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Abstract

In this thesis we study criticality in the context of the dissipative Abelian sandpile model.
The model is linked to a simple trapped random walk, giving a practical method to deter-
mine criticality for certain landscapes of dissipative sites. The main results concern the
lifetime of the random walk, especially the divergence of its first moment for traps placed
on spherical shells. For the one dimensional case the point of divergence is determined
with reasonable precision. In higher dimensions the divergence is shown to be possible for
an infinite amount of shells. The connection between the sandpile model and a random
walk is shown mathematically and further researched via simulation.
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1 Introduction

The Abelian sandpile model hides many fascinating mathematical properties and patterns. One
of these can be admired on the front cover of this bachelor thesis, where an instance of the
model showing fractal behaviour is displayed [6]. Also graph theory, algebra and random walks
can be encountered while studying the sandpile model. It was first introduced by Per Bak, Chao
Tang and Kurt Wiessenfeld [1] in 1987 and has been subject to research in mathematical and
pysical communities ever since. Bak, Tang and Wiessenfeld originally introduced the model
as an example of a system exhibiting so called self-organised criticality. They argued that
distinct patterns found in complex systems transcending the traditional methods of analysis, like
reduction of degrees of freedom or mean field theory, stem from this concept. As a consequence
an understanding of these self-organised systems would benefit physics, biology and even social
sciences like economics. Self-organised critical means in this context that the system naturally
evolves to a critical state without detailed specification of the initial conditions or tuning the
system parameters. In physics the state of a system is usually described as critical when its
typical correlation length diverges, meaning that small perturbations can cause disproportionate
change. This type of behaviour often arises around phase transitions and plays an important
role in statistical physics. The Abelian sandpile model, first confirmed by simulation and later
by rigorous argument, is indeed self-organised critical. However, the definition of the model
can be tweaked until criticality is lost, leading to a quest for borderline cases. In this thesis
we explore these cases with the help of random walks. We aim to this in a rigorously justified
manner, starting from clear definitions progressing via proof. Along the way we make thankful
use of the Abelian group structure discovered by Deepak Dhar [2] to derive the very applicable
relation to random walks.
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2 The Classical Abelian Sandpile Model

2.1 Two Dimensional Example

Before giving a formal definition of the classical Abelian sandpile model, we will first illustrate
the relevant mechanics using a simple two dimensional example. Consider a three by three grid
as below. Each of the squares contains either zero, one, two or three grains of sand. Now we
add an extra grain to the grid. Say we add it in the upper left corner, then the total number of
grains on the square becomes one. Something more interesting happens when we were to add
the grain at the middle square, where already three grains are present. Together with the extra
grain this makes four grains on a single square, which is not allowed. To solve this we perform
an operation called ”toppling”. Each neighbor (top, bottom, left and right) obtains one of the
four grains from the middle square which is now empty.

0 3 1 1 3 1 1 3 1 1 4 1
3 3 2 → 3 3 2 → 3 4 2 → 4 0 3
0 2 3 0 2 3 0 2 3 0 3 3

The toppling, while solving the problem for the middle square, resulted in two other sites with
four grains. Now we have two choices for which site we are going to topple next. Suppose we
decide to go with the upper middle square first. Again we give a grain to all three neighbors
(bottom, left and right). We also throw the away the grain which is supposed to go to the upper
neighbor, as if it is falling over the edge. Next we topple the the left middle square in a similar
manner. The result is a stable configuration where every site contains three or less grains of
sand. One might wonder what would have happened when we went with the middle left square
when there were two sites to topple. As demonstrated in the figure below, this would yield the
exact same final configuration. We will later find that this is not a coincidence. The order of
toppling does not influence the end result, hence the name ”Abelian” 1 sandpile.

2 0 2 3 0 2
↗ 4 1 3 → 0 2 3

1 4 1 0 3 3 1 3 3
4 0 3
0 3 3 2 4 1 3 0 2

↘ 0 1 3 → 0 2 3
1 3 3 1 3 3

2.2 Definitions and Notation

We will proceed in a more general setting and define the model above for arbitrary grid size and
dimension. Most notation and results below are either from Mathematical aspects of the abelian
sandpile model by F. Redig [7] or from Non-criticality criteria for Abelian sandpile models with
sources and sinks by F. Redig, W. Ruszel and E. Saada [8].

The grid will be generalized as the simply connected set Λn = [−n, n]d ∩ Zd, which is a cubic
grid of size 2n in d dimensions.

1The Abelian property is also commonly referred to as the commutative property.
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We also define a ”toppling matrix”, which determines the toppling rules. In the classical Abelian
sandpile model the toppling matrix, indicated by ∆, is minus the lattice Laplacian2:

∆Λn
x,y =


−1 for x, y ∈ Λn, x ∼ y

2d for x = y,∈ x ∈ Λn

0 otherwise

. (1)

Here we use x ∼ y as a notation for ”site x is next to site y (diagonal neighbors excluded)”.

Bear in mind that this toppling matrix might differ from the one used in the classical model.
Later on we will introduce ”dissipative sites”, which topple slightly different than normal sites.
We can model this by modifying ∆.

A stable configuration of grains on the grid Λn can now be seen as a map η : Λn → {1, 2, 3, ...}
where η(x) ≤ ∆xx. We will write H for the set of stable configurations and Ω for the set of all
(possibly unstable) configurations. If the map is unstable, i.e. ∃x ∈ Λn : η(x) > ∆xx, then site
x is toppled according to the following definition:

Tx(η)(y) = η(y)−∆xy.

When we fill in y = x, we see that the site that is toppled loses 2d grains. The neighboring
sites each gain a grain of sand. This is due to ∆xy being −1 whenever x ∼ y.

Remark 2.1. The definitions above are consistent with the two dimensional example. In that
case we had d = 2, which means that sites with four grains or more are unstable and topple, as
in the example. One can also easily explain the Abelian behaviour of the topplings now:

TxTy(η) = η −∆x −∆y = TyTx(η).

Here η is written as a column matrix. ∆x is notation for the column matrix indexed by the
sites z ∈ Λn and has elements ∆xz.

For a general height configuration we define a possible stabilization by

S(η) = Tx1 ...Txk(η). (2)

Given that every toppling Txi is legal and the final result S(η) is stable. In a moment we will
show that there always exist a stabilization and that this stabilization is unique. First we define
the toppling number mx based on this sequence of topplings as

mx =
k∑
i=1

I(xi = x). (3)

Here I denotes the indicator function. This definition allows us to write Tx1 ...Txk(η) = η−∆m.
Here m is a column matrix indexed by x ∈ Λn, with elements mx.

It is not directly obvious that S(η) exists for every unstable configuration η, and even if S(η)
exists it is not at all trivial that S(η) is well-defined. Nonetheless both statements turn out
to be true. To make the existence of S(η) plausible, one might imagine what happens when
there would be a site that topples infinitely often. In that case all neighboring sites would re-
ceive sand grains every toppling, implying that the neighboring sites themselves should topple

2This matrix is well-known from graph theory. −∆ = ∂2 is a discrete version of the Laplacian with Dirichlet
boundary conditions, hence the name ”Lattice Laplacian”.
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infinitely often as well. Repeating the argument for all neighbors of neighbors, we derive that
all sites would topple infinitely often, including the sites at the boundary. Now it is clear that
such a scenario is not possible, since every time a boundary site topples sand is lost, meaning
that after a certain time there would be no grains left on the grid and the configuration would
hence be stable 3.

Showing that S(η) is well-defined requires a bit more cleverness. It can be done using lemma 2.2
which states the, perhaps unexpected, fact that the toppling numbers for a stabilizing sequence
of topplings is maximal.

Lemma 2.2. If η ∈ H is height configuration and Tx1 ...Txk a sequence of legal topplings such
that the resulting configuration is stable, then the numbers mx, x ∈ Λn are maximal. I.e. for
every sequence of legal topplings Ty1 ...Tyl the toppling numbers n′ satisfy n′x ≤ nx for all x ∈ Λn.

Proof. Suppose that we have the identity

ξ = η −∆m

with ξ stable and mx ≥ 0 for all x ∈ Λn. Suppose that x1, ..., xk is a legal sequence of topplings
with with toppling numbers px =

∑k
i=1 I(xi = x) such that px ≤ mx. Furthermore we assume

that for a site j ∈ Λn an extra toppling can be performed i.e. we assume there is at least one
unstable site left after this sequence of topplings. We define

ζ = η −∆p.

We know that an extra toppling is allowed at site j in ζ, hence ζj > ξj. Subtracting the
expressions for ξ and ζ we obtain

(ξ − ζ)j = [∆(p−m)]j =
∑
i,j

(mi − pi)∆ij ≤ 0

⇒ (pj −mj)∆jj <
∑
i 6=j

(mi − pi)∆ij ≤ 0.

In the last inequality we used that ∆ij ≤ 0 and mi ≥ pi. The result above implies that
pj + 1 ≤ mj. Let p′ denote the toppling vector where we legally topple site j once more. We
have now shown that we still have p′x ≤ mx for all x ∈ Λn. This is enough to conclude via an
induction argument: one can start with toppling numbers px = 0, which is equivalent to not
toppling at all, and then keep performing legal topplings. The inequality will remain preserved.

Theorem 2.3. S is well-defined.

Proof. Suppose there are two legal sequences of topplings leading to a stable configuration,
say Tx1 ...Txk and Tx1 ...Txl with toppling numbers m and p leading to S1(η) and S2(η). Then
the resulting stable configuration is, by the Abelian property, only a function of the toppling
numbers. Now we can apply the previous lemma. By maximality we have mx = px for all
x ∈ Λn. Hence S1(η) = η −∆m = η −∆p = S2(η).

3This explanation is not necessarily valid for a more general toppling matrix like in definition 3.1, however
the statement remains true.
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Next we define the addition operator ax on Ω. This operator gives the stabilization after adding
a grain at site x.

axη = S(η + δx) (4)

where δx ∈ H is the configuration with one grain on site x and zero grains on the other sites.
The ”+” sign means point-wise addition.

Using the previous definitions we can now describe the dynamics of the Abelian sandpile model.
Let p = p(x) be a probability distribution on Λn, i.e. p(x) > 0 and

∑
x∈Λn

p(x) = 1. Starting
from configuration η0 = η ∈ Ω, the state of the model at time t is given by the random variable

ηt =
t∏
i=1

aXiη. (5)

In this expression X1, ..., Xt are i.i.d. with distribution p. One might interpret this process as
a grain falling on a random site on the grid at every time step. After the addition of the new
grain some toppling might take place until the system is stable again. At that point the next
grain is added.

This Process defines a Markov chain on the finite state space Ω. It is easy to see that this
Markov chain is reducible. Reducible means in this context that it is not generally possible to
go from one arbitrary state in the state space to another. Consider for example a configuration
with two empty site right next to each other. Such state can never be reached through toppling
from a state where either of the two sites does contain grains, since every toppling would give
sand from one of the two sites to the other. We see that it is indeed generally impossible to
reach a state with two empty sites neighboring each other.
However, restricted to the set of recurrent configurations, which we will denote by R, the
Markov chain turns out to be irreducible. The recurrent configurations are those stable states
which will be revisited by the Markov chain with probability one. To understand why this
restriction leads to an irreducible Markov chain we consider ηmax(x) = 2d for all x ∈ Λn. This
state is obviously stable and can be reached from any other state in Ω. Now assume η, ζ ∈ R to
be recurrent states. Both can with non-zero probability reach ηmax. Since they were assumed
to be recurrent, the probability to reach either η or ζ from ηmax must be one. As a consequence
we can reach ζ from η (or vice versa) with non-zero probability via ηmax.
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2.3 Group Structure

In order to properly define criticality in our model we identify the group behaviour of the
addition operators ax on the set of recurrent states R. We define

G =

{ ∏
x∈Λn

akxx , kx ∈ N

}
(6)

and show that G acting on R indeed defines an Abelian group.

From the what we derived earlier the Abelian property is clear:

axayη = S(S(η + δy) + δx) = S(η + δx + δy) = ayaxη. (7)

To find the identity element we first use that a configuration η is recurrent when there exist
integers kx > 0 such that ∏

x∈Λn

akxx η = η. (8)

This product is well-defined due to the Abelian property. The reason why we can choose all
kx > 0 might be not directly obvious. To see this, apply ax for all x ∈ Λn on η. This results
in some other state η′. By recurrence we must be able to apply some sequence of addition
operators again, bringing us back to η. This results in kx > 0. Now we have a candidate for
the identity element. We call e =

∏
x∈Λn

akxx and consider the set

A = {ζ ∈ R : eζ = ζ}. (9)

We immediately see that A contains η and is hence non-empty. Moreover, if we have g ∈ G
and ζ ∈ R then gζ ∈ A:

e(gζ) = g(eζ) = gζ. (10)

This makes A a trapping set for the Markov chain. A trapping set is a subset of state space Ω
that the Markov chain cannot leave once entered. Since the Markov chain is irreducible on R
we must have R ⊆ A. One can understand this by a contradiction argument. Imagine R * A,
then there must be a recurrent configuration η /∈ A. Suppose the Markov chain enters A, then
it will never leave A and as a consequence never reach η again.
Since the definition of A gives A ⊆ R, we have shown A = R. This means that e indeed acts
as a identity element for G.

Since we chose exponents kx in the definition for e strictly larger than zero, we can now easily
find the inverse element of an arbitrary addition operator ai:

a−1
i = aki−1

i

∏
x∈Λn
x 6=i

akx . (11)

This indeed gives aia
−1
i = aia

ki−1
i

∏
x∈Λn
x 6=i

akx = e.
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2.4 Criticality

In statistical physics the behaviour of a system is often described as critical when the system
shows a diverging correlation length. The critical phenomenon in the Abelian sandpile model is
the power-law divergence of a quantity which we will refer to as avalanche size. The avalanche
cluster for η ∈ Ω at site i ∈ Λn is defined as

CΛn(i, η) = {j ∈ Λn : mi
η > 0}. (12)

Where mi
η denotes the vector of toppling numbers after adding a grain to site i:

η + δi −∆mi
η = aiη. (13)

One can easily see the analogy with a real avalanche. In a physical sandpile avalanches form
when the sandpile locally topples over and the fallen sand grains cause other grains to start
rolling. In our model the toppling of a single site can cause it’s neighbors to topple and induce
toppling at of a whole set of other sites. This set is the above defined avalanche cluster.

So we define the model to be critical based on the power-law divergence of |CΛn| for an infinite
grid (Λn as n → ∞). More precisely this means that the number of recurrent configurations4

resulting in an avalanche cluster of size |CΛn| = R decays according to a power-law in R. Such
power-law behaviour implies that the mean avalanche size over the recurrent states would get
infinite. Hence the definition

Definition 2.4 (criticality). The Abelian sandpile model is non-critical if for all x ∈ Zd

lim sup
n→∞

Eµn
(∣∣CΛn(x, η)

∣∣) <∞. (14)

Where µn is the simply uniform measure (15) on the set of recurrent states R for grid size
n. The model is critical if it is not non-critical.

The classical Abelian sandpile model, where the toppling matrix is minus the lattice Laplacian,
turns out to be critical. In the next section we consider another type of toppling matrix which
can make the model non-critical. To rigorously show criticality we will associate a discrete time
random walk to the toppling matrix and study the random walk instead. However, this is not
an easy task and we will need Dhar’s formula (17). This is a very powerful equation linking
Eµn

(
mx
η(y)

)
to the toppling matrix. The proof of this result relies on the fact that the simply

uniform measure µ is stationary for the Markov chain.

Theorem 2.5 (stationary measure). The simply uniform measure µ on R

µ =
1

|R|
∑
η∈R

δη (15)

is a stationary measure for the Markov chain.

To prove this theorem it is essential that there exists a bijection Ψ : R → G. Indeed, the group
G acts transitively and freely on R. This means that for all η ∈ R the orbit Oη = {gη : g ∈
G} = R and if gη = g′η for some g, g′ ∈ G, then g = g′.
For the first statement we reason as follows: if η ∈ R and g ∈ G, then gη ∈ R since we can
obtain gη via the Markov chain by adding grains to recurrent configuration η. Therefore we

4After a certain time we the Markov chain gets trapped in R, hence we are only interested in the avalanche
sizes of the recurrent states.
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have Oη ⊂ R. Notice that Oη is a trapping set for the Markov chain, implying that Oη ⊃ R.
We can conclude that indeed Oη = R
For the second statement we assume gη = g′η and consider the associated set A = {ζ ∈ R :
gζ = g′ζ}. Then A = R by the same reasoning we used to find the identity element of G.

Proof. There exists a bijection Ψ : R → G which maps all i ∈ R to some ai ∈ G. Therefore
the image measure µ ◦ ai is again uniform on R. As a result µ is invariant under the addition
operators ai and thus under the Markov chain. As a matter of fact we even have:

for all functions f, g : Ω→ R∫
f(η)g(aiη)µ(dη) =

∫
f(a−1

i η)g(η)µ(dη).

For the transition operator Pf(η) = 1
|Λn|

∑
i∈Λn

f(aiη) of the Markov chain and P ∗f(η) =

1
|Λn|

∑
i∈Λn

f(a−1
i η). we find the following relation:∫

gPfdµ =

∫
fP ∗gdµ. (16)

Substituting g ≡ 1 gives the stationarity of µ

Dhar’s formula can now be derived by simply integrating the definition of the addition operator
ax over µ. We will call the inverse toppling matrix (∆xy)

−1 the Green’s function.

Theorem 2.6 (Dhar’s formula). For an instance of the abelian sandpile model with toppling
matrix ∆x,y on Λn we have

for all x, y ∈ Λn:
Eµ[mx

η(y)] = (∆x,y)
−1 ≡ G(x, y). (17)

Proof. For η ∈ Ω a configuration, we can write the stabilization of η as:

η −∆m = S(η).

If η is a stable configuration, then after addition at x ∈ Λn this is equivalent to:

η + δx −∆mx
η = ax(η).

Integrating this equation over µ yields:∫
(η + δx −∆mx

η)µ(dη) =

∫
ax(η)µ(dη)

⇒
∫

(δx −∆mx
η)µ(dη) = 0 (invariance of µ under ax)

⇒
∫
δxµ(dη) =

∫
∆mx

ηµ(dη)

⇒ ∆

∫
mx
ηµ(dη) = δx (linearity of the integral)

Which is equivalent to Eµ[mx
η(y)] = (

∫
mx
ηµ(dη))y = ∆−1

x,y.
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3 The Abelian Sandpile Model with Dissipative Sites

3.1 Toppling Matrix

In the previous section we analysed the classical Abelian sandpile model, for which the topping
matrix ∆ is given by minus the lattice Laplacian. In this case the model was critical. Our next
step will be to tweak ∆ such that we achieve non-criticality. It turns out that we can still use
our results from earlier given that our new toppling matrix satisfies the definition below

Definition 3.1 (general toppling matrices). The previous results hold for toppling matrix ∆ if

1.For all x, y ∈ Λn: ∆xx ≥ 2d, ∆xy ≤ 0 for x 6= y (18)

2.Symmetry: for all x, y ∈ Λn: ∆xy = ∆yx (19)

3.Dissipativity: for all x ∈ Λn:
∑
y

∆xy ≥ 0 (20)

4.Strict Dissipativity:
∑
x

∑
y

∆xy > 0 (21)

A toppling matrix is called irreducible if from every site x ∈ V there is a path x0 =
x, · · · , xn = y where for all i ∈ {1, · · · , n}, ∆xi−1xi < 0 and y is a dissipative site.

To obtain non-criticality we want to reduce the avalanche sizes such that the mean avalanche
cluster is finite whenever the grid size tends to infinity. Our approach is to introduce ”sinks”
or ”dissipative sites”. These are sites where an extra grain is allowed, so they can hold at
most 2d grains instead of just 2d − 1. However, when such a site topples it also loses 2d + 1
grains. In that case all 2d neighbors receive one grain and the extra grain just disappears. As a
consequence the number of grains on this site is not conserved. By reducing the total number
of grains in the system avalanches clusters will generally stagnate quicker. We will denote the
set of such dissipative sites on Zd by D. The perturbed toppling matrix is given below:

Definition 3.2 (Toppling matrix for a system with dissipative sites). The toppling matrix for
the finite box Λn with dissipative sites Dn = D ∩ Λn and Dc

n = Dc ∩ Λn is defined as:

∆Dn
x,y =


−1 for x, y ∈ Λn, x ∼ y

2d+ 1 for x = y, x ∈ Dn

2d for x = y,∈ x ∈ Dc
n

(22)

Before we can show the connection between criticality and random walks we need the following
characterization of criticality

Theorem 3.3. Consider a sandpile model on Λn with a set D ⊂ Zd of dissipative sites. Then
the model is non-critical if

a) For all x ∈ Zd:

lim sup
n→∞

∑
y∈Λn

Gn(x, y) <∞. (23)

The model is critical if

b) For all x ∈ Zd, limn→∞Gn(x, y) = G(x, y) is well-defined and there exists a dissipative
site z such that

11



∑
y∈Zd

G(z, y) =∞. (24)

This theorem, in combination with Dhar’s formula, shows that we can replace
∣∣CΛn(x, η)

∣∣ by∑
y∈Λn

mx
η(y) in the definition of criticality. In the case of non-criticality this is not so hard to

see. Namely, |CΛn(x, η)
∣∣ ≤∑y∈Λn

mx
η(y) since every site in the avalanche cluster has toppling

number one or higher. However, it remains to show that case b) in the theorem indeed implies
criticality according to definition 2.4. One can use theorem 6.1 b) in [4] to show this, but we
won’t do this here.

3.2 Associated Random Walk

In this section we will associate the Abelian sandpile model with dissipative sites to a trapped
random walk. The main motivation to do so is that we will find a, relatively convenient,
characterization of criticality in terms of this trapped random walk. These results, theorem
3.4 and 3.5, are adopted from the thesis of J. Zaat [11]. First we introduce the (not trapped)
random walk on Λn ∪ {∗} with increments Xi. ∗ is an additional site where the random walk
gets stuck after leaving Λn. The transition probability matrix Px,y is given by

Px,y =


1
2d

for x ∼ y and x, y ∈ Λn
2d−αΛn(x)

2d
for x ∈ Λn and y = ∗

1 for x = y = ∗
0 otherwise

(25)

Where αΛn(x) is the number of neighbors of site x that are in Λn . For such a random walk the
following theorem holds

Theorem 3.4. For the Abelian sandpile model extended with dissipation, with ∆ as in definition
3.2, the Green’s function is given by

G(x, y) =
1

2d
ERWx

[
τ∑
k=0

(
2d

2d+ 1

)lk(Dn)

I(Xk = y)

]
. (26)

Where the number of visits to Dn is given by:

lk(Dn) =
k∑
i=0

I(Xi ∈ Dn) (27)

and τ = inf{k > 0 : Xk = ∗}.

Here ERWx [·] denotes the expectation of a function of the random walk described above, starting
at site x.

Proof. To simplify the notation we call g(x, y) = ERWx

[
τ∑
k=0

(
2d

2d+1

)lk(Dn)

I(Xk = y)

]
. We claim

that ∆−1
x,y = 1

2d
g(x, y)

First we split out the contribution from time k = 0.
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g(x, y) = ERWx

[(
2d

2d+ 1

)I(X0∈Dn)(
I(X0 = y) +

τ∑
k=1

(
2d

2d+ 1

)∑k
i=1 I(Xi∈Dn)

I(Xk = y)

)]

=

(
2d

2d+ 1

)
δx,yI(x ∈ Dn) + δx,yI(x /∈ Dn)

+

(
2d

2d+ 1

)
I(x ∈ Dn)ERWx

[
τ∑
k=1

(
2d

2d+ 1

)∑k
i=1 I(Xi∈Dn)

I(Xk = y)

]

+ I(x /∈ Dn)ERWx

[
τ∑
k=1

(
2d

2d+ 1

)∑k
i=1 I(Xi∈Dn)

I(Xk = y)

]

=

(
2d

2d+ 1

)
δx,yI(x ∈ Dn) + δx,yI(x /∈ Dn)

+

(
2d

2d+ 1

)
I(x ∈ Dn)

∑
z∼y

−∆x,z

2d
g(z, y)

+ I(x /∈ Dn)
∑
z∼y

−∆x,z

2d
g(z, y)

We now multiply both sides by I(x ∈ Dn), and I(x /∈ Dn) to obtain

(2d+ 1)I(x ∈ Dn)g(x, y) = (2d)δx,yI(x ∈ Dn) + I(x ∈ Dn)
∑
z∼x

−∆x,yg(z, y)

and

(2d)I(x /∈ Dn)g(x, y) = (2d)δx,yI(x /∈ Dn) + I(x /∈ Dn)
∑
z∼x

−∆x,zg(z, y).

Adding up these two equations yields

[(2d)I(x /∈ Dn) + (2d+ 1)I(x ∈ Dn)]g(x, y) = (2d)δx,y +
∑
z∼y

−∆x,zg(z, y)

with the left side equal to ∆xxg(x, y).

This gives ∑
z∈Λn

∆x,zg(z, y)(2d)δx,y or ∆−1 = (2d)−1g.

We have now successfully associated the Green’s function, and hence the criticality of the sys-
tem, to a random walk. This random walk walks freely on the grid and only dies when it leaves
the finite lattice. Equation 26 shows that the existence of dissipative sites indeed influences the

criticality of the system. This happens due to the
(

2d
2d+1

)lk(Dn)
term. It is now quite plausible

that we can make the classical Abelian sandpile model non-critical by including dissipative
sites. If we, for example, consider a grid with only dissipative sites the system is definitely
non-critical. Indeed, in that case

13



∀x ∈ Zd :

lim sup
n→∞

∑
y∈Λn

G(x, y) = lim sup
n→∞

∑
y∈Λn

1

2d
ERWx

[ τ∑
k=0

( 2d

2d+ 1

)lk(Dn)

I(Xk = y)
]

≤ 1

2d

∞∑
k=0

( 2d

2d+ 1

)k
(28)

is a converging sum, so Theorem 3.3 gives non-criticality.

We see that Theorem 3.4 already makes for a helpful tool to show criticality. However, we
can find an even more convenient expression for the Green’s function. It turns out that the
expectation in (26) is equal to the expected number of visits to site y of a trapped random walk.
This trapped random walk is similar to the previous random walk, except now the dissipative
sites correspond to traps. Traps are sites on which the random walk has a chance to die (i.e.
go to the ∗ site). The transition probability matrix is this time given by

Px,y =



1
2d

for x ∼ y and x, y ∈ Λn
2d−αΛn(x)

2d
for x ∈ Λn \Dn and y = ∗

2d−αΛn(x)+1

2d+1
for x ∈ Λn ∩Dn and y = ∗

1 for x = y = ∗
0 otherwise

(29)

Theorem 3.5. For the Abelian sandpile model extended with dissipation, with ∆ as in definition
3.2, the Green’s function is given by

G(x, y) =
1

2d
ETRWx

[
τ∑
k=0

I(Xk = y)

]
. (30)

Proof. By conditioning on the first step we obtain

ETRWx

[
τ∑
k=0

I(Xk = y)

]
=
∑
z∈Λn

ETRWx

[
τ∑
k=0

I(Xk = y)|X1 = z

]
P(X1 = z|X0 = x) + δx,y.

Since the killing probability is 1/(2d+ 1) on traps

P(X1 = z|X0 = x) =

{
1

2d+1
for z ∼ x and x ∈ Dn

1
2d

for z ∼ x and x /∈ Dn

this means

ETRWx

[
τ∑
k=0

I(Xk = y)

]
= I(x ∈ Dn)

1

2d+ 1

∑
z∼x

ETRWx

[
τ∑
k=1

I(Xk = y)|X1 = z

]
(31)

+ I(x /∈ Dn)
1

2d

∑
z∼x

ETRWx

[
τ∑
k=1

I(Xk = y)|X1 = z

]
+ δx,y. (32)

we use that 1
2d+1

= 2d
2d+1
· 1

2d
to write

ETRWx

[
τ∑
k=0

I(Xk = y)

]
=

(
2d

2d+ 1

)I(x∈Dn)∑
z∼x

ETRWx

[
τ∑
k=1

I(Xk = y)|X1 = z

]
+ δx,y.
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Now we use the fact that the random walk is memoryless, meaning

ETRWx

[
τ∑
k=1

I(Xk = y)|X1 = z

]
= ETRWx

[
τ∑
k=0

I(Xk = y)

]
.

We obtain

ETRWx

[
τ∑
k=0

I(Xk = y)

]
=

(
2d

2d+ 1

)I(x∈Dn)
1

2d

∑
z∼x

ETRWx

[
τ∑
k=0

I(Xk = y)

]
+ δx,y.

We can now use our previous notation lk(Dn) =
∑k

i=0 I(Xi ∈ Dn)

If we iterate the process of conditioning on each step we end up with

ETRWx

[
τ∑
k=0

I(Xk = y)

]
= ERWx

[
τ∑
k=0

(
2d

2d+ 1

)lk(Dn)

I(Xk = y)

]
.

We can conclude using Theorem 3.4
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4 Survival Time of Trapped Random Walks

In the following section we consider several cases of trapped random walks. With the aid
of Theorem 3.5 we immediately see that the corresponding sandpile model is critical if the
expected survival time τ is infinite. Likewise, a finite survival time indicates non-criticality.
Indeed, when we sum G(x, y) = 1

2d
ETRWx

[∑τ
k=0 I(Xk = y)

]
over y ∈ Zd we find 1

2d
ETRWx (τ).

The characterization in Theorem 3.3 gives the relation between survival time and criticality.

4.1 Criticality in One Dimension

In this subsection we aim to develop an intuition for how traps should be distributed in one
dimension to have criticality. At this point one might wonder if the model can be non-critical if
we have only finitely many traps, or, the other way around, if the model can be critical if there
is an infinite amount of traps. The answer to the first question turns out to be no, for a finite
number of traps the model will always be critical. The answer to the second question however
is yes. We can indeed place infinitely many traps at different positions and still have an infi-
nite expected survival time for our random walk. We prove these claims in the next subsections.

4.1.1 Finitely Many Traps

For d = 1 we have limn→∞ Λn = Z. On the axis below we indicated the traps by xi, with index
i ∈ Z chosen zero for the closest trap right of (or at) the origin.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

x0 x1 x2x−1x−2x−3

One should realise that if ETRWx (τ) is infinite if and only if ETRW0 (τ) infinite. We can see this
by by the following argument. Define

A = ”the random walk walks straight from x to zero, surviving all traps” (33)

B = ”the random walk walks straight from zero to x, surviving all traps”. (34)

Then we use that the random walk is memoryless to see that

ETRWx (τ) = P{A}ETRWx (τ |A) + P{¬A}ETRWx (τ |¬A) ≥ P{A}[ETRW0 (τ) + |x|] (35)

ETRW0 (τ) = P{B}ETRW0 (τ |B) + P{¬B}ETRW0 (τ |¬B) ≥ P{B}[ETRWx (τ) + |x|]. (36)

Since both P{A} and P{B} are strictly larger than zero, we see that the starting position of
our random walk does not influence criticality. Indeed ETRWx (τ) = ∞ ⇔ ETRW0 (τ) = ∞ and
ETRWx (τ) < ∞ ⇔ ETRW0 (τ) < ∞. From now on we will only consider random walks starting
from zero and we will drop subscript x and superscript TRW .

Theorem 4.1. Let (Sk)k≥0 be a simple random walk on Z with traps D ⊂ Z. If |D| <∞ then
E(τ) =∞.

Proof. For any non-negative integer-valued random variable Y we have E(Y ) =
∑∞

n=1P{Y ≥
n} [9], hence

E(τ) =
∞∑
n=1

P{τ ≥ n} =
∞∑
n=1

ENT
[
p
∑n−1
k=0 I(Sk∈D)

]
.
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Here p = 2
3

is the probability that the random walk survives when hitting a trap. The super-
script NT , ”not trapped”, indicates that we are considering a random walk on a landscape
without any traps. Since |D| ≤ ∞ there must be a trap furthest right from the origin. Call this
trap xi and denote the statement A = (∀k ≤ |xi| : Sk < Sk+1)∧(∀k > |xi| : Sk > xi)∧(τ > |xi|).
Then, for n > |xi|, we find a lower bound for the terms in the previous sum

ENT
[
p
∑n−1
k=0 I(Sk∈D)

]
≥ ENT

[
p
∑n−1
k=0 I(Sk∈D)I(A)

]
=
(1

2

)xi+1 1√
n− |xi|

pi+1 > c
1√
n
.

Here c > 0 is some positive constant. The first factor is due to the random walk walking to
the right for xi + 1 steps and the third factor is for surviving i+ 1 traps walking past xi. The
second factor comes from the fact that a one dimensional simple random walk has probability
1√
t

to not revisit its starting point in t time steps. Since
∑∞

n=xi+1
c√
n

diverges, we can conclude

E(τ) =∞.

4.1.2 Symmetric Trap Distributions

Having shown that an infinite amount of traps is indispensable for non-criticality, we are now
interested in the distribution of these traps. It is intuitively clear that the traps should be
placed increasingly further apart to have a critical model. In that case the walk can move away
from the origin until the traps are so scarcely distributed that the walk almost never meets
them. Before going in more detail about how fast the density of these traps must decay we first
make an observation. Whenever the trap landscape is symmetrical around the origin, that is
xi = −x−i, the expected survival time of a unilateral random walk is equal to that of a bilateral
random walk. With a unilateral random walk we mean a walk which remains at one side of
the origin, like (Sk)k≥0 ≥ 0. A bilateral random walk is just the usual random walk which can
cross the origin.

Theorem 4.2. For a one dimensional simple random walk (Sk)k≥0 on a trap landscape with
traps xi = −x−i, i ∈ Z, we have

E[τ |∀k ≥ 0 : Sk ≥ 0] = E[τ ]. (37)

Proof. We first define

Ti = inf
{
k :

k∑
j=0

I(Sj = 0) = i
}

Let N+1 be the number of visits to the origin before getting killed. Then we have, assuming
a certain value for N = n

E[τ |N = n] = E[(T1 − T0) + (T2 − T1) + ...+ (τ − Tn)|N = n]

and

E[τ |(N = n)∧(∀k ≥ 0 : Sk ≥ 0)] = E[(T1−T0)+(T2−T1)+...+(τ−Tn)|(N = n)∧(∀k ≥ 0 : Sk ≥ 0)].

Note that T0 = 0 since the random walk starts from the origin and by the symmetry
requirement x0 = −x0 = 0. Due to the symmetry we have termwise equality

E[Ti − Ti−1|N = n] = E[Ti − Ti−1|(N = n) ∧ (∀k ≥ 0 : Sk ≥ 0)]

E[τ − Tn|N = n] = E[τ − Tn|(N = n) ∧ (∀k ≥ 0 : Sk ≥ 0)].
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Hence E[τ |(N = n)] = E[τ |(N = n) ∧ (∀k ≥ 0 : Sk ≥ 0)]. Now we only need

P{n = N} = P{n = N |∀k ≥ 0 : Sk ≥ 0)}.

In both the unilateral and the bilateral case N has geometric distribution with parameter
p = P{T1 ≥ τ}. Hence the probability that N = n is in both cases the same. This is enough
to conclude

E[τ ] =
∞∑
n=0

P{n = N}E[τ |(N = n)] =

∞∑
n=0

P{n = N |∀k ≥ 0 : Sk ≥ 0)}E[τ |(N = n) ∧ (∀k ≥ 0 : Sk ≥ 0)] =

E[τ |∀k ≥ 0 : Sk ≥ 0].

4.1.3 Quadratical Recursion of Interval Sizes

The main result of our research will be discussed next. We aim to understand how the distances
between the traps should increase such that we are on the borderline between a non-critical and
a critical model. It turns out that if we define the lengths of the intervals between succeeding
traps recursively as |xi−xi−1| = c|xi−1−xi−2|2, that the criticality depends on c. More precise,
we find an upper bound for c below which the walk is definitely non-critical and a lower bound
above which the walk is definitely critical. We start by giving the necessary definition which
we use to derive an important lemma. This lemma will allow us to find the upper bound for
non-criticality. After that we also give a (less complicated) proof for the lower bound. For
the remainder of this subsection we will work with unilateral random walks. However, we can
easily apply Theorem 4.2 to see that the results also hold when we take the symmetric bilateral
counterpart of any of the unilateral trap landscapes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x0 x1 x2 x3

I1 I2 I3

We consider a one dimensional simple random walk (Sk)k≥0 right of the origin, that is ∀k ≥
0 : sk ≥ 0 and we assume that S0 = 0. The walk moves through a landscape of traps which
are numbered from left to right starting from zero, more precise we use xi as notation for the
location of trap number i and define x0 ≡ 0. The traps now partition the non-negative integers
in intervals: Ii = {xi−1, xi−1 + 1, ..., xi − 2, xi − 1}. Let D = ∪∞i=0xi denote the set of trap
locations. For our purposes it is interesting to consider another random walk (ξn)n≥0 which is

embedded in (Sk)k≥0. For ki = inf{k ≥ 0 :
∑k

j=1 I(Sj ∈ D) = i} and k0 = 0, we define ξi = Ski
and ξ0 = 0. One can think of (ξn)n≥0 as the walk moving on the set of trap locations D visiting
the traps in the same order as (Sk)k≥0.

We are eventually interested the survival time τ of (Sk)k≥0. By partitioning the non-negative
integers in intervals Ii we can write the survival time as a sum τ =

∑N
i=1 Yi where N =∑∞

j=0 I(Sj ∈ D) and Yi = ki − ki−1. One can interpret Yi as the time between two hits and N
as the total number of hits before getting killed. In order to say something meaningful about Yi
we should know in which interval the walker is after hitting i− 1 traps. This depends entirely
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on (ξn)n≥0. We describe the first i−2 increments of (ξn)n≥0 by the vector ~κ = (κ1, κ2, ..., κi−2) ∈
{−1, 0, 1}i−2. If

ξi+1 = ξi then we have κi = 0

ξi+1 > ξi then we have κi = 1

ξi+1 < ξi then we have κi = −1.

We denote the statement ”(ξn)n≥0 walks according to ~κ” by A~κ. Note that if an instance of
(Sk)k≥0 follows a path in accordance with ~κ it hits i − 1 traps. Indeed, at k = 0 we have
S0 = 0 which we assumed to be a trap. After this first hit the random walk hits a trap for
every element of the vector ~κ. As a consequence the walk eventually ends up on its i−1th trap,
ξi−1. Remember that we are interested in Yi which is nothing more than the time until the
next hit from this point. Using basic facts about the one dimensional simple random walk we
can calculate the expectation of Yi based of length of the intervals left and right of ξi−1. In the
upcoming calculations we will assume that (Sk)k≥0 jumps right, ξi−1 < Ski−1+1, after following
~κ. Hence we define A+

~κ = (A~κ) ∧ (ξi−1 < Ski−1+1). Finally we remark that not every ~κ yields a
valid walk. This is due to our assumption that ∀k ≥ 0 : sk ≥ 0. We call the set of valid vectors
K.

Lemma 4.3. For traps distributed such that |Ii+1| = c|Ii|2, i ≥ 1, with c ≥ 1
|I1| we have

∀~κ ∈ K:

P{A~κ}E[Yi|A+
~κ ] ≤ (|I1|c)

(2

c

)l( 2

|I1|2c2

)j
P{A~1}E[Yi|A+

~1
]. (38)

Where ~1 = {1}i−2 and l, j denote the number of entries κx = 0 and κx = −1 respectively.

To understand the lemma above we observe how the quantity P{A~κ}E[Yi|A+
~κ ] changes upon

swapping an entry κx = 1 for a minus one or zero. We will see that if we start with
~κ = ~1 and alter the entries in increasing order (left to right) we obtain the factors in front
of the right hand side of (38). For the sake of clarity we first consider a concrete example.
Let ~κ = (1, 1, 0,−1, 1, 1, 1). In this case first two entries are left at a value of 1, but the
third and fourth entry are altered. We now swap out the fifth entry for a zero. We write
~κ5

0 = (1, 1, 0,−1, 0, 1, 1). The notation ~κxy is used for the vector ~κ with the xth entry set to y.
In this particular case we have

P{A~κ} =
1

|I1|
1

2|I2|

(
1− 1

2|I2|
− 1

2|I3|

) 1

2|I2|
1

2|I2|
1

2|I3|
1

2|I4|
(39)

and

P{A~κ5
0
} =

1

|I1|
1

2|I2|

(
1− 1

2|I2|
− 1

2|I3|

) 1

2|I2|

(
1− 1

2|I2|
− 1

2|I1|

) 1

2|I2|
1

2|I3|
. (40)

We will go through the factors in (39) one by one.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x0 x1 x2 x3

I1 I2 I3

The first jump of (Sk)k≥0 is always to the right since we require ∀k ≥ 0 : sk ≥ 0. Next we use
the well known fact that a simple random walk starting at a + 1 reaches b > a before a with
probability 1

b−a . We see that (Sk)k≥0 reaches x1 before x0, as required by κ1, with probability
1
|I1| . Hence the first factor 1

|I1| .

After reaching x1 the walk (Sk)k≥0 has to jump right since κ2 = 1. This happens with proba-
bility 1

2
. We now are in a similar situation as before, the walk is located at 4, one step right of

x1 and has to reach x2 before bumping into x1 again. This happens, by the same reasoning we
used for κ1, with probability 1

|I2| . We hence get a total factor 1
2|I2| due to κ2.

(Sk)k≥0 arrives at x2 next. This time κ3 requires the walk to hit x2 again before reaching either
x1 or x3. This happens with probability (1− 1

2|I2| −
1

2|I3|). Indeed, the walk can jump left and

then reach x1 before returning to x2 with probability 1
2|I2| or similarly jump right en reach x3

with probability 1
2|I3| .

At this point (Sk)k≥0 is still at x2. κ4 = −1, dictates (Sk)k≥0 to jump left, and reach x1 without
revisiting x2. Again we are in a situation very similar to what we had for κ1. The probability
is now 1

|I2| since this time (Sk)k≥0 should transverse interval I2, giving total factor 1
2|I2| .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x0 x1 x2 x3

I1 I2 I3

Now (Sk)k≥0 is at x1. The remaining entries κ5, κ6 and κ7 are all one, so (Sk)k≥0 will jump to
the right, reach x2 before returning to x1, jump right again, reach x3 before returning to x2

and finally reaching x4 in a similar fashion. This results in the last three factors 1
2|I2|

1
2|I3|

1
2|I4| in

(39).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x0 x1 x2 x3

I1 I2 I3

When we calculate P{A~κ5
0
}, we obviously find that the first four factors are the same, since the

first four entries of ~κ and ~κ5
0 are the same. However, the fifth entry of ~κ5

0 requires (ξn)n≥1 to
remain at x1. This means we have the factor (1− 1

2|I1| −
1

2|I2|) instead of 1
2|I2| in (40). The extra

”delay” at x1 also means that (Sk)k≥0 won’t transverse interval I4 in the end. Hence

P{A~κ5
0
} = 2|I4|

(
1− 1

2|I1|
− 1

2|I2|

)
· P{A~κ} ≤ 2|I4| · P{A~κ}. (41)

For the general case, where vector ~κ is obtained by altering entries κ1, κ2, ..., κx−1 in ~1, we can
formulate a similar inequality for ~κ and ~κx0 .
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P{A~κx0} = 2|If−1|
(

1− 1

2|Ic−1|
− 1

2|Ic|

)
· P{A~κ} ≤ 2|If−1| · P{A~κ}. (42)

Here If is the interval right of the last trap (Sk)k≥0 visits when walking in accordance to ~κ. In
the case of ~κ = (1, 1, 0,−1, 1, 1, 1) the walk ends up at x3, so If = I4 since I4 is the interval
right of x3. Ic is just an unknown interval, it depends on entries κ1, ..., κx−1. The factor 2|If |
comes from the delay we described earlier in the case ~κ = (1, 1, 0,−1, 1, 1, 1), which results in
the walk not crossing If−1 for ~κx0 . The factor (1− 1

2|Ic−1| −
1

2|Ic|) is the probability that (Sk)k≥0

hits a certain trap twice in a row, as is dictated by entry x of ~κx0 . Notice that this factor is
slightly different if the extra zero in ~κx0 requires (Sk)k≥0 to return to x0. Since we bound the
factor (1− 1

2|Ic−1| −
1

2|Ic|) by one, our inequality remains valid.

We eventualy want to compare P{A~κx0}E[Yi|A+
~κx0

] with P{A~κ}E[Yi|A+
~κ ]. We just studied P{A~κx0}

and P{A~κ}, so the next step is to compare the expectations. We use the well known fact that
a simple random walk starting at a < x̄ < b reaches either a or b at time T with

E[T ] = (x̄− a)(b− x̄) (43)

In the example ~κ = (1, 1, 0,−1, 1, 1, 1) leads (Sk)k≥0 to trap x4. Then A+
~κ implies that (Sk)k≥0

jumps between x4 and x5. Via (43) we now immediately see that E[ki−ki−1|A+
~κ ] = E[Yi|A+

~κ ] =
((x4 + 1)−x4)(x5− (x4 + 1)) + 1 = |I5|. The extra +1 is necessary to compensate for the jump
from x4 to x4+1. A walk according to ~κ5

0 ends up at trap x3. As a consequence E[Yi|A+
~κ5

0
] = |I4|.

In the general case this translates as E[Yi|A+
~κ ] = |If | and E[Yi|A+

~κx0
] = |If−1|. Hence

P{A~κx0}E[Yi|A+
~κx0

] ≤ 2|If−1| · P{A~κ} ·
|If−1|
|If |

· E[Yi|A+
~κ ] =

2

c
P{A~κ}E[Yi|A+

~κ ]. (44)

Here we used that |If | = c|If−1|2. The inequality above gives the factor (2
c
)l in (38). Indeed,

each time we swap out a one in ~1 for a zero we have to add the factor 2
c
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x0 x1 x2 x3

I1 I2 I3

Now we have an understanding of the influence of swapping a one for a zero in ~κ, we will reason
what happens when we replace a one by a minus one. Keep in mind that we change the entries
in ~1 from left to right. Because we alter ~1 this way we can assume that each time we change
an entry κx = 1 the entries with index y > x are κy = 1. For the moment we will assume
that the entry x in ~κx−1 is not the last entry, i.e. x 6= i − 2. We will first look at the example
~κ = (1, 1, 0,−1, 1, 1, 1) again. In this case

P{A~κ5
−1
} =

1

|I1|
1

2|I2|

(
1− 1

2|I2|
− 1

2|I3|

) 1

2|I2|
1

2|I1|
1

|I1|
1

2|I2|
. (45)

The first four factors are again the same as in (39). The fifth factor is 1
2|I1| since (ξn)n≥0 jumps

from x1 to x0 by the extra one in ~κ5
−1. The last two entries in ~κ5

−1 are one, so they make (ξn)n≥0
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jump forwards twice, from x0 to x1 and from x1 to x2. Therefore the last two factors are now
1
|I1|

1
2|I2| . For general ~κ, meeting the requirements from earlier, we have the similar result

P{A~κx−1
} ≤ 2|If−1|2|If−2|

2|Ic||Ic|
· P{A~κ} ≤

2

|I1|2
|If−1||If−2| · P{A~κ}. (46)

Just as in the case where we added a zero, we have that the extra minus one causes some form
of delay. Only now (ξn)n≥0 spends two jumps, one backward and one forwards, before jumping
only forward due to the remaining tail of ones in ~κx−1. Due to these two extra jumps (Sk)k≥0

strands two intervals earlier than without the perturbation. Hence the factor 2|If−1|2|If |.
(Sk)k≥0 also transverses a certain interval Ic two times more than in the unperturbed case,
giving rise to the 1

2|Ic||Ic| . One can easily verify that this is exactly what happens in the example

~κ = (1, 1, 0,−1, 1, 1, 1).

For ~κi−2
−1 the situation is slightly different. Because this time it is the last entry of ~κ we alter.

this means that |Ic| = |If−2| and that the random walk has to cross |Ic| only once. This means

P{A~κi−2
−1
} =
|If−1|
|If−2|

· P{A~κ}. (47)

The expectation E[Yi|A~κx−1
] is both for x = i − 2 and x 6= i − 2 equal to |If−2|, compared to

E[Yi|A~κ] = |If | for ~κ unaltered.

Using our upperbound (46) and E[Yi|A~κx−1
] = |If−2| we find

P{A~κx−1
}E[Yi|A+

~κx−1
] ≤ 2

|I1|2
|If−1||If−2| · P{A~κ} ·

|If−2|
|If |

· E[Yi|A+
~κ ] =

2

(|I1|c)2
P{A~κ}E[Yi|A+

~κ ]

(48)
for the scenario where x 6= i − 2. Of course we used the relation |Ii| = c|Ii−1|2 to cancel the
necessary interval lengths. When x = i− 2 we find the similar result

P{A~κi−2
−1
}E[Yi|A+

~κi−2
−1

] =
|If−1|
|If−2|

· P{A~κ} ·
|If−2|
|If |

· E[Yi|A+
~κ ] ≤ 1

|I1|c
P{A~κ}E[Yi|A+

~κ ]. (49)

Using inequalities (44) and (48) we now find the statement in Lemma 4.3. For every entry we
make zero, we obtain a factor 2

c
and for every entry we make minus one we obtain 1

(|I1|c)2 . If we

happen to make our last entry minus one however, we have to add a factor c|I1| to correct. By
our assumption c ≥ 1

|I1| we can add this factor without ruining our upper bound, also in the
case where we don’t change the last entry.

Theorem 4.4. For traps distributed such that |Ii+1| = c|Ii|2, with 1
|I1| ≤ c <

|I1|+
√
|I1|2−8

2|I1| and

|I1| ≥ 3, we have

E[τ ] <∞. (50)

Proof. The total lifetime of (Sk)k≥0 is given by τ =
∑N

i=1 Yi. We write the expectation as a
sum over the possible values of N .

E[τ ] = E

[
N∑
i=1

Yi

]
=
∞∑
n=1

[
P{N = n}

n∑
i=1

E[Yi|N = n]

]
.
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Next we expand the expectations E[Yi|N = n] in a sum over all allowed ~κ

E[τ ] =
∞∑
n=1

[
P{N = n}

n∑
i=1

∑
~κ∈K

P{A~κ}E[Yi|(N = n) ∧ (A~κ)]

]

≤
∞∑
n=1

[
P{N = n}

n∑
i=1

∑
~κ∈K

P{A~κ}E[Yi|A+
~κ ]

]

≤
∞∑
n=1

[
P{N = n}

n∑
i=1

i∑
l=0

l∑
j=0

c|I1|
(
i

l

)(
l

j

)(2

c

)l−j( 2

|I1|2c2

)j
P{A~1}E[Yi|A+

~1
]

]
.

For the last inequality we filled in our upper bound from Lemma 4.3 and summed over all
configurations of ~κ. Notice that not all terms represent allowed configurations. This is not a
problem for the argument since all terms are positive. We can calculate the sums over l and j
exactly using the binomial theorem

i∑
l=0

l∑
j=0

(
i

l

)(
l

j

)(2

c

)l−j( 2

|I1|2c2

)j
=

i∑
l=0

(
i

l

)(2

c

)l l∑
j=0

(
l

j

)( c
2

)j( 2

|I1|2c2

)j
=

i∑
l=0

(
i

l

)(2

c

)l(
1 +

1

|I1|2c

)l
=
(

1 +
2

c
+

2

|I1|2c2

)i
.

Substituting this back in the original inequality we get

E[τ ] ≤ |I1|c
∞∑
n=1

[
P{N = n}

n∑
i=1

P{A~1}E[Yi|A+
~1

]
(

1 +
2

c
+

2

|I1|2c2

)i]
.

Since the walk has has chance 1
3

to be killed on each trap, we have P{N = n} = 1
3
(2

3
)n−1.

We can also easily calculate P{A~1}E[Yi|A+
~1

] = |Ii|∏i−1
j=1 2|Ij |

= |I1| c
i−1

2i−1 as is shown via induction

below.

For i = 1 we have |I1|
1

= |I1|. Assume |Ik|∏k−1
j=1 |Ij |

= |I1|ck−1 then

|Ik+1|
k∏
j=1

|Ij|
=

c|Ik|2
k−1∏
j=1

|Ij| · |Ik|
= c

|Ik|
k−1∏
j=1

|Ij|
= |I1|ck.

Hence by induction we have shown |Ii|∏i−1
j=1 |Ij |

= |I1|ci−1.

As a consequence the right hand side converges whenever ( c
2
)i(1 + 2

c
+ 2
|I1|2c2 )i < (3

2
)i, or in

another form |I1|2c2 − |I1|2c+ 2 < 0. This yields
|I1|−
√
|I1|2−8

2|I1| < c <
|I1|+
√
|I1|2−8

2|I1| .

Remark 4.5. On first sight it might seem that |I1| plays an important role for the bounds on c.
For example |I1| = 1 or |I1| = 2 give non-real solutions in the bounds derived above. However
as long as c ≥ 1

|I1| the traps become spaced further apart if |I1| grows. Therefore we would
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expect, for a certain value of c, that the survival time increases with |I1|. If this intuition turns

out to be correct, we can just replace
|I1|+
√
|I1|2−8

2|I1| by one (taking the limit |I1| → ∞). Also note

that
|I1|−
√
|I1|2−8

2|I1| < 1
|I1| for |I1| ≥ 3. Since we need c > 1

|I1| anyway to have increasing interval

lengths, the lower bound
|I1|−
√
|I1|2−8

2|I1| < c can be safely replaced by 1
|I1| < c as is done in the

statement of the theorem.

We can also find, using a similar approach as above, a lower bound for c above which the model
is certainly critical. This is in fact an easier task than finding the regime where the model is
definitely non-critical since we can bound the expectation of Yi from below by the contribution
(to this expectation) of a single class of walks, in this case A~1. We can easily identify for which
c this contribution becomes infinite, and we hence have criticality. This is exactly what is done
in the proof below.

Theorem 4.6. For traps distributed such that |Ii+1| = c|Ii|2 with c > 3 we have

E[τ ] =∞ (51)

Proof. As in the proof for non-criticality we write τ =
∑N

i=1 Yi. The expectation is written
again as a sum over the possible values of N .

E[τ ] = E

[
N∑
i=1

Yi

]
=
∞∑
n=1

[
P{N = n}

n∑
i=1

E[Yi|N = n]

]
.

We use the contribution of instances walking according to A+
~1

to bound the expectations
E[Yi|N = n] from below.

E[Yi|N = n] ≥ E[Yi · I(A+
~1

)|N = n] = P{A+
~1
}E[Yi|A+

~1
]

Notice that it is easy to calculate both P{A+
~1
} and E[Yi|A+

~1
]

P{A+
~1
} =

i−2∏
j=1

1

2|Ij|

E[Yi|A+
~1

] = |Ii−1|

This yields

E[τ ] ≥
∞∑
n=1

[
P{N = n}

n∑
i=1

|Ii−1|∏i−2
j=1 2|Ij|

]
.

Since P{N = n} = (2
3
)n−1(1

3
) we must have

∑n
i=1

|Ii−1|∏i−2
j=1 2|Ij |

& (3
2
)n to obtain divergence.

This is the case when |Ii|∏i−1
j=1 2|Ij |

≥ (3
2
)i or |Ii|∏i−1

j=1 |Ij |
≥ 3i. As a consequence

|Ii|
|Ii−1|

≥
3i

i−1∏
j=1

|Ij|

3i−1
i−2∏
j=1

|Ij|
= 3|Ii−1|

or

|Ii| ≥ 3|Ii−1|2

This concludes the proof.
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Remark 4.7. For traps distributed with quadratically increasing intervals, |Ii+1| = c|Ii|2, we
have that function Φ(i) = |Ii| is given by

|I1| = |I1| (52)

|I2| = c|I1|2

|I3| = c · (c|I1|2)2 = c3|I1|4

|I4| = c · (c3|I1|4)2 = c7|I1|8

|I5| = c · (c7|I1|8)2 = c15|I1|16

...

|Ii| = c2i−1−1|I1|2
i−1

=
1

c

√
c|I1|

2i

For |I1| = 4 and c = 1
2
<
|I1|+
√
|I1|2−8

2|I1| = 4+2
√

2
8

we have Φ(i) = 22i−1+1, which is an example

of a trap distribution for which the model is non-critical. For |I1| = 2 and c = 4 > 3 we find
Φ(i) = 23·2i−1−2, this trap distribution gives criticality.

4.2 Criticality in Higher Dimensions

In dimensions d = 2 and higher the traps do not generally partition the grid in disjoint areas
in a way similar to how this happened in the one dimensional case. Hence the results we found
are not necessarily easy to extend to higher dimensions. Furthermore in dimensions d = 3 and
higher the simple random walk is known to be transient, while for d = 1 or d = 2 it is recurrent
[9], meaning that

P~x{∃k > 0 : Sk = ~x} = 1 for d = 1, 2 (53)

P~x{∃k > 0 : Sk = ~x} < 1 for d ≥ 3. (54)

Here the subscript P~x indicates that S0 = ~x. We are not taking traps into account yet, hence we
should interpret this result as follows. In one and two dimensions we know for sure that once the
random walk leaves a certain site ~x it will return at some later time. We can even say that the
random walk will visit every site infinitely often. Indeed, we can always walk from ~x to a certain
site ~y with some probability 0 < p < 1. Since we can visit ~y with non-zero probability infinitely
often (every time the walk hits ~x), we will certainly visit it at some point. In dimensions three
and higher we don’t have this property, there we have in fact a non-zero probability that the
random walk never visits its starting point again. This implies that the walk will move towards
infinity over time, in the sense that ∀n ≥ 0 : limk→∞P{|Sk| > n} = 1. One can easily see this
by considering a closed ball with radius n. Since there are finitely many sites located inside the
ball, the random walk should leave the ball at some point. If it were to keep returning there
would be a minimum probability p that it would reach its starting point via some path inside
the ball. Hence the walk would visit its starting point infinitely often, which is by definition not
the case. This transient property for d ≥ 3 allows the random walk to avoid certain sites. As a
consequence it is possible to distribute the traps so scarce that the walk avoids all of them with
non-zero probability. This would instantly yield an infinite expectation of the survival time.
This ”easy” strategy to find trap landscapes leading to criticality is discussed below. After
that we propose a way to arrange the traps in spherical shells around the origin such that the
random walk is forced to hit the traps, even in higher dimensions, but is still critical.
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4.2.1 Randomly Placed Traps

In [10] the following problem is analysed. For d ≥ 3 let p = (px)x∈Zd b a collection of numbers
in the interval [0, 1) satisfying

lim
||x||→∞

px = 0. (55)

Site x is a trap with probability px, independent of all other sites. We want to find necessary
and sufficient conditions on p such that the walk never hits a trap and hence survives forever.
In [10] F. den Hollander, M.V. Menshikov and S.E.Volkov distinguish two different scenarios.
In the first scenario site x is a trap forever with probability px. In the second scenario a site x
changes it status every time step. The probability to become a trap at a certain time step is
then px. These scenarios are also commonly referred to as the ”quenched” and the ”annealed”
problem. For us the quenched problem is most interesting, because of its correspondence to the
Abelian sandpile model. The most important result in the article by F. den Hollander, M.V.
Menshikov and S.E.Volkov is stated below.

Theorem 4.8. For a simple random walk on Zd, with d ≥ 3, we have
∀x ∈ Zd : π(x) = 1, if px ≥ α/||x||2 for large ||x|| and some α > 0.
∀x ∈ Zd : π(x) < 1, if px ≤ p(||x||), with r → p(r) non-increasing and

∞∫
0

rp(r)dr <∞. (56)

Here π(x) = P{∃k ≥ 0 : Sk ∈ D|X0 = x} is the probability of hitting a trap at some point
starting from x. For every two sites x and y there is non-zero probability that the traps are
such that one can walk from x to y without being trapped. As a consequence we either have
π(x) = 1 for all x or π(x) < 1 for all x. The proof of this theorem relies on some results of
potential theory and is covered in full detail in [10].

If we assume px to decay with ||x|| according to a power law px = α
||x||c , p0 = 0 we find for any

0 < α < 1 and c ≤ 2 that π(x) = 1. This means that the walk will hit a trap eventually with
absolute certainty. However, this does not mean that the walk is non-critical, in dimensions
one and two the walk also hits the traps (if there are any) with absolute certainty, but this
doesn’t a priori mean that the expected survival time is finite. For c > 2, we have px ≤ p(||x||)
with p(r) = α

rc
such that

∞∫
0

rp(r)dr =

∞∫
0

α

rc−1
dr =

α

2− c
<∞. (57)

In this case the walk has non-zero probability to avoid all traps. Trivially this gives an infinite
expectation for the survival time and hence criticality.

Remark 4.9. Note that at this point it is unclear how many traps px = α
||x||c , p0 = 0 gives.

If there is a non-zero probability that there are only finitely many traps this result is not very
impressive. However, this is not the case. We can use the Borel-Cantelli lemma, which states
that if the sum of the probabilities of a series of events is finite, then these events cannot occur
simultaniously with non-zero probability. The partial converse of this is also true. If the events
are independent and the sum of their probabilities diverges, then infinitely many of these events
will occur with probability one. Suppose that px = α

||x||c . The events we will consider are of the

form {site x is a trap}. Then we can find values for c such that
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∑
x∈Zd

1

||x||c
=∞. (58)

Hence infinitely many sites will be traps.

4.2.2 Traps on Spherical Shells

Now we have an idea of how the traps should be distributed in order for the random walk to
avoid them all with non-zero probability, we are interested in higher dimensional cases where
the walk is forced to hit some traps on its way to infinity. Obviously spherical shells Sr with
radius r > 1 around the origin are unavoidable when moving towards infinity. We define these
as follows

x

y

r = 4

x ∈ Sr ⊂ Zd ⇔ r − 1 < ||x|| ≤ r. (59)

The question is now if we can place infinitely many of these shells with inreasing radii and
conserve the criticality of the random walk. It turns out this is indeed possible, as we will
demonstrate next. We write the survival time as we did in the proof of Theorem 4.1

E(τ) =
∞∑
n=1

P{τ ≥ n} =
∞∑
n=1

ENT
[
p
∑n−1
k=0 I(Sk∈D)

]
.

The p in this expression was the probability of survival on a trap and has value p = 2d
2d+1

. Notice

that the quantity
∑n−1

k=0 I(Sk ∈ D) is nothing more than the number of traps hit in the first n
steps. We assume that the walk follows a certain strategy. First it only walks in one direction,
say left, until it passes the point ||Sk|| ≥ γ(n) = 1

2
log2d(n). We define the shells to be placed

such that there is at most one shell Sr with γ(n) ≤ r ≤ n. Now our strategy continues by first
hitting Sr before returning to γ(n). After the walk hits Sr it moves on to radius n without
visiting Sr again. This strategy is summarized in the statement
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An = (∀k ≤ γ(n) : Sk+1 = Sk + ê1) ∧ (Θγ(n) > ΘR(1)) ∧ (ΘR(2) > Θn) ∧ (τ ≥ n), (60)

with

Θγ(n) = inf{k > γ(n) : ||Sk|| < γ(n)} (61)

ΘR(1) = inf{k > γ(n) : Sk ∈ Sr}
ΘR(2) = inf{k > ΘR(1) : Sk ∈ Sr}
Θn = inf{k > γ(n) : ||Sk|| > n}.

Where ê1 is just a basis vector in the standard basis of the grid. When we say we follow this
strategy, we mean that only the contribution of instances of the random walk in accordance to
An are taken into account. This give

ENT
[
p
∑n−1
k=0 I(Sk∈D)

]
≥ ENT

[
p
∑n−1
k=0 I(Sk∈D) · I(An)

]
(62)

=
( 1

2d

)γ(n)

· P{Θγ(n) > ΘR(1)} · P{ΘR(2) > Θn} · p
∑r
k=0 I(k·e1∈D).

Our goal is now to bound this inequality from below by something of order 1
n
, such that E(τ)

diverges. We can easily see that ( 1
2d

)γ(n) = 1√
n
. The factor p

∑r
k=0 I(k·ê1∈D) will be almost constant

in comparison to the other terms, so we can ignore it. This is due to the fact that we assume
rapidly increasing differences in the radii of successive shells by requiring only one shell between
γ(n) and n. The only terms we still have to deal with are P{Θγ(n) > ΘR(1)} and P{ΘR(2) > Θn}.
For this we use a result from [5].

Theorem 4.10. Suppose {B(t) : t ≥ 0} is a Brownian motion in dimension d ≥ 1 started in

x ∈ A := x ∈ Rd : r ≤ ||x|| ≤ R (63)

inside an annulus A with radii 0 < r < R <∞. Then,

Px{TR > Tr} =



R−||x||
R−r if d = 1

logR−log||x||
logR−log r if d = 2

R2−d−||x||2−d
R2−d−r2−d if d ≥ 3

(64)

Where Ta for 0 < a ∈ R is defined as

Ta = inf{t > 0 : ||B(t)|| = a}. (65)

This theorem is stated for Brownian motion {B(t) : t ≥ 0}, which is a continuous time stochastic
process satisfying certain properties. The exact definition won’t be discussed here. It turns out
that for large n the behaviour of the simple random walk and Brownian motion are similar. As
a consequence we can also use Theorem 4.10 with

Tr = inf{k > 0 : ||ξk|| < r} (66)

and
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TR = inf{k > 0 : ||ξk|| > R}, (67)

where (ξk)k≥0 is a simple random walk starting at x. We can state that

P{Θγ(n) > ΘR(1)} = 1− P{Θγ(n) < ΘR(1)} = 1− Pγ(n)+1{Tγ(n) < Tr} (68)

and

P{ΘR(2) > Θn} = 1− P{ΘR(2) < Θn} = 1− Pr+1{Tr < Tn}. (69)

Using Theorem 4.10 it is easy to verify that

1− Pγ(n)+1{Tγ(n) < Tr} > 1− Pγ(n)+1{Tγ(n) < Tn} (70)

and

1− Pr+1{Tr < Tn} > 1− Pγ(n)+1{Tγ(n) < Tn}. (71)

Therefore we try to bound 1−Pγ(n)+1{Tγ(n) < Tn} instead of the original probabilities. In the
case d = 2 we find for large n

1− P(γ(n)+1)ê1{Tγ(n) < Tn} = 1− log n− log (γ(n) + 1)

log n− log γ(n)
(72)

=
log (γ(n) + 1)− log γ(n)

log n− log γ(n)

=
log
(

1 + 1
γ(n)

)
log
(

n
γ(n)

) .

Notice that for large n, log (1 + γ(n)−1) can be approximated by γ(n)−1 since log (1 + ε) ≈ ε
for small ε. Hence

1− P(γ(n)+1)ê1{Tγ(n) < Tn} =
log
(

1 + 1
γ(n)

)
log
(

n
γ(n)

) (73)

≈ γ(n)−1

log (n)− log (γ(n)−1)

≥ γ(n)−1

log (n)

=
2log (2d)

log (n)2
≥ 1

4
√
n
.

For the case d = 3 we have the similar situation

1− P(γ(n)+1)ê1{Tγ(n) < Tn} = 1− n2−d − (γ(n) + 1)2−d

n2−d − γ(n)2−d (74)

=
(γ(n) + 1)2−d − γ(n)2−d

n2−d − γ(n)2−d

≥ γ(n)2−d − (γ(n) + 1)2−d

γ(n)2−d

= 1−
(γ(n) + 1

γ(n)

)2−d
≥ 1

4
√
n
.
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We can obtain
(
γ(n)+1
γ(n)

)2−d
≈ 1 − d−2

γ(n)
for large n via a Taylor approximation. Indeed, for ε

small and a > 0 we have (1 + ε)−a ≈ 1− aε. As a consequence

1− P(γ(n)+1)ê1{Tγ(n) < Tn} = 1−
(γ(n) + 1

γ(n)

)2−d
≥ 1

4
√
n

(75)

≈ 1− (1− d− 2

γ(n)
)

=
d− 2

γ(n)
) ≥ 1

4
√
n
.

We can now bound (62) such that

ENT
[
p
∑n−1
k=0 I(Sk∈D)

]
≥ 1

n
(76)

Giving the divergence of E(τ). Now we have shown that our strategy gives criticality. However,
it is not directly clear how these shells should be spaced. We derived the above under the
assumption that there is at most one shell with radius between γ(n) and n. This implies that
for a shell with radius r, the previous shell should have radius γ(r). Suppose the location of
radii of the traps are given by f(x), x being the shell number counted from the origin. Let g
be the inverse of f . Then we can express our assumption as

f(g(γ(n)) + 1) = n (77)

To find the corresponding series of shells we substitute x = γ(n) and y = g(x). Then

f(y + 1) = n = (2d)2x = (4d2)f(y). (78)

This gives a recursive formula. If we assume f(0) = 0 we obtain the following radii

f(0) = 0 (79)

f(1) = (4d2)f(0) = 1

f(2) = (4d2)f(1) = (4d2)

f(3) = (4d2)f(2) = (4d2)4d2

f(4) = (4d2)f(3) = (4d2)(4d2)4d2

...

This gives a tower exponential of increasing length, which is an extremely fast growing function.
Since we used very rough bounds to derive these traps, one can likely place the shells a lot
denser and still conserve criticality. However, so far this result can be regarded as a proof of
concept, showing that it is indeed possible to construct infinitely many unavoidable structures
and meanwhile maintaining criticality.
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5 Avalanche Size Distribution via Simulation

In chapter three we defined the Abelian sandpile model to be critical whenever the first moment
of the avalanche size is infinite. After that we used Theorem 3.3 to express criticality in terms of
the Green’s function G(x, y) = Eµ[mx

η(y)]. This theorem essentially stated that the avalanche
size can be replaced by the total number of topplings in the definition of criticality. This
alternative definition turned out to be very convenient, because of the intimate link between
the Green’s function and a simple random walk. It is however not at all clear at this point how
similar the distribution of the survival time and the avalanche size really are. To investigate
this we wrote a C program to simulate the Abelian sandpile model with randomly placed
dissipative sites. Via these simulations we estimate the distribution of the avalanche size and
compare these to a stretched exponential. A stretched exponential is a function describing the
survival time of a simple random walk in a field of randomly placed traps, as is known from
arguments and simulations by for example P. Grassberger and I. Procaccia [3].

5.1 Stretched Exponential in Two Dimensions

Before we go further into the simulations we give an explanation of how a stretched exponen-
tials arise as the distribution function of τ , the survival time of a simple random walk. This
derivation is meant to give some insight but is certainly not totally rigorous.

We consider a simple random walk (St)t ≥ 0 on a two dimensional grid with traps at D =
{~r1, ~r2, ...}. The walk has probability Uo to get killed when hitting a trap. We define the
probability that the random walk is at position ~r ∈ Z2 as

W (~r, t) = P0{St = ~r}. (80)

We can easily find an expression for W (~r, t+ 1) as the walk leaps to each of its neighbors with
probability 1

4
.

W (~r, t+1) =
1

4
[W (~r+ ê1, t)+W (~r− ê1, t)+W (~r+ ê2, t)+W (~r− ê2, t))]−

∑
n

U0δ(~r−~rn) (81)

Of course the last term is due to the traps. We subtract W (~r, k) from both sides and write this
in the continuum limit.

W (~r, t+ 1)−W (~r, t) ≈ ∂W

∂t
(~r, t) (82)

and

1

4
[W (~r + ê1, t) +W (~r − ê1, t) +W (~r + ê2, t) +W (~r − ê2, t))]−W (~r, t) ≈ 1

4
∇2W (~r, t). (83)

We obtain a diffusion equation

∂W

∂t
=

1

4
∇2W −

∑
n

U0δ(~r − ~rn). (84)

We could now solve this equation using a mean field approximation, that is
∑

n U0δ(~r−~rn) = Ū0

with Ū0 a constant. This would lead to solutions such that P{τ > t} =
∑

~r∈Z2 W (~r, t) ∝ e−ct

with c some positive constant. However, at large t the distribution is dominated by the situation
where there are only very little traps near to the origin, where the random walk starts. These
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instances of the field are not well described by the mean field approximation, in which the traps
are distributed homogeneously. To model this we assume that (St)t≥0 starts of in a circular
area with radius R free of traps. We will refer to such areas as a ”lakes”. Instead of the normal
exponential we will now find a stretched exponential for P{τ > t}. This is a function of the
form

e−αt
β

with α > 0 and 0 < β < 1. (85)

To find the probability that (St)t≥0 is still in the lake at a certain point in time we solve (84)
with boundary condition W (~r, t) = 0 for ||~r|| = R. This can be done via seperation of variables
W (~r, t) = Φ(~r)Θ(t). The resulting ordinary differential equations are

Θ̇(t) = λΘ(t) (86)

and

∇2Φ(~r) =
d2Φ(r)

dr2
+

1

r

dΦ(r)

dr
= 4λΦ(r). (87)

Here λ is the separation constant. Since we have a circular lake we can assume Φ(~r) to depend
only on r = ||~r||. The next step is to solve the spacial equation with boundary condition
Φ(R) = 0. This is not such a difficult task since (87) is very similar to the Bessel equation

d2J0(x)

dx2
+

1

x

dJ0(x)

dx
+ J0 = 0. (88)

Hence the solutions are of the form Φ(r) = J0(kr) with k such that λ = −4k2. Notice that for
our case we need Φ(0) to be non-zero since the walk starts from the origin. As a consequence the
solution should be a Bessel function of order zero. Keep in mind that the boundary condition
dictates Φ(R) = J0(kR) = 0. This gives a series of values for k. However, over time the
probability W (t, ~r) is dominated by the solutions with maximal λ. This is due to temporal
part Θ(t) = eλt following from (87). As a consequence we want k to be minimal. The first zero
of J0(kminR) occurs at kminR = µ ≈ 2.4, hence kmin = µ

R
. We can state that

P{TR > t} =
∑
~r∈Z2

W (~r, t) =
∑
~r∈Z2

Φ(~r)Θ(t) ∝ e−
µ2t

4R2 , (89)

with TR = inf{t : St > R}. Now we have the probability that the walk survives in the lake for
a certain period of time. However, this is not yet an accurate approximation for the distribution
of the lifetime, since we should also consider the probability that a lake of radius R forms. This
is approximately

P{r = R} ≈ (1− C)πR
2

=
(

1− CπR2

πR2

)πR2

≈ e−CπR
2

, (90)

with C the probability that a site is a trap. For the last approximation we assumed large values
of R. We can now write down the our approximation for the survival probability

P{τ > t} =

∫ ∞
0

e−xe−
αt
x dx. (91)

Here we made substitutions x = πCR2 and α = πµ2C
4

. For this integral we can apply a saddle
point approximation. This eventually yields the stretched exponential

P{τ > t} =

∫ ∞
0

e−xe−
αt
x dx = e−2

√
αt. (92)
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5.2 Simulation

In [3] Grassberger and Procaccia argue that a random walk in d dimensions always has a
stretched exponential distribution for its survival time. They state that for a d dimensional
random walk the stretching exponent is β = d

d+2
, which is consistent with the case d = 2

explained above. We are interested in to what extent the avalanche size distribution is similar
to a stretched exponential. Our strategy is to simulate the sandpile model via a computer
program in the C language.

We first initialise a large grid where each site has a height between zero and 2d− 1. Then we
change each site into a trap with probability p. This is all done via the rand() function in the
stdlib.h header. After the initialisation of the grid we add one to the height of a random site
and topple if necessary. This happens according to the rules discussed in chapter two and three.
If we indeed had to topple we check if neighboring sites are still stable and process them similar
to the original site. This gives a recursive algorithm, which is generally not so fast. However,
in this case we avoid checking an unnecessary amount of sites as we would if we were to loop
through all sites when toppling. To account for the grains falling of the edge we don’t process
the sites at the border of the grid, so they can’t topple and bring back the fallen sandgrains
into the system. Along the toppling process we track which sites have toppled at least once,
giving us the avalanche size. At this point we performed one iteration. We repeat this process
until we have sufficiently many avalanche sizes to estimate the true distribution.

Remark 5.1. One might notice that this is not necessarily the same as dropping a sandgrain on
one site for different recurrent configurations µ. However, since we drop a grain every iteration,
the Markov chain will get stuck in R after a certain time. Since each grain is dropped at a
different site we have an equivalent situation to where we drop on a single site and change the
configuration every time. Since the traps are placed randomly they shouldn’t show any kind of
pattern, we can assume the situation is similar to when we would choose new traps every single
iteration.

33



5.3 Results

The classical sandpile model without any traps should be critical, and hence decay as a power
law rather than an exponential. Before discussing the stretched exponential behaviour of the
model with traps, we check if this is the case. To uncover this behaviour we plot the points
(ln t, ln N(t)), since

N(t) = at−c (93)

⇒ ln N(t) = ln a− cln t.

Figure 1: Classical and trapped estimated distributions for d = 2

As seen in Figure 1, the classical curve does follow a straight line, as expected. From [1] we
know that the slope of this line, the exponent in the powerlaw, should have a value c = 1.0.
The value we found is 1.09±0.01, so the model seems to behave as it should in the classical case.

Below we discuss the results for instances of the sandpile model with randomly placed traps in
two and three dimensions. In both cases, the probability to be dissipative is 0.1 for each site,
If the distribution in the trapped case were to follow stretched exponentials then the points
(tβ, ln N(t)) should be on a straight line

N(t) = e−αt
β

(94)

⇒ ln N(t) = −αtβ.

In Figure 2 the cases d = 2 and d = 3 are shown in this fashion. To make these plots we
assumed the theoretical values βd=2 = 0.5 and βd=2 = 0.6.
In both cases, especially for d = 3 the estimated distributions seemingly follow a straight line,
as they would for a stretched exponential with stretch exponent β = d

d+2
. However the results

are quite wide spread for the larger avalanche sizes. This makes it difficult to judge if they
really follow a straight line, or if they slightly curve. This chaotic behaviour can be reduced
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(a) d = 2 (b) d = 3

Figure 2: The estimated distributions N(t) of the avalanche sizes plotted as (tβ, lnN(t)).

by taking taking more data points into account. This can be achieved by either running more
iterations per simulation or by averaging the outcomes of several simulations. The latter option
has the advantage that one can easily run multiple instances of the same program on different
cores, while performing more iterations per simulations would require the parallelization of the
program. Since parallelization is rather difficult for the sandpile model we choose to average
the results. For the plots above we used 200 simulations of each 107 iterations.

To obtain an empirical estimate of the stretch exponent we plot the points (ln t, ln(−ln N(t))).
This should give a straight line with slope β, since

N(t) = e−αt
β

(95)

⇒ ln N(t) = −αtβ.
⇒ ln (−ln N(t)) = ln (α) + β ln t.

Figure 3 shows the corresponding plots for the same simulations as in Figure 2.

(a) d = 2 (b) d=3

Figure 3: The estimated distributions N(t) of the avalanche sizes plotted as (ln t, ln(−ln N(t))).

The majority of the data points are now mapped very close to each other. This makes it
more difficult to identify the linear behaviour we are after. Nonetheless the results seem to
be compatible with a stretched exponential distribution. When we try to fit a line to these
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graphs we find βd=2 = 0.61 ± 0.01 and βd=3 = 0.38 ± 0.01. Both of these results are quite far
from the values we get from β = d

d+2
. This could be due to an actual difference in distribution

between the survival time of the random walk and the avalanche size. Any random variable with
stretched exponential distribution has finite expectation. Since we found two stretch exponents
between one and zero, we have sandpile models which should be critical. This is consistent with
the finite expected survival time of the corresponding walks. However, intuitively we would
expect βd=2 and βd=3 to be a lot closer to the stretch exponents for the random walks. The
fact that βd=2 > 0.5 while βd=3 < 0.6 is also suspicious. There are several reasons why the
exponents we found might differ from those of the random walk. The first of which being that
we used finite grids in our simulation. As we saw in Figure 1 the grid size might influence the
results if not large enough. Especially in the case d = 3 we choose a grid with rather small
dimensions to combat the rapidly increasing volume. While the volume of the grid remains
just as large as in the two dimensional case, the distance to border of the grid is a lot smaller
for most points. This might explain the relatively larger difference for d = 3. Another reason
that these results might not be accurate is a shortage of data points. Even after averaging 200
results the graphs above show a bad statistic for the larger avalanche sizes, making it difficult
clearly recognise linear behaviour. However, since we don’t have any conclusive evidence that
the results we found are actually wrong, we can only conclude that further research is needed.
To obtain truly unambiguous results one could try to take a more serious approach, for example
by employing a computer cluster to run more or parallelized instances of the code.
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