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Abstract
While integer ambiguity resolution (IAR) enables GNSS to achieve real-time sub-centimeter-level positioning in open-sky
environments, it can be easily hindered if the involved receivers are situated in areas with limited satellite visibility, such as in
dense city environments. In such GNSS-challenged cases, commercial Low Earth Orbit (LEO) communication satellites can
potentially augment GNSS by providing additional measurements. However, LEO satellites often lack code measurements,
mainly transmitting satellite-specific frequency-varying carrier phase signals. This contribution aims to study the ambiguity-
resolved baseline positioning performance of such phase-only signals, addressing the extent to which LEO constellations can
realize near real-time positioning in standalone and GNSS-combined modes. Through a simulation platform, we analyze the
distinct response of each LEO constellation (Iridium, Globalstar, Starlink, OneWeb, and Orbcomm) to IAR under various
circumstances. Although achieving single-receiver high-precision positioning can be challenged by inaccuracies in the LEO
satellite orbit products, the relative distance between two receivers can help overcome this limitation. As a result, centimeter-
level relative positioning over short baselines can be made possible, even with a satellite elevation cut-off angle of 50 degrees,
making it suitable for GNSS-challenged environments. This can be achieved with high-grade receiver clocks over very short
baselines (∼5km) and access to decimeter-level orbit products.

Keywords Global navigation satellite systems (GNSS) · Low earth orbit (LEO) communication satellites · Frequency-varying
carrier phase signals · Integer ambiguity resolution (IAR)

1 Introduction

The ultra-precise carrier phasemeasurements of Global Nav-
igation Satellite Systems (GNSS) can realize near real-time
sub-centimeter level positioning when collected by terres-
trial receivers tracking multiple GNSS satellites in open-sky
environments (Leick et al. 2015). However, such precision
can be easily compromised if receivers are located in urban
canyons with limited visible satellites. Therefore, GNSS
should be augmented with supporting sensory data so as to
ensure the provision of reliable positioning, navigation and
timing (PNT) services. In recent years, thousands of com-
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mercial Low Earth Orbit (LEO) communication satellites
from multiple constellations, including Iridium, Orbcomm,
Globalstar, OneWeb, and Starlink, have been deployed by
distinct broadband internet providers (Dietrich et al. 1998;
Ilcev 2005; Reid et al. 2018; Khalife and Kassas 2019). Con-
sidering that these LEO satellites broadcast radiofrequency
carrier phase signals, they can potentially serve as promis-
ing candidates for augmenting GNSS PNT services. Due to
their lower altitudes (300–2000km), LEO satellites offer sev-
eral advantages over their GNSS counterparts, which operate
at altitudes exceeding 20,000km. These advantages include
stronger signal strength and more rapid geometric changes.
For instance, the Iridium LEO constellation achieves a 25-
to 30-dB improvement in signal-to-noise ratio compared to
GNSS (Yang et al. 2024). Such LEO satellites can also pass
overhead in just minutes, in contrast to the hours it takes
for GNSS satellites (Ge et al. 2022; Shi et al. 2023). Stud-
ies on carrier phase tracking and positioning with these
LEO constellations demonstrate that using a single LEO
communication constellation—whether Iridium, Orbcomm,
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OneWeb or Starlink—could achieve horizontal positioning
accuracy of tens of meters for a single receiver (Orabi et al.
2021; Kozhaya et al. 2023). For the standalone Globalstar
constellation, the resultswere less favorable,withZhanget al.
(2023) reporting horizontal accuracy of better than 300m.
With a combined LEO constellation, a horizontal accuracy
of 5m was obtained for a single receiver (Kozhaya et al.
2023).

In the aforementioned contributions, the achieved accu-
racy with multi-LEO constellations is only at the meter
level, roughly hundreds of times less precise than what is
expected by their carrier phase measurements. Next to inac-
curate orbit products, this may be due to the treatment of
LEO phase ambiguities as real values, discarding the impor-
tant piece of information that such unknown ambiguities are
constrained to be integer (Teunissen 1995). To fully leverage
the ultra-precise phase measurements, one should therefore
employ integer ambiguity resolution (IAR). While some
studies have reported centimeter-level ambiguity-resolved
positioning results using LEO simulation data (Li et al. 2019;
Fang et al. 2024;Wang et al. 2024), these results are based on
the assumption that LEO satellites broadcast both GPS-like
phase and code signals employing the code division mul-
tiple access (CDMA) technique. However, as Table 1 indi-
cates, most current LEO communication satellites transmit
satellite-specific frequency-varying signals, which results in
non-integer combinations of phase ambiguities when using
the classical double-differencing technique (Khodabandeh
and Teunissen 2023). By frequency-varying, here we mean
that the frequencies are assumed to vary from transmitter
to transmitter, while remaining unchanged over time. To
address this, a new IAR theory for frequency-varying carrier
phasemeasurements, like those of the GLONASS Frequency
DivisionMultiple Access (FDMA) signals, was proposed by
(Teunissen 2019). Numerical performance of the theory was
studied in (Teunissen and Khodabandeh 2019; Hou et al.
2020; Brack et al. 2021; Zaminpardaz et al. 2021; Zhang et al.
2021). It is important to remark that there are also LEO satel-
lites which transmit both code and phase measurements to
support GNSS positioning, like the Luojia-1 scientific exper-
imental satellite, the FutureNAV program from the European
SpaceAgency (ESA), the PULSAR system fromXona Space
Systems, and CENTISPACE™ system from Future Naviga-
tion (Wang et al. 2018b; Reid et al. 2022; Li et al. 2024; Xu
et al. 2024). Here, we only consider communication LEO
satellites with phase-only measurements.

In this contribution, we adopt the theory to investigate the
performance of ambiguity-resolved positioning using LEO
frequency-varying carrier phase measurements across vari-
ous scenarios, such as varying cut-off elevations, numbers
of satellites, and precision of carrier phase measurements.
Although acquisition of carrier phase measurements from
commercial LEO communication satellites is not a straight-

forward task, there exist contributions which have claimed
the feasibility of obtaining such LEO-based measurements,
see e.g., (Khalife and Kassas 2023) or (Kassas et al. 2024).
It is important to note that acquiring such measurements
requires a thorough understanding of their corresponding
‘signal structure’, without which the process would be quite
challenging (Humphreys et al. 2023). Acknowledging the
presence of this challenge, we assume LEO-based phase
data acquisition is feasible in this paper. On the basis of
such assumption, we therefore aim to conduct a feasibility
study. To consider the realistic circumstance that most exist-
ing LEO communication satellites lack code measurements,
a dual-epoch phase-only model is applied for baseline posi-
tioning (Teunissen 1997; Huisman et al. 2010; Wang et al.
2018a; Khodabandeh et al. 2021; Hou et al. 2022). This is
achieved through a simulation platformwe developed, which
provides full control over the generation of parameters and
measurements, followed by the estimation of the estimable
parameters. A particular emphasis of this platform is its sup-
port for both standalone and combined LEO constellations,
as well as the integration with real-world GNSS data. It
is thereby shown that centimeter-level ambiguity-resolved
positioning is possible under certain conditions, even with a
satellite elevation cut-off angle of 50 degrees, making it suit-
able for GNSS-challenged environments like urban canyons.

The remainder of this contribution is organized as follows.
Considering the absence of code data in LEO communica-
tion satellites, Sect. 2 highlights the crucial role of evaluating
both satellite clock and orbital corrections in the lineariza-
tion process of carrier phase observation equations. We
state the necessary assumptions which must hold so as to
make high-precision codeless positioning practical. While
single-receiver high-precision positioning is challenged by
inaccuracies in the LEO satellite orbit and clock products,
it is shown that the relative distance between two receivers
can help overcome this limitation. In Sect. 3, the dual-epoch
phase-only model for relative short-baseline positioning is
discussed and compared with the more commonly used
GNSS single-epoch phase-and-code model. For the purpose
of model comparison, some performance metrics, namely,
the average positioning precision, average precision gain
and the ambiguity dilution of precision (ADOP) (Teunissen
1997), are reviewed and provided with analytical expres-
sions, illustrating the potential benefit of partial ambiguity-
fixing in LEO-based phase-only positioning. Since every
LEO constellation is shown to have its own distinct response
to IAR, one may carry out a simulation study to assess
the performance of the proposed phase-only model under
several scenarios in which standalone and combined LEO
constellations are assumed to transmit phase measurements
at different precision levels. In Sect. 4, we therefore discuss
the simulation platform developed for numerical analysis of
LEO-based baseline positioning in detail. In Sect. 5, simu-
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lated LEO datasets under various conditions are analyzed
to provide numerical insights into the partial-ambiguity-
resolved positioning performance of LEO frequency-varying
carrier phase signals. Next to the insights, we specifically
explore the positioning capabilities of globally distributed
short baselines using combined constellations includingLEO
andGNSS.A summary of the results and conclusions is given
in Sect. 6.

2 Challenges of LEO phase-only positioning

In this section, we briefly review the important role played
by the evaluation of both satellite clock and orbital cor-
rections in the ‘linearization’ of carrier phase observation
equations. Since these corrections have to be evaluated at the
time that the phase signal is transmitted, one first requires to
estimate signal transmission time for every receiver-satellite
pair (Odijk 2017). Let t sr and τ sr denote the signal recep-
tion time and travel time corresponding to rover receiver r
and satellite s, respectively. In the presence of GNSS pseu-
dorange (code) data, standard single-point positioning can
provide reception time estimate t̂ sr and travel time estimate
τ̂ sr with an accuracy level of several nanoseconds (de Jonge
1998, Chapter 2). As a result, the sought-for transmission
time can be simply estimated as t̂ sr − τ̂ sr . However, most
existing LEO communication satellites do not provide code
measurements. Here and in the following, we therefore
assume that the rover receiver r does not have access to
LEO code data. Instead, it relies on its carrier phase mea-
surements as well as a nearby base receiver b which, in
addition to LEO phase measurements, may have access to
GNSS phase and code data. As will be shown in Sect. 3, the
clock estimate of the rover is biased by the carrier phase
ambiguities when using phase-only measurements. Under
this condition, all the rover has at his disposal is to use the
estimated reception time of the base receiver t̂ sb and the travel
time estimate τ̂ sr to approximate the transmission time t sr −τ sr
as t̂ sb−τ̂ sr . The implicit assumption for adopting such estimate
is t sr = t sb . This assumption implies that the between-receiver
single-differenced (SD) clock offset dtt = t sr − t sb should be
discarded when the signals at both receivers are deemed to
be received simultaneously, at least during the linearization
stage.We investigate, underwhat conditions, this assumption
is plausible for short-baseline ambiguity-resolved position-
ing.

Let the m-vector φt contain between-receiver SD carrier
phase measurements that are collected by a pair of receivers
tracking simultaneously m satellites at epoch t . Assuming
that the distance between the two receivers is sufficiently
short to neglect the SD atmospheric delays, the correspond-
ing system of linearized observation equations reads (Odijk

2017)

E(φt ) − φ̄t (x
◦
r , tb, tr , τb, τr ) = Ḡt Δx + e dtt + Λ a (1)

with the expectation operator E(·), and the subscripts b and
r denoting the base and rover receiver indexes, respectively.
The dependency of the ‘computed’measurement vector φ̄t =
[φ̄s

t ] (s = 1, . . . ,m) on the approximate rover position vector
x◦
r , signal reception time vectors tb = [t sb ] and tr = [t sr ], and
the signal travel time vectors τb = [τ sb ] and τr = [τ sr ] is
characterized by

φ̄s
t = dts(t sr − τ sr ) − dts(t sb − τ sb )

+||x◦
r − xs(t sr − τ sr )|| − ||xb − xs(t sb − τ sb )|| (2)

in which the base position vector is assumed to be known and
given by xb. The notation [•] indicates a vector (or matrix)
containing scalar (or vector)•. Likewise, the satellite position
vectors (after Earth rotation corrections) are given by xs (s =
1, . . . ,m). The satellite clock offset is denoted by dts . The
m × 3 matrix Ḡt = [ ḡst ] contains satellite-to-rover line-of-
sight (LOS) direction vectors

ḡst = (
x◦
r − xs(t sr − τ sr )

)
/||x◦

r − xs(t sr − τ sr )||, (3)

linking the unknown rover position increment vector Δx =
xr−x◦

r to themeasurements. The unknownSD receiver clock
offset is given by dtt , with e being the m-vector of ones.
The m ×m diagonal matrix Λ = diag(λ1, . . . , λm) contains
the satellite-specific wavelength λs , serving as the design
matrix of the SD ambiguity vector a. The SD receiver phase
bias is lumped with the real-valued ambiguity vector a. Note
that both the ambiguity vector a and the increment vector
Δx do not have the epoch index t as their subscript because
they are assumed to be constant over time. Apart from a
that is expressed in cycles, all the other quantities in (1) are
expressed in units of length.

The system of equations (1) shows that the estimation of
the unknown parameter vectors Δxr , dtt , and a is driven by
the computed measurement vector φ̄t . Evaluation of φ̄t , on
the other hand, relies on the signal reception time vectors
tr and tb, and the travel time vectors τr and τb, which are
unknown in principle. In practice, one therefore has to use
their estimates, say t̂r , t̂b, τ̂r and τ̂b, to evaluate φ̄t . By doing
so, the observation equations (1) are replaced by

E(Δφt ) = Gt Δx + e dtt + Λ a + εt (4)

with Δφt = φt − φ̄t (x◦
r , t̂b, t̂r , τ̂b, τ̂r ), and the bias vector

εt = φ̄t (x◦
r , tb, tr , τb, τr )− φ̄t (x◦

r , t̂b, t̂r , τ̂b, τ̂r ). Note, in (4),
thatmatrix Ḡt is approximated by them×3matrixGt = [ gst ]
containing the LOS direction vectors (compare with 3)

gst = (
x◦
r − xs(t̂ sr − τ̂ sr )

)
/||x◦

r − xs(t̂ sr − τ̂ sr )||, (5)
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Fig. 1 Maximum values of the signal travel time difference |τ sr − τ sb |
[millisecond] as a function of the baseline length ||xr − xb|| [km] that is
experienced by the rover and base receivers tracking GPS satellite PRN
1 (left) and Iridium satellite I103 (right). The cut-off elevation is to zero

(upper dotted curves) and 10 degrees (lower dotted curves). The base
receiver is observing the satellite at an elevation equal to the cut-off,
while the rover receiver is observing it at an elevation depicted by the
gray lines

The presence of the bias vector εt would challenge the
applicability of (4) for positioning, particularly when the
magnitude of εt is deemed to be significantly larger than
the millimeter-level noise of the carrier phase measurements
φt . In the following, we therefore discuss the contributing
factors in εt and make necessary assumptions about these
terms so as to be able to neglect the presence of εt in (4).
Each of the entries of the bias vector εt = [εst ] can be shown
to be, up to the first-order term, decomposed into three parts
(Appendix A)

εst = I + II + III (6)

The first part I concerns the satellite clock stability and reads

I=[dts(tsr −τ sr )−dts(tsb−τ sb )]−[dts(t̂ sr −τ̂ sr )−dts(t̂ sb−τ̂ sb )]
(7)

While both the base and rover receivers aim to simultane-
ously track the satellites, their clocks can be unsynchronized,
meaning that the difference between their signal reception
times is given by the nonzero SD receiver clock offset, that
is, dtt = t sr − t sb (s = 1, . . . ,m). Let us set the estimates
as t̂ sr = t̂ sb and τ̂ sr = τ̂ sb . This is realized if the SD receiver
clock estimate, say dt̂t = t̂ sr − t̂ sb , is taken to be zero. If we
also assume that the signal travel times, experienced by the
base and rover receivers, are almost identical (τ sr ≈ τ sb ),
(7) simplifies to I = dts(t sb − τ sb + dtt ) − dts(t sb − τ sb ).
Although Frequency Electronics, Inc. (FEI) have published
that the stability of its Master Oscillator Timing/Frequency
Generation unit, which is provided to the Iridium NEXT
satellites, is roughly 10−10 sec/sec over short time inter-

vals, e.g. 0.001 s (Bloch et al. 2012), the stability of most
commercial LEO communication satellites’ clocks and their
synchronicity are unknown (Kassas et al. 2021). Khairallah
and Kassas (2022) suggested that the Orbcomm clocks have
comparable stability to a typical temperature compensated
crystal oscillator (TCXO), which can reach a short-term sta-
bility of 10−12 sec/sec (Teunissen and Montenbruck 2017).
The Starlink satellites were assumed to be equipped with
chip-scale atomic clocks (CSACs) (Saroufim et al. 2023;
Hayek et al. 2023; Khalife andKassas 2023), with short-term
stability ranging from 10−13 sec/sec to 10−12 sec/sec (Rybak
et al. 2021).

The clock ofmost GNSS receivers and high-end software-
defined radios can ensure such bounded offsets. However,
the assumption of having identical signal travel times is
only plausible when the distance between the rover and base
receivers (baseline length) is not too large. Figure1 shows
the maximum difference |τ sr − τ sb | as a function of the base-
line length ||xr − xb|| for a GNSS-case (left) and a LEO-case
(right). As shown, the magnitude |τ sr − τ sb | is less than 4 mil-
liseconds for baselines less than 1000km. For much shorter
baselines, e.g. less than 10km, this difference becomes less
than several tens of microseconds. Therefore, the conclusion
reads that the clock bias term I can be neglected for not-too-
large baselines even when one has no access to a data-driven
estimate of the SD clock offset dtt , i.e., dt̂t = 0.

The second and third parts II and III in (6) concern the time
change in the satellite orbits. Let us first consider Part II. It
reads

II = (
vsr − vsb

c
) ([t̂ sb − t sb ] − [τ̂ sb − τ sb ]) (8)
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Fig. 2 Examples of the absolute values of (vsr − vsb)/c as a function of
the baseline length ||xr − xb|| [km] for Iridium satellites (solid lines),
and for GPS satellites (dashed lines). The legend displays the NORAD
numbers of the Iridium satellites and the PRNs of the GPS satellites

with c being the speed of light, where vsr and vsb denote the
satellite LOS velocities with respect to the rover and base
receivers, respectively. Accordingly, the shorter the baseline
length, the more similar the satellite-to-receiver LOS direc-
tions of the rover and base receivers, thereby the smaller
(in magnitude) the velocity difference vsr − vsb becomes. The
impact of the difference vsr −vsb in II can be further attenuated
if the estimation errors t̂ sb−t sb and τ̂ sb −τ sb are small. As stated
earlier, if the role of the base receiver is taken by a CORS sta-
tionwith access toGNSS code (pseudorange)measurements,
single-point positioning of the base receiver leads to the clock
offset estimate t̂ sb and travel time estimate τ̂ sb with an accu-
racy of several nanoseconds. Under such assumption, Part
II is roughly equal to (vsr − vsb)/c times several decimeters.
Figure2 shows absolute values of (vsr −vsb)/c, corresponding
to GPS and Iridium satellites, as a function of the baseline
length ||xr − xb||. Due to the low altitude of Iridium LEO
satellites (Table 1), their corresponding values are almost one
order of magnitude larger than their GPS counterparts. For
baselines less than 10km, the absolute value |vsr − vsb|/c is
less than 2 × 10−7, making II less than 0.002 mm. Consid-
ering the mm-level precision of carrier phase data, this bias
term can also be neglected.

So far, under the assumption of having sufficiently short
baselines with stable satellite clocks, it is shown that the first
two parts I and II in (6) can be neglected.What left to consider
is the last part, i.e.,

III = vsr

c
([τ sr − τ̂ sr ] − [τ sb − τ̂ sb ] + [dt̂t − dtt ]) (9)

As the rover is assumed to have no access to code data, the
estimate of the clock offset dtt may be taken as zero, i.e.,

Fig. 3 Examples of the absolute values of vr/c as a function of satel-
lite elevation (top) and azimuth (bottom), observing Iridium satellites
(solid lines) and GPS satellites (dashed lines), respectively. The legend
displays the NORAD numbers for Iridium satellites and the PRNs for
GPS satellites

dt̂t = 0. This, together with discarding the nanosecond-
level estimation error [τ sb − τ̂ sb ], simplifies the last part as
III = (vsr /c)(τ

s
r − τ̂ sr − dtt ). In contrast to the two previous

bias parts I and II for which the baseline length is lever-
aged, the bias term (vr/c)dtt cannot bemitigated by choosing
short baselines. As will be shown in Sect. 3, our phase-only
model can deliver a meter-level ambiguity-float estimate for
the rover position x◦

r . This leads to signal travel estimates τ̂ sr
(s = 1, . . . ,m) with an accuracy of several nanoseconds (cf.
Figure1). Neglecting the estimation error [τ sr − τ̂ sr ], the term
III is therefore mainly driven by the SD receiver clock offset
dtt and the satellite LOS velocity vector vr = [vsr ]. Figure3
shows absolute values of vsr /c as a function of both satel-
lite elevation (top) and azimuth (bottom) angles for GPS and
Iridium satellites. For the GPS-case, |vsr |/c does not exceed
2.2× 10−6. For the Iridium-case however, this upper-bound
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gets 10 times larger, i.e., 2.2×10−5. Therefore, if the absolute
value of the SD clock offset dtt does not exceed 1 microsec-
ond, the bias term |(vsr /c)dtt | would then be bounded by 7
mm. This bias clearly cannot be neglected. In the following,
we therefore assume that the SD clock offset is less than 0.1
microseconds so as to neglect the presence of the bias vector
εt in (4).

We conclude this section by making a remark about satel-
lite orbital biases. By considering sufficiently short baselines
and having receivers equipped with high-grade clocks, the
bias vector εt was shown to be discarded. This, however,
relies on a crucial assumption of having precise satellite orbit
products xs (s = 1, . . . ,m). As shown in Appendix B, the
presence of five-meter bias vectors in GPS satellite orbits
leads to between-receiver SD range biases smaller than 0.8
mm for baselines shorter than 5km. However, the presence
of such biases in Iridium and OneWeb LEO satellite orbits
can lead to SD range biases as large as 12mm whose effect
on the rover positioning solution is less than 6mm (cf. Fig-
ure16 inAppendixB). This shows the prominent role of orbit
products in LEO-based positioning (Allahvirdi-Zadeh et al.
2022). In the following, we assume that the LEO satellite
orbit products are precise enough so as to neglect the impact
of such orbital biases.

3 Phase-only and phase-and-codemodels
compared

Given the approximation εt ≈ 0, the system of phase obser-
vation equations (4) is revised as

E(Δφt ) = Gt Δx + e dtt + Λ a (10)

As the number of SD ambiguities a is as many as the num-
ber of the measurements, the measurement vector Δφt is
fully reserved for a, meaning that none of the parameter
vectors Δx , dtt and a can be unbiasedly determined via
(10). One would therefore need to augment the underdeter-
mined system (10) by additional observation equations. In
the context of GNSS positioning, such equations are made
available by the presence of GNSS code data. In the case
of LEO communication satellites however, code data may be
absent, urging one to use phase data of further epochs. For the
sake of comparison, we first present a more commonly used
GNSS model, i.e., the single-epoch phase-and-code model,
see e.g. (Odolinski et al. 2015) or (Zaminpardaz et al. 2021).
This will then be followed by a lesser-known model, i.e., the
dual-epoch phase-only model (Teunissen 1997; Khodaban-
deh et al. 2021) which can potentially be employed for LEO
frequency-varying carrier phase signals.

3.1 Single-epoch phase-and-codemodel

Let the m-vector pt be the code counterpart of the SD
phase measurement vector φt . As with Δφt , one can
form the observed-minus-computed vector Δpt = pt −
φ̄t (x◦

r , t̂b, t̂r , τ̂b, τ̂r ). The corresponding observation equa-
tions can be augmented with (10) as follows

E
([

Δφt

Δpt

] )
=

[
Gt

Gt

]
Δx +

[
e
e

] dt̃t︷ ︸︸ ︷
(dtt + d)

+
[

Λ

0

]
(a − Λ−1e d)︸ ︷︷ ︸

ã

(11)

with d being the SD receiver code bias and the joint variance
matrix

D
( [

Δφt

Δpt

] )
=

[
Qφtφt 0
0 Qpt pt

]
(12)

The m ×m variance matrices Qφtφt and Qpt pt are specified
as

{
Qφtφt = 2 σ 2

φ ΛW−1
t Λ

Qpt pt = 2 σ 2
p W

−1
t

(13)

The SD code bias d cannot be estimated by the model
(11). Instead, it is absorbed by both the estimable receiver
clock dt̃t = dtt + d and estimable ambiguity vector ã =
a − Λ−1e d. The zenith-referenced standard deviation of
the undifferenced (UD) phase data, expressed in cycles, is
denoted by σφ . Its code counterpart, expressed in units of
length, is given by the scalar σp. Since the phase signals are
frequency-varying, every satellite s may send phase mea-
surement φs

t with a precision that is inversely proportional
to the underlying wavelength λs , that is σφs = σφλs . The
square value of the wavelength λs in the phase variance
σ 2

φs = σ 2
φλ2s explains why the wavelength matrix Λ appears

twice in Qφtφt . Furthermore, both the phase and code data
generally become less precise the smaller the satellite eleva-
tion becomes. Therefore, the m ×m diagonal weight matrix
Wt models the elevation-dependency of the data. Also note
that the presence of the number 2 in (13) indicates that the
variance of the SD measurements is twice that of their UD
counterparts, assuming that the measurements of the rover
and base receivers are uncorrelated.

The phase-and-code model (11) is solvable and delivers
unbiased solutions for the parameter vectors Δx , dt̃t and ã,
if the m × 4 matrix [Gt , e] is of full-column rank (Teunissen
1997). The necessary condition is to track at least 4 satellites
(m ≥ 4).
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3.2 Dual-epoch phase-only model

In the absence of the code data pt , one can augment the
phase data φt by its counterpart collected at the next epoch
t + 1, taking advantage of the fact the ambiguities a remain
time-constant if no phase cycle-slip occurs. Accordingly, the
dual-epoch phase-only model is given by

E(
[

Δφt

Δφt+1

]
) =

[
Gt

Gt+1

]
Δx +

[
0
e

] dt̃t+1︷ ︸︸ ︷
(dtt+1 − dtt )

+
[

Λ

Λ

]
(a + Λ−1e dtt )︸ ︷︷ ︸

ã

(14)

with the joint variance matrix

D
( [

Δφt

Δφt+1

] )
=

[
Qφtφt 0
0 Qφt+1φt+1

]
(15)

Compare (14) with (11). The role of the code measurement
vector Δpt is taken by Δφt+1. Importantly, the phase-only
model (14) fails to estimate the SD receiver clock offset dtt .
Instead, the between-epoch difference dt̃t+1 = dtt+1 − dtt
can be estimated. This is because the clock offset dtt is
absorbed by the phase ambiguity vector a to form the
estimable SD ambiguities ã = a+Λ−1e dtt . With the phase-
onlymodel (14), the epoch-average of the phase dataΔφt and
Δφt+1 is reserved for the estimable ambiguities ã. There-
fore, it is the between-epoch difference Δφt+1 − Δφt which
determines the ambiguity-float solutions for Δx and dt̃t+1.
As a result, the model becomes solvable if the m × 4 matrix
[Gt+1−Gt , e] is of full-column rank (Teunissen 1997). The
necessary condition is to track at least 4 satellites (m ≥ 4),
while experiencing time changes in the receiver-to-satellite
LOS directions, i.e., Gt+1−Gt �= 0.

3.3 Integer-estimable combinations of the
ambiguities

Given the phase-and-code model (11) or the phase-only
model (14), one can employ the minimum-variance least-
squares estimation to obtain the so-called float estimators of
the estimable ambiguity vector ã ∈ R

m and the rover posi-
tion vector x ∈ R

3. Let such float estimators and their joint
variance matrix be denoted by

[
â
x̂

]
,

[
Qââ Qâx̂

Qx̂â Qx̂ x̂

]
(16)

Theword ‘float’ is used to emphasize that the above solutions
do not benefit from the extra information that combinations
of the estimable ambiguity vector ã are integer-valued. In

both the models (11) and (14), the estimable ambiguity vec-
tor ã takes the form of ã = a + Λ−1e b, where the role of
the non-integer bias b ∈ R is taken by the SD phase/code
biases and/or by the SD receiver clock offsets. The task is to
identify the combinations z = FT ã in which the full-rank
integer matrix F ∈ Z

m×(m−1) should nullify the non-integer
term Λ−1e b, that is, FTΛ−1e = 0. To identify such combi-
nations, let us first work out the m ×m diagonal wavelength
matrix Λ. As the last rows of Table 1 indicate, the signal fre-
quencies of each LEO constellation are integermultiples of a
base frequency. For instance, in the case of Iridium, satellite
frequencies fs = c/λs (s = 1, . . . ,m) are related to their
base frequency f0 as

fs = rs f0, ( f0 = 100 Hz) with
rs ∈{16261042, 16261458, 16262708, 16263958, 16264375}

(17)

Defining the base wavelength λ0 = c/ f0, the wavelength
matrix can be expressed as Λ = λ0 R−1, where the diagonal
matrix R = diag(r1, . . . , rm) contains the integer ratios rs .
Substitution into ã = a + Λ−1e b gives

ã = a + Re
b

λ0
(18)

The integer matrix F should then satisfy the two conditions
of integer-estimability (Teunissen 2019), that is, it should 1)
satisfy FT Re = 0, and 2) be equal to rows of an m × m
admissible ambiguity transformation. The first condition is
to ensure that the function z = FT ã does not contain the
non-integer bias b, while the second condition is to ensure
that the integerness of z aligns with the integer values of
the original ambiguities a that the function is applied to.
Such matrix can be obtained by an application of the integer-
sweeping algorithm (Teunissen and Khodabandeh 2022, pp.
5). In doing so, we assume that the greatest common divisor
(GCD) of the ratios rs is one, as with the GCD of the ratios rs
in (17). For the cases where the GCD is larger than one, the
ratios can be down-scaled by being divided by their GCD. As
an example, consider the ratios in (17). Given the input vector
Re = [r1, r2, r3, r4, r5]T (m = 5), the algorithm returns the
following output matrix

FT =

⎡

⎢
⎢
⎣

39063, −39053, −9, 0, 0
−625, 833, −208, 0, 0
0, 1, −2, 1, 0
1, −4, 5, 0, −2

⎤

⎥
⎥
⎦ (19)

It can be verified that FT Re = 0, and that the matrix F is
part of the admissible ambiguity transformation [F, h], with
h = [1, 0, − 2, 0, 1]T . Using matrix F , integer ambiguity
resolution (IAR) methods like LAMBDA (Teunissen 1995)
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can be employed to take the real-valued float ambiguity solu-
tion ẑ = FT â and its variance matrix Qẑẑ = FT Qââ F as
input, returning the integer-valued fixed ambiguity solution
ž ∈ Z

(m−1) as output. If the probability that the float ambi-
guities are mapped to their correct integers is close to one,
the fixed estimator of the rover position vector x ∈ R

3 and
its variance matrix can be evaluated as (ibid)

x̌ = x̂ − Qx̂â F(FT Qââ F)−1(ẑ − ž)
Qx̌x̌ = Qx̂x̂ − Qx̂â F(FT Qââ F)−1FT Qâx̂

(20)

3.4 Performancemetrics

The second equation in (20) indicates that the precision of
the position solution can be improved by accounting for the
integer constraint z ∈ Z

(m−1). This is the case if the covari-
ancematrix between the float position solution x̂ and the float
ambiguity solution ẑ, i.e., Qx̂ẑ = Qx̂â F , contains nonzero
entries. In the extreme case Qx̂ẑ = 0, i.e., when x̂ and ẑ are
uncorrelated, no precision improvement is experienced by
IAR. As far as the precision of the position solution is con-
cerned, one therefore needs to address the following three
questions

1. Given the precision of the float position solution, is IAR
required?

2. Howmuch does IAR improve the precision of the position
solution?

3. Given the underlying model, is IAR feasible?

The answer to the first question lies in the variance matrix
Qx̂x̂ , while the second question can be addressed by compar-
ing Qx̌x̌ relative to Qx̂x̂ . The third (last) question should be
addressed using the ambiguity variance Qââ . We first take
a measure for addressing the first question. Recall that the
variance of a linear function of the float position solution x̂ ,
say f T x̂ ( f ∈ R

3), is given by the scalar f T Qx̂ x̂ f . When
|| f || = 1, the smallest and largest values that the variance
f T Qx̂ x̂ f can take are the minimum and maximum eigen-
values of Qx̂x̂ , respectively (Teunissen 1997). As such, the
geometric average of the eigenvalues of Qx̂x̂ , i.e., the cube
root of its determinant, represents the average variance of x̂ .
By taking the square root of the average variance, we thus
arrive at

1. Average precision of x̂ : σ̄x̂ = √|Qx̂x̂ |
1
3 (21)

The average precision σ̄x̂ is in units of length. Depending
on the positioning application and the magnitude of σ̄x̂ (e.g.
cm-level to meter-level), one can decide if IAR is required
or not.

A measure for addressing the second question can be
given by the concept of precision gain (Teunissen 1997).

The precision gain by IAR for the function f T x is given by
the variance ratio f T Qx̂ x̂ f / f

T Qx̌ x̌ f . This variance ratio is
bounded from below by one. As with the average variance,
its smallest and largest values are equal to the minimum and
maximum eigenvalues of Qx̂x̂ Q

−1
x̌ x̌ . Likewise, the cube root

of the determinant ratio |Qx̂x̂ |/|Qx̌x̌ | represents the average
variance ratio. By taking the square root of the average vari-
ance ratio, we arrive at

2. Average precision gain of x̂ : Gx̂ = σ̄x̂

σ̄x̌
(22)

The average precision gain Gx̂ tells us how many times the
average precision of the fixed position solution x̌ is smaller
than that of its float counterpart x̂ . When Gx̂ is close to one, it
implies that no considerable precision improvement is real-
ized by IAR. On the other hand, large values of Gx̂ indicates
considerable precision improvement.

The last question concernswhether or not the integermap-
ping ẑ �→ ž is successful in the sense of having the fixed
solution ž equal to the true integer vector z = FT ã. Whether
or not IAR is deemed successful is determined by the prob-
ability of correct integer estimation, the so-called ambiguity
success-rate (Teunissen 1999). As an indication of the ambi-
guity success-rate, we use the ambiguity dilution of precision
(ADOP). Like (21), the ADOP is defined as the average pre-
cision of the float ambiguities ẑ ∈ R

(m−1), that is (Teunissen
1997)

3. ADOP : σ̄ẑ = √|Qẑẑ |
1

(m−1) (23)

The ADOP σ̄ẑ is in cycles. From the ADOP, one can infer
an upper bound for the bootstrapped ambiguity success-rate.
The smaller the ADOP, the higher the upper bound of the
success rate becomes. For ADOP smaller than 0.14 cycles,
the stated upper bound is always higher than 99% (Odijk and
Teunissen 2008). The following lemma presents expressions
for the three performance metrics (21), (22), and (23) of the
phase-and-code (PC) model.

Lemma 1 (Performance of the PC model) With respect to
the PC model (11), the average precision σ̄x̂ , precision gain
Gx̂ , and the ADOP σ̄ẑ can be expressed as

σ̄x̂ =
√
2 σp√
m σG

, σ 2
G

= 1
m |GT

t Wt PGt | 13
Gx̂ ≈ ι

σp

λ σφ

σ̄ẑ = √
2 σφ

√
m̄

1
m−1G

3
m−1
x̂ r

1
m−1

(24)
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Fig. 4 Performance metrics of the PC model for the Iridium (left)
and OneWeb (right) satellites: examples of the average precision σ̄x̂
(1st row), precision gain Gx̂ (2nd row), and the ADOP σ̄ẑ (3rd row),
together with the number of tracked satellites m (4th row) over one

day (19th of December, 2023). The location of the 5-km baseline is in
CANADA (left: station ALRT) and China (right: station BJNM). The
zenith-reference code and phase standard deviations are set to σp = 0.2
[m] and σφ = 0.01 [cycle], respectively

where

ι =
⎛

⎝

√
|GT

t W̄t P̄Gt |
√

|GT
t Wt PGt |

⎞

⎠

1
3

(25)

with W̄t = (1/r2)RWt R, λ = λ0/r , and r = (
∏m

s=1rs)
1
m .

The scalar m̄ reads m̄ = trace(W̄t )/|Wt |. The two projectors
P and P̄ are given by P = Im − (1/eT Wte)eeT Wt and
P̄ = Im − (1/eT W̄t e)eeT W̄t .

Proof The proof, together with the exact expression of Gx̂ , is
given in Appendix A. ��
The first expression of (24) shows that the average precision
of the float position solution x̂ is driven by the standard devia-
tion of theSDcodedataΔpt , i.e., by

√
2 σp, for thePCmodel.

The role of the phase data Δφt is absent because they are all
reserved to determine the estimable ambiguities ã in (11).
The more precise the code data, the smaller the variance σ 2

p ,
thus the smaller the average precision σ̄x̂ becomes. The first
expression also shows the important role played by the dis-
persion of the receiver-to-satellite LOS directions in Gt with
respect to their average, i.e., the scalar σG . To see this, con-
sider the functionality of the projector P . By pre-multiplying
matrix Gt with P , the projector subtracts the rows of Gt

from their weighted average (eT WtGt )/(eT Wte). Thus, the
product PGt contains the deviations of the LOS directions
with respect to their weighted average. Consequently, mσG

indicates themagnitude of these residuals. The larger the dis-
persion σG or themore the number of satellitesm, the smaller
the σ̄x̂ becomes. The second expression of (24) concerns the

average precision gain Gx̂ . It is mainly driven by the code-
to-phase standard-deviation ratio σp/(λ σφ), in which λ is
the geometric average of the satellite-specific wavelengths
λs (s = 1, . . . ,m). By resolving the integer-estimable ambi-
guities z = FT ã, the ambiguity-resolved phase data can
contribute to the estimation of x . Therefore, the improvement
in precision of x̂ is proportional to the ratio σp/(λ σφ). Next
to this ratio, the average precision gain Gx̂ is also driven by
the parameter ι. According to (25), ι measures the difference
between the two weight matrices Wt and W̄t . Their differ-
ence is due to the presence of the diagonal matrix (1/r)R.
As the last rows of Table 1 show, each LEO constellation has
satellite-specific frequencies that are relatively close to one
another, meaning that the frequency ratios rs (s = 1, . . . ,m)
are very close to their geometric average r . As a result, matrix
(1/r)R can be well approximated by the identity matrix Im ,
showing W̄t ≈ Wt . For existing LEO constellations, the ι-
parameter is thus close to one, i.e., ι ≈ 1.

The last expression of (24) concerns the ADOP σ̄ẑ . As
shown, next to the SD phase standard deviation

√
2 σφ and

number of satellites m, ADOP is also governed by the aver-
age precision gain Gx̂ and the geometric average of the
frequency ratios rs (s = 1, . . . ,m). When large precision
improvement is expected by IAR, i.e., when Gx̂ is large,
successful IAR becomes challenging in the sense of having
large ADOPs (Odijk and Teunissen 2008). The expression

also shows that the ADOP σ̄ẑ is proportional to r
1

m−1 , in
which r is the geometric average of the frequency ratios rs
(s = 1, . . . ,m). In the case of GNSS CDMA signals, the
ratios are all equal to one, i.e., r = 1. However, for the
frequency-varying signals such as those of the GLONASS
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Fig. 5 Values of the ι- (top) and α-parameters (bottom) that are given in (25) and (27), respectively. The results correspond to Iridium (left) and
OneWeb (right) satellites (cf. Figure4)

FDMAor LEOconstellations, the ratios (and therefore r ) can
be significantly larger than one. For instance, the geometric
average of the Iridium ratios rs in (17) is r ≈ 16, 262, 708.
By tracking 8 Iridium satellites (m = 8), we get the rela-

tively large factor r
1

m−1 ≈ 10.7 which considerably enlarges
the ADOP, making successful single-epoch IAR impossi-
ble. To get some numerical insights, consider Fig. 4 showing
values of the three performance metrics σ̄x̂ , Gx̂ , and σ̄ẑ for
the Iridium (left) and OneWeb (right) satellites over a day.
If the Iridium and OneWeb satellites would broadcast code
measurements as precise as those of GNSS, the PC model is
expected to deliver meter- and decimeter-levels float posi-
tioning solutions, respectively. That the OneWeb average
precision σ̄x̂ is smaller than its Iridium counterpart is because
the number of visible OneWeb satellites is almost twice that
of the Iridium satellites.

Now consider the second row of Fig. 4. For both the Irid-
ium and OneWeb cases, we observe large precision gain
values. However, the OneWeb average precision gain Gx̂ is
much larger than its Iridium counterpart. This is because of
the much smaller OneWeb wavelength λ ≈ 2.5 [cm] than
the Iridium wavelength λ ≈ 18.4 [cm], and the assumption
that the precision of the phase data is inversely proportional
to their wavelengths (cf. 13). Here we set σφ = 0.01 [cycle].
As such standard deviation can be optimistic, we will also
consider more pessimistic cases in Sect. 5.

Finally, consider the third row of Fig. 4. While the Irid-
ium ADOP varies between 10 and 80 cycles, that of the
OneWeb is significantly smaller, being around 0.25 cycles.
This seems to be at odds with the larger OneWeb precision
gain values. Recall that a large precision gain corresponds
to a large ADOP. However, it is the geometric average r
which causes such a large discrepancy between the Irid-
ium and OneWeb ADOPs. For the Iridium case, we have
r ≈ 16, 262, 708. Thanks to the large GCD of the OneWeb
frequencies (Table 1), the corresponding geometric average
is r = 467.4 that is more than four orders of magnitude

smaller than that of the Iridium. As a consequence, the larger

factor r
1

m−1 of the Iridium leads to a larger ADOP.
Summarizing the results in Fig. 4, one can conclude that

successful IAR would be indeed beneficial for positioning,
but seems to be infeasible due to large ADOPs (larger than
0.14 cycles). The results are based on the assumption that
precise code data (σp = 20 [cm]) are broadcast by the LEO
satellites. In the absence of code data, the dual-epoch Pmodel
(14) can be alternative option. Expressions for its perfor-
mance metrics are presented below.

Lemma 2 (Performance of the P model relative to the PC
model) The average precision σ̄x̂ , precision gain Gx̂ , and
the ADOP σ̄ẑ of the P model (14) are related to those of the
PC model (11) as follows

σ̄ P
x̂

σ̄ PC
x̂

≈
√
2

ι

λσφ

σp

1

α Δt
GP
x̂

GPC
x̂

≈ √
2

σ̄ P
x̂

σ̄ PC
x̂

σ̄ P
ẑ

σ̄ PC
ẑ

≈ 1√
2

(
GP
x̂

GPC
x̂

) 3
m−1

(26)

where

α =
⎛

⎝

√
|ĠT W̄ P̄Ġ|

√
|GT W̄ P̄G|

⎞

⎠

1
3

(27)

with Δt being the sampling interval between the two epochs
t and t + 1. The time-derivative of matrix G = (1/2)(Gt +
Gt+1) is evaluated by Ġ = (Gt+1 − Gt )/Δt , with W̄ =
(1/2)(W̄t + W̄t+1).

Proof The proof is given in Appendix A. ��
In (24), we have used the superscripts ·P and ·PC to distin-
guish the performance metrics of the P model from their PC
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Fig. 6 Values of the conditional standard deviation σẑ2|z1 (top) and the ratio σẑ2|z1/σẑ2|z1,x (bottom) given in (28). The results correspond to Iridium
(left) and OneWeb (right) satellites (cf. Figure4). The measurement sampling rate is set to Δt = 1 s

versions. Given the approximation ι ≈ 1, the first expres-
sion of (26) shows that 1) the standard deviations of the
float position solution x̂ are enlarged by a factor of

√
2

because only the between-epoch difference Δφt+1 − Δφt

contributes to x̂ , 2) the phase standard deviation λσφ replaces
its code counterpart σp, and 3) the average precision σ̄ P

x̂ is
inversely proportional to the dimensionless product α Δt .
The longer the measurement sampling interval Δt or the
larger the α-parameter, the more precise the float solution
x̂ becomes. Figure5 shows values of the ι- (top) and α-
parameters (bottom) corresponding to the Iridium (left) and
OneWeb (right) satellites over a day (cf. Figure4). As stated
previously, the ι-parameter is close to one for each of the Irid-
ium and OneWeb constellations due to their near-identical
satellite-specific wavelengths. However, the α-parameter of
the OneWeb satellites is an order of magnitude smaller than
its Iridium counterpart. According to (27), α measures the
time change Ġ relative to the LOS direction vectors in G.
It means that the higher the satellite altitude, the slower
the time change in the receiver-to-satellite LOS directions,
thereby the smaller the parameter α becomes. The smaller
values of the OneWeb α is due to the higher altitude of
the OneWeb satellites (∼1200km) than that of the Iridium
satellites (∼780km). For the Iridium case, α is around 0.01
[Hz]. When the measurement sampling interval is Δt = 1
[sec], setting σφ = 0.01 [cycles] and σp = 20 [cm] gives
σ̄ P
x̂ ≈ 1.3 σ̄ PC

x̂ . Therefore, for the case of Iridium, the dual-
epoch P model delivers slightly less precise float position
solutions x̂ than the single-epoch PC model does. With ref-
erence to Fig. 4, meter-level float position solutions are also
expected by the P model.

According to the second expression of (26), the relative
gain ratio GP

x̂ /GPC
x̂ is equal to the precision ratio σ̄ P

x̂ /σ̄ PC
x̂

times
√
2. For the Iridium α ≈ 0.01 [Hz], one can like-

wise obtain GP
x̂ ≈ 1.8GPC

x̂ . As with the single-epoch PC
model, successful IAR is thus beneficial for positioning via
the dual-epoch P model. However, as the last expression of

(26) implies, the ADOP of the P-model σ̄ P
ẑ can also be as

large as σ̄ PC
ẑ . The conclusion is that successful IAR is also

infeasible under the dual-epoch P model.

3.5 Switching to partial ambiguity-fixing

The results in Figs. 4 and 5 show that not all the entries of
the float ambiguity vector ẑ = FT â can be reliably mapped
to their correct integers. An alternative option is to integer-
resolve only a subset of the integer-estimable ambiguities
whose corresponding success-rate is sufficiently large to
ensure reliable ambiguity-fixing. Accordingly, certain com-
binations of ẑ that are poorly precise are excluded from IAR.
Applications of such partial IAR strategy can be found in,
e.g., (Teunissen et al. 1999; Brack 2017; Psychas et al. 2020).
As a consequence of this practice, one may achieve a smaller
ADOP at the expense of a smaller precision gain for the
position solution. In the following, we quantify this when
one component of float ambiguity vector ẑ, say the scalar
ẑ2 = l̃ T ẑ (l̃ ∈ Z

(m−1)), is not fixed.

Lemma 3 (Performance of partial IAR) Let the inverse of the
admissible ambiguity matrix [L̃, l̃], with L̃ ∈ Z

(m−1)×(m−2)

and l̃ ∈ Z
(m−1), be given by [L, l]T , i.e., L̃ LT + l̃ lT =

Im−1. Also consider a partial IAR strategy in which only the
subvector ẑ1 = L̃T ẑ of the float ambiguity vector ẑ is fixed,
while the scalar ẑ2 = l̃ T ẑ remains float. The performance
metrics of such partial IAR (PAR) are related to those of full
IAR (FAR) as follows

GPAR
x̂ = GFAR

x̂

(
σẑ2|z1,x
σẑ2|z1

) 1
3

σ̄ẑ1 = σ̄
m−1
m−2
ẑ

(
1

σẑ2|z1

) 1
m−2

(28)
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in which the conditional standard deviations are given by

σẑ2|z1 = 1/
√
lT Q−1

ẑ ẑ l and σẑ2|z1,x = 1/
√
lT Q−1

ẑ ẑ|x l, where
Qẑẑ|x = Qẑẑ − Qẑx̂ Q

−1
x̂ x̂ Qx̂ ẑ .

Proof The proof is given in Appendix A. ��
The first expression of (28) establishes a link between the
average precision gain GPAR

x̂ and its version GFAR
x̂ obtained

by full IAR. The second expression links the partial ADOP
σ̄ẑ1 to its version σ̄ẑ obtained by full IAR. Since the scalar
ẑ2 never gets less precise by imposing the extra constraint
x̂ = x , the conditional standard deviation σẑ2|z1,x is never
larger than σẑ2|z1 . Thus

GPAR
x̂ ≤ GFAR

x̂ , (29)

meaning that smaller precision improvement is experi-
enced by the position solution x̂ when switching from full
IAR to a partial IAR strategy. Whether one can improve
the IAR performance—in the sense of having the partial
ADOP σ̄ẑ1 smaller than σ̄ẑ—depends on the precision of
ẑ2 when the remaining ambiguities ẑ1 have been fixed. The
larger the standard deviation σẑ2|z1 , the smaller the partial
ADOP σ̄ẑ1 becomes, thereby the better the IAR performance
becomes. Figure6 presents values of σẑ2|z1 (top) and the ratio
σẑ2|z1/σẑ2|z1,x (bottom) corresponding to the Iridium (left)
and OneWeb (right) satellites over a day (cf. Figure4). For
the Iridium, we have σẑ2|z1 ≈ 4600 cycles. Therefore, when
tracking 8 Iridium satellites (m = 8), the partial ADOP σ̄ẑ1
is almost 4 times smaller than its full version. The price to
pay for such a considerable reduction in ADOP is to experi-
encemuch smaller precision gain.As the second rowof Fig. 6
indicates, the standard deviationσẑ2|z1,x on average 170 times
smaller than σẑ2|z1 , showing that GPAR

x̂ is much smaller than
GFAR
x̂ . On the contrary, the corresponding results of OneWeb

show that σẑ2|z1,x ≈ σẑ2|z1 , meaning that average precision
gain does not get smaller by much upon switching to par-
tial IAR. The rather small OneWeb standard deviation σẑ2|z1
also indicates that the reduction in ADOP may not be con-
siderable. As each LEO constellation has a distinct response
to partial IAR, in the next section, we consider a simulation
platform to study the performance of the dual-epoch Pmodel
for several standalone and combined LEO constellations in
which a partial IAR strategy is employed.

4 Simulation platform

In this section, we discuss a simulation platform for the posi-
tioning experiments of communication LEO satellites with
frequency-varying carrier phase measurements. The plat-
form operates in two stages, as illustrated in Fig. 7. First,
time-constant and time-varying parameters and dual-epoch

carrier phase measurements are generated and registered as
reference values. Second, the estimable forms of the parame-
ters are recursively estimated based on the phase-only model
and then compared to the reference values.

As discussed in Sect. 2, we make the assumption that
the baselines are sufficiently short (e.g., 5km in the sim-
ulation experiments) with high-grade satellite clocks. This
allows us to simplify the generation of parameters, together
with neglectingbetween-receiver SDatmospheric delays.We
neglect tidal loading, phase center offsets (PCO), phase cen-
ter variations (PCV), and satellite attitudes, as these factors
typically cancel out over short baselines. Additionally, we
disregard the clock corrections of LEO satellites, assuming
the utilization of high-grade clocks. We also do not consider
phase wind-up and multipath effects. Other parameters are
simulated as follows:

• Receiver location. International GNSS Service (IGS)
stations with known precise positions are used as base
receivers xb. A 5-km distance is then added to the time-
constant base receiver coordinates to determine the rover
receiver locations xr , thereby forming a simulated base-
line.

• Receiver clock offset. To satisfy the assumption in
Sect. 2 that the receivers are equipped with high-grade
clocks, we generate between-receiver SD receiver clock
offsets according to |dtt | ≤ 10−7 s for both two epochs.

• Carrier phase ambiguity. The ambiguity parameter (in
cycle) for every receiver-satellite pair is a randomly
generated integer, created using the MATLAB built-in
function randi.m and remains constant over time.

After completing the simulation of the true versions of the
parameters, one needs to construct the carrier phase mea-
surements. In doing so, the noise for the UD carrier phase
measurements φs

t is modeled as Gaussian with zero mean
and a standard deviation of σφs (in cycle), and the standard
deviations are assumed to be uncorrelated over time. Conse-
quently, the noise for dual-epoch phasemeasurements can be
generated using theMATLAB built-in function mvnrnd.m.
The measurement noise for each receiver-satellite pair is
specifically simulated as follows:

• Carrierphasemeasurementnoise.Thezenith-referenced
standard deviation of the UD carrier phase measurement
σφs is simulated to be proportional to the underlying
wavelength λs , i.e., σφs = σφλs . In the simulation, we
set σφ to 1/100, 1/80, 1/60, 1/40 and 1/20 cycles. Con-
sidering the relationship between observation precision
and the corresponding elevation angle, the measurement
noise along LOS direction for each receiver-satellite pair
is inversely proportional to the cosecant of the elevation
angle.
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Fig. 7 Simulation platform (in MATLAB) for short-baseline positioning experiments that provides full control over the generation of parameters
and measurements, followed by the estimation of estimable parameters

The Keplerian elements of communication LEO satellites
are tracked, updated once daily, and made publicly avail-
able by the North American Aerospace Defense Command
(NORAD) in the format of Two-Line Element (TLE) files
(https://celestrak.org/NORAD/elements/). Using these ele-
ments, one can evaluate the position of the required satel-
lite xs with the Simplified General Perturbations model 4
(SGP4) (Vallado and Crawford 2008). With the previously
simulated UD receiver clock offset, the signal reception
time t sr (or t sb ) can be determined at the predefined sam-
pling time. Given the true receiver location xr (or xb) as
earlier simulated, satellite position xs accounting for Earth
rotation correction and the signal reception time t sr (or t sb ),
the true receiver-to-satellite distance ||xr − xs(t sr − τ sr )|| (or
||xb−xs(t sb −τ sb )||) is computed, where the signal travel time
τ sr (or τ sb ) is recursively estimated according to the Fixed-
Point algorithm (de Jonge 1998, Chapter 2), then combined
with theUDreceiver clockoffset and carrier phase ambiguity.
Finally, lumped with the elevation-dependent measurement

noise, the simulated carrier phase measurement for each
receiver-satellite pair is obtained.

In the estimation process, the LEO satellite orbits xs are
also obtained from the TLE files. The base receiver’s loca-
tion is assumed to be known, while the rover receiver’s
position needs to be estimated with the coordinate of the
base receiver used as the initial value. In the situation
where both the base and rover receivers have no access
to code measurements, one can only rely on carrier phase
measurements to enable linearization and recursively com-
pute the corresponding signal travel time τ̂ sr (or τ̂ sb ) also
based on the Fixed-point algorithm, accounting for Earth
rotation corrections. Then, we employ the dual-epoch phase-
only model (14) with the elevation-dependent joint variance
matrix to obtain ambiguity-float solutions (receiver position
x̂r , estimable SD clock offset dt̂t and estimable ambigui-
ties â) by employing the minimum-variance least-squares
estimation. To obtain the integer-estimable combinations of
the ambiguities, the integer-sweeping algorithm is utilized
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Fig. 8 Distribution of the 14 IGS stations (red dots) as utilized in the
simulation study

to generate the integer matrix F . Subsequently, the integer-
estimable float ambiguity solution ẑ = FT â and its variance
matrix Qẑẑ = FT Qââ F are calculated.Using themas inputs,
and following the application of partial IARwith a minimum
required integer least-squares (ILS) success-rate of 99.9%,
ambiguity-fixed solutions (receiver position x̌r , estimable SD
clock offset dťt and estimable ambiguities ǎ) can be obtained.
To evaluate the corresponding ILS ambiguity success-rates,
we employ thePs-LAMBDAsoftware (Verhagen et al. 2013).

5 Dual-epoch phase-only model at work

As analyzed in Sect. 3, each LEO constellation responds dis-
tinctly to partial IAR depending on various factors, such as
sampling intervalΔt , number of satellitesm and precision of
carrier phase measurements σφ . To investigate whether it is
feasible to achieve partial IAR and under what circumstances
partial IAR can benefit positioning solutions, 14 globally
distributed IGS stations, shown in Fig. 8, are used for the
simulation experiments of dual-epoch phase-only position-
ing. Each station (red dot) in the figure serves as base receiver
supporting a rover receiver whose inter-station distance is
about 5km. In doing so, we analyze the empirical accuracy of
positioning errors for differentΔt ,m, andσφ . To illustrate the
impact of the SD receiver clock dtt on both the IAR and posi-
tioning performance, various bias-magnitude of dtt is also
considered. Particularly, we consider multi-LEO and GNSS-
augmented LEO positioning in mid- to low-latitude regions
and signal-obstructed areas where the number of available
satellites for a single LEO constellation are limited. The data
processing strategies for the LEO dataset and parameter con-
figurations are presented in Table 2. For each positioning
simulation, we perform 10,000 repetitions using normally
distributed carrier phase measurements with a standard devi-
ation σφ . Subsequently, we evaluate the root-mean-squared
(RMS) error of the corresponding positioning results as a
measure of the empirical accuracy.

5.1 Impacts of the number of satellites on
positioning

We first consider the Iridium-only results with the sampling
interval Δt = 30 s. The shorter sampling interval Δt = 1 s
can only delivermeter-level float positioning solutions, while
none of its float ambiguities are precise enough to meet
the minimum required success-rate of 99.9%. In contrast,
increasing Δt to 30 s enhances the precision of ambiguity-
float positions (cf. the first expression in 26) and potentially
enables partial IAR (cf. the third expression in 26). How-
ever, the third expression suggests that a sufficiently large
number of satellites m is required to lower the ADOP to a
levelwhere partial IARbecomes achievable,whichmotivates
our investigation into the impacts of the number of satellites
on partial-fixed positioning using the dual-epoch phase-only
model (14) with Δt = 30s. As an illustrative example, we
display the results of a 5-km baseline conducted at station
NYAL at a cut-off elevation angle of 5◦ shown in Fig. 9, pre-
senting RMSs of ambiguity-float positioning solutions (left),
along with the corresponding float-to-fixed RMS ratios and
fixed-to-all ambiguity number ratios (right) after applying
partial IAR with a minimum required ILS success-rate of
99.9%. These metrics are plotted as a function of the num-
ber of Iridium satellites m for varying levels of carrier phase
measurement precision σφ .

With an optimistic carrier phasemeasurement precision of
σφ = 1/100 cycles, at least 5 Iridium satellites are required to
achieve ambiguity-float positioning accuracy of less than 0.5
m in all three directions. Aminimum of 6 Iridium satellites is
necessary to successfully achieve partial IAR. With a fixed-
to-all ambiguity number ratio of about 20% at this stage, the
improvement in partial-fixed positions compared to the float
counterparts is approximately twofold in the east direction,
while minimal improvements are observed in the north and
up directions. As the number of Iridium satellites increases,
the ambiguity-float positioning accuracy improves, and the
float-to-fixed RMS ratio increases in all three directions,
along with an increase in the fixed-to-all ambiguity number
ratio. Using the maximum available 11 Iridium satellites,
centimeter-level partial-fixed positioning can be achieved,
with float-to-fixed RMS ratios of approximately 3, 7, and 3
in the north, east, and up directions, respectively.

If the carrier phase measurements are less precise, e.g.
σφ = 1/60 cycles, centimeter- to decimeter-level ambiguity-
float positioning can be achieved as the number of Iridium
satellitesm increases from 5 to 11.With at least 8 to 10 satel-
lites, the fixed-to-all ambiguity number ratio remains below
50%, and there is no significant enhancement in partial-
fixed position solutions compared to the float versions. To
successfully achieve partial IAR with a fixed-to-all ambigu-
ity number ratio greater than 50%, at least 11 satellites are
required, with the corresponding float-to-fixed RMS ratios
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Table 2 Strategies for simulated
short-baseline positioning
experiments

LEO data

Baseline length 5km

Date December 19, 2023

Epoch time 01:30 GPS time (two epochs)

Number of satellites m Minimum of 4

Sampling interval Δt 1s, 30 s

Cut-off elevation 5◦, 10◦, 15◦, 20◦, 25◦, 50◦

Frequencies Shown in Table 1

Precise satellite corrections

Satellite clocks dts GPS-grade

Satellite orbits xs TLE files (assumed to be precise)

Linearization

Initial rover receiver’s position Base receiver’s location xb

SD receiver clock offset |dtt | ≤ 10−7 s

Estimated parameters

Rover receiver position Time-constant

Estimable receiver clock offsets Unlinked in time

Estimable phase ambiguities Time-constant

Stochastic model

Phase zenith-referenced precision σφ 1/100, 1/80, 1/60, 1/40, 1/20 [cycles]

Weighting model Cosecant elevation function

Estimation strategy

Positioning model Dual-epoch phase-only (14)

Estimation principle Minimum variance least-squares estimation

Ambiguity resolution

Estimation principle Integer least squares (ILS)

IAR method Partial IAR (99.9%) with LAMBDA

Fig. 9 RMSs (m) of ambiguity-float positioning solutions (left), and
the corresponding float-to-fixed RMS ratios and fixed-to-all ambigu-
ity number ratios (%) after partial IAR with a minimum required ILS
success-rate of 99.9% (right) as a function of the number of Iridium
satellitesm for different carrier phase measurement precision σφ , based
on the dual-epoch phase-only model (14) with a 30-s sampling interval

Δt for the 5-km baseline located in station NYAL at a cut-off eleva-
tion angle of 5◦. For simplicity, only the simulation results at 5400s
on December 19, 2023 are presented. Note, for σφ = 1/20 cycles, the
minimum success-rate requirement is not met. Thus, the corresponding
fixed results are absent
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being approximately 2, 3 and 2 in the north, east, and up
directions, respectively.

For even lower carrier phase measurement precision σφ =
1/40 cycles, there is no significant improvement in position-
ing accuracy for partial IAR with a fixed-to-all ambiguity
number ratio of about 10%, even with the maximum number
of observable Iridium satellites. In this case, the ambiguity-
float positioning solution has a RMS of approximately 0.1 m
in all three directions.

The Iridium 5-km baseline positioning based on (14) with
Δt = 1s can only deliver meter-level ambiguity-float posi-
tioning solutions. This is in agreement with the earlier results
shown in Fig. 4.

This is, however, not the casewith theOneWeb results. It is
feasible to improve the precision of the results whenΔt = 1s.
With sufficient number of satellites, up to 34, the OneWeb-
only constellation for Δt = 1s achieves decimeter-level
accuracy of ambiguity-float solutions in all three directions
for σφ = 1/60 cycles shown on the left panel of Fig. 10. As
depicted on the right panel of the figure, it can successfully
achieve partial IARwhen the number of satellites exceeds 22,
with fixed-to-all ambiguity number ratios higher than about
90%. In this case, partial IAR achieves float-to-fixed RMS
ratios of approximately 330, 1260 and 270 in the north, east
and up directions, respectively.

5.2 Empirical analysis of position errors across
various receiver clock quality levels

In the absence of code data, the estimable receiver clock
offset is biased by the carrier phase ambiguity of the pivot
satellite and thus cannot be used for the linearization of
the observation equations. As a result, we are forced to
assume that the clock offsets for each receiver are zero,
which increases the risk of incorrect linearization and neg-
atively impacts the overall positioning performance. In this
sub-section, we investigate the effects of receiver clocks of
varying qualities on partial IAR performance for Iridium-
only satellites. The results of 5-km baseline positioning for
the NYAL station are also presented as an illustrative exam-
ple. The number of Iridium satellites and cut-off elevation
angle are set to 11 and 5◦, respectively.

As the between-receiver SD receiver clock offset dtt
increases, the empirical RMSs of both ambiguity-float and
partial-fixed solutions become large, as shown in Fig. 11,
which presents RMSs of ambiguity-float positioning solu-
tions, and the corresponding float-to-fixed RMS ratios,
success-rates (‘SR’) andfixed-to-all ambiguity number ratios
(‘Ratio’) after applying partial IARwith aminimum required
success-rate of 99.9% as a function of SD clock offset dtt for
different carrier phase measurement precision σφ , based on
the dual-epoch phase-only model (14) with a 30-s sampling
interval Δt .

Specifically, with an optimistic σφ of 1/100 cycles, the
RMSs of ambiguity-float position errors are approximately
4cm, 4cm and 3cm in the north, east and up directions,
respectively, when the offset dtt is small (e.g., 0.01microsec-
onds). As the offset increases, the RMSs grow, particularly
in the east direction, reaching about 6cm, 41cm and 5cm,
respectively,when the offset reaches 100microseconds.Note
that the noise of the dual-epoch phase-only equations (14)
before fixing ambiguities is larger than after ambiguity res-
olution. Thus, our previous assumption that the SD clock
offset dtt is less than 0.1 microseconds can be relaxed for
ambiguity-float solutions. This explains why the ambiguity-
float position errors are not significantly affected by dtt as
long as it remains below approximately 10 microseconds.

In terms of partial-fixed positions, the float-to-fixed RMS
ratios are about 9.8, 11.9 and 3.3 in the north, east and up
directions, respectively, with 100% success-rates and 80%
fixed-to-all ambiguity number ratios before the SD clock off-
set dtt reaches 0.1microseconds. Beyond this point, the float-
to-fixed RMS ratios decrease sharply, although success-rates
and fixed-to-all ambiguity number ratios remain at 100%
and 80%, respectively, until the offset reaches 1 microsec-
ond. When dtt exceeds 1 microsecond, both success-rates
and fixed-to-all ambiguity number ratios begin to decline
significantly. At an offset of 4 microseconds, with success-
rates of 25% and fixed-to-all ambiguity number ratios of
20%, improvements in position accuracy are observed only
in the horizontal directions, with float-to-fixed RMS ratios
of approximately 7.2 in the north direction and 1.3 in
the east direction. For offsets larger than 5 microseconds,
improvements are achieved only in the north direction, with
float-to-fixed RMS ratios greater than approximately 6.7,
while the other directions experience degradation to val-
ues below 1. This trend continues until the offset exceeds
6 microseconds, at which point float-to-fixed RMS ratios in
all three directions all drop below 1. This empirically veri-
fies our previous assumption that receivers are equipped with
high-grade clocks, ensuring that the SD clock offset is less
than 0.1 microseconds to neglect the bias vector εt in (4),
which potentially enables the achievement of partial IAR. If
the SD clock offset becomes larger however, there is a risk
of incorrectly fixed ambiguities and increased positioning
errors.

5.3 Performance of multi-LEO/GNSS positioning in
Iridium-challenged environments

As listed in Table 1, the near-polar orbits of the Iridium con-
stellation provide dense satellite coverage at high latitudes,
while in mid- to low-latitude regions, tracking a sufficient
number of Iridium satellites becomes challenging. Addition-
ally, despite the Iridium constellation currently consisting
of 75 active satellites, it can be difficult to observe mea-
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Fig. 10 RMSs (m) of ambiguity-float positioning solutions (left), and
the corresponding float-to-fixed RMS ratios and fixed-to-all ambigu-
ity number ratios (%) after partial IAR with a minimum required ILS
success-rate of 99.9% (right) as a function of the number of OneWeb
satellitesm for different carrier phase measurement precision σφ , based
on the dual-epoch phase-only model (14) with a 1-s sampling interval

Δt for the 5-km baseline located in station BJNM at a cut-off eleva-
tion angle of 5◦. For simplicity, only the simulation results at 5400s
on December 19, 2023 are presented. Note, for σφ = 1/20 and 1/40
cycles, the minimum success-rate requirement is not met. Thus, the
corresponding fixed results are absent

surements from the Iridium-only constellation that meet the
minimum required quantity in severely signal-obstructed
environments due to its orbital altitude of about 780km. For
the former scenario, we therefore compare the positioning
performance of GNSS-assisted Iridium/Globalstar constella-
tions operating in the L-band in mid- to low-latitude regions
against multi-Iridium/Globalstar positioning, using 14 glob-
ally distributed baselines shown in Fig. 8. For the latter
scenario, we first investigate the impact of cut-off elevations
on single-LEO constellation (Iridium-only) positioning, then
discuss an extreme cut-off case where city canyons cause
significant signal obstruction by buildings. In this case, only
measurements transmitted by multi-LEO/GNSS satellites at
a high cut-off elevation, e.g., 50◦, can be received.

Based on the dual-epoch phase-only model (14) with
a 30-s sampling interval Δt , only the ALRT and NYAL
stations, situated in high-latitude regions with over 10 multi-
Iridium/Globalstar satellites at a cut-off elevation of 5◦,
achieve centimeter-level RMS of ambiguity-float position-
ing errors in all three directions for σφ = 1/80 cycles as
shown in the left sub-figure in Fig. 12. At the ALRT station,
which has 11 Iridium satellites (no Globalstar satellites), the
RMSs of partial-fixed positioning errors are approximately
9mm, 19mm and 18mm in the north, east and up directions,
respectively, showing improvements of about 64%, 23% and
49% compared to the float counterparts. For the NYAL sta-
tion, which has 11 Iridium and 1 Globalstar satellites, the
RMSs are approximately 17mm, 7mmand14mm, achieving
improvements of about 64%, 86% and 66% in the north, east

and up directions, respectively. To strengthen the credibility
of the analysis, we also present the positioning performance
of the NYAL station over one day (see Fig. 13). Consistent
with the results at our sampled epoch, the accuracy improve-
ments over the day suggest the benefits of partial IAR on
multi-Iridium/Globalstar-based positioning. The remaining
stations are located in mid- to low-latitude regions, where
the number of multi-Iridium/Globalstar satellites observed
at a cut-off elevation of 5◦ ranges from 2 to 7, achiev-
ing a 3-dimensional ambiguity-float positioning accuracy at
decimeter to meter levels. However, these stations are unable
to achieve theminimum required success-rate for partial IAR
due to the insufficient number of satellites. To address this,we
use the GNSS constellations (i.e., GPS/GLONASS/Galileo)
to assist the Iridium/Globalstar constellations. As shown in
the right sub-figure in Fig. 12, with more than 25 satellites
available, all stations in mid- to low-latitude regions also
achieve meter-level ambiguity-float positioning accuracy.
More importantly, they can successfully achieve partial IAR
and obtain millimeter-level positioning accuracy in all three
directions, demonstrating the benefits of GNSS assistance
for communication LEO positioning in mid- to low-latitude
regions.

In complex urban environments, such as city canyons
where signals are easily obstructed by buildings, one can
only use those measurements transmitted by satellites at a
high cut-off elevation. To ensure sufficient satellite coverage
at such high cut-off, we expand our analysis to include multi-
LEO/GNSS constellations and investigate their positioning
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Fig. 11 RMSs (m) of ambiguity-float positioning solutions (left), and
the corresponding float-to-fixed RMS ratios, success-rates (‘SR’, %)
and fixed-to-all ambiguity number ratios (‘Ratio’, %) after partial IAR
with a minimum required ILS success-rate of 99.9% (right) as a func-
tion of the between-receiver SD receiver clock offset dtt for different
carrier phasemeasurement precisionσφ , based on the dual-epoch phase-

only model (14) with a 30-s sampling interval Δt for the 5-km baseline
located in station NYAL, observing 11 Iridium satellites at a cut-off ele-
vation angle of 5◦. For simplicity, only the simulation results at 5400s
on December 19, 2023 are presented. Note, for σφ = 1/20 cycles, the
minimum success-rate requirement is not met. Thus, the corresponding
fixed results are absent

Fig. 12 RMSs (mm) of ambiguity-float positioning errors (gray bar
charts) and their fixed versions (green boxes) after partial IAR with
a minimum required ILS success-rate of 99.9%, based on the dual-
epoch phase-only model (14) with a 30-s sampling interval Δt at a
cut-off elevation angle of 5◦ for 14 IGS stations, where the carrier
phase measurement precision σφ is 1/80 cycles. The top-left inset in
each figure illustrates the available satellite numbers of each constel-

lation (vertical bar charts with different colors) and the fixed-to-all
ambiguity number ratios (black lines) for the 14 stations. The left
and right sub-figures are the results of multi-Iridium/Globalstar and
multi-Iridium/Globalstar/GNSS, respectively, where GNSS includes
frequency-identical GPS/Galileo and frequency-varying GLONASS
signals. For simplicity, only the simulation results at 5400s on Decem-
ber 19, 2023, are presented
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Fig. 13 Time-series of RMSs (mm) of ambiguity-float positioning
errors (gray lines) and their fixed versions (green lines) after partial
IAR with a minimum required ILS success-rate of 99.9% over one day
(19 of December of 2023), based on the dual-epoch phase-only model
(14) with a 30-s sampling interval Δt for the 5-km baseline located in
station NYAL, observing multi-Iridium/Globalstar satellites at a cut-off
elevation angle of 5◦, where the carrier-phase measurement precision
σφ is 1/80 cycles

performance. To guarantee adequate satellite availability,
the following experiments include three mature GNSS con-
stellations: GPS, GLONASS and Galileo, as well as five
common communication LEO constellations: Iridium, Glob-
alstar, Starlink, OneWeb andOrbcomm. It is noteworthy that,
unlike the Iridium constellation, whose signals span the L-
band, the Starlink and OneWeb constellations operate in the
Ku-band. Consequently, according to empirical values of the
L-band GNSS systems that the precision of carrier phase
measurements is approximately one hundredth of the corre-
sponding wavelength, the precision of Starlink and OneWeb
carrier phase measurements can reach the sub-millimeter
level, which is highly ideal. As such, we assess the posi-
tioning capabilities of the multi-LEO/GNSS constellations,
assuming a more realistic precision of σφ = 1/40 cycles.

Before that, we first need to investigate how cut-off ele-
vations impact positioning with a single LEO constellation
(e.g., Iridium-only) to determine under what conditions com-
bining multi-LEO/GNSS constellations is necessary. The
results of 5-km baseline positioning for the NYAL station
are also presented as an example.

As shown in Fig. 14, which presents the RMSs of
ambiguity-float positioning solutions (left) and the corre-
sponding float-to-fixed RMS ratios and fixed-to-all ambi-
guity number ratios (right) as a function of the cut-off
elevation for different carrier phase measurement precision
σφ , increasing the sampling interval Δt from 1s to 30s
enhances the accuracyof ambiguity-float positions to the cen-
timeter to decimeter levels and makes partial IAR possible

for the Iridium-only constellation in some cases. Specifically,
when the cut-off elevation is below 20◦, a more pessimistic
carrier phasemeasurement precision of 1/20 and 1/40 cycles
achieves ambiguity-float positions of about 0.2 m and 0.1 m
in all three directions. Conversely, a more optimistic mea-
surement precision of 1/100, 1/80, and 1/60 cycles results
in ambiguity-float positioning accuracy below 0.1 m. Par-
tial IAR is successfully achieved for σφ = 1/100, 1/80,
1/60 and 1/40 cycles. However, for σφ = 1/40 cycles, the
float-to-fixed RMS ratios are close to 1 in all three directions
because the corresponding fixed-to-all ambiguity number
ratio is about 10%, regardless ofwhether the cut-off elevation
is 5◦ or 20◦. With higher σφ , such as 1/60 cycles, float-to-
fixed RMS ratios of 2, 3, and 1.5 are achieved at 5◦ in the
north, east, and up directions, respectively. For σφ = 1/80
and 1/100 cycles, these ratios are 3, 7, and 3, respectively.
As the cut-off elevation increases to 25◦, achieving partial
IAR becomes possible only for σφ = 1/100 cycles, showing
an improvement only in the east direction with a fixed-to-
all ambiguity number ratio of about 20%. Beyond this point,
partial IAR cannot be achieved in any case. Overall, the float-
to-fixed RMS ratios in all three directions decrease as the
cut-off elevation rises from 5◦ and higher for the Iridium-
only case.

Previous results suggest that one cannot achieve reliable
and efficient partial IAR if the cut-off elevation exceeds
20◦ for the Iridium-only case. We then consider a more
extreme scenariowith a higher cut-off, e.g., above 50◦, where
multi-LEO/GNSS constellations are included to enable posi-
tioning. For a sampling interval Δt of 1 s as shown in the
left sub-figure in Fig. 15, fixing ambiguities is feasible for
the stations with more than multi-LEO/GNSS 15 satellites,
resulting in approximately 73%, 55% and 65% improve-
ments in the north, east and up directions, respectively, for
all stations successfully achieving partial IAR. Notably, by
applying partial IAR, the ALBH and BJNM stations exhibit
improvements in the RMSs of the positioning errors close
to 100% in all three directions, achieving millimeter-level
positioning accuracy.At theALRT station however, themini-
mum success-rate requirement (99%) is not reached, limiting
the position solutions to centimeter-level accuracy. This is
because this station tracks a relatively low proportion of Star-
link satellites among all LEO satellites (2 out of 13). Other
stations also exhibit a similar trend: given a sufficient number
of available multi-LEO/GNSS satellites, a higher proportion
of Starlink satellites is associated with an increased likeli-
hood of successfully fixing ambiguities. Starlink, with the
lowest altitude of approximately 550km among the constel-
lations we used, shows the most rapid geometric changes
compared to the remaining constellations. This characteristic
is advantageous for obtaining more precise float ambigui-
ties and achieving ambiguity resolution, particularly for short
sampling intervals (e.g., 1 s).
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Fig. 14 RMSs (m) of ambiguity-float positioning solutions (left) and
the corresponding float-to-fixed RMS ratios and fixed-to-all ambiguity
number ratios after partial IAR with a minimum required ILS success-
rate of 99.9% (right) as a function of the cut-off elevation for different
carrier phasemeasurement precisionσφ , based on the dual-epoch phase-

only model (14) with a 30-s sampling interval Δt for the 5-km baseline
located in station NYAL, observing Iridium satellites. For simplic-
ity, only the simulation results at 5400s on December 19, 2023 are
presented. Note, for σφ = 1/20 cycles, the minimum success-rate
requirement is not met. Thus, the corresponding fixed results are absent

Benefiting from the longer sampling interval, e.g., Δt =
30s as shown in the right sub-figure in Fig. 15, all stations
except DGAR achieve ambiguity-float positioning errors of
less than 10cm in all three directions. The DGAR station
is excluded because it delivers a 3-dimensional ambiguity-
float positioning accuracy at the meter level and cannot
meet the minimum required success rate for partial IAR,
due to the presence of only 2 LEO and 5 GNSS satellites.
Compared to a 1-s sampling interval, a 30-s sampling inter-
val yields fewer co-visible LEO satellites over two epochs
due to the rapid motion of LEO satellites. By applying
partial IAR, the remaining 13 stations showaverage improve-
ments of approximately 48%, 69% and 37% in the north,
east and up directions, respectively, with the most signifi-
cant improvement observed in the east component. These
stations ultimately achieve millimeter-level horizontal and
centimeter-level vertical accuracy using multi-LEO/GNSS
satellites.

To conclude this section, we summarize all results of the
performance of the dual-epoch phase-only positioning for
combined LEO and GNSS constellations in Table 3.

6 Summary and conclusions

In this contribution,weexplored theperformanceof ambiguity-
resolved LEO short-baseline positioning using frequency-
varying carrier phase signals under the dual-epoch phase-
onlymodel (14). In the absence of codemeasurements, it was
shown that certain conditionmust hold in order to discard the

measurement bias that is generated when evaluating satel-
lite clock and orbital corrections at the signal transmission
time. While single-receiver high-precision LEO-based posi-
tioning can be challenging, we leveraged the relative distance
between a base and rover receivers, identifying the condi-
tions under which short-baseline positioning can potentially
overcome inaccuracies in the LEO satellite orbit and clock
products. Accordingly, the baseline is assumed to be suffi-
ciently short (e.g., 5km), while the receivers are assumed
to be equipped with high-grade clocks, ensuring that the SD
clock offset remains below 0.1microseconds. These assump-
tions, along with access to decimeter-level orbit products,
were made to guarantee that the stated bias is smaller than
themillimeter-level noise of the carrier phase measurements.
With the single-epoch phase-and-code model as reference,
key performance metrics were derived to provide an initial
insight into the capability of standalone LEO-based phase-
only positioning. LEO constellations were shown to have its
own distinct response to IAR. Therefore, we carried out a
simulation study to assess the ambiguity-resolved position-
ing performance of standalone and combined LEO/GNSS
constellations. Ourmain findings are summarized as follows:

• If Iridium and OneWeb satellites broadcast phase mea-
surements as precise as those of GNSS, i.e., σφ =
1/100 cycles, the dual-epoch phase-only model, with a
1-s sampling-rate, is capable of delivering meter- and
decimeter-levels float positioning solutions, respectively.
However, while successful full IAR is advantageous for
positioning, it appears to be infeasible for this model.
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Fig. 15 RMSs (mm) of ambiguity-float positioning errors (gray bar
charts) and their fixed versions (green boxes) after partial IAR with
a minimum required ILS success-rate of 99.9%, based on the dual-
epoch phase-only model (14) at a cut-off elevation angle of 50◦
for 14 IGS stations, where the carrier phase measurement preci-
sion is 1/40 cycles. The top-left inset in each figure illustrates
the available satellite numbers of each constellation (vertical bar

charts with different colors) and the fixed-to-all ambiguity number
ratios (black lines) for the 14 stations. The left and right sub-
figures are the results of 1-s and 30-s sampling intervals, respec-
tively. GNSS includes frequency-identical GPS/Galileo and frequency-
varying GLONASS signals, while LEO includes frequency-varying
Iridium/Globalstar/Starlink/OneWeb/Orbcomm signals. For simplicity,
only the simulation results at 5400s onDecember 19, 2023 are presented

• One therefore has to consider partial IAR instead. For
the Iridium constellation, although the partial ADOP is
almost 4 times smaller than its full version in some cases,
it does not result in a significant precision gain in the posi-
tioning results. The results also indicate that the reduction
in partial ADOP compared to that of full IARmay not be
considerable for the OneWeb case.

• The empirical analysis verifies, if the SD clock offset
is less than 0.1 microseconds, that there is no consid-
erable effect on the partial-fixed positioning solutions.
The capability for ambiguity-float positioning enhances
as the number of LEO satellites increases. However,
partial IAR is not achieved even with the maximum
currently available 11 Iridium satellites, based on the
dual-epoch phase-only model with a 1-s sampling inter-
val. By contrast, with a sufficient number of satellites (up
to 34), as well as greater differences in frequency ratios,
the OneWeb constellation can achieve 3-dimensional
millimeter-level positioning accuracywith a 1-s sampling
interval when the phase measurement precision is set to
1/100 cycles.

• The limited number of standalone Iridium and Global-
star satellites broadcasting L-band signals, as observed
by stations in mid- to low-latitude regions, prevents
them from achieving partial IAR. Being augmented with

GNSS however, these twoLEOconstellations can deliver
millimeter-level positioning solutionswhenmore than 25
satellites are available, specifically in the case of 1-s sam-
pling interval and a phasemeasurement precision of 1/80
cycles.

• One cannot achieve cm-level positioning if the cut-off
elevation exceeds 20◦ in the standalone Iridium case. To
ensure a sufficient number of satellites in high-cut-off
GNSS(and/or LEO)-challenged environments, such as at
a cut-off of 50◦, the five LEO constellations (Table 1)
are combined with three GNSS constellations (GPS,
GLONASS, andGalileo), showing that partial IAR is fea-
sible for the stations observing more than 15 satellites,
resulting in a precision improvement of over 50% in all
three directions for the near-real-time (1-s interval) posi-
tioning solutions when the phase measurement precision
is 1/40 cycles. By extending the sampling interval from
1s to 30s, 13 out of 14 globally distributed short base-
lines show average improvements of approximately 48%,
69% and 37% in the north, east and up directions, respec-
tively, ultimately achieving millimeter-level horizontal
and centimeter-level vertical partial-fixed precision.
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Future research will focus on Kalman filter-based kine-
matic positioning, as well as the integration of LEO satellites
with different navigation satellite systems to evaluate the
resultant ambiguity-resolved positioning performance.

Appendix A: Supplementary proofs

Proof of (6) Let ẋ s and gsr , respectively, be the satellite veloc-
ity vector and the satellite-to-receiver LOS direction vector
corresponding to satellite s and receiver r . The first part I
follows from the definition of the bias entry εst , while the
remaining decomposition (6) follows by the first-order Tay-
lor series expansion of function φ̄s

t (x
◦
r , t

s
b , t

s
r , τ

s
b , τ sr ) in (2)

about the point (x◦
r , t̂

s
b , t̂

s
r , τ̂

s
b , τ̂ sr ), and recognizing the par-

tial derivatives of ||x◦
r − xs(t)|| with respect to xs as −gsr ,

and with respect to t as −vsr , with vsr = gsr ẋ
s being the LOS

velocity. ��
Proof of Lemma (1) Application of the minimum variance
least-squares estimation to the PC model (11) gives the vari-
ance matrices of the float and fixed position solutions x̂ and
x̌ , respectively, as follows (Teunissen 1997)

Qx̂x̂ = 2σ 2
p

(
GtWt PGt

)−1

Qx̌x̌ =
(
Q−1

x̂ x̂ + 1
2λ2σ 2

φ

(
Gt W̄t P̄Gt

))−1 (30)

Taking the determinant of the first equation in (30) gives
|Qx̂x̂ | = (2σ 2

p)
3/|GtWt PGt |, from which the first expres-

sionof (24) follows. Pre-multiplying the inverse of the second
equation with the first in (30) gives

Qx̂x̂ Q
−1
x̌ x̌ = I3 + σ 2

p

λ2σ 2
φ

(GtWt PGt )
−1(Gt W̄t P̄Gt ) (31)

From the determinant of the above equation follows that

Gx̂ = ι
σp

λ σφ

|I3 + ε (Gt W̄t P̄Gt )
−1(GtWt PGt )| 16 (32)

where ε = (λ2σ 2
φ )/σ 2

p . The second expression of (24) is
an approximation of (32) when ε ≈ 0, i.e., when the phase
data are assumed to be much more precise than their code
counterparts. The last expression, i.e., the ADOP expression,
follows from the results in (Teunissen 2019, pp. 11). ��
Proof of Lemma (2) Since theminimumvariance least-squares
solutions remain invariant for a one-to-one linear transforma-
tion of the observations, one can instead of the P model (14),
equivalently work with the following model

1
2E

([
Δφt+1+Δφt

Δφt+1−Δφt

])
=

[
G

1
2 Ġ Δt

]
Δx+ 1

2

[
e
e

]
dt̃t+1
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+ 1
2

[
Λ

0

]
ã (33)

Compare the above model with the single-epoch PC model
(11). Apart from the design matrix (1/2)Ġ Δt replacing Gt ,
the model (33) is identical in structure to (11). Making the
approximationWt+1 ≈ Wt ≈ W , the epoch-differenced data
(Δφt+1−Δφt ) is uncorrelated with the epoch-averaged data
(Δφt+1+Δφt )/2 (Khodabandeh and Teunissen 2018). Along
the same lines as the proof of Lemma (1), the expressions in
(26) can therefore be derived. ��
Proof of Lemma (3) To prove the first expression of (28), we

use the identity GPAR
x̂ /GFAR

x̂ = 1/|QPAR
x̌ x̌ Q−1

x̌ x̌ | 16 in which
the variance matrix of the partially ambiguity-fixed position
solution reads

QPAR
x̌ x̌ = Qx̌x̌ + 1

lT Q−1
ẑ ẑ l

Qx̂ ẑ Q
−1
ẑ ẑ l l

T Q−1
ẑ ẑ Qẑx̂ (34)

The expression follows then by post-multiplying (34) with
Q−1

x̌ x̌ and using the determinant identity (Koch 1999)

|I3 + 1
lT Q−1

ẑ ẑ l
Qx̂ ẑ Q

−1
ẑ ẑ l l

T Q−1
ẑ ẑ Qẑx̂ Q

−1
x̌ x̌ |

= |1 + lT Q−1
ẑ ẑ Qẑx̂ Q

−1
x̌ x̌ Qx̂ ẑ Q

−1
ẑ ẑ l

lT Q−1
ẑ ẑ l

| (35)

To provide the second expression of (28), we make use of the
property that the determinant of the admissible ambiguity
matrix [L̃, l̃] is ±1, and thus |Qẑẑ | = |[L̃, l̃]T Qẑẑ[L̃, l̃]|.
With the aid of the determinant identity (Koch 1999)

∣
∣∣∣
L̃T Qẑẑ L̃ L̃T Qẑẑ l̃
l̃T Qẑẑ L̃ l̃T Qẑẑ l̃

∣
∣∣∣ = |L̃T Qẑẑ L̃|

|lT Q−1
ẑ ẑ l|

, (36)

and Qẑ1 ẑ1 = L̃T Qẑẑ L̃ , we get |Qẑ1 ẑ1 | = |Qẑẑ | |lT Q−1
ẑ ẑ l|,

from which the second expression of (28) follows. ��

Appendix B: Impact of orbital biases

The presence of the bias vector εt in (4) is due to the error
in estimating the signal transmission time vectors tr − τr
and tb − τb. By considering sufficiently short baselines and

having receivers equipped with high-grade clocks, the stated
bias vector can be discarded, i.e., εt ≈ 0. This, however,
relies on a crucial assumption of having precise satellite orbit
products. As (2) indicates, the computedmeasurement vector
φ̄s
t depends on the satellite position vectors are given by xs

(s = 1, . . . ,m). If each of these vectors are biased as xs �→
xs + βs , the observation equations (4) read (εt ≈ 0)

E(Δφt ) = Gt Δx + e dtt + Λ a + Δρ (37)

with the between-receiver SD range bias vector Δρ =
[Δρs

r −Δρs
b], whereΔρs

r = ||x◦
r − (xs +βs)||− ||x◦

r − xs ||.
Figure16 (left-panel) compares the entries of Δρt of the
GPS satellites (top) with those of the Iridium and OneWeb
satellites (bottom). The baseline is set to be 5km. The
results are generated using the 3 × 1 orbital bias vectors
βs = (1/

√
3)[5, 5, 5]T meters. Thus, the norm of the orbital

bias vectors is set to ||βs || = 5 meters. Thanks to the rather
high altitude of the GPS satellites, these orbital biases deliver
SD range biases smaller than 0.8mm (top-left). However, the
results corresponding to the Iridium and OneWeb LEO satel-
lites can reach 12mm (bottom-left).

Note that only part of the SD range bias vector Δρ will
affect the fixed position solution x̌ . To identify this part,
assume that the integer-estimable ambiguities z = FT a are
correctly resolved. The design matrix of (37) would then
read [Gt , e]. This is because the inestimable part of a is
absorbed by the receiver clock dtt . To eliminate the pres-
ence of dtt , the design matrix of Δx , Gt is reduced to
At = P̄Gt , where the projector P̄ forms between-satellite
differences, i.e., P̄e = 0. Application of least-squares esti-
mation gives A+

t Δρ = (Gt W̄t P̄Gt )
−1Gt W̄t P̄Δρ, with A+

t
being the least-squares inverse of At . The component A+

t Δρ

is absorbed by the fixed solution x̌ . To show the contribution
of each satellite to this component, in Fig. 16 (right-panel) we
evaluate its projection on the observation equations (37), i.e.,
At A

+
t Δρ. As shown, the orbital component affecting x̌ for

GPS is smaller than 0.6 mm, while this component for Irid-
ium/OneWeb is less than 6mm. By decreasing themagnitude
of the orbital bias vector βs , we have observed that the SD
range bias vectorΔρ almost linearly decreases. For instance,
the decimeter-level bias ||βs || = 50 cm leads to an SD range
bias vector with ||Δρ|| ≤ 1.2 mm whose component A+

t Δρ

is less than 0.6 mm. To ensure that the magnitude of the SD
range bias vector remains below mm-level, the orbital bias
should be maintained at the decimeter level.
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Fig. 16 Absolute values of the entries of the between-receiver SD
bias vector Δρ = [Δρs

r − Δρs
b] (left) in (37) and those of its pro-

jection At A
+
t Δρ (right) corresponding to the orbital biases βs =

(1/
√
3)[5, 5, 5]T [m], for the BJNM (located in China) short-baseline

observing GPS (top) and Iridium/OneWeb satellites (bottom) on the
day of year 353, 2023. The baseline is set to be 5km. Each line in the
skyplot corresponds to a satellite path
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