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ABSTRACT: We observe that the asymmetric transmission (AT)
through photonic systems with a resonant chiral response is
strongly related to the far-field properties of eigenmodes of the
system. This understanding can be used to predict the AT for any
resonant system from its complex eigenmodes. We find that the
resonant chiral phenomenon of AT is related to, and is bounded
by, the nonresonant scattering properties of the system. Using the
principle of reciprocity, we determine a fundamental limit to the
maximum AT possible for a single mode in any chiral resonator.
We propose and follow a design route for a highly chiral dielectric
photonic crystal structure that reaches this fundamental limit for AT.
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A strong chiral response is essential for realizing devices that
can manipulate the polarization of light. Natural chiral

materials rely on bulk properties including birefringence and
result in thick and bulky devices for polarization control. Much
stronger chirality can be realized by exploiting the interaction of
light with artificial nanostructures.1−3 Such interactions are
observed to be enhanced through local resonances such as
those supported by plasmonic antennas,4,5 periodically
structured dielectric waveguides,6 etc. Arrangements of
subwavelength-sized optical scatterers, called metasurfaces, are
known for their exotic light-steering properties and polar-
ization-dependent response.7,8 A better understanding of light−
matter interaction at the nanoscale will help us to realize optical
metasurfaces with designable vectorial near and far electro-
magnetic fields. Polarization-manipulating nanostructures are
also important for realizing compact and/or on-chip polar-
ization rotators, wave plates, and polarizing beam splitters.9−13

An extreme possible consequence of the chirality of a system
is asymmetric transmission (AT), the difference in total
transmittance when light with a certain polarization impinges
from opposite sides of the system.14 While it is possible to
realize systems that radiate asymmetrically in opposite
directions by breaking mirror symmetry in the propagation
direction,15 AT however requires a strongly chiral response.
Notably, when an emitter is placed in asymmetrically

transmitting systems, this strong chirality also implies a
significant difference between the polarizations of the emitted
light in opposite sides of the system. Realization of AT in
nanostructures thus relates directly to potential functionalities
such as polarization control of spontaneous emission,16 spin-
dependent light emission,17,18 and enantioselective sensing.19

There has been a considerable number of experimental
attempts at realizing strong chirality in nanostructures. Several
of these have been shown to offer AT for circularly polarized
light using both metallic20−23 and dielectric24,25 structures.
However, to realize AT for linearly polarized light is
significantly more challenging, as it strictly requires broken
mirror symmetry in the propagation direction.26 So far,
attempts at realizing AT for linearly polarized light have been
restricted mainly to metallic structures.27−31 Important open
questions remain, such as how to introduce an efficient
symmetry breaking, what is the maximum AT that can be
achieved, and how to design structures that can offer this
maximum AT.
In this work, we investigate in detail the AT for linearly

polarized light in dielectric chiral resonators. We show that the
quasinormal modes of the system can be used to predict the AT
for any system. We develop a theoretical formalism to find
structures that can offer very high AT. Comparing full-field
simulations to original theory, the origin and limits of AT are
explored in terms of the properties of the quasinormal modes
of the system. We uncover an important relation between the
AT, which is a resonant phenomenon, and the direct
reflectivity, which is a nonresonant property of the system.
This relation, derived from the principle of reciprocity, creates a
fundamental limit for AT in any chiral resonator. Following an
optimization strategy to conform to this result, an example
design for a photonic crystal structure with subwavelength
thickness that can offer AT as high as 84% is proposed.
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■ ON THE ORIGIN OF AT IN RESONANT SYSTEMS
Figure 1 illustrates the concept of AT in chiral systems. Linearly
polarized light is normally incident on the system in the
forward direction (top-to-bottom direction in the figure). In the
figure, the polarization of the incident beam is s1̂. Let the
orthogonal polarization component be called s2̂. The trans-
mitted electric field of light can, in principle, contain both
components. For s1̂-polarized incident light with electric field
E1
inc, the complex forward transmission coefficients correspond-

ing to the two electric field components along s1̂ and s2̂ in the
transmitted light can be defined as t11

f = (s1̂·E
tran)/E1

inc and t21
f =

(s2̂·E
tran)/E1

inc, where Etran is the total transmitted electric field.
The respective transmittances, ratios of the transmitted
intensities and the incident intensity, are then T11

f = |t11
f |2 and

T21
f = |t21

f |2. The total transmittance in the forward direction for
s1̂-polarized incidence can then be expressed as T1

f = T11
f + T21

f .
Similarly, when s1̂-polarized light is incident from the opposite
side of the structure, the total transmittance in the backward
direction can be written as T1

b = T11
b + T21

b . AT is the difference
in the total transmittances in the two directions for polarized
light and can be represented as AT = |T1

f − T1
b|. It has been

shown26,31 that for reciprocal materials AT is equivalent to the
difference between cross-polarization conversion between two
orthogonally polarized incidences. Thus, we can also write AT
as the difference in the orthogonal transmittances for two
mutually perpendicular polarized incidences in a given
direction. i.e.,

= | − |T TAT 12
f

21
f

(1)

where Tij
f = |(sî·E

tran)/Ej
inc|2.

In the following, we probe the origin of AT in chiral systems.
Even though our conclusions and methodology apply to any
general photonic systems, we will now illustrate them with a
specific example, a dielectric bilayer photonic crystal slab. We
consider light that propagates perpendicular to the plane in
which the structure is periodic. A unit cell of the 2-D periodic
structure is shown in the inset of Figure 2b. It is composed of
two rectangular air holes stacked in mutually perpendicular

fashion in a high-index (n = 3.48) material. The orthogonal
arrangement of holes breaks mirror symmetry in the
propagation direction (z-axis in the inset). Here, without loss
of any generality, we choose s1̂ and s2̂ along the geometrical x-
and y-axes, respectively. Finite element method (FEM)
simulations32 are used to calculate various transmittances Txx,
Tyx, Txy, and Tyy of the structure in a given frequency range. In
Figure 2a, Txx and Tyx (violet and orange dashed lines,
respectively) are the simulated parallel and orthogonal
transmittances for x-polarized incident field. Txy and Tyy (red
and olive dashed lines) denote the simulated orthogonal and
parallel transmittances, respectively, for y-polarized incident
field. The parallel transmittance for both incident polarizations,
Txx and Tyy, coincides over the entire frequency range.
However, there is a significant difference between the spectra
of orthogonal transmittances Tyx and Txy at certain frequencies.
The AT spectrum for x (or y) polarized incident light is
calculated from the simulation results using eq 1 and shown as
a dashed blue line in Figure 2b.
As evident from the figure, the AT has pronounced features

around certain frequencies. The resonant nature of this chiral
response hints at a connection between the response and
resonant modes of the structure. The parallel component of the
momentum is zero for light at normal incidence. Due to parallel
momentum conservation, a normally incident wave would only
excite modes with a wave vector having zero parallel
component (i.e., k∥ = 0, which corresponds to the Γ point in
momentum space). Using a commercial FEM mode solver,32

we calculate the eigenfrequencies (green triangles in Figure 2b)
of the structure for a parallel wavevector of zero. These

Figure 1. Concept of AT: Linearly polarized (s1̂-polarized) light is
incident from the opposite sides of a chiral photonic system. T11 and
T21 are the transmittances of the electric field component parallel and
orthogonal to s1̂, respectively. AT is the difference between the total
transmittances in the two directions.

Figure 2. Transmission spectra: Various transmittances (a) and AT
(b) as a function of frequency of the linearly polarized (x- or y-
polarized) incident light in the positive z direction. Txx, Tyx, Txy, Tyy,
and AT are shown as violet, orange, olive, red, and dark blue,
respectively. Thick dashed lines correspond to the FEM simulation
data, and solid lines except gray and cyan feature transmittances
predicted by our theoretical formalism. Gray and cyan lines represent
the calculated background reflectance and transmittance, respectively,
for an effective uniform slab (see the text in section 3). Green triangles
represent the calculated real parts of the eigenfrequencies of the
structure for zero parallel wave vector. The inset in panel b shows a
unit cell of the proposed structure.
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simulations reveal that the resonances in the AT spectrum
indeed coincide with the real parts of the eigenfrequencies of
the structure, indicating a strong relation between the AT and
the complex-frequency modes of the structure. With this
understanding of the origin of AT, we now develop a
theoretical formalism to predict AT from the properties of
these eigenmodes.

■ PREDICTING AT FROM THE QUASINORMAL
MODES OF A SYSTEM

To qualitatively predict AT, we follow a general approach and
develop a theoretical formalism based on coupled-mode theory.
The theory explores the relation among incoming waves,
outgoing waves, and guided modes in any chiral resonator.
Consider an open optical system having a set of quasinormal

modes as shown in Figure 3. The modes interact with incoming

and outgoing plane waves above and below the system. The
two orthogonal polarizations s1̂ and s2̂ characterize the electric
fields of these waves. Four ports, 1U, 2U, 1L and 2L, carrying
incoming and outgoing electromagnetic waves, are used to
represent these two polarizations above and below the system.
The ports 1U and 2U respectively depict the polarizations s1̂
and s2̂ of the incoming or outgoing waves above the structure.
Similarly, the ports 1L and 2L depict the polarizations s1̂ and s2̂
of the waves below the structure.
Mathematically, the incoming and outgoing waves of any

system are related to each other by the system’s scattering
matrix containing frequency-dependent transmission and
reflection coefficients. The total scattering matrix of the system
can be written as the sum of two scattering matrices featuring
the two types of interaction between the incoming and
outgoing waves: (i) the resonance-assisted interaction (denoted
by the ω̃ channel in Figure 3), where the waves couple through
the resonant modes of the structure, and (ii) the nonresonant
interaction (denoted by C in the figure), where the waves
couple directly through a nonresonant background process.

The resonant interaction, as illustrated in the figure, is related
to the mode’s radiated electric field values at ports 1U, 2U, 1L,
and 2L, which can be described by a scattering eigenvector b =
[b1U b2U b1L b2L]

T containing the far-field components of
quasinormal modes at each port. We characterize the
nonresonant coupling by the frequency-dependent direct-
process scattering matrix33 C, which has a nonchiral and
polarization-independent response as

ω

ω ω

ω ω

ω ω

ω ω

=

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
C

r t

r t

t r

t r

( )

( ) 0 i ( ) 0

0 ( ) 0 i ( )

i ( ) 0 ( ) 0

0 i ( ) 0 ( ) (2)

C must be unitary and symmetric34 for reciprocal materials.
The frequency-dependent coefficients r and t are the direct
reflection and transmission coefficients, respectively (the
arbitrary phase factor of this matrix, which depends on the
choice of the positions of our reference ports,35 can be omitted
without any loss of generality, and we can suppose r and t to be
positive real amplitudes such that r2 + t2 = 1).
As we have recently shown,36 building upon ref 34, it is

possible to obtain the complete scattering matrix for any
photonic system from the far-field properties of its eigenmodes.
For a system with a set of complex eigenfrequencies ω̃j(j = 1, ...,
m), the scattering matrix can be written as

∑ω ω
ω ω

= +
− ̃=

S C a
b b

( ) ( ) i
j

m

j
j j

T

j1 (3)

where a is a complex coefficient that can be calculated for a
unitary and symmetric scattering matrix by imposing time-
reversal symmetry and reciprocity conditions. The general
expression for coefficient a is discussed in detail in ref 36.
For our structure, the nonresonant reflection and trans-

mission coefficients in eq 2 can be obtained by fitting37 the
background response of the numerical simulation data to the
response of a slab-like structure with an effective homogeneous
permittivity and thickness. The calculated slowly varying
transmission and reflection intensities T = t2 and R = r2 are
shown as cyan and gray solid lines, respectively, in Figure 2.
Using eq 3, we predict various transmittances Txx, Tyx, Txy, and
Tyy as well as the AT for the example structure. The predicted
quantities are represented by solid lines in Figure 2a and b and
correspond very well with the simulation data.
Since we are able to predict the AT for the structure only

from the complex frequencies and the far-field properties of the
eigenmodes of the structure, it is now clear that AT is a
resonant phenomenon that completely depends on the far-field
characteristics. So, by tuning the mode properties, we can
enhance the AT offered by the structure. It is instructive to
study what the maximum AT is that can be achieved in any
structure and how to design structures that can reach such a
limit.

■ ON THE LIMIT OF AT
Dependence of the AT on the far-field properties of the
eigenmodes stems from the interaction of the incoming and
outgoing waves with the scattering eigenvector b of the modes.
The eigenvector b can be normalized arbitrarily, as the
scattering matrix (eq 3) is independent of such normalization,

Figure 3. Coupled-mode-theory-based concept of eigenmodes’
interaction with incoming/outgoing waves. Four ports, 1U, 2U, 1L,
and 2L, represent incoming and outgoing electromagnetic plane waves
of the two polarizations s1̂ and s2̂. Scattering eigenvector b mediates
the interaction of resonances (ω̃) with these ports. Waves can also
couple directly (C) through reflection and transmission coefficients r
and t. See the text for a detailed description.

ACS Photonics Article

DOI: 10.1021/acsphotonics.6b00947
ACS Photonics 2017, 4, 884−890

886

http://dx.doi.org/10.1021/acsphotonics.6b00947


absorbing it in the evaluation of the coefficient aj.
36 Thus, for

each mode, b basically comprises a set of field values (b1U, b2U,
b1L, and b2L). The field values b1U and b2U represent the two
components of eigenmode polarization above the structure, and
b1L and b2L represent the two eigenmode polarization
components below the structure in the far field. For the
example structure, the eigenmode field polarizations above and
below the structure are related to each other by certain
symmetry properties. The symmetry in the chosen structure is
such that it returns to the original configuration after a series of
operations: (i) an inversion along z, (ii) an inversion along x,
and (iii) a clockwise rotation of 90° (see the SI for details).
This symmetry dictates that the eigenvectors of the system
must satisfy the following relation among the polarization
components of the eigenmode field below the structure and the
polarization components above the structure:

= ± = ±b b b b,1L 2U 2L 1U (4)

Inspection of calculated eigenfields from the FEM simulation
confirms these relationships. In the range of frequencies we plot
in Figure 2, it can be observed that the highest AT occurs
around an isolated mode at ω0/2π = 364 THz. We can
represent the far-field polarization (b1U, b2U) of the eigenmode
in terms of a set of normalized Stokes parameters S1, S2, and
S3.

38

Expressing b in terms of the polarization parameters and
applying eqs 1 and 3, we get an equation for the AT provided
by a single mode in terms of its polarization parameters (as
elaborated in the SI). We find that, at the eigenfrequency, the
peak value of AT and the polarization parameters of the
eigenmode have a direct relation:

= | | − | | = | |b b SAT 1U
2

2U
2

1 (5)

where S1 is the first normalized Stokes parameter. This very
simple, yet powerful relation holds a huge potential for
obtaining the maximum possible AT by parametric optimiza-
tion of any structure. A chosen structural parameter can be
swept while tracking the isolated modes, and the calculated S1
can predict the AT for each case. To illustrate this, we vary a
single parameter, the total thickness of the chiral photonic
crystal, and depict the predicted AT for the considered isolated
eigenmode, as a function of the thickness. The blue circles in
Figure 4a represent the theoretically predicted AT (the Stokes
parameter S1) for different thicknesses. The transmission
simulation results are shown alongside (as black circles) to
verify the prediction. The minor differences between the
predicted and calculated values could be due to a small
uncertainty in determining the far field of eigenmodes or a
small contribution of a relatively distant mode. It can be seen
that the optimum thickness is 0.5a, where a is the periodicity of
the structure. In fact, the structure we present in Figure 2 is the
optimized case. It is to be noted that the maximum AT offered
by the structure is 84%, which is less than unity.
According to eq 5, we would attain unity AT when |S1| = 1,

i.e., when the eigenmode of the structure is completely linearly
polarized along one of the x and y Cartesian axes of the
structure. However, we find that the polarization parameters of
the mode are restricted such that it is not always possible to get
a mode that is completely linearly polarized in the far field. This
constraint arises from the principle of reciprocity, which relates
the polarization parameters of the resonant mode to the
nonresonant scattering properties of the structure. In the
following, we show how the principle of reciprocity puts a

fundamental limit on the possible polarization parameters for a
mode, and hence the AT.
Following ref 34, the principle of reciprocity in coupled-

mode theory can be expressed for a single mode as

* = − ξC eb bi (6)

where the total phase factor ξ subsumes the arbitrary phase
factors in the definition of C and in the normalization of b (see
Section 2 in the SI). Expressing eq 6 in terms of the
components r and t that make up C and the polarization
parameters from the normalized b (as detailed in the SI), we
obtain that eq 6 implies the relation

=t
r

S
S

3

1 (7)

which indicates that the ratio between the Stokes parameters S3
and S1 of the eigenmode is related to the nonresonant
background transmission of the structure at the mode
frequency. This is extremely interesting, because it shows that
a mode can be linearly polarized (|S3| = 0, |S1| = 1) only if the
corresponding nonresonant transmission coefficient t is zero.
Realistically, the background transmission from a homogeneous
effective dielectric slab can never go to zero. Consequently, the
modes of the system are generally constrained to be elliptically
polarized.

Figure 4. Parameter optimization and the fundamental limit of AT for
a single mode of the proposed structure. (a) Predicted ATs for an
isolated single mode for different thicknesses of the structure are
shown as blue circles. Corresponding simulation results are shown as
black small circles. (b) Calculated AT (blue solid line) and
fundamental limit of maximum AT (red solid line) for a single
mode together with FEM simulation data (blue data points).
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We use eq 7 to derive the fundamental constraint on the AT
for the structure. The relation S1

2 + S3
2 ≤ 1, which follows

directly from the normalization of Stokes parameters, then

implies + ≤( )S 1 1t
r1

2 2

2 , and from eq 5 we obtain

≤ =r RAT (8)

where R = r2 is the nonresonant reflectivity of the structure. It is
interesting to note that AT, which is the difference between two
resonant transmission intensities, has a limit that is given by the
nonresonant reflection amplitude. For practical applications
that require maximum AT, it is thus important to engineer
maximum nonresonant R at the operation wavelength.
We choose the mode (ω0/2π = 364 THz) having the highest

AT from the FEM simulation data and calculate the
fundamental limit for the maximum AT around the mode.
The data points in Figure 4b shows the FEM simulation-based
AT as a function of the frequency of the normally incident light.
The calculated fundamental limit, r, is shown as the red solid
line. It can be seen that the theoretically calculated AT (blue
solid line) as well as the FEM simulation data are very close to
the fundamental limit.
The discussion so far in this section has been limited to the

particular structure we proposed as an example. The specific
symmetry properties of the structure were used to derive the
results stated above. It is therefore important to verify the
universality of the results on the limit of AT. In the following,
we seek a fundamental limit for the AT offered by any single-
mode resonator regardless of its symmetry properties and find
that the result stays the same for the general case as well.
For deriving the limits for a general structure, we are no

longer allowed to use the relation given by eq 4, as it was
derived from the specific symmetry properties of the example.
Equation 6, which is based on the principle of reciprocity, is still
valid and can be used to relate below-the-structure polarization
parameters to the polarization parameters above the structure.
Using this new relation in eq 3 leads to a general expression for
AT in terms of the polarization parameters S1 and S3, the phase
factor ξ, and the coefficients r and t:

ϕ ξ
ϕ ξ ϕ ξ

=
−

+ +
rt S

r S
AT

(1 )sin sin
(1 (cos cos sin sin ))

2
1
2

1
2

(9)

where ϕ = ( )arctan S
S

3

2
is the phase difference between the

orthogonal polarization components of the eigenmode field
above the structure. Please note that r and t are positive real
coefficients here as a result of our convention for the arbitrary
port phases such that C takes the form of eq 2. In the most
general case, they thus represent the absolute value of the
nonresonant reflection and transmission coefficients, respec-
tively (see the SI for detailed derivation). The local maximum
of this equation can be found from an analysis of its first-order
derivatives and corresponds to the condition |S1| = r, |S3| = t,
and ξ = ± π

2
. The corresponding value of AT at the maximum

is ATmax = r = √R. As we will now show, this maximum is a
global maximum, which means that the nonresonant reflectivity
puts the same fundamental limit for the AT in any single-mode
resonator irrespective of its structural symmetry.
Using eq 9, we calculate AT for an isolated mode for 100 000

randomly chosen points in the polarization space, i.e., random
S1, ϕ, and ξ. The calculated AT is plotted in Figure 5 as a
function of reflection coefficient r. It can be observed that all

the values are below or at the predicted fundamental limit, r. It
must also be noted that most of the random polarizations
exhibit an AT significantly lower than the fundamental limit.
Only very few combinations of polarization parameters can
produce an AT close to the fundamental limit.
As we have shown using eq 7 and Figure 4a earlier in this

section, with an educated choice of structural symmetry and a
proper optimization of structural parameters, we can now
design structures that offer an AT near the fundamental limits.
The structure shown as an example in the beginning of this
paper would be an excellent candidate for realizing high AT
with a fully dielectric structure.

■ DISCUSSION AND CONCLUSIONS
The basis for the outlined theoretical results is coupled-mode
theory, which allows extending these results to any general
resonator system. The discussed examples used for deriving the
limits are dielectric 2-D periodic structures. For metallic or
lossy systems including systems with more than two input/
output channels, the expression for the scattering matrix and
the subsequent equations for AT and its limits can easily be
rederived considering the nonradiative decay rates of the
modes.36 It must be noted that it is possible to use the coupled-
mode theory for describing the scattering properties of
arbitrary-shaped particles.39 This allows us to extend our
formalism to such particles as well.
The presented simulation results consider a 2-D infinitely

extended periodic structure and transmission of normally
incident light. We note that AT for such a geometry is expected
to vary as a function of the angle of incidence due to the Bloch
eigenmode’s dispersion. A finite numerical aperture (NA) of
the experimental setup should be taken into account for
experimental realization of the results, as we do for our example
system in the SI.
In conclusion, we showed that the AT in chiral resonators

depends strongly on the far-field properties of their
eigenmodes. We developed a theoretical formalism that can
predict AT offered by any system from its complex eigenmodes.
We investigated the theoretical maximization of AT in chiral
resonators. A fundamental limit for AT provided by a single
mode is presented. We also proposed the design for a chiral
photonic crystal that can offer AT as high as the fundamental
limit, which is the nonresonant reflection amplitude of the
system. The theoretical formalism presented here opens ways
for designing and optimizing new structures for light
manipulation.

Figure 5. Fundamental limit of AT: Scatterplot of AT vs the
nonresonant reflection coefficient r for 100 000 random eigenmode
polarizations in a structure without any specific symmetry properties.
Solid red line corresponds to AT = r.
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