row vector consisting of cyclic correlation estimators from (1.8)
with 0 and[ representing the real and imaginary parts, respectively. If the asymp-
totic value ofR, is given asR, where

Ry = [D{R(k)}, ..., D{R (ko) },
O{RY (K1)}, -, D{RY (k1) ],

we can writeRy = Ry + &4 where

= (067 (K)o O (K0) ),
O{ed (K1)}, ..., O{&f (ko) }]

is the estimation error vector.
In [71], the test statistic related to the cyclostationary detector has beadier
as follows
D' = NR,& 'R (1.9)

whereZ is the covariance matrix d®,. In [71], it is shown that the test statistic
D under the hypothesis#, has a central chi-squared distribution, while under the
hypothesis# follows a Gaussian distribution. Hence, for a laNjeve can write

D ~ { XZZT under 4

 etan o alia . 1.10
N (NRE'RH ANRE 'RH)  under /4 (1.10)

Having the asymptotic distribution of the test statigdf¢ we say that iD' > y
we can declare that is a cyclic frequency for some, and therefore the primary
user is present. Else, we declare thias not a cyclic frequency and thus the primary
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user is absent, which means that this band is empty and can be used byritieeog
radio.

The probability of detectionRy, and the probability of false alarn®;, can be
obtained as

_ _Ty/2,1)
Pr =Pr(D¢ > y|.7%0) = W? (1.11)
_NR.SIRH
Py = Pr(Ds > Yl /4) = Q<VNR>:1R> (112)
(NR,S 'RH)

wherel (a) is the gamma function anid(a,x) is the incomplete gamma function
(M(ax) = [ t3tetdt).

Between feature and energy detection, energy detection is easier to implemen
and has a smaller computational complexity, while feature detection needs more
computations but has a better performance particularly at low SNRs. A cambin
tion of the agile properties of energy detection and the reliability of cycloseatyon
detection (as a feature detection technique) in order to achieve a fastlaide
detection technique at low SNRs is considered in our paper on two-stag&Lsp
sensing [68]. Due to its simplicity and mathematical tractability, in this thesis, en-
ergy detection is employed for channel sensing. Table 1.2 depicts a suresiez
specifications, pros, and cons of the matched filtering, energy deteciibfeature
detection.

Sensing Technique Required Knowledge Pros Cons
Matched Filtering Knowledge of the primary | Optimal sensing performancg Acquiring knowledge of the
signal and channel primary signal and channel i
difficult in practice.
Energy Detection Knowledge of the noise vari-| Very simple to implement, Vulnerable to the noise uncer:
ance Fast sensing tainty
Feature Detection Knowledge of some featureq Highly reliable sensing per-| Complex in terms of imple-
in the primary signal such ag formance mentation and computation,
cyclostationarity Slower sensing compared tg
the energy detection

Table 1.2 Comparison of the matched filtering, energy detection aatiife detection.

1.1.3 Cooperative spectrum sensing

The hidden terminal problem and fading effects have been shown to limietike r
ability of a single user spectrum sensing. Imagine a cognitive sensor iscolar
it is not located within the coverage range of a primary transmitter. It thenttails
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detect the presence of the primary user. On the other hand, the primaiyeremay

be located within the coverage area of the cognitive transmitter. In suchadicaitu

the cognitive transmitter starts sending data while assuming the primary transmitter
is idle and thus interferes with the primary user signal. Further, due to fading
fects, the primary user signal might not be strong enough to be detedtesithrSo

the hidden terminal problem, this situation also leads to harmful interference to th
primary user.

Distributed cooperative detection has therefore been proposed to ientirev
detection performance of a cognitive radio network [9], [10], by eitiplg spatial
diversity among signal observations at spatially distributed sensorsergbelis-
tributed detection frameworks are discussed in [14], [15]. In terms aiigaration,
distributed detection can be categorized under parallel, serial and triégurations.
The tree configuration is very similar to multi-hop sensor networks which igheot
focus of this thesis. Among the serial and parallel configurations whedepicted
in Figures 1.6 and 1.7, it is shown that the serial configuration has segbakil-
ity issues due to a larger latency and its vulnerability to link failures. Thezefor
due to its simplicity, low delay and higher reliability, a parallel detection configura
tion is considered in this thesis where each secondary radio continuensigssthe
spectrum in periodic sensing slots. A local decision is then made at the ttios
sent to the fusion center (FC), which makes a global decision aboutakerare (or
absence) of the primary user and feeds it back to the cognitive radios.

Several fusion schemes have been proposed in literature which caxtdgm-c
rized under soft and hard fusion strategies [13],[14]. Soft fusgiires several bits
to be sent to the FC, while most of the hard fusion schemes require onlyitin@As-
missions. As a result, hard schemes are more energy-efficient thatkefhes,i.e.,
hard schemes consume less energy than soft ones. Further, in this ¢mesgy
detection is employed for channel sensing, which leads to a comparabttiatete
performance for hard and soft fusion schemes [10]. From the atimsderations,
a hard fusion scheme is adopted in this thesigK-Aut-of-M fusion rule whereM
denotes the number of cooperating cognitive radios, is one of the most cohartbn
fusion techniques. Employing this rule at the FC implies announcing the mesén
the primary user, in case at le&stognitive radios out oM decides for the presence
of the primary user. Special cases of this rule are the OR rule wheré, the AND
rule whereK = M and the majority rule wheri = {%1. The focus of this thesis in
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Y1 V2 Ve
CR; CRy  t e oo oo CRu
fly) fly) )

Drc

Figure 1.6. Parallel configuration for distributed spectrum sensing

Y1 Y2 Ym
CR1 —_— CR,  + ¢ o o o o o o o oo o CRM —_—

2
Fi=f(y1) Fo=f(F1,y2) De=f(Fym.1,ym)

Figure 1.7. Serial configuration for distributed spectrum sensing

Chapters 2, 3 and 4 is on the OR and the AND rule, while in Chapter 5, a genera
K-out-of-M rule is considered as the decision fusion rule at the FC.

1.2 Problem Statement

As mentioned before, cooperative spectrum sensing improves the detpetior-
mance of the cognitive radio network. However, such a gain in perfacenaomes
with a resulting higher network energy consumption which is a critical facter in
low-power radio system. Minimizing the network energy consumption for itogn
radio networks is considered by us in [67], [24], [25], [26].

Although the network energy consumption is an important factor, consglerin
the fact that cognitive radios are in general low-power sensors, dieédnal energy
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consumption of each cognitive radio is a much more critical issue, becaseabt
imum energy consumption of a low-power radio is limited by its battery. As a result,
designing energy-efficient spectrum sensing algorithms in order to limit thé& ma
mum energy consumption of a cognitive radio in a cooperative sensimgivark is

the focus of this thesis.

In a cooperative spectrum sensing scenario, each cognitive ratsoimes en-
ergy mainly on sensing the spectrum and then transmitting the raw or prdckdse
to the FC. Decision fusion based on the received raw data from the cagratiios
is a centralized spectrum sensing scheme, which is the optimal scenari@vétpow
such a centralized scheme demands a large bandwidth and high enesgyngen
tion for data transmission. On the other hand, decision fusion scenases ba
processed data need a lower communication overhead and transmissmncame
sumption. As mentioned earlier, processed data can be either one-bitbkalts or
quantized versions of some soft results such as log-likelihood ratiosq). LIRNoOt-
ing Cs as the sensing energy per samjleas the number of samples which can be
either fixed or randonC; as the transmission energy per bit @pads the number
of quantized bits, the energy consumption of a cognitive radio at onéngesist,
denoted byC, becomes

C=NG+QG. (1.13)

The goal of any energy-efficient spectrum sensing algorithm is tacesdhrough
the reduction of the sensing enerliCs or the transmission energ@G while sat-
isfying a certain detection performance constraint. In this thesis, a deteeitor-
mance constraint is defined by a lower bound on the global probabilitytettien
and an upper bound on the global probability of false alarm of the cogmidigtio
network. Such design constraints protect the primary user from haméuference
by the cognitive radios and limit the throughput loss of the cognitive netwaek
to the false detection of the primary user, respectively. However, desigstraints
and problem formulations depend on the specific requirements of eatdrigcen
this thesis, three energy-efficient techniques are proposed in ord@nimize the
maximum average energy consumption per sensor in Chapters 2, 3, kodHer,
the throughput of the cognitive radio network is maximized for a networlsison
ing of energy-constrained cognitive radios in Chapter 5. Note thatitegmnadios
also consume energy by receiving the final decision from the FC. Hawsince
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this value is constant over all the sensing periods, it has not been ecetidh the
energy model of (1.13).

Energy-efficient spectrum sensing algorithms can be categorized maidgr u
censoring, sequential sensing, sleeping and clustering schemes.fatidheéng, a
review of related works and the state-of-the-art related to energyesffispectrum
sensing is considered for each category. Further, some of the avditetdture re-
lated to the optimization of spectrum sensing for energy-constrained ceraitios
are reviewed at the end of following section.

1.3 Related work

1.3.1 Censoring and sleeping

The idea behind distributed detection with censoring sensors lies in the &ciath

all the local decision results are informative for the FC. Therefore, Hresinission
energy can be saved by avoiding sensors with not-informative resauttsciommuni-
cating with the FC. Denotingj as the decision statistic of theth sensor, censoring

is defined by a lower threshold and an upper threshok$ and the rule which dic-
tates no decision transmission in case< .7 < A2. The definition of censoring may

be slightly modified depending on the scenario, but the main idea is similar to the
definition which is provided here.

Sleeping is another mechanism which achieves energy saving. Eadr gens
turned off with probabilityu (the sleeping rate) in a sensing slot. This way, both
sensing and transmission energies are saved.

Censoring has been thoroughly investigated in wireless sensor netavatkeg-
nitive radios [17, 18, 19, 20, 21, 22, 23, 26]. It has been showrctvasoring is very
effective in terms of energy efficiency. In the early works, [19, 20,22], the design
of censoring parameters including lower and upper thresholds hasbasitered
and mainly two problem formulations have been studied. In the NeymandPears
(NP) case, the miss-detection probability is minimized subject to a constraingon th
probability of false alarm and average network energy consumptior22®2]. In
the Bayesian case, on the other hand, the detection error probability is midimize
subject to a constraint on the average network energy consumption.shbven
that when the constraint on the probability of false alarm is low enough @$B)c
or the probability of target presence is much lower than the one for tabgenhae
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(Bayesian case), a single-threshold censoring policy is optimal. Theses Wwave
mainly considered a soft fusion scheme based on a likelihood ratio tes) @tRfie
FC.

A censoring scheme for cognitive radios is considered in [17] wheensaring
decision rule is employed to reduce the number of bits sent to the fusion eedtso
the bandwidth occupancy of the cognitive radio network. Each seasarlates the
energy of the collected samples and if it is deemed informative, then a bitimgdjca
presence (“1") or absence (“0”) of the primary user is sent to theTlR€ informative
region is defined by a lower thresholdd and an upper thresholth. In caseA; <
& < Az, no decision is made and no bit is sent to the FC. This way, the number
of transmissions is reduced and so is the transmission energy. Howesgraper
looks at the problem only from a bandwidth point of view mainly trying to reduc
the communication overhead. No systematic problem formulation is provided in
order to design the system parameters. Furthermore, the fusion cerité} mdkes
no decision in case it does not receive any results from the cognitars udich is
ambiguous in the sense that the FC has to make a final decision about theceres
(or absence) of the primary user.

In [23], analytical expressions for the sensing parameters are gaearding to
an NP setup for both soft and hard fusion schemes, but unlike [P)R[R2constraint
on the energy consumption is taken into account.

A combination of censoring and sleeping is considered in [18] with the goal
of maximizing the mutual information between the state of signal occupancy and
the decision state of the FC, but the energy efficiency of the system isreotlyd
addressed.

A combined sleeping and censoring scheme is considered by us in [B4], [2
[26], which can be viewed as the foundation of Chapter 4 in this thesiscdimgor-
ing scheme in these papers is similar to the one in [17] with a modification that the
FC decides for the absence of the primary user in case that no resudeigee at
the FC. On top of censoring, a sleeping mechanism is proposed whéreaaa-
tive radio turns off its sensing module with a probability The probability of pri-
mary user presence or absenbe((741) or Pr(7#)) is assumed to be known under
a knowledge-aided setup and unknown under a blind setup with the assnithatio
Pr(s#%) >> Pr(s#1). The network energy consumption is minimized subject to a
constraint on the probability of detection and false alarm. This approatlovasto
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reduce the network energy consumption dramatically. To the best of owlédge,

[26] is the first attempt to design a systematic energy-efficient algorithradec-

trum sensing in cognitive radio networks which laid a foundation for fuiumeks in

this area including a major part of this thesis. As mentioned earlier, [24], [25]

are based on minimizing the network energy consumption. However, in loverpo
sensor networks, the individual energy consumption of each sersondse critical
factor. Hence, in this thesis, minimizing the maximum average energy consump-
tion per sensor is considered as the objective function (in Chaptersa®d34) or

the average energy consumption of each cognitive radio is used ast@adain(in
Chapter 5).

A sensing node and a joint sensing and decision node selection schemsids co
ered in [75] and [76], respectively. The network energy consumgsioninimized
subject to a detection performance constraint defined as in [26], intordetermine
the sensing nodes from a pool of cognitive radios and further theidecisdes from
the selected sensing nodes. The decision nodes are the nodes whlitheseresult
to the FC. Since the problem is to be solved by integer programming and sakeh pr
lems are in general NP hard, a convex relaxation is proposed in ordelviotbe
problem as a real problem and later on map the solution fofj to {0,1}.

[86] considers censoring for a collaborative cyclostationary detectitieme
in cognitive radio networks. The proposed cyclostationarity detectioarselis a
generalization of [71], where sensors send their test statistics to therFCfiftal
decision about the presence or absence of the primary user. A simisoroenrule
asin[22] and [19] is employed, in order to only transmit the test statistics vaneh
deemed to be informative. It is shown that this way, the communication owérhea
reduces significantly, while the performance loss is low. One of the kegrdidges
of collaborative cyclostationary detection is its robustness to the noisetaimties.
Incorporating the cooperative detection approach proposed inif8tsle combined
censoring and sleeping scheme of [26], gives an even more eniigigr reliable
spectrum sensing technique at low SNRs.

1.3.2 Sequential sensing

Sequential detection as an approach to reduce the average numbesafsses-
quired to reach a decision is also studied comprehensively during thelgaesdes
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42443 In the context
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of distributed detection, the sensor observations are either spatially or r@iypo
collected until the system comes up with a final decision [14], [35]. Intrittsiev-

ery sequential sensing scheme, is a stopping rule and a terminal decisioit ne
stopping rule is a function that determines when to stop collecting observations
therefore is a random variable. The terminal decision rule dictates whizbiaie

has to be made after the sequential test has stopped [35]. Since eithetiviciad
sensors or the FC can control the sequential test, two types of sequitéation

can be recognized. When the FC manages the sequential test, [28]3[E0]34],

[37], [40], [36], it either makes a decision or asks the sensors to aemlv result.
When the sequential test is carried out at the sensors, each seosoruates the
samples sequentially and makes a decision about the presence or theeaiidbe
target and then sends a binary decision to the FC [44], [38], [27], [BRBe other

way to categorize sequential detection problems is based on the maximum number
of samples that can be collected. In this context, we can distinguish betwieen in
nite horizon and finite horizon (or truncated) sequential detection [3é]r&ader is
referred to [14], [34] for a thorough analysis of distributed sequedétection). In

[34], [33], each sensor collects a sequence of observationstrgotssa summary
message and passes it on to the FC and all other sensors. A Baye sikemypfar-
mulation comprising the minimization of the average error detection probability and
sampling time cost over all admissible decision policies at the FC and all possible
local decision functions at each sensor is then considered to determioptiimal
stopping and decision rule. Further, algorithms to solve the optimization problem
for both infinite and finite horizon are given. In [36], an infinite horizagsen-

tial detection scheme based on the sequential probability ratio test (SPR®jhat
the sensors and the FC is considered. Wald’s analysis of error plibhd#5], is
employed to determine the thresholds at the sensors and the FC.

The design of a distributed sequential detection network under a communicatio
bandwidth constraint is considered in [37]. Each sensor sends &izpdaversion of
its observation to the FC and then the SPRT is employed to make the decision to stop
or carry on sensing. The problem is formulated as to determine the distrilmition
the bandwidth among the sensors, the quantizer design, and the FC deoisign
in order to minimize the average sample number (ASN). Incorporating [37}to in
crease the throughput of a cognitive radio system can be an interetangfduture
research. [32] presents a distributed sequential sensing scheme eaur sensor
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performs an SPRT and makes a decision. The decision is then sent to thelFC a
the FC announces the first incoming decision as the global decision. fagh¢céhe
global probability of detection and false alarm is equal to the ones at easors
This scheme can also be exploited to reduce the sensing and reporting tinge of th
cognitive radio network thereby increasing the network throughput wleibeeasing

the energy consumption.

A combination of sequential detection and censoring is considered inf42h
sensor computes the LLR of the received sample and sends it to the FC, if it is
deemed to be in a certain region. The FC then collects the received LLRasand
soon as their sum is larger than an upper threshold or smaller than a loesdit,
the decision is made and the sensors can stop sensing. The LLRs ane secld a
way that the larger LLRs are sent sooner. Itis shown that the numbansimissions
considerably reduces and particularly when the listening cost is high,ghisach
performs very well.

[31] proposes a sequential censoring scheme where an SPRT is ethplpye
the FC and soft or hard local decisions are sent to the FC accordingaiasaring
policy. It is depicted that the number of transmissions decreases but athie
hand the ASN increases. Therefore, [31] ignores the effect of iigdem the energy
consumption and focuses only on the transmission energy which fomtuore-
power radios is comparable to the sensing energy. Further, the FC megachta
decision in a reasonable time. Finally, the system in [31] asymptotically reaches
specific detection performance as the number of sensors grows, battnis a high
total energy consumption by the system.

[38] considers a distributed sequential sensing scheme where eaur sem
ploys the SPRT and upon reaching a decision, a binary result is sentkE&thene
FC then makes a final decision usini-aut-of-M rule. Itis shown that for the same
detection error probability, the detection performance of this sequentiahse is
better than fixed-size sampling and furthermore the observation energyenpo
be lower. The optimal sensing thresholds are found by an iterative algotitat
solves a Bayesian risk problem.

Sequential spectrum sensing is also considered for cognitive radgndesn
infinite horizon SPRT is employed in [41], [40], [39], [30] for diffettesensing
techniques. It is shown that the sensing time dramatically reduces when employ
ing sequential detection. The optimization of cognitive network throughpdéiua
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constraint on the miss-detection probability is solved in [28], [29] in orddimit

the optimal stopping and access policies. This approach is infinite horiza wh

is a not a valid assumption considering the limited sensing time of cognitive radios.
Further, a binary result has to be sent to the FC for each collectedratisarsample
which entails a high transmission energy consumption. Nevertheless, thid e
optimization problem is matched to the cognitive radio system requirements and an
extension of [28] for the finite horizon case can also be considered.

In [27], the sensing thresholds that minimize the ASN are derived subject to
constraint on the false alarm rate, miss-detection probability, outagetplipband
interference level. This method is particularly designed for systems wittineal-
traffic.

A truncated sequential sensing technique is employed in [44] to reducerthe s
ing time of a cognitive radio system. The thresholds are determined such that a
certain probability of false alarm and detection are obtained. In this thesigrev
employing a similar technique, except that in [44], after the truncation pogige
threshold scheme is used to make a final decision, while in this thesis, the senso
decision is censored if no decision is made before the truncation point.efUa#]
considers a single sensor detection scheme which is not reliable partialuerkp
the hidden terminal problem.

1.3.3 Clustering

A cluster-based and a confidence voting approach to energy-effitignibuted
sensing is proposed in [16]. In the cluster-based approach, a s@gritlio network
is divided into several clusters based on their geometric location. Eactitiveg
radio sends its local decision to its assigned cluster head which makes ellstal
decision and sends it to the fusion center. This way, the energy consamgdioces
due to the distance reduction by avoiding broadcasting every result todioa fcen-
ter directly. In the confidence voting approach, each user sends itslledaion to
the FC only if it is deemed confident enough. The secondary user looksbnsen-
sus among the other users and if its result is in accordance with the majoritgrgpin
it gains confidence, else its confidence level decreases. Eachamsgemd its result
to the FC only if its confidence level is above a certain threshold. Howdwese
approaches are mainly protocol based schemes and the detection tecsigell
as the underlying problem formulation for system design parameters gé/an.
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1.3.4 Energy-constrained sensing

[65] considers the optimization of the cognitive radio network energyieffay.
Energy efficiency is defined as the ratio of the average network thpauagbver

the average network energy consumption. Optimization of the energy effjcie
considered for two cases. In the former case, energy efficiencyimiapd in order

to findK in K-out-of-M rule, and in the latter case, the sensing threshold at the energy
detector is derived by optimizing the energy efficiency. However, the gwdb
optimization ofK, M as well as the sensing threshold is not considered. Further, no
typical performance constraint is considered for the optimization probierh as

the probability of detection which is inherent in a cognitive radio design igalen

1.4 Contributions and outline of the thesis

In this section, we explain in detail what is the outline of each chapter antlamba
our key contributions.

Chapter 2

A fixed-sample size censoring scheme is considered in this chapter. &gaitivee
radio collects the same number of samples, calculates the energy of the santples
if the calculated energy is deemed informative, one decision bit is sent toaGhe F
The calculated energy is informative, if it is lower than a lower threshaidl ¢r
larger than an upper thresholdh}, otherwise, no decision is sent to the FC. This
way, the transmission energy of each cognitive radio is reduced. Gliigyto set
the sensing parameters includinag and A, by minimizing the maximum average
energy consumption per sensor subject to a constraint on the probabil#yeation
and false alarm. This constraint is defined as a lower bound on the [ilitthab
detection and an upper bound on the probability of false alarm. The mailh oésu
this chapter is as follows

e For this approach, it is shown that a single-threshold censoring poligytiis 0
mal in terms of energy consumption for both the OR and AND rule. Moreover,
a solution of the underlying problem is given for the OR and AND rule.
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Fixed-size censoring is used as a benchmark for comparison in Chaptergd
a sequential censoring scheme is introduced.

Chapter 3

This chapter is one of the major contributions of this thesis. In this chaptehédo
first time, a combination of censoring and sequential sensing is introdlibeddea
behind the censored truncated sequential spectrum sensing is to tedsansing
energy as well as transmission energy of each cognitive radio, by irtirugla se-
guential sampling technique. The contributions of this section are as follows

e A combination of censoring and truncated sequential sensing is propmsed
save energy. The sensors sequentially sense the spectrum befchiangea
truncation pointN, where they are forced to stop sensing. If the accumulated
energy of the collected sample observations is in a certain region (above an
upper thresholdg, or below a lower thresholdh) before the truncation point,

a decision is sent to the FC. Else, a censoring policy is used by the sensor,
and no bits will be sent. This way, a large amount of energy is saved tbr bo
sensing and transmission. In our thesis, it is assumed that the cognitiese rad
and fusion center are aware of their location and mutual channel piexper

e In terms of cognitive radio system design, the probability of detection limits
the harmful interference to the primary user and the false alarm rate sontro
the loss in spectrum utilization. The ideal case yields no interference #nd fu
spectrum utilization, but it is practically impossible to reach this point. Hence,
current standards determine a bound on the detection performanceadeeach
an acceptable interference and utilization level [8]. Our goal is to minimize
the maximum average energy consumption per sensor subject to a specific
detection performance constraint which is defined by a lower bound on the
global probability of detection and an upper bound on the global probability
of false alarm. To the best of our knowledge such a min-max optimization
problem considering the average energy consumption per sensoothgst n
been considered in literature.

e Analytical expressions for the underlying parameters are deriveditasd
shown that the problem can be solved by a two-dimensional search tfor bo
the OR and AND rule.
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e To reduce the computational complexity for the OR rule, a single-threshold
truncated sequential test is proposed where each cognitive radie seiedi-
sion to the FC upon the detection of the primary user.

At the end of the chapter, several numerical results are provided whask that
censored truncated sequential sensing outperforms censoring in teengrgy-
efficiency for low-power cognitive radios and for the desired rarigth® detection
performance. The material presented in Chapter 2 and Chapter 3 waighpd in
part in the following journal and conference publications:

e S. Maleki and G. Leus, “Censored Truncated Sequential Spectragirggor
Cognitive Radio Networks,” IEEE Journal on Selected Areas in Communica
tions, vol.31, no.3, pp.364,378, March 2013

e S. Maleki and G. Leus, “Censored truncated sequential spectrusigeior
cognitive radio networks,” 17th International Conference on Digitah&ig
Processing (DSP), 2011, vol., no., pp.1,8, 6-8 July 2011

Chapter 4

In this chapter, a combination of sleeping and censoring is introduced.pf the
fixed-size censoring as presented in Chapter 2, each sensor tlitasefsing mod-

ule with probabilityu (sleeping rate) at each sensing period. This way, a great deal
of energy is saved on sensing and transmission. As in Chapter 2 ante€CBathe
goal is to minimize the maximum average energy consumption per sensor gabject
a lower bound on the probability of detection and an upper bound on thalpitidy

of false alarm. In this chapter, first the combined sleeping and censafiegne is
presented, followed by an analysis and problem formulation and sevarsrical
results. Further, a case study based on IEEE 802.15.4 ZigBee is aqmusidevalu-

ate the performance of the proposed approach for a practical gze@antributions

of this chapter are as follows

e A combined sleeping and censoring scheme is proposed where each sens
turns off its sensing module with probabilify at each sensing period. In
case the sensor is on, then a censoring policy is employed in order to send
the decisions to the FC. In case the calculated energy is more than an upper
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thresholdA,, the decision is that the primary user is present. If the calculated
energy turns out to be lower than a lower threshaid then a decision is sent

to the FC indicating the absence of the primary user. Else, no decision is made
and nothing is sent to the FC.

e The underlying detection performance indicators including the globalggrob
bility of false alarm and detection are derived for the OR and the AND rules.

e The problem is defined so as to minimize the maximum average energy con-
sumption per sensor subject to a lower bound on the probability of detection
and an upper bound on the probability of false alarm. As indicated besfach,

a min-max optimization problem has never been considered for the problem
of energy-efficiency optimization in cognitive radio systems.

e Itis shown that the optimal average energy consumption per sensoriisazbta
when the lower threshold is zerd,(= 0) for the OR rule and approaching in-
finity (A1 — o) for the AND rule. These are the same results as in fixed-size
censoring in Chapter 2, but the beauty of the results in this chapter is that the
same results holds with a combination of censoring and sleeping. This way,
one of the three underlying arguments of the optimization problem including
A1, A2 and u is relaxed and the problem reduces to a two-dimensional opti-
mization problem.

e It is shown that on top of reducing the main problem to a two-dimensional
problem, using the interactions betweerandu, the problem can be reduced
to a line-search problem over.

Chapter 5

This chapter considers the optimization of hard-combining cooperativetrape
sensing for energy-constrained cognitive radios. The goal is to fmoptimalK-
out-of-M fusion rule. AK-out-of-M rule is a hard fusion rule which decides for the
presence of the primary user if at le&sicognitive radios report the presence of a
primary user to the FC. Note that the previously considered OR and ANB aunée
special cases of th€-out-of-M rule whereK = 1 andK = M, respectively. The
contributions of this chapter are as follows
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e The throughput of the cognitive radio network is maximized subject to a con-
straint on the global probability of detection and energy consumption [ger co
nitive radio in order to determine the optimal number of cognitive uskeasnd
K.

e It is shown that the underlying problem can be solved by a bounded two-
dimensional search.

e It is assumed that the cognitive radios send their results to the FC in a time-
division-multiple-access (TDMA) manner. Therefore, by optimizing the num-
ber of cognitive radio®/, the reporting time of the cognitive radio and thus
the network throughput is optimized.

The following journal and conference papers are published bastu: onaterial
presented in this chapter:

e S. Maleki, S. P. Chepuri and G. Leus, “Optimization of hard fusion based
spectrum sensing for energy-constrained cognitive radio netwadpks/sical
Communication (Elsevier Journal), Available online 20 July 2012, ISSN-1874
4907

e S. Maleki, S. P. Chepuri and G. Leus, “Energy and throughputeffistrate-
gies for cooperative spectrum sensing in cognitive radios,” IEEE [h2¢hna-
tional Workshop on Signal Processing Advances in Wireless Communisation
(SPAWC), 2011, pp.71,75, 26-29 June 2011

e S. Maleki, S. P. Chepuri and G. Leus, “Optimal hard fusion strategiesofyp-
nitive radio networks,” IEEE Wireless Communications and Networking Con-
ference (WCNC), 2011, pp.1926,1931, 28-31 March 2011

Chapter 6

In this chapter, the conclusions of Chapters 2, 3, 4 and 5 are drawthandain
results are reviewed. Further, a couple of ideas for future workgrasented in this
chapter.



Chapter 2

Fixed-Size Censoring

Abstract

A fixed-sample size censoring scheme is considered in taehas bench-
mark for comparison of the censored truncated sequentihirtigue which is
proposed in Chapter 3. To design the underlying sensingrpaters, the max-
imum average energy consumption per sensor is minimizgdctub a lower

bounded global probability of detection and an upper bouhtse alarm

rate. This way, both the interference to the primary user wumiss detection
and the network throughput as a result of a low false alarne e controlled.

To solve this problem, it is assumed that the cognitive mdind fusion center
are aware of their location and mutual channel properties.

2.1 Introduction

Reliable spectrum sensing is a key functionality of a cognitive radio netwbinke
hidden terminal problem and fading effects have been shown to limit theifigjiab

of spectrum sensing. Distributed cooperative detection has thereferegdroposed

to improve the detection performance of a cognitive radio network [9], [RQe to

its simplicity and small delay, a parallel detection configuration [14], is consitie

this chapter where each secondary radio continuously senses ttreisp@qeriodic
sensing slots. A local decision is then made at the radios and sent to the fusio
center (FC), which makes a global decision about the presence @mna@)f the
primary user and feeds it back to the cognitive radios. A dedicated ¢ahtanel

is considered to convey messages from the cognitive radios to the F&aBession
schemes have been proposed in the literature which can be categorzedoft and
hard fusion strategies [14], [13]. Hard schemes are more energieaffthan soft
schemes, and thus a hard fusion scheme is adopted in this chapter. Ecificalby,

two popular choices are employed due to their simple implementation: the OR and
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the AND rule. The OR rule dictates the primary user presence to be argtbbpthe
FC when at least one cognitive radio reports the presence of a primaryothe FC.
On the other hand, the AND rule asks the FC to vote for the absence ofitharpr
user if at least one cognitive radio announces the absence of the yptisen. In
this chapter, energy detection is employed for channel sensing whichoisi@an
approach to detect unknown signals [13], [11], and which leads targamble
detection performance for hard and soft fusion schemes [10].

Energy consumption is another critical issue. The maximum energy consump-
tion of a low-power radio is limited by its battery. As a result, energy-efficipeic-
trum sensing limiting the maximum energy consumption of a cognitive radio in a
cooperative sensing framework is the focus of this chapter. A fixetblasize cen-
soring scheme is considered as a benchmark (it is simply called the cersdrerge
throughout the rest of the chapter) where each sensor employsa@iognlicy af-
ter collecting a fixed number of samples. The censoring policy in this cadeswor
based on a lower threshold; and an upper threshold;. The decision is only be-
ing made if the accumulated energy is notAi, A,). For this approach, it is shown
that a single-threshold censoring policy is optimal in terms of energy cortgump
for both the OR and AND rule. Moreover, a solution of the underlying [enwbis
given for the OR and AND rule.

2.2 Related work to censoring

Censoring has been thoroughly investigated in wireless sensor netarmatksogni-

tive radios [17, 18, 19, 20, 21, 22, 23, 26]. It has been shownceragoring is very
effective in terms of energy efficiency. In the early works, [19, 20,22], the design

of censoring parameters including lower and upper thresholds hascbasitered
and mainly two problem formulations have been studied. In the NeymandPears
(NP) case, the miss-detection probability is minimized subject to a constrainéon th
probability of false alarm and average network energy consumptior2[2@2]. In

the Bayesian case, on the other hand, the detection error probability is midimize
subject to a constraint on the average network energy consumption.shbven

that when the constraint on the probability of false alarm is low enough @$B)c

or the probability of target presence is much lower than the one for tabgehae
(Bayesian case), a single-threshold censoring policy is optimal. Our$xegble
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size censoring scheme is different from these works in several tasgeicst, they
have mainly considered a soft fusion scheme based on a likelihood rat{@. RISt

at the FC while in this chapter, hard fusion OR and AND rules are consid&iexc-
ond, the optimization problem in this chapter is different from the NP or Bages
problems. Third, it is shown that in our scheme the optimal lower threshold&yal
zero and forth, an explicit solution of the underlying problem is given tvhigs not
yet been presented in the earlier works. A combination of censoringleegisg

is considered in [18] with the goal of maximizing the mutual information between
the state of signal occupancy and the decision state of the FC, but thyy exfier
ciency of the system is not directly addressed. Censoring for the spagjfiication

of cognitive radio is considered in [17], [23], [26]. In [17], a ceniag rule similar

to the one in this chapter is considered in order to limit the bandwidth occupéncy o
the cognitive radio network. Our fixed-sample size censoring schemdasedif in
two ways. First, in [17], the FC makes no decision in case it does notveeaay
decision from the cognitive radios which is ambiguous, since the FC has te anak
final decision, while in this chapter, the FC reports the absence of a primsaryif

no local decision is received at the FC. Second, we give a clear optinmzatblem
and expression for the solution while this is not presented in [17]. In [@3lyt-
ical expressions for the sensing parameters are given according\B aptup for
both soft and hard fusion schemes, but unlike [19]-[22] no constoairthe energy
consumption is taken into account. As a result, our optimization problem isetiffer
than the one in [23].

2.2.1 Organization

In this chapter, first, we introduce the system model, problem formulatiomaald
ysis for the OR rule in Section 2.3. An extension of censoring to the AND rule
is considered in Section 2.4. The performance analysis of the fixed-am®iing
considered in this chapter, will be presented together with the results afted
sequential censoring in Chapter 3, Section 3.5. The conclusions oféCh@mand 3,
are drawn in Section 3.6.
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2.3 Fixed-size censoring analysis and problem formulation

A fixed-size censoring scheme is discussed in this section as a benclondnle
main contribution of the thesis in Chapter 3, which studies a combination ofiseque
tial sensing and censoring. A network BIf cognitive radios is considered under
a cooperative spectrum sensing scheme. A parallel detection cotifiguisaem-
ployed as shown in Fig. 2.1. Each cognitive radio senses the spectdimakes

a local decision about the presence or absence of the primary userfamds the

FC by employing a censoring policy. The final decision is then made at theyFC b
employing the OR rule. The AND rule will be discussed in Section 2.4. Denojjing
to be thei-th sample received at thieth cognitive radio, each radio solves a binary
hypothesis testing problem as follows

J6 0 rij=wj,i=1..,N, j=1..M
a4 Fij :hijSi + Wij, i=1..N, j=1..M (2.2)

wherew;j is additive white Gaussian noise with zero mean and variax\'fpehij
ands are the channel gain between the primary user and-tieecognitive radio
and the transmitted primary user signal, respectively. We assume two models fo
hij ands. In the first models is assumed to be white Gaussian with zero mean
and variances?, andhj;j is assumed constant during each sensing period and thus
hij = h;j, i=1,...,N. In the second mode} is assumed to be deterministic and
constant moduluss| =s, i=1,...,N, j=1,...,M andhjj is an i.i.d. Gaussian
random process with zero mean and variamég Note that the second model actu-
ally represents a fast fading scenario. Although each model requilifer@nt type
of channel estimation, since the received signal is still a zero mean Gaussdom
process with some variance, nametj = |h;|?0Z + o; for the former model and
o7 = s°0f, + ag for the latter model, the analyses which are given in the following
sections are valid for both models. The SNR of the received primary igs&al sit
the j-th cognitive radio isyj; = [hj|*0Z /a7, under the first model ang = s°of. ; /o
under the second model. Furthermdngs andw;; are assumed statistically inde-
pendent.

An energy detector is employed by each cognitive sensor which calctitetes
accumulated energy ovblobservation samples. Note that under our system model
parameters, the energy detector is equivalent to the optimal LLR dete8jofMie
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—»| Cognitive sensor 1 \
Fusion

D
—»| Cognitive sensor2 ~ |————— >

center
—»| Cognitive sensor N /

(FC)
Figure 2.1: Distributed spectrum sensing configuration

received energy collected over tNeobservation samples at theth radio is given
by

& rij |2
o2’

& = (22)

=
When the accumulated energy of the observation samples is calculated, a cen

soring policy is employed at each radio where the local decisions ar¢osina FC

only if they are deemed to be informative [26]. Censoring threshbjdmdA, are

applied at each of the radios, where the raage & < A is called the censoring

region. At thej-th radio, the local censoring decision rule is given by

send 1, declaring7i if & > Ao,
no decision ifAL < &) < Ag, (2.3)
send 0, declaring?y if & <A1

It is well known [13] that under such a modé; follows a central chi-square
distribution with 2\ degrees of freedom unde#p and 7. Therefore, the local
probabilities of false alarm and detection can be respectively written as

r(N,%)
rN)
F(N, 2 1+yJ))

riNy
wherer (a,x) is the incomplete gamma function given bya,x) = [,”t3 letdt,

with I (a,0) =T (a).

Prj =Pr(&} > Ao ) =

(2.4)

Pd7j = Pl'(gj > )\2’%) (2.5)
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DenotingCsj andC j to be the energy consumed by theh radio in sensing
per sample and transmission per bit, respectively, the average enexgynoed for
distributed sensing per user is given by,

Cj=NGj+(1-pj)C; (2.6)

wherep; = Pr(Ay < &} < Az) is denoted to be the average censoring rate. Note
thatCsj is fixed and only depends on the sampling rate and power consumption
of the sensing module whil€; ; depends on the distance to the FC at the time of
the transmission. Therefore, in this chapter, it is assumed that the cogmaitice

is aware of its location and the location of the FC as well as their mutual channel
properties or at least can estimate them. Defimng: Pr(.74), . = Pr(74), &, =

Pr(A1 < &} < Az|76p) anddy j = Pr(A1 < &) < A2|47), pj is given by

Pj = Todo,j + ThOy j, (2.7)
with
| rN4) T(IN%)
©TTN) TN 22
FN 5225) TN, 525)
=

DenotingQg and Qg to be the respective global probability of false alarm and
detection, the target detection performance is then quantifi€@fbya andQg > B,
wherea andf3 are pre-specified detection design parameters. Our goal is to deter-
mine the optimum censoring thresholdlsand A, such that the maximum average
energy consumption per sensor, i.e., @y, is minimized subject to the constraints
Qf < a andQg > B. Hence, our optimization problem can be formulated as

min max C;
Az )
st.Qf<a, Qf >B. (2.10)

In this section, the FC employs an OR rule to make the final decision which is
denoted byDgc, i.e.,Drc = 1 if the FC receives at least one local decision declaring
1, elseDgc = 0. This way, the global probability of false alarm and detection can be
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derived as

M
F=Pr(Drc=1/7) =1~ I_!L(l— Pr i) (2.11)
I=

M
QY =Pr(Dpc = 1)54) = 1— I‘l(l—Pd,,-). (2.12)
J:

Note that since all the cognitive radios employ the same upper thredhole can
state thaPs ; = Pr defined in (2.4). As aresult, (2.11) becomes

Qt=1—(1—pP)M. (2.13)

Since the FC decides about the presence of the primary user only liyimgce
“1"s (receiving no decision from all the sensors is considered asralesof the pri-
mary user) and the sensing time does not depend dhis a waste of energy to send
zeros to the FC and thus, the optimal solution of (2.10) is obtainet by0. Note
that this is only the case for fixed-size censoring, because the er@mrgyraption of
each sensor only varies by the transmission energy while the sensimgy éneon-
stant. This way (2.8) and (2.9) can be simplifiedtq = 1—Pf andd, j = 1— Py j,
and we only need to derive the optimal. Since there is a one-to-one relation-
ship betweerP; andA,, by finding the optimaP;, A, can also be easily derived as
A2 =2 1N, (N)Pf] (wherel 1 is defined over the second argument). Consider-
ing this result and definin@g = H(Ps), the optimal solution of (2.10) is given by
Pr = H=1(B) as is shown in Appendix 2.A.

When the received SNR of the primary user by the cognitive radios cas-be
sumed to be the same, the local probabilities of detection will be all the same, i.e.,
Pyj =Py =G(F1(P)), and thusQ§ = 1— (1 - Py)M =1— (1 - G(F~1(Py)))M.

This way the optimaPy is Py = 1— (1— )M and the optimaPs is given byPs =

F(G 11— (1—-B)¥M)). Note that such an assumption is considered a good assump-
tion if the difference between the SNRs is less than 1 dB which holds in many prac
tical situations [51], particularly when the cognitive radios are far froeyghimary

user, while are relatively close to each other. Furthermore, by incetsinSNR,

the optimalP; decreases and so does the maximum average energy consumption per
sensor. Therefore, one suboptimal solution of (2.10) is to assume tt&giRéor all

the cognitive radios is equal to the minimum SNR and to find the sensing parameter
using the earlier mentionels andP,. This way we are certain that the probabil-

ity of detection constraint is satisfied becaye QF (Ymin = Min{y,...,W}) <
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Q& (i, ..., W). Although, the censoring scheme gives a considerable energy saving
as shown in Section 3.5, it only relies on the transmission energy minimization.

2.4 Extension to the AND rule

So far, we have mainly focused on the OR rule. However, another ruthwdhalso
simple in terms of implementation is the AND rule. According to the AND rule,
Drc = 0, if at least one cognitive radio reports a zero, &se = 1. This way the
global probabilities of false alarm and detection, can be written resplcéise

M

QE anp = Pr(Drc = 1|5%) = I_L(5o,j +Px ), (2.14)
]=
M

Qb anp = Pr(Drc = 1|74) = I_L(51,j +Pyj). (2.15)
|=

Similar to the case for the OR rule, the problem is defined so as to minimize the
maximum average energy consumption per sensor subject to a lower bouhd
global probability of detection and an upper bound on the global probabfliaise
alarm.

The optimization problem for the censoring scheme considering the ANDtrule a
the FC, becomes

min max C;
Az

S.t.Qfanp < @, Qb anp > B. (2.16)

whereC; is defined in (2.6). Since the FC decides for the absence of the primary
user by receiving at least one zero and the fact that the sensingyquersample
is constant, the optimal upper threshdlglis A, — «. This way, cognitive radios
censor all the results for whickj > A1, and as a result (2.14) and (2.15) become

M
QE anp = Pr(Drc = 1|%) = I_Léo,j, (2.17)
J:

M
Qb anp = Pr(Dec = 1|4) = I_l51,j. (2.18)
J:
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wheredy j = Pr(&j > A1| %) anddy j = Pr(&; > A1|77). Since the thresholds are
the same among the cognitive radios, we héyge= &> =--- = dm = &. Since
there is a one-to-one relationship betwégrand &y, by finding the optimaby, the
optimal A1 can be easily derived. As shown in Appendix 3.E, we can derive the op-
timal & asd = a'’M. We can confirm this result intuitively by considering the fact
that by maximizingd, 4y j is maximized and so igj, and the maximundy is equal

to a/M, which is independent from SNR. This result is very important in the sense
that as far as the feasible set of (2.16) is not empty, the optimal solution1d)(2

is independent from the SNR. Note that the maximum average energynaptisa

per sensor still depends on the SNR &g and is reducing as the SNR grows.

2.5 Summary and conclusions

In this chapter, a censoring scheme has been discussed wherersmteseploys a
censoring policy to reduce the energy consumption. We defined oulepras the
minimization of the maximum average energy consumption per sensor subject to a
global probability of false alarm and detection constraint for the AND ardaR
rules. The optimal lower threshold is shown to be zero for the censoriragrse in
case of the OR rule while for the AND rule the optimal upper threshold is stiown
be infinity. Further, an explicit expression was given to find the optimaltisoldor
the OR rule and in case of the AND rule a closed form solution has beerederi

The fixed-sample size censoring scheme which has been presented irafiterc
is used as a benchmark in the following Chapter, where a combination afroemns
and sequential sensing approaches is discussed which optimizes bathsimgsand
the transmission energy.
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Appendix 2.A  Optimal solution of (2.10)

Since the optimal; = 0, (2.8) and (2.9) can be simplified & ; = 1 — P and
01,j = 1—Pyj and so (2.10) becomes,

min mjax[ NGsj + (ToPs + 1Py )Ct j ]
2

st.1-(1-P)M <a, 1—|M|(1—Pd7,-)z[3. (2.19)
=1

Since there is a one-to-one relationship betwesandPs, i.e., A = 2F*1[N, (N)Px]
(wherel 1 is defined over the second argument), (2.19) can be formulated as [46,
p.130],

n;in max; [ NCsj + (ToPs + 8Py )G |

(2.20)
st.1-(1-P)M<a, 1-ML,(1-PRyj) > B.

- X M(N.5525) _
DefiningPs = F(A2) = % andPy j = Gj(A2) = # we can writePy j as
Ps.j = Gj(F~1(Py)). Calculating the derivative &; with respect td?, we find that

0C;  0|Cij(ToPr + 18Py )] 0Py
fatd I : LIS Ry g A 74, 2.21
Py oP; CLmt o = (2.:21)

where we use the fact that

oRyj  — ( )Zr YN, (NP N2 NN )Pf}/z(lﬂlj)|{2rfl[N7r(N)Pf}20}
o erl FLN, (NP N2 INTNIP2] oy ey 0)
— NN Pf] 1/2(1+%)-1/2) > q, (2.22)

Therefore, we can simplify (2.20) as

min Ps
Pr (2.23)
st.1-(1-P)M<a, 1-ML(1-Pyj) > B.

which can be easily solved by a line search deerHowever, sinc&g is a mono-
tonically increasing function d®;, i.e.,Qg = H(Pf) =1— |‘|'JV':1(1— Gj(F1(Pr)))
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9Q8 _ 9Q8 0Py, _ Ry _
and thusa%f = al%),- Gk = Mi=Y\;(1—Pa) Gt > 0, we can further simplify the

constraints in (2.23) a& < 1— (1— a)YM andP; > H~1(B). Thus, we obtain

min Ps
Pr

(2.24)
StP<1—(1—a)¥M P >H1B).

Therefore, if the feasible set of (2.24) is not empty, then the optimal solistigimen
by Pr = H=%(B).






Chapter 3
Censored Truncated Sequential Sensing

Abstract

A censored truncated sequential spectrum sensing teahmsqeonsidered as
an energy saving approach. To design the underlying sensrgmeters, the
maximum average energy consumption per sensor is minirsizgiéct to a
lower bounded global probability of detection and an uppeuihded false
alarm rate. This way both the interference to the primaryruhge to miss
detection and the network throughput as a result of a lowefaklrm rate
are controlled. To solve this problem, it is assumed thatdbgnitive radios
and fusion center are aware of their location and mutual ar&mroperties.
We compare the performance of the proposed scheme with asfixeple size
censoring scheme under different scenarios and show th&viepower cog-
nitive radios, censored truncated sequential sensing exfdpms censoring.
It is shown that as the sensing energy per sample of the ¢ogmédios in-
creases, the energy efficiency of the censored truncatatesgal approach

grows significantly.

3.1 Introduction

As in Chapter 2, a hard combining cooperative spectrum sensing teehrdged on
the OR and the AND rule is considered in this chapter. Further, as in thefrémst
thesis, energy detection is employed for channel sensing.

As mentioned earlier, energy consumption is a critical issue in cognitive radio
networks. The maximum energy consumption of a low-power radio is limited by
its battery. In this chapter, we are focusing on designing an energyeeffialgo-
rithm for spectrum sensing. The spectrum sensing module consumegy @nboth
the sensing and transmission stages. In the previous chapter, we hadeden a
technique in order to reduce the transmission energy. To achieve a bettgy-e
efficiency, in this chapter and also in Chapter 4, we try to reduce botlngeasd
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transmission energy.

A combination of censoring and truncated sequential sensing is profmsade
energy. The sensors sequentially sense the spectrum before readhimgation
point, N, where they are forced to stop sensing. If the accumulated energy of the
collected sample observations is in a certain region (above an upperdiarestor
below a lower thresholdy) before the truncation point, a decision is sent to the FC.
Else, a censoring policy is used by the sensor, and no bits will be sentwaiisa
large amount of energy is saved for both sensing and transmission. th#peer, it
is assumed that the cognitive radios and fusion center are aware of ttaiotoand
mutual channel properties.

Our goal is to minimize the maximum average energy consumption per sensor
subject to a specific detection performance constraint which is definedidyer
bound on the global probability of detection and an upper bound on thalglodb-
ability of false alarm. In terms of cognitive radio system design, the probabiiity
detection limits the harmful interference to the primary user and the false adéem r
controls the loss in spectrum utilization. The ideal case yields no interieremt
full spectrum utilization, but it is practically impossible to reach this point. Hence
current standards determine a bound on the detection performanceaeweeaah ac-
ceptable interference and utilization level [8]. To the best of our knaydesiich a
min-max optimization problem considering the maximum average energy consump-
tion per sensor has not yet been considered in literature.

3.1.1 Related work to sequential sensing

Sequential detection as an approach to reduce the average numbesafsses-
quired to reach a decision is also studied comprehensively during thelgeesdes
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42443 In the context
of distributed detection, the sensor observations are either spatially or raippo
collected until the system comes up with a final decision [14], [35]. Intrittsiev-
ery sequential sensing scheme, is a stopping rule and a terminal decisioit e
stopping rule is a function that determines when to stop collecting observatiohs
therefore is a random variable. The terminal decision rule dictates whibiaie
has to be made after the sequential test has stopped [35]. Since eithetivicuad
sensors or the FC can control the sequential test, two types of sequitéation
can be recognized. When the FC manages the sequential test, [28]3[E0]34],
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[37], [40], [36], it either makes a decision or asks the sensors to sereiv result.
When the sequential test is carried out at the sensors, each seoasouates the
samples sequentially and makes a decision about the presence or theeaiitbe
target and then sends a binary decision to the FC [44], [38], [27], [BBe other
way to categorize sequential detection problems is based on the maximum number
of samples that can be collected. In this context, we can distinguish betwieen in
nite horizon and finite horizon (or truncated) sequential detection [3d]r&hader is
referred to [14], [34] for a thorough analysis of distributed sequedétection). In

[34], [33], each sensor collects a sequence of observationstrgotssa summary
message and passes it on to the FC and all other sensors. A Baye$ikmpiar-
mulation comprising the minimization of the average error detection probability and
sampling time cost over all admissible decision policies at the FC and all possible
local decision functions at each sensor is then considered to determioptiimal
stopping and decision rule. Further, algorithms to solve the optimization prdbfem
both infinite and finite horizon are given. This chapter is different fr84] fnd [33]

in the sense that we first consider a sequential detection scheme ateaohand
assume no communications among the sensors. Second, the optimization pnoblem
this chapter is an energy optimization problem and is constrained, while i{$3}]

the problem is different and is unconstrained. In [36], an infinite hore@guential
detection scheme based on the sequential probability ratio test (SPRTthahbo
sensors and the FC is considered. Wald's analysis of error probapibly,is em-
ployed to determine the thresholds at the sensors and the FC. Our sers@ntess
different, since we consider a truncated sequential detection and eshttds are
determined based on an energy optimization problem which do not lead toswald’
thresholds. The design of a distributed sequential detection network asdenmu-
nication bandwidth constraint is considered in [37]. Each sensor seqdantized
version of its observation to the FC and then the SPRT is employed to make the de-
cision to stop or carry on sensing. The problem is formulated as to deterngine th
distribution of the bandwidth among the sensors, the quantizer design, ekdth
decision policy in order to minimize the average sample number (ASN). Incairpo
ing [37] to increase the throughput of a cognitive radio system can @enesting
area of future research. [32] presents a distributed sequentighgeaheme where
each sensor performs an SPRT and makes a decision. The decision $&the¢a

the FC and the FC announces the first incoming decision as the global decisio
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Henceforth, the global probability of detection and false alarm is equaktortles
at each sensor. This scheme can also be exploited to reduce the senkiegart-
ing time of the cognitive radio network thereby increasing the network timowiy
while decreasing the energy consumption. A combination of sequentialtidatec
and censoring is considered in [42]. Each sensor computes the LLR oétkived
sample and sends it to the FC, if it is deemed to be in a certain region. The FC then
collects the received LLRs and as soon as their sum is larger than anthpgsh-
old or smaller than a lower threshold, the decision is made and the sens@t®pan
sensing. The LLRs are send in such a way that the larger LLRs arssamér. It is
shown that the number of transmissions considerably reduces and lzalgiethen
the listening cost is high, this approach performs very well. However, tiapter
employs a hard fusion scheme at the FC, our sequential scheme is finitenharizio
further a clear optimization problem is given to optimize the energy consumption.
[31] proposes a sequential censoring scheme where an SPRT is echblotfe FC
and soft or hard local decisions are sent to the FC according to argempolicy. It

is depicted that the number of transmissions decreases but on the ottighé &SN
increases. Therefore, [31] ignores the effect of listening on theggrm®nsumption
and focuses only on the transmission energy which for current lovepoadios is
comparable to the sensing energy. In this chapter, we consider they eridrgth
sensing and transmission and optimize the overall energy consumed byesescin.
Further, since our sequential scheme is truncated, a decision will alveaysade
by the FC, while in [31], the FC may not reach a decision in a reasonable time. Fi-
nally, the system in [31] asymptotically reaches a specific detection penficeres
the number of sensors grows, but this incurs a high total energy cotisuanby the
system. As shall be shown later on, in our sequential censoring schesreneltgy
consumption saturates when the number of cognitive radios increag¢sofsid-
ers a distributed sequential sensing scheme where each sensor emel&®RRh
and upon reaching a decision, a binary result is sent to the FC. The R@htdes a
final decision using a K-out-of-M rule. It is shown that for the same diete@rror
probability, the detection performance of this sequential scheme is bettdixbadn
size sampling and furthermore the observation energy is proven to be IG\er
optimal sensing thresholds are found by an iterative algorithm that soBagesian
risk problem.

Sequential spectrum sensing is also considered for cognitive radgndesn
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infinite horizon SPRT is employed in [41], [40], [39], [30] for differfesensing
techniques. It is shown that the sensing time dramatically reduces when employ
ing sequential detection. The optimization of cognitive network throughpdiéiua
constraint on the miss-detection probability is solved in [28], [29] in orddini

the optimal stopping and access policies. This approach is infinite horizan wh

is a not a valid assumption considering the limited sensing time of cognitive radios.
Further, a binary result has to be sent to the FC for each collectedvatisarsample
which entails a high transmission energy consumption. Nevertheless, thidewu
optimization problem is matched to the cognitive radio system requirements and an
extension of [28] for the finite horizon case can also be considered27in the
sensing thresholds that minimize the ASN are derived subject to a constnatime

false alarm rate, miss-detection probability, outage probability and intadetevel.

This method is particularly designed for systems with real-time traffic. A trudcate
sequential sensing technique is employed in [44] to reduce the sensing tincegf
nitive radio system. The thresholds are determined such that a certaabitytof

false alarm and detection are obtained. In this chapter, we are employimgjar s
technique, except that in [44], after the truncation point, a single thigsbbeme is
used to make a final decision, while in this chapter, the sensor decisiorsisrednif

no decision is made before the truncation point. Further, [44] considengke sen-

sor detection scheme while we employ a distributed cooperative sensinghsyste
finally, in this chapter an explicit optimization problem is given to find the sensing
parameters.

3.1.2 Organization

The remainder of this chapter is organized as follows. In Section 3.2, thestal
censoring scheme system model and problem formulation for the OR rubdytAn
ical expressions for the underlying system parameters are derideth@optimiza-
tion problem is analyzed in Section 3.3. In Section 3.4, sequential censcheges
are presented and analyzed for the AND rule. We discuss some nunmeschs in
Section 3.5. Conclusions are finally posed in Section 3.6.
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3.2 System Model and Problem Formulation

Unlike Chapter 2, where each user collects a specific number of sampliss in
section, each cognitive radio sequentially senses the spectrum andeagubring

a decision about the presence or absence of the primary user, it thendssult

to the FC by employing a censoring policy as introduced in Chapter 2. The final
decision is then made at the FC by employing the OR rule. The AND rule will
be covered in Section 3.4. Here, a censored truncated sequentialgsstiseme is
employed where each cognitive radio carries on sensing until it reactesision
while not passing a limit oN samples. We definé,j = ST, |rij|2/02 = 311 X;j
anda =0,i=1,....p, 8 =a+iA, i = p+1,..,Nandb =b+iA, i =1,...,N,
wherea=a/02, b=b/02, 1< A <1+ yj is a predetermined constaat< 0,b > 0

andp = |—a/02/| [44]. We assume that the SNRis known or can be estimated.
This way, the local decision rule in order to make a final decision is as follows

send 1, declaring7; if {nj >bnandne [1,N],

continue sensing i€nj € (an,bn) andn € [1,N), (3.1)
no decision if¢nj € (an,bn) andn=N, '
send 0, declaring? if {nj <apandne [1,N].

Fig. 3.1 depicts (3.1) schematically.

The probability density function ofj = |ri;|?/02 under.#% and ./ is a chi-
square distribution with 2 degrees of freedom. Thygsbecomes exponentially dis-
tributed under both# and.77 . Henceforth, we obtain

1 .
Pr(xj| %) = ée—Xu/2|{y“.j20}, (3.2)
1 v .
Pr(xj|74) = me XlJ/2(1+VJ)|{XijZO}’ (3.3)

wherel . >0, is the indicator function.
Defining {oj = O, the local probability of false alarm at theth cognitive radio,
Pt,j, can be written as

N
Prj = lef(foj' € (ag,bo), ..., {n-1j € (an—1,bn-1),{nj > bn|74), (3.4)
n—

whereas the local probability of detectid,j, is obtained as follows

N
Paj = zlpf(foj' € (ag,bo), ..., {n-1j € (@n—1,bn-1),¢nj > bn|74). (3.5)
n=



3.2. System Model and Problem Formulation 43

an A

L
v
©
©
o \
©
z
Y
5

Figure 3.1 Truncated sequential sensing procedure

Denotingp; to be the average censoring rate at gl cognitive radio, andy
anddy j to be the respective average censoring rate uspeand.”71, we have

pj = Tod,j + o j, (3.6)

where
dj] = Pr(Z]-] € (al)bl)a“'vaj S (aNabN)‘%)a (37)
81j = Pr({1j € (a,ba), ., dnj € (@, bu)| J4). (3.8)

The other parameter that is important in any sequential detection scheme is the
average sample number (ASN) required to reach a decision. Dendtitmbe a
random variable representing the number of samples required to stopgsearsd
this includes announcing the presence or absence of the primary Uees bee
truncation point or reaching the truncation point where the sensing autathatic
stops, the ASN for thg-th cognitive radio, denoted a\_ﬁzE(Nj), can be defined as

N; = 0E(N;|.#%) + RE(N;|4), (3.9)



44 3. Censored Truncated Sequential Sensing

where
N
EIN) = 3 nPr(N; = nlg)
n=1
N-1
= Z n[Pr({oj € (ag,bo), ..., {n-1j € (@n—1,bn-1)|70)
- (ZOJ € (ag, bo), .- lnj € (an,bn)| )]
+ NPr(loj € (a0,bo),...,{n-1j € (an-1,bn-1)|7%), (3.10)
and

N
EMNiIA) = 3 nPr(N; =n|A)
=1
N—1
= Z n[Pr( ZOJ € (ao,bo), .. lnj € (@8n-1,bn-1)|4)

 Pr(Zo; € (30,b0)s Gy € (3o b))
+ NPr({oj € (a0, b0), ..., {n-1j € (an-1,bn-1)]771). (3.11)

Denoting agairCsj to be the sensing energy of one sample @ngdto be the
transmission energy of a decision bit at théh cognitive radio, the total average
energy consumption at thjeth cognitive radio now becomes

Cj=NCsj+(1—pj)C,j- (3.12)

DenotingQg® andQg’ to be the respective global probabilities of false alarm and
detection for the censored truncated sequential approach, we defipeoblem as
the minimization of the maximum average energy consumption per sensor gabject
a constraint on the global probabilities of false alarm and detection as fllow

stQE<a, QF>p. (3.13)

As in (2.11) and (2.12), under the OR rule that is assumed in this section, the
global probability of false alarm is

M
QF* = Pr(Drc = 1|7%0) = 1— [ (1-Pr ), (3.14)
=1
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and the global probability of detection is
M
Q= Pr(Drc = 1]74) =1 [0~ Fu). (3.15)
=

Note that sincé 1 = --- = P v, it is again assumed thB% j = Ps in this section.
In the following subsection, analytical expressions for the probabilityatsfef
alarm and detection as well as the censoring rate and ASN are extracted.

3.3 Parameter and Problem Analysis

Looking at (3.4), (3.5), (3.6) and (3.9), we can see that the joint fnibtyadis-
tribution function of p({1j,...,¢nj) is the foundation of all the equations. Since
Xij = Zij — Ziflj fori= 1,....N,we have,

p(511775nj) = p(ZZjJ7an’ZlJ)p(Zl])
= p(3js---,¢njl 1y, {2j) P({2j1{1j) P({1))

= P(&njldajs -, Cn-1j)---P(41)
= p(*nj)P(Xn—1j)---P(X1})- (3.16)

Therefore, the joint probability distribution function und&t and.”1 becomes

1,

P(Cajs-s Cnl ) = € D2 o<ty <t <t} (3.17)
1 e _

p(ZJ.]?aZnJL%.) = [2(l+%)7]ne an/2(1+y1)I{ngljSZijSan}? (318)

wherel o<z, <z,,..<z,;} IS @gain the indicator function.

The derivation of the local probability of false alarm and the ASN und@r
in this chapter are similar to the ones considered in [44] and [43]. Theeliite
is that in [44], if the cognitive radio does not reach a decision aftessamples, it
employs a single threshold decision policy to give a final decision aboutéisepce
or absence of the cognitive radio, while in this chapter, no decision isiseaise
none of the upper and lower thresholds are crossed. Hence, to atroducing a
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cumbersome detailed derivation of each parameter, we can use the reptdisan

our analysis with a small modification. However, note that the problem formalatio

in this chapter is essentially different from the one in [44]. Further, sinddigm
chapter the distribution of; under.7; is exponential like the one undefp, unlike
[44], we can also use the same approach to derive analytical expressighe local
probability of detection, the ASN unde#i, and the censoring rate.

DenotingE, to be the event wherg < g < by, i =1,...,n—1 and{yj > by,
(3.4) becomes

N
Prj= Y Pr(Enl%). (3.19)
n=1

where the analytical expression fer(E,|7%) is derived in Appendix 3.A.
Similarly for the local probability of detection, we have

N
Paj= ) Pr(Enl4), (3.20)
n=1

where the analytical expression fer(E,|.771) is derived in Appendix 3.B.
DefiningRyj = {&ij|¢ij € (ai,bi), i =1,...,n}, Pr(Raj|2%) andPr(R,j|.7##1) are
obtained as follows

1
Pr(Rnj|#0)

vl
-
[2(1+y)I"

WhereJ;:?bn(G) is presented in Appendix 3.C and (3.10) and (3.11) become

A (1/2), n=1,...N, (3.21)

Pr(Rnj|.#4) = A (1/2(1+y)), n=1,...,N, (3.22)

N-1
E(Nj|76) = 3 n(Pr(Ry1j[.48) — Pr(Ruj|.#8)) + NPr(Ry_1;|-75)
n=1
N—1
=1+ 3 Pr(Raj|- %), (3.23)
n=1
N
E(Nj|74) = $ n(Pr(Ry-1j|.74) — Pr(Raj|.74)) + NPr(Ry_1|.74)
n=1
N—-1

=1+ Y Pr(Rnj|4). (3.24)
n=1
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With (3.23) and (3.24), we can calculate (3.9). This way, (3.7) and (au8)e
derived as follows

&, = Pr(Ruj|2%) = ziNJé,'j,)bN(l/Z), (3.25)
1
81 = Pr(Ryj|4) = WJQLN(MZ(L& Vi) (3.26)

We can show that the problem (3.13) is not convex. Therefore, thela@n
systematic optimization algorithms do not give the global optimumaf(am(TB.
However, as is shown in the following Iinea,aﬁdBare bounded and therefore,
a two-dimensional exhaustive search is possible to find the global optimuist. Fir
of all, we havea < 0 anda < 0. On the other hand, & has to play a role in the
sensing system, at least oagshould be positive, i.eay = a+ NA > 0 which gives
a> —NA. Hence, we obtair-NA < a < 0. Furthermore, definin@f® = .7 (a, 5)
andQS = ¥(a,b), for a givena, it is easy to show tha¥ ~1(a,B) <b< .7 (a a)
(where.Z 1 and¥ ! are defined over the second argument).

Before introducing a suboptimal problem, the following theorem is presented

Theorem 1For a given local probability of detection and false alaBpandPx)
andN, the censoring rate of the optimal censored truncated sequential s€p%ing
is less than the one of the censoring schep¥ (

Proof. The proof is provided in Appendix 3.D.

We should note that, in censored truncated sequential sensing, a largatamo
of energy is to be saved on sensing. Therefore, as is shown in Sedsioas3the
sensing energy of each sensor increases, censored truncatedtsdgensing out-
performs censoring in terms of energy efficiency. However, in caddhbarans-
mission energy is much higher than the sensing energy, it may happenribatiog
outperforms censored truncated sequential sensing, because dfea bémpsoring
rate (0 > p€). Hence, one corollary of Theorem 1 is that although the optimal
solution of (2.10) for a specifitl, i.e.,Py = 1— (1— B)YM andP; = H1(B), is
in the feasible set of (3.13) for a resulting ASN less thigrit does not necessarily
guarantee that the resulting average energy consumption per setisercehsored
truncated sequential sensing approach is less than the one of theingissbeme,
particularly when the transmission energy is much higher than the sensirgyene
per sample.

Solving (3.13) is complex in terms of the number of computations, and thus
a two-dimensional exhaustive search is not always a good solutiorrefdohe, in
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order to reach a good solution in a reasonable time, wea set-NA in order to
obtaina; = --- = ay = 0. This way, we can relax one of the arguments of (3.13) and
only solve the following suboptimal problem
min maxC;
b
st.QF<a, Q5> B. (3.27)

Note that unlike Section 2, here the zero lower threshold is not necesspatiiiyal.
The reason is that although the maximum censoring rate is achieved with thet lowe
a, the minimum ASN is achieved with the highestand thus there is an inherent
trade-off between a high censoring rate and a low ASN, and agédsonot nec-
essarily the optimal solution. Since the analytical expressions providédreae
very complex, we now try to provide a new set of analytical expressmrdifferent
parameters based on the fact that=--- = ay = 0.

To find an analytical expression fBf ;, we can derivé\(n) for the new paradigm
as follows

A(n) :/---/'{oszljszzj...sznflj}dzl,-...dznflj- (3.28)
Mn
Since 0< {1j < {j... < {n-1j anday = --- = ay = 0, the lower bound for each
integral is¢;_1 and the upper bound s, wherei = 1,...,.n— 1. Thus we obtain
by pbo bn-1
A(n) = / / / d21;dZ2;...dn 1, (3.29)
JQoj J{1j Y n2j
which according to [43] is
_ bz
A(n)_m, n=1..N. (3.30)
Hence, we have
N
Prj= " pnA(n), (3.31)
n=1

andpp = e;%f Similarly, for Py j, we obtain

b1 rby bn-1
B(n) = / / / dd1jddj...d¢n-1;
Qoj /4y {n-2j

blbﬂ_z
= g =N (3.32)
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and thus N
Paj =) anB(n), (3.33)
n=1
g bn/2(1+yj)
whereq, = 2T Furthermore, we note that fag = --- = ay = 0, A(n) =
b bn—Z
B(n) = ﬁ, n=1,...,N.

Itis easy to see thdk,; occurs underry, if no false alarm happens until timeth
sample. Therefore, the analytical expressiorF(R,j|.7%) is given by

Pr(Rojl #8) =1~ 5 PA(D). (3.34)
and in the same way, f&?r(R,;|.7#1), we obtain
Pr(Raj[-7#1) = 1— _Zin(i). (3.35)
Putting (3.34) and (3.35) in (3.23) and (3.24), we obtain

N—-1 n
E(N;j|7%) =1+ 1- Al ¢, 3.36
M) =1+ 5 {1-5 pA) | (336)

N-1 n
E(Nj|7A4) =1+ {1— A }, 3.37
(Nj|71) n; i;q (i) (3.37)

and inserting (3.36) and (3.37) in (3.9), we obtain

N = 7o 1+Nzl 1—5 oA Y | +m 1+NZ1 1—; gAY ). @38
3 {120 Jon(re 5 {13 an0}

Finally, from (3.34) and (3.35), the censoring rate can be easily obtamed

pj = %(12 IOiA(i)> +m <1§1in0)) (3.39)

Having the analytical expressions for (3.27), we can easily find the optiras
imum average energy consumption per sensor by a line searctbo&milar to
the censoring problem formulation, here the sensing threshold is alsalddiny
Qs (a) < b < Q% 1(B). As we will see in Section 3.5, censored truncated se-
guential sensing performs better than censored spectrum sensing irofexnegy
efficiency for low-power radios.
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3.4 Extension to the AND rule

So far, we have focused on the OR rule. However, another rule whatkassimple
in terms of implementation is the AND rule. According to the AND ridgc = 0,
if at least one cognitive radio reports a zero, dlge: = 1. This way the global
probabilities of false alarm and detection, can be written respectively as

M

QEanp = Pr(Drc = 1|.7%) = rl(éo,j +Prj), (3.40)
J:
M

QB anp = Pr(Drc = 1|74) = I_L(él.j +Pyj). (3.41)
1=

Similar to the case for the OR rule, the problem is defined so as to minimize the
maximum average energy consumption per sensor subject to a lower bouhd
global probability of detection and an upper bound on the global probabiligise
alarm.
The optimization problem for the censored truncated sequential sensiegnec

with the AND rule, becomes

min maxC;

ab i

s.t. QEanp < @, Qb anp = B- (3.42)

whereC; is defined in (3.12). Similar to the OR rule, we havBlA < a < 0. Defin-
ing QEanp = ZAND (&, b) and B.AND = ZAND (&, b), for a givena, we can show that
Gl (@ B) <b < Zb (& a) (whereZ L, and%,k, are defined over the second
argument). Therefore, the optimhﬁdt;can again be derived by a bounded two-
dimensional search, in a similar way as for the OR rule. Note that, as {DRele,
single threshold detection is not necessary optimal for the AND rule in cetiso
truncated sequential sensing. However, to decrease the computatornaegity, a
sub-optimal line search with a single threshold is possible. In this case,lthede
parameters can be obtainedlipy- .

3.5 Numerical Results

A network of cognitive radios is considered for the numerical resultssome of
the scenarios, for the sake of simplicity, it is assumed that all the sengmsence
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the same SNR. This way, it is easier to show how the main performance indica-
tors including the optimal maximum average energy consumption per serShr, A
and censoring rate changes when one of the underlying parameters sfstem
changes. However, to comply with the general idea of the paper, whiasedlon
different received SNRs by cognitive radios, in other scenariogjitfexent cogni-

tive radios experience different SNRs. Unless otherwise mentionedeshés are
based on the single-threshold strategy for censored truncated satjgensing in
case of the OR rule.

In Fig. 3.2 the maximum energy consumption per sensor is optimizey for
0dB,0.1<B <1,M=5,Csj=1andC; =10,a =0.1, andrp = 0.2, 0.8, and it is
compared with the reference energy consumption where only censoanpisyed
by the cognitive radios. As we can see, the proposed censoredtedresguential
scheme reduces the maximum energy consumption per sensor for bothddwghn
o as well as over the whole range of the detection probability constraint. dfpitth
is shown that the censored sequential scheme gives a higher erfaigyey than its
censoring counterpart, particularly at high probability of detections.dlsis shown
that asrp increases, the maximum energy consumption per sensor decreases mainly
due to a higher censoring rate.

Fig. 3.3 shows the optimal censoring rate veigdiar the same scenario. Clearly,
it is shown that the optimal censoring rate for highgris higher and further it is
shown that the optimal censoring rate is slightly higher for censoring tharefo
sored sequential sensing.

The optimal ASN versug for the scenario of Fig. 3.2 is shown in Fig. 3.4.
We can see that ag increases the optimal ASN also increases which is expected
due to the smaller probability of primary user appearance. Further, if ti@pility
of detection increases, the ASN decreases, because the thrbstdtaver for the
higher detection rates and thus, cognitive radios sooner reach a decisio

Fig. 3.5 depicts the optimal maximum average energy consumption per sensor
versus the number of cognitive radios for the OR rule. The SNR is asstorizsl
0dB,N =10,Cs =1 andC; = 10. Furthermore, the probability of false alarm and
detection constraints are assumed tabe 0.1 andf3 = 0.9 as determined by the
IEEE 802.15.4 standard for cognitive radios [8]. It is shown for batjin land low
values ofp that censored sequential sensing outperforms the censoring scheme.
Looking at Fig. 3.6 and Fig. 3.7, where the respective optimal censoategand
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Figure 3.2 Optimal maximum energy consumption per sensor vesus

optimal ASN are shown versus the number of cognitive radios, we cancdetiat
the lower ASN is playing a key role in a lower energy consumption of the cedso
sequential sensing. Fig. 3.5 also shows that as the number of coopeaginitive
radios increases, the optimal maximum average energy consumption per den
creases and saturates, while as shown in Fig. 3.6 and Fig. 3.7, the optirsaling
rate and optimal ASN increase. This way, the energy consumption tendsdasec
as a result of ASN growth and on the other hand inclines to decrease theden-
soring rate growth and that is the reason for saturation after a numbegbitive
radios. Therefore, we can see that as the number of cognitive radieasges, a
higher energy efficiency per sensor can be achieved. However,aahumber of
cognitive radios, the maximum average energy consumption per sensainezal-
most at a constant level and by adding more cognitive radios no signiéoangy
saving per sensor can be achieved while the total network energyraptisa also



3.5. Numerical Results 53

0.9

o
[e]

—A— sequential censoring, m,=0.8

Optimal censoring rate
o
~

- @ =censoring, %:0.8

o
»
T

—@— Ssequential censoring, T%:O.Z
. =[= Censoring, r;0=0.2

0.5
04 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
B
Figure 3.3. Optimal censoring rate versfis
increases.

Figures 3.8, 3.9 and 3.10 consider a scenario where 5, N = 30,Csj =1,
C.,j=10,a =0.1, 3 = 0.9 andrp can take a value of.2 or 0.8. The performance of
the system versus SNR is analyzed in this scenario for the OR rule. The nmaximu
average energy consumption per sensor is depicted in Fig. 3.8. As featlier
scenario, censored sequential sensing gives a higher energgrefficompared to
censoring. While the optimal energy variation for the censoring scheme isttineo
same for all the considered SNRs, the censored sequential schesrageaenergy
consumption per sensor reduces significantly as the SNR increaseseddoa is
that as the SNR increases, the optimal ASN dramatically decreases (al®o&ii50
y =2 dB andrp = 0.2). This shows that as the SNR increases, censored sequential
sensing becomes even more valuable and a significant energy savsenger can
be achieved compared with the one that is achieved by censoring. SinS&ke
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Figure 3.4 Optimal ASN versug

changes with the channel gaifin{?> under the first model o:rrﬁ~j under the second
model), from Fig. 3.8, the behavior of the system with varyiing or o ; can be
derived, if the distribution ofh;|? or o7 is known.

Figures 3.11 and 3.12 compare the performance of the single threshelwtegn
truncated sequential scheme with the one assuming two thresholdsathTor
the OR rule. The idea is to find when the double threshold scheme with its higher
complexity becomes valuable. In these figulks=5, N =10,y=0dB,C =
10, ;p = 0.2, 0.8, anda = 0.1, while B changes from @ to 099. The sensing
energy per sampleCs in Fig. 3.11 is assumed 1, while in Fig. 3.12 it is 3. It is
shown that as the sensing energy per sample increases, the ena@ignp@ffof the
double threshold scheme also increases compared to the one of the siegfekthr
scheme, particularly wherg is high. The reason is that whemg is high, a much
lower ASN can be achieved by the double threshold scheme compared toglee s
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Figure 3.5 Optimal maximum average energy consumption per sensousensmber of
cognitive radios

threshold one. This gain in performance comes at the cost of a higheutatiopal
complexity because of the two-dimensional search.

Fig. 3.13 depicts the optimal maximum average energy consumption per sensor
versus the number of samples for the OR rule and for a netwoM ef 5 cogni-
tive radios where each radio experiences a different channel gditihas a different
SNR. Arranging the SNRs in a vectyr= [y1,..., |, we havey =[1dB, 2dB, 3dB,
4dB, 5dB]. The other parameters &e=1,C, =10, =0.5,a =0.1 andf = 0.9.
As shown in Fig. 3.13, by increasing the number of samples and thus thedgosal s
ing energy, the sequential censoring energy efficiency also inaeasgared to the
censoring scheme. For example, if we define the efficiency of the eshsoncated
sequential sensing scheme as the difference of the optimal maximum agesagg
consumption per sensor of sequential censoring and censoringdiivydihe opti-
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Figure 3.6. Optimal censoring rate versus number of cognitive radios

mal maximum average energy consumption per sensor of censoringfitienef/
increases approximately three times from 0.06 et 15) to 0.19 (forlN = 30).

In Fig. 3.14, the sensing energy per sampl€Js= 1 while the transmission
energyC; changes from 0 to 100. The goal is to see how the optimal maximum
average energy consumption per sensor changesGuitbr the or rule and for a
network ofM = 5 cognitive radios withy =[1dB, 2dB, 3dB, 4dB, 5dB]. The other
parameters of the network ale= 30, iy = 0.5, o = 0.1 andf3 = 0.9. The best
saving for sequential censoring is achieved when the transmissionyesergro.
Indeed, we can see that as the transmission energy increases tmmpade gain of
sequential censoring reduces compared to censoring. However,-pol@er radios
where the sensing energy per sample and transmission energy are umnsthelgame
range, sequential censoring performs much better than censoring inadeemsrgy
efficiency as we can see in Fig. 3.14.
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Figure 3.7 Optimal ASN versus number of cognitive radios for the OR rule

Fig. 3.15 depicts the optimal maximum average energy consumption per sensor
versus the sensing energy per sample for both the AND and OR rule. é-eakie
of simplicity and tractability, the SNRs are assumed the samblifer50 cognitive
radios. The other parameters are assumed thl bel10, C, = 10, ip = 0.5, y =
0dB,a =0.1 andB = 0.9. For both fusion rules, the double threshold scheme is
employed. We can see that the OR rule performs better for the low valu@s of
However, a<Cs increases the AND rule dominates and outperforms the OR rule,
particularly for high values ofs. The reason that the OR rule performs better than
the AND rule at very low values s is that the optimal censoring rate for the OR
rule is higher than the optimal censoring rate for the AND rule. Howevetsas
increases, the AND rule dominates the OR rule in terms of energy efficiareyod
the lower ASN.

The optimal maximum average energy consumption per sensor vy $sisn-
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Figure 3.8 Optimal maximum average energy consumption per sensaiv&nNR

vestigated in Fig. 3.16 for the AND and the OR rule. The underlying paramater
assumed to b€s=2,C =10,N=10,M =50,y=0dB,a =0.1 andf = 0.9.
It is shown that as the probability of the primary user absence increasasptimal
maximum average energy consumption per sensor reduces for the ORhildet
increases for the AND rule. This is mainly due to the fact that for the OR wae,
are mainly interested to receive a "1” from the cognitive radios. Thesetsrp in-
creases, the probability of receiving a "1” decreases, since the opténabring rate
increases. The opposite happens for the AND rule, since for the ANMDraceiving
a "0” from the cognitive radios is considered to be informative.



3.6. Summary and conclusions 59

1 T T T T T

0 _— S S > l

08y —A
2o 7I- ----- 8- - -0 - - a- - = B - - -0 = = -II
(o)) . .
< N —A— sequential censoring, T =0.8
5 06F '~ d 9T 1
0 ~ 0 —
< N —#— Censoring, T[0—0.8
o (e} . .
= 057 ‘N + =Q= ' sequential censoring, 1,=0.2 T
£ ~,
= N, . =[1— Censoring, T[O:O.Z
o L N
Q 04 ’o\

\ .
\ ’
0.3r O 1
',
o
0.2} e - -0
Ol 1 1 1 1 1
-4 -3 -2 -1 0 1 2
SNR

Figure 3.9 Optimal censoring rate versus SNR

3.6 Summary and conclusions

In Chapters 2 and 3, we presented two energy-efficient techniquesdognitive
sensor network. First, a censoring scheme has been discussedea&bhreensor
employs a censoring policy to reduce the energy consumption. Then aredns
truncated sequential approach has been proposed based on theat@ntwhcen-
soring and sequential sensing policies. We defined our problem as the naitiimiz
of the maximum average energy consumption per sensor subject to a gftobal
ability of false alarm and detection constraint for the AND and the OR rulég T
optimal lower threshold is shown to be zero for the censoring scheme irntdse
OR rule while for the AND rule the optimal upper threshold is shown to be infin-
ity. Further, an explicit expression was given to find the optimal solutioth®OR
rule and in case of the AND rule a closed form solution has been defechave
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Figure 3.10 Optimal ASN versus SNR for the OR rule

further derived the analytical expressions for the underlying paramigtehe cen-
sored sequential scheme and have shown that although the problentiswex, a
bounded two-dimensional search is possible for both the OR rule and tBerAlN.

Further, in case of the OR rule, we relaxed the lower threshold to obtain sdareh
problem in order to reduce the computational complexity.

Different scenarios regarding transmission and sensing energgipeiesas well

as SNR, number of cognitive radios, number of samples and detectiairparfce
constraints were simulated for low and high valuesgfand for both the OR rule
and the AND rule. It has been shown that under the practical assumfgtlow-o
power radios, sequential censoring outperforms censoring. Wéudtantbhat for high
values of the sensing energy per sample, despite its high computational gitynple
the double threshold scheme developed for the OR rule becomes more \attracti
Further, it is shown that as the sensing energy per sample increasearedrtpthe
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Figure 3.11 Optimal maximum avera?e energy consumption per sensaus/grebability
of detection constrainf}, for the OR rule an@s =1

transmission energy, the AND rule performs better than the OR rule, whilefgr
low values of the sensing energy per sample, the OR rule outperforms thaAél
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Figure 3.12 Optimal maximum average energy consumption per sensous/@rebability
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Figure 3.13 Optimal maximum average energy consumption per sensou@rgnber of
samples for the OR rule
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50 T T T T

—A&— sequential censoring, nO:O.S

—e— censoring, m,=0.5 il |

100

Figure 3.14 Optimal maximum average energy consumption per sensarsgemsmission
energy for the OR rule
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Appendix 3.A Derivation of Pr(Ep|.7/)

L e /2 we can write

Introducingly = {& < jj <bj, i=1,...,n—1} andp, = 5

N
Mo

_ pn/.../|{ogljgzzj“_gnflj}dzlj...dzn_l,-. (3.43)

n

DenotingA(n) = f‘r"f|{0§Z1j§ZZj~-~§Zn—1j}d51j~-d5n—lj’ we obtain

n

?rllbnl)zh niﬁ-l |
Am) =4 [T Bn2) ~ling Z” 3%2 &7 Pr(Eia| )], ndh
[fég 11 (bn-1) =30 wn 1 )(bn 1)2'e z PF(E|+1\%)] q+2
(3.44)

wheren} denotesn = x,x+1,...,y—1,y, and ag‘l = [ao,...,a—1]. Denoting
g to be the smallest integer for whidy < b; < by, andc andd to be two non-
negative real numbers satisfyinglOc < d, a,—1 <c<bjanda, <d,no=0, n,=
N1,....Nk], 0< N1 < ... < n, the functionsf,(,'?(Z) and the vectog. in (3.44) are
as follows

K 1 0 (z=n ) K
0= 213 LG

(9= i=0. k-1, k>1
f(k )
i = = 318 o (= )<, Y =1, (3.45)

[bi+1) ERE) bi+17 anriJrl) EREX) an*17c]7 NS [Oa n—-q-— 2]
q n—q—i
wInC: [bi+l""abi+lac]7 S [n_q_las_ 1] ’ (346)
—_——

n—i
bii1ln i, i€[sn—-2]

with sdenoting the integer for whichs < ¢ < bs; and f,(,?(Z) =1.
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Appendix 3.B  Derivation of Pr(E,|.7#7)

Introducingqy, = We*bn/z(”m, we can write

© 1 7 ,
PI’(En’%) = ///bn me an/2(1+y1)|{0§511§521Sznj}dZ].Jdzn]

qn/.../|{0§leSZZj,,.Sanlj}dzlj...dzn,lj. (3.47)
M

DenotingB(n) = j SN 0<q1j< 2. <20 1300402, 1 @ND USING the notations of Ap-

pendix 3.A, we obtaln

B(n) =
SLANIE
)
i—1 o biya
D (bn-1) — Vg 375 PR [2(14+ )€ Pr(Era )], 5

by

Y(by1) — S 10 by o) [2(24 y)) €™ Pr(Er ) 4)],

-1
n
[fg
[ n

% Yo s
(3.48)
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Appendix 3.C Analytical expression forJé:)bn(G)

Under@ >0, n>1and 0< {1j < ... < &nj, i € (a,by), i =1,...,n, the function
J‘,f:.)bn(e) is defined as (3.49), where using the notations of Appendix 3.A, we have
(3.50) with1(© = 1 and (3.51), [44].

n ) ) n-2
=_Zef'[f;g;"(an)e*9aﬂ f(n D (bn)e ] —1nzg Zganb , (3.49)

|<>[ekfnefebk+l zp;;e D (d)e 9] c< by, ke [0,n—2]

bk-%—lln k— |

) ) e
oag=1{ 1Wxrie[r, oo (OF éc f‘W (d)e ], c> by, ke [0,5-1]
|0 [gk e~ 00 50K fggglg:zfi (d)e%), ¢ > by, ke [sn—2

(3.50)

! . (3.51)

o _ fég><b>—|{n>2}z“ 2Bl 0) ne [1,q]
1) (bn) - znzfn'<b>u,n€[q+1,m>
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Appendix 3.D Proof of Theorem 1

Assume thaP; andPy are the respective given local probability of false alarm and
detection. Denoting® as the censoring rate for the optimal censoring scheme (2.24),
we obtain 1- p¢ = mP; + Py, and denoting®® as the censoring rate for the opti-
mal censored truncated sequential sensing (3.13), based on whatvdibcussed

in Section 2, we obtain 4 p® = (Pt +.%5(a b)) + m(Py + £ (&,b)). Note that
Z(a, 5), k = 0,1, represents the probability thgt < a,, n=1,...,N under. %
which is non-negative. Hence, we can conclude thatds > 1 — p® and thus

pC > pcs.
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Appendix 3.E  Optimal solution of (2.16)

Since the optimal; — =, (3.40) and (3.41) can be simplified @ 5, = &) and
QB anp = M}11 01} and so (2.16) becomes,
min mjax[ NGsj + (To(1— &) + m(1—81j))C ]

A

M
st <a, 16> 8. (3.52)
D j

Since there is a one-to-one relationship betweemnddy, i.e.,A; = 2 ~1[N, T (N) &
(wherel' 1 is defined over the second argument), (3.52) can be formulated as [46,
p.130],

ng(i)n mayj [ NCsj + (To(1— &) + m(1—31)))C j

(3.53)
st.&' <a, Mo >pB.

M (N, 5% )
Defining& = Fanp (A1) = r(NN )and511 GAND,j(/\l):$ we can write

01j asoyj = Ganp,j(F~ 1(&)). Calculating the derivative a; with respect tod,
we find that

oC; 0[Cj(m(1—&)+7m(1-3)))] 0(1-a1))
_— = : . = — i _ < . 4
where we use the fact that
9 _ ~ TN )2I' LN, T (N) &N -2 TINFNIRI/240)) o -4y 3103
@50 2Nr( )2[- 1[N r(N)50]Nflezrfl[N=r(N)5°V2|{zr—l[N;(N)ao}Zo}
& LN,F(N)&)(1/2(1+y))—1/2) > 0. (3.55)
Therefore, we can simplify (3.53) as
max &y
% (3.56)
sty <a, MMy0>B.
SinceQp anp IS @ monotonically increasing function &, i.e., Qg anp = Hanp (&) =

_ d 0Q¢ 00y = 7]
MiL1(Ganp i (Fanp (%)) and thus QD(;‘OND — 3%1*\:“0 % _ n:fM (5”)‘%01 >0,
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we can further simplify the constraints in (3.56) &s< a*M andé; ; > H1(B).
Thus, we obtain

mé?xéo

st.&<at™M & ;>H(P).
Therefore, if the feasible set of (3.57) is not empty, then the optimal solistigimen
by & = a/M(B).

(3.57)



Chapter 4

Combined Censoring and Sleeping

Abstract

In conventional distributed sensing approaches, as thedtiein performance
improves with the number of radios, so does the network gremmgsumption.
However, since cognitive radios are mostly low-power radite individual

energy consumption of each radio is a more critical issuaftie total energy
consumption. In the previous chapters, we have introductxled-size cen-
soring and a truncated sequential censoring scheme in aaeninimize the
maximum average energy consumption per sensor. In thigehape consider
a combined sleeping and censoring scheme as an energtffspectrum
sensing technique for cognitive sensor networks. Our ¢ibgds to mini-

mize the maximum energy consumption per sensor subjecnhiiramts on

the detection performance, by optimally choosing the shgeand censoring
design parameters. The constraint on the detection pedoo® is given by
a minimum target probability of detection and a maximum pssible proba-

bility of false alarm. Depending on the availability of priknowledge about
the probability of primary user presence, two cases are icemed. The case
where a priori knowledge is not available defines the blintiggotherwise

the setup is called knowledge-aided. By considering a semstavork based
on IEEE 802.15.4/ZigBee radios, we show that significantggngavings can
be achieved by the proposed scheme.

4.1 Introduction

In this chapter, we consider a distributed spectrum sensing system ciomgfs
a fusion center (FC) and a number of cognitive sensors that carrgemsing in
dedicated, periodic sensing slots. Energy detection is used for spestnsing in
this chapter. The sensing results of each cognitive radio are collectbe &C,
which makes a global decision on the occupancy of the channel usirsioa fule.
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Schemes based on soft and hard fusion have been considered irsthi2Qdqthe
reader is referred to [14] for an extensive treatment of distributedttietd. It has
been shown in [10] that the performance of hard fusion schemes is cabi@to that
of soft fusion schemes in a number of practical settings. We shall henceolimit
attention to hard decision based spectrum sensing, since the energy sestling
one bit per decision is smaller than sending multiple bits per decision for a soft
decision scheme.

We propose a combination of sleeping and censoring as an energy s&chg-
nism for spectrum sensing. In this scheme, when in sleep mode, eaclswattioes
off its sensing transceiver and incurs no observation costs or tranemissts. Cen-
soring involves transmitting detection results only when they are in a certain info
mation region. Our goal is to minimize the maximum average energy incurred by the
individual cognitive radios to perform spectrum sensing while maintaininiglaag
detection performance by determining the optimum sleeping and censoramgear
ters. The constraints on the detection performance are specified by a mitémgyahn
probability of detection and a maximum permissible probability of false alarm. We
consider two cases based on the availability of prior knowledge aboutdbalglity
of primary user presence. For the case that the prior probabilities asvaitable,
a blind setup is defined. When the prior probabilities are available, a kngeded
aided setup is described. Systematic algorithms for obtaining the optimum sleeping
and censoring parameters are proposed for both setups. We théstec@nsetwork
of IEEE 802.15.4/ZigBee radios to evaluate the efficiency of our prapbsskeme.
Resulting simulation results show that large energy savings can be obtaic@u-in
parison to traditional spectrum sensing schemes.

4.1.1 Related works

Censoring has been considered in the context of wireless sensorke&va cog-
nitive radios [17], [19], [20], [21], [22] and shown to be effeiin saving energy.
The design of censoring regions under different optimization settings defatie
detection performance has been considered in [19]-[22] for minimizafitheaniss
detection probability with constraints on the false alarm rate and the netwergyen
consumption. Further, [19], [20] and [22] consider minimization of the cli&te
error probability subject to the network energy consumption. The combimafio
sleeping and censoring was considered in [18], with the goal of maximizength
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tual information between the state of signal occupancy and the decisiofthte
fusion center. Censoring for cognitive radios is considered in [1 &re/a censoring
decision rule similar to our scheme is employed to reduce the number of bits sent
to the fusion center and so the bandwidth occupancy of the cognitivematimrk.

Our scheme is different in three ways. First, we consider a combinatideeyiag

and censoring and give closed-form analytical expressions forrtimpility of de-
tection and false alarm. Second, we give a clear problem formulation @edsey
algorithms to solve the problem in order to design the sensing parametersig/hich
not given in [17]. Third, in [17], only the knowledge-aided setup issidared for
analysis while we also consider the blind setup. Finally, the fusion centef7]n [1
makes no decision in case it does not receive any results from the gegmsters
which is ambiguous in the sense that the FC has to make a final decision adout th
presence (or absence) of the primary user. In this chapter, if nisesa reported

to the FC, we assume that the primary user is not present. A sleeping tezhniqu
is employed in [54] where the sleeping policy is controlled by learning from the
past channel observations. As shall be shown, the optimization probé=smisimg

from our work differ from these mentioned past works; we lay condisain the
detection performance while the maximum average energy consumptionnger se

is minimized.

4.1.2 Organization

The remainder of the chapter is organized as follows. In Section 4.2, sezilde
distributed spectrum sensing based on sleeping and censoring andkfterenergy-
efficient distributed sensing as an optimization problem for the blind and lkeclo®-
aided setups. Expressions for the global probability of detection areldidsm are
then derived in Section 4.3. In Section 4.4, the problem is analyzed atehsys
atic algorithms are proposed to solve the underlying optimization problemsttor bo
setups. We present numerical results to show the energy savings dbbgirike
proposed scheme in Section 4.6. Conclusions are drawn in Section 4.7.

4.2 System Model

The basics of the system model including the primary user signal distributiise,
channel gain and hypothesis definitions in this chapter are the same asthaon
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Chapters 2 and 3, which are introduced in Section 2.3 asin (2.1). Anyedetgctor
is employed by each cognitive sensor that calculates the accumulateg enerdy
observation samples. The received energy collected ove\ thieservation samples

at thej-th radio is given by
S rij]?

&= (4.1)

G o
Afterwards a censoring policy is employed at each radio [19], [22hsGeng

thresholdsA; andA; are applied at each of the radios. The range< &} < Az is

called the censoring region. At theth radio, the local censoring decision rule is

given as

send 1, declaring7i if & > Ao,
no decision ifAL < &) < Ag, 4.2)
send 0, declaring# if & <A1

It is well known that under the model (4.1, follows a central chi-square dis-
tribution with 2N degrees of freedom undefg and.7#1, [13].

Based on the above decision rule, the local probabilities of false alarrdexnd
tection can be respectively written as

(N
Pt j = Pr(&) > A2| ) =

(4.3)

and R
(N, ij)
r(N)
wherer (a,x) is the incomplete gamma function given bya,x) = [,”t3 letdt,

with I (a,0) =T (a).

In order to achieve more energy saving, on top of censoring, a slepplity is
applied. Each sensor turns of its sensing module with a sleeping rate déyqted
This way, we make sure that in average at each sensing pétied, )M users are
ON. DenoteCs j andG j to be the energy consumed by tjx#h radio in sensing per
sample and transmission per bit, respectively. Our cost function is then bivthe
average energy consumed per sensor as follows

Cj=(1-pu)(NGsj+GC j(1-pj)), (4.5)

wherep; = Pr(A1 < Ej < Ay) is denoted to be the censoring rate.

Pa,j = Pr(&j > A2l 71) = (4.4)
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We shall assume that # 0 andp; # 0. The sensing enerdys j constitutes the
energy consumed in listening and collecting one observation sample. Thmisan
sion energyC ; is the energy required to transmit the one-bit local decision to the
FC.

DenoteQp andQr to be the respective global probability of detection and false
alarm. The target detection performance is then quantifieddpy< a andQp >
B. Here,a and are pre-specified detection design parameters. In practice, it is
desirable to have close to zero an@ close to unity. These conditions respectively
ensure that the cognitive sensor network can exploit empty channetisammtimary
users are not interfered with. Our goal is to determine the optimum sleefdmg ra
p and the censoring thresholds and A, such that mayC;j in (4.5) is minimized
subject to the constrain@@: < a andQp > . Note thatp; is a function ofA; and
A2. Hence our optimization problem can be formulated as follows:

min max;C;j
HALA2 (4.6)
stQr<a, Qo > .

Depending on the prior knowledge about the respective prior probagilitje=
Pr(s#) andm = Pr(.777), of the hypotheses?p and.7#3, we consider two different
cases.

4.2.1 Blind Problem Formulation

First, we assume thaiy andr are unknown, and thag is much smaller thamp,
reflecting channel under-utilization. Therefore, we assuge> 1. In this case,
we can follow the definition of [22] for the censoring rate under the blingirien-
Pearson (NP) setup

pI" =Pr(AL < & < Aol ).

Using (4.3), we may writp” as

w TN TN
PEETTN) T TN

4.7)

where we can sep]P = pMP = ... = pllP = pNP_ This way we obtairC; = C; =
.-+ = Cy = CNP DenotingQR” and QN to be the respective global probability of
detection and false alarm under the blind setup, (4.6) becomes
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min CNP
H,ALA2 (4.8)
st.QfF <a, Q§F > B.

4.2.2 Knowledge-Aided Problem Formulation

Here, we assume tha and g are known. In practice, estimates igf and g can
be obtained via spectrum measurements. In this case, we can follow thidatetn
[22] for the censoring rate under the knowledge-aided BayesiaretBps

pP = Pr(Ai< & <Ay
= TOPr(A1 < & < A2l %) + mPr(AL < &) < A2|74)
= Top,j+ ] (4.9)

wheredp j andd, j can be written using (4.3) and (4.4) as

&) = Pr(d1<&) <)
MN,A) (N %)
= TR TR (4.10)
Suj = Pridi<é& <))
A A
_ TNoorrtyy) TN oriyy) (4.11)
r(N) riNy |

DenoteQB andQE to be the respective global probability of detection and false
alarm under the knowledge-aided setup. Hence, our optimization proldeomites

min max; C?
H,A1,A2 (412)
stQE<a, Qg >p.

In the following section, we derive analytically the expressions@gF, QN
B B
Qp andQEg.
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4.3 Detection Performance Analysis

Each cognitive radio that is awake listens to the channel in dedicated gestsis.

An awake cognitive radio computes the received signal energy anlliyloezides

on the presence or absence of the licensed system based on the dedsioi.2).

If it comes up with a decision, then it sends its decision result to the FC. The FC
employs an OR rule to make the final decision denote®py. That is,Dpc = 1

if the FC receives at least one local decision declaring 1,Rige= 0. The AND

rule is discussed in Section 4.5. Let the number of awake cognitive raglosThe
probability of false alarm for the blind setu@N” can now be written as

Q¥ = Pr(Dec=1,L>1|2%)

Pr(Drc = 1,L|5%)

Il
Mz

,_
[
!

r(L|2%)Pr(Dec = 1/2%,L)

I
M=z
o

,_
Il
!

L
FC — 1’%7 L)

M ) Mt (-t

I
—
Il <
o
N

M ) pM (-t

X
o
=
O

L

I
—
Il <
o
N

L
x [1-[1L—P ), (4.13)
[ J|:|1( )]

whereP j is given by (4.3). In the above expressi®ir(L|.7%) is the probability
that there aré cognitive radios awake conditioned on hypothe#fs Since,Ps 1 =
P2 =--- =Pt m = P, using the binomial expansion theorem, we obtain

F=1-[1—(1—p)P]". (4.14)

This can be easily explained by the OR rule based global probability of dtdsm
when considerin@’}\lIP = (1— p)Ps to be the local probability of false alarm including
the censoring and sleeping policies.

The global probability of detection for the blind set@gp, can be derived in a
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similar way. We have
NP PI’(D 1.L> ]|%)
D FC y = 1

Pr(Dec = 1,L|54)

I
Mz

,_
Il
!

Pr(L|.#4)Pr(Dec = 174, L)

|
M=z

,_
i
al

T )uM%l—u%

|
-
I <
pR
N

L

1—[7(1-Py
x| ,L! (1—Py;j)]
(4.15)

wherePy ; is given by (4.4). This also can be explained by the OR rule based global
probability of detection when consideri |'j° = (1— u)Pyj to be the local proba-
bility of detection including the censoring and sleeping policies.

Denoting PfBI = (1— p)Ps to be the local probability of false alarm including
the censoring and sleeping policies, the global probability of false alarnthéo
knowledge-aided scenari@E, can be written as

Q€ = Pr(Drpc=1,L>1%)
= 1-{1-pP8}"
— 1-{1—(1—ppP ", (4.16)

wherePs is given by (4.3).

DenotingP(‘ﬁj = (1— )Py j to be the local probability of detection including the
censoring and sleeping policies, the global probability of detection fortbelledge-
aided scenaridQB, can be derived in a similar way. We obtain

Q8 = Pr(Dec=1,L>1154) (4.17)
U M M—L L =
= 1— 1-[1(1—Py;
é(L)“ e 1 )

wherePRy j is given by (4.4).
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In the following section, we analyze the optimization problems (4.8) and (4.12)
given the expressions for the constraints derived in this section andopese an
algorithm to solve them.

4.4 Problem Analysis

In this section, first (4.12) is analyzed in order to find a systematic solutiotinéo
system parameters, namely the sleeping rate and censoring threshdids fano
setups. Later we show that a modified version of the solution given fa2)4&n be
used as a solution for (4.8).

To analyze (4.12), it is more convenient to rewrite it in the following format

i ) (1_ B
min max(1- ) [NGsj +Cij(1-p7)]

st.1-[1-(1-pPM<a (4.18)
% M) 1 )t 1 [ Ryl 2 6.
S\ L jI:II e

Since the FC only decides for the presence of the primary user by irgélvs,
sending "0”s is not optimal in terms of energy efficiency. Therefdies= 0 is the
optimal solution of (4.18). Using this result, we can relax one of the argunoénts
the problem. Whei; = 0, we obtain

1_&3: Pf7
1-4j="Fyj. (4.19)

Hence, (4.18) is given by

lrmnmjax(l— 1) [NCsj +Cr.j (0P + 18Py )]
N2

st.1-1-(1-pwPIM <a
QB > . (4.20)

Since changing the order of min and max operations does not changeithalop
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solution of (4.20), we can rewrite the problem as follows
mjaxmi\?(l— 1) [NGsj +Cj (0Pt + 0Py )|
st1-[1-(1-uPM<a
QB > B. (4.21)
Assume thay is fixed tou*. Then (4.21) will reduce to the following problem

mjaxn;in(l — 1) [NGsj + G j(moPs + Py j)]

—(1—qg)/M
st Pf < &
(1—p")
QB > B. (4.22)
A
DefiningF (Az) = ”r'\'(i,ﬁ) we can writePy asPy j = F(A2/(1+Y;)). Calculating

B ) )
the derivative OCJ-B with respect td>, we find that‘;ip’f =(1— p*) 4 [C'”(Tb:;mpd“)} =
(1—pu") [Ct,j O+ (%*j} > 0 where we used the fact th%%j > 0. Therefore we can

write (4.22) as follows

minPs
P
(1 )M
s.t.Ps < 1-@ (X*)
(1—p*)
R =B (4.23)
Looking at (4.23) we can find that
F(GYB) <P <a'/1—p* (4.24)

whereG(A2) = Q€ anda’ = 1— (1— a)¥M. Thus, we find that for every*,
P; = F(G1(B)). Therefore, our optimization problem reduces to the following
unconstrained line search problem

maxmin(1-— ) [NGsj +Cej(T0F (G™(B)) + mF (G *(B)/(1+y))]  (4.25)

Looking carefully at (4.25), we find that we can use the same optimizatidsigro
for the blind setup by considering = 1 (rg = 0). In other words, the blind setup is
just a special case of the knowledge-aided setup. This is the appraachetwill
adopt in the simulations for both setups.
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45 Extension to the AND Rule

As in Chapters 2 and 3, here we analyze the performance of the comiepihg

and censoring for the AND rule. Here, we provide the analysis for tlsviedge-
aided case. The analysis for the blind problem formulation is then straiglatfdr
According to the AND ruleDgc = O, if at least one cognitive radio reports a zero,
elseDgc = 1. This way, the global probabilities of false alarm and detection are as
follows

Q2 anp = Pr(Drc = 1/.7%7) (4.26)
M
= |1 [u+(1—u)(5o,j +F’f,j)} (4.27)
—rl[ (1 ) (21— 85— Pr). (4.28)
QB AnD = Pr(Dec = 1].74) (4.29)
M
Tl b+ (1= 1) (B4R (4.30)
—rL[ (- 1)(1- 81 =Py )] (4.31)
SinceP;y =P = --- =Psy = P and dpy = dp2 = --- = dom = & the global

probability of false alarm becomes

M
QEanp = [H+ (1 )(&+Py)] (4.32)
“[1-a-wa-s-py]" (4.33)

We define our problem in order to find the underlying argumehisig, 1),
S0 as to minimize the maximum average energy consumption per sensor subject
to a constraint on the probabilities of false alarm and detection. As in théopeev
scenarios, the constraints on the probabilities of false alarm and detewtidefaned



84 4. Combined Censoring and Sleeping

by an upper boundr and a lower boung respectively. This way, the problem is
written as follows

min max; C?
o (4.34)
S.t. QE,AND <a, QB,AND > B.

Since, the FC decides fat) only by receiving zeros, the optimal solution of
(4.34) is attained by, — . This way, the global probabilities of false alarm and
detection reduce to

M
Qo= [1-(1-p)(1-&)] (4.35)

QB ano = ﬁ[l— (1-p)a-a)]. (4.36)
L

Inserting (4.35) and (4.36) in (4.34) and relaxikgusing the fact thah, — oo
is optimal, we obtain

T)‘\T max;(1— t)(NGsj +Ce j(1—pP))

M (4.37)
st|1-(1-p(1-&)| <a, ML |1-(1-p2-35,)| =B,

wherepjB = Md + Moy j. Since there is a one-to-one relation betwaerand do,
we can rewrite (4.37) as follows

Tg} maxj(1— t)(NGs; +C j(1— mdo+ 1))

M (4.38)
st|1-(1-w(A-&)| <a, M |1-1A-p)1-8))| >,
For a givenu = u*, (4.38) becomes
min max; (1 — ) (NG + G j(1- 00 + mdy )
% (4.39)

M
st [1—(1—u*)(1—6o) <a, M |1-(1-p")(1-a))| =B

Sinced, j is a monotone increasing function &, the optimal solution of (4.39)
is obtained by solving the following problem
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maxdy
o

M (4.40)
st[1-(1-p)a-&)| <o, ML [1-a-p)a-ay| =6
Therefore, if the feasible set of (4.40) is not empty, then the maxidyim this
feasible set, determines the optindgl From the first constraint in (4.40), we find

_gi/M : e 0G(11,8) 004
do<1- 113;1* .AssummgQByAND = G(U, &), we have é‘g)&’) = a(g:?)% >

0, where we used the fact thg%’fo) > 0. This way, from the second constraint

in (4.40), we obtairdy > G~1(u*, B), where the inverse function is defined over the
second argument iG(u, &). Based on this discussion, (4.40) reduces to

maxd
%

1. Y
st.G L(u ,B)géogl—llf;f”.

(4.41)

Therefore, if the feasible set of (4.41) is not empty then the optdgisl obtained
by d%=1- 1[?:,/*M- Inserting the optimady for a giveny in (4.38), we obtain the
following line search problem in order to determine the optipnaind consequently
d andAs.

min ma (1— (1) (NGs +Cuj (1~ o1~ 255) — mFj anp (1~ 13%))
(4.42)
whereF;j anp (do) = 61,j(d). In search for the optimal, we should note thatr <
a/M which comes from the fact that&liﬂL/M > 0and alsaG(u,1— 1132“) >B.

4.6 Numerical Results

4.6.1 Case Study for IEEE 802.15.4/ZigBee

Here, a case study is considered in order to verify the performance gfrtiposed
combined sleeping and censoring scheme. A Chipcon CC2420 transbased

on the IEEE 802.15.4/ZigBee standard [48] is considered to compute thgyene
consumption in sensing and transmission. This low-power radio with a data rate
upto 250 Kbps is aimed to work as a wireless personal area network upgesraf
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100 m. Our cognitive sensor network comprises of such radios atangecircular
field with a radius of 70 m, uniformly distributed along the circumference with the
FC located in the center. We model the wireless channel between the cegnitiv
sensor and the FC using a free-space path loss model. This means thigh#tie s
power attenuation is inversely proportional to the square of the disthbe¢ween
the transmitter and receiver.

The energy consumption analysis that is presented here is based onseitrar
model developed in [49]. The sensing energy for each decision ten$isvo parts:
the energy consumption involved in listening over the channel and makingethe d
sion and the energy consumption of the signal processing part for moaysitioal
shaping, etc. The former contribution depends on the number of sampéesdak
ing the detection time. We choode= 5, corresponding to a detection time of 1
us. Considering the fact that the typical circuit power consumption of ZégiBe
approximately 40 mW, the energy consumed for listening is approximately 40 nJ.
The processing energy related to the signal processing part in thenttansde for
a data rate of 250 kbps, a voltage of 2.1V, and current of 17.4 mA is gippately
150 nJ/bit. Since we use one bit per decision, the sensing energy otegutive
sensor isCs = 190 nJ [24], [25].

The transmitter dissipates energy to run the radio electronics and the power a
plifier. Following the model in [49] and [50], to transmit one bit over a disésohc
the radio spends:

Ci(d) = Ci—elect eampd2 (4.43)

whereC_gjec is the transmitter electronics energy a@ghp is the amplification re-
quired to satisfy a given receiver sensitivity level. Assuming a data ré26@kbps
and a transmit power of 20 MW _ejec = 80 nJ. Theeamp to satisfy a receiver sen-
sitivity of -90 dBm at an SNR of 10 dB is 40.4 pFr24], [25].

Two sets of values were chosen for the a priori probabilitigs= 0.2, 5. = 0.8
andm = 0.8,75 = 0.2. In Fig. 4.1, we show the optimal maximum average energy
consumption per sensor for different values of the probability of detectastraint,

B. Here,M =5, SNR= 10 dB anda = 0.1. As is clear, a combined sleeping and
censoring scheme consumes less than half the energy as would be cdrisame
distributed spectrum sensing such as in [10] were employed. Furthermersge
that whenrg is much higher thamg, the blind setup gives a performance close to
the one of the knowledge-aided setup.
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Figure 4.1 Comparison of energy consumption for different setups.

In Fig. 4.2, we show the optimal maximum average energy consumption per
sensor as the number of cognitive sensors in the network is increasejaHe 0.1
andp = 0.9. Without sleeping or censoring, the maximum energy consumption per
sensor scales linearly with the number of cognitive sensors. Howeveasideping
and censoring scheme, the optimal maximum energy consumption reduces as th
number of cognitive radios increases. Again, it is shown that the blingh gites a
lower bound of the system energy consumption for a certain detecticorpenfice.

Fig. 4.3 shows the optimal censoring and sleeping rate for different vaifie
the probability of detection constraifftanda = 0.1. Since the sensing energy of a
ZigBee network is much higher than its transmission energy, the optimal vaiue fo
the sleeping rate is attainedatay for different values of3. That is why in Fig. 4.3,
the sleeping rate is shown to have the same value for different a pridvapildies
T and . as well as for the blind setup. However, it is shown that the censoring
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Figure 4.2 Energy scaling with number of cognitive sensors for differgetups.

rate changes with the a priori probabilities. It is clear that the optimal cemngsiate
increases withp and is the largest for the blind setum (= 1).

In Fig. 4.4, we finally show how the optimal censoring and sleeping rategyeha
with respect to the number of users o= 0.1 andB = 0.9. For this figure, the blind
setup is used for the simulations. It is shown that as the number of usezasest
the optimal sleeping rate increases dramatically in order to keep the systegy ene
consumption as stable as possible. However, the optimal censoring raistesatu
after a limited number of users.

4.6.2 Performance comparison of the OR and AND rules

A performance comparison of the OR and AND rules is considered in this sec
tion. Unless mentioned otherwise, the setup is the same as the case studyHor IE



4.6. Numerical Results 89

0.9

0.8

0.6

05

Optimal censoring and sleeping rate

0.1 1 1 1 1 1 1
0.65 0.7 0.75 0.8 0.85 0.9 0.95

8

Figure 4.3 Optimal censoring and sleeping rate for different setups

802.15.4/ZigBee. In all the simulations, the number of cognitive radibb-s5, the
number of samples ¥ = 5 and the SNR iy = 10 dB.

In Figures 4.5, 4.6 and 4.7, the optimal average energy consumptionrser se
is depicted versus the probability of primary user absemge, In these figures,
the probability of false alarm constraint= 0.1, and the probability of detection
constraintB = 0.9,0.99, and 08 respectively, in Figures 4.5, 4.6 and 4.7. We can
see, agp increases, the average energy consumption per sensor reduties @R
rule, while for the AND rule, it increases. The reason is that, in the lowlaegafrg
for the OR rule, on average, a higher number of transmissions occuacethip the
higher values ofp, because the FC in the case of the OR rule only receives 1s from
the users. In contrast to the OR rule, for the AND rule, the probability thguitive
users transmit their results to the FC increases by increasjrgince the probability
of sending Os to the FC increases. Therefore, the average energynaption per
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Figure 4.4 Optimal censoring and sleeping rate with number of cogmitadios for the
blind setup

sensor decreases and increases wjttior the OR and AND rules, respectively.
Further, in Fig. 4.5, an interesting behavior in optimal average energuogm-
tion per sensor is shown wittp. We can see that fam < 0.5, the AND rule out-
performs the OR rule, while forg > 0.5, it is vice versa, and forp = 0.5, both
rules almost behave the same. The same behavior can be shown to hdmren w
o + [ =1. We can see in Figures 4.6 and 4.7, that with increasing or decregasing
the crossing point where the OR rule starts to outperform the AND rule niovhs
right or the left ofrp = 0.5.
Figures 4.8 and 4.9 show the optimal average energy consumption persens
sus the transmission energy as the distance between cognitive radigesfiam
0 to 70 m for ZigBee. In other words, these figures depict the perfacemahthe
combined censoring and sleeping scheme as the @gtiG: decreases for the OR
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Figure 4.5 Optimal average energy consumption per sensor versus obalgtity of pri-
mary user absence far= 0.1 and3 = 0.9

and the AND rules. The other parameters in these figuresrared.1, B = 0.99,

m = 0.2 for Fig. 4.8, = 0.8 for Fig. 4.9,M =5, N =5 andy = 10 dB. We can
see that in Fig. 4.8 where the probability that the sensors send a 0 to the @ fo
AND rule is low compared to the case of sending 1s for the OR rule, the AND ru
outperforms the OR rule significantly.

In contrast to the case in Fig. 4.8, in Fig. 4.9, the probability of primary user
absence isp = 0.8 and therefore the probability of sending Os to the FC for the
AND rule is much higher compared to the scenario in Fig. 4.8 and thus, byasioge
the transmission energ¢, the average energy consumption per sensor increases
dramatically for the AND rule and after a certaly, the performance of the AND
rule becomes lower than the one for the OR rule in terms of energy efficiency

In Fig. 4.10, the optimal average energy consumption per sensor is aepérte
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Figure 4.6. Optimal average energy consumption per sensor versus obalgtity of pri-
mary user absence far= 0.1 and3 = 0.99

sus the sensing ener@ for iy = 0.2 andp = 0.8, in order to compare the per-
formance of the OR and the AND rules. In this figuk,=5,N =5, y= 10 dB,

a = 0.1 andB = 0.99, but unlike previous scenarios, a general radio technology is
assumed wher€; = 1 andCs changes from 0 to 10. We can see that the AND rule
outperforms the OR rule &3 increases, which is a similar behavior as the ones in
Figures 4.8 and 4.9. Therefore, for the constraints considered in this fitpe AND

rule seems a better choice compared to the OR rule, particularly when thegsens
energy is much higher compared to the transmission energy. Howevee hawe
seen in the previous figures, the valuerpiplays a big role in determining the opti-
mal rule whena = 0.1 andf3 = 0.9. These constraints are basically defined as the
cognitive radio system requirements by the current standards. Fer\thkges, as
we observe this section, the OR rule is optimal fgr> 0.5 while the AND rule is
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Figure 4.7. Optimal average energy consumption per sensor versus obalgtity of pri-
mary user absence far= 0.1 and3 = 0.8

optimal form < 0.5.

4.7 Summary and conclusions

We presented an energy-efficient distributed spectrum sensing taehinéged on
the combination of censoring and sleeping policies. Depending on the kagsvle
of the a priori probability of primary user presence, a Neyman-Pedldioil setup)

and Bayesian (knowledge-aided setup) formulation was obtained with #ieofo
minimizing the maximum average energy consumption per sensor subject tah glob
detection performance constraint for the OR and the AND rules. We thérede
analytical expressions for the global probabilities of detection and fédsen dor
each setup and each rule. In seeking a systematic solution for the obtptirata-
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Figure 4.8 Optimal average energy consumption per sensor versushgntission energy
witha = 0.1, B =0.99, Cs = 190nJ andp = 0.2

tion problems, we showed that the resulting optimization problem can be tthuce
a line search problem for both setups and both rules.

We considered a case study with IEEE 802.15.4/ZigBee radios for nuinerica
results. It was shown that the average energy consumption per ssmneduced
significantly. We further compared the performance of the OR and the ANDim
terms of energy efficiency. It was shown that as the ratio between gegrsingy and
transmission energy increases, the AND rule can perform much bettettih@R
rule for some specific detection performances. However, dependitigequmobabil-
ity of a primary user being absent, the sensing energy, the transmissigy emne
the detection performance constraint, sometimes the OR rule preforms better than
the AND rule, particularly when the probability of primary user absence is aigl
sensing and transmission energies are either comparable or the transmimsigy
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Figure 4.9 Optimal average energy consumption per sensor versusihgntission energy
witha =0.1, B =0.99, Cs = 190nJ andp = 0.8

is higher than the sensing energy. For desired constraints in cognitiiesgstem,
the OR rule performs better than the AND rule fay > 0.5 while the AND rule
performs better than the OR rule fog < 0.5.
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Chapter 5

Optimization Hard Fusion Strategies

Abstract

The detection reliability of a cognitive radio network imges by employing
a cooperative spectrum sensing scheme. However, incggéstmnumber of
cognitive radios entails a growth in the cooperation overth@f the system.
Such an overhead leads to a throughput degradation of thaitteg network.

Since current cognitive radio networks consist of low-poreelios, the en-

ergy consumption is another critical issue. In the previohapters, we have
optimized the average energy consumption per sensor gubjeertain detec-
tion performance constraints for the OR and the AND rulesthia chapter,

throughput optimization of the hard fusion based sensimguhe K-out-of-M

rule is considered. We maximize the throughput of the civgrniadio network

subject to a constraint on the probability of detection anérgy consumption
per cognitive radio in order to derive the optimal number séts, the optimal
K and the best probability of false alarm. The simulatiorutesbased on the
IEEE 802.15.4/ZigBee standard, show that the majority rsileither optimal

or almost optimal in terms of the network throughput.

5.1 Introduction

In this chapter, we consider a cognitive radio network where eachitoaguser
senses a specific frequency band in a fixed sample size detection padiotb&es

a local decision about the primary user presence. The results areghetosa
fusion center (FC) in consecutive time slots by employing a time-division-multiple-
access (TDMA) approach. The final decision is made at the FC. Althaeyeral
fusion schemes have been proposed in literature [14],[33], we corasided fusion
scheme due to its improved energy and bandwidth efficiency. Among them, the
OR and AND rules have been studied extensively in literature. The OR &l A
rules are special cases of the more geni€ralut-of-M rule withK = 1 andK = M,
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respectively. In &-out-of-M rule, the FC decides the target presence, if at IKast
out of M sensors report to the FC that a target is present [14].

Optimization of theK-out-of-M rule based spectrum sensing is considered in
this chapter. The optimad and optimalM is derived for a throughput optimization
setup. The sensing time of the individual cognitive radios is given buteperting
time which is directly related to the number of cognitive users is unknown.

The throughput of the cognitive radio network is maximized subject to a con-
straint on the global probability of detection and energy consumption gritoce
radio in order to determine the optimal number of cognitive usérandK. It is
shown that the underlying problem can be solved by a bounded two-dionahs
search. As we will discuss later, the reporting time of the cognitive radiesys
directly proportional taVl and thus by deriving the optim#, the reporting time is
also optimized.

5.1.1 Related works

Cooperative spectrum sensing optimization is studied extensively in the lieratu
The sensing-throughput trade-off is studied in [55], [56]. The optisealsing time
is determined by maximizing the cognitive radio throughput subject to the piloba
ity of detection constraint in [55]. An extended version of [55] includki@s an
argument of optimization is discussed in [56]. This chapter is differemn fi6],
in the sense that in our throughput optimization setup with a given sensing time,
the combined optimization of the reporting time &fds discussed, and further the
energy consumption per cognitive radio is included as an additional edntsiin
this chapter. [57] depicts an optimal spectrum sensing scheme wherengiagse
efficiency of a cognitive radio network is maximized subject to an interfereon-
straint. The sensing efficiency is defined as the transmission time divideceby th
total cognitive radio time frame. However, this work also ignored the etiette
reporting time on the sensing efficiency of the cognitive radio network.

The reporting time optimization is studied in [58], [59]. [58] optimizes the cog-
nitive radio network throughput subject to a detection probability constiramrder
to find the optimal sensing and reporting time. An extension of [58] to a gelera
out-of-M rule based spectrum sensing is considered by us in [59]. The difieien
that in [59] and this chapter, the sensing time is assumed to be given. In dpisech
a combined optimization d¥l andK is given while optimization oK is ignored
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in [58] and [59]. In contrast to [59], we include a constraint on thergpneon-
sumption per cognitive radio in this chapter. As shall be shown in Sectionhis3,
additional constraint requires new algorithms to solve the problem. [65iders
the optimization of the cognitive radio network energy efficiency. Eneffigiency
is defined as the ratio of the average network throughput over thegevasawork
energy consumption. Optimization of the energy efficiency is consideretivio
cases. In the former case, energy efficiency is optimized in order td<fiadd in
the latter case, the sensing threshold at the energy detector is derieptirnizing
the energy efficiency. However, the combined optimizatioi pM as well as the
sensing threshold is not considered. Further, no typical performaorcsraint is
considered for the optimization problem such as the probability of detecticchwh
is inherent in a cognitive radio design technique.

5.1.2 Organization

The remainder of this chapter is organized as follows. The considemukrative
sensing configuration and its underlying system model are presentedtiarSe. 2.
The problem formulation is discussed and analyzed in Section 5.3. We depiet
numerical results based on the IEEE 802.15.4/ZigBee standard in Sectianc.4
draw our conclusions in Section 5.5.

5.2 System Model

We consider a network witM identical cognitive radios under a cooperative spec-
trum sensing scheme. Each cognitive radio senses the spectrum patjodicd
makes a local decision about the presence of the primary user basedwm itdh-
servations. To avoid any false detections of the secondary userdingt@@rimary
user, the secondary users are silent during the sensing period. ddielézisions
are to be sent to the FC in consecutive time slots based on a TDMA scheme. The
FC employs a hard decision fusion scheme over a soft fusion one due tghts h
energy and bandwidth efficiency along with a reliable detection perforentuad is
asymptotically similar to that of a soft fusion scheme [10].

To make local decisions about the presence or absence of a primargadk
cognitive radio solves a binary hypothesis testing problem, by choo%fnim case
the primary user is present aod when the primary user is absent. Denotifg
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as thei-th sample received by the cognitive radig,as the noise ang as the pri-
mary user signal, the hypothesis testing problem can be representeddlaiivang
model,

J ri=w,i=1...,N

. (5.1)
JA4.r=s+w,i=1...,N

where the noise and the signal are assumed to be i.i.d. Gaussian rand@sspgO
with zero mean and varianag, and o2, respectively, and the received signal-to-
noise-ratio (SNR) is denoted ly~= g—:zv

Each cognitive radio employs an energy detector in which the accumulated en
ergy of N observation samples is compared with a predetermined threshold denoted

by A as follows
N IA

&= ZW Z A (5.2)
i= o

For a large number of samples we can employ the central limit theorem, and the
decision statistic is distributed as [10]

My & ~ N (Nog,2Noy),

5.3
S E ~ N (N(og+02),2N(0 + 02)?). &9

DenotingPs andPy as the respective local probabilities of false alarm and detec-
tion, P = Pr(& > A|.74p) andPy = Pr(& > A|.777) are given by

_ [A—Ng2 [ A=N(oz+02)
o) ) o

The reported local decisions are combined at the FC and the final depgsion
garding the presence or absence of the primary user is made accordicgrtaia
fusion rule. Several fusion schemes have been discussed in literdBlur®Le to its
simplicity in implementation, lower overhead and energy consumption, we employ
a K-out-of-M rule to combine the local binary decisions sent to the FC. Thus, the
resulting binary hypothesis testing problem at the FC is given by,zi'\il D; <K
for % and| = zi'\il D; > K for z73, whereD; is the binary local decision of the
i-th cognitive radio which takes the binary value ‘0’ if the local decisionpsuts
the absence of the primary user and ‘1’ for the presence of the prinsany &or
the sake of analytical simplicity, we assume that all the cognitive radiosiexger
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the same SNR and each cognitive radio employs an identical thregdhimlanake

the decision. Such an assumption on the SNR is a valid assumption when the SNR
difference is less than 1 dB [51]. This way, the global probability of falsem QF)

and detection@p) at the FC are given by

MM (5.5)
Q= (.)P}(l—Pf)M‘.
i; '
We can rewrite (5.5) using the binomial theorem as follows,
=1-yY(K-1,P;,M
Qr W( t,M) (5.6)

Qo =1-¢(K—1,Py,M)
wherey is the regularized incomplete beta function as follows,

YK,p,n)=l_p(n—K,K+1)
—(n— K)<2) /(;1_pt”_K_l(l—t)K dt

Denoting R, as the local probability of detection or false alarm a&pdas the
global probability of detection or false alarm, we can defpe ~1(K,1—Qy,M)
as the inverse function a@f in the second variable.

Each cognitive radio employs periodic time frames of lenptfor sensing and
transmission. The time frame for each cognitive radio is shown in Fig. 5.1h Eac
frame comprises two parts namely a sensing time required for observatiateand
cision making and a transmission time denotedTpyor transmission in case the
primary user is absent. The sensing time can be further divided into a timieegqu
for energy accumulation and local decision making denotedstand a reporting
time where cognitive radios send their local decisions to the FC. Here, wemp
a TDMA based approach for reporting the local decision to the FC. This we
avoid collisions among the reported data from the cognitive radios. Hdeoefing
T, as the required time for each cognitive radio to report its result, the totaltheg
time for a network withM cognitive radios iV T, .
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Figure 5.1 Cognitive radio time frame

Considering the above structure of a cognitive radio time frame, we define th
throughput of the cognitive radio networR¢g, by

T Ts—MT,

RCRZTE)( T

> (1— Qr)%oPr(success#p)

+m (T_TST_MTV> (1— Qp)%1Pr(success) (5.7)

where%, and %, are the cognitive radio capacity undefy and .77, respectively,

o = Pr(s%), m = Pr(s1) andPr(succesg;), i = 0,1 is the probability that the
cognitive radio can successfully send its data to the cognitive recgdaer the de-
tection of a spectrum hole or miss detection of a primary user. Upon thectorre
detection of a spectrum hole, since the whole bandwidth is free for thetivegm-

dio, Pr(success#p) — 1, but in case of miss detection of a primary user, since the
bandwidth is almost occupied completely by the primary UBgisuccesis#1) — O.

This way, the second part &:r is negligible. Therefore, in this chapter, after nor-
malizing with 7 and %, the first part ofRcg denoted byR is considered as the
throughput of the cognitive radio network and is given by

R:(T—E—Mﬂ

= ) (1-Qe). (5.8)

The energy consumption of each cognitive radio is another critical element
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a low-power cognitive radio network. Denotiriy and B to be the sensing and
transmission power respectively, the average energy consumptioohategnitive
radio, E, is defined as follows

E=RT+RT +7(1-Qr)R(T —Ts—MT;)+ m(1— Qp)R(T — Ts—MT,). (5.9)

Note that here we assume that the transmission power to report the resuit$-© th
and the data transmission power are the same. This assumption is particuidrly va
in situations where the FC is the data receiver as well or the transmissiom pbwe
the cognitive transmitter is constant.

In the following section, a throughput optimization setup is considered to op-
timize theK-out-of-M rule based spectrum sensing subject to a constraint on the
probability of detection and average energy consumption per cognitiie ra

5.3 Analysis and Problem Formulation

The cooperative sensing performance improves with the number of cagugers.
However, a larger number of cooperating users leads to a highetirgptime and
hence a lower network throughput. Further, in a low-power cognitigdenaetwork,
the energy consumption of each cognitive radio is constrained. Theréfds de-
sirable to find the optimal number of users and fusion rule that satisfiegancer
detection performance and energy consumption by optimizing the cognitii@ ra
network throughput. The cognitive radio throughput depends on efgpchoice

of the K-out-of-M rule. In this section, we consider a setup where the network
throughput is maximized subject to a constraint on the probability of deteation a
energy consumption per cognitive radio to find the system parametersimg hine
number of users, the optimklout-of-M rule and the probability of false alarm.

The sensing-throughput trade-off has been extensively studied atliter e.g.[55,
56, 57]. However, the combined reporting time dtebut-of-M rule optimization
attracted less attention while it is a critical factor in the cognitive radio throuighp
Reducing the reporting time leads to an increase in the throughput of th&eegn
radio network. In a TDMA based scheme, the reporting time directly caoretgpto
the number of cognitive radios. As sudfi becomes an argument of the optimization
in the following discussions. Here, we fix the sensing tifagand focus on optimiz-
ing the reporting timeM T, whereT, = %, with R, the cognitive radio transmission
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bit rate. The other important factor is the paraméten the K-out-of-M rule. For a
givenM, it is shown that different values &f lead to different throughputs. Thus,
the optimization ofK along withM is an important issue in cognitive network de-
sign. Naturally, also the local sensing threshold,which is related to the local
probability of false alarmP, is part of the optimization problem. Avoiding harm-
ful interference to the primary user is one of the requirements of a cogmaiio
network. Cognitive radios interfere with the primary user if they miss the tetec
of the primary user. Therefore, it is desirable that the probability of deteds
lower bounded. Finally, most cognitive radio networks consist of lowgyaadios.
Hence, the energy consumption of each cognitive radio should alsonsér@oed.
To summarize, we define our problem as an optimization of the network thpatigh
overK, M andP; (or A) subject to the constraint on the probability of detection and
average energy consumption per cognitive radio as follows:

(M) 0o

s.t.Qp >
T—Tﬂ (5.10)

r

MK, Pt

1<M<{

1<K <M
E S Emax

whereE is defined in (5.9) anétnax is the energy constraint.
For a giverM andK, the optimization problem reduces to

max  (1-Qr)

st Qo> p (5.11)
E S Emax

which can be further simplified to
min Qr
stPy >y Y K-11-8,M)
E S Emax
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and is equivalent to finding the minimulR in the feasible set of the problem. Since
the probability of false alarm grows with the probability of detection, the minimum
Ps considering the probability of detection constraint is Byethat satisfiedy =
YK —1,1—B,M). In this caseP is given by

PO (No§+Q-1<w-1<K—1,1—B,M>> 2M<a§+av%>2> (5.12)

V2May

SinceQr andQp increase a$; grows, E decreases with;. Therefore, from the
energy viewpoint, the probability of false alarm is desired to be as highssipe.
The minimumP% in this case is the one that satisfles= Epax. DenotingPs () as
the Py that satisfie®y = ¢~1(K —1,1— B,M) andPs (Emax) as thePs that satisfies
E = Emax the optimalPs denoted byPs is Pr = max{Ps (), Pt (Emax) }-

InsertingP; in (5.10) for a giverK, we obtain a line search optimization problem

as follows
mx (T5M) 0
ToT (5.13)
st.1<M< { SJ
r

whereQs = 1— (K — 1,P;,M). Similarly insertingPs in (5.10) for a giverM, we
obtain a line search optimization problem as follows
T-To—MT, -
max (T) (1-Q¥)
st1I<K<M

(5.14)

Since bothM andK are bounded, a two-dimensional search utilizing (5.10) can
be carried out if bottM andK are unknown. Further, employing (5.13) and (5.14),
an alternating optimization algorithm is possible that in general converges flaan
a two-dimensional search, but is suboptimal.

5.4 Numerical Results

A cognitive radio network with several secondary users is considergde simula-
tions. A Chipcon CC2420 transceiver based on the IEEE 802.15.4/Zigf8adard
is considered to compute the sensing and transmission power as well atathatela
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[24]. Our cognitive radio network comprises of such radios arrangedcircular
field with a radius of 70 m. This way, the data ratdRis= 250 Kbps, the sensing
power isPs = 2.1V x 17.4mA and the transmission powerRs= 20 mW [24]. Each
cognitive radio accumulatd$ = 275 observation samples in the energy detector to
make a local decision. In [52], it is shown that fdr> 250, the normal approxima-
tion of the calculated energy undefy and.>71 performs close to the real values. The
received SNR at each cognitive user is assumed to-be-7dB. Unless mentioned
otherwise, we tak& = 105 usec,Ts = 45 usec andl, = 1/R, = 4 usec. The con-
straints are defined so as to satisfy the current cognitive radio staredpridements
[66].

Fig. 5.2 depicts the optimal throughput verdtsx for = 0.9,0.95 andrp =
m = 0.5. Note that sincds is given, here the throughput is normalized with respect
to T — Tsinstead ofT. We can see that d5,ax increases, the optimal throughput
increases up to a certain point. After this point the optimal throughput bezome
saturated. The reason is that Bgay increases, for a giveM and K, Pi(Emax)
decreases up to a point after which iBX3), Ps (Emax) } = P (B) and the optimal
point becomes independent frdfpax. As 3 increasess () also increases, thus the
turning point where mapPs (), Pr (Emax) } changes fronis (Emax) to P (B) occurs
for a lowerEmax

In Fig. 5.3, the optimal throughput versus the probability of detection con-
straint, 3, is considered for different values @f andEmax. In this figure,E max
andEy max denote the lower and upper bounds onHigy for the considered range
of B. For example, in casm = 0.2, for Emax less than 1970 nJ, the feasible set of
(5.10) is empty and foEnax more than 2100 nJ, the optimal throughput does not
increase anymore. It is depicted thatrgsincreasesk; may increases as well. As-
sume that for a certaimy, Emax, M andK, we define8 = P;(Emax) and we chose
B as the probability of false alarm of the system. We keep all the parameters the
same and only increase thig. Since in a cognitive radio syster@®r < Qp, we
obtain (1 - Qr)R(T —Ts—MT;) > (1— Qp)R(T — Ts— MT,). Therefore, by in-
creasingrp, we increase the larger term more than that we decrease the smaller
term and scE increases and passEgax. That is why we need to increagg max
in order to make (5.10) feasible for a highmy. Furthermore, we can see that as
B decreases, the optimal throughput increases up to a certain point aftér tive
optimal throughput saturates to a certain level. With a similar explanation as give
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for Fig. 5.2, for the highest feasibfgin the rangeE; max < Emax < Eymax We have
max{Ps (8),Ps (Emax)} = P:(B). As B decreases: () also decreases and thus the
optimal throughput increases up to the point where fRaf3), Ps (Emax) } becomes
Pr (Emax)- After that point, the optimal throughput becomes independent fom

Fig. 5.4 depicts the throughput versus the number of cognitive userk dod
a detection constraint equal o= 0.97, Emax = 2300 nJ andp = 0.5. It is shown
that the optimal throughput is a quasi-concave functioM@ndK and thus there is
a unique optimal point. The mathematical investigation of quasi-concavity iscsubje
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of future work. Further, itis evident that the choicavdfindK has a dramatic impact
on the cognitive network throughput.

In Fig. 5.5, the optimaM andK are depicted versus the probability of detection
constraint. In this figureT = 0.5 msec andEn=6500 nJ. It is shown that for the
desired range of the detection rate constraint, the majority rule is either optimal o
nearly optimal.

Fig. 5.6 depicts the optimafl andK versusEnayx. In this figure,T = 0.5 msec
andp = 0.95. We can see that similar to the previous scenario, the majority rule is
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5.5 Summary and conclusions

In this chapter, the network throughput is maximized subject to a detectioandte
energy constraint in order to find the optimal reporting tideand probability of
false alarm. We have shown that the problem can be solved by a bounded tw
dimensional search. Itis also shown that as the energy constraice®edie optimal
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Figure 5.5 OptimalM andK versus the probability of detection constraint

throughput also reduces while reducing the probability of detection eonstor the
same energy constraint leads to a higher throughput. Furthermore vwesiavn
that in the desired range of the probability of detection constraint, the majaléy r
is either optimal or nearly optimal in terms of the cognitive network throughput.



5.5. Summary and conclusions 111

6 E_max: 6125
Optimal K:3
Optimal M:6
n
2
g E_max: 7000
= Optimal K: 3
a Optimal M: 5
o}

7000

Optimal K 2 6000 E o M

Eigured5.& OptimalM andK versus the maximum average energy consumption per cogni-
tive radio






Chapter 6

Conclusions and Future Works

In this chapter, we draw the conclusions and review the main achievelisresu
Chapters 2, 3, 4 and 5. We further propose some ideas for futureswork

6.1 Chapters 2,3 and 4

In this thesis, the problem of energy-efficiency for spectrum sensirapgmitive
radio networks was considered. A cognitive radio network was defased set
of M cognitive radios which receive conditionally independent observafions a
primary user and cooperatively decide about the presence or &xsktie primary
user by making a final decision at the fusion center (FC) based on thigeddocal
decisions of each sensor at the FC. It was elaborated that in this preeeh user
spends energy on sensing as well as transmitting the local decision to the FC.

In Chapters 2, 3 and 4, we developed three techniques in order to minimize the
maximum average energy consumption per sensor. Dengtasthe set of parame-
ters defining the associated sensing poliygp) as the average energy consumption
of the j-th cognitive radio which employg as sensing parametei®p(¢) as the
global probability of detection anQr (¢) as the probability of false alarm, we de-
fined our problem as follows

mqinmjaxcj((p)
Qr(p) <a
Qo(p) =B

It was elaborated that the lower bourf8) (on the probability of detection, rep-
resents an upper bound on the amount of interference made to the prisearand
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the upper boundd) on the probability of false alarm, represents a lower bound on
the cognitive network throughput.

In Chapter 2, a fixed-size censoring scheme was considered. Thelémtsion
rule of each cognitive radio was defined based on a censoring polesevetach sen-
sor could only make a decision if the calculated energy is less than a lowshatde
(A1) or larger than an upper thresholtb). Therefore, in this cas@ = (A1,A2). It
was shown that for the OR rule, the optimal lower threshold is z&re=(0) and for
the AND rule, the optimal upper threshold is infinidx(— ). Further, an explicit
expression was given to find the optimal solution for the OR rule and in dake o
AND rule, a closed form solution has been derived.

We proposed our novel censored truncated sequential spectrgingenheme
in Chapter 3. We let each sensor sequentially collect the observation sangtésad
of the fixed-sample size paradigm of Chapter 2. Each sensor calculatedengy
of the collected samples until a certain point and compared it with a lower thicesh
at timei (a;) and an upper threshold at timéy;). In case that the calculated energy
passed any of these thresholds, a decision was made, otherwise anmele s@s
collected for a new comparison. In case the sensor could not reactistodeby
time N (truncation point), the sensing process stopped and no decision was made
This way, both the transmission and sensing energy consumption of egiitive

radio was optimized. In this cage= {(a;,bi), i=1.. .,N}

We further derived the analytical expressions for the underlyingnpeters in
the censored sequential scheme and showed that although the probégmmadevex,
a bounded two-dimensional search is possible for both the OR rule and\Nbe A
rule. Further, in case of the OR rule, we relaxed the lower threshold tinabtane
search problem in order to reduce the computational complexity.

Different scenarios regarding transmission and sensing energgipeiesas well
as SNR, number of cognitive radios, number of samples and detectianmparfce
constraints were simulated for low and high valuesgfand for both the OR rule
and the AND rule. It has been shown that under the practical assumftlow-o
power radios, sequential censoring outperforms censoring. Weaaiude that
for high values of the sensing energy per sample, despite its high compatation
complexity, the double threshold scheme developed for the OR rule becomes mo
attractive.  Further, it was shown that as the sensing energy per saropgasas
compared to the transmission energy, the AND rule performs better than thd€®©R
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while for very low values of the sensing energy per sample, the OR ruledatms
the AND rule.

A combined censoring and sleeping scheme was depicted in Chapter 4. Each
sensor turned off its sensing module with sleeping patend if it was on, a censoring
policy as introduced in Chapter 2 was employed in order to send the lodaiatec
to the FC. In this casep = (u,A1,A2). Similar to the fixed-size censoring, it was
shown that the optimal average energy consumption per sensor is attgiAec-t®
for the OR rule and\; — o for the AND rule. This way, the number of arguments
for optimization has reduced to two.

In seeking a systematic solution for the obtained optimization problems, we
showed that the resulting optimization problem can be reduced to an urainadtr
line search problem over for both the OR and AND rule.

We considered a case study with IEEE 802.15.4/ZigBee radios for numerica
results. It was shown that the average energy consumption per sensoiuced
significantly. We further compared the performance of the OR and the ANDIm
terms of energy efficiency. It was shown that as the ratio between gegrsémgy and
transmission energy increases, the AND rule can perform much bettettih@®R
rule for some specific detection performances. However, dependitigeqmobabil-
ity of a primary user being absent, the sensing energy, the transmissigy emel
the detection performance constraint, sometimes the OR rule preforms better than
the AND rule, particularly when the probability of primary user absence is aigl
sensing and transmission energies are either comparable or the transmisEsigy
is higher than the sensing energy. For desired constraints in cognitiesystem,
the OR rule performs better than the AND rule fay > 0.5 while the AND rule
performs better than the OR rule fog < 0.5.

One of the very interesting results for all the presented energy-effialgn-
rithms in Chapters 2, 3 and 4 was that increasing the number of cognitiiesyad
leads to a reduction in the average energy consumption per sensor whidhigé
importance for low-power radios. Therefore, increasing the numbeoghitive
radios (with conditionally independent observations), not only inceettse detec-
tion performance and reliability of a cognitive radio network, but also l¢attsver
energy consumption in each radio by employing any of the proposed semiss
energy-efficient techniques in this thesis.
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6.2 Chapter5

In this chapter, we have tried to find an answer to the question of the ogfiroat-
of-M rule in a cognitive radio network. In search for such an answer, Vfieate
our problem so as to maximize the network throughput subject to a congireaiing
probability of detection and average energy consumption per sensanm. thea pre-
vious scenarios, the constraint on the probability of detection puts anm bpped
on the amount of interference made to the primary user by cognitive radibs w
the constraint on energy consumption makes sure that the system hagh ereu
sources able to perform sensing and data transmission with an accepliabiétye
and quality.

We have shown that the problem can be solved by a bounded two-dimahsion
search over the number of cognitive radMsand the fusion rule parametir We
have also shown that as the energy constraint reduces, the optimajhprdalso
reduces while reducing the probability of detection constraint for the sz
constraint leads to a higher throughput. Furthermore, we have showinttie
desired range of the probability of detection constraint, the majority rule isreithe
optimal or nearly optimal in terms of the cognitive network throughput.

6.3 Suggestions for Future Works

6.3.1 Energy harvesting spectrum sensing

In this thesis, it is assumed that the cognitive radios consist of low-posvesoss
with a fixed battery level. In the current low-power wireless sensors,pbssible
to include some energy harvesting techniques in order to gain energydffiement
sources such as solar batteries [88], [89], [90]. These technmpeeparticularly
important for real-time applications, where we need reliable resourceslar to
accomplish a task. Designing spectrum sensing algorithms for energgstiagy
cognitive radio is a very good potential of research for future wotg,[®2], [93].

6.3.2 Energy-efficient feature detection

We have employed energy detection as the spectrum sensing techniqughthud
this thesis. Although the energy detector is very simple to implement and mathemat-
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ically easy to track, at the low SNRs, the detection performance of enetggtdrs
reduces significantly and below a certain SNR (depending on the noisetainty),
they are not able to detect the primary user signal. Feature detectors othéne
hand, try to detect certain features of the primary user signal suctclstationar-
ity. This way, they tackle the problem of low performance at low SNRs dueeto th
noise uncertainty. In general, feature detectors are harder to implentedesmand
a much higher sensing time than energy detectors. This way, the enespnuotion
due to sensing increases significantly and at the same time, the networkhhuoug
reduces due to a lower transmission time. [86] considers a collaboratiastation-
ary detection with censoring which reduces the transmission energy abgndice
radio system. Designing energy-efficient feature detectors which #ksoaogood
throughput is a nice area for future research.

6.3.3 Energy and computational efficient wide-band spectrunsensing

In this thesis, we have focused on spectrum sensing in narrow-bandels. How-
ever, at a system level, spectrum sensing over a wide-band spectaftarisnore
desirable. First, a cognitive radio can have an overview of the availabtaurces
over a wide band of frequencies and can adapt its transmission to therts=st
Second, in case that a currently accessed band becomes unavailabtey tadghe
next band is faster and the agility of the sensing increases. Third, trentission
scheme in a cognitive radio might need a wide band of frequencies, waick.g.

be obtained by OFDM modulation. In this case, virtually only wide-band sgnsin
can be a solution to find available resources. Several techniques éaveimposed
to perform wide-band spectrum sensing including sub-Nyquist sampdiogvery
techniques [12]. However, energy-efficient design of wide-bgmedtsum sensing is
almost a non-touched area of research. Since the computational complextry
rent wide-band sensing techniques is high, energy-efficient or loettgputationally
efficient wide-band sensing is also an open area of research. d@diders this is-
sue from a MAC layer viewpoint where each sensor based on its avadablgy
resources, decides weather to sense, where in the spectrum to sdnseather

to access by maximizing the throughput. However, this scheme is based on multi-
channel narrow-band sensing which is different than the wide-bamslrsg schemes
where the whole wide band of frequencies is considered at the same time.
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6.3.4 Agile search schemes

As we mentioned earlier, a cognitive radio should be able to switch to a netvispe
hole in case the current accessed band becomes available. Thisysiocelksl be fast
while reliable to save energy and increase the cognitive radio throughgility of
search schemes are particularly important in real-time applications whenéiceg
radios can not wait for a long time to transmit their data. Designing fast diatlee
spectrum hole search schemes such as the one in [87] is also a godibulifec
further research.

6.3.5 Energy-efficient cross layer design

Note that in this thesis, we did not address the design of protocols employtee in
cognitive sensor network - in particular, the medium access protocahitigidual
sensors use to transmit their detection results to the FC. Optimizing the design of th
protocol jointly with spectrum sensing could lead to additional energy saydtj,

[96]. For example, in case of the OR rule in censored truncated sedusaTigng,

the whole sensing process can be stopped as soon as one cognitivepadts one.

6.3.6 Energy-efficient decentralized spectrum sensing

Decentralized spectrum sensing without fusion center is a growingrobstspic
[97, 98, 99]. Such schemes are particularly important when energyness are
limited. In general, each sensor either makes a local decision by employingrits o
information as well as its immediate neighborhood information (diffusion teclesiqu
[101]) or participates in reaching a consensus among all the seneose(wsus tech-
niques [100]). Energy-efficient design of distributed estimation algoriikrognsid-
ered for example in a selective communication approach presented imj@idh is
based on the optimal selective transmission policy in energy-constrainsorset-
works discussed in [102]. Energy-efficient design of decentrabpedtrum sensing
without fusion center, employing selective transmission or other eneviyygstech-
niques is also a good topic for further investigation.
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Samenvatting

Deze thesis richt zich op het dynamisch gebruik van het spectrum dodehvan
cognitieve radios, om op een opportune manier toegang te verkrijger sgeetrum
dat bijna volledig gelicentieerd is. Cognitieve radios delen het spectrurerope
portune wijze en proberen zo weinig mogelijk schadelijke interferentie tergesre
voor de primaire gelicentieerde gebruikers. Een belangrijke klasseogitieve
radios bestaat uit zogenaamde verweven cognitieve radios. In die kisten de
cognitieve radios het spectrum af op zoek naar lege spectrale baoklerebgaten
genaamd. Als zo een spectraal gat wordt ontdekt, wordt dit dynamedeeld on-
der de cognitieve radios. Maar zodra er een primaire gebruiker in dipghtikt,
moeten de cognitieve radios deze band zo snel mogelijk verlaten en op aaek g
naar een nieuw gat. Op die manier is het aftasten van het spectrum eegrijicia
functionaliteit van een cognitief radionetwerk.

De betrouwbaarheid waarmee het spectrum kan worden afgetadt vemekkt
door verscholen zenders en variaties in propagatiekanalen. Gedistiileudetectie
met behulp van meerdere sensoren kan echter de detectie van gatterasrbin
deze thesis wordt zo een gedistribueerd detectiesysteem gebasbardepetectie
onderzocht. ledere cognitieve radio tast het spectrum af en zendegijitaat naar
een fusiecentrum, waar de uiteindelijke beslissing wordt genomen of @rieesire
gebruiker aanwezig is of niet. Merk op dat cognitieve radios veelabsengijn met
een laag vermogen en dus speelt het energieverbruik een belangtijke r

In deze thesis worden verschillende energie-efficinte methodes draggsn om
het spectrum af te tasten. De voorgestelde methodes minimaliseren het maximale
energieverbruik per sensor zonder de detectiebetrouwbaarheigtvaagnitieve ra-
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dionetwerk te schaden. Deze betrouwbaarheid wordt gedefinieerddddel van
een minimale detectiekans en een maximale kans op een vals alarm. Op die manier
wordt de primaire gebruiker beschermd tegen de interferentie van ddievg ra-
dio en wordt de kans op het missen van een spectraal gat door gendfstectie
beperkt. Ten eerste wordt er een censuurtechniek voorgesteldipcagnitieve ra-
dios enkel informatieve boodschappen naar een fusiecentrum stlieentweede
wordt er een combinatie aangedragen van de censuurtechniek eindige-éengte
sequentile detectietechniek. Deze combinatie is energiezuiniger dan deepsre
urtechniek omwille van de reductie van de detectie-energie. Ten derdit @vazen
combinatie onderzocht van de censuurtechniek en een slaapmecharsiarbg de
cognitieve radios, naast het niet versturen van onbeduidende irtfer@iahzelf met
een bepaalde zogenaamde slaapkans uitschakelen om op die manier tenbey
sparen, detectie-energie zowel als transmissie-energie. In de thedigangetoond
dat met alle voorgestelde technieken veel energie kan bespaardwwaeodeal dan
met de combinatie van de censuurtechniek en de eindige-lengte sequetetiii- de
etechniek en de combinatie van de censuurtechniek en het slaapmechafeisiae
wordt er geconcludeerd dat wanneer een cognitief radiosysteem jojste manier
energiezuinig wordt ontworpen, dan zal een toename van het aame@hgeerkende
gebruikers niet alleen het detectieresultaat verbeteren maar ookrieldgéde en-
ergieverbruik van de individuele sensoren verminderen.

Tenslotte wordt er een optimale fusietechniek voorgesteld voor cogniteeve r
dionetwerken gebaseerd op energiezuinige harde fusie. Deze teoptiimaliseert
de datasnelheid behoudens een beperking van het gemiddelde esrbigidwan de
individuele radios en een beperking van de interferentie die de priméiraigers
ondervinden. Het is aangetoond dat de meerderheidsregel optintaiakodptimaal
is wat betreft de datasnelheid.
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