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Abstract 

 
Silicon heterojunction solar cells employing transition metal oxides as carrier selective contact 

are of particular interest due to the potential of reducing parasitic absorption while featuring 

optimal electrical properties. Recently, a record efficiency of 23.5% was achieved by employing 

molybdenum oxide (MoOx) as carrier selective contact. MoOx exhibits advantageous properties 

with respect to the p-doped standard amorphous silicon contacts due to its lower parasitic 

absorption and better thermal stability. However, achieving an efficient carrier collection is 

challenging and not well understood yet. In this work, transport of charge is studied from drift 

diffusion and atomistic approach by means of numerical simulations. Two different state-of-art 

computational tools are employed: TCAD Sentaurus for drift diffusion simulations, and VASP for 

ab initio simulations.  

Through drift diffusion simulations, the contact formation of molybdenum oxide as carrier selective 

contact is consistently explored including quantum confinement and transport based in mid-gap 

energy states. The work function of MoOx is shown to be the core for an efficient charge collection. 

Thanks to experimental results, it is revealed relevant phenomenon at MoOx/intrinsic amorphous 

silicon (i-a-Si:H) interface which includes silicon oxide formation and charge accumulated. 

Therefore, a special focus at interface is here presented, in order to study the inner physics of the 

detrimental effects and how to avoid them. Altogether, drift diffusion simulations reveal that MoOx 

thickness is an essential parameter because it strongly determines the work function and hence 

the efficiency of the solar cell. All the knowledge acquired is used to provide guidelines on the 

fabrication of these type of solar cells.  

Looking at MoOx/a-Si:H interface, ab initio simulations are employed to study interface properties. 

Accordingly, such interface is analysed using both materials in their crystalline matrix. It is 

demonstrated that oxygen deficiency tunes the MoOx work function, a statement which is key for 

the proper contact formation and consistent with drift diffusion results. Finally, the charge 

arrangement at interface reveals the creation of an interface dipole together with silicon dioxide 

interlayer which is coherent with drift diffusion simulations analysis. 
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Introduction 

 
The use of carrier selective contacts (CSC) in crystalline silicon (c-Si) solar cells potentially allows 

to overpass the conversion efficiency of the homo-junction counterparts. Efficiencies as high as 

25.1% have been achieved on both-side contacted solar cells applying this strategy [1]. The 

record cell, fabricated by Kaneka, consists on a c-Si bulk caped in both sides with a thin layer of 

amorphous Si (a-Si) passivation layer including n-type and p-type doped amorphous silicon 

carrier selective contacts [2]. 

The key of success in this solar cell is found on the usage of amorphous silicon as passivating 

layer. This material shows a high quality interface with the c-Si wafer, suppressing the minority 

carrier recombination at the surface of the bulk [1] and enhancing the open circuit voltage [3]. This 

fact is due to the good lattice-matching with c-Si [4]. Furthermore, the use of a-Si CSC is 

industrially appealing due to its low thermal budget and ease of deposition with respect to 

conventional c-Si homo-junction solar cells [5]. 

However, amorphous silicon exhibits a relatively high absorption coefficient [6]. Indeed, using 

amorphous silicon in front side of solar cells is detrimental due to its parasitic absorption ascribed 

to the low band gap (1.7 eV) [7]. This fact strongly limits the short circuit current in solar cells 

employing it as CSC [8]. Moreover, the thermal instability of the material hinders the fabrication 

process of the solar cell [9]. Furthermore, doping a-Si requires of toxic boron and phosphorus gas 

precursors, which should be replaced for risk-free materials [10]. These drawbacks have 

encouraged the exploration of novel materials and strategies. The combination of thin films 

materials with c-Si in solar cells are gaining importance due to the increased flexibility to tune 

optoelectrical properties towards CSC [11]. Among thin film materials, novel materials such as 

organic materials or transition metal oxides (TMOs) as CSC in silicon heterojunction (SHJ) solar 

cells have proven to be a feasible alternative [9]. 

TMOs have been extensively used in perovskites [12], [13] and organic [14], [15] solar cells. They 

are characterized by their wide range of work function values, from 3.5 to 7.0 eV [16]. Exhibiting 

a relatively wide band gap (> 2.8 eV), most of TMOs are transparent in the visible and infrared 

regions, hence reducing the parasitic absorption compared to a-Si front layers [17], [18]. The 

possibility of low-temperature [9] and thin-layer [19] deposition make them attractive for 

fabrication process. Moreover, TMOs can have either a n or p-type character, determined by 

defects in the material background [20]. 

TMOs allow carrier selectivity by inducing the conditions for a n or p-type contact [21] through a 

proper energy alignment [22]. They enable efficient transport of only one type of carrier while 

hindering the transport of the other, thus reducing recombination at the interface. Accordingly, 

TMOs can exhibit properties of hole or electron contacts depending on the energy alignment [23]. 
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Among TMO as hole transport layers, the most common are molybdenum trioxide (MoO3) [24], 

vanadium pent-oxide (V2O5) [25], [26] and tungsten tri-oxide (WO3) [27]. Their high work function 

makes them suitable as hole-selective contacts [10]. Moreover, their wide bandgap results in a 

low optical absorption and allows for sufficient carrier selectivity even when using layers of only a 

few nanometres thick [9]. Additionally, they are highly compatible with well-developed technology 

for processing solar cells [28]–[30].  

Although these three oxides have similar characteristics, molybdenum trioxide has shown a 

particular performance with respect to the other two [25], [31], [32]. This is due to an appropriate 

band alignment with silicon because of its higher work function compared to the other two 

materials. Moreover, out of the three compounds, MoO3 causes the least oxidation effects on the 

adjacent material [32]. In fact, this material has recently stablished the record efficiency of 23.5% 

[33] for solar cells based on TMOs silicon heterojunction technology. 

The most important characteristic of molybdenum trioxide is its high oxygen reactivity. During 

thermal deposition, oxygen reacts with the surrounding layers [32] resulting in a slightly sub-

stoichiometric molybdenum oxide (MoOx where x is within the range 2<x<3) [32] with amorphous 

character [34]. These oxygen vacancies allow energy levels slightly below the conduction band, 

giving the material a n-type character [35], and increasing its conductivity [36]. 

The oxygen vacancy amount together with the material work function is essential for the 

effectiveness of MoOx as hole transport layer [37]. The work function controls the barrier height 

at the c-Si/MoOx interface, while the oxygen vacancies are the ones that assist the tunnelling of 

charge carriers through the contact [38]. A well-balanced defect content would lead to the best 

performances. However, in presence of a low work function or little oxygen vacancies, hole 

collection issues arise in the device [39]. The performance of the solar cell is affected, resulting 

in S-shapes in the J-V curves [40]. 

However, the oxygen reactivity is very sensitive not only to the already mentioned interfacial 

reactions but also to air and oxygen exposure [41]. It is worth noting that such vacancies as sub-

gap energy states are uncontrollable from process perspective. Moreover, during processing, the 

interfacial reactions induce surface oxidation of the bulk, reducing the passivation quality [42]. 

That is the reason why MoOx alone is not the best candidate for the passivation of c-Si, and is 

usually deposited on top of a passivating amorphous silicon layer [40], [43]. 

This type of solar cell has great perspectives and prospects but there is still scope for 

improvement. There are issues when understanding the detrimental phenomena and the 

interfacial reactions with the deposited adjacent materials. SHJ solar cells employing 

molybdenum oxide as CSC is a topic under research.  

1.1 Motivation and outline of the thesis 

The motivation of this thesis lies in understanding how the physical properties of molybdenum 

oxide affect the performance of the solar cell. The goal is to identify the limits of this transition 

metal oxide to build performant charge carrier selective contact in solar cells. This study will be 

performed through the support of simulation tools. Based on a previously calibrated Technology 

Computer-Aided Design (TCAD) model and some experimental characterization, this project will 

i) validate the device modelling, ii) identify the dominant physical mechanisms, iii) propose an 
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optimization and iv) provide guidelines for developers to increase the performance. Through this 

path, the following questions will be answered: 

• What are the main material parameters affecting the contact formation? Chapter 3 

• How is the transport behaviour? 

• What are the limiting physical mechanisms for hole transport layer stack? 

 What material parameters can be controlled during the process to improve conversion 

efficiency? 

 What is the atomistic nature of interface charge rearrangement? 

This thesis can be divided into two sections. The first section consists on drift diffusion 

simulations, enclosed in Chapters 2 and 3. The first chapter starts with a background in 

semiconductor physics and describes the simulation approach used in semiconductor devices. 

The next Chapter 3 discusses the results obtained through drift diffusion simulations regarding 

the use of molybdenum oxide as carrier selective contact in solar cells. The first four questions 

will be discussed and answered in this third chapter. 

The second part of this work, which consists on Chapters 3 and 5, regards ab initio simulations. 

These simulations will be a strong support to the results obtained in the previous computational 

experiments. Chapter 3 gives some concise theoretical background on the topic and presents the 

modelled materials. The following Chapter 5 describes the main outcomes achieved through ab 

initio simulations, and in particular, it discusses the atomistic nature of the interface charge 

rearrangement. 

This work closes with the conclusions in Chapter 6 and a brief outlook in Chapter 7. 
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Drift diffusion background and 

simulation framework 

 
In this chapter, the basis of semiconductor physics for solar cells applications is presented as the 

foundation of numerical simulation tool models. For this purpose, section 2.1 presents the 

fundamental level of semiconductor physics, emphasizing on heterojunction systems. Then, 

section 2.2 describes the simulation methodology employed by the numerical solver. Section 2.3 

presents the working principle of silicon heterojunctions employing molybdenum oxide as carrier 

selective contact as an application of fundamental concepts. Finally, section 2.4 summarizes the 

main computational parameters and models of the devices. 

2.1 Semiconductor physics fundamentals 

Semiconductors are solid state materials with conductivity between conductors and insulators. 

Their electrical properties can be modified by temperature, illumination, magnetic field, and 

impurities. Such properties make them extremely useful for modern electronics [4]. 

The atoms in any compound are chemically bonded to each other. For semiconductors, such as 

crystalline silicon, the link is a covalent bond achieved by sharing electrons. These shared 

electrons are called valence electrons. For temperatures higher than the absolute zero, these 

bonds can be broken by thermal vibrations [4]. When that occurs, a valence electron is liberated, 

becoming a free electron that can participate in current conduction. Free electrons have a higher 

energy than valence electrons. The electron deficiency that is left behind can be filled by 

neighbouring electrons. In other words, such electron deficiency is like a positively charged 

particle that has moved. That particle is so-called a hole and it also contributes to the electric 

current. 

The electrons in an isolated atom have discrete energy levels [44]. When isolated atoms are 

brought together in order to form a compound, the orbits of their outer electrons overlap and 

interact with each other. This interaction causes the discrete energy levels to be continuous and 

form a band. The free electrons form a so-called conduction band (CB), while the valence 

electrons form a valence band (VB). The holes are also located on the valence band. For 

semiconductors, there is a relatively small energy gap between the CB and the VB, where no 

states are available. Defining the bottom energy of the CB as 𝐸𝐶, and the top energy of the VB as 

𝐸𝑉, the width of this forbidden gap is 𝐸𝑔𝑎𝑝 = 𝐸𝐶 − 𝐸𝑉 [45]. 
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As already mentioned, at absolute zero there are no thermal vibrations, therefore the electrons 

occupy the lowest energy states; the valence band is full, while the conduction band is empty. As 

the temperature increases, thermal energy excites electrons from the VB to the CB leading to an 

equal number of holes in the valence band. The higher the temperature, the greater the amount 

of excited carriers. The probability 𝐹(𝐸) that an electron occupies an electronic state with energy 

𝐸 at a certain temperature 𝑇 is given by the Fermi-Dirac distribution function [46], Equation 2.1. 

𝐹(𝐸) =
1

1 + 𝑒
(𝐸−𝐸𝐹)

𝑘𝐵𝑇⁄
(2.1) 

Where 𝑘𝐵 is the Boltzmann constant, and 𝐸𝐹 is the Fermi energy or Fermi level, in which the 

probability of occupation is equal to 1 2⁄ . For semiconductors with no impurities (named intrinsic), 

the Fermi energy is located in the middle of the band gap. Another important quantity is the 

vacuum energy 𝐸𝑣𝑎𝑐𝑢𝑢𝑚; the energy of a free electron which is outside of any material.  

The vacuum level, Fermi energy, bottom energy of the CB and top energy of the VB can be 

represented in a so-called band diagram. The interpretation of this schema gives crucial 

understanding of semiconductor devices. Figure 2.1 shows the band diagram of an intrinsic 

semiconductor. 

 

Figure 2.1: Energy band diagram of an intrinsic semiconductor. 

Two more additional quantities can be established by looking at the schematic graph. First, the 

electron affinity 𝜒, defined as the energy needed for an electron of the conduction band to reach 

the vacuum level. Related to it, the work function 𝑊𝐹 is the energy width between the vacuum 

level and the Fermi level. 

𝜒 = 𝐸𝑣𝑎𝑐𝑢𝑢𝑚 − 𝐸𝐶 (2.2𝑎) 

𝑊𝐹 = 𝐸𝑣𝑎𝑐𝑢𝑢𝑚 − 𝐸𝐹 (2.2𝑏) 

In order to tune the density of electrical charge carriers 𝜌, semiconductors are usually doped with 

impurities. This action displaces the Fermi energy by adding energy levels in the material. If the 

impurities (or doping) induce the excess of electrons, dopants are called donor and the 

semiconductor becomes n-type. Similarly, for impurities providing excess of holes in the 

semiconductor, the dopant is called an acceptor and the semiconductor, a p-type. 

In a n-type semiconductor, due to the impurities added, there is a higher density of electrons than 

holes. In these materials, electrons are the majority charge carriers, while holes are the minority 

ones. The equivalent case occurs for p-type semiconductors, where holes are the majority charge 

carriers, and electrons are the minority ones. 



Simulation of c-Si solar cells based on TMOs as CSC 

2. Drift diffusion background and simulation framework 

6 

The dynamics of the charge carriers can be tuned by a junction of two materials. If the jointed 

compounds are the same one, a homo-junction is formed. If the two materials are different, a 

heterojunction is created. Independently of the type of union, the junction is formed between a n-

type and a p-type semiconductor.  

The electrons in the conduction band move thermally. That motion is random and with no net 

displacement. When a junction of two compounds is formed, additional velocity components are 

superimposed creating a net movement and therefore a current. When these materials are 

brought together, large carrier concentration gradients cause carrier diffusion of electrons (holes) 

to the p-(n-)type material. This current due to the spatial difference between the concentration of 

each species is called diffusion current. When the charge carriers leave their respective sides, 

the doping ions left behind are uncompensated. This fact creates an electric field, and 

consequently a drift current, on the opposite direction to the diffusion current. Thermal equilibrium 

is reached when these two forces compensate each other. 

This electric field creates a variation of the electrostatic potential at different points of the device. 

The conduction and valence band energies are proportional to the electrostatic potential 𝜑 

through the elementary charge 𝐸 = −𝑞𝜑 [45]. Therefore, the energy levels also vary as a function 

of distance. When this variation is represented in the band diagram, the energy levels experience 

a bending. 

The shape of the electrostatic potential is determined by solving Poisson’s equation [47]. Poisson 

equation relates the density of electrical carriers 𝜌 to the electrostatic potential. It is displayed in 

Equation 2.3, where 𝜖 is the relative permittivity of the semiconductor, and 𝜖0 is the vacuum 

permittivity. By knowing the boundary conditions in the device as well as several material 

characteristics, Poisson equation can be solved, which provides the electrostatic potential, and in 

turn the energy band diagram in static conditions. 

𝛻(𝛻𝜑) = −
𝜌

𝜖𝜖0
 (2.3) 

When an external excitation breaks chemical bonds of electrons, an electron hole pair is 

generated. The amount of charge carriers formed is quantified by the carrier generation 𝐺𝑡ℎ. In a 

solar cell, this generation is induced by optical excitation. This excess of charge carriers alters 

the equilibrium of the device. In order to restore it, recombination 𝑅𝑡ℎ processes of minority and 

majority charge carriers occurs. In equilibrium, recombination equals carrier generation. 

There are three possible recombination processes: radiative, Auger and Shockley Read Hall 

(SRH). This thesis only refers to SRH recombination [48], due to the nature of the main material 

studied. Information on the other processes can be found elsewhere [45]. 

SRH recombination occurs by means of an impurity atom or crystal defect [48]. The impurities 

produce energy levels inside the forbidden gap, called trap-states. An electron or hole can be 

trapped in this defect. When trapped, they can attract the opposite charge carrier and recombine 

with each other. 

The defects are mainly ascribed to (i) impurities inside the material or (ii) the abrupt termination 

of a surface. Surface defects appear at semiconductor interfaces due to the abrupt discontinuity 

of the lattice structure [4]. The amount of impurities is related to the dissimilarity between lattice 

parameters and the interaction between adjacent layers. Passivation of the surface can reduce 

the surface recombination [49]. It consists on depositing an adjacent material with similar lattice 



Simulation of c-Si solar cells based on TMOs as CSC 

2. Drift diffusion background and simulation framework 

7 
 

parameters. For instance, in the case of c-Si, hydrogenated amorphous silicon (a-Si) is a widely 

used passivating material [50]. 

All these effects (drift and diffusion currents, generation and recombination) determine the 

dynamics of electron and holes [51]. These in turn stablish the working principle of semiconductor 

devices as solar cells. The magnitudes are related through the continuity equations (Equation 

2.4a and 2.4b), based on the charge conservation inside the device. 𝐽𝑛 and 𝐽𝑝 are the current 

densities of electrons and holes, respectively, and 𝑅𝑛𝑒𝑡 = (𝐺𝑡ℎ − 𝑅𝑡ℎ) is the net recombination 

rate. 

−∇𝐽𝑝 = 𝑞𝑅𝑛𝑒𝑡,𝑝 + 𝑞
𝜕𝑝

𝜕𝑡
(2.4𝑎) 

∇𝐽𝑛 = 𝑞𝑅𝑛𝑒𝑡,𝑛 + 𝑞
𝜕𝑛

𝜕𝑡
(2.4𝑏) 

 Heterojunctions 

A heterojunction is the junction of two dissimilar semiconductors. The left sketch in Figure 2.2 

shows the energy band diagram of two isolated materials before the formation of a heterojunction. 

In this band diagram, the semiconductors are assumed to have different electron affinities, energy 

band gaps and work functions. To understand the band diagram of the junction under thermal 

equilibrium, two main aspects need to be considered. First, the Fermi level must be constant 

thorough the sample as reference energy. Secondly, the vacuum level must be continuous and 

parallel to the band edges, in order to preserve the properties of the material [52]. These two 

conditions create discontinuities on the conduction and valence bands of the sample, which 

sometimes result in barriers for the electrons and holes. This phenomenon can be observed in 

the energy band diagram under thermal equilibrium in Figure 2.2 (right). A new parameter is 

defined in the sketch, the built-in potential 𝑉𝑏𝑖, which is the total electrostatic potential difference 

between the p-side and the n-side neutral regions at thermal equilibrium [4].  

 

Figure 2.2: Energy band diagram of two different semiconductors isolated (left) and in a p-n junction under thermal 

equilibrium (right). 

The barriers that arise due to band discontinuities will be an obstacle to charge carriers in the 

heterojunction. They will need to transport by means of thermionic emission across a barrier or 

by tunnelling through it [4]. Thermionic emission is a transport mechanism in which charge carriers 

with an energy above the barrier energy are able to travel over a potential barrier. 
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If the carrier does not have enough energy, it still has a finite probability of overcoming the barrier. 

This non-classical phenomenon is explained by the wavelike behaviour of particles on the 

quantum scale [4]. The necessary conditions for tunnelling to occur are: (i) carrier population 

available to tunnel, (ii) a finite tunnelling probability, and (iii) available states to which the carriers 

can go at the other side of the barrier. The tunnelling probability is related to the size of the barrier, 

the dielectric constant of the barrier material and the tunnelling mass [53]. 

Tunnelling can be further classified into direct tunnelling and trap assisted tunnelling (TAT), 

whether the transport is assisted by traps or not. Direct tunnelling can be distinguished again into 

intra band tunnelling and band to band tunnelling (B2BT). The main difference between the two 

transport mechanisms is that in the former, the carrier stays in the same band after having 

trespassed the barrier. 

As previously mentioned, impurities inside a material are recombination centres for the charge 

carriers, since they can capture and emit charge carriers [54]. These traps can have a positive 

effect on the device if they assist the tunnelling. When an electron (hole) from one extreme of the 

energy barrier is captured by a trap, a hole (electron) from the other side of the barrier can reach 

that trap and be recombined with the captured charge carrier. Overall, it is the same effect as if 

an electron (hole) had overcome the barrier [55]. Once the impurity is free, it is able to capture 

again another charge carrier. TAT is a more efficient transport than direct tunnelling, since the 

carriers need less energy to overcome the barrier, due to the use of intermediate states [56]. 

The three tunnelling mechanisms together with thermionic emission are represented in Figure 

2.3. 

 

Figure 2.3: Schematic of the four transport mechanisms to overcome a barrier. The processes are indicated with red 
arrows for electrons, and blue ones for holes. 

2.2 Simulation Approach 

The semiconductor physics numerical solver used in this thesis is TCAD Sentaurus by Synopsys 

[57]. TCAD stands for Technology Computer-Aided Design and it is a tool which employs 

computer simulations to develop and optimize semiconductor processing technologies and 

devices [58]. It is the adequate solver to represent solar cells and study the physical phenomena 

occurring inside the structure in order to solve the issues encountered in fabricated devices. 
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The first step of the simulation is to create the device structure. This implies setting all the layers 

in the right order and its thicknesses. The material opto-electronic properties are also included in 

this step. Then the metal and optical contacts (boundary conditions) need to be defined. Finally, 

a mesh of the device is calculated to proper consider the physics inside the structure [59]. It 

determines the number of points available in each layer and interface. A denser mesh implies 

higher number of points, hence greater accuracy. There is a trade-off with the computational cost, 

therefore the mesh is generally very dense on the critic interfaces and less packed on the bulk of 

the materials. 

Once the virtual device is built, the physical modelling needs to be solved. It consists on the set 

of equations presented in section 2.1, also called the drift diffusion model. This set is 

complemented by additional physical models that mimic the physical behaviour of SHJ, such as 

the tunnelling models just discussed. The simulator provides a numerical solution of this collection 

which is consistent with all the optical and tunnelling models implemented. 

The physical modelling starts by solving Poisson equation (Equation 2.3) in static conditions. This 

allows to observe the energy band diagram under thermal equilibrium. Then, the voltage of the 

device is increased under 1 sun illumination until the current across the solar cell is smaller than 

0. With this transition, the current-voltage (J-V) curve of the solar cell is obtained. Poisson as well 

as the continuity equations (Equations 2.4) for electrons and holes are solved in this level. 

With the electron and hole densities obtained under the already mentioned different conditions, 

several parameters such as recombination, current density, or energy band diagram can be 

determined. The magnitudes can be visualized in order to understand the different phenomena 

occurring inside the solar cell. 

All the simulation steps are graphically represented in the flowchart of Figure 2.4. 

 

Figure 2.4: Simulation approach flowchart. 
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2.3 Working principle of TMO SHJ solar cells 

This section explains the working principle of the SHJ solar cells simulated in this work. Each 

solar cell consists on the bulk material, an electron transport layer (ETL) that collects electrons, 

and a hole transport layer (HTL) which gathers holes.  

This work studies the use of molybdenum oxide (MoO3) as carrier selective contact. Because of 

its large work function (6.82±0.05 eV [16]), when in contact with n-type c-Si, a hole inversion layer 

is formed. Therefore, although MoO3 is an n-type semiconductor, it acts as a hole transport layer 

in n-type SHJ solar cells [60]. For that reason, this work mainly focuses on the hole transport 

layer. 

The HTL is composed of a passivating layer of hydrogenated intrinsic amorphous silicon (a-Si), 

followed by molybdenum oxide, then transparent conductive oxide (TCO) made of indium tin oxide 

(ITO) and finally a silver front metal contact. On the other side of the solar cell, the ETL is made 

of a-Si passivating layer, highly n-type doped amorphous silicon (n-Si), ITO TCO and finally a full 

area covered silver contact. Figure 2.5 shows the sketch of the basis solar cell simulated in this 

work. 

 

Figure 2.5: Sketch of the basis SHJ solar cells simulated in this work. 

Figure 2.6 shows the energy band diagram of the electron and hole electron transport layers of 

the above solar cell. Because of the electric field on the c-Si bulk, the holes are attracted to the 

HTL (left graph) and the electrons are drawn to the ETL (right graph). 

 

Figure 2.6: HTL (left) and ETL (right) equilibrium band diagrams of the simulated SHJ solar cell. Conduction and 
valence band levels are sketched. The trajectory of electrons (red circles) and of holes (blue circles) is also shown. 
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Starting with the HTL (left figure), holes are attracted to the interface between a-Si and c-Si owing 

to the electric field of the bulk. These holes are able to tunnel the encountered barrier at the a-Si 

interface by direct tunnelling. When they reach the TMO/a-Si interface, the holes recombine with 

the electrons of the MoO3 either by TAT or B2BT, depending on the density of traps, energy 

alignment and the work function of the TMO. The conduction of carriers in high work function 

metal oxides is facilitated by defect states close to the Fermi level [61]. This phenomenon is 

further explained in section 3.1. The MoO3 electrons come from the ITO, after crossing the barrier 

by direct tunnelling at the ITO/TMO interface. In turn, these electrons have reached the TCO by 

lateral transport from the front metal contact. 

Often, the limitation in this contact is because the hole accumulation at the c-Si/a-Si interface is 

not enough for the tunnelling to occur [62]. The hole accumulation is represented by the energy 

difference between the valence band of c-Si and the Fermi level. It is reduced by the insufficient 

band bending, which implies a low electric field. There are several parameters that affect this 

band bending, as will be tackled along this work. 

On the opposite extreme of the device (right figure), the electrons are attracted to the c-Si/a-Si 

interface by the electric field of the bulk. They encounter a small barrier, but they are able to 

trespass it by direct tunnelling. There is a high availability of energy states on the highly n-type 

doped amorphous silicon, that are able to cross the barrier at the n-Si/ITO interface again by 

direct tunnelling. An even greater amount of unoccupied states can be found on the ITO, which 

are easily transported to the metal contact. 

2.4 Models and Parameters of the materials 

This section states the parameters and physical models employed by the numerical solver. 

Table 2.1: Simulation parameters. 

 Quantity Value 

Global Temperature 300 K 

 Spectrum AM1.5 

 Pitch 600 µm 

Physical models Free carrier statistics Fermi-Dirac [15] 

 Transport 

mechanisms 

Thermionic emission [63] 

Non-local B2BT with two-band dispersion 

relation [64], [65] 

 Free carrier mobility High field saturation [66] 

 Doping Phosphorus and boron constant profile 

c-Si bulk Thickness 270 µm 

 Resistivity n-type 2 Ωcm unless stated otherwise 

 Electron tunnelling 

mass 

0.19 [67] 

 Hole tunnelling mass 0.16 [67] 

 Lifetime 1 ms 

 Band gap narrowing Schenk model [68] 

 Recombination SRH with doping-dependent lifetime [69] 

Auger model [70] 
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 Quantity Value 

 Free carrier mobility Philips unified mobility model [71] 

a-Si Band gap 1.7 eV [7] 

 Electron affinity 3.9 eV [7] 

 Tunnelling mass 0.1 [7] 

 n-Si Thickness 10 nm 

 Doping n-type 1021 cm-3 

 passivating layers Thickness 5 nm unless stated otherwise 

 Doping n-type 103 cm-3 

Molybdenum oxide Thickness 10 nm unless stated otherwise 

 Band gap 3 eV [42] 

 Electron affinity Varied between 5 and 6 eV 

 Doping n-type 6.78 1012 cm-3 

 Electron density of 

states 

6.78 1018 cm-3 [72] 

 Hole density of states 7.92 1017 cm-3 [72] 

TCO Thickness 75 nm 

 Doping n-type 1020 cm-3 

 Electron affinity 4.9 eV [73] 

 Band gap 3.7 eV [7] 

 Recombination SRH with doping-dependent lifetime [69] 

Silver metal contacts Thickness 1 µm 

 Front shading 5 % 
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Drift diffusion simulation results 

 
This chapter describes and discusses the results of numerical simulations based in drift diffusion 

model. Section 3.1 explores the effect of the trap concentration and work function of MoO3, being 

the parameters that affect the most the contact formation. Next, section 3.2 focuses on the 

interface between MoO3 and a-Si, exploring the effect of the oxygen deficiency on the 

performance of the solar cell. Then, section 3.3 proposes strategies for maximizing the conversion 

efficiency based on investigations of state-of-art solar cells including their light management. 

Finally, section 3.4 introduces atomistic models (ab initio) to deep in understanding material 

properties.  

3.1 Calibration and effect of MoO3 work function  

The first step is to construct an accurate state of the art model in order to properly simulate SHJ 

solar cells using MoO3. This study is based on state-of-art simulation work performed by Messmer 

et al [42]. A consequent objective of this approach is to understand the effect of the trap 

concentration and work function of MoO3 in the conversion of efficiency. These two quantities are 

considered the main parameters that affect the contact formation of the devices under analysis 

[37]. 

[42] stresses the transport limitations at the TMO/a-Si interface. The most important property of 

this interface is the position of the bottom of the MoO3 conduction band, 𝐸𝐶,𝑀𝑜𝑂3, with respect to 

the top of the valence band of the a-Si passivation layer, 𝐸𝑉,𝑎−𝑆𝑖. There is a change in transport 

mechanism when the two bands are aligned. If the conduction band of the MoO3 is lower than the 

valence band of a-Si (𝐸𝐶,𝑀𝑜𝑂3 < 𝐸𝑉,𝑎−𝑆𝑖), the charge carriers are able to tunnel from band to band 

(band to band tunnelling, B2BT). However, if 𝐸𝐶,𝑀𝑜𝑂3 > 𝐸𝑉,𝑎−𝑆𝑖, the charge carriers need to 

overcome this barrier by the assistance of the traps of the MoO3 (trap assisted tunnelling, TAT). 

The lower the trap density, the harder is the transport for the charge carriers, hence the lower the 

efficiency. These traps represent oxygen vacancies of the material, which have been found to 

assist the transport [74]. For higher 𝑊𝐹𝑀𝑜𝑂3 values, the transport is B2BT hence the trap 

concentration is not important anymore because TAT is not limiting. The change in transport 

phenomena occurs for 𝑊𝐹𝑀𝑜𝑂3 = 𝐸𝑉,𝑎−𝑆𝑖 = 5.62 eV. 

The objective is to calibrate the simulated model by reproducing the phenomenon reported in 

[42]. The structure of the device simulated is the one described in Figure 2.5. The MoO3 density 

of states was fixed to 5 1020 cm-3 and the bulk resistivity was set to 1 Ω*cm in order to mimic the 

parameters from the reference paper. The work function of the molybdenum oxide was tuned 

from 5 to 6 eV. In order to illustrate this change, band diagrams of the solar cell in quasi equilibrium 
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conditions have been sketched in Figure 3.1. They show the relative position of the band energies 

under MoO3 work functions of 5 and 6 eV (left and right graph, respectively). 

 

Figure 3.1: Band diagram of the simulated MoO3 SHJ solar cell in quasi equilibrium conditions for MoO3 work function 
values of 5 (left) and 6 (right) eV. 

The open circuit voltage (VOC) and fill factor (FF) of these simulated devices is shown in Figure 

3.2. These two electrical parameters are indicators of transport and selectivity. Therefore, by 

examining their behaviour under different electron affinities and trap concentrations 𝑁𝑡𝑟𝑎𝑝 of the 

MoO3 layer, the effect of the TMO work function can be examined. The two photovoltaic 

magnitudes show a similar trend: an improvement as the work function increases until a saturation 

value is reached. 

 

 

Figure 3.2: Open circuit voltage (left) and fill factor (right) of the simulated solar cells as a function of the MoO3 work 

function for different trap concentrations. 
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Figure 3.3: Open circuit voltage (left) and fill factor (right) as a function of the MoO3 work function for different trap 
distributions (continuous lines only). Figure extracted from [42]. 

For comparison purposes, Figure 3.3 shows the open circuit voltage and fill factor values obtained 

by Messmer [42] as a function of work function and trap concentration (continuous lines on the 

graph). Although both results exhibit similar trends, some differences can be appreciated. They 

will be analysed in the first subsection. 

 Validation 

In order to validate the simulation approach employed in this thesis, similar devices reported in 

[42] are simulated and the results are compared. A comparison of approaches from both 

simulation platforms is summarized in Table 3.1. 

Table 3.1: Summary of comparison of the trends obtained in [42] and in this work. 

Messmer et al. [42] This work 

Work function depends solely on electron 

affinity 

Work function depends on electron affinity 

and trap density 

No TCO Includes TCO 

Minimum work function value of 4.5 eV Minimum work function value of 4.75 eV 

Change from TAT to B2BT for 5.62 eV Change from TAT to B2BT for 5.97 eV 

 

- In [42], the work function depends only on the electron affinity 𝑊𝐹𝑀𝑜𝑂3 = 𝜒𝑀𝑜𝑂3. 

Experimentally, changes in work function were reported not only due to electron affinity [75], 

but also due to carrier density variations [36]. In this work we study the effects of both carrier 

density (by altering the trap doping concentration) and electron affinity changes, following the 

example by [76]. This difference in work function variation explains that although the trends 

of both works are similar, the effect of the trap density is different. 

- These simulations did not employ MoO3 work function values as low as 4.5 eV. For this value, 

independently of the amount of traps present in the MoO3, the band bending is not enough. 

This effect is observed on the band diagram in quasi equilibrium from Figure 3.1. The work 

functions of a-Si and ITO are 4.8 and 4.7 eV, respectively. If 𝑊𝐹𝑀𝑜𝑂3 = 4.5 eV, the bending 

of the bands would be opposite to the desired one. Therefore, the holes would be repelled 

instead of attracted. This issue is not encountered by [42] because of the difference in work 

function variation and the absence of the TCO layer. 

- The limiting work function in which the transport mechanism changes from TAT to B2BT is 

also different. As previously mentioned, this change in regime occurs for 5.62 eV in [42]. 
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However, in the present work, B2BT is apparent when MoO3 work function is approximately 

5.97 eV, which corresponds to 𝐸𝑉,𝑎−𝑆𝑖. 

Overall, the differences in the simulated devices show that the solar cells simulated in this work 

are closer to fabricated devices because of the integration of the transparent conductive oxide 

layer as semiconductor, as well as the dependence of work function on trap concentration. 

However, it is worth noting that none of the abovementioned methods mimic a realistic device 

because, in both simulation works, the distribution of traps is uniform among the energy and TMO 

background. Such assumptions were employed because they can highlight a specific 

phenomenon, but their premises are hard to find in nature. 

Sections 3.1.2 to 3.1.4 explain the trends obtained and reported in Figure 3.2. Three variations 

are studied: (i) the effect of increasing the trap concentration at fixed electron affinity, (ii) the effect 

of enhancing the electron affinity at fixed trap concentration, and (iii) how different electron affinity 

and trap concentrations yield the same work function value. 

 Impact of trap concentration 

To analyse the effect of trap concentration, three set of simulations are performed corresponding 

to  solar cells using MoO3 with the same electron affinity 𝜒 = 4.625 eV, but increasing trap 

concentration. The work function, open circuit voltage and fill factor of these devices are 

presented in Table 3.2. The work function increases with the trap concentration, since as 

displayed in Table 3.1, the WF depends not only on the electron affinity, but also on the trap 

concentration. From the electrical values, it can be observed: (i) these devices exhibit low 

efficiency (< 2.5 %), (ii) the greater the trap concentration, the higher the performance. The band 

diagram of these devices will explain these variations. 

Table 3.2: Parameters of three simulated devices with the same electron affinity and increasing trap concentration. 

𝝌 [𝒆𝑽] 𝑾𝑭 [𝒆𝑽] 𝑵𝒕𝒓𝒂𝒑 [𝒄𝒎−𝟑] 𝑽𝑶𝑪 [𝒎𝑽] 𝑭𝑭 [%] 

4.62 4.84 1012 153 24.9 

4.62 5.12 1018 153 24.9 

4.62 5.31 1020 267 22.3 
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Figure 3.4: Band diagram for fixed low electron affinity (4.625 eV) and increasing trap concentration. 

Focusing first on the two lowest trap concentration values (red and blue curves from the above 

figure), their band diagrams are mostly overlapping. That explains why their VOC and FF values 

are the same. One can also observe the high energy difference between the c-Si valence band 

and the Fermi level. That occurs because there is no bending of the bands at the c-Si interface 

due to the small TMO WF. The consequence of that is a low accumulation of holes. This low 

accumulation explains the deficient VOC and FF obtained. 

When the trap concentration is increased to 1020 cm-3, the band bending at the c-Si interface 

improves considerably (green line in Figure 3.4). The energy difference between the Fermi level 

and the valence band at the c-Si interface is reduced with respect to the two previous cases, 

resulting in a higher hole accumulation. This explains the greater VOC value obtained. However, 

for this device, the FF is slightly reduced. The reason for this is the hindered transport of charge 

carriers, due to the smaller electron accumulation at the MoO3 layer. It can be observed by the 

higher energy difference between the MoO3 conduction band and Fermi level with respect to the 

two cases with lower trap concentration. 

 Impact of electron affinity 

We consider a set of simulations for devices featuring MoO3 with fixed trap concentration but 

varying the electron affinity values. In these devices, the TMO work function increases at the 

same rate as the electron affinity. Their photovoltaic performance parameters are summarized in 

Table 3.3. From a first inspection of the table, it can be seen that there is a considerable 

improvement with increasing electron affinity. This enhancement can be understood by analysing 

the band diagram of these three devices, Figure 3.5. 

Table 3.3: Parameters of three simulated devices with fixed trap concentration and varying electron affinity. 

𝝌 [𝒆𝑽] 𝑾𝑭 [𝒆𝑽] 𝑵𝒕𝒓𝒂𝒑 [𝒄𝒎−𝟑] 𝑽𝑶𝑪 [𝒎𝑽] 𝑭𝑭 [%] 

4.75 4.97 1016 260 45.1 

5.00 5.22 1016 461 58.9 

5.25 5.47 1016 728 84.2 
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Figure 3.5: Band diagram for fixed trap concentration (1016 cm-3) and increasing electron affinity. 

By inspecting the band diagram, one can observe that the energy difference between the valence 

band and the Fermi level at the c-Si surface is reduced as the electron affinity increases. This 

explains the increase in open circuit voltage. However, that is not the only feature that affects VOC. 

The bending at c-Si for 5 and 5.25 eV electron affinity is the same, but there is a considerable 

enhancement in open circuit voltage. This improvement is due to the higher bending not at the c-

Si interface, but at the MoO3/a-Si interface. 

The red (4.75 eV) and blue (5 eV) curves in Figure 3.5 show an energy difference between the 

valence band of a-Si and the conduction band of MoO3. The transport of charge carriers from one 

band to the other is assisted by traps (trap assisted tunnelling). The energy difference is smaller 

for 5 eV electron affinity compared to the 4.75 eV case, which explains the increase in FF. For 

the highest electron affinity (5.25 eV), there is no longer an energy difference between the valence 

band of a-Si and the conduction band of MoO3. Tunnelling can occur without the help of impurities 

(B2BT). This change in transport mechanism explains the greater improvement in fill factor for 

the highest electron affinity, as well as the saturation observed in the photovoltaic parameters in 

Figure 3.2. Once the band levels are aligned, (i) an increase in work function does not imply a 

smaller energy barrier, and (ii) the transport is no longer hindered by the use of traps, therefore 

an increase in trap concentration does not imply a rise in fill factor. 

One more aspect that can be observed on Figure 3.5 is the increase of the energy barrier at the 

MoO3/ITO interface. Such barrier appears due to the difference in work function levels between 

the adjacent layers and the fulfilment of Anderson’s law [52]. This barrier is thin enough and the 

electron accumulation at the TCO is high enough so that the tunnelling transport is not hindered, 

having no effect on the electrical performance. 

 Realistic devices 

During the fabrication of TMO SHJ solar cells, the work function of MoO3 is more commonly used 

as a reference, rather than the electron affinity or the trap concentration. Quite a common 

measured value of MoO3 work function is 5.7 eV [16], [34], [38], [75], [77]–[79]. For that reason, 

this set of solar cells has in common a TMO work function close to 5.7 eV with the objective to 

represent a more realistic structure. The similar work function is achieved by a trade-off between 
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electron affinity and trap concentration: if the electron affinity increases, the trap concentration 

needs to decrease. This trade-off together with the FF and VOC of these devices are shown in 

Table 3.4. 

Table 3.4: Parameters of three simulated devices with similar work function. 

𝝌 [𝒆𝑽] 𝑾𝑭 [𝒆𝑽] 𝑵𝒕𝒓𝒂𝒑 [𝒄𝒎−𝟑] 𝑽𝑶𝑪 [𝒎𝑽] 𝑭𝑭 [%] 

5.00 5.68 1020 556 51.1 

5.25 5.75 1018 728 84.4 

5.50 5.72 1016 729 84.6 

The devices with 5.75 eV and 5.72 eV work function exhibit almost identical photovoltaic 

characteristics. However, the device with a work function of 5.68 eV shows a reduced open circuit 

voltage and fill factor. This decrease in performance cannot be explained by the difference in work 

function. Therefore, the band diagram of these three devices needs to be compared in order to 

understand this behaviour, Figure 3.6. 

 
Figure 3.6: Band diagram for the three devices with similar MoO3 work function. 

Since the three simulated devices have a very similar MoO3 work function, the band bending at 

the a-Si/c-Si interface is equivalent. The blue and green curves, which correspond to the band 

diagrams of the devices with work function of 5.75 and 5.72 eV respectively, are almost 

overlapping. This overlapping explains the similarity between electrical parameters in Table 3.4. 

From the two, the device with 5.72 eV work function shows a higher performance because the 

energy barrier at the a-Si/MoO3 interface is slightly reduced. 

In Figure 3.6, the red curve represents the band diagram of the device with a work function of 

5.68 eV. The most prominent difference in this curve with respect to the other two, is the high 

energy difference between the MoO3 conduction band and the Fermi level. This energy difference 

results in an increased energy barrier at the a-Si/MoO3 interface. This explains the reduced 

performance with respect to the other two solar cells. These three examples show how devices 

with the same work function do not necessarily have the same performance. 
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3.2 Passivating contacts 

As mentioned during the Introduction, a common problem in the solar cells under study is the high 

oxygen reactivity of MoO3. This reactivity results in interfacial reactions with surrounding layers 

[32], which affect the performance of the solar cell [38], [80]–[83]. In the solar cells simulated in 

this study, two interfaces with the TMO are encountered: MoO3/a-Si, and MoO3/ITO. 

Several papers have claimed to encounter issues at the TMO/ITO interface [38], [41], [81], [83]. 

In particular, [38] obtained an S-shape because of barriers encountered at the surrounding 

interfaces of the MoO3. With proper deposition conditions, they were able to get rid of the barrier 

at the transparent conductive oxide interface. However, they could not remove the energy barrier 

at the a-Si/MoO3 interface with adequate deposition conditions. More groups have encountered 

that interface problematic [80]–[82], rather than the TMO/ITO interface, so the focus will be on the 

a-Si/MoO3 interface. 

The objective of this section is to analyse the phenomena that occur on the a-Si/MoO3 interface 

through semiconductor physics simulations. To this purpose, the interface between MoOx and a-

Si is modelled as ultrathin virtual layer with tuneable properties to mimic interface phenomena for 

different analysis, as shown in Figure 3.7. 

 

Figure 3.7: Sketch of the modified HTL of the SHJ solar cells simulated in this work. 

 Effect of SiO2 interlayer 

It is common to find silicon oxide interlayers on the MoO3/a-Si interface of the solar cell devices 

in study [80]–[82], [84]. An example can be observed in the TEM image in Figure 3.8 [82]. This 

thin interlayer is claimed to increase the contact resistivity at the hole contact [81] and to create a 

hole barrier that limits the cell properties at room temperature. The hole barrier is due to the high 

band gap of 9.3 eV of the oxide [85]. 

 

Figure 3.8: TEM image of a MoO3 SHJ solar cell, where the silicon oxide interlayer can be appreciated, from [82]. 
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This section studies the effect that a silicon dioxide (SiO2) interlayer has on the performance of 

the solar cell. To do so, a SiO2 interlayer was placed at the a-Si/MoO3 interface. Table 3.5 displays 

the simulation parameters of this layer. In this section, two set of simulations are performed in 

which the interlayer thickness is increased, in order to find the effect that it has on the performance 

of the solar cell. This thickness increase is performed under a high (6.3 eV) and a low (5.5 eV) 

MoO3 work function scenario. These two values are within the range of measured MoO3 work 

function [34], [86], [87]. 

Table 3.5: Simulated parameters for the SiO2 interlayer. 

 Quantity Value 

SiO2 interlayer Thickness 2 nm unless stated otherwise 

 Electron tunnelling 

mass 

0.32 [56] 

 Hole tunnelling mass 0.4 [56] 

Starting with the devices with 6.3 eV MoO3 work function, the open circuit voltage and fill factor 

as a function of the SiO2 thickness can be observed in Figure 3.9. The graph shows a steady 

open circuit voltage until 2.3 nm thickness is reached. Below that thickness, the insulator layer 

merely acts as an ohmic contact with negligible resistance in our case. Above that thickness, the 

interlayer acts as an effective insulator limiting the current since the charge carriers can no longer 

tunnel through it [88]. 

 

Figure 3.9: Open circuit voltage and fill factor of the solar cell with varying SiO2 interlayer thickness for 𝑊𝐹𝑀𝑜𝑂3 = 6.3 
eV. 

The fill factor of these devices shows a similar behaviour with increasing interlayer thickness, 

although the insulator effect is already visible for 2 nm of SiO2. The decrease in fill factor is better 

understood by looking at the J-V curves of these devices (left graph of Figure 3.10), still under 

the high (6.3 eV) work function scenario. The shape of J-V curves, and consequently the fill factor, 

are barely affected by the increase in SiO2 thickness. 

The J-V curve of a cell without SiO2 interlayer has also been added as reference in the left graph 

of Figure 3.10. Surprisingly, when there is no interlayer, a decrease in open circuit voltage occurs. 

This drop is caused by a leakage current of electrons from a-Si to MoO3. Because of the high 

band gap (9.3 eV) and energy alignment of SiO2, the interlayer acts not only as a barrier for holes, 

but also as a barrier for electrons. Therefore, the SiO2 interlayer ceases the leakage current. 

Overall, as long as the SiO2 interlayer is thinner than 2.3 nm, there is no detrimental effect in the 

performance of the solar cell with a MoO3 WF of 6.3 eV. 
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This phenomena is not in concordance with what is found in literature, where S-shapes are 

generally found in presence of a silicon oxide interlayer [77], [81]. In order to observe this event, 

the previous set of devices has to be simulated under a lower MoO3 WF of 5.5 eV. This value was 

the measured one on [77], where a SiO2 interlayer was spotted. The J-V curves corresponding to 

these devices can be observed in the right graph of Figure 3.10. 

 

Figure 3.10: J-V curve with varying SiO2 interlayer thickness for 𝑊𝐹𝑀𝑜𝑂3 = 6.3 eV (left) and 𝑊𝐹𝑀𝑜𝑂3 = 5.5 eV (right). 

In these curves, the S-shape can be appreciated for SiO2 thicker than 1 nm. This particular shape 

occurs when there are transport issues across the device, which will be explained shortly. The 

open circuit voltage values are also reduced with respect to the higher WF simulated solar cells. 

Moreover, the tunnelling limit for these solar cells has decreased to 1.6 nm, compared to the 

previously mentioned 2.3 nm for the higher work function devices. 

This change in behaviour between the left and right J-V curves from Figure 3.10 is explained by 

a reduction in the charge carrier accumulation on both sites of the interlayer when the work 

function is decreased. As discussed in section 3.1, when increasing the MoO3 work function, the 

c-Si band bending  also increases. Therefore, the energy difference between the Fermi level and 

the valence band at the a-Si/c-Si interface decreases. This implies a greater hole accumulation 

on the hole transport layer. This higher hole accumulation facilitates the transport through the 

SiO2 interlayer. Therefore, the transport across the hole contact will be more hindered when the 

work function is 5.5 eV, because of the lower hole accumulation with respect to the 6.3 eV case. 

This effect is observed in the J-V curves through a lower VOC and an S-shape. 

To summarize, in this section two set of solar cells with increasing SiO2 interlayer thickness have 

been simulated. The results of the first set of simulations, which employed a MoO3 work function 

of 6.3 eV, showed that the SiO2 interlayer had no detrimental effect on the conversion efficiency 

as long as its thickness was below 2.3 nm. The second set, which employed a lowered MoO3 

work function of 5.5 eV, displayed S-shapes in the J-V curves for thicknesses greater than 0.8 

nm. Therefore, the detrimental effects of the SiO2 interlayer can be avoided with a MoO3 work 

function of 6.3 eV, and an interlayer thickness below 2.3 nm. 

This conclusion is novel among literature where solar cells with an interlayer with thickness from 

1.6 to 2.5 nm have been fabricated [80]–[82]. These layers are thicker than the charge carrier 

tunnelling threshold (2 nm) [88] and then the tunnelling limit found in this thesis (≈2.3 nm). This 

fact suggests that an alternative transport mechanism may be present. [77] claims that the silicon 

oxide interlayer found in the interface contains a certain amount of oxygen deficiencies. These 

deficiencies create defect levels inside the material, being able to assist the tunnelling of holes 
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through the silicon oxide interlayer. Therefore, the charge carriers are able to tunnel energy 

barriers thicker than the tunnelling limit through trap assisted tunnelling. These traps are not 

implemented in the simulated solar cells from this work. The holes need to tunnel the SiO2 

interlayer by direct tunnelling, instead of TAT. This is the reason why the thickness limit found in 

our simulations is thinner than the one reported in literature. 

 Work function attenuation 

Once seen the effects of the SiO2 interlayer, this subsection focuses on the other phenomenon 

that occurs at the interface between MoO3 and a-Si. It has been observed that the TMO work 

function is decreased close to the a-Si surface, and it has usually been attributed to an interface 

dipole [10], [81]. This dipole is claimed to reduce band bending at the c-Si surface. The objective 

of this subsection is to understand the effects that this attenuation in work function has on the 

performance of the solar cells. 

The first step is to know where this attenuation in work function ∆ comes from. [77] explored the 

three contributions to the attenuation, all of them related to the oxygen deficiency of MoO3: 

1. During deposition, the TMO layer is stoichiometric, i.e. MoO3. All the molybdenum cations 

are Mo6+. Because of the high reactivity, there will be oxygen deficiency on the layer. As 

a consequence, some molybdenum atoms will be reduced to Mo5+ and Mo4+. This increase 

of low electronegativity cations results in a decrease of the work function of the material 

[86]. 

2. The oxygen vacancies act as n-type dopants, which have energy very close to the Fermi 

level. When these states ionize, they rise the Fermi level of the MoO3, decreasing its work 

function as well [86]. 

3. At the boundary between different materials, a local separation of charges occurs over a 

very narrow distance [89]. This is described as an interface dipole. In the case of MoO3, 

this dipole is especially important because of the donor states, which are negative trap 

charges accumulated on the MoO3 surface [77]. 

The three contributions are summarised in Equation 3.1:  

∆= ∆𝑊𝐹𝑐𝑎𝑡𝑖𝑜𝑛 + ∆𝑊𝐹𝑑𝑜𝑛𝑜𝑟 + ∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒 (3.1) 

We are interested in studying the effect that ∆ has on the performance of the solar cell. The work 

function attenuation is implemented through an interface dipole, while neglecting cation and donor 

components. Therefore, the three components were introduced through the dipole work function 

attenuation. A dipole layer was placed at MoO3/a-Si interface, following the simulation approach 

in [90]. The dipole had the same material characteristics as a-Si. On each of the adjacent 

surfaces, a fixed interface charge 𝜎𝐷𝑃 is placed. The charge concentration is the same on both 

sides, but opposite in sign. 

Depending on which surface the negative charge concentration is, the sign of the dipole is 

negative or positive. The convention states that ∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒 is positive when the vacuum energy is 

raised outside of the material [89]. This implies that the dipole moment as a vector points from 

MoO3 towards a-Si. In the studied devices, the dipole was found to be negative [10], hence the 

dipole moment points from a-Si towards the MoO3 layer. This implies a linear drop in potential 

energy from the TMO to the passivating layer. In order to achieve this, the negative charge should 

be located closer to the MoO3 layer. The configuration of the interface dipole is sketched in Figure 

3.11. 
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Figure 3.11: Sketch of the interface dipole between the MoO3 and the neighbouring semiconductor. 

The interface charge 𝜎𝐷𝑃 determines the interface dipole moment 𝑝 through Equation 3.3 [89]. 𝑄 

is the charge of the dipole, which is composed of the elementary charge 𝑞 multiplied by the 

interface charge and by the area that each dipole molecule occupies 𝐴. The area is assumed to 

be a square of 0.5 nm × 0.5 nm [90]. 𝑑 is the thickness of the dipole layer, set to 0.5 nm. 

𝑝 = 𝑄 𝑑 =  𝑞 𝐴 𝜎𝐷𝑃 𝑑 (3.3) 

Through simulations, the magnitude of the work function attenuation can be calculated for 

different dipole moments. Figure 3.12 shows the graphical relation between the two magnitudes. 

 

Figure 3.12: Work function attenuation as a function of the dipole moment. 

The effect of the work function attenuation was studied by increasing the dipole moment in order 

to observe the evolution in the solar cell performance. Three different values were simulated: 

0.006, 0.6 and 6 D, corresponding to interface charges explored in [90]. The MoO3 work function 

was set to 6.3 eV. The J-V curves and corresponding band diagrams for these three devices can 

be observed in Figure 3.13. The J-V curve of a device without dipole has also been plotted as a 

reference. 
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Figure 3.13: J-V curves (left) and band diagram (right) for the solar cells with different dipole moments. The drop 
across the dipole layer is represented in the band diagram, pointing out the magnitude of the work function 

attenuation. 

As can be observed on the left graph in Figure 3.13, for the two smallest dipole moment values, 

the J-V curves are basically overlapping. Therefore, for dipole moments smaller than 0.6 D, the 

dipole has no effect on the J-V curve of the solar cell if the TMO work function is of 6.3 eV. In the 

corresponding band diagrams from the right graph in Figure 3.13, the energy drop across the 

dipole layer can be observed. For the two smallest values, it can be seen that the drop is barely 

noticeable. The band diagrams also show barely no energy difference between the Fermi level 

and the valence band at the c-Si/a-Si. This implies that the hole accumulation is such that the 

transport is not affected. 

When the dipole moment is increased to 6 D, a significant effect on the J-V curves can be 

observed. The corresponding band diagram (red curve) shows an energy drop across the dipole 

of almost 1 eV. This fact reduces the energy band bending of the c-Si, therefore increasing the 

energy difference between the Fermi level and the valence band at the c-Si interface. This implies 

that there is a lower accumulation of holes with respect to the previous smaller dipole moments. 

This fact results in the reduction of the open circuit voltage of the solar cell. 

To summarize, in this section, we have presented the three components of the work function 

attenuation. We have included this attenuation in drift diffusion simulations through an interface 

dipole. We have observed that for dipole moments smaller than 0.6 D, equivalent to work function 

attenuations Δ ≤ 0.1 eV, there are no detrimental effects on the performance of the solar cell. 

However, for a dipole moment of 6 D (Δ ≈ 0.8 eV) a considerable decrease in open circuit voltage 

is found. In order to prevent the detrimental phenomena, we should keep Δ ≤ 0.1 eV. The next 

section presents possible strategies on how to achieve this reduction of the work function 

attenuation components. 

 Reduction of the work function attenuation 

This section focuses on the reduction of Δ. To do so, it is necessary to explore deeper the 

components of the work function attenuation. 

The cation ∆𝑊𝐹𝑐𝑎𝑡𝑖𝑜𝑛 and donor ∆𝑊𝐹𝑑𝑜𝑛𝑜𝑟 attenuations were characterized in [86]. Greiner et al. 

demonstrate that these two terms depend on the oxygen deficiency (x in MoO3-x), and that they 

are greater in absolute value as the oxygen deficiency increases. The reduction is caused by the 
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interactions with the adjacent material [86], hence the first nanometres of deposited material will 

be more oxygen deficient [41]. As MoO3 is being deposited, the interfacial reactions will decrease, 

therefore the material will be more stoichiometric. This relation between oxygen deficiency and 

TMO thickness makes the cation and donor elements dependent on the thickness of the layer 

∆𝑊𝐹𝑐𝑎𝑡𝑖𝑜𝑛(𝑡), ∆𝑊𝐹𝑑𝑜𝑛𝑜𝑟(𝑡). These components will be smaller for thinner layers than for thicker 

ones [16]. 

Since the oxygen reactivity of MoO3 is high, the attenuation is hardly inevitable. By adding the 

constant work function of stoichiometric molybdenum trioxide 𝑊𝐹𝑀𝑜𝑂3 to these two components, 

a non-stoichiometric MoOx work function dependent on the thickness of the layer 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) can 

be defined. This relation is shown in Equation 3.4. 

𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) = 𝑊𝐹𝑀𝑜𝑂3 + ∆𝑊𝐹𝑐𝑎𝑡𝑖𝑜𝑛(𝑡) + ∆𝑊𝐹𝑑𝑜𝑛𝑜𝑟(𝑡) (3.4) 

The MoOx work function as a function of thickness has been several times characterized in 

literature [25], [34], [75], [77], [86], [87]. However, the values obtained differ depending on the 

study. The reason for this variation is that the degree of reduction of MoO3 depends on the 

oxidation potential of the adjacent layer [16]. Therefore, the work function of MoOx depends on 

the configuration of the HTL. Moreover, the deposition conditions and the contact with air of the 

TMO affect its work function [41]. Overall, each solar cell built employing MoOx as hole transport 

layer will have a different shape of the work function as a function of thickness. This explains the 

different values found in literature, illustrated in Figure 3.14. 

 

Figure 3.14: Literature values of MoOx work function as a function of thickness. The values used for the simulations in 
this work are also represented with black crosses. 

The graph in Figure 3.14 shows that the thinner the layers, the smaller the work function. This is 

because the donor and cation components are greater closer to the interface, because the first 

nanometres deposited are more oxygen deficient. Overall, the work function attenuation due to 

the cation and donor components can be reduced by increasing the thickness of the TMO layer.  

Regarding the dipole component of the work function attenuation, its relation with the work 

function of MoOx can be found in Equation 3.5 [10]. The thickness dependencies for all 

components have been added to it.  

𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) − 𝑊𝐹𝑎−𝑆𝑖 = 𝑞𝑉𝑏𝑖(𝑡) − ∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒(𝑡) (3.5) 
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In order to be able to reduce the dipole attenuation, we need to understand this equation and the 

dependency with TMO thickness of its components.  

The dependency of the MoOx work function 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) with thickness is sketched in Figure 3.14; 

an increase in work function as the layer thickens. 𝑊𝐹𝑎−𝑆𝑖 does not depend on the thickness of 

the TMO. The built-in voltage 𝑉𝑏𝑖(𝑡) will have the same dependency with the TMO thickness as 

𝑊𝐹𝑀𝑜𝑂𝑥(𝑡), until a maximum built-in voltage is reached 𝑉𝑏𝑖,𝑚𝑎𝑥. The built-in voltage has a 

maximum limit because the energy bands cannot bend indefinitely [82]. Once that limit is reached, 

if the work function of the TMO increases, an interface dipole appears ∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒(𝑡). 

Three cases can be found in Equation 3.5 as a function of the TMO thickness, which are 

graphically distinguished in Figure 3.15. For thin layers, the built-in voltage will have the same 

thickness dependency as 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) and will increase as the layer thickens. At a certain thickness 

𝑡𝑜𝑝𝑡, the built-in voltage will reach its maximum 𝑉𝑏𝑖,𝑚𝑎𝑥. From that thickness on, the built-in voltage 

will be constant, and an interface dipole will be formed at the interface ∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒(𝑡). The three 

cases can be distinguished in Equation 3.6. 

𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) − 𝑊𝐹𝑎−𝑆𝑖 = {

𝑞𝑉𝑏𝑖(𝑡),   𝑡 < 𝑡𝑜𝑝𝑡

𝑞𝑉𝑏𝑖,𝑚𝑎𝑥,    𝑡 = 𝑡𝑜𝑝𝑡

𝑞𝑉𝑏𝑖,𝑚𝑎𝑥−∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒(𝑡),    𝑡 > 𝑡𝑜𝑝𝑡

(3.6) 

 

Figure 3.15: Graphical explanation of Equation 3.6 where the three cases can be distinguished. 

This equation was numerically implemented in order to study realistically what is the effect of the 

MoOx thickness variation. A set of devices was simulated with increasing TMO thickness. For 

each thickness, the work function and dipole moment were tuned following Equation 3.6. This 

tuning is illustrated in Figure 3.16.  
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Figure 3.16: Graphical determination of ∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒(𝑡) for the chosen 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) in this work.  

There are some unknowns in this equation. First of all, 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) has shown a great variation in 

Figure 3.14. The values chosen for the simulation are sketched in Figure 3.14 in black crosses, 

and in Figure 3.16. 𝑊𝐹𝑎−𝑆𝑖 was calculated from the simulations to be 4.8 eV. 𝑉𝑏𝑖,𝑚𝑎𝑥 was found 

to be 0.87 V, the limit value for which c-Si is a non-degenerate semiconductor. Finally, 

∆𝑊𝐹𝑑𝑖𝑝𝑜𝑙𝑒(𝑡) was determined by Equation 3.6, and tuned through the dipole moment. 

Considering the chosen 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡), it can be observed from Figure 3.16 that for all thicknesses, 

the band bending has reached its theoretical maximum, 𝑉𝑏𝑖,𝑚𝑎𝑥. Therefore, as the transition metal 

oxide layer thickens, the dipole moment will increase. This simulation corresponds to the third 

case of Equation 3.6,  𝑡 > 𝑡𝑜𝑝𝑡 (see Figure 3.15). The results of open circuit voltage and fill factor 

as a function of thickness for this set of devices are shown in Figure 3.17. 

 

Figure 3.17: Open circuit voltage and fill factor as a function of MoOx thickness with the dipole implemented. 

The open circuit voltage and fill factor graphs show that there is a decrease in performance as 

the MoOx thickens. This is attributed to the just mentioned increase in dipole moment with the 

TMO thickness, which results in a lower performance as explained in section 3.2.2. 

In this curve, the sudden drop in open circuit voltage and fill factor between 4 and 5 nm is an 

artefact of the simulation motivated by a sudden increase in electric field. This fact creates a 

suddenly larger leakage current of electrons from a-Si to MoOx. This circumstance is out of the 

scope of this thesis, therefore its effect is not studied. 
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 SiO2 and dipole 

Once explored the impact of the dipole and the SiO2 interlayer, the next step is to observe the 

effect of the two events together. They are both likely to occur in fabricated devices, hence they 

should be evaluated if we want to obtain realistic trends from fabricated devices. 

The set of simulations from this section consists on solar cell devices including both a silicon 

dioxide interlayer and an interface dipole. The location of the dipole was set in the SiO2/a-Si 

interface, since according to literature the dipole layer is on the silicon surface [32], [81]. The TMO 

thickness for these devices was increased as before, consequently tuning the MoOx work function 

and the dipole moment. The set of solar cells were simulated under two different SiO2 thicknesses, 

1.5 and 1.8 nm, in order to analyse the effect that the SiO2 interlayer has on the open circuit 

voltage and fill factor, following the approach from section 3.2.1. These two electrical parameters 

can be observed in Figure 3.18. The characteristics for the devices without SiO2 interlayer are 

also plotted as reference. 

  

Figure 3.18: Open circuit voltage (left) and fill factor (right) of the solar cells with dipole and different SiO2 thicknesses 
as a function of MoOx thickness. 

Aa summary, the effect of MoOx thickness before analysing the trends from Figure 3.18. The 

increase in TMO thickness has two effects, a positive and a negative one. First, an increase in 

work function. As explained in section 3.1, a higher work function is beneficial because the energy 

difference between the MoO3 conduction band and a-Si valence band decreases. Second, an 

increase in dipole moment. The drop in energy across the dipole interlayer increases with the 

dipole moment. As seen in the band diagram in Figure 3.13, a higher energy drop results in a 

lower hole accumulation in c-Si/a-Si interface, therefore a lower performance. 

The open circuit voltage, left graph in Figure 3.18, slowly decreases as the MoOx layer thickens. 

This decrease is due to the higher effect of the dipole moment, as explained in section 3.2.2. 

Figure 3.13 shows a drop in open circuit voltage with the increase in dipole moment. 

The fill factor, right graph in Figure 3.18, experiences a bell shape, which represents the trade-off 

between an increase in work function, and an increase in dipole as the TMO layer thickens. For 

thin layers (3-4 nm), the work function is low. The transport is hindered because of the high energy 

difference between the MoO3 conduction band and a-Si valence band, section 3.1. For thick layers 

(7-9 nm) the transport is hindered because of the low hole accumulation due to the increase in 

dipole moment (section 3.2.2). This lower hole accumulation at c-Si/a-Si interface, hinders the 

tunnelling across the SiO2 interlayer, as explained in section 3.2.1, reducing the fill factor. The 

trade-off between a low work function and a high dipole moment is found for thicknesses around 

5-6 nm. The optimum thickness 𝑡𝑜𝑝𝑡 for this set of devices is within that range. 
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Comparing the simulations with and without interlayer, the drop in VOC and FF between 4 and 5 

nm thicknesses does not occur anymore. The addition of the SiO2 interlayer creates a barrier for 

the electrons at the a-Si surface, blocking the leakage current that decreases the performance. 

It is necessary to stress that the results obtained here strongly depend on the dependency of the 

MoOx work function with thickness. A different 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) may yield distinct trends and a new 

optimum TMO thickness. For this study, 𝑊𝐹𝑀𝑜𝑂𝑥(𝑡) is set as Figure 3.16, in order to obtain similar 

trends to the ones reported in fabricated devices [33] [81]. 

3.3 Maximizing the conversion efficiency 

The objective of this section is to provide guidelines to the fabrication process of MoOx SHJ solar 

cells in order to improve the conversion efficiency. To do so, the model developed in the previous 

section will be used to reproduce the values obtained for state-of-the-art solar cells. Later a brief 

study on light management for these devices is performed. Finally, this section ends by 

enumerating the guidelines towards the maximum performance. 

 State of the art trends 

The highest efficiency on MoO3 SHJ solar cells so far of 23.5% was recently achieved by Dréon 

[33]. There, a study on the effect of the thickness of the MoO3 and of the passivating a-Si layers 

is done. The best performance is obtained for a solar cell with 4 nm of MoO3 and 6 nm of a-Si 

passivating layer. This subsection will simulate these structures in order to highlight crucial steps 

during the fabrication of solar cells. 

In order to perform a realistic fitting, the simulated solar cells include the dipole together with 2 

nm of SiO2 interlayer. The thickness of the front TCO was reduced to 70 nm, and the passivating 

amorphous silicon layer was increased to 6 nm. The TMO thickness was set to 4, 6 or 9 nm 

depending on the simulated solar cell. The MoOx work function and dipole moment were tuned to 

mimic the measured open circuit voltage and fill factor. The rest of material characteristics and 

thicknesses remained as stated in the previous section. 

The fitted devices were the ones with 6 nm thickness of a-Si and TMO thickness of 4, 6 and 9 

nm. Additionally, the best solar cell fabricated in the study was included. The results are shown 

in Table 3.6. For each device, the first row in italics represents the measured open circuit voltage 

and fill factor, while the second one shows the best fitting obtained. The fitting values coincide 

with a percentage deviation of maximum 1.1%. 

Table 3.6: Characteristics of the solar cells fabricated by Dréon [33] and their fittings. 

MoO3 thickness  𝑾𝑭𝑴𝒐𝑶𝟑 [eV] ∆ [eV] p[D] VOC [mV] FF [%] 

4 nm (best cell) Experimental -- -- -- 734 81.8 

 Fitting 5.93 0.06 0.4 732 81.8 

4 nm (average) Experimental -- -- -- 725 78.9 

 Fitting 5.87 0.23 1.8 722 78.6 

6 nm (average) Experimental -- -- -- 726 79.0 

 Fitting 5.89 0.23 1.8 726 79.6 

9 nm (average) Experimental -- -- -- 724 78.0 

 Fitting 5.90 0.32 2.5 716 78.3 
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Focusing first on the average solar cells, the results are the expected ones. An increase in both 

work function and dipole moment is observed, which is in concordance with the previous section. 

The high work function value, which is barely negligible to the thickness variation, shows an 

excellent treatment of the TMO layer. 

For the best solar cell, an improvement in both the work function and dipole moment can be 

observed. The best solar cell achieves a high work function for a thin layer, the main key 

characteristics to a great performance, as has been repeated along this work. Moreover the dipole 

moment is smaller than 0.6 D, which was shown in section 3.2.2 to have no effect on the 

performance of the solar cell. This boost in improvement could indicate that the best solar cell 

does not follow the same processing as the average ones. 

A difference between these fittings and the fabricated solar cells is the interlayer width. The STEM 

image performed in [33] shows an amorphous silicon oxide layer of thickness greater than 2 nm. 

As already mentioned in section 3.2.1, the thicker oxide layer than the tunnelling limit is explained 

by the amorphous character of the layer, which inserts gap states which help the transport. 

 Light management 

This section explores light management in SHJ MoO3 solar cells. The solar cells simulated in this 

section include a textured bulk and front top layers, in order to mimic fabricated devices. The 

objective of texturing is to enhance the coupling of light. The parameter that is mostly affected by 

this technique is the short circuit current. 

The simulation of a textured solar cell is a highly computationally expensive process. Simulations 

with several front layers yield many convergence problems. However, not considering 

texturization may dismiss the obtained short circuit current. For that reason, this subsection 

explains how the current is affected by the thickness of the different front layer parameters. 

Although these results refer to a specific device, the trend obtained is general for all the previously 

simulated solar cells. 

The simulated device has the structure of Figure 2.4, but with the top layers texturized. Simulation 

details on the texturization approach can be found in [91]. The pitch and bulk thickness are 

reduced to 100 and 200 µm respectively in order to decrease the computational time. The width 

of the top TCO was kept to 70 nm, as in the previous simulation, while the thicknesses of the 

other two front layers, MoO3 and a-Si, were varied. The rest of parameters were left unaltered. 

The short circuit current density (JSC) results can be observed in Figure 3.19. 

 

Figure 3.19: Short circuit current of textured solar cells under different front layer thicknesses. 
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The thinner the front layers are, the higher is the current density. This improvement on current is 

different for MoO3 layers than for amorphous silicon ones. The highest possible short circuit 

current is achieved with 10 nm of TMO and 4 nm of a-Si. If the thickness of the passivating layer 

is increased by only 2 nm, a considerable drop of 0.34 mA/cm2 can be observed. On the other 

hand, a reduction of MoO3 thickness by 2 nm, results in a maximum gain in photocurrent of 0.07 

mA/cm2, almost 5 times smaller than the rise when the a-Si layer is reduced by the same width. 

It is not possible to recover the initial short circuit current value by only decreasing the thickness 

of the oxide layer. 

This phenomenon is due to the difference in energy band gaps between materials: 3 eV for the 

transition metal oxide and 1.7 eV for the passivating layer. Here the advantage of the use of 

transition metal oxides with respect to amorphous silicon layers can be appreciated. However, 

the MoO3 layer still suffers from parasitic absorption due to the defect states [81]. 

This trend is in concordance with the one shown in [33]. Although in those solar cells two 

additional layers were a part of the front HTL, these are very thin (0.5 nm for the dipole), or with 

high energy band gap, hence low absorption (9 eV for the SiO2 interlayer). Therefore, it is possible 

to extrapolate the results with small relative error. 

 Towards the maximum performance 

The objective of this subsection is to provide guidelines for the fabrication of the studied solar 

cells. From the simulations performed in this chapter, several key points can be extracted. 

- From the SiO2 study performed in subsection 3.2.1, it has been shown that the interlayer can 

have a beneficial effect if its thickness is kept under 2 nm and the MoO3 work function is 

around 6.3 eV. Although it has also been stated that in fabricated devices the composition of 

this interlayer is not the same as the one simulated here, these results may still be valid. 

- In subsection 3.2.4, we have observed a trade-off between an increase in work function, and 

an increase in dipole moment as the TMO layer thickens. Thin layers result in low work 

functions, while thick layers result in high dipole moments. The recommendation is to keep 

the thickness of the TMO layer within 5 to 6 nm, which shows the best trade-off between the 

two phenomena. 

- The work function attenuation could also be reduced by lowering the cation and donor 

components. These two contributions are related to the oxygen reduction of MoO3. Therefore, 

in order to lower the cation and donor components, it is necessary to avoid the reduction of 

the oxide. [92] showed that it can be achieved by depositing a thin layer of non-reactive 

material between the MoO3 and the passivating layer, such as gold. In order to test its effect, 

the devices should be fabricated. 

- An alternative to the thin layer of gold would be to realize an interface treatment to prevent 

the reduction of the TMO. The objective would be to achieve a negligible interface dipole while 

keeping a high work function. 

- Regarding light management considerations, the thinner the passivating layer is, the better. 

However, in practice this statement is not so straight forward since there is a minimum a-Si 

thickness above which good junction properties are assured [93]. 

All these points can be used for fabrication groups in order to improve the performance of the 

solar cells in study. Proper simulation of all these phenomena by Sentaurus is challenging, but 

an estimation of the photovoltaic parameters can be performed assuming ideal conditions. 

The highest performance was achieved by a solar cell with 4 nm thickness of MoO3 and a-Si, with 

no dipole, 2 nm of SiO2, and a TMO work function of 6.3 eV. The remaining parameters and 
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thicknesses were left unaltered. Under those conditions, the flat device yielded an open circuit 

voltage and fill factor of 732 mV and 84.5%, respectively. The short circuit current was extracted 

from textured simulations, assuming that the just mentioned photovoltaic parameters are 

unaltered by texturing. The combination of layer thicknesses resulted in a short circuit current of 

39.3 mA/cm2. With these three values, the efficiency of the solar cell was of 24.3 %. 

Table 3.7 shows the comparison of those values with the record SHJ solar cell both-side-

contacted [1].   

Table 3.7: Comparison between the best fabricated SHJ solar cell with the best simulated solar cell in this work. 

 JSC [mA/cm2] VOC [mV] FF [%] Efficiency [%] 

This work 39.3 732 84.5 24.3 

Adachi et al. [1] 40.8 738 83.5 25.1 

The short circuit current could be further increased by optimizing the ITO thickness. Considering 

the refractive indexes, an optimum thickness for the TCO which decreases the front reflectance 

can be found. The electron transport layer at the back has not been optimized either, where some 

parasitic absorption and transmittance may be avoided. 

The open circuit voltage and fill factor are very similar. Considering that they are highly dependent 

on each other, increasing one parameter will most likely come at expense of decreasing the other 

one. There may still be some room for improvement in the electron transport layer, but it is not 

considered because it is not the subject of this work. 

To summarise, if all the improvements proposed here were achieved in a fabricated device, the 

result would be a competitive solar cell with SHJ counterpart. 

3.4 Nature of dipole 

Even though it is known that the appearance of the dipole is due to the interfacial reactions that 

occur on the a-Si/MoO3 interface, the exact reason why it happens is not clear. In order to know 

it, it is necessary to understand all the interactions, chemical bonding and charge rearrangement 

occurring between two materials. 

All this information is stored in the quantum wave functions [94]. To obtain them, the Schrödinger 

equation needs to be solved, since it contains all the information of a given system. This equation 

can be solved exactly for a quantum well or hydrogen atom, but it already becomes extremely 

complex when solving a very small atom such as lithium. For a N-body system, such as the one 

obtained in the a-Si/MoO3 interface, the Schrödinger equation turns to be intractable. 

Approximations need to be done if the interface between materials is to be studied. Here arises 

the need of density functional theory (DFT), a computational method for obtaining an approximate 

solution to the Schrödinger equation of a many body system. The fundamentals of this method 

as well as the computational details will be discussed in Chapter 4. 
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Atomistic background 

 
As already mentioned in the last chapter, density functional theory (DFT) is a computational 

method that approximately provides a solution of Schrödinger equation. This chapter is structured 

as follows. Section 4.1 explains briefly the fundamentals of DFT. Section 4.2 shows details about 

the computational implementation of these fundaments in the numerical tool. The next section 4.3 

explains approaches on how to model surfaces and interfaces in ab initio calculations. Finally, 

section 4.4 introduces the crystalline structures of the simulated materials. 

Note that all the formulas in this chapter are in atomic units. 

4.1 Density functional theory fundamentals 

Density functional theory (DFT) is a computational modelling method with the purpose of 

investigating the electronic structure of many-body systems [95]. The main objective is to compute 

the wave function, which contains all the relevant information of a quantum system. To do so, it 

solves approximately the Schrödinger equation, which is otherwise unsolvable. It is the most 

widely applied ab initio method used for real materials in physics, chemistry and materials 

science. 

Although it is an estimated method, very good approximations are known which work well for 

many systems [96]. This procedure allows to provide a reasonable balance between 

computational efficiency and accuracy. 

As stated above, the objective of density functional theory is to be able to solve the Schrödinger 

equation for a many-body problem. Such a problem usually represents a material, which is mainly 

composed of electrons with positions 𝑟n, and ions that form the lattice, located on 𝑅⃗⃗n. The 

Schrödinger equation of this system is [95]: 

𝑖
𝜕

𝜕𝑡
𝜙 = 𝐻̂𝜙 (4.1) 

Where 𝑖 =  √−1, 𝐻̂ is the Hamiltonian of the system, and 𝜙 = 𝜙(𝑟1, 𝑟2, … ; 𝑅⃗⃗1, 𝑅⃗⃗2, … ; 𝑡) is the wave 

function. The wave function (𝜙) is a function of the coordinates of all the electrons and ions and 

dependent on time (𝑡). By simplification of notation, it is represented as: 

𝜙 = 𝜙(𝑟1, 𝑟2, … ; 𝑅⃗⃗1, 𝑅⃗⃗2, … ; 𝑡) = 𝜙(𝑟, 𝑅⃗⃗; 𝑡) (4.2) 

The Hamiltonian of the system is made of nuclear (𝑅 sub index), electronic (𝑟) and mixed (𝑟, 𝑅) 

kinetic (𝑇̂) and potential (𝑉̂) terms: 
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𝐻̂ = 𝑇̂𝑅 + 𝑇̂𝑟 + 𝑉̂𝑅 + 𝑉̂𝑟 + 𝑉̂𝑟,𝑅 (4.3) 

The solution of Schrödinger equation is analytical only for simple systems such as a hydrogen 

molecule or a quantum well. In order to present a solution for complex molecules, numerical 

approximations are typically used. 

 Born-Oppenheimer approximation 

The Born-Oppenheimer approximation [97] allows to separate the abovementioned problem into 

two independent ones: (i) one for the electrons and (ii) one for the ions of the lattice. This is 

motivated by the great difference in mass between the nuclei and the electrons, exceeded by a 

factor of 1000 or more [98]. This implies that the kinetics of the electrons are substantially faster 

than those of the nuclei. Therefore, from an electron’s point of view, the nuclei is static, simplifying 

significantly the electronic Hamiltonian. 

From that point of view, the many-body wave function 𝜙 of the system can be separated into 

nuclear wave function components 𝜒𝑛(𝑅⃗⃗; 𝑡), and electronic wave functions 𝜓𝑛(𝑟, 𝑅⃗⃗) [95]: 

𝜙(𝑟, 𝑅⃗⃗; 𝑡) = ∑ 𝜒𝑛(𝑅⃗⃗; 𝑡)𝜓𝑛(𝑟, 𝑅⃗⃗)

𝑛

(4.4) 

This wave function is inserted into the Schrödinger equation and projected onto the electronic 

basis of one electron 𝜓𝑚(𝑟, 𝑅⃗⃗). Until now, no approximations have been done and this is valid for 

all general cases. The next step performs the first two: neglect the cross terms that appear, and 

choose the adiabatic representation, where the electronic wave function depends only 

parametrically on the nuclear positions: 𝜓𝑚(𝑟, 𝑅⃗⃗) = 𝜓𝑚(𝑟; 𝑅⃗⃗). Applying these two facts, the 

equations for the electronic and ionic basis can be separated into: 

1. Electron-structure problem: regard the nuclei as fixed in space and solve for the electronic 

degrees of freedom. 

𝐻̂𝑒𝜓𝑚(𝑟; 𝑅⃗⃗) = 𝜖𝑚(𝑅⃗⃗)𝜓𝑚(𝑟; 𝑅⃗⃗) (4.5a) 

𝐻̂𝑒 = 𝑇̂𝑟 + 𝑉̂𝑟 + 𝑉̂𝑟; 𝑅 (4.5b) 

2. Nuclear problem: solve for the ionic degrees of freedom. 

𝑖
𝜕

𝜕𝑡
𝜒𝑚(𝑅⃗⃗; 𝑡) = [𝑇̂𝑅 + 𝑉̂𝑅 + 𝜖𝑚(𝑅⃗⃗)]𝜒𝑚(𝑅⃗⃗; 𝑡) (4.6) 

Through this separation, the ion-ion interaction can be solved classically. All terms are known, 

but not  the electronic energy 𝜖𝑚(𝑅⃗⃗), requiring the electronic problem to be solved first. Therefore, 

from now on the focus will be shifted to only the electronic wave functions, 𝜓𝑚(𝑟; 𝑅⃗⃗) = 𝜓𝑚(𝑟). 

 Hohenberg-Kohn theorems 

The Hohenberg-Kohn theorems [99] reformulate the many-body problem in terms of the density, 

but do not actually solve it [95]. When doing this, the dimensionality is reduced from 3N for 𝜓𝑚(𝑟) 

(being N the number of electrons in the system) to 3 for the ground state density 𝑛0(𝑟). The two 

theorems are: 

1. For any electronic system in an external potential 𝑣𝑒𝑥𝑡(𝑟), the ground state density 𝑛0(𝑟) 

determines uniquely the external potential safe for a constant [96]. 
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Once known the ground state density and the external potential, the Hamiltonian of the 

system can be found. In particular, the functional of the energy 𝐸[𝑛(𝑟)], where 𝑛 is the 

electronic density. With it, the wave function for all states can be determined, which in turn 

allows to define the properties of the system. 

𝑛0(𝑟) ⟶ 𝑣𝑒𝑥𝑡(𝑟) (except for a constant) 

𝑛0(𝑟) ⟶ All properties 

The ground state density represents the ground state wave function 𝜓0(𝑟), which is the 

state with the lowest energy. Density functional theory is a ground state theory. 

The external potential is generally the potential felt by the electrons which is formed by 

the nuclei with atomic number 𝑍𝑛, although it can include additional terms.  

𝑣𝑒𝑥𝑡(𝑟) = − ∑
𝑍𝑛

𝑟 − 𝑅⃗⃗𝐼𝑛

(4.7) 

 

2. The ground state density 𝑛0(𝑟) is determined by the global minimum value of the energy 

functional 𝐸0[𝑛0(𝑟)]. 

𝐸0[𝑛0(𝑟)] = min
𝑛(𝑟)

𝐸[𝑛(𝑟)] (4.8) 

Therefore, the functional 𝐸[𝑛] alone is sufficient to determine the exact ground state 

energy and density. Excited states must be determined by other means. 

In summary, the first theorem states that the ground state density alone determines the properties 

of the system, while the second one explains how to obtain the ground state energy and density. 

For convenience, the energy functional is divided into a universal and a system dependent part: 

𝐸[𝑛(𝑟)] = 𝐹[𝑛(𝑟)] + ∫ 𝑣𝑒𝑥𝑡(𝑟)𝑛(𝑟)𝑑𝑟 (4.9) 

The universal functional 𝐹[𝑛(𝑟)] contains the individual contributions of kinetic energy 𝑇[𝑛(𝑟)], 

classical Coulomb interaction, and the non-classical self-interaction correction 𝐸𝑥𝑐
𝑡𝑟𝑢𝑒: 

𝐹[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] +
1

2
∬

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐸𝑥𝑐

𝑡𝑟𝑢𝑒 (4.10) 

This functional is an unknown due to the self-interaction correction term, but depends only on the 

electron density. Therefore by knowing the electron density and the external potential, the whole 

system is defined. 

Although the Hohenberg-Kohn theorems are extremely powerful, they do not offer a way of 

computing the ground-state density of a system in practice. To do so, the Kohn-Sham equations 

need to be applied. 

 Kohn-Sham equations 

The Kohn-Sham equations [100] replace the original many-body problem with an auxiliary system 

of non-interacting particles. The main assumption is that the ground state density of an interacting 

system is equal to that of some non-interacting system that is exactly soluble [95]. All the difficult 

parts (exchange and correlation 𝐸𝑥𝑐
𝑡𝑟𝑢𝑒) are included in some approximate functional of density. 

This non-interacting system considers the electrons as independent particles moving in an 

effective potential, rather than the interaction of the electron with all the other electrons. This effect 

is illustrated in Figure 4.1. Although the wave-functions are approximate, as long as the ground 

state density and energy are the same as the exact ones, the approximation is valid. 
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Figure 4.1: Graphical representation of the main assumption performed by the Kohn-Sham equations, from [95]. 

These equations provide a practical determination of the ground-state density of the system. 

Therefore, the solution of the independent Kohn-Sham problem determines all properties of the 

full many-body system. 

The Kohn-Sham decomposition allows to compute the contributions separately, simplifying the 

energy calculation. The kinetic and coulombic energies need to be evaluated on a high accuracy, 

while the exchange-correlation energy is the hardest to obtain and represents a minor factor of 

the total energy. The decomposition allows a different degree of accuracy for each component, 

reducing the difficulty of the problem without a high precision loss. 

More information about density functional theory and the equations presented in this section can 

be found elsewhere [101]. 

4.2 Implementation 

In practice, the Kohn-Sham equations need to be solved iteratively [95]. The functionals of the 

system depend on the electron density, which determine the electronic wave functions. In turn, 

the electron density is related to the electronic wave functions by: 

𝑛(𝑟) = ∑|𝜓𝑖(𝑟)|2

𝑜𝑐𝑐

𝑖

(4.11) 

Therefore, in order to solve the system, an initial guess of the “input” charge density needs to be 

done. It is often achieved by overlapping atomic charge densities. With this initial charge density, 

the Kohn-Sham equation needs to be solved in order to find the one electron orbitals 𝜓𝑖(𝑟) (also 

called Kohn-Sham orbitals):  

(−
1

2
∇2 + 𝑣𝑒𝑥𝑡(𝑟) + 𝑣𝐻(𝑟) + 𝑣𝑥𝑐(𝑟)) 𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟) (4.12) 

The first term in the parenthesis represents the kinetic energy, where ∇2 is the Laplacian. 𝜀𝑖 is the 

Kohn-Sham eigen-energy. 𝑣(𝑟) are the potentials, where the sub-indexes indicate the external 

potential (𝑒𝑥𝑡), the classical Coulomb interaction (𝐻), and the exchange correlation potential (𝑥𝑐). 

These potentials are related to their equivalent functionals through: 

𝑣𝑥𝑐(𝑟) =
𝛿𝜀𝑥𝑐

𝛿𝑛
                 𝐸𝑥𝑐[𝑛] = ∫ 𝜀𝑥𝑐[𝑛(𝑟)] 𝑛(𝑟) 𝑑𝑟 (4.13) 

Once the Kohn-Sham orbitals are determined, the electron density is computed from Equation 

4.11. If the difference between the original charge density and the obtained one is smaller than a 
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certain threshold, the solution is considered correct and the properties of the system are 

determined. But if the similarity between the two densities is not high, the steps are repeated until 

the difference is smaller than the threshold. The flowchart in Figure 4.2 shows these steps in a 

graphical manner. 

 

Figure 4.2: Flowchart of the iterative solution of the Kohn-Sham orbitals, based on the diagram by [95]. 

It is tempting to treat the Kohn-Sham states 𝜓𝑖(𝑟) as proper electronic particle states, but 

remember that they are fictitious. 

 VASP 

The program employed in this thesis to iteratively solve the Kohn-Sham equations is the Vienna 

Ab initio Simulation Package (VASP) [102], [103]. The system structure and the calculations 

performed during the simulations are inputted through four files: POSCAR, INCAR, KPOINTS and 

POTCAR. The main output file is OUTCAR, which contains information on stress tensors, forces 

on the atoms, local charges, magnetic moments and dielectric properties. Further output files can 

be created if required with additional system information. 

The POSCAR file contains the lattice geometry and ionic positions of the system. It requires the 

lattice vectors that determine the unit cell, as well as the coordinates of each atom inside the cell. 

INCAR is the central input file of VASP. It determines "what to do and how to do it" [104]. The 

chosen approximation of the exchange correlation potential is also specified in this file (see 

subsection 4.2.3). Depending on the combination of functions used, it can perform structural 

optimization, calculate the density of states, band structure, etc. 

The KPOINTS file forms the k-point mesh: a finite number of points in the Brillouin zone (BZ). In 

periodic systems, they are used to replace the integrals in real space by integrals over the first 

Brillouin zone in reciprocal space. This mesh can be defined manually or automatically. All the 

simulations in this project are performed using the automatic Monkhorst-Pack [105], which 

homogeneously distributes the k-points in the BZ, running parallel to the reciprocal lattice vectors. 

The k-points need to be differently defined on the calculations for the band structure, since all the 

points of the Brillouin need to be inserted.  

Lastly, POTCAR files contain the pseudopotential for each atomic species used in the calculation. 

There are different versions depending on the pseudopotentials available (section 4.2.3). 

Deeper information about these files and how the program works can be found in the VASP 

manual [104]. 
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 Computational details 

During the computation of ab initio simulations, there are two very important parameters to be 

defined by the user: the k-points mesh and the cut-off energy. 

The wave functions in a crystal obey Bloch’s theorem [98]. This theorem states that the 

eigenfunctions of an electron in a perfectly periodic potential have the shape of plane waves 

modulated by a Bloch factor 𝑢𝑖(𝑟). This factor possesses the periodicity of the potential 

𝑢𝑖(𝑟 + 𝑅⃗⃗) = 𝑢𝑖(𝑟), where 𝑅⃗⃗ is any linear combination of the lattice vectors of the crystal. This 

theorem is applicable to the Kohn-Sham states 𝜓𝑖(𝑟): 

𝜓𝑖(𝑟) = 𝑒−𝑖𝑘⃗⃗𝑟𝑢𝑖(𝑟) (4.14) 

Here 𝑘⃗⃗ are the wave vectors of the reciprocal crystal lattice. They are related to the periodic 

special lattice through Fourier transform. All these wave vectors are contained in the first Brillouin 

zone (1BZ), a volume within this space that contains all the unique k-vectors that represent the 

periodicity of the crystal. 

The evaluation of many key quantities such as the charge density, requires integration over the 

1BZ. Since the Bloch factor is periodic and the integrals are generally computationally costly, this 

integral is replaced by a sum over a finite number of k-points. The higher number of k-points, the 

better the accuracy, but also the computational time. Therefore, the amount of k-points is related 

to the convergence and accuracy of the results. 

For ease of calculations, and since the Bloch factor is periodic, the wave function is expanded 

using a truncated Fourier series [98]. 

𝜓𝑖(𝑟) = ∑ 𝑢𝑖(𝐺⃗)

𝐺⃗

𝑒−𝑖(𝐺⃗+𝑘⃗⃗)𝑟 (4.15) 

In practice, this series is truncated to include all 𝐺⃗ for which: 

ℏ

2𝑚
(𝐺 + 𝑘⃗⃗)

2
< 𝐸𝑐𝑢𝑡 (4.16) 

Here the second parameter needed to check for convergence appears: the plane-wave cut-off 

energy 𝐸𝑐𝑢𝑡. As well as with the number of k-points, the greater the cut-off energy, the higher the 

accuracy, but also the computational time. 

 Approximations 

As already defined, the external potential 𝑣𝑒𝑥𝑡(𝑟) is formed by the nuclei of the lattice and 

represents what the electrons observe. The electrons can be distinguished into two groups. The 

core electrons, which are strongly bound to the nuclei, and the valence electrons, which determine 

most of the properties of the material [96]. The external potential is singular at the ion core. Close 

to these points, the wave functions oscillate rapidly. These oscillations require a high 

computational power and do not alter the main properties. This is the reason why the exact 

external potential is usually replaced by an approximated one. There are several methods 

available to solve this issue [98]. 

The external potential approximation employed in this work for all simulated atoms is the Projector 

Augmented Wave (PAW) method [106]. The approach consists on smoothing these rapidly 

oscillating wave functions around the ion cores in order not to have singular points and reduce 
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the amount of plane waves required. The core electrons are removed from the problem, so the 

Kohn-Sham equations are only solved for the valence electrons [101]. 

The potential for each of the elements of the periodic table is supplied by VASP [106], [107]. For 

some elements several PAW versions exist [104]. In this work, we have employed the 

recommended versions: standard for Si and O, and sv for Mo. The sv extension implies that the 

s semi-core states are treated as valence states. 

Although DFT is formally precise, the exact functional is unknown. The source of difficulty is the 

exchange correlation functional. This functional considers the difference between the classical 

and quantum mechanical repulsion between electrons. It demands high computational effort, 

therefore it needs to be approximated. 

There are several approximations available for the exchange correlation functional. The most 

common and oldest one is the Local Density Approximation (LDA) [99]. It assumes the same 

exchange-correlation energy as that of a homogeneous electron gas of density 𝑛 [98]. This results 

in over- and under-estimations, although they tend to compensate each other [108]. 

The approach can be further improved by considering also the gradient of the density, not only 

its value [109]. This considers non-homogeneity and allows corrections based on non-local 

density changes. These expansions are referred to as generalized gradient approximations 

(GGA) [110]. Inside this group, there are several options available. 

One of these improved extensions is the PBE functional. The initials stand for the three scientists 

that parametrized it: Perdew, Burke and Ernzerhof [111]. It is the functional employed in this work 

for silicon bulk and all interface calculations. It has a broad applicability and has shown to give 

accurate results for a wide range of materials [112]. 

Even with the corrections, these functionals still fail to capture all contribution of the exchange 

correlation. That yields to errors in the description of some structures, and underestimation of the 

band energies. This problem has been solved through the use of hybrid functionals which include 

a component of the exact exchange energy calculated from Hartree-Fock theory  [113]. Because 

of the improvement performed, their computational cost is usually higher than for LDA or GGA 

based-functionals [114]. There is also a huge series of hybrid functionals available, each suitable 

for a specific case. In this work, we have employed two hybrid functionals: vdW-DF2 and HSE06. 

The just mentioned density functionals fail to describe correctly van der Waals (vdW) interactions 

[104]. This is an issue in this work since vdW bonding is crucial to MoO3. Fortunately, there is a 

series of functionals that solve this problem by adding a correction factor accounting for this 

interaction. Ding et al. [115] compared several functionals for α-MoO3 in order to find the most 

suitable one. They show how DF2 is the best exchange-correlation functional together with 

optB88. In this work we opted for the first one, since it is the one employed in [116]. 

DF2 is actually a version of the vdW-DF functional [117] developed by [118]. In VASP the method 

is implemented by Klimeš [119][120] using the algorithm of Román-Pérez and Soler [121]. There 

is no specific POTCAR file for this functional; either PBE or LDA can be used [104]. In this work 

the PBE one was employed, following again the approach by [116]. 

Additionally, to employ the vdW interaction, another correction needs to be added for the correct 

modelling of MoO3. This material, as well as most transition metal oxides, has metal ions with 

partly filled d shells [17]. Because of this, it suffers a sharper electric field screening, which results 

in a strong Coulomb repulsion between electrons [122]. The previously mentioned functionals do 
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not account for these interactions, and need to be added as a correction term. Here, the DFT+U 

approach of Dudarev et al [123] was applied to the Mo 4d orbitals in order to obtain more accurate 

results. A U correction of 5 eV was used, based on the optimization performed by Inzani et al. 

[124].  

To summarize, the vdW-DF2+U functional (U = 5 eV) with the PAW PBE POTCAR sv file was 

employed for all calculations of bulk and surface MoO3. 

Along this work, it is necessary to determine accurately the energy bands of some materials. DFT 

does not make an accurate prediction of these energies, either by under or overestimating them, 

depending on the functional employed. Fortunately, Heyd, Scuseria and Ernzerhof [125] 

developed a very accurate exchange correlation functional, the HSE06 functional, which improves 

the determination of band energies. It is achieved by making a distinction between short-range 

and long-range terms of the screening potential. This improvement allows for a more accurate 

band gap value, although there is still an underestimation [126]. It is implemented in VASP 

through the algorithm developed in [127]. The improved accuracy also increases the 

computational cost of this functional. This is the reason why this functional will only be used to 

calculate the bulk local potentials. 

4.3 Symmetry element 

VASP calculations require of a unit cell periodic over space. In this work, we will encounter several 

structures which have not inherently a periodic structure at least in one direction. Examples of 

these structures are the surface of a material and the interface between two layers. In order to 

study these structures in DFT, the periodicity needs to be artificially added. 

One way of achieving this is by assuring that the cell boundary conditions are equivalent to the 

ones at an infinite distance [128]. This is the fundamental idea of the supercell method. The unit 

cell in study is surrounded by a sufficiently thick vacuum in order to ensure that there is no 

interaction between adjacent cells.  

 The lattice coincidence method 

The construction of interfaces will be necessary along this project. The interface needs to simulate 

that when two materials are in contact, they will adapt their structures in order to reduce the 

amount of dangling bonds [51]. Moreover, the ab initio simulation requires of periodicity, which 

implies that the interface unit cell needs to be made of an integer number of individual unit cells. 

This way, the periodicity of the interface structure as well as that of the adjacent materials is 

conserved. This can result in a rather complex process if the two solids have dissimilar lattice 

constants and angles. Fortunately, the lattice coincidence method [128] provides us with a system 

to find the lattice constants of the interface unit cell. 

The unit cell of a compound is determined by a set of three lattice vectors {𝑎1, 𝑎2, 𝑎3}. The surface 

in which the two materials will coincide is defined by the surface vectors {𝑓1, 𝑓2}, which are a linear 

combination of the lattice set. Analogously, the adjacent surface for the second material will be 

determined by the set of vectors {𝑓3, 𝑓4}. These two set of surface vectors will most likely be 

different. 
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Through linear combination of the surface vector sets, one can define two new sets of vectors 

{𝐹1, 𝐹2} and {𝐹3, 𝐹4}. The relation between sets is given by Equations 4.17: 

𝐹1 = 𝑚11𝑓1 + 𝑚12𝑓2 (4.17𝑎) 

𝐹2 = 𝑚21𝑓1 + 𝑚22𝑓2 (4.17𝑏) 

𝐹3 = 𝑚33𝑓3 + 𝑚34𝑓4 (4.17𝑐) 

𝐹4 = 𝑚43𝑓3 + 𝑚44𝑓4 (4.17𝑑) 

These new sets of vectors are the lattice vectors for the interface lattice. The integer indices 𝑚𝑖𝑗 

are chosen in such a way that {𝐹1, 𝐹2} = {𝐹3, 𝐹4} and that the area of coincidence lattice unit is 

small. These two characteristics define a good coincidence lattice. A graphical explanation of this 

method is shown in Figure 4.3. 

 

Figure 4.3: Graphical explanation of the lattice coincidence method. 

It is not expected to find perfect lattice coincidence between the materials in study. Therefore, 

some strain is allowed so that {𝐹1, 𝐹2} ≈ {𝐹3, 𝐹4}. The strain can be calculated through Equations 

4.18, where it has been assumed 𝐹1 ≥ 𝐹2 and 𝐹3 ≥ 𝐹4. 

𝑠1 =
|𝐹1|

|𝐹3|
− 1 (4.18𝑎) 

𝑠2 =
|𝐹2| cos 𝜃12

|𝐹4| cos 𝜃34
− 1 (4.18𝑏) 

𝑠3 =
|𝐹2| sin 𝜃12

|𝐹4| sin 𝜃34
− 1 (4.18𝑐) 

With 𝜃𝑖𝑗 being the angle between the superlattice unit vectors 𝐹𝑖 and 𝐹𝑗. The smaller the strain 

and the surface area of the coincidence lattice unit cell, the better the lattice coincidence. 

4.4 Structures of the materials 

This section presents the structure and lattice vectors of the two materials that will be studied 

through ab initio simulations: silicon and molybdenum trioxide. The crystalline forms of these 

materials will be considered. 

The use of these compounds is an approximation of reality. During deposition of molybdenum 

trioxide, this material takes an amorphous form [34]. Therefore, in order to properly simulate this 

material, the amorphous form should be considered. A similar issue occurs with silicon: given that 
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the ultimate objective is to study the interface between a-Si and MoO3, amorphous silicon should 

be considered. However, the computational investigation of amorphous materials and interlayers 

is limited due to the large supercells required [129]–[131]. There are several studies performed 

about the c-Si/a-Si interface [132]–[134], but they require of complex computational methods, 

usually combining molecular dynamics and ab initio simulations [132]. Because of that complexity, 

they are out of the scope of this thesis. 

 Silicon 

Silicon crystallizes in the cubic diamond structure, corresponding to the Fd3m space group [51]. 

It can be seen as two interpenetrating fcc sublattices with one sublattice displaced from the other 

by one-quarter of the distance along the body diagonal of the cube [4]. All the Si atoms are bonded 

to four equidistant neighbours to form a tetrahedron. 

Equation 4.19 displays the lattice vectors of the primitive unit cell of silicon in Cartesian 

coordinates, where 𝑎0 = 5.43 Å [135]. Only two atoms are contained in this cell, at the origin 

(0,0,0) and at position (0.25,0.25,0.25). 

𝑝1 =  (

𝑎0
2⁄

𝑎0
2⁄

0

)        𝑝2 =  (

𝑎0
2⁄

0
𝑎0

2⁄

)        𝑝3 =  (

0
𝑎0

2⁄
𝑎0

2⁄

) (4.19) 

Silicon has another unit cell, the conventional unit cell. Its lattice vectors in Cartesian coordinates 

are shown in Equation 4.20, where the cubic structure is more straight-forward to see. 8 silicon 

atoms comprise this unit cell. Their positions have been found through the space group 

symmetries [136]. 

𝑎1 =  (

𝑎0

0
0

)        𝑎2 =  (
0

𝑎0

0
)        𝑎3 =  (

0
0

𝑎0

) (4.20) 

Both unit cells, the primitive and the conventional one, are shown in Figure 4.4. In this work, the 

simulated structure of crystalline silicon has been the conventional unit cell. 

 

 

Figure 4.4: Primitive (top row) and conventional (bottom row) unit cells of crystalline silicon observed from two 

orientations. The silicon atoms are represented by the light blue balls. Figures generated with XCrySDen [137]. 
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 Molybdenum trioxide 

Molybdenum trioxide has two phases, the thermodynamically stable orthorhombic α-phase, and 

the metastable monoclinic β-phase [138]. They both have as building block MoO6 distorted 

octahedra, although ordered differently [139]. That is the building block of all molybdenum oxide 

phases, including amorphous molybdenum oxide [34], [140] and molybdenum dioxide [141], 

[142]. From now on the focus will be on the stable α phase. 

Molybdenum trioxide crystallizes with four formula units of MoO3 in a orthorhombic cell with 

symmetry Pbnm [139]. This makes the unit cell to be composed of 4 Mo atoms and 12 O atoms. 

The lattice vectors of this unit cell are displayed in Equation 4.21, where 𝑎 = 3.96 Å, 𝑏 = 13.85 Å 

and 𝑐 = 3.70 Å. The symmetries of the group allow to determine the position of all the atoms inside 

the solar cell [136]. 

𝑏1 =  (
𝑎
0
0

)        𝑏2 =  (
0
𝑏
0

)        𝑏3 =  (
0
0
𝑐

) (4.21) 

The structure of molybdenum oxide is based on bilayers oriented perpendicular to the y axis. The 

bilayers are held together across that axis by weak van der Waals forces. Each bilayer consists 

of two sublayers of distorted MoO6 octahedra. These octahedra form edge-sharing zigzag rows 

along the z direction, and corner sharing rows along the x direction [143]. These internal 

interactions are held by strong covalent and ionic bonds.  

In this structure, there are three inequivalent oxygen positions depending on their coordination 

[116], [143]. Firstly, a terminal oxygen O1 which is bonded only to one Mo atom. Secondly, a 2-

fold coordinated oxygen O2 located asymmetrically between two Mo centres. Finally, the O3 

oxygen is symmetrically bonded between two Mo centres in one sublayer, while forming a third 

bonding to a Mo atom from the neighbouring sublayer. 

The structure of the TMO is displayed in Figure 4.5, where the position of the three oxygen atom 

sites is pointed out. The limit between bilayers is also sketched in purple dashed lines. 

 

Figure 4.5: α-MoO3 unit cell from different perspectives. The oxygen sites are indicated. Molybdenum atoms are 
represented by grey balls, while oxygen atoms are the red coloured ones. Figures generated with XCrySDen [137]. 
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Ab initio simulation results 

 
This chapter presents the results obtained from ab initio simulations. The first section 5.1 

introduces a validation of the model by performing a structural optimization of the molybdenum 

oxides in study. The next section 5.2 calculates the work function of the oxides under different 

conditions. Finally, section 5.3 studies the interface between MoO3 and silicon. 

5.1 Validation of the model 

In order to validate the simulated structures, a structural relaxation was performed. It consists on 

allowing all the atomic positions, lattice constants and angles to relax until a minimum in energy 

is found. 

MoO3 was structurally optimized until all the forces were smaller than 0.05 eV/Å. The energy cut-

off and k-point mesh employed were 810 eV and 6x2x6, respectively. These three values are 

taken from [116]. The relaxed lattice constants are shown in Table 5.1, where literature values 

from experimental and simulated works are also compared. In the case of the simulated results, 

the functional employed is also mentioned (see section 4.2.3). 

Table 5.1: Calculated lattice parameters for bulk MoO3 compared to previous theoretical works and experiment. 
Percentage deviation from experimental values is given in brackets. 

Lattice 

constants  

[144] [141] [116] This work 

Experimental PBE vdW-DF2 vdW-DF2 

a [Å] 3.962 3.963     (0.03) 3.914      (1.21) 3.903      (1.49) 

b [Å] 13.855 13.855     (0.00) 13.900      (0.32) 13.689      (1.20) 

c [Å] 3.699 3.696     (0.08) 3.801      (2.76) 3.798      (2.68) 

The results from the table show that PBE is the best functional, since its standard deviation is the 

lowest. However, those values were obtained by fixing the b parameter and relaxing the other 

two. This strategy needs to be used because PBE does not take into account the interactions 

between layers by van der Waals forces. The reduced number of degrees of freedom explains 

the lowest percentage deviation. 

[115] showed that one of the best functionals when simulating MoO3 is vdW-DF2. From the above 

table it can be seen that this method accurately represents the magnitude of the lattice 

parameters. The results obtained from this work are within the acceptable range of deviation. It 

can be stated that our model is valid. 

There is a considerable underestimation of the b lattice constant compared to the simulations 

results in [116], although the k-point mesh and energy cut-off were the same. The difference is 
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found in the employed PAW pseudopotential: as explained in section 4.2.3, there are several 

versions of the PAW pseudopotentials employed in VASP [104]. In this work, we have employed 

the recommended standard version for oxygen molecule, while the hard pseudopotential was 

employed in [116]. The hard pseudopotentials are recommended when dimers with short bonds 

are present [104]. Given that MoO3 is not a dimer, the use of this pseudopotential over the 

standard one was not motivated, so we opted for the standard one. However, looking at the 

obtained results, the hard pseudopotential is a better option. 

The structural optimization of sub-stoichiometric molybdenum oxides was also performed. 

Starting with MoO2.75, this compound was obtained by removing one oxygen atom from the MoO3 

unit cell. As mentioned in section 4.4.2, there are three inequivalent oxygen positions in the TMO 

unit cell. Depending on the oxygen removed, the optimal lattice constants will exhibit different 

values. This fact was also observed by [116]. The k-point mesh and energy cut-off were set the 

same as with MoO3. 

MoO2.9375 was also structurally optimized. In order to simulate this compound, a supercell was 

built by repetition of the MoO3 unit cell in directions 2x1x2. One oxygen atom in position O3 was 

removed in order to obtain the sub-stoichiometry. The number of k-points and cut-off energy need 

to be adapted to the new structure. Convergence tests were performed for both parameters in 

order to obtain the best trade-off between computational time and accuracy [145]. The optimal k-

point mesh was found to be 6x4x6, with an accuracy of 0.01 meV/atom. The energy cut-off optimal 

value yield 880 eV, with a higher energy of 1 meV/atom. 

Figure 5.1 shows the results from the structural optimization of the sub-stoichiometric oxides. 

Three lattice constants are displayed for MoO2.75, corresponding to the removal of each of the 

inequivalent oxygen positions. The results obtained in [116] are also mentioned as a comparison, 

as well as the values for the stoichiometric oxide. 

 

Figure 5.1: Relaxed lattice parameters from the structural optimization of MoO2.75 and MoO2.9375. The results were 
simulated for the three inequivalent oxygen positions for the atom with the lowest stoichiometry. The results obtained 

by [116] as well as the parameters for the stoichiometric oxide are added for comparison. 
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Taking the structural optimization of MoO2.75 as reference, the position of the vacancies has a 

large effect on different cell parameters. O1 vacancy shows a large increase in b with decreasing 

a and c. The overall changes result however in the same cell volume. The O2 vacancy yields a 

smaller a parameter, a relatively unchanged b parameter and a slightly higher c parameter. As 

with the previous case, there is barely any change in volume. This same phenomenon is also 

found for the O3 vacancy. It is though achieved by a relatively unchanged c parameter whilst a 

and b decrease and increase, respectively, compared to the stoichiometric unit cell.  

The structural optimization of MoO2.9375 gives a rather surprising result since there is a significant 

increase in cell volume with respect to the stoichiometric and MoO2.75 compounds. It would be 

expected that there are lesser effects on the lattice cell parameters as result of a lower vacancy 

concentration. However, the structural optimization shows a considerable increase in the b 

parameter across the van der Waals gap. The other two lattice constants are barely affected.  

Comparing with the results reported by [116], with the exception of a couple points, the same 

trends have been obtained. Therefore, it can be stated that the model built in this work is also 

consistent with the removal of oxygen atoms. 

Si unit cell was also structurally relaxed until all forces were smaller than 0.05 eV/Å. The cut-off 

energy and k-point mesh were 430 eV and 11x11x11, respectively. They showed the best trade-

off in terms of energy convergence and simulation time. The results from the structural 

optimization show a lattice constant of 5.468 Å, in agreement with the experimental result 

obtained in (5.431 Å) [135]. 

5.2 Evaluation of the work function 

Once that the structures are relaxed, material properties can be studied. In particular, the goal is 

investigating the work function of the molybdenum oxides. As has been stressed along Chapter 

3, the work function of molybdenum oxide is a crucial parameter on the construction of SHJ solar 

cells featuring this material as carrier selective contact. Therefore, this section focuses on the 

calculation of the work function. 

The work function calculation in ab initio simulations is however not a straightforward method. 

The first subsection will explain the approach employed to compute the work function. Then, the 

work function will be evaluated under two different conditions.  

First of all, the longitude of the b lattice parameter will be altered to assess how the work function 

varies under strained conditions. Then, a second experiment is deployed to evaluate the 

dependency on the work function with the oxygen deficiency. Main outputs of such experiments 

are relevant for section 3.2, since the dependency on work function with oxygen deficiency (and 

therefore oxide thickness) is a key concept in this work. 

 Calculation approach 

The work function is defined as the minimum energy needed to remove an electron from the 

surface of a solid to infinity [45]. It is calculated as the difference between the vacuum potential 

energy 𝐸𝑣𝑎𝑐𝑢𝑢𝑚 and the Fermi energy 𝐸𝐹, Equation 5.1: 

𝑊𝐹 =  𝐸𝑣𝑎𝑐𝑢𝑢𝑚 − 𝐸𝐹 (5.1) 
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In order to obtain the potential energy from the vacuum, a surface needs to be defined on VASP. 

A method to calculate the work function of materials is provided in VASP manual [104]. The 

approach consists on having a certain amount of unit cells which represent the bulk of the 

material, a unit cell illustrating the surface, and then a certain amount of vacuum. The vacuum 

thickness needs to be thick enough so that the atoms from the surface do not feel the interaction 

of the bulk atoms. Otherwise, the method could yield unrealistic results. 

This approach was assessed for Si. 3 unit cells were repeated, yielding a total number of 24 Si 

atoms. The vacuum thickness was ≈10.8 Å, the thickness of two unit cells, sufficient to show a 

flat potential across it. The k-point mesh converged to 2x10x10 with an accuracy of 0.1 meV/atom, 

while the optimal cut-off energy resulted to be 430 eV. A work function of 4.8 eV was obtained, 

which is in excellent agreement with the experimentally measured value of 4.85 eV [146]. 

This approach is not valid for MoO3 because the surfaces (010) and (01̅0) have a different charge 

distribution. These surfaces are the ones between the original slab and its adjacent duplicate 

copy. This asymmetry generates two problems: (i) the vacuum potential energy outside these two 

surfaces will be different, and (ii) it would produce a uniform electric field in the vacuum slab and 

an opposite uniform electric field in the MoO3 slab. Because of this electric field, there is no point 

where the potential energy in the vacuum is constant, thus it is not possible to define the vacuum 

energy. 

A way to solve this issue is by adding a dipole correction into the methodology [147]. This dipole 

correction cancels the artificial field arouse due to the asymmetry in the charge distribution. An 

energy correction term is added to the total energy in order to compensate for this value. 

However, in this thesis we have opted to apply the approach employed in [148]. By using two 

MoO3 slabs, reflected with respect to the xz plane, the same type of surfaces will be encountered 

on both sides the vacuum slab. This is graphically explained in Figure 5.2. 

 

Figure 5.2: Schematic illustration of the approach employed to calculate the work function of MoO3. The doubled slab 
and work function slab are pointed out. Figure based on [148]. 

Following such methodology, the WF of MoO3 can be calculated. The first step consisted on 

duplicating the MoO3 unit cell in y direction 1x2x1, resulting in a total of 8 Mo and 24 O atoms. 

13.5 Å of vacuum were also applied on that same direction. Overall a super cell of 3.8x40.6x3.9 

Å3 volume was simulated. We will refer to it as the doubled slab. The cut-off energy and k-point 

mesh were found optimal to be 840 eV and 10x1x10 in a trade-off between computational time 

and accuracy. Under those circumstances, the atomic coordinates and positions were optimized 

by relaxing the structure until all forces are smaller than 0.05 eV/atom. 
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With the optimized structure, the slab for the work function calculation was built. It consisted on a 

doubled slab, approximately 3.7 nm of vacuum, another doubled slab reflected with respect to the 

y direction, and finally roughly 2.35 nm of vacuum. We will refer to it as the work function slab. It 

resulted on a supercell of 16 Mo and 48 O atoms with dimensions 3.8x114.7x3.9 Å3. The vacuum 

thicknesses were increased with respect to the previous case in order to assure the flat potential 

across the vacuum layers. The k-point mesh was kept to 10x1x10 since it gave the same accuracy 

as higher meshes (such as 20x1x20). 

The average local potential from this structure is shown in Figure 5.3. The position of the Mo 

atoms and some of the O atoms can be observed in its dips. The flat sections represent the 

potential across the vacuum slabs. The Fermi level has been taken as reference. The work 

function has been pointed out. 

 

Figure 5.3: Local potential of MoO3, with the Fermi level taken as zero reference. The work function has been pointed 
out. 

A work function of 6.56 eV was obtained with this method. Although it is a reasonable range, it is 

smaller than the measured value of 6.9 eV [86]. This is due to the known underestimation of the 

band structures in DFT calculations [128]. This underestimation is however no problem since the 

obtained value will be compared to the work function calculation of molybdenum oxide under 

different conditions. 

 Effect of strain in MoO3 

During deposition of lattice-mismatched crystalline materials, the materials deposited last needs 

to adapt its structure in order to minimize the energy of the system [4]. This results in a distortion 

of the lattice constants of the unit cell, which often results in altered characteristics of the material. 

[149] calculated through DFT how the band gap of MoO3 varies under different distortions. They 

showed how, depending on the type of stretching and across which axis, there was a variation in 

the band gap. This section presents a similar study but focussed on work function analysis. 

Basically, the goal is to assess the effects of distortion of the MoO3 unit cell in the work function. 

In this thesis, for the sake of simplicity, the stretching was only performed on the y direction, since 

calculations of work function of MoO3 are complex and demand high computational effort. The 

choose of y-direction follows the orientation in which the MoO3 bilayers are repeated. 
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For the work function calculation, abovementioned method was employed. The energy cut-off and 

k-points mesh were kept constant. The b parameter was increased and decreased. The results 

for work function as a function of the distortion of b lattice constant is shown in Figure 5.4. 

 

Figure 5.4: MoO3 work function as a function of the distortion of b lattice constant. 

As Figure 5.4 shows, the higher the stretching, the greater is the work function. Since the work 

function is defined as the energy needed to remove an electron atom from the surface of the 

TMO, this implies that the thicker the parameter, the harder it is to remove the electron. All the 

points follow a common trend except for the -4% distortion. 

 Effect of oxygen deficiency 

The dependence on work function with oxygen deficiency is a key factor (see section 3.3) . 

Accordingly, its understanding is essential for the improvement of solar cells. In this section, the 

work function of different sub-stoichiometric molybdenum oxides will be calculated. The sub-

stoichiometry was obtained by removing oxygen atoms from two different inequivalent positions: 

O2 and O3. These atoms are the ones closer to the surface and the Mo-O1 interaction is stronger 

[150], therefore O2 and O3 are most likely to detach. The dependence on work function will be 

not only on the amount of oxygen deficiency but also on the position of the oxygen atoms. 

Five molybdenum oxides were simulated: MoO3, MoO2.958, MoO2.9375, MoO2.92 and MoO2.875. The 

energy cut-off was kept to 840 eV for all the calculations. This value was found optimal for the 

larger structures (MoO2.958 and MoO2.92) and set for the remaining compounds in order to get 

consistent results. 

The material with the highest deficiency was achieved by removing one oxygen atom from each 

of the doubled slabs from the work function slab. There were 16 Mo and 46 O atoms in this 

supercell. The position of the removed oxygen atom was the equivalent in each doubled slab in 

order to maintain the symmetry. The k-point mesh for this structure was the same as for the 

stoichiometric slab. 

In order to obtain MoO2.9375, the work function slab was duplicated in the z-direction (1x1x2). It 

resulted on a bigger supercell with 32 Mo and 92 O atoms. Two oxygen atoms were removed 
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from two of the symmetric doubled slabs in order to obtain the stoichiometry. The k-point mesh 

was decreased to 10x1x5. 

The last two stoichiometries required an even greater supercell. The work function slab was 

repeated 1x1x3 times, yielding 48 Mo and 144 O atoms. MoO2.958 was obtained by removing two 

oxygen atoms from one of the doubled slabs and its symmetric couple, while MoO2.92 required of 

the removal of four oxygen atoms. The k-point mesh was reduced again to 10x1x3. 

The work function for each of these structures was calculated as Figure 5.5 reports. A decrease 

in work function can be appreciated as the oxygen deficiency increases. This is in concordance 

with what has been observed in literature [86]. Moreover, in that same graph, it can be observed 

that the removal of an oxygen in O2 or O3 position does not have a big influence on the work 

function. 

 

Figure 5.5: Work function of molybdenum oxides depending on oxygen deficiency. 

5.3 MoO3/Si interface 

The main purpose of DFT calculations is to study the formation of the dipole at the MoO3/Si 

interface. This section focuses on the construction and analysis of the interface between the two 

materials. Since it is a complex process, the thesis by Höffling [128] will be used as reference and 

the approach he employed for the study of the interface will be followed step by step. 

 Coincidence lattice 

The first step for the study of the interface is to create a reasonable atomic model for a crystalline 

interface between cubic diamond silicon and molybdenum trioxide. It has been achieved using 

the lattice coincidence method described in section 4.3.1. The search was restricted to (010) 

surface orientations and to coefficients with |𝑚𝑖𝑗| ≤ 8. It is highly appealing to use (010) surface 

for c-Si since that is the preferred orientation for solar cells fabrication [151]. It is also convenient 

for MoO3 because of its configuration: given the bi-layered structure no bond must be broken to 

form the (010) surface [152] and the y direction is the weakest one [153]. 

The best results are listed in Table 5.2, considering the unit lattice vectors from Equation 5.2. 𝑓1 

and 𝑓2 are the lattice vectors from silicon while 𝑓3 and 𝑓4 are the ones from MoO3. The strains for 

each combination are also included (𝑠1 and 𝑠2). The strain is evaluated in terms of misfit in the 
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coincidence lattice basis vectors, as defined in Equation 4.18. The third strain 𝑠3 was not 

calculated because the vectors employed are parallel to each other, therefore 𝑠3 = 0 % for all 

cases. 

𝑓1 = 5.431 (
1
0
0

)        𝑓2 = 5.431 (
0
0
1

)        𝑓3 = 3.903 (
1
0
0

)        𝑓4 = 3.798 (
0
0
1

) (5.2) 

Table 5.2: Best coincidence lattice cells for Si and MoO3. 

𝑭𝟏 𝑭𝟑 𝒔𝟏[%] 𝑭𝟐 𝑭𝟒 𝒔𝟐[%] 

3𝑓1 4𝑓3 4.36 2𝑓2 3𝑓4 −4.67 

5𝑓1 7𝑓3 −0.61 5𝑓2 7𝑓4 2.14 

The first noticeable feature of the discovered coincidence lattices is that in order to have a low 

strained material, it has to be big. That would probably explain why MoO3 grown on silicon has 

an amorphous character and the reactivity of oxygen is considerably increased. Without a good 

lattice coincidence, we would expect that breaking the crystal symmetries at the interface in order 

to minimize dangling bonds is energetically preferable to overstraining the crystal structure [128]. 

However, as mentioned in section 4.4, DFT simulation of amorphous structures is not 

computationally feasible. Therefore, a strained model will be used for our investigation. The 

interface structure was built by fitting 12 MoO3 unit cells with six cubic Si(001) unit cells. The 

stress was put entirely on the oxide side of the interface. The x direction is increased by 4.36% 

while the z direction is 4.67% shorter. This also mimics experimental growth conditions, where 

the oxide layer is generally grown on a Si substrate, so the silicon should impose its crystal 

structure onto the oxide. 

The straining of the MoO3 instead of the Si is also supported by the bulk modulus. The bulk 

modulus of a substance is a measure of how resistant to compression that substance is [154]. It 

is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of 

the volume. Hence, a material with a bulk modulus of 100 GPa loses 1% of its volume when 

subjected to an external pressure of 1 GPa. When comparing the bulk modulus of two materials, 

the one with the lowest value is the easiest to compress. The bulk modulus for c-Si is 97.6 GPa 

[155], while for MoO3 it is 40.1-48.2 GPa [156], [157]. This indicates that the TMO is easier to 

compress than Si. 

With the already mentioned strains of the a and c lattice constants of the MoO3 unit cell, the third 

lattice vector had to be found. A sweep was performed in order to find the b parameter that 

minimized the energy. The relaxation resulted in an energy minimum for b = 13.727 Å, a 

compression of only 0.28 %. Overall, the cell volume was only reduced by 0.24 %. 

The bulk positions of the strained TMO were relaxed until the forces were below 5 meV/Å. Under 

those circumstances, the work function was found to be 6.94 eV, higher than in the non-strained 

material. However, evaporated MoO3 thin films show an amorphous structure [34] therefore it is 

not possible to state that the work function of bulk MoO3 deposited on top of c-Si increases. 

 

 Atomic structure 

The supercell interface between the two materials was constructed by embedding the strained 

MoO3 (001) unit cell in a 5 layer Si(001) matrix. The supercell contained a total of 252 atoms. The 

supercell can be sketched in the right graph from Figure 5.6. 
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The MoO3 unit cell employed for the surface was different than in all previous calculations. On the 

left graph of Figure 5.6, the MoO3 unit cell employed for all previous simulations can be observed. 

Figure 5.6 (middle) displays the unit cell employed for the interface calculations. It can be seen 

that the molecules have been displaced in the y-direction. This is done for two reasons. (i) So that 

the closer atom to the silicon surface is an oxygen one instead of a molybdenum one. This was 

done to favour the Si-O bonds. (ii) In order to have two full bilayers deposited on top of the silicon 

surface. The limit between bilayers has been pointed out by purple dashed lines in those pictures. 

 

Figure 5.6: Left, original MoO3 unit cell employed in all previous calculations. Middle, modified MoO3 unit cell for the  
interface simulations. Right, MoO3 and Si interface. The dashed purple lines represent the limits between bilayers in 
the MoO3 unit cells. Molybdenum atoms in grey, oxygen ones in red, silicon atoms in blue. Figures generated with 

XCrySDen [137]. 

Si-O bonds are known to be very strong [158] and that is the reason why fabricated devices often 

find silicon oxide layers in that interface [77], [82]. This statement can be supported by comparing 

the strength of the Si-O bond with the one of the Mo-O bond. In [128], the obtained strength for 

SiO2 is 1.32 eV for every broken Si-O bond. The same approach has been employed to obtain 

the strength of the Mo-O bond. From literature [153], [159], the (010) surface energy of MoO3 

calculated using DFT methods is around 0.826 J/m2, equal to 51.56 meV/Å2. Considering that 

there are four dangling Mo-O bonds per unit cell, and an area of the (010) surface of 15 Å2, the 

bond density of MoO3 is of 0.27 bonds/Å2. Considering the already mentioned surface energy, 

the energy cost of breaking a Mo-O bond is of 0.19 eV. Comparing to the already mentioned 1.32 

eV energy cost of breaking a Si-O bond, there is a significant difference. Even though the exact 

values depend on the conditions and type of bonding, we can state that the Si-O bond is stronger 

than the Mo-O bond. Therefore, the formation of the SiO2 interlayer at the MoOx/a-Si interface is 

favourable. This supports the study performed in section 3.2.1, where the formation of the SiO2 

interface was assumed from literature. 

Back to the interface analysis, two optimizations were performed on the built supercell. First, the 

MoO3 slab was laterally displaced on top of the c-Si matrix until the minimum of total energy was 

reached. Second, the optimal distance between the slabs in y direction had to be found. All the 
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calculations performed on the super cell employed the PBE functional, a reduced k-point mesh 

of 2x4x3, and a cut-off energy of 840 eV. 

Starting with the lateral displacement, the MoO3 slab was moved laterally in a 4x4 grid, following 

the same approach as in [128]. Given the high symmetry of the c-Si layer, only 16 points were 

needed for this optimization. The resulting total energies are plotted in Figure 5.7. The variation 

in total energy within the values explored is negligible. 

 

Figure 5.7: Left, total energy of the interface cell for MoO3 moved across the Si unit surface cell. Right, top view of the 
unrelaxed interface structure unit cell. The two highest Si layers (blue) and lowest O (red) and Mo (grey) layers are 

shown. 

In order to find the optimum displacement between slabs, the atomic distance in y direction 

between the closest Si-O was taken as a reference. It was tuned until a minimum in total energy 

was reached. The result of the optimization can be seen in Figure 5.8, yielding an optimum 

distance of 1.7 Å. 

 

Figure 5.8: Optimization of the Si-O distance. 

Once the optimized geometry was found, an ionic relaxation was performed until the forces were 

below 5 meV/Å. Unfortunately, due to time restraints, the results were delayed and it has not been 

possible to analyse them here. However, some information can still be extracted on the unrelaxed 

structure about the electrostatic potential and the charge rearrangement. Although some errors 

are expected, the main conclusions extracted may still be valid. In [128], the electrostatic potential 

and charge rearrangement is performed in the relaxed and unrelaxed structure. The exact values 

are different, but the conclusions extracted are the same. Therefore, the discussion from the next 

sections on the unrelaxed structure will most likely be very similar to the one on the relaxed one. 
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 Electrostatic potential 

This section explores the electrostatic potential at the interface. The most important information 

we calculate is the band discontinuities between the materials. In such calculations, the 

conduction band and valence band levels need to be first determined from the bulk materials. 

As mentioned in section 5.2, there is a systematic underestimation of the band energies in DFT. 

This underestimation can be reduced by employing the functional HSE06, presented in section 

4.2.3. The use of this functional allows for a more accurate description of the band energies of a 

bulk material. Therefore, the valence and conduction band energies can be found with higher 

precision. 

With that purpose, the local potential and band energies of the Si and MoO3 bulk were calculated 

employing the HSE06 functional. The energy cut-off and k-point mesh for these calculations are 

the same as for the bulk calculations in section 5.1. From this analysis, the band gap of these 

materials is extracted: Eg,Si = 1.3 eV and Eg,MoO3 = 2.8 eV. 

The value for crystalline silicon is in excellent agreement with the one simulated in [128] (1.29 

eV), where the same approach was employed. This functional has shown to be the most accurate 

compared to other tested functionals [160], [161]. However, there is still a difference with respect 

to the measured band gap for c-Si of 1.12 eV [45]. 

The MoO3 band gap is in excellent agreement with the one measured in [162] of 2.81 eV. As done 

with silicon, different functionals were also employed to calculate the TMO band gap and the 

conclusion is similar: HSE06 shows a higher accuracy than LDA or GGA functionals [163]. The 

band gap was also calculated employing different vdW functionals, and still HSE06 showed a 

better [124]. Comparing with literature, the value obtained in this work is an underestimation of 

the measured band gap. However, the amount of this error cannot be properly measured because 

there is not high concordance in the measured band gap values which range from 3 to 3.8 eV 

[[164]–[166] and references in therein]. 

Once obtained the local potential for the interface and for the bulk materials, they are aligned. 

Alignment of the electrostatic potentials of the bulk materials with the potential at the interface 

gives information about the type of alignment that it is found between the materials. By aligning 

the bulk potentials with the one from the interface, although not obtained with HSE06 because of 

the high computational time needed by the functional, the difference between conduction and 

valence band energies can be found accurately. The results will reveal the energy barriers at 

hetero-interfaces for charge collection. 

The electrostatic potential of the unrelaxed interface across the y direction is shown in Figure 5.9. 

In the graph the position of the atoms is noticed by the dips in energy. The five silicon layers can 

be identified, as well as the 4 Mo atoms. The O atoms are harder to identify, since their energy 

drop is shielded by that of Mo. In the graph, the local potentials of the bulk materials obtained 

through the more accurate HSE06 functional are also shown. 



Simulation of c-Si solar cells based on TMOs as CSC 
5. Ab initio simulation results 

56 

 

Figure 5.9: Electrostatic potential at the interface. 

While the Si bulk potential aligns perfectly with the bulk potential, the same condition does not 

occur with the MoO3 bulk potential. In fact, a slightly different shape is found, and there is not 

alignment between the maximums and minimums of both potentials. This problem is tackled by 

considering two different type of alignments. First, the MoO3 bulk potential is aligned with the 

interface potential by making the highest points of both energies coincide. Second, the potentials 

are aligned by the minimums of energy. The type of structure found for each case will be 

compared to the alignment found by semiconductor physics simulations. 

The interface potential together with the conduction and valence bands for the two alignments 

are shown in Figure 5.10. The figure on the left displays the alignment by making the minimum of 

potentials coincide, while the figure on the right employs the maximum values for the levelling. 

The valence band and conduction band energy obtained from the bulk calculations are also 

shown in Figure 5.9. 

 

Figure 5.10: Interface potential and band energy levels for the alignment of MoO3 bulk potential by minimums (left) 
and by maximums (right). 

Looking at Figure 5.9 (left), there is a potential barrier at interface for the movement of carriers 

from Si to MoO3. This type of alignment prevents charge-carrier separation at the interface. If an 

electron-hole pair would reach this interface, none of the carriers would be able to travel from Si 

to MoO3 easily so they would recombine. By defining the difference between bands as displayed 

in Equations 5.3 [128], the band offsets of this structure are ∆𝐸𝐶 = 0.47 eV and ∆𝐸𝑉 = 1.15 eV. 
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∆𝐸𝐶 = 𝐸𝐶,𝑀𝑜𝑂3 − 𝐸𝐶,𝑆𝑖 (5.3𝑎) 

∆𝐸𝑉 = 𝐸𝑉,𝑆𝑖 − 𝐸𝑉,𝑀𝑜𝑂3 (5.3𝑏) 

On the other hand, the alignment by using maximums of the potentials shows a different interface. 

The electrons that want to travel from silicon to the oxide, do not encounter any barrier, while the 

holes need to overcome a high energy barrier to achieve that same venture. For this situation the 

difference between band energies are ∆𝐸𝐶 = −0.64 eV and ∆𝐸𝑉 = −2.26 eV. 

Comparing these two structures, the energy levels obtained by alignment by maximums is 

consistent with the simulations performed in Chapter 3. This can be seen by comparing the above 

figure with Figure 3.2. A similar energy alignment is observed. Since the TMO acts as a hole 

contact in solar cells, one would expect to find the barrier for the electrons, not holes. However, 

as deeply discussed in Chapter 3, the transport mechanism between Si and MoO3 consists on 

holes from Si recombining with the electrons from MoO3. In this structure, rather than looking at 

the offsets between the conduction and valence bands, we should be considering the energy 

difference between the valence band of Si and conduction band of MoO3. Making the calculations, 

a value of ∆𝐸 = 0.54 eV is found. This energy difference is smaller in absolute value than the two 

previously discussed, showing that the transport mechanism considered along this work is 

consistent with atomistic DFT models. Moreover, in the simulated solar cells, the interface is not 

the only important fact. The electric field that the bulk material suffers alters the carrier population, 

making the electrons the minority charge carriers and the holes the majority ones on the Si/MoO3 

interface. Under this condition, the hole current from Si to MoO3 is dominant over the current of 

electrons from Si to MoO3. 

 Interface dipole 

As mentioned thoroughly this work, the objective of ab initio simulations is to identify the formation 

of the dipole. A dipole is defined as a separation of a pair of equal and oppositely charges over a 

narrow distance [89]. In order to recognise the dipole, these interface charges need to be 

identified. 

VASP allows to calculate the electron charge distribution of simulated structures [104]. The 

calculated electron charge density distribution of MoO3 slab (not shown) is in concordance with 

literature, where the distribution of charge is spherical and the charges are accumulated around 

the oxygen atoms [162]. However, we are not interested on the charge distribution of the slabs 

individually, but rather on the movement of charges because of the interaction between layers. 

The change in the distribution of charges at the interface is the most important tool to identify the 

dipole. In order to investigate the charge transfer between slabs, it is necessary to compare the 

charge density for the interface system with the isolated subsystems in vacuum [128]. These 

subsystems were built by removing either the Si or MoO3 slab from the interface cell. The charge 

rearrangement is calculated as the local charge density difference [167], displayed in Equation 

5.4. 

∆𝑛(𝒙) =  ∆𝑛𝐼𝐹(𝒙) − (∆𝑛𝑆𝑖(𝒙) +  ∆𝑛𝑀𝑜𝑂3(𝒙)) (5.4) 

Where ∆𝑛(𝒙) is the local charge density as a function of all three coordinates in space 𝒙, and the 

sub-indexes stand for the interface (𝐼𝐹), the silicon slab (𝑆𝑖) and the molybdenum oxide slab 

(𝑀𝑜𝑂3). Integrating over the plane 𝐴 perpendicular to the surface normal 𝑦 we can determine the 

differential charge 𝑑𝑄, Equation 5.5. 
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𝑑𝑄(𝑦) =  ∫ ∆𝑛(𝒙)𝑑𝑥𝑑𝑧
𝐴

(5.5) 

By integrating it again into a volume between 𝑦0 and 𝑦, the charge transfer ∆𝑄 is obtained, 

Equation 5.6. 

∆𝑄(𝑦, 𝑦0) =  ∫ 𝑑𝑄(𝑦)𝑑𝑦
𝑦

𝑦0

(5.6) 

Figure 5.11 shows the differential charge and the charge transfer at the interface. As expected, 

most of the charge rearrangement is located at the interface. In particular from the differential 

charge graph, charge is transferred from the most external Si atoms to the O atoms closer to the 

interface. This is caused by the already mentioned Si-O bonds that are formed at the interface 

between materials. 

 

Figure 5.11: Differential charge 𝑑𝑄 (left) and charge transfer ∆𝑄 (right) upon the formation of the MoO3/Si interface. 

The charge rearrangement also shows the formation of the dipole. The left graph shows how 

negative charge is placed at the interface of the MoO3, coming from the Si atoms. The 

accumulation of negative charge at the MoO3 surface is in concordance with the negative dipole 

implemented in the semiconductor physics simulations from section 3.2.2. The charge transfer 

graph (right on Figure 5.11) experiences a drop on the interface between MoO3 and Si, which is 

also a representative feature of the interface dipole. There is a subtle yet continuous increase of 

∆𝑄 throughout the oxide. It represents a small charge transfer from the Si slab to the MoO3. 

However, for balancing the charge, it is also necessary to observe a continuous decrease of ∆𝑄 

in the bulk-like Si region, which is not so clearly visible. 

From the differential charge figure, an approximated dipole moment can be calculated. 

Considering the basic definition of the dipole moment 𝑝 = 𝑄 𝑑 [89], the charge accumulated and 

the separation distance can be extracted from the differential charge graph (left on Figure 5.11). 

Taking the average between the energy peak at the MoO3 surface and the drop at the Si, the 

charge of this dipole is 1.2 electrons. The distance between these two points is 1.24 Å, considered 

to be the distance of the dipole. Knowing the elementary charge, a dipole moment of 7 D is 

obtained. This value represents a quite high dipole moment when comparing it to the dipole 

moments considered in section 3.2. However, considering the previously measured work function 

of the strained MoO3 of 6.9 eV, a higher dipole moment is expected. Comparing it to literature, in 

[168] a dipole moment of 4.52 D was calculated through DFT for a MoO3 cluster on top of Cu(111). 
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The dissimilarity in the simulated structures could explain the difference in dipole moments, but 

in any case the values are of similar magnitude. 

The effect of the charge rearrangement can also be studied through the difference in the local 

electrostatic potential. Analogous to the local charge density difference, the local electrostatic 

potential difference ∆𝑉(𝒙) is obtained, Equation 5.7 [167]. 

∆𝑉(𝒙) =  ∆𝑉𝐼𝐹(𝒙) − (∆𝑉𝑆𝑖(𝒙) +  ∆𝑉𝑀𝑜𝑂3(𝒙)) (5.7) 

It can be interpreted more easily by taking the planar average ∆𝑉̅(𝑦), Equation 5.8. 

∆𝑉̅(𝑦) =
1

𝐴
 ∫ ∆𝑉(𝒙)𝑑𝑥𝑑𝑧

𝐴

(5.8) 

The electrostatic potential difference is depicted in Figure 5.12. The sharp drop on the interface 

region shows the dipole step in the y direction. This is the so-called work function attenuation due 

to the dipole, extensively discussed on Chapter 3. The potential step between the two peaks in 

which the 7 D were calculated is of 0.79 eV. Looking at Figure 3.12, where the dipole moment is 

related to the work function attenuation, an attenuation of 0.79 eV yields a dipole moment slightly 

higher than 6 D. This value is consistent with the previously calculated dipole moment by DFT. 

Overall, we have related and found concordance between DFT and semiconductor physics 

simulations. 

 

Figure 5.12: Electrostatic potential difference at the interface between MoO3 and Si due to rearrangement of charges. 
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Conclusions 

 
This chapter summarizes the final conclusions of this study by answering the main research 

questions presented in section 1.1. 

• What are the main material parameters affecting the contact formation? 

As explained in section 3.1, the main material parameters that affect the contact formation of 

MoO3 are the trap concentration and the work function. We have demonstrated how in the 

simulated devices a high work function and trap concentration are the key parameters for 

achieving the greatest conversion efficiency. 

• How is the transport behaviour? 

The second question was also answered in section 3.1, since the tuning of the work function 

determined the type of transport mechanism that occurred in the solar cell. Trap assisted 

tunnelling was dominant when there was no energy alignment between amorphous silicon and 

molybdenum oxide, condition that occurred for low work function values. On the other hand, band 

to band tunnelling is dominant for high TMO work function values, when the energy levels were 

aligned in a way that charge carriers were able to easily trespass from one material to the other. 

• What are the limiting physical mechanisms for hole transport layer stack? 

The main limiting physical phenomena encountered were found at the interface. Section 3.2 

explores how the interface between molybdenum oxide and amorphous silicon impacts in charge 

collection. Two mechanisms were studied in this interface: the appearance of a silicon dioxide 

interlayer, and the work function attenuation. 

The effect of the silicon dioxide interlayer strongly depended on the work function of the TMO. 

For high work function values, the interlayer showed barely any effect in the performance of the 

solar cell as long as the tunnelling limit was not reached. The interlayer is even positive for 

achieving relatively high VOC. However, for low MoO3 work function values and thick enough SiO2 

interlayers, S-shapes were encountered in the J-V response, as a result of low charge carrier 

accumulation. The reactions that yielded to the growth of this interlayer were discussed in section 

5.3 through the study of the interface between MoO3 and c-Si. 

The origin and three components of the work function attenuation were studied in section 3.2.2. 

For relatively high work function attenuation values (>1 eV), it was shown how this phenomenon 

had a detrimental effect on the open circuit voltage of the solar cell. The reduction of the dipole 

component strongly depends on the thickness of MoOx layer. Accordingly, adjusting MoOx 

thickness potentially lead to the optimal solar cell because the magnitude of the interface dipole 

is thickness dependant. 
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Through the introduction of the interface dipole and the silicon dioxide interlayer, a realistic model 

for solar cells was built. An adequate trade-off between two components was shown to result in 

the best efficiency: (i) high work function and (ii) low interface dipole. The model was validated 

through the fitting of fabricated devices, including the record solar cell. The obtained results were 

in reasonable agreement, hence confirming hypothesis statements of this thesis, implying that 

the developed model reproduce the inner physics of the solar cells under study. 

 What material parameters can be controlled during the process to improve conversion 

efficiency? 

The outcomes obtained from this fitting, together with a brief optical study, allowed us to provide 

guidelines for the fabrication of solar cells. They are explained in section 3.3.3. The most 

important ones are (i) keep a suitable trade-off between the interface dipole and silicon dioxide 

interlayer through the MoO3 work function, (ii) tune MoO3 work function through the layer 

thickness, (iii) keep the passivation layer as thin as possible to improve the light management.  

 What is the atomistic nature of interface charge rearrangement? 

The ab initio simulations performed in chapter 5 confirmed most of the phenomena assumed from 

literature in the drift diffusion results chapter. After a validation of the model in section 5.1, the 

work function of molybdenum oxide was measured in section 5.2. It was shown how the oxygen 

deficiency decreased the work function of the transition metal oxide, which is related to the tuning 

of work function through the layer thickness. This statement was the basis for the reduction of the 

interface dipole in Chapter 3. 

Section 5.3 studied the interface between crystalline silicon and molybdenum oxide as the basic 

structure of MoOx/a-Si interface. Therefore, the main outcomes obtained are the core for extended 

future studies including amorphous matrix. These studies showed that the Si-O bonds are 

stronger than the Mo-O ones, which indicate that the former will be preferred over the latter. 

Therefore, the formation of the SiO2 interlayer at the MoOx/a-Si interface is energetically 

favourable. Secondly, the energy level alignment found between the two adjacent materials is 

consistent with parameterization of drift diffusion simulations. Since the transport mechanisms 

strongly depend on the energy level alignment, this result confirms that the charge transport is 

based in intra-band trap assisted tunnelling and band to band tunnelling. Finally, the charge 

rearrangement between the molecules in the unrelaxed structure showed the formation of the 

interface dipole. The dipole moment and the drop in energy resulted from the electrostatic 

potential were within the values explored in Chapter 3, indicating agreement between both 

simulating studies. 
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Outlook 

 
The initial objectives of this thesis only regarded drift diffusion simulations. These were fulfilled 

relatively fast, so it was decided to extend the field of research of this study to ab initio simulations. 

The results from these simulations have provided a more complete research. After the work 

performed, several research lines are opened to keep this investigation. 

First of all, because of the already mentioned time constraints, the atomic position relaxation of 

the interface simulations were not finished by the end of this thesis. If the simulations had been 

ready on time, the results on the relaxed interface could be analysed and compared to the ones 

of the unrelaxed interface. It is expected that the conclusions drawn from both systems are very 

similar, however these results would make the thesis more complete. 

Following the research line of this study, the use of molybdenum trioxide as p-contact could be 

explored. Solar cells have been fabricated under this condition, therefore it is a feasible study.  

All the work performed on molybdenum could be extended to the other two transition metal oxides 

employed as hole contact: vanadium pent-oxide (V2O5) and tungsten tri-oxide (WO3). A very 

complete comparison between the three could have been done, and the reason of the higher 

outcome for molybdenum oxide could be found. 

Regarding the ab initio simulations, more realistic interface models could be implemented. First 

of all, considering the Si (111) surface instead of (010), representing the texturing of solar cell. 

The results obtained could be compared to the ones on (010) surface, observing the effect that 

the silicon orientation could have, if any, on the dipole and silicon oxide interlayer formation. 

On this same topic, the simulation of amorphous materials could be implemented. This would 

apply not only to the transition metal oxide, but also to the passivating layer. As already 

mentioned, the computational cost and difficulties of these simulations is high, but there are 

studies on the simulation of amorphous materials, so it could be feasible. These results would 

also shine a light on more realistic work function values for the molybdenum oxide. 
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