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Overall mean estimation of trace evidence in a two-level

normal-normal model

August 1, 2018

Abstract

In the evaluation of measurements on characteristics of forensic trace evidence, Aitken and Lucy
(2004) model the data as a two-level model using assumptions of normality where likelihood ratios
are used as a measure for the strength of evidence. A two-level model assumes two sources of
variation: the variation within measurements in a group (first level) and the variation between
different groups (second level). Estimates of the variation within groups, the variation between
groups and the overall mean are required in this approach. This paper discusses three estimators
for the overall mean. In forensic science, two of these estimators are known as the weighted and
unweighted mean. For an optimal choice between these estimators, the within- and between-group
covariance matrices are required. In this paper a generalization to the latter two mean estimators is
suggested, which is referred to as the generalized weighted mean. The weights of this estimator can
be chosen such that they minimize the variance of the generalized weighted mean. These optimal
weights lead to a “toy estimator”, because they depend on the unknown within- and between-group
covariance matrices. Using these optimal weights with estimates for the within- and between-group
covariance matrices leads to the third estimator, the optimal “plug-in” generalized weighted mean
estimator. The three estimators and the toy estimator are compared through a simulation study.
Under conditions generally encountered in practice, we show that the unweighted mean can be
preferred over the weighted mean. Moreover, in these situations the unweighted mean and the
optimal generalized weighted mean behave similarly. An artificial choice of parameters is used to
provide an example where the optimal generalized weighted mean outperforms both the weighted
and unweighted mean. Finally, the three mean estimators are applied to real XTC data to illustrate
the impact of the choice of overall mean estimator.

1 Introduction

The likelihood ratio is a generally accepted measure for the strength of evidence in many forensic
comparison problems. Modelling the data as a two-level random effects model using assumptions
of normality is a well-known approach in likelihood ratio calculation [1, 6]. The use of a two-level
model leads to a likelihood ratio which depends on the unknown parameters of the two-level model.
Within the Likelihood Paradigm [11] estimates of these parameters are required to estimate the
likelihood ratio. Alternatively, it is possible to assign priors to all parameters following a full-
Bayesian approach [3, 5, 14]. In this paper, different methods are described to estimate one of
the parameters: the overall mean vector of the two-level model. Two currently used estimators
in forensic statistics, the weighted and unweighted mean, are compared. There is still discussion
which of these mean estimators should be used when the data are unbalanced, i.e. when the
number of data points differs per group [1, 12]. Moreover, a general class of estimators for the
overall mean, referred to as generalized weighted mean, is suggested. This class contains the two
aforementioned estimators as special cases. The choice of the mean estimator is important for the
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commonly used analysis of variance estimator to estimate the between-source covariance matrix,
which is another parameter to be estimated in the two-level model [12].

In Section 2 the likelihood ratio approach in the setting of a two-level model is described,
yielding an explicit expression for the likelihood ratio in terms of the model parameters. Section 3
covers the explanation of the estimators and their relative efficiencies in terms of (partly) unknown
parameters. In Section 4 a comparison of the estimation techniques is given through a simulation
study and in Section 5 the estimators are applied to real XTC data. In this paper the results are
given for the multivariate case. The results for the univariate case are obtained by replacing the
(traces of the) covariance matrices with the corresponding variances.

2 Likelihood ratio approach

In forensic comparison problems it is investigated whether a control item (e.g. XTC tablets from
consignment C1) and a recovered item (e.g. XTC tablets from consignment C2) originate from the
same unknown source1. Very generally stated, a prosecutor’s hypothesis (Hp) and a hypothesis of
the defence (Hd) may be as follows:{

Hp : The control and recovered item originate from the same source.

Hd : The control and recovered item originate from different sources.

Comparison of the control and recovered item given the two hypotheses involves evidence E. This
evidence concerns certain characteristics or features of the two items. The likelihood ratio approach
refers to a well-known probabilistic framework based on Bayes’ rule to evaluate the strength of the
evidence in such forensic comparison problems. In this approach, the likelihood ratio is the ratio
of the probability of evidence E given the two hypotheses Hp and Hd:

LR =
P (E | Hp)

P (E | Hd)
. (1)

This likelihood ratio expresses how much more likely it is to find the evidence under the prosecutor’s
hypothesis than under the hypothesis of the defence. Therefore, the likelihood ratio can be seen
as a measure to quantify the strength of evidence.

2.1 Model

Various types of models exist to compute the likelihood ratio in equation (1). In this paper, the
focus will be on a feature-based two-level random effects model using assumptions of normality
which is applicable to continuous data [2, 6].

Consider the situation that several continuous features of the control and recovered item are
measured by forensic experts, e.g. the diameter, thickness and weight of the XTC tablets in
consignment C1 and C2. Let k denote the number of features and let n1 be the number of
measurements of these features on the control item, e.g. the number of tablets that is measured
in consignment C1. The composed continuous random vector Y1 represents the n1 measurement
vectors of the features on the control item,

Y1 = (Y11, . . . ,Y1n1) =

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

Y11,1

Y11,2

...
Y11,k

⎤
⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎢⎣

Y1n1,1

Y1n1,2

...
Y1n1,k

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ .

1In the context of [8], this problem is known as a common source problem. The model corresponds to the
situation where the sources are assumed to be random realizations from a probability distribution. For more details
about the difference between common and specific source problems, see [9].
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This vector can be referred to as control data. The control data will be compared to the recovered
data Y2, i.e. the composed random vector which represents the n2 measurements of the features
on the recovered item. Thus, the composed random vectors Yl = (Ylj , 1 ≤ j ≤ nl), l = 1, 2,
represent for example the diameters, thicknesses and weights of the tablets from consignments C1

and C2. To compare the control and recovered item, the means of the control and recovered data
can be used as the evidence, i.e.

E = (Y1,Y2)

where

Yl =
1

nl

nl∑
j=1

Ylj for l = 1, 2

denotes the mean over the nl measurements.
The data are modelled using a (two-level) random effects model under the assumption of

normality [2, 6]. The use of such a two-level model is appropriate, because the data are organized
at more than one level: the measurements (first level) are nested within the items (second level),
such as the control and recovered item. The variation between the nl measurements within the
same item is known as the within-source variation. The variation between the items is known as
the between-source variation. It is assumed that both the within- and between-source variation
are multivariate normally distributed. This means that within a source, the control and recovered
data are independent and normally distributed around their group means θ1 and θ2, i.e.

Yl | θl ∼ Nk

(
θl, n

−1
l Σ

)
for l = 1, 2

and the between-source variation is modelled by independent normally distributed random vari-
ables

θl ∼ Nk(μ,T) for l = 1, 2.

2.2 Likelihood ratio

In the literature, explicit likelihood ratio formulas under the normality assumptions in the two-level
model are derived [1, 6, 15]. In this paper we will use the following likelihood ratio of the observed
evidence E = (y1,y2) [4]:

LR(y1,y2|μ) =
|U0| 12
|Un| 12

exp

[
1

2

(
(y2 − μ)TU−1

0 (y2 − μ)− (y2 − μn)
TU−1

n (y2 − μn)
)]

(2)

where

U0 = T+ n−1
2 Σ,

Un = Tn + n−1
2 Σ,

μn = T(T+ n−1
1 Σ)−1y1 + n−1

1 Σ(T+ n−1
1 Σ)−1μ,

Tn = T−T(T+ n−1
1 Σ)−1T.

The explicit likelihood ratio formulas depend on the unknown overall mean μ, the between-source
covariance matrix T and the within-source covariance matrix Σ of the described two-level model.
Hence, in the Likelihood Paradigm, estimates of these parameters are required to estimate the
likelihood ratio. In Section 3, estimators for the overall mean μ are described. Estimators for
the covariance matrices T and Σ are for example the multivariate analysis of variance estimators
[12, 13]. Next to the computation of the likelihood ratio, the choice of the mean estimator μ̂
is important for the analysis of variance estimator of the between-source covariance matrix T,
because this quantity depends on the mean μ [12]. As an alternative to these approaches, maximum
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likelihood estimators can be used [13]. However, in the two-level normal-normal setup no explicit
formulas exist for these estimators. Therefore, iterative methods are required [12]. Another option
is to use a full-Bayesian approach with priors assigned to all parameters [3, 5, 14]. In this paper,
we will focus on the non-Bayesian approach with Σ and T fixed, and we will compare several
estimators for μ.

2.3 Background data

To estimate the parameters of the two-level model, background data that represent the population
are required. The background data consist of measurements of the continuous features on a
random sample of m items or groups, which represent the population. In each of the m groups, ni

(i = 1, . . . ,m) measurements are taken. The background data are denoted as {Zij | 1 ≤ i ≤ m, 1 ≤
j ≤ ni}, where Zij represents the vector of measured features within group i of measurement j.
The background data are modelled by the extension of the two-level model described in Section
2.2 [1],

Zij | θi
iid∼ Nk(θi,Σ), 1 ≤ j ≤ ni,

θi
iid∼ Nk(μ,T), 1 ≤ i ≤ m.

Under these assumptions, the background data are in fact modelled by a random effects model
[13], i.e.

Zij = μ+αi + εij for 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

with μ the overall mean,

αi
iid∼ Nk(0k,T), 1 ≤ i ≤ m,

the random group effect and, independent of the αi’s,

εij
iid∼ Nk(0k,Σ), 1 ≤ j ≤ ni,

the random noise vectors or within-source variation.

3 Estimating the overall mean

First, the weighted mean and the unweighted mean are discussed as estimators for the overall
mean μ. In Section 3.2 it is shown that what is the best estimator (the estimator with smallest
variance) depends on the ratio of the traces of the within- and between-source covariance matrices.
To derive this, a multivariate generalization of variance is given in Section 3.1. In Section 3.3 a
generalization of the weighted and unweighted mean estimators is suggested, which is referred to
as the generalized weighted mean. The weights of this estimator can be chosen such that they
minimize the variance of the generalized weighted mean. These optimal weights lead to what we
will call a “toy estimator”. We use the term “toy estimator”, because the optimal weights depend
on the unknown within- and between-source covariance matrices Σ and T. Hence, in practice only
an estimate of the optimal weights can be obtained and the resulting estimator will be referred to
as the optimal “plug-in” generalized weighted mean estimator.

3.1 Multivariate generalization of variance

A natural choice for the multivariate concept of variance for unbiased estimators is to consider the
expected value of the squared Euclidean distance between the estimator and the true parameter
of interest, i.e.

Var(μ̂) := E
[||μ̂− μ||2] .
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Note that we will prefer the unbiased estimator with minimal expected distance to the true pa-
rameter. For unbiased estimators it follows that

Var(μ̂) = E
[||μ̂− E[μ̂]||2] = E

[
(μ̂− E[μ̂])T (μ̂− E[μ̂])

]
= E

[
k∑

i=1

(μ̂i − E[μ̂i])
2

]
=

k∑
i=1

Var(μ̂i) = tr(Σ),

where Σ denotes the covariance matrix of μ̂. Any further mention of variance will refer to this
definition.

3.2 Weighted versus unweighted mean

The group means of the background data are defined as the average of the observations Zij in each
group,

Zi =
1

ni

ni∑
j=1

Zij , 1 ≤ i ≤ m, (3)

such that Zi ∼ Nk(μ,T+n−1
i Σ). These group means are used to approximate θi. Two estimators

for the overall mean μ are the weighted mean and the unweighted mean. The weighted mean is
the average over all observations Zij in the background data [13],

μ̂w =
1

N

m∑
i=1

niZi =
1

N

m∑
i=1

ni∑
j=1

Zij , (4)

where N is the total number of observations, i.e. N =
∑m

i=1 ni. The weighted mean is unbiased,
since

E[μ̂w] =
1

N

m∑
i=1

ni∑
j=1

E [Zij ] =
1

N

m∑
i=1

ni∑
j=1

E [μ+αi + εij ] =
1

N

m∑
i=1

ni∑
j=1

μ = μ.

The variance of the weighted mean is equal to

Var(μ̂w) =
tr(T)

N2

m∑
i=1

n2
i +

tr(Σ)

N
,

see Appendix A.1. The unweighted mean is the mean of the group means [12],

μ̂u =
1

m

m∑
i=1

Zi. (5)

The unweighted mean is also unbiased, since

E[μ̂u] =
1

m

m∑
i=1

E
[
Zi

]
=

1

m

m∑
i=1

μ = μ

and its variance is equal to

Var(μ̂u) =
tr(T)

m
+

tr(Σ)

m2

m∑
i=1

1

ni
,

see Appendix A.1.
First note that if the data are balanced, i.e. ni = n for all i = 1, . . . ,m, the weighted and

unweighted mean are exactly the same. For unbalanced data where the number of measurements
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differs per group, there is a dispute whether to use the weighted mean or the unweighted mean
[1, 12]. The weighted mean fits naturally with a designed experiment or other reasons where the
unequal number of measurements reflects the composition of the population or the importance of
the groups. In that case it is important that groups with more measurements have more weight
in the estimation of the overall mean, which is an argument in favor of the weighted mean. In
cases where the number of measurements is more or less randomly chosen or determined by factors
independent of the population composition (e.g. sampling costs) the number of measurements is
not important. It is then beneficial that groups have equal importance, despite the number of
observations, which is an argument in favor of the unweighted mean. In fact, below it is shown
that the best choice between these estimators depends on the situation.

Since both estimators are unbiased, it will be examined which estimator has smallest variance.
Hence, consider the efficiency of μ̂w relative to μ̂u [10]:

eff(μ̂u, μ̂w) =
Var(μ̂w)

Var(μ̂u)
=

tr(T)
N2

∑m
i=1 n

2
i +

tr(Σ)
N

tr(T)
m + tr(Σ)

m2

∑m
i=1

1
ni

. (6)

Multiplying the numerator and denominator in equation (6) with the term m2N2 and setting

r = tr(Σ)
tr(T) results in

eff(μ̂u, μ̂w) =
m2

∑m
i=1 n

2
i +m2Nr

mN2 + rN2
∑m

i=1
1
ni

. (7)

Using Jensen’s inequality it can be shown that the efficiency can have larger and smaller values
than one, see Appendix A.2. Therefore, one cannot be conclusive about which estimator has
smallest variance. From Appendix A.2, it follows that

eff(μ̂u, μ̂w) > 1 iff r <
m2

∑m
i=1 n

2
i −mN2

N2
∑m

i=1
1
ni
−m2N

=: c. (8)

Note that both the numerator and the denominator of c are positive because of inequalities (17)
and (18) (see Appendix A.2), hence the constant c is always positive. Therefore,{

Var(μ̂w) > Var(μ̂u) if tr(Σ) < c · tr(T),

Var(μ̂w) < Var(μ̂u) if tr(Σ) > c · tr(T).
(9)

From the inequalities in (9) it follows that the best choice of the estimator depends on two factors.
The first is the ratio between the trace of the within-source covariance matrix Σ and the trace of
the between-source covariance matrix T. For example, if the trace of the within-source covariance
matrix Σ is small, i.e. Zi ≈ θi, the unweighted mean virtually equals the maximum likelihood
estimator based on the (unobservable) θi’s and we would prefer the unweighted mean. This
example corresponds to the first inequality in expression (9). Since the parameters Σ and T
are unknown, this factor relies on prior knowledge or on experience of the forensic expert. The
second factor that affects the choice between the weighted and unweighted mean is the value of the
constant c, which depends on the number of groups m and the number of measurements within
each group ni. The following lemma gives more insight in the possible values of the constant c.

Lemma 3.1. The constant

c =
m2

∑m
i=1 n

2
i −mN2

N2
∑m

i=1
1
ni
−m2N

is always greater than or equal to 1.

The proof of this lemma can be found in Appendix A.3. This lemma illustrates that when
tr(Σ) < tr(T) the unweighted mean will always have a smaller variance than the weighted mean.

6



In many forensic comparison problems it is realistic to assume that within-source variation is
smaller than between-source variation. For instance, in XTC comparison problems this is due to
the fact that the errors that cause the within-group variation (e.g. measurement errors, production
errors, inhomogeneity within a batch) are often smaller than the between-group variation (mainly
based on the preference of the producers). Consequently, in many XTC comparison problems it
can be assumed that the trace of the within-source covariance matrix Σ is smaller than the trace
of the between-source covariance matrix T, i.e. tr(Σ) < tr(T). Since c ≥ 1 always holds, the
unweighted mean should in these situations be preferred over the weighted mean.

3.3 Generalized weighted mean

This section suggests a more general estimator for the mean compared to the weighted and un-
weighted mean described in Section 3.2. This general estimator will be referred to as the generalized
weighted mean2. Define the generalized weighted mean as [10]

μ̂ =
m∑
i=1

WiZi where Wi is a k × k matrix such that
m∑
i=1

Wi = Ik. (10)

Here, Ik denotes the k × k-dimensional identity matrix. The weighted and unweighted mean
are special cases of the generalized weighted mean given in equation (10). It can be seen that
the weighted mean μ̂w is the generalized weighted mean with weight matrices Wi = ni

N Ik for
1 ≤ i ≤ m. The unweighted mean μ̂u is the generalized weighted mean with weight matrices
Wi =

1
mIk for 1 ≤ i ≤ m.

Since the weight matrices W1, . . . ,Wm in equation (10) add up to the identity matrix, it
follows that the generalized weighted mean is unbiased, i.e.

E(μ̂) =

m∑
i=1

Wi E
(
Zi

)
=

(
m∑
i=1

Wi

)
μ = μ.

The covariance matrix of μ̂ is equal to

Cov(μ̂, μ̂) =
m∑
i=1

Wi Cov
(
Zi,Zi

)
WT

i =

m∑
i=1

Wi(T+ n−1
i Σ)WT

i (11)

so that its variance is given by

Var(μ̂) =
m∑
i=1

tr
(
Wi(T+ n−1

i Σ)WT
i

)
.

Since the variance depends on the choice of the weight matrices W1, . . . ,Wm, the question arises
how to choose these weights to minimize Var(μ̂) subject to the constraint

∑m
i=1 Wi = Ik.

3

2In the literature this estimator is called the weighted mean. However, in forensic literature the estimator in
equation (4) is called the weighted mean. Therefore, we will refer to this estimator as generalized weighted mean.

3If only diagonal matrices would be considered, a similar analysis shows that the matrix with weights wi =
(wi1, . . . , wik)

T on the diagonal that minimizes Var(μ̂) subject to the constraint
∑m

i=1 wi = 1k is found from

wi =

⎛
⎝

m∑
j=1

1

diag(T+ n−1
j Σ)

⎞
⎠
−1

1

diag(T+ n−1
i Σ)

, 1 ≤ i ≤ m,

where all vector products and divisions are elementwise. Choosing the diagonal matrix with these weights results
in a better mean estimator in terms of variance than μ̂w and μ̂u, but it will not be as good as μ̂opt, which is the
optimal mean estimator.
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Lemma 3.2. The weights W1, . . . ,Wm that minimize Var(μ̂) subject to the constraint
∑m

i=1 Wi =
Ik are given by

Wi =

⎛
⎝ m∑

j=1

(T+ n−1
j Σ)−1

⎞
⎠
−1

(T+ n−1
i Σ)−1 (12)

where i = 1, . . . ,m.

The proof of this lemma is given in Appendix A.4. This lemma shows that the weights in
equation (12) minimize the variance of the generalized weighted mean. Hence, these optimal
weights lead to the following “toy estimator”:

μ̂opt =

(
m∑
i=1

(T+ n−1
i Σ)−1

)−1 ( m∑
i=1

(T+ n−1
i Σ)−1Zi

)
. (13)

Since the weights in equation (12) yield minimum variance for μ̂ we can thus conclude that, if the
parameters Σ and T are known, μ̂opt is the best of these three estimators.

However, in practice this result is not immediately useful because the optimal weights depend
on the unknown parameters Σ and T. If estimated values for these parameters are substituted in
the optimal weights, this will influence the variance of the toy estimator in equation (13) and the
resulting estimator will be biased. For example, the multivariate analysis of variance estimators
[12] for Σ and T could be used, which are given by

Σ̂ =
1

N −m

m∑
i=1

ni∑
j=1

(zij − zi·)(zij − zi·)T where zi· =
1

ni

ni∑
j=1

zij ,

T̂ =
MS2between − Σ̂

κ
where κ =

1

m− 1

(
N −

∑m
i=1 n

2
i

N

)
, (14)

MS2between =
1

m− 1

m∑
i=1

ni(zi· − z)(zi· − z)T and z =
1

N

m∑
i=1

ni∑
j=1

zij .

The performance of the plug-in estimator μ̂plug based on these estimates for Σ and T will be
further evaluated in the following sections. Introducing the toy estimator gives more theoretical
insight in the various estimators for the overall mean μ. In the results of the simulation study in
Section 4 this will be further explored.

4 Simulation study

In this section the mean estimators of Section 3 are compared in a simulation study. In Section 4.1
the performance of the weighted and unweighted mean estimators is compared using Monte Carlo
simulation. In Section 4.2, this comparison is extended with the optimal generalized weighted
mean estimator. Since this is a toy estimator and cannot be computed in practice, the optimal
generalized weighted mean with estimates for the within- and between-source covariance matrices
will also be considered, which will be called the optimal “plug-in” generalized weighted mean
estimator. Finally, in Section 4.3 an artificial choice of parameters is used to show some examples
where the optimal generalized weighted mean outperforms both the weighted and unweighted
mean.

4.1 Weighted versus unweighted mean

In expression (9) we have seen that the best choice between the weighted and unweighted mean
depends on the ratio of the traces of the within- and between-source covariance matrices Σ and T.
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However, the covariance matrices Σ and T are unknown. Hence, to use expression (9) in practice,
one should have prior knowledge about the ratio between tr(Σ) and tr(T). In many comparison
problems the trace of the within-source covariance matrix can be assumed to be smaller than the
trace of the between-source covariance matrix. Furthermore, in Lemma 3.1 it is shown that the
value of the constant c will always be larger than one. Therefore, it is expected that in most cases
the unweighted mean has a smaller variance than the weighted mean.

Given this result, it is interesting to compare the performance of the weighted and the un-
weighted mean in estimating the true mean μ. To this end, we perform two Monte Carlo sim-
ulations. In these simulations, the values for the number of groups m are set to m = 10 and
m = 1200, respectively, and the number of measurements in each group ni, 1 ≤ i ≤ m, is drawn
randomly, where values 1 ≤ ni ≤ 20 are used. Given these values of ni and m, a background
data set is generated M times according to the model described in Section 2.3. To simulate the
background data set in both situations, the parameters μ, Σ and T are fixed based on diameter
(in millimeters), thickness (in millimeters) and weight (in milligrams) observations in real XTC
tablet comparisons. These values are given by:

μ =

⎡
⎣ 8.242

4.528
276.0

⎤
⎦ , Σ =

⎡
⎣ 0.002013 0.0007271 0.01408

0.0007271 0.03046 0.6133
0.01408 0.6133 90.61

⎤
⎦ ,

T =

⎡
⎣ 0.6026 0.06689 31.56

0.06689 0.6371 32.90
31.56 32.90 3562

⎤
⎦ .

(15)

The results of the two Monte Carlo simulations are given for each element of the three-
dimensional estimated mean vector and can be found in the box plots in Figure 1. From these
figures it can be seen that the estimated values of the two mean estimators are close. As can be
expected, if there are more observations in the background data (1200 groups), the estimates are
more accurate compared to the estimates using fewer observations (10 groups).

The mean squared error (MSE) [10] is chosen as a measure of performance for the estimators.
The MSE measures the average of the squared values of the errors, i.e. the Euclidean distance
between the estimate and the true value μ:

E
[||μ̂− μ||2] .

Hence, a mean squared error of zero means that the estimator estimates the true mean μ perfectly.
The estimators can be compared by using their MSEs, where the smallest MSE is preferred. For the
unbiased weighted and unweighted mean, the MSE equals the variance of the estimators. Hence,
minimizing the mean squared error is equivalent to minimizing the variance and the estimators
with the lowest MSE are thus the most efficient.

To compute the MSE based on the Monte Carlo simulation, for each simulation i, with 1 ≤ i ≤
M , the squared Euclidean distance between the estimate and the true value is computed. After M
simulations the average over these squared distances is taken as the (numerically approximated)
mean squared error. The resulting mean squared errors are given in Table 1.

From these MSE values it is clear that the performance of the estimators increases when the
number of groups m is higher. Since the MSEs of the unweighted mean are smaller than the MSEs
of the weighted mean, the unweighted mean should be preferred over the weighted mean. For
both simulations the constant c can be computed and equals c = 4.48 for 10 groups and c = 3.43
for 1200 groups and with tr(Σ) = 90.6 and tr(T) = 3563 it can be seen that tr(Σ) < c · tr(T).
Consequently, from expression (9) it follows that the variance of the unweighted mean is smaller
than the variance of the weighted mean.

9



Figure 1: Box plots of estimated values from μ̂w, μ̂u, μ̂opt and μ̂plug for two Monte Carlo simulations
(M = 1000) with parameters given as in equation (15). The red dot indicates the true overall mean value.

m MSE μ̂w MSE μ̂u MSE μ̂opt MSE μ̂plug

10 406 352 352 352
1200 3.93 2.96 2.96 2.96

Table 1: Mean squared errors of the estimated mean using the weighted mean μ̂w, the unweighted mean
μ̂u, the toy estimator μ̂opt and the plug-in estimator μ̂plug for two Monte Carlo simulations (M = 1000)
with parameters as given in equation (15).

Since the values for the overall mean μ and the covariance matrices Σ and T are fixed, it is
possible to determine the true value of the likelihood ratio for this problem. Therefore, five mea-
surements for both the control and recovered data are generated, assuming that the prosecutor’s
hypothesis is true, i.e. that the control and recovered item originate from the same source. Using
equation (2) with the parameters given in equation (15), the true value of the likelihood ratio is
found. Keeping the covariance matrices Σ and T fixed, the likelihood ratios based on μ̂w and μ̂u

can also be calculated. The mean squared error for the likelihood ratio values is then computed

10



by

1

M

M∑
i=1

[
LR(y1,y2|μ)− LR(y1,y2|μ̂(i))

]2
for each Monte Carlo simulation i, with 1 ≤ i ≤ M . The resulting mean squared errors can be
found in Table 2.

Clearly, the MSE values of the likelihood ratios reduce significantly when the number of groups
m is higher. Moreover, the performance of the unweighted mean is significantly better than the
performance of the weighted mean. Combining this observation with the fact that the unweighted
mean is more efficient than the weighted mean, the unweighted mean should in this situation be
preferred over the weighted mean.

m MSE LR(y1,y2|μ̂w) MSE LR(y1,y2|μ̂u) MSE LR(y1,y2|μ̂opt) MSE LR(y1,y2|μ̂plug)

10 3.97 · 106 2.61 · 106 2.60 · 106 2.61 · 106
1200 6.34 · 103 4.99 · 103 4.96 · 103 4.96 · 103

Table 2: Mean squared errors of the estimated likelihood ratio using the weighted mean μ̂w, the unweighted
mean μ̂u, the toy estimator μ̂opt and the plug-in estimator μ̂plug for two Monte Carlo simulations (M =

1000) with parameters as given in equation (15). The true likelihood ratio is equal to 1.11 · 103.

4.2 Generalized weighted mean

In the Monte Carlo simulations in Section 4.1 the values for the covariance matrices Σ and T are
fixed, see equation (15). Substituting these values into the toy estimator in equation (13), the toy
estimator yields the minimum variance estimator. It is therefore interesting to examine the differ-
ence between this estimator and the weighted and unweighted mean that can be used in practice
more easily. We will also consider the plug-in estimator based on the multivariate analysis of vari-
ance estimates for Σ and T, given by (14). Note that the plug-in estimator is a biased estimator,
which motivates the use of the mean squared error to compare the mean estimators and not only
the variance. To compare the performance of the toy estimator and the plug-in estimator with
the performance of the weighted and unweighted mean, the simulations as described in Section 4.1
based on the same values of m and corresponding ni’s are used. The results of these Monte Carlo
simulations are given in Table 1 and 2 and Figure 1.

An interesting observation from Table 1 and 2 is that the optimal generalized weighted mean
has (approximately) the same mean squared errors as the unweighted mean in this simulation.
This can be explained by the small value for the parameter Σ in comparison to the value for T,
see equation (15). Consequently, it follows that T+ n−1

i Σ ≈ T. Hence,

Cov (μ̂u, μ̂u) ≈
1

m2

m∑
i=1

T =
T

m
and therefore Var(μ̂u) ≈

tr(T)

m
.

The weight matrices for the optimal generalized weighted mean are approximately equal to

Wi ≈
(

m∑
i=1

T−1

)−1

T−1 =
1

m
Ik

so that the variance of the optimal generalized weighted mean is approximately

Var
(
μ̂opt

) ≈ m∑
i=1

tr

(
1

m
IkT

1

m
Ik

)
=

tr(T)

m
.
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Thus, if the within-source variation is small relative to the between-source variation it follows that

Var (μ̂u) ≈ Var
(
μ̂opt

)
.

Hence, for such situations the unweighted mean is as good as the minimum variance estimator μ̂opt.
Note that the plug-in estimator μ̂plug also behaves similarly to the minimum variance estimator.

4.3 Artificial choice of parameters

For the covariance matrices Σ and T from equation (15), we have seen that the within-source
variationΣ is very small so thatT+n−1

i Σ ≈ T and therefore the unweighted mean is approximately
as good as the minimum variance estimator μ̂opt. It is interesting to consider some situations where
μ̂opt outperforms both the weighted and unweighted mean estimator. To this end, the following
artificial choice of parameters was made:

μ =

⎡
⎣ 3

5
4

⎤
⎦ , Σ =

⎡
⎣ 0.3 0.0 0.3

0.0 0.1 −0.2
0.3 −0.2 0.8

⎤
⎦ , T =

⎡
⎣ 0.6 0.3 0.5

0.3 0.4 0.2
0.5 0.2 0.9

⎤
⎦ . (16)

Again a Monte Carlo simulation study is performed for m = 1200 groups, as was described in
Section 4.1. The values of r and c for the simulated data set are equal to 0.632 and 3.49 respectively,
so that the inequality tr(Σ) < c ·tr(T) holds. The mean squared errors of both the mean estimates
and the likelihood ratio values are given in Table 3.

μ̂w μ̂u μ̂opt μ̂plug

MSE μ̂ 2.13 · 10−3 1.76 · 10−3 1.73 · 10−3 1.73 · 10−3

MSE LR(y1,y2|μ̂) 4.54 · 10−3 3.59 · 10−3 3.56 · 10−3 3.56 · 10−3

Table 3: Mean squared errors of the estimated mean and likelihood ratio using the weighted mean μ̂w, the
unweighted mean μ̂u, the toy estimator μ̂opt and the plug-in estimator μ̂plug for a Monte Carlo simulation
(M = 1000) with parameters as given in equation (16) and m = 1200 groups. The true likelihood ratio is
equal to 2.47.

Indeed, the optimal generalized weighted mean performs better than the other overall mean
estimators, although the performance is comparable to that of the unweighted mean estimator and
the plug-in mean estimator.

Another interesting situation is when the inequality tr(Σ) < c · tr(T) does not hold. Therefore,
the parameter Σ is multiplied by 10 whereas the other parameters as well as the sampled ni’s
remain unchanged. Again a Monte Carlo simulation study is performed for m = 1200 groups, but
we now have r = 6.32 and c = 3.49 so that tr(Σ) > c · tr(T). This means that the weighted mean
should perform better than the unweighted mean. Note that the values of r and c do not influence
μ̂opt and that this is still the minimum variance unbiased estimator. The results of the simulation
study can be found in Table 4.

μ̂w μ̂u μ̂opt μ̂plug

MSE μ̂ 2.96 · 10−3 3.31 · 10−3 2.67 · 10−3 2.67 · 10−3

MSE LR(y1,y2|μ̂) 1.65 · 10−2 1.71 · 10−2 1.45 · 10−2 1.45 · 10−2

Table 4: Mean squared errors of the estimated mean and likelihood ratio using the weighted mean μ̂w, the
unweighted mean μ̂u, the toy estimator μ̂opt and the plug-in estimator μ̂plug for a Monte Carlo simulation
(M = 1000) with parameters as given in equation (16), where Σ is multiplied by 10, and m = 1200 groups.
The true likelihood ratio is equal to 4.58.
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As expected, the weighted mean now performs better than the unweighted mean, but the
optimal generalized weighted mean is still the best of all estimators. Again, the performance of
the toy estimator and the plug-in estimator is similar.

5 Estimating the overall mean of XTC data

In this section, the different estimators will be applied to real XTC data to illustrate the impact
of the choice of overall mean estimator. The XTC data come from the CHAMP (Collaborative
Harmonization of Methods for Profiling of Amphetamine Type Stimulants) project. Instead of
generating the control and recovered data Y1 and Y2 based on the parameters given in equation
(15), it is also possible to apply the three mean estimators to real XTC trace evidence. Since the
true mean μ and the true likelihood ratio LR(y1,y2|μ) are now unknown, we cannot say anything
about mean squared errors. Therefore, this application is purely meant to indicate the difference
in results when using the weighted, unweighted or optimal plug-in generalized weighted mean. The
latter will again be based on the multivariate analysis of variance estimates as given in equation
(14). In fact, these are the same estimates as used to obtain the parameters Σ and T in equation
(15) from the real XTC data.

The control data Y1 now consists of 42 measurements of the diameter, thickness and weight
of tablets from consignment C1, and the recovered data Y2 consists of 5 measurements on tablets
that also come from consignment C1. This means that the prosecutor’s hypothesis is true and
likelihood ratio values larger than 1 are expected. It is assumed that the origin of consignment C1

is unknown, i.e. it is not known which production process produced the tablets, so that indeed
the described two-level model applies to this situation. The background data consists of 186
consignments with two or more tablet measurements where it is not known whether there are links
between the consignments. For this data set, we have c = 11.0 and r = tr(Σ)/tr(T) = 0.0254, so
that the inequality tr(Σ) < c · tr(T) holds. The following estimates for the overall mean μ are
obtained:

μ̂w =

⎡
⎣ 8.242

4.528
276.0

⎤
⎦ , μ̂u =

⎡
⎣ 8.240

4.211
260.0

⎤
⎦ , μ̂plug =

⎡
⎣ 8.240

4.212
260.1

⎤
⎦ .

Using the same estimates from equations (14) for Σ and T and the likelihood ratio formula from
equation (2), the likelihood ratio values can be calculated for each of the overall mean estimates:

LR(y1,y2|μ̂w) = 1455, LR(y1,y2|μ̂u) = 2073, LR(y1,y2|μ̂plug) = 2072.

This shows that there is a significant difference in likelihood ratio values when using μ̂w instead
of μ̂u or μ̂plug. The analysis in the previous sections showed that, since tr(Σ) < c · tr(T), both
μ̂u and μ̂plug outperform μ̂w. Hence, it would be strongly discouraged to use the weighted mean
when reporting likelihood ratio values for this evidence set.

6 Conclusion

In this paper three estimators for the mean are presented, which can be used if the evidence is
modelled as a two-level model using assumptions of multivariate normality: the weighted mean,
the unweighted mean and a generalized weighted mean estimator. The choice of the estimator of
the overall mean is important for the estimation of the between-source covariance matrix and for
the calculation of the likelihood ratio. There is no consensus on which of these two estimators
to use when the data are unbalanced. In this paper a relation is found which can be used to
find the most efficient estimator and thus to decide whether the weighted or the unweighted mean
should be used. The unweighted mean is preferred over the weighted mean if tr(Σ) < c · tr(T),
where the constant c depends on the number of groups in the background data and the number of
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measurements in each group. It is argued that in many forensic comparison problems the within-
source variation can be assumed to be smaller than the between-source variation. Moreover, it is
proven that the value of c will never be smaller than one. Therefore, it is expected that in practice
the unweighted mean will often be preferred over the weighted mean. Of course, there might also
be contextual reasons to prefer one of the overall mean estimators over the other.

The weights of the generalized weighted mean are derived such that they minimize the variance
of this estimator. These optimal weights lead to a toy estimator, because they depend on the un-
known within- and between-source covariance matrices. If these parameters would be known, the
derived toy estimator has smaller (or equal) variance than the weighted and the unweighted mean.
Using the optimal weights with estimates for the within- and between-source covariance matrices
leads to a plug-in estimator. When comparing the multivariate mean estimators in a simulation
study where the unweighted mean should be preferred over the weighted mean, the unweighted
mean and plug-in estimator perform similarly to the toy estimator which yields minimum variance.
Using an artificial choice of parameters provides some examples where the toy estimator outper-
forms both the weighted and unweighted mean, regardless of the number of groups and number
of measurements in the background data. Applying the weighted mean, the unweighted mean and
the plug-in mean estimator to real data shows the impact that the choice of estimator has on the
value of evidence.

A Appendix

A.1 The variance of μ̂w and μ̂u

The covariance matrix of the weighted mean μ̂w is found by setting Wi =
ni

N Ik in equation (11)
so that

Cov(μ̂w, μ̂w) =

m∑
i=1

ni

N
Ik(T+ n−1

i Σ)
ni

N
Ik =

T

N2

m∑
i=1

n2
i +

Σ

N
.

By linearity of the trace, we have

Var(μ̂w) =
tr(T)

N2

m∑
i=1

n2
i +

tr(Σ)

N
.

Similarly, the covariance matrix of the unweighted mean μ̂u can be found by setting Wi =
1
mIk

in equation (11) so that

Cov(μ̂u, μ̂u) =
m∑
i=1

1

m
Ik(T+ n−1

i Σ)
1

m
Ik =

T

m
+

Σ

m2

m∑
i=1

1

ni

and linearity of the trace gives

Var(μ̂u) =
tr(T)

m
+

tr(Σ)

m2

m∑
i=1

1

ni
.

A.2 The efficiency of μ̂u relative to μ̂w

To find the relation of the efficiency as given in expression (9), Jensen’s inequality can be used.
Consider the random variable U , uniformly distributed on n1, . . . , nm, ordered integers ≥ 1. By
Jensen’s inequality it follows that

1

m

m∑
i=1

1

ni
= E

[
1

U

]
≥ 1

E[U ]
=

1
1
m

∑m
i=1 ni

=
m

N
. (17)
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Here is used that the function φ(x) = 1
x is convex for x > 0, which is sufficient since only positive

values are considered. Applying Jensen’s inequality to the function φ(x) = x2 it follows that

1

m

m∑
i=1

n2
i = E

[
U2

] ≥ (E[U ])
2
=

(
1

m

m∑
i=1

ni

)2

=
N2

m2
. (18)

Moreover, from inequality (18) it follows that

tr(T)

N2

m∑
i=1

n2
i ≥

tr(T)

N2

mN2

m2
=

tr(T)

m
,

which refers to the first terms in the numerator and denominator of equation (6). On the other
hand, from inequality (17) it follows that

tr(Σ)

m2

m∑
i=1

1

ni
≥ tr(Σ)

N
,

which refers to the second terms in the denominator and numerator of equation (6).

A.3 Proof of Lemma 3.1

Multiplying both the numerator and the denominator by 1
m3 and using N =

∑m
i=1 ni, the expres-

sion for c can be re-written to

c =
1
m

∑m
i=1 n

2
i −

(
1
m

∑m
i=1 ni

)2
(

1
m

∑m
i=1 ni

)2 ( 1
m

∑m
i=1

1
ni

)
− 1

m

∑m
i=1 ni

.

To simplify notation a bit, consider the random variable U as defined in Appendix A.2. Then we
can write

c−1 =
(E[U ])2 E[U−1]− E[U ]

Var(U)
.

Consider the convex function φ on [1, nm] defined by

φ(y) = y−1.

Since φ is a convex function, the tangent lines to φ are below the graph of φ. The idea of the proof
is to find a parabola that can be added to the tangent lines so that it will always be above the
graph of φ, see Figure 2. It follows that for fixed u ∈ [1, nm] we have for any y ∈ [1, nm]

φ(y) ≤ φ(u) + φ′(u)(y − u) +
(y − u)2

u2
. (19)

Indeed,
1

y
≤ 1

u
− 1

u2
(y − u) +

1

u2
(y − u)2,

which can be re-written to
(y − 1)(u− y)2

u2y
≥ 0

and holds as long as u ≥ 1 and y ≥ 1.
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Figure 2: Illustration of equation (19) for u = 5.

Choosing u = E[U ] ≥ 1 and substituting the random variable U ≥ 1 for y results in

1

U
≤ 1

E[U ]
− 1

(E[U ])2
(U − E[U ]) +

1

(E[U ])2
(U − E[U ])2.

Now taking expectations, we get

E[U−1] ≤ 1

E[U ]
+

1

(E[U ])2
Var(U).

Hence,
(E[U ])2 E[U ]−1 − E[U ] ≤ Var(U),

which implies that c−1 ≤ 1, i.e. c ≥ 1.

A.4 Proof of Lemma 3.2

To minimize Var(μ̂) subject to the constraint W1 + · · · + Wm = Ik a k2-dimensional Lagrange
multiplier λ = (λ11, λ12, . . . , λkk) is introduced such that the Lagrange function is equal to:

Lλ(W1, . . . ,Wm, λ11, λ12, . . . , λkk) = f(W1, . . . ,Wm)−
k∑

j=1

k∑
l=1

λjlgjl(W1, . . . ,Wm),

where

f(W1, . . . ,Wm) =

m∑
i=1

tr
(
Wi(T+ n−1

i Σ)WT
i

)
and

gjl(W1, . . . ,Wm) =

[
m∑
i=1

Wi − Ik

]
jl

.
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I.e. gjl(W1, . . . ,Wm) is equal to the matrix element with index jl. Let

∂

∂Wi
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂
∂wi,11

∂
∂wi,12

· · · ∂
∂wi,1k

∂
∂wi,21

∂
∂wi,22

· · · ∂
∂wi,2k

...
...

. . .
...

∂
∂wi,k1

∂
∂wi,k2

· · · ∂
∂wi,kk

⎤
⎥⎥⎥⎥⎥⎥⎦

denote the derivative with respect to the matrix Wi. Then we have

∂

∂Wi

⎛
⎝ m∑

j=1

tr
(
Wj(T+ n−1

j Σ)WT
j

)⎞⎠ =
∂

∂Wi
tr

(
Wi(T+ n−1

i Σ)WT
i

)
= 2Wi(T+ n−1

i Σ)

since (T+ n−1
i Σ) is symmetric and

∂ tr(XAXT )

∂X
= X(A+AT ) [7]. Clearly,

∂

∂wi,jl
gjl(W1, . . . ,Wm) = 1

and zero for all other indices. Therefore, it follows that

∂Lλ

∂Wi
= 2Wi(T+ n−1

i Σ)−

⎡
⎢⎢⎢⎣

λ11 λ12 · · · λ1k

λ21 λ22 · · · λ2k

...
...

. . .
...

λk1 λk2 · · · λkk

⎤
⎥⎥⎥⎦ := 2Wi(T+ n−1

i Σ)−Λ

and the Lagrange function will be minimized over Rk×k. Setting the derivative equal to the k × k
zero matrix results in

Wi =
1

2
Λ(T+ n−1

i Σ)−1, 1 ≤ i ≤ m.

Now using the constraint
∑m

i=1 Wi = Ik gives

m∑
i=1

1

2
Λ(T+ n−1

i Σ)−1 = Ik.

Hence,

1

2
Λ =

(
m∑
i=1

(T+ n−1
i Σ)−1

)−1

.

Thus,

Wi =

⎛
⎝ m∑

j=1

(T+ n−1
j Σ)−1

⎞
⎠
−1

(T+ n−1
i Σ)−1, 1 ≤ i ≤ m

which proves the lemma.
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