

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Diffusion Mosaic
Zehao Jing

Diffusion Mosaic
by

Zehao Jing

to obtain the degree of Master of Science at the Delft University of Technology,
to be defended publicly on August 31, 2021 at 12:30 PM.

Student Number: 4787560
Thesis Committee: Prof. Dr. Elmar Eisemann, TU Delft, supervisor

Dr. ir. Rafael Bidarra , TU Delft
Prof. Dr. ir. Haixiang Lin, TU Delft

Abstract
Large textures that can provide realistic details are widely used in modeling, gaming, art design, etc.
Texture synthesis is a way to create large textures based on a small sample pattern, which can be
obtained by image examples or hand­drawn work by an artist. Different methods that aim to achieve
better visual effects on reducing or avoiding seams and distortions during synthesis are proposed. It
has been a popular topic both in computer graphics and computer vision for many years.

However, most of the synthesis methods are automatic and take images as the input. There are
few methods designed for artists who want to control and create patterns manually. The goal of our
Diffusion Mosaics is to introduce a graphics tool that allows the artist to create tiles that can be seam­
lessly concatenated. In this way, non­periodic textures of arbitrary size can be produced at very low
memory costs. We rely on a special kind of tiles called Wang tiles, which are squares with colored
edges. Neighboring tiles should share the same edge color at the common border. The texture tiles
are designed in such a way that if this constraint is fulfilled, the transition from one tile to the next will
be seamless. It becomes possible to create a large non­periodic final texture. In our system, each
tile can be filled with hand­drawn patterns using diffusion curves, which is a vector graphics primitive
created by diffusing the given colors of defined Bezier curves, which has been proven to be a useful
alternative to purely pixel­based design that artists typically rely on. They also match our application
well, as, by adding border­color constraints to the tile, solving the diffusion process results in tiles that
match the neighboring tiles naturally, hence avoiding any seams. The tool gives creative freedom to
the artist that they can even draw the pattern outside the tile area, resulting in an automatic update
of all other tiles when needed to ensure consistency. Finally, for more complex illustrations and back­
wards compatibility to software such as Photoshop, pixel­based images are also supported and can be
integrated.

ii

Acknowledgement
This thesis will mark the end of my special journey of my master’s study. I want to thank everyone
who has helped me. I want to thank Prof. Dr. Elmar Eisemann, my research supervisor, for his critical
opinions and guidance, witty conversation, and academic rigor for the thesis. For me, the topic of this
thesis is a new and magical field. He helped me to have a deeper understanding of computer graphics
and mathematics. I am grateful to learn from him. I appreciate my friends and family’s unconditional
support and love during this special covid time.

Zehao Jing
Harbin, August 2021

iv

Contents

1 Introduction 1

2 Background 3
2.1 Texture Synthesis. 3
2.2 Wang Tile . 5

2.2.1 Intuitive Stochastic Tiling . 5
2.3 Diffusion Curve . 8

3 Our Method 11
3.1 System Overview . 11
3.2 Tile Design . 11

3.2.1 Content synchronization . 13
3.3 Rendering. 18

3.3.1 Color Sources . 18
3.3.2 Image Sources . 19
3.3.3 Diffusion. 20

3.4 Tiling Methods . 22
3.4.1 General Tiling Method . 22
3.4.2 Parallel Tiling Method . 22

3.5 User Interface Design . 25
3.5.1 Drawing tools . 25
3.5.2 Tiling tools design . 28
3.5.3 Image Viewing design . 28

4 Implementation 30
4.1 Architecture . 30
4.2 Interface. 30

5 Results 34
5.1 Quantitative Results . 34
5.2 Visual Results. 38

6 Discussion 50
6.1 Visual Results. 50
6.2 Performance . 51

7 Conclusion 52

References 55

vi

1
Introduction

Textures are ubiquitous in the real world, and they can represent fundamental features of an object’s
surface. In computer graphics, texture is represented as an image that is mapped to the surface of a
geometric object. Hereby, the virtual object appearance can be drastically enriched without increasing
geometric complexity. How to obtain this texture information is a question worth considering. Textures
can be acquired by photos, procedurally generated or drawn by artists using drawing tools. If a low­
resolution (small) texture is mapped to a larger surface area, the surface texture will be distorted after
the mapping. A work­around, especially for repeating textures, such as the weaving pattern of cloth, a
solution could be to repeat the texture as well. Nevertheless, most textures are not perfectly uniformly
repeating (e.g., grass and flowers on a meadow). A solution could be to capture a high­resolution rep­
resentation but that quickly results in high memory costs that we would like to avoid. Instead, different
texture patches (tiles) could be used that represent slightly different distributions and one could tile the
object surface with these. Unfortunately, without a careful creation of these texture tiles, placing them
side­by­side will lead to visible seams that are identified as clear artifacts by an observer as shown in
Figure 1.1.

(a) (b)

Figure 1.1: (a)A large texture generated by simple repetition. (b) Visible seams and mismatch.

Some work has focused on generating larger textures or tiles from smaller exemplars automatically.
However, we want to retain artistic control over the content of the texture, as it is particularly important

1

2

for content creation. Further, no method involves the artist directly in the process, instead, the provided
artistic input is automatically transformed in a post process, which leaves no room to adjust the results
and any later change influences the entire outcome.

In this thesis, we design an interactive large texture synthesis tool for artists, and it allows users to
create patterns in the tool and generate large seamless textures at low memory cost. We want to offer
an approach, in which the artist can draw the tiles directly, while the computer assists in assuring that
the tiles are seamless. The patterns designed by the user can then be used to synthesize non­periodic
textures of any size by a specific rule.

Our prototype implementation provides support of vector­based diffusion curves, which are a highly
expressive tool and enable realistic, as well as abstract image generation. Further, we enable the use of
images as input to enable the use of standard software, such as Photoshop. Users can design content
for each tile, and the tile’s boundary will no longer restrict the user’s creation because we provide a
content synchronization mechanism: when the user’s content is outside of the tile, other tiles will be
updated accordingly.

The large texture synthesis is a tile­based synthesis method so that as long as the basic tiles are
rendered to form a tileset, large textures can be tiled through a specific tiling algorithm. The tiling
algorithm can create a non­periodic seamless texture. Furthermore, this tile­based synthesis method
is very efficient, and the final large textures can be stored as tile patterns and their arrangement, which
requires very little memory. For example, using 8 tiles with 128x128 pixels and 8­bit RGB values can
be used to generate a 16354x16354 texture at only 8*128*128*3 + (16354/128)*(16354/128) bytes =
393216+16354 bytes=409570 bytes<0.5 MB, while the full texture would require more than 260 MB ­
roughly a factor of 500 times more memory. Further, a small set of tile patterns is also more cache
friendly, making the tiling algorithm actually quite efficient when executed at run­time.

To summarize, in this thesis, we develop an interactive texture synthesis tool, and it has the following
functions:

• The user can create patterns freely by using a diffusion curve.
• The user can take images as input.
• The tool can generate large seamless and non­periodical textures.

This report has seven chapters, and the content is structured as follows: Chapter 2 will introduce
some background knowledge related to this thesis, which is essential for understanding Diffusion Mo­
saics. Chapter 3 describes how we design the tool using a diffusion curves to generate a series of
images that can be seamlessly stitched together based on the Poisson equation and create a large
pattern via the tiling method. Chapter 4 will provide the details of implementing this tool and show how
to use it. In Chapter 5, we will measure some performance of this interactive tool and display the visual
results generated by it. Chapter 6 will discuss the shortcomings of this tool. Finally, Chapter 7 will
conclude this thesis and discuss possible improvements.

2
Background

This chapter will introduce some techniques that are related to this thesis. In Section 2.1, we will discuss
some popular texture synthesis methods. Section 2.2 will introduce the concept of Wang tile and its
application. Then, Section 2.3 will focus on a vector­based graphics primitive called Diffusion Curve.

2.1. Texture Synthesis
Texture plays a critical role in graphics by providing various surface details for objects to make them
more realistic. Those who make models need to cover the models with textures instead of constructing
model and material details geometrically, which saves a lot of work and time, but is also much more
efficient when displaying such a model. Currently, there are two primary sources for obtaining textures;
one is hand­drawn work of the artist, the other is digitally scanned pattern images[28]. However surface
texture will be distorted if the low­resolution (small) texture is mapped to a larger surface area after the
mapping. One solution is to repeat the texture, but most textures are not perfectly uniformly repeating.
Another solution is to capture a high­resolution texture, but this will result in high memory costs that we
would like to avoid. Therefore, various texture synthesis methods that aim to generate large textures
while having better visual effects like reducing or avoiding the visible seams that are identified as clear
artifacts are put forward in the past several years.

Nowadays, texture synthesis has already been one of the most popular topics in computer graphics
and vision. As a result, numerous researchers have proposed different methods from different per­
spectives. Efros et al.[8] first proposed a non­parametric sampling texture synthesis method, which
takes samples from the initial image and then synthesizes a new texture pixel by pixel based on color
consistency of the neighborhood. Wei and Levoy[28] improved this pixel­based synthesis method and
introduced a multi­resolution synthesis model. Based on Wei and Levoy’s work, Ashikhmin[1] found
that when synthesizing a texture line by line, a chosen pixel from the sample image, should not only
ensure that the resulting synthesized neighborhood is similar to one from the sample texture, but that
also the original location of the pixel should be close to the already synthesized pixels to maintain the
structure of the input image. By involving the original position and color, the algorithm leads to patches
of pixels that have a consistent origin in the sample texture. The idea of using patches instead of in­
dividual pixels has sparked additional research, image quilting[7] randomly picks blocks of pixels that
partially overlap in the synthesized texture and then uses dynamic programming and graph cut[18] to
find the best common cut between patches to render the transition between blocks invisible. However,
all these methods actually generate a large texture, which is memory and compute intensive.

While tile­based texture synthesis tries to generate large textures using different strategies, it first
creates reusable tiles as a basic tileset. Once the tileset is specified, the user can create large aperiodic
textures according to certain rules in real­time. The tile­based synthesis algorithms have the advan­
tages of using less memory, short computation time, and real­time performance. Cohen et al.[4] used
Wang Tiles for texture synthesis, while Dong et al.[6] used ω­tile sets as shown in Figure 2.1. They both
need four sample patches and compute a cutting path to render the boundary transition natural but the
patch placement is different. Wang Tiles use a diagonal cut, which can result in problems at corners.
For this reason Cohen and colleagues also introduced an additional corner classification, which will

3

2.1. Texture Synthesis 4

not be considered in this work. Tile­based synthesis methods have to deal with boundary conditions to
avoid seams after tiling.

Figure 2.1: Wang tile and ω­tile. The cutting path of Wang tile will make the junction of four tiles looks prominent. ω­tile can
avoid this.

In recent years, more andmore texture synthesismethods[10, 19, 26] using neural networks emerged.
Many of them aim to generate new textures based on the training set rather than generate large tex­
tures based on small textures, and there are also some works using deep learning approaches to create
tileable textures like TileGAN[9] and Deep Tiling[25].

Basically, all methods discussed here [8, 28, 7, 4] take an image as input and generate a larger
texture. Little focus lies on the artist; the creation and influencing of patterns. Ashikhmin[1]’s method is
a notable exception, as it allows user interaction to control the distribution of texture patches but these
interactions are still very limited and restricted to the input exemplar. To go a step further, we want to
combine drawing tools with texture synthesis to achieve full flexibility and want to support a tile­based
representation for lower memory consumption and efficiency at run time.

2.2. Wang Tile 5

2.2. Wang Tile
Mathematician Wang Hao proposed Wang Tiles in 1961[27]. The tiles must meet the following require­
ments:

• Square tile
• Each edge of a tile has a color
• Only tiles with the same color on adjacent edges can be put together
• Rotation and reflection of tiles are not allowed when tiling the plane

A set of Wang tiles is called a Wang set. Since one square has four edges, if there are two colors, then
there will be 24 combinations as shown in Figure 2.3. Wang posed a classic conjecture, which turned
out to be false; Wang Tiles either generate a periodic tiling or cannot tile the plane. While it turns out that
the tiling of the plane is generally undecidable, in the following decades, researchers found particular
finite Wang sets that can tile the plane aperiodically[23, 5, 16]. The term ’aperiodic’ of Wang tile means
that there is no translation under which the pattern is invariant (i.e., there is no repetition). In 2015,
Jeandel and Rao[14] presented a minimal aperiodic Wang Set that only has 11 tiles and four colors, as
shown in Figure 2.2. For better visual effects, we use squares with four colored triangles to represent
Wang tiles. Due to its unique properties, Wang tile is widely used in texture synthesis, map generation,
and many other fields.

Figure 2.2: Aperiodic Wang Set of 11 tiles and 4 colors Figure 2.3: Wang Set of 16 tiles and 2 colors

2.2.1. Intuitive Stochastic Tiling
The most intuitive stochastic tiling algorithm [4] is first to randomly select a tile for top left corner. For
the remaining area, select the tiles that can match its existing neighbors. Algorithm 1 shows the whole
process.

Algorithm 1 Unconditional Stochastic Tiling
Require: width, height, T ile Set T
for y ← 0 to height do
for x← 0 to width do
if x = 0, y = 0 then
f(0, 0)← randomly choose a tile t from T

else if x > 0, y = 0 then
f(x, 0)← choose a tile t from T while fw(x, 0) = fe(x− 1, 0)

else if x = 0, y > 0 then
f(0, y)← choose a tile t from T while fn(0, y) = fs(0, y − 1)

else if x > 0, y > 0 then
f(x, y)← choose a tile t from T while fw(x, y) = fe(x− 1, y) and fn(x, y) = fs(x, y − 1)

end if
end for

end for
return tiling f

In this algorithm, one tile can be constrained by at most two neighbors: one is its north neighbor,
the other one is its west neighbor. The tile set should meet the minimal condition that more than 2 tiles

2.2. Wang Tile 6

Figure 2.4: An example of a tiling by minimal aperiodic Wang Set

can be chosen when one tile’s north and west neighbor are fixed. If there are K1 colors in the vertical
direction and K2 colors in the horizontal direction, then there will be at most K12 ×K22 tiles without
duplicate ones.To have a random tiling result, when a tile is constrained by its west and north neighbor,
the tile set should be able to provide at least two choices, which means there should be at least two tiles
for each horizontal and vertical color combination. And there are K1 ×K2 color combinations. Thus,
the set’s minimal condition for this stochastic algorithm is to have at least 2× (K1×K2) tiles. We will
call those tile sets that have all possible color combinations as complete Wang set, while those sets
that just meet minimum requirements as reduced Wang set. For example, Figure 2.5 shows a reduced
Wang set, while Figure 2.3 shows a complete Wang set. When this minimal conditions cannot be met,
alternative algorithms have to be taken into consideration.

Figure 2.5: A reduced Wang Set

2.2. Wang Tile 7

Figure 2.6: A simple stochastic tiling algorithm. Step 1: Randomly choose a tile from the tile set for the leftmost one of the first
row. Step 2: Find the tile whose left edge color is the same as its left neighbor’s right edge’s for the remaining tiles of the first
row. Step 3: Randomly choose a tile whose north edge color is the same as its northern neighbor’s south edge’s for the
leftmost one of the next row. Step 4: Randomly choose one from those tiles whose left edge color is the same as its left

neighbor’s right edge’s and north edge color is the same as its northern neighbor’s south edge’s for the remaining tiles of the
row. Step 5: Repeat Steps 3 and 4 for the remaining rows.

2.3. Diffusion Curve 8

2.3. Diffusion Curve
Diffusion curve is a vector graphics primitive proposed by Orzan et al.[21]. It uses Bézier curves as
geometric primitives to represent the contour information in the image, and color and blur information
is attached to the curve. These curves are generally spline curves with color and blur control points
drawn by the user or extracted from the contours of existing images. The hand­drawn or extracted
curves are generally the basic skeleton of the image, describing the outline of the pattern or the places,
where color changes greatly.

In addition to the geometric shape, the diffusion curve should also store the colors that will be
diffused in the areas on both sides of the curve. For color, the user only needs to select certain points
on the diffusion curve as color control points, and assigns colors to these control points. Then the
remaining colors along the curve can be obtained by linear interpolation. Because the curve has two
sides, two sets are needed to store the color control points, one for the left side and the other for the
right side.

With the color information, the diffusion operation can be performed. However the color transition
could be very sharp at the boundary after diffusion. Therefore, a blur operation is introduced to control
color transition along the curve.

The diffusion curve has the following structure:

• A geometric curve.
• Two sets of color control points.
• One set of blur control points.

After obtaining the geometric and color information of the curve, the remaining part of the image
will be filled with colors through the diffusion process. The diffusion process is solved by a Poisson
equation with Dirichlet boundary conditions as shown in Equation 2.1.

∆I = div w
I(x, y) = C(x, y), if C(x, y) has a value (is next to the curve) (2.1)

where ∆ is the Laplacian operator,I is the desired diffusion result image which is initially unknown.
div is the divergence operator, w is the color gradient. In general, the image is smoothly diffused except
on the curves, where the color changes from one side to the other, thus the gradient vector field is zero
except on the curve. The Equation 2.1 can also be written in Equation 2.2 by finite differencing.

Ii,j =


Ii+1,j+Ii−1,j+Ii,j+1+Ii,j−1+div wi,j

4

Ci,j , if Ci,j has a given value

(2.2)

In order to get a smooth­shaded image, the blur value is introduced to control the blur degree of the
diffusion curve. The blur value will determine whether the color transition is sharp or smooth. Since
the diffusion curve only defines the blur value on the curve and does not define the blur value of other
pixels of the image, the blur map for the whole image can be generated like color diffusion by diffusing
the blur value on the curve, which leads to the Equation 2.3.

∆B = 0

B(x, y) = σ(x, y), if (x, y) is on a curve (2.3)

where σ is the variance of the Gaussian blur specified by the user along the curve.
There are many strategies to solve Poisson equations. Usually, they can be solved by some simple

iterative methods like Jacobi, Gauss­Seidel iterations, or more efficiently via conjugate gradient and
multi­grid method.

Jeschke et[15] presented a GPU Laplacian solver for Equation 2.4. They also integrated seamless
cloning[22] within their solver.

2.3. Diffusion Curve 9

I(x, y) = B(x, y), if (x, y) is a boundary value

∇2I = 0, otherwise (2.4)

Bezerra et al.[2] proposed many new methods such as color strength or diffusion barriers to control the
diffusion process by reformulating the diffusion process into a constrained linear systems. With color
strength a, the original color c = (r, g, b) can be written as a homogeneous color[29] c′ = (ra, ga, ba, a).
Each color channel and color strength can be diffused separately, and the final diffused color can be
obtained by the projection (r/a, g/a, b/a). By default, the color strength value is one.

Figure 2.7: The rendering pipeline of diffusion curve

3
Our Method

This chapter will give an overview of our tool first. Then we will introduce how to design the tiles and
render them. After that, tiling algorithms and graphic user interface design will be introduced.

3.1. System Overview
Although there are many existing methods for large texture synthesis, almost none of the existing
synthesis techniques are specifically designed for artists. In other words, texture synthesis and pattern
creation are always two completely independent processes. When the large texture is synthesized by
the pattern generated by the diffusion curve, some of the features of diffusion curve can be utilized.
This section will discuss how our tile­based synthesis method utilizes these features.

Figure 3.1: System Overview

The user designs the tile content first by using diffusion curves or images. After designing the
content, the diffusion operation is executed. Having the tiles generated, the user can rely on these to
tile the plane to obtain a final large image.

3.2. Tile Design
Wang Tiles provides a framework that can generate large and non­periodic textures. The next step is
to fill these Wang tiles with diffusion curves and images as input. This section will show how we use
the features of the diffusion curve to design these special tiles and explain why tiles generated in this
way can be seamlessly stitched together.

Section 2.3 already introduces the basic knowledge of diffusion curve, and a curve should contain
geometry, color, and blur information. Here, the curve is represented by the cubic Bézier spline. Figure

11

3.2. Tile Design 12

3.2 shows an example of a cubic Bézier curve. The curve’s path is decided by these points P0, P1, P2, P3,
and we will call these points the geometric control points. In other words, when these control points
are fixed, the entire curve can be drawn through the De Casteljau algorithm. The Bézier curve can be
defined algebraically in Bernstein form as shown in Equation 3.1.

Figure 3.2: A cubic Bézier curve

f(t) =
n∑

i=0

piB(n)
i (t), t ∈ [0, 1] (3.1)

where f(t) is the target Bézier curve, n is the polynomial degree, pi is the control point, and B
(n)
i (t) is

the Bernstein basis function which can be expanded to Equation 3.2.

B
(n)
i (t) =

(
n
i

)
ti(1− t)n−i =

n!

i!(n− i)!
ti(1− t)n−i (3.2)

When the degree n is set to three, it is a cubic Bézier curve which is widely used in graphics applications.
However, only one cubic Bézier curvemay not meet the user’s demand, so several curves can be joined
together to form a longer piece­wise cubic Bézier spline.

In addition to geometric information, the most important element of the curve is color information.
As mentioned before, there are two sets of color control points for one curve. One is the set of left
color control points, and the other is right color control points. Left or right is determined according to
the drawing order of geometric control points. Users can place the color control point anywhere on the
curve, not necessarily at the end of each curve. After having the color control points, the colors along
the entire curve are defined by linear interpolation ­ and the same applies to blur. When interpolating,
both ends of the curve have to be considered. By default, the color is black, and the blur value is zero
if no control points are placed on the curve’s ends. But this will lead to unsatisfying visual results, so in
this thesis the curve’s ends will have the same value as its nearest color control point. Moreover, this
tool introduces the color strength[2] to control the diffusion process better.

To summarize, a diffusion curve can be represented by several control points: geometric, color, and
blur control points. This vector format storage is very efficient, especially in the loading and saving of
patterns. In this thesis, a diffusion curve will be stored as follows:

• Geometric control point: Pi(x, y)

• Left and right color control point: Cli(x, y, r, g, b, a) and Cri(x, y, r, g, b, a).
• Blur control point: Bi(x, y, b)

Note that a of color control point is the color strength rather than the alpha channel which would
describe the degree of opacity.

The diffusion curve needs to be rendered into a pixel matrix before it can be displayed on the
screen. The rendering process has three main steps: rasterization, diffusion, and reblurring[21], but

3.2. Tile Design 13

Figure 3.3: Control points of a diffusion curve. P0, P1, P2, P3 are geometric control points, C1, C2 are color control points, B1

is the blur control point.

this rendering method is for diffusion curves drawn on one canvas or a single tile. Before rasterization,
rendering a Bézier curve requires a discretization, which can refer to Equation 3.1, where t is linked to
the step size that determines the number of samples. A sufficient number of sample points will lead to
a smooth appearance after rasterization.

However, for Diffusion Mosaics, multiple tiles need to be rendered at the same time and somehow
be connected. Only then, we can ensure that the resulting images can be seamlessly stitched together
by a tiling method. Hence, each rendering step will be modified accordingly. In the traditional diffusion
curve method, the user creation area has a limited size. As long as the user draws all curves in a tile,
everything is the same as mentioned in Section 2.3. In this thesis, we will focus on creating the content
for all tiles that can match each other. For example, the corresponding neighbor should update and
add the curve and color source when a curve is drawn outside the tile. And this will be discussed in
the following subsection. The matching of the final color, which is generated by the diffusion process
guided by the Poisson Equation, will be described in detail in Section 3.3.3.

3.2.1. Content synchronization
In this thesis, the user creation will not be restricted by the tile boundaries, or more precisely, they can
draw the curve outside of the tile. Figure 3.4a shows the case, where a user draws a curve crossing
the north edge. Because a Wang tile is used here and each edge of a tile has a color, when the user
draws outside the tile, the contents of all neighbor tiles with the same edge color have to be updated
synchronously. Therefore, the system should have a content update mechanism that can determine
the content of each tile. When the user draws outside the tile, this content synchronization will be
triggered and the curve outside the boundary is transferred to the compatible neighbor tiles.

If the user draws the entire curve in the tile, then this case does not need special treatment. If part
of the curve is drawn outside the tile, then the system needs to know which edge the curve intersects.
Since the tile is square and it only has four edges, the curve must intersect with at least one edge.
When a pixel on the curve appears in the north, west, east, or south area as shown in Figure 3.5, then
the curve is asserted to have intersections with this edge. These intersections are stored clockwise,
starting from the west edge by an array of four binary values, where 0 means no intersection, one
means intersection. For example, the intersection of the curve shown in Figure 3.4b can be written as
0b0100 and 0b0000 for Figure 3.4a.

When the system detects that the curve has intersections with some edges, the content of its neigh­
bor Wang tiles will be updated by adding an offset. In the following part, complete Wang set with four
colors and sixteen tiles shown in Figure 2.3 will be used as an example. Figure 3.6 shows that if the

3.2. Tile Design 14

(a) (b)

Figure 3.4: a): The entire curve is inside the tile, b): Part of the curve is outside the tile.

Figure 3.5: Four edges of a tile. tw,tn,te,ts denotes all four edges(west, north, east, south). If the pixel of a curve appears in
area N then the second value of the intersection array is 1.

user draws a curve that intersects the west edge, then all eight tiles that are possible neighbors in a
tiling should be updated.

The update of the content requires the translation of the curve. For example, if a curve intersects
the left side of the tile, then this curve should also appear on the right side of its western neighbor.
Since a diffusion curve can be generated by several geometric and color control points, the curve in
the neighbor tile can be easily updated by applying a translation vector (offsetX, offsetY) to all control
points of the original curve. This translation process is visualized in Figure 3.7.

Figure 3.8 shows that only updating the west neighbor tiles is not enough because these tiles will
affect their east neighbors in turn, and those tiles have the same color edge as the original tile also need
to be updated. To distinguish between these two update methods, the update of the neighbor tiles is
called Type1 update, and the update of the tiles with the same color edge is called Type2 update, and
Type2 update does not need a translation of the curve. Note that one tile can be updated by Type1
update and Type2 update at the same time, which means when the user draws only one curve and
many new curves will appear, as in Figure 3.9.

If a curve only intersects one edge, we have a simple case. However, in complicated cases, updating
one curve will cause a series of tile content changes. This is because when a curve intersects more
than one edge and is updated by Type2 update, the curve will keep the same intersection in the updated
tiles, but the color of the intersecting edge may not be the same as the current tile. In other words, one
curve would cause some tiles to be updated, and the updated tiles will cause more tiles to be updated,
which becomes a recursive process. Note that this recursive update will cause unexpected content
updates, which are not controllable for users.

A recursive process should not update a tile with the same curve twice, or it will turn into an endless
loop. Therefore, the system will maintain an identity for each curve to distinguish them. In this system,
each curve has a global id generated by a non­decreasing counter, which will increase by one when
adding a new curve and will not decrease when deleting a curve. Thus, those curves derived from

3.2. Tile Design 15

Figure 3.6: In complete Wang set, t0 has eight west neighbors:t0, t1, t3, t4, t6, t7, t10, t13. And these neighbor tiles should be
updated because their east neighbor has a curve that crosses the west border.

the same curve will share the same id, and if the user edits any curve, those with the same id will be
updated correspondingly. As Figure 3.9 shows, the derived curves can appear in the same tile, so the
id and the intersection binary array will be used together to identify the curve.

Through the content synchronization mechanism, it can be ensured that the geometric curve of the
tile can also match correspondingly after tiling. An example of 3 tiling is shown in Figure 3.10

3.2. Tile Design 16

Figure 3.7: The translation process. The translation vector (offsetX, offsetY) depends on how curve intersects the tile.

Figure 3.8: Content update. When a curve crosses a vertical edge of red color, the tiles whose east edge is red and the tiles
whose west edge is red all need to be updated. When t0 has a curve crossing the west edge, t0, t1, t3, t6 will get a translated

curve by Type1 update and for t1, t2, t3 they will copy that curve by Type2 update.

3.2. Tile Design 17

Figure 3.9: The original curve and its derived curves in tile t0, t1, t3, t6.

Figure 3.10: An example of 3× 3 tiling with curves.

3.3. Rendering 18

3.3. Rendering
Diffusion mosaics need to render all tiles of the selected tileset simultaneously. Furthermore, the ren­
dering method should ensure that the final results will not have seams after generating a large tiling
with these Wang Tiles by employing the algorithms in Section 3.4.

The rendering pipeline of the original diffusion curve is shown in Figure 2.7 and the rendering
pipeline of Diffusion Mosaics still follows that structure. But the acquisition of color sources and the
diffusion equation should be modified accordingly. In this section, the modification of color sources will
be discussed first. In addition to accepting color sources of the curve as input, the system also allows
users to take images as input, which will be addressed then. Last, we will introduce the new modified
diffusion equation, which is the core part of the rendering in detail.

3.3.1. Color Sources
Color sources((x,y,r,g,b,a)) are the result of a diffusion curve and mean the pixels that correspond to
those next to the curve representing the color information on both of its sides. This is the strategy
proposed by Orzan et al.[21], where each pixel is translated along the normal to avoid superposition
of the color from both sides of the curve. The normal n of a curve is shown in Figure 3.11 and the left
and right color curves are shown in Figure 3.12. The normal is perpendicular to

−−−−→
D2D1 and

−−−−→
D2D1 can

be calculated according to the Equation 3.3.

d(t) =
3∑

i=1

pi
(
3
i

)
ti(1− t)3−i −

2∑
i=0

pi
(
2
i

)
ti(1− t)2−i, t ∈ [0, 1] (3.3)

Figure 3.11: The normal of a curve.

(a) (b)

Figure 3.12: a): A curve without color, b): A curve with color on left and right sides.

Since the gradient is introduced, each tile stores not only the color information but also a gradient
field w which only has a value on the curve, while it is zero elsewhere. And the gradient of those pixels
on the curve can be expressed in 3.4.

3.3. Rendering 19

w = (cl − cr)n (3.4)

where cl is the left color and cr is the right color and w is the gradient that can be decomposed into
wx and wy representing the gradient in vertical and horizontal direction.

Section 3.2 introduced a content synchronization mechanism that multiple curves will be derived
from the curve drawn by the user. The colored curve still follows this mechanism. The curves with the
same id will have the same colors. Furthermore, Section 3.2 has already discussed the case that some
part of the curve is outside the tile. Corresponding pixels outside of the tile can simply be discarded,
as they will be generated by the part of the curves inside of another tile.

3.3.2. Image Sources
Sometimes, instead of starting from scratch, an image could be used as part of the pattern. Such an
image should be seamlessly integrated into the tiles as well.

Figure 3.13: Image S is inserted to Image I. Hard constraints(I′k = Ik) are the colors on the border∂Ω. Soft constraints are
based on a guidance vector field provided by S

Poisson image editing[22] provides a way of blending two images together seamlessly as shown in
Figure 3.13. The function of the destination domain Ω is unknown and this function is denoted as I ′.
For each pixel p in destination image, the set of its 4­connected neighbors that are in the destination
image I is denoted as Np and the boundary of Ω is ∂Ω = {p ∈ I\Ω : Np ∩ Ω ̸= ∅}. The source image
S with n pixels {Sk|k ∈ 1...n} is inserted into the destination domain area Ω of the destination image I,
{Ik|k ∈ 1...n} with the boundary ∂Ω, while the remaining part of I should remain the same. Seamless
image blending requires the gradient of I ′ to be consistent with the gradient of the source image S, and
the value of I ′ on the border of Ω or ∂Ω is consistent with the value of I.

The resulting image I ′ is the solution of a Poisson equation under Dirichlet boundary conditions as
shown in Equation 3.5, and an example of the two images blending is shown in Figure 3.14.

∆I ′ = divv overΩ, with Ik = I ′k ∀k ∈ ∂Ω (3.5)

where ∆ is the Laplacian operator, div is the divergence operator, v is the guidance vector field which
refers to the gradient of the source function here and vpq == Sp − Sq. The above Poisson equation
can also be reformulated to a constrained minimization:

I ′ = min
I′|Ω

n∑
<p,q>∩Ω̸=∅

(I ′p − I ′q − vpq)
2, withI ′p = Ip,∀p ∈ ∂Ω (3.6)

3.3. Rendering 20

Figure 3.14: An example of image blending using Poisson image editing

In this thesis, the user can upload an image to the system directly as image sources that can be
placed on the tiles.

3.3.3. Diffusion
In this section, we will build a linear equation system to solve the diffusion and image blending problem.
After getting the discrete geometric coordinate and color information of the diffusion curve, the color on
the curve can be diffused to other pixels of the images. This diffusion process is usually modeled by the
Poisson equation framework with the Dirichlet boundary condition. The simplest case of diffusion has
been introduced in Section 2.3. In this thesis, we will use the reformulated constrained linear system
[2], which is described in Equation 3.15 to get the resulting tile set. However, in Diffusion Mosaics, not
one tile needs to be rendered, but several tiles need to be rendered and be seamless. Hence, if the
edges of a Wang tile match, the content of the tiles should also match. This means that the boundaries
of tiles will not actually represent boundaries for the diffusion. The diffusion of one tile will affect the
contents of its neighbor tiles, and the diffusion of its neighbor tiles will also affect its own content in
turn. Our solution to get a continuous diffusion at the boundary is to add constraints that enforce that
neighboring pixels of neighboring tiles should be similar. This condition is encoded via soft constraints,
as illustrated in Figure 3.15, which should be applied for all west, north, east, and south edges.

Note that before the diffusion, the boundary pixels are unknown if there are no color sources or
image sources. Thus, the diffusion of these tiles has to be done at the same time instead of rendering
each tile one by one.

In order to satisfy these constraints, the Equation 2.1 has to be rewritten. Here, some definitions for
global rendering will be given first. Let T be the tileset and the tileset T has nt tiles. Consider each tile
ti with n pixels,

{
tik|k ∈ 1...n, i ∈ 1...nt

}
(tik has RGB colors and color strength: (ra, ga, ba, a)). Let I be

a new pixel set by putting all the pixels of all tiles together and it has a size of (nt · n), {Ik|k ∈ 1...ntn}.
Then let w = {wk|k ∈ 1...ntn} be the gradient set reflecting the constraints in the tile set. Most wi are
likely to be zero, as they correspond to the smooth interpolated content in the tiles. Hard constraints
are pixel colors {Ck|k ∈ IC}, where IC are the colors emitted by curves.

I =argmin
Image I

(

ntn∑
i=0

|∇Ii − wi|2) , subject to Ik = Ck,∀k ∈ IC ,

Ip = Iq, if p and q are neighbor pixels. (3.7)

where ∇ is the gradient operator, wi is the gradient of pixel i.
Remember that the RGB colors obtained after diffusion need to be divided by the color strength

after diffusion.

3.3. Rendering 21

Figure 3.15: Soft constraints Ik − Ij = 0. The pixels Ij on the west edge of tj should be the same as the its neighbor pixels
on the east edge of tk. Here, tk can be t0, t1, t3, t4, t6, t7, t10, t13.

The least­squares solution to the linear system aims at satisfying the constraints of the color sources,
border pixels, and image gradients as much as possible. Since all tiles are rendered together, the
dimension of this linear system is very high, but, fortunately, the constraints matrix is very sparse,
given that all constraints are local (e.g., divergence or color constraints).

3.4. Tiling Methods 22

3.4. Tiling Methods
Diffusion Mosaic generates large textures by small tiles, and it uses Wang Tiles as the basic tile. Due to
the unique features of Wang tiles, it can create aperiodic tiling, which is very useful for reducing visual
repetition. But for Wang Tiles, only tiles with the same color on adjacent edges can be put together,
like in Figure 3.16, which means they cannot be tiled arbitrarily. Thus we need some tiling algorithms
for the Wang tile.

(a) (b)

Figure 3.16: Wang tile match cases: a): tiles of aperiodic Wang set b): tiles of ordinary Wang set. The tile should match all its
neighbor tiles

3.4.1. General Tiling Method
As mentioned before, Algorithm 1 requires tiles to meet some conditions to ensure that the tiling re­
sult is random. If not satisfied, other method needs to be taken. For example, the aperiodic Wang
set as shown in Figure 2.3 has 4 colors but only has 11 tiles. Naively tiling the plane could lead to
circumstances, where there are no eligible tiles remaining in the set, see Figure 3.17.

Therefore, backtracking algorithms are used to solve this problem. If there is no tile that can be
chosen from the tile set for fi, go back to previous place fi−1 and choose another tile. If all tiles for
fi−1 are exhausted, then go back to fi−2 and repeat this process until a solution is found. In order to
ensure there exists a possible tiling of the plane, the tile set should be designed carefully. The aperiodic
Wang set used in this thesis, which is shown in Figure 2.2 has been proven that it can always tile the
plane[14]. In this case, we can be certain that the backtracking succeeds. If the set is composed of
tiles with arbitrarily colored edges, the approach might fail to tile the whole plane.

Figure 3.17: A failed tiling case: tile at (4, 1) should have red colors on its north and west edge in order to match its neighbors,
but there is no such tile in this set

3.4.2. Parallel Tiling Method
For a full Wang set, this tiling algorithm can be paralleled. The plane to be tiled can be divided into
blocks. However, there are data dependencies when using this simple tiling algorithm because the tile

3.4. Tiling Methods 23

Algorithm 2 General Tiling Method
Require: width, height, T ile Set T
repeat
if x = 0, y = 0 then
T ′ ← T

else if x > 0, y = 0 then
T ′ ← tiles that satisfy fw(x, 0) = fe(x− 1, 0)

else if x = 0, y > 0 then
T ′ ← tiles that satisfy fn(0, y) = fs(0, y − 1)

else if x > 0, y > 0 then
T ′ ← tiles that satisfy fw(x, y) = fe(x− 1, y) and fn(x, y) = fs(x, y − 1)

end if
if T ′ = ∅ then
backtracking

else
f(x, y)← randomly choose a tile t from T ′

end if
until x = width, y = height
return tiling f

should match all its north and west neighbor tiles(if they exist). With data dependencies, tiling all blocks
at the same time could lead to mismatches on the boundary of the block.

Here, we divide the plane into 2 horizontal blocks. And as the boundary of two blocks, the middle
row of the plane needs to be handled separately. We take a simple approach that the middle rowheight

2
is tiled first. Then tile the upper part of the plane and the lower part of the plane simultaneously. The
tiling of the lower part is almost the same as Algorithm 1 but starts from f(0, height

2 + 1). Such blocks
can be handled very similarly, only the position of the constraints changes (e.g., with only a horizontal
separation into two blocks, the upper part will tile from bottom to top, as the constraints are below, while
the lower part tiles from top to bottom)

In this way, mismatches on the boundary are avoided. This process is shown in Figure 3.18.

3.4. Tiling Methods 24

Figure 3.18: Paralleled stochastic tiling algorithm. Step 1: Randomly choose a tile from the tile set for the leftmost one of the
middle row f(0, 0). Step 2: Find the tile whose left edge color is the same as its left neighbor’s right edge’s for the remaining
tiles of the middle row. Step 3: Thread One chooses a tile whose south edge color is the same as its south neighbor’s north

edge’s for the leftmost one above the middle row. Thread Two chooses a tile for the leftmost one below the middle row. Step 4:
Thread One finds the tile whose left edge color is the same as its left neighbor’s right edge’s and south edge color is the same
as its south neighbor’s north edge’s for the remaining tiles of the row. Thread Two finds the tile whose left edge color is the
same as its left neighbor’s right edge’s and north edge color is the same as its northern neighbor’s south edge’s for the

remaining tiles of the row. Step 5: Both threads repeat Steps 3 and 4.

3.5. User Interface Design 25

3.5. User Interface Design
This chapter will introduce the graphical user interface design of our Diffusion Mosaic system. There
are three main functions: drawing, tiling, and result­image viewing.

3.5.1. Drawing tools

Figure 3.19: The layout of drawing tools.

The layout of the drawing tools is shown in Figure 3.19. In drawing tools, there are four main
modules: Toolbar, Tile View, Canvas and Others.

For the drawing tools, a canvas is needed. Since the tool should allow the artist to define shapes
outside the tile boundaries, the canvas is virtually infinite. Hence, it needs to be possible to drag the
canvas and also to be able to return to the initial view focused on the current tile.

To draw different kinds of diffusion­curve control points: geometric, color and blur should be sup­
ported. This requires the program to allow for switching the control points. For color control points,
RGB colors and strength can be selected in a color­picker interface. Figure 3.20 shows some of these
aspects.

When creating a pattern, several curves are combined, requiring a button to start a new curve.
Correspondingly, another button allows the user to delete a curve. If there are multiple curves, the
user may need to select a particular curve, hence, a selection functionality is also needed. Further, two
buttons are reserved to delete and edit control points. To avoid clutter, some buttons in the interface
change their state according to the user action instead of statically executing one funtion. Figures 3.21
and 3.22 illustrate the interface.

Figure 3.20: The part of the toolbar is related to the control points, color, and strength. This tool provides twenty standard
colors and a button to open the palette for more colors. The strength is controlled by the spin box and slide bar.

Because the goal is to fill the Wang Tiles, the user should be able to select the tile to work on, which
is conveniently presented to the user as a list view of all existing tiles. The top indicates the current tile,
and the middle is a tile list with tile numbers, the corresponding Wang tile, and the tile content in form
of thumbnails. The bottom is a small window with the same size as the tile that displays the content of
the current tile. The tile view is shown in Figure 3.23.

In module others as shown in Figure 3.24, the user can choose whether to display control points,
curves, color sources, and tile boundary information on the canvas. There are also image uploading,

3.5. User Interface Design 26

Figure 3.21: Mode switch: draw(draw control point), edit(edit control point position and color), select(select a curve),
erase(erase a control point)

(a) (b)

Figure 3.22: Buttons of a single action. a): Canvas action: home(back to the default position), drag(switch to drag mode), and
clear(clear the content of canvas) b): Actions: new curve(add a new curve), delete curve(delete the current curve).

rendering, saving, and loading functions in this module.

3.5. User Interface Design 27

Figure 3.23: The module Tile View of drawing tool.

Figure 3.24: The others module of drawing tool.

3.5. User Interface Design 28

3.5.2. Tiling tools design
The layout of the drawing tools is shown in the Figure 3.25. In tiling tools, there are also four main
modules: Tile View,Setting, Patterns andWang Tiles.

Figure 3.25: The layout of tiling tools.

3.5.3. Image Viewing design
The resulting image can already be seen in the tiling tools. Nevertheless, the pattern is superposed in
form of a grid, which can be distracting. Thus, a final image viewing tool is also available to show the
image without distractions. This tool also provides the option to zoom in and out, to save the image
and to return to the original zoom level. The layout of the image viewing tool is shown in 3.26.

Figure 3.26: The layout of image viewing tool.

4
Implementation

This chapter will introduce how diffusion mosaic is implemented. In Section 4.1, we will introduce the
programming language, library, and framework used in detail. In the Section 4.2, we will explain how
the user graphical interface described in Section 3.5 is connected with specific functions.

4.1. Architecture
The Diffusion Mosaic is written in C++/C[12, 13]. The graphical interface is developed on the basis of
QT[24] framework and OpenGL[17]. For the diffusion part, an open source program OpenNL[3] is used
to solve the linear equations.

QT Framework Qt is a cross­platform application framework for desktop systems and embedded
development. It includes an intuitive API, a rich class library, and integrated GUI development and in­
ternationalization tools. Applications developed by QT can be deployed on different operating systems
without changing the source code and additional environment configuration. Therefore, the code of
Diffusion Mosaic can run on the current mainstream PC operating systems like Mac OS and Windows.
Signals and slots are the most core mechanism in Qt. Through the connect() function of the QObject
object, communication between objects can be achieved and the UI can easily be connected to func­
tions. Furthermore, QT provides an OpenGL module, which can be used directly without configuring
the environment, and supports GLSL. Using the GUI components provided by QT, users can easily
interact with the graphical interface instead of using the command line.

Multi­threading Programming Model In Diffusion Mosaic, many tasks are independent of each
other, so multi­threading can be introduced to process multiple tasks at the same time. And Qt already
provides a thread class QThread. So forked threads can handle those time­consuming operations
while the main thread continues to handle GUI events. Besides, POSIX Thread (Pthread) is also used
to accelerate the tiling process.

Mathematical Library Diffusion mosaic needs to solve linear equations for the diffusion process.
However, writing a simple solver is relatively inefficient and cannot meet program requirements well.
Moreover, since this is a really large matrix (albeit being actually sparse), simple methods will easily
lead to insufficient memory. Therefore, an open­source library, Open Numerical Library(OpenNL), is
used for better performance. This solver can handle sparse linear systems well and supports CUDA[20]
for a suitable mapping onto graphics hardware.

4.2. Interface
As discussed in 3.5, there are three main functions: drawing, tiling, and image viewing in Diffusion
Mosaic. These functions will be implemented via tabwidget in QT. Users can switch tabs to use different
tools.

30

4.2. Interface 31

After drawing the draft of the pattern, by clicking the push button render all, the system will begin
to compute the diffusion process, which will take some time. When diffusion is complete, the user can
get their rendered image for each tile in tab Tiling.

Figure 4.1: The overview of drawing tools.

By clicking the push button generate in Tiling, it will tile the plane of given width and height. When
the size of the plane increases, the response time also increases. Most of the time will be spent on
rendering the table widgets and computing the solution. When computing the solution in the main
thread, the program would lose its responsiveness until a tiling solution is found. To improve the user
experience, the computation process is handled separately by forking a new thread. Unfortunately, in
the QT framework, the GUI events can only be processed by the main thread, which means the user
still has to wait until the program finish rendering the table widgets. When the size becomes larger, the
rendering time will become very long.

After generating a tiling, the user can go to the next tab to view the final integrated large image. The
user can zoom in to view the details of the image and save it for a position specified by the user.

4.2. Interface 32

Figure 4.2: The overview of tiling tools.

Figure 4.3: The overview of image viewing tool.

5
Results

This chapter will show visual results created by Diffusion Mosaic, including the patterns and the large
synthetic textures. Also, some quantitative data for generation of these images and textures will be
given. The results of this thesis are achieved in the following environment:

• CPU: Intel(R) Core(TM) i7­7700HQ CPU @ 2.80GHz (4 cores)
• GPU: AMD Radeon Pro 555, VRAM 2GB
• Memory: 16GB

5.1. Quantitative Results
This section presents quantitative results of the tiling algorithm. It mainly measures the cases where
the target area size is 5× 5, 15× 15, 20× 20, 25× 25, 30× 30, 35× 35, 45× 45, 50× 50.

For the Wang set shown in Figure 2.3, there are two tiling algorithms available, one is sequential,
and the other is parallel. Note that the parallel algorithm here is implemented in an external C file. It
needs an additional file read operation to get the tile­set information and to return the tiling results. The
sequential tiling algorithm is implemented in C++ with QT. The comparison of these two algorithms is
shown in Figure 5.1.

The parallel stochastic algorithm has data IO operations. This part of the overhead cannot be
ignored. And its computation time is shown in Figure 5.2. The data IO proportion is shown in Figure
5.3. Figure 5.4 illustrates the relationship between computation, IO time, and total time.

There is no quantitative result of the general algorithm because the general algorithm is not stable.
In the best case, the tiling result can be found in one try without backtracking, and in the worst case,
all possible choices have to be traversed.

After the tiling algorithm is executed, the system has to take some time to load the rendered image
data and display it. The cost of this part is not small. Figure 5.5 shows the time that QT spends on
setting the table widget data after getting the tiling results. The displaying process was not optimized
and can take more than a second in our prototype interface.

34

5.1. Quantitative Results 35

Figure 5.1: Comparison of parallel and sequential stochastic tiling algorithm: Parallel arithmetic is not fast at the beginning, but
when the size is over 18, the parallel algorithm starts to be much faster than serial arithmetic

Figure 5.2: Computation time of parallel stochastic algorithm.

5.1. Quantitative Results 36

Figure 5.3: Data IO percentage of parallel stochastic algorithm.

Figure 5.4: Computation time and data IO time of parallel stochastic algorithm.

5.1. Quantitative Results 37

Figure 5.5: Table widget data loading time.

5.2. Visual Results 38

5.2. Visual Results
In this section, we will show the synthesis images of Diffusion Mosaic.

Case 1 Figure 5.6 shows the rendered images and corresponding Wang tile. Figure 5.7 shows the
tiling and Figure 5.8 shows the final image. This case mainly shows the content synchronization update
mechanism of Diffusion Mosaic, which is convenient when generating cross­tile patterns.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.6: Case1: all rendered images and its corresponding Wang tile. Original tile size: 200×200

5.2. Visual Results 39

Figure 5.7: A tiling of case 1 in Wang tile form. Size: 10× 10

5.2. Visual Results 40

Figure 5.8: The final synthesized image of case 1. Green represents grass, gray stripes are path, and blue blocks are ponds.
There are trees on the grass. Each tile is down scaled to 50× 50. Size: 500× 500.

5.2. Visual Results 41

Case 2 Figure 5.9 shows the rendered images and corresponding Wang tiles. Figure 5.7 shows
the tiling and Figure 5.11 shows the final image. This case shows that Diffusion Mosaic can be used
to create artistic patterns. The color transition between different tiles is smooth due to the cross­tile
optimization.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5.9: Case2: all rendered images. Original tile size: 200×200

5.2. Visual Results 42

Figure 5.10: A tiling of case 2 in Wang tile form. Size: 10× 10

5.2. Visual Results 43

Figure 5.11: The final synthesized image of case 2. There are three different patterns in this case. And the back ground color
is cyan and white. This case has a smooth color transition. Original size: 2000× 2000

5.2. Visual Results 44

Case 3 This case illustrates that Diffusion Mosaic can be used to create height maps that can be
converted to terrains ­ one of the useful additional applications of diffusion curves.

Case 3a Figure 5.12 shows the rendered images of all tiles. The tile order is the same as in Figure
5.9. Figure 5.13 shows the tiling, and Figure 5.14 shows the final image. For the height map, the image
needs to be converted to a RAW format first. The terrain can then be directly generated from Figure
5.14 using Unity, resulting in the geometry illustrated in Figure 5.15. The terrain can be smoothed and
textured, leading to the final result in Figure 5.16.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 5.12: Case3a: all rendered images. Original tile size: 200×200

Figure 5.13: A tiling of case 3a in Wang tile form. Size: 5× 5

5.2. Visual Results 45

Figure 5.14: The final synthesized image of case 3a. Because the target image is a height map, the grayscale pattern is
enough. Each tile is down scaled to 50× 50. Size: 250× 250

5.2. Visual Results 46

Figure 5.15: The height map generated by this pattern. Height map size: 250× 250× 30

Figure 5.16: The terrain generated by this pattern with textures. ’Mountains and plains’. Terrain size: 250× 250× 30

5.2. Visual Results 47

Case 3b Figure 5.17 shows the rendered images of all tiles. The tile order is the same as in Figure
5.6. Figure 5.18 shows the tiling, and Figure 5.19 shows the final image. The terrain(Figure 5.21) is
generated from Figure 5.19 which is illustrated geometrically in Figure 5.20.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.17: Case3b: all rendered images and its corresponding Wang tile. Original tile size: 200×200

5.2. Visual Results 48

Figure 5.18: A tiling of case 3b in Wang tile form. Size: 5× 5

Figure 5.19: The final synthesized image of case 3b. Because the target image is a height map, the grayscale pattern is
enough. Each tile is the orignial size 200× 200. Size: 1000× 1000

5.2. Visual Results 49

Figure 5.20: The height map generated by this pattern. Height map size: 1000× 1000× 100

Figure 5.21: The terrain generated by this pattern with textures.’Mountains and an alpine lake’. Terrain size: 1000× 1000× 100

6
Discussion

6.1. Visual Results
From the results, it can be seen that if the assigned background colors are similar, the transition will be
smooth after the color diffusion. But if the color difference is significant, there will be some artifacts.

Case 1 is a simple example, and it almost does not involve color blending. Case 2 has some color
blending: cyan and white, but these two colors are very close. Finally, case 3 shows that the grayscale
of the diffusion result can be used as a heightmap to generate a terrain. The results shows the feasibility
for this application although the additional tools for the control of the landscape would be useful to add
such as the format conversion tools like Photoshop, and rendering engines like Unity.

In the current diffusion system, the position of the curve in the tile will affect the final diffusion result,
which can be considered a limitation. The strength of the color source, which is close to the border,
becomes stronger. One possible reason is that a tile has multiple neighbors. The color sources close
to the border will be the first to diffuse its color information to all its neighbor tiles. The color source
of the other side needs to diffuse the entire tile first then diffuse to other tiles, which causes the color
strength received by other tiles to be further away. This phenomenon only occurs when an edge has
multiple neighbor tiles. If this boundary edge has only one neighbor, then this phenomenon does not
exist. When there are multiple neighbor tiles, the color sources close to the boundary will be enhanced,
and the more neighbor tiles, the more noticeable this phenomenon is. This phenomenon is shown in
Figure 6.1. There is only one red­blue curve in one tile whose edge colors are the same.

(a) (b) (c)

Figure 6.1: The color sources near the border are enhanced.(a) The final image looks bluer. (b) The final image looks normal.
(c) The final image looks more red.

There is another phenomenon which is shown in Figure 6.2. The area pointed by the orange arrow
looks gray. This is because the color on the tile border is a mixture of red, blue, and green. The user
can change the color or put this curve in another position to avoid this. Usually� it is easy for users
to predict the result of mixing two colors like blue and red, but adding other colors such as green may
make the result not be easy to predict. The user should consider these in advance during the drawing
process.

50

6.2. Performance 51

Figure 6.2: The border color looks gray instead of purple or brown.

6.2. Performance
From the results, it is obvious that the time cost of the program is mainly spent on solving the diffusion
equations, and the overhead of others like rendering Bezier curves and control points is relatively small.
Only when the size of the target area is large, the QT program will spend much time rendering the table
widgets.

Tiling The results show that regardless of the QThread provided by QT or the Pthread of POSIX, the
execution of multi­threaded and computationally intensive tasks in Qt is not necessarily faster than an
external multi­threaded C program. Therefore, we wrote a multi­threaded tiling program in another file
and use the C++ function system to execute it. We also tried to useMPI to parallelize the tiling process.
Still, when using the function system to execute an external C program usingMPI, it takes an unusually
long time to initialize MPI.

Using an external C program to do the parallel tiling will have additional IO overhead because it
cannot access the program data directly. Instead, it needs a file read operation to obtain the Wang­Tile
information. For a small tile set, IO takes muchmore time than computation, making the parallel method
slower than the non­parallel method. Through experiments, we found that when the tile set is about
18 ×18, the elapsed time of both ways is very close. Therefore, the tiling algorithm will be switched
to the parallel method only when the plane size is larger than this size. The interesting point is that
the external C program with Pthread can get a speedup of more than n(thread number) compared with
tiling algorithms in QT. Nevertheless, a more optimal implementation would directly produce the tiling
on the GPU but this is left for future work.

This thesis also proposes a general tiling algorithm, which uses a backtracking strategy, but this
method may be extremely slow in some cases. In the worst case, it needs to traverse all the possible
choices. Fortunately, one feature of Wang Tiles is that mathematicians claim that for certain sets, one
can always tile the plane of any size, hence, the algorithm will always conclude.

Diffusion The three color RGB channels are independent of each other, but they all have a relation­
ship with the color strength, which is only computed once. Further, if the color strength is everywhere
the same, there is no need to calculate it at all. The performance of the diffusion process depends on
the selected solver and whether any acceleration strategy is enabled. Our results typically take around
20 ∼ 30 seconds to compute for each color channel and color strength(on CPU).

7
Conclusion

This research led to a texture synthesis tool for artists. This synthesis method is a tile­based method,
which makes full use of some characteristics of Wang Tiles. A large and non­periodic texture can
be obtained. Moreover, this method makes full use of the diffusion characteristics of diffusion curves.
It adds more constraints to the diffusion equation to integrate the properties of Wang Tiles, ensuring
that the tile content remains seamless across compatible boundaries. Compared with the traditional
synthesis method, this method utilizes an image rendering process instead of searching for patches,
as done in previous work. In other words, once the content of each tile is rendered, there is no need
for an additional image matching anymore, and the advantages of A tile­based synthesis method are
maintained; fast and less memory.

This system integrates drawing tools and tiling tools. Users can draw patterns or add images through
drawing tools without being restricted by the size of the canvas. The system also provides two sets of
Wang tiles for users to choose from and offers corresponding tiling algorithms.

The most intuitive use of this system is to allow artists to create patterns. In addition, this system
can also be used to create game maps and height maps which can be used to generate terrain.

Future Work While developing this tool, we noticed some problems that can be solved in the future.
The first point is usability. Because the target user group are artists, they often do not know much

about computer graphics. Therefore, this tool needs to be improved to become more user­friendly.
Some usability improvements are as follows:

When the user draws the curve outside the tile during the drawing process, the user knows if the
curve intersects with an edge of a tile. However, if the curve intersects with more than one edge or if the
curve is too long, the synchronization content update mechanism will cause many unexpected updates.
Thus a more user­friendly mechanism to illustrate the possible chain of consequences of such drawing
would be useful.

Users can be confused by too many control points. It is necessary to design a more convenient and
intuitive element to indicate the curve’s control point.

The second point is the diffusion process. The color transitions at the boundaries of tiles are smooth
by our linear­system design, due to our smoothness constraints. This diffusion model is very simple
and more sophisticated models could be adopted to deal with more complex situations.

Finally, the diffusion curves could be replaced with an extended definition described in Poisson
vector graphics[11], to produce photo­realistic effects. Moreover, this extension enables seamless
cloning and multi­layer images, which is used to solve overlaps.

52

References
[1] Michael Ashikhmin. “Synthesizing natural textures”. In: Proceedings of the 2001 symposium on

Interactive 3D graphics. 2001, pp. 217–226.
[2] Hedlena Bezerra et al. “Diffusion constraints for vector graphics”. In: Proceedings of the 8th

international symposium on non­photorealistic animation and rendering. 2010, pp. 35–42.
[3] Luc Buatois, Guillaume Caumon, and Bruno Lévy. “Concurrent number cruncher: An efficient

sparse linear solver on the GPU”. In: International Conference on High Performance Computing
and Communications. Springer. 2007, pp. 358–371.

[4] Michael F Cohen et al. “Wang tiles for image and texture generation”. In: ACM Transactions on
Graphics (TOG) 22.3 (2003), pp. 287–294.

[5] Karel Culik II. “An aperiodic set of 13 Wang tiles”. In: Discrete Mathematics 160.1­3 (1996),
pp. 245–251.

[6] Weiming Dong, Ning Zhou, and Jean­Claude Paul. “Optimized tile­based texture synthesis”. In:
Proceedings of Graphics Interface 2007. 2007, pp. 249–256.

[7] Alexei A Efros and William T Freeman. “Image quilting for texture synthesis and transfer”. In:
Proceedings of the 28th annual conference on Computer graphics and interactive techniques.
2001, pp. 341–346.

[8] Alexei A Efros and Thomas K Leung. “Texture synthesis by non­parametric sampling”. In: Pro­
ceedings of the seventh IEEE international conference on computer vision. Vol. 2. IEEE. 1999,
pp. 1033–1038.

[9] Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. “Tilegan: synthesis of large­scale non­
homogeneous textures”. In: ACM Transactions on Graphics (TOG) 38.4 (2019), pp. 1–11.

[10] Leon Gatys, Alexander S Ecker, and Matthias Bethge. “Texture synthesis using convolutional
neural networks”. In: Advances in neural information processing systems 28 (2015), pp. 262–
270.

[11] Fei Hou et al. “Poisson vector graphics (PVG)”. In: IEEE transactions on visualization and com­
puter graphics 26.2 (2018), pp. 1361–1371.

[12] ISO. ISO/IEC 14882:2020 Programming languages — C++. 2020. URL: https://www.iso.org/
standard/79358.html.

[13] ISO. ISO/IEC 9899:2018 Information technology — Programming languages — C. 2018. URL:
https://www.iso.org/standard/74528.html.

[14] Emmanuel Jeandel and Michael Rao. “An aperiodic set of 11 Wang tiles”. In: arXiv preprint
arXiv:1506.06492 (2015).

[15] Stefan Jeschke, David Cline, and Peter Wonka. “A GPU Laplacian solver for diffusion curves and
Poisson image editing”. In: ACM SIGGRAPH Asia 2009 papers. 2009, pp. 1–8.

[16] Jarkko Kari. “A small aperiodic set of Wang tiles”. In: Discrete Mathematics 160.1­3 (1996),
pp. 259–264.

[17] Khronos Group. Opengl. 2020. URL: https://www.khronos.org/opengl/.
[18] Vivek Kwatra et al. “Graphcut textures: Image and video synthesis using graph cuts”. In: Acm

transactions on graphics (tog) 22.3 (2003), pp. 277–286.
[19] Chuan Li and Michael Wand. “Precomputed real­time texture synthesis with markovian genera­

tive adversarial networks”. In: European conference on computer vision. Springer. 2016, pp. 702–
716.

[20] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 10.2.89. 2020. URL: https:
//developer.nvidia.com/cuda-toolkit.

54

https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/74528.html
https://www.khronos.org/opengl/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

References 55

[21] Alexandrina Orzan et al. “Diffusion curves: a vector representation for smooth­shaded images”.
In: ACM Transactions on Graphics (TOG) 27.3 (2008), pp. 1–8.

[22] Patrick Pérez, Michel Gangnet, and Andrew Blake. “Poisson image editing”. In: ACMSIGGRAPH
2003 Papers. 2003, pp. 313–318.

[23] Raphael M Robinson. “Undecidability and nonperiodicity for tilings of the plane”. In: Inventiones
mathematicae 12.3 (1971), pp. 177–209.

[24] The QT Company. QT Developer Guides. 2019. URL: https://wiki.qt.io/Developer_Guides.
[25] Vasilis Toulatzis and Ioannis Fudos. “Deep Tiling: Texture Tile Synthesis Using a Deep Learning

Approach”. In: arXiv preprint arXiv:2103.07992 (2021).
[26] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Improved texture networks: Maximizing

quality and diversity in feed­forward stylization and texture synthesis”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 6924–6932.

[27] Hao Wang. “Proving theorems by pattern recognition—II”. In: Bell system technical journal 40.1
(1961), pp. 1–41.

[28] Li­Yi Wei and Marc Levoy. “Fast texture synthesis using tree­structured vector quantization”. In:
Proceedings of the 27th annual conference on Computer graphics and interactive techniques.
2000, pp. 479–488.

[29] Philip Willis. “Projective alpha colour”. In: Computer Graphics Forum. Vol. 25. 3. Wiley Online
Library. 2006, pp. 557–566.

https://wiki.qt.io/Developer_Guides

	Introduction
	Background
	Texture Synthesis
	Wang Tile
	Intuitive Stochastic Tiling

	Diffusion Curve

	Our Method
	System Overview
	Tile Design
	Content synchronization

	Rendering
	Color Sources
	Image Sources
	Diffusion

	Tiling Methods
	General Tiling Method
	Parallel Tiling Method

	User Interface Design
	Drawing tools
	Tiling tools design
	Image Viewing design

	Implementation
	Architecture
	Interface

	Results
	Quantitative Results
	Visual Results

	Discussion
	Visual Results
	Performance

	Conclusion
	References

