
Delft Center for Systems and Control

Longitudinal Control for
Autonomous Vehicles
A comparison between Reinforcement Learning and
Optimal Control

G.L.G.J. Faassen

M
as

te
ro

fS
cie

nc
e

Th
es

is

Longitudinal Control for
Autonomous Vehicles

A comparison between Reinforcement Learning and
Optimal Control

Master of Science Thesis

For the degree of Master of Science in
Systems and Control at Delft University of Technology

G.L.G.J. Faassen

March 29, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis is supported by BMW Group. Their cooperation is hereby gratefully
acknowledged.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Longitudinal Control for

Autonomous Vehicles
by

G.L.G.J. Faassen
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: March 29, 2019

Supervisor(s):
Dr. M. Alirezaei

L. Puccetti M.Sc.

Reader(s):
Prof. dr. ir. J. Hellendoorn

Dr. R. Ferrari

Abstract

In the automotive industry automation is popular and every year car OEMs advance their
technology to be able to drive autonomously. Longitudinal control of the vehicles is an impor-
tant part of the complete autonomous driving system. The difficulty of this control problem
lies with changing longitudinal dynamics and the lack of full-state system information. This
complicates controller design when using classic model-based approaches such as Optimal
Control (OC). Currently the controllers are still manually tuned by control engineers in the
vehicle. This is time consuming and expensive, therefore other methods for controller design
such as learning are explored. Reinforcement Learning (RL) is one of those methods.
To examine the potential benefits of learning a controller, this work will make a comparison
between RL and OC. For RL, an actor-critic structure using deterministic policy gradient
is applied. Due to partially observable system dynamics OC is used as an optimal output
feedback controller. The comparison complies speed control of an autonomous vehicle. The
RL agent will learn a controller by training on a nonlinear high fidelity vehicle model.
In this work it was demonstrated that RL can reach the same performance as OC when all
environmental settings are comparable. When environmental settings deviate, it was is found
that RL outperforms OC. To verify the simulated results all controllers were confirmed in an
experimental real-life setting.
In conclusion, this proved a promising benefit of learning with respect to classical controller
computation, when dealing with partially available system information.

Master of Science Thesis G.L.G.J. Faassen

ii

G.L.G.J. Faassen Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Related Work . 2
1-2 Research Objective . 3
1-3 Thesis Outline . 3

2 Theoretical Framework 5
2-1 Optimal Control . 5

2-1-1 Classical Optimal Control . 5
2-1-2 Optimal Output Control . 6

2-2 Reinforcement Learning . 7
2-2-1 Agent-Environment Interaction . 7
2-2-2 Policy . 8
2-2-3 Reward Function . 8
2-2-4 Value Function . 8
2-2-5 Function Approximation . 9
2-2-6 Actor-Critic . 11

2-3 Summary . 13

3 Controller Design for Longitudinal Vehicle Dynamics 15
3-1 Vehicle Model . 15
3-2 Reinforcement Learning Set-up . 17
3-3 Optimal Output Control Benchmark . 19
3-4 Summary . 20

Master of Science Thesis G.L.G.J. Faassen

iv Table of Contents

4 Simulation Study 21
4-1 Learning the Controller . 21
4-2 Results . 24

4-2-1 Driving at 20 km/h on a flat road . 25
4-2-2 Driving at 40 km/h on a flat road . 28
4-2-3 Driving at 20 km/h on a road with 10% inclination 32

4-3 Discussion . 34

5 Experimental Comparison 37
5-1 Experimental Preliminaries . 37
5-2 Results . 38

5-2-1 Driving at 20 km/h . 38
5-2-2 Driving at 40 km/h . 40

5-3 Discussion . 41

6 Conclusion 43
6-1 Future Work . 44

A Optimal Control 47
A-1 Regular Optimal Control . 47
A-2 Output Feedback Control . 47

B Reinforcement Learning Solving Methods 51
B-1 Value Function Methods . 52

B-1-1 Monte Carlo . 52
B-1-2 Dynamic Programming . 52
B-1-3 Temporal Difference . 53

B-2 Policy Methods . 54
B-2-1 Monte Carlo . 55
B-2-2 Dynamic Programming . 55
B-2-3 Policy Gradient . 56

Glossary 63
List of Acronyms . 63

G.L.G.J. Faassen Master of Science Thesis

List of Figures

2-1 The agent-environment interaction in Reinforcement Learning 7
2-2 Model of one node . 10
2-3 Fully connected network with one hidden layer 11
2-4 The Actor-Critic Architecture . 12

3-1 Nonlinear high fidelity vehicle model with RL agent 16
3-2 Detailed Agent Structure . 17
3-3 Bent Identity Activation Function . 18
3-4 Example Quadratic Feature Layer . 18
3-5 TD error of network with QFL and FC layer . 19

4-1 Neural Network Architecture . 22
4-2 Lookup table for time constant τ . 24
4-3 Development of learned gain and accumulated rewards per test run at 20 km/h . 25
4-4 Development of state response whilst learning optimal gain at 20 km/h 26
4-5 Performance of RL and OC in altered system at 20 km/h 27
4-6 State response RL and OC in altered system at 20 km/h 28
4-7 Development of learned gain and accumulated rewards per test run at 40 km/h . 29
4-8 Development of state response whilst learning optimal gain at 40 km/h 29
4-9 Performance of RL and OC in altered system at 40 km/h 30
4-10 State response RL and OC in altered system at 40 km/h 31
4-11 Development of learned gain and accumulated rewards per test run at 20 km/h

with 10% inclination . 33
4-12 State response RL and OC in altered system at 20 km/h with 10% inclination . . 33

5-1 State response of driving 20 km/h . 39
5-2 State response of driving 40 km/h . 40

Master of Science Thesis G.L.G.J. Faassen

vi List of Figures

G.L.G.J. Faassen Master of Science Thesis

List of Tables

4-1 Settings of the Agent . 23
4-2 Environmental Settings Vehicle Model for two cases. 23
4-3 Values of RL and OC at 20 km/h. 25
4-4 Values of RL, OC and OCaltered at 20 km/h. 27
4-5 Values of RL and OC at 40 km/h. 29
4-6 Values of RL, OC and OCaltered at 40 km/h. 30
4-7 Values of RL and OC at 20 km/h with 10% inclination 33

5-1 Corresponding gains for driving 20 km/h in second gear. 38
5-2 Corresponding gains for driving 40 km/h in third gear. 38

Master of Science Thesis G.L.G.J. Faassen

viii List of Tables

G.L.G.J. Faassen Master of Science Thesis

Acknowledgements

I would like to thank BMW Group in Munich for giving me the opportunity to conduct my
research at their Autonomous Driving Campus. Because of it I was able to discuss my work
and that of others with fellow students and colleagues which has been very interesting. Also
was I able to experience the latest advancements in the field on first hand. A special word of
gratitude goes to my supervisor Luca Puccetti M.Sc. for always being patient and helpful in
times I did not understand how my learning algorithm had learned to solve itself.

From Delft University of Technology I like to express my appreciation for my supervisor Dr.
Mohsen Alirezaei who, despite the distance, always found the patience to discuss my problems
over Skype. Also from Delft I would like to thank my committee members, Prof. dr. ir. J.
Hellendoorn and Dr. R. Ferrari.

Also I would like to thank my friends here and in Munich for keeping me company in the
biergartens and during the oktoberfest. Last but not least, I want to thank my parents for
their endless support and believe.

Delft, University of Technology G.L.G.J. Faassen
March 29, 2019

Master of Science Thesis G.L.G.J. Faassen

x Acknowledgements

G.L.G.J. Faassen Master of Science Thesis

Chapter 1

Introduction

Due to general developments in automation and successive DARPA challenges in 2004, 2005
and 2007, research on autonomous driving has gained growing interests. By excluding humans
from the driving loop, autonomous vehicles are expected to increase road safety as well as
improve the road transport efficiency [1, 2].

The autonomous driving system consists of various separate driving functions. Control of
the vehicle’s longitudinal dynamics is among these functions. As the vehicle follows a certain
trajectory, its longitudinal dynamics change and therefore its inherent control changes as well.
To account for these system changes, the controller has to be set for every possible situation
separately by composing a gain-schedule. Currently, this schedule is constructed manually
by control engineers in the vehicle. As manual tuning of the gains is time consuming and
expensive, other methods for longitudinal control are explored. In this work a classical control
theory method in the form of Optimal Control (OC) and a novel Machine Learning (ML)
method, Reinforcement Learning (RL) will be discussed and compared.

OC is a model-based method, it therefore requires full-state feedback information for optimal
design [3, 4]. Unfortunately, full-state information is not always available. In the vehicle some
signals, like acceleration, are too noisy to be useful for feedback and others such as engine
temperature or load, are variable. This makes the vehicle system only partially observable.
Partial feedback information complicates the controller design with model-based methods
such as OC. ML methods, such as RL, could offer a solution when dealing with partially
observable and changing system dynamics.

In recent years RL has gained popularity in the ML community through the likes of au-
tonomously playing and mastering games like Atari, Chess, Shogi and Go [5, 6, 7]. RL bases
its learning scheme on the learning behaviour of humans and animals. It consists of an agent
that interacts with an environment, i.e. the system. The environment is a black-box to the
agent, therefore full-state information is not needed for learning. The agent tries to find an
optimal path in the environment by gaining experience from the interaction [8]. Every step,
the agent obtains a reward signal from the environment, this reward is a quantitative value
representing the action’s success. The agent, therefore, learns the consequences of its actions

Master of Science Thesis G.L.G.J. Faassen

2 Introduction

by trial-and-error ; it eventually learns which state-action combination yields the maximum
reward.

Consider a case where an infant is learning how to walk. It knows that it can get from point
A to point B by crawling. At a given moment it tries to stand up and succeeds; standing
yields some form of reward so from now on it knows how to do it. From the upward standing
position it tries to walk but will inevitably fall down the first time it tries. Though the
infant has fallen down, it knows how to get up so it can try again from standing up and
it does not need to start from crawling all over again. The infant gets feedback from the
environment, interpreting the information through its actions and their consequences. The
ability of channelling this information is learning.

1-1 Related Work

Other research that has been conducted in the field of longitudinal control include speed
control, i.e. Cruise Control (CC), and speed control with a leading vehicle, i.e. Adaptive
Cruise Control (ACC). While solving these control problems, various approaches have been
investigated. To obtain a general idea of what methods are already used for longitudinal con-
trol, the most relevant and recent achievements are summarized. Furthermore, RL solutions
specifically focussed on this topic have been examined. Last, comparable RL methods used
in non-automotive applications are discussed.

Addressing both the CC and ACC problem: Zhao et al. introduce a novel variation on adap-
tive dynamic programming [9] and Camacho et al., Li et al. and Schmied et al. propose
various forms of model predictive control methods [10, 11, 12]. However, the proposed meth-
ods mostly rely on specific traffic scenarios. This is a drawback as highly automated driver
assist functions are in need of a much broader scope of traffic scenarios [13]. Another disad-
vantage of model predictive control methods is their need for proper estimation of the system
dynamics. Polack et al. suggest a model-free method to determine a low-level controller for
an autonomous vehicle. They approximate the longitudinal dynamics of the vehicle by an
ultra-local differential relation of order 1 [14].

As RL has proven to be able to find close-to-optimal solutions compared to model predictive
approaches [15], it has also been implemented in longitudinal control problems for automated
driving. Zhu et al. use RL to derive an optimal acceleration strategy for ACC with respect to
a lead vehicle [16]. Desjardins et al. approach a Cooperative Adaptive Cruise Control (CACC)
system with RL. A CACC system uses Vehicle-to-Vehicle (V2V) or Road-to-Vehicle (R2V)
communication [17]. Xu et al. apply a parameter tuning method for learning a PI-controller
for application in CC [18]. This method uses a Least Squares Policy Iteration to update
the controller parameters. Bischoff et al. use a model-based policy search algorithm named
PILCO to learn throttle valve control [19]. Considering these approaches, emphasis in this
work is on speed control and learning a proportional controller using the Deterministic Policy
Gradient (DPG).

RL has been used in a various settings for PID parameter auto tuning also in non-automotive
context. Wang et al. propose an algorithm to automatically tune a PID controller using a
Radial Basis Function (RBF) neural network with Temporal Difference (TD) learning [20].
On basis of the previous proposition, comparable work in a more application focus way has

G.L.G.J. Faassen Master of Science Thesis

1-2 Research Objective 3

been done. Sedighizadeh et al. have also used an adaptive PID controller with an RBF
network updated through TD learning but applied on wind turbine control [21]. Kashki et
al. use an automated PID tuning method to optimise a controller for an automatic voltage
regulator [22]. The controller optimisation makes use of CARLA, an algorithm that relies on
policy iteration. El Hakim et al. control soccer robots through PID, these controllers are self
tuned using a multi-agent system with Q-learning [23].

1-2 Research Objective

As many driving scenarios can occur, longitudinal control of an autonomous vehicle requires
a properly derived gain-schedule. Various model-based methods for longitudinal control have
been proposed. These methods rely on proper system information, which is not always avail-
able. Learning a controller through a model-free approach can therefore offer a potential
solution.

In this thesis a comparison between two controllers for speed control will be made. A controller
will be derived using the available system information via OC. Another controller will be
learned using RL. This results in the following research question:

"Can Reinforcement Learning be beneficial for longitudinal control of autonomous vehicles?"

1-3 Thesis Outline

The thesis is structured in a total of six chapters.

Chapter 2 contains preliminary information. First a brief explanation on OC and how it
changes into Optimal Output Control (OOC) when only limited state information is available
will be given. Secondly important concepts for understanding RL will be explained.

Chapter 3 comprises the controller design. First will be explained how the system is defined.
Then the implementation of the RL-framework will be discussed. Last, the implementation
of OC will be explained.

Chapter 4 presents and discusses the results of the comparison between RL and OC interacting
with a simulated vehicle model.

Chapter 5 presents and discusses the results of an experimental comparison done between RL
and OC in a real vehicle.

Chapter 6 will conclude on the work and recommendations on future work will be given.

Master of Science Thesis G.L.G.J. Faassen

4 Introduction

G.L.G.J. Faassen Master of Science Thesis

Chapter 2

Theoretical Framework

In this chapter the theoretical preliminaries are presented. Reinforcement Learning (RL) will
be compared with a benchmark controller in the form of Optimal Control (OC). It is explained
how OC behaves when only limited state information is fed back. Further an elaboration is
given on what RL is, what its main components are and how it works.

The controller in the real vehicle operates in discrete time. Therefore, concepts in this work
will mostly be explained in discrete time.

2-1 Optimal Control

"The objective of optimal control theory is to determine the control signals that will cause a
process to satisfy the physical constraints and at the same time minimize some performance
criterion." - Donald E. Kirk [3]

For optimal controller design the complete set of state variables is required. Unfortunately, in
the vehicle, certain signals are too noisy where others are variable rendering them useless as
feedback. When only partial state information is available, the approach of how an optimal
controller is derived changes. The difference between classical full-state feedback control and
its partial-state feedback control counterpart, i.e. output feedback control, will be discussed.

2-1-1 Classical Optimal Control

"To determine a control signal that satisfies physical constraints", meaning a control law has
to be found that drives a system to an equilibrium. Describing a linear time-invariant system
in discrete state-space form [4]

xk+1 = Axk + Buk

yk = Cxk.
(2-1)

Master of Science Thesis G.L.G.J. Faassen

6 Theoretical Framework

The performance criterion is formulated as a quadratic cost function through a linear-quadratic
regulator [24]

J =
∞∑

k=0
xT

k Qxk + uT
k Ruk. (2-2)

Here Q and R are weighting matrices that determine the importance of certain states and
inputs. The optimisation problem is then defined by minimising this quadratic cost function

min
K

J. (2-3)

From this minimisation an optimal control law is derived

uk = −Kxk, (2-4)

where K is the controller gain.

2-1-2 Optimal Output Control

In the case of partial state feedback the optimisation problem changes, the control law is now
given by

uk = −Kyyk. (2-5)

In this control law Ky represents the controller gain in the case where only certain observable
states, i.e. the output, are are considered. The optimisation problem now becomes

min
Ky

J (2-6)

with

J = xT
0

[∞∑
k=0

((A−BKyC)T)k(Q + CT KT
y RKyC)(A−BKyC)k

]
x0. (2-7)

Now the solution to the optimisation problem depends on the initial state x0, i.e. Ky(x0). A
way to mathematically eliminate the controller’s dependence on the initial state is to average
the performance for a set of initial states that are linearly independent [25, 26]. This could
mean assuming that the initial state is a random variable which is evenly distributed on the
surface of the unit circle. The average performance is then expressed as

Ĵ = trace
(∞∑

k=0
((A−BKyC)T)k(Q + CT KT

y RKyC)(A−BKyC)k
)

. (2-8)

The optimal controller parameters can then be determined through an iterative process, e.g.
via Algorithm 1 in Appendix A.
Further elaboration on the elimination of the initial state-dependence and how the optimal
output control parameters are calculated is given in Appendix A.

G.L.G.J. Faassen Master of Science Thesis

2-2 Reinforcement Learning 7

2-2 Reinforcement Learning

An RL agent learns how to solve sequential decision making problems through interaction
with an environment and gathering experience via trial-and-error [8]. How the agent knows
where to go and how it is able to tell how good it has performed thus far will be explained.

2-2-1 Agent-Environment Interaction

RL considers an agent that interacts with an environment (Figure 2-1). As in the presented
example in chapter 1, the infant represents the agent and the room where it is trying to stand
up and walk is the environment. At each time step t, the agent obtains an impression of the
environment’s state st ∈ S, S being the set of possible states. The agent then determines a
suitable action at ∈ A(st), where A(st) is the set of possible actions available in st. Suppose
the agent executes action at, through this interaction the agent receives reward rt+1 ∈ R and
next state st+1 from the environment. In this case, standing is the infant’s reward and the
upward position will then be the next state. Multiple iterations like this form an episode. In
episodic tasks the objective for the agent is to reach a terminal state up to which the reward
is maximised [8, 27].
Here state st and action at are the same as the systems observable states yk and input uk

respectively (Equation 2-1). For unity and clarity the notation from RL, st and at, will be
used henceforth.

The agent-environment interaction in Reinforcement Learning

Environment

Agent

st+1

rt+1

rt

st

reward state action

at

Figure 2-1: The agent receives state and reward on time step t, st and rt respectively. A suitable
action at, is returned to the environment, which then gives a new state and reward for time step
t + 1, st+1 and rt+1 respectively.

Markov Decision Process As in this work the RL algorithm is considered to be discrete, the
problem it solves, i.e. the environment, can be modelled as a Markov Decision Process (MDP)
[28, 29]. An MDP can be defined as:
Definition 2-2.1. A Markov Decision Process is a tuple 〈S,A,P,R〉, which consists of
a set of states S, a set of actions A, a state transition probability function P and a reward
function R.

Markovian dynamics rest on the idea that information given by the current state is enough
to yield an optimal decision, formally known as the Markov Property [27]. Meaning that the
agent takes action at in state st to transit to state st+1 which yields immediate reward rt+1.

Master of Science Thesis G.L.G.J. Faassen

8 Theoretical Framework

2-2-2 Policy

The behaviour of the agent is determined by the policy π. The policy dictates which action
is taken while being in a certain state. It maps states to actions, exactly like the control
law in Equation 2-5 [8, 27]. For the presented example in chapter 1, the infant’s inputs are
the movement of its arms and legs. Its initial policy for getting from A to B is crawling
and the optimal policy is walking. To reach the optimal policy the infant moves about, i.e.
explores different states. Through exploration it finds out how to stand. As standing is a more
optimal policy, its policy changes accordingly. Eventually by exploring various possibilities
from standing, the infant is able to walk and its policy changes again to the optimal policy.
Distinction can be made between a deterministic and stochastic policy π. A deterministic
policy π is a function in the form of π : S → A, defined as

π(s) = a. (2-9)

While a stochastic policy π is in the form of π : S × A → [0, 1], defined as the probability
distribution

P(a|s) = π(s, a). (2-10)

In this work a deterministic policy will be used as its form coincides with a linear controller.

2-2-3 Reward Function

The agent tries to learn the optimal policy, but to do so it has to know how good it is to be
in a certain state or to take a certain action. The notion of how good states and actions are
is defined by the reward rt. The reward is a single value that varies from step to step and the
agent tries to maximise the accumulated reward, exactly as how in optimal control the cost
has to be minimised. The reward is specified by the reward function. This function is fixed
and embedded in the environment, it cannot be altered by the agent [8, 27].

2-2-4 Value Function

The reward gives an immediate notion of how good it is to be in a certain state or take a
certain action. More important is the value function, it describes what the best course of
action for the agent is over time. It represents the accumulated rewards which the agent has
received up to the point of evaluation. Noticeable is that the value function is exactly the
same as the cost function in optimal control. Most RL algorithms rely on the estimation of
the value function to learn an optimal policy [8, 27] .

The state-value function, V π(s), denotes the expected accumulated reward for starting in
state s, and following policy π. This is formulated as

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
. (2-11)

G.L.G.J. Faassen Master of Science Thesis

2-2 Reinforcement Learning 9

Here Eπ{·} represents the agent’s expected value when following policy π and γ is a discount
factor that can be used to put less weight on rewards further in the future. In a similar
fashion the state-action-value function Qπ(s, a), denotes the expected return for taking action
a, starting in state s and following policy π from the next time step on. This is formulated as

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
. (2-12)

The state-action-value function is the same as the state-value function with an additional
degree of freedom taken into consideration. Both value functions can be connected as follows

V π(s) = Qπ(s, π(s)). (2-13)

As the state-action-value function will primarily be used, further concepts will be explained
with it. For readability it will be called just the value function. To determine an optimal
policy, an optimal value function has to be estimated [30]. When the optimal policy is denoted
by π∗ the optimal value function can be described as:

Q∗(s, a) = max
π

Qπ(s, a). (2-14)

In this optimal value function the action a is selected according to the optimal policy. The
optimal value function Q∗ can be also be expressed as the Bellman optimality equation

Q∗(s, a) = E{rt+1 + γ max
a′

Q∗(st+1, π(st+1))|st = s, at = a}. (2-15)

2-2-5 Function Approximation

As optimal control calculates the cost function, in RL the value function has to be estimated.
The cost function and value function are important parts of the optimisation problem as the
are the performance measures. Therefore the form of these functions defines how well the
system is controlled [3, 8]. In OC, as described in the previous section, the cost is calculated by
a pre-defined cost function [4, 24]. In RL the form of the value function is not pre-defined and
therefore a function approximator is needed to estimate the function [31]. Advancements in
Artificial Intelligence (AI) make it possible for Artificial Neural Networks (ANNs) to learn and
solve complex problems [32]. Function approximation is among such problems and therefore
an ANN is implemented in the RL framework for the estimation of the value function [33, 34].

Artificial Neural Networks ANNs are inspired loosely on the biological neural network ar-
chitecture of the human brain [35, 36]. The concept is that neurons are connected via synapses
and signals are passed between and through them [37]. In an ANN these neurons are rep-
resented by nodes and are modelled as functions. Nodes can take an arbitrary number of
inputs, those inputs are then weighted and put through an input function, usually a summa-
tion. When the weighted inputs are summed a bias is included and to obtain the output the

Master of Science Thesis G.L.G.J. Faassen

10 Theoretical Framework

result is passed through an activation function. A node can then be mathematically expressed
as

oi = φ(
n∑

j=1
wi,jpj + bi). (2-16)

Where the output of the i-th node is oi. The total amount of inputs is represented by n and
the j-th input is pj .The weights and biases are given by wi,j and bi respectively, and φ is the
activation function. The relationship that Equation 2-16 describes is illustrated in Figure 2-2.

Model of one node

∑.
.
.

w1

w2

w3

wn

bi

ϕ oi

pn

p3

p2

p1

Figure 2-2: One node with n inputs and activation function φ.

The activation function can be seen as an abstraction of the rate of the action potential firing
in a cell [36]. The activation function determines the behaviour of the node. In its simplest
form the activation function is the identity function, this is a linear activation function.
But as problems that are presented to ANNs can be of various difficulties, also the activation
functions vary [38]. When approximating nonlinear functions, a linear activation as the above
mentioned identity function does not suffice and nonlinear activation functions are used to
introduce nonlinearity to the approximation [39].

By connecting nodes together in a layered structure a network can be formed (Figure 2-3).
A network always consists of at least two layers, an input and an output layer respectively.
Layers in between (if any) are called hidden layers. The output of the nodes in a given
layer are the inputs for the subsequent layer and so forth. The signals passed through the
network can only go in one direction and networks like these are therefore feedforward. Neural
networks with an architecture of this form are also called multilayer perceptron or vanilla
neural networks [37, 40]. Even though the network only consists of local connectivities, by
adding nodes and layers the network as a whole is able to acquire all the information needed
to approximate the desired function. The network is said to be fully connected when all nodes
of one layer, are connected to all the nodes of the next layer.

To update the network’s weights and biases to approximate the desired function better, a loss
function is defined. The loss function is used to measure the deviation between the network’s
predicted value and the actual value. Then, using back propagation, the loss is propagated
backward through the network to adjust the weights and biases in such a way that it minimises
the error it represents. How the network’s weights are updated using RL is explained in the
next section and which type of activation function are considered and tested is discussed in
chapter 3 [38].

G.L.G.J. Faassen Master of Science Thesis

2-2 Reinforcement Learning 11

Fully connected network with one hidden layer

Input Hidden Output

Figure 2-3: Example of a fully connected neural network consisting of an input layer with 5
inputs, one hidden layer with 6 nodes and an output layer with 2 outputs.

2-2-6 Actor-Critic

Within RL there are various approaches to learning optimal policies or value functions. Three
methods can be distinguished [8]:

– Critic only

– Actor only

– Actor-Critic

Critic only or value function methods, try to estimate and optimise the value function and
define the policy only implicitly. Actor only or policy methods determine the policy directly
from the obtained rewards. Actor-critic methods can be seen as a combination of both value
function and policy methods. As in this work actor-critic is used only this method will be
explained, the interested reader is referred to Appendix B for more on critic only and actor
only methods.

The actor-critic framework defines the agent in an evaluation and a control part. Here the
critic is the evaluating part which estimates the value function. The actor is the control part,
containing the policy and thus determining how to act in a given state. The goal in RL is to
obtain an optimal policy, to achieve this a properly estimated value function is needed. For
a proper value function a good policy is required, in this way critic and actor work together
to reach optimal performance. As can be seen in Figure 2-4 the critic determines the value
function and passes a notion of it to the actor, which uses this to update its policy. Then the
actor determines a control input that yields a reward and thus an adjustment of the value
function. In the given case the Deterministic Policy Gradient (DPG) is used and therefore
the critic passes the gradient of value function to the actor [8, 27, 41].

The critic tries to approximate and evaluates the value function. To properly learn value
function it must find a solution to the Bellman equation (Equation 2-15). To do this it
needs to minimise the difference between the right and left hand size of the equation, i.e. the
Bellman residual, or the Temporal Difference (TD) error. The TD-error can be defined as

Master of Science Thesis G.L.G.J. Faassen

12 Theoretical Framework

The Actor-Critic Architecture

Environment

st+1

rt+1

rt

st

reward state action

at

Critic
Value Function

Actor
Policy

∇Q(,)st at

gradient

Figure 2-4: The critic learns and evaluates the value function where after it passes its gradient on
to the actor. The actor uses this gradient to learn a more optimal policy where after it determines
which action to take in a certain state.

δT D = r(st, at) + γQ(st+1, at+1, θ)−Q(st, at, θ). (2-17)

Here θ is a parameter vector that contains the weights and biases of the neural network. This
network sits inside the critic and represents the approximation of the value function. To get
a better estimate of the value function, a loss function is determined using the TD-error, the
parameter vector is then updated as follows

loss = 0.5 δT
T DδT D, (2-18)

∇θloss = δT D∇θδT D. (2-19)

∇θloss = δT D∇θ(−Q(st, at, θ)). (2-20)

From the gradient of this loss function the new parameter vector can be obtained

θt+1 = θt − α∇θloss. (2-21)

Where α is a learning rate and α∇θloss is a Vanilla Gradient Descent optimiser, chosen for
simplicity but any optimiser of choice can be used. When the critic has learned the next
iteration of the value function, it evaluates the function and passes its gradient ∇Q(st, at) on
to the actor. The actor also consists of a learn and an act part. It uses the value function
to learn the policy. It also does this by updating a parameter vector ϑ which represent the
policy, i.e. the controller. To improve the policy in the actor, the DPG is used [42]. To
evaluate the policy, the gradient of the expected return J is calculated

G.L.G.J. Faassen Master of Science Thesis

2-3 Summary 13

∇ϑJ(πϑ) = ∇ϑEs[Ea[Q(st, at)]],
= ∇ϑEs[[Q(st, πϑ(st))]],
= Es[∇aQ(st, at)|a=πϑ(st)∇ϑπϑ(st)].

(2-22)

This gradient is then used to update the parameter vector

ϑt+1 = ϑt − α∇ϑJ(πϑ). (2-23)

Where again α is a learning rate and α∇ϑJ(πϑ) is a Vanilla Gradient Descent optimiser,
chosen for simplicity but any optimiser of choice can be used.

2-3 Summary

In this chapter the theory used in this work is explained. As not all the state information
is available, regular OC cannot be applied to derive a controller. Optimal Output Con-
trol (OOC) is, in contrast to regular OC, dependant on the initial state of the system. To
eliminate this dependency the performance is averaged for a set of initial states that are evenly
distributed on the unit circle.

RL considers an agent that gathers experience by interacting with an environment. This
agent consists of two parts, an actor and a critic. As the agent explores the environment the
critic forms the state-action-value function from observed data. This value function represents
the accumulated rewards in each state from an initial state and it expresses a notion of how
good it is for the agent to be in a certain state and execute a certain action. The actor then
determines the agent’s actions according to the policy. The purpose of the RL algorithm is
to derive an optimal policy, critic and actor work together to achieve this.

Function approximation is an important part of any optimisation problem. In OC the cost
function that is to be minimised is expressed in a quadratic form. In RL the value func-
tion needs to be estimated and it does not have a predefined form. Therefore a function
approximator in the form of an artificial neural network is used.

Master of Science Thesis G.L.G.J. Faassen

14 Theoretical Framework

G.L.G.J. Faassen Master of Science Thesis

Chapter 3

Controller Design for Longitudinal
Vehicle Dynamics

Before a controller can be applied in a vehicle for commercial use, extensive testing in simula-
tion environments is required. In this chapter the two models, one used for design and one for
testing the controllers will be addressed. The models are inferred from a BMW test vehicle.
The Reinforcement Learning (RL) set-up for learning the controller will be discussed, this
includes the reward function, the network configuration and state reconstruction for better
learning performance. Also the implementation of the Optimal Control (OC) controller will
be explained.

3-1 Vehicle Model

The environment is an important part of the RL algorithm. In this work, a linearised vehicle
model as well as a high fidelity nonlinear model are used.

Nonlinear Model The detailed nonlinear model1 consists of two main components: The
vehicle dynamics model and a low-level controller (Figure 3-1). The vehicle dynamics include
driving resistances, sensor noise and communication delays. The low-level controller linearises
effect of the drive-train, i.e. combustion engine, hydraulic brakes and automatic transmission.
The low-level controller obtains speed input and outputs drive or brake torque to the vehicle
dynamics. The model is build for the simulation of longitudinal dynamics at low speeds. The
simulations that are executed are speed control only with a proportional controller. To mimic
the real world setting the acceleration is not observed, only speed is fed back.

1The model is based in the BMW 7 series, the most used test vehicle at the autonomous driving campus.

Master of Science Thesis G.L.G.J. Faassen

16 Controller Design for Longitudinal Vehicle Dynamics

Nonlinear high fidelity vehicle model with RL agent

Vehicle DynamicsLow-Level
Controller

RL-Agent

RewardAction
(Velocity)

State
(Velocity)

Drive/Brake
Torque

Figure 3-1: Simulation model including low-level controller and RL agent.

Linearised Model From the nonlinear vehicle model a linearised state-space model is de-
ducted to establish the first design of the agent and to determine the optimal controller. The
state-space is based on a second order transfer function that represents the linearised drive-
train and is given by (both are used in a discrete form but for explanatory reasons are here
stated in continuous time):

G(ξ) = 1
τ2ξ2 + 2τξ + 1 . (3-1)

Which translates to

ẋ =
[

0 1
−1
τ2

−2
τ

]
x +

[
0
1

τ2

]
u. (3-2)

The first state represents the acceleration, the second is an internal state where time constant
τ defines the behaviour of the drive-train. To mimic the real world situation the velocity
needs to be observed so an integrator is implemented. From this we infer

ẋ =

0 1 0
0 0 1
0 −1

τ2
−2
τ

 x +

 0
0
1

τ2

 u. (3-3)

Where measurements of only the first state, the velocity, are available

y =
[
1 0 0

]
x. (3-4)

G.L.G.J. Faassen Master of Science Thesis

3-2 Reinforcement Learning Set-up 17

3-2 Reinforcement Learning Set-up

As stated in subsection 2-2-6, the actor and critic in the agent approximate the control
law and value function respectively. Therefore they both consist of a learning part and an
evaluative/act part. Inside the agent a ring buffer is implemented to store the visited states,
performed actions and their corresponding rewards, i.e. the experience [43]. The experience
storage contains M tuples of states, actions and rewards from which the actor and critic
randomly samples Na and Nc tuples respectively for learning. The implementation of the
buffer in the actor is depicted in Figure 3-2.

Detailed Agent Structure

Stores

tuples

M

Learn

Evaluate

Learn

Act

Critic

Actor

Experience
Storage

rt

st

⟨ , , ⟩sNc
aNc

rNc

∇Q

at

⟨ ⟩sNa

Figure 3-2: Detailed actor-critic structure inside the agent. The experience storage stores M
tuples of states, actions and rewards. The critic samples Nc of these tuples for learning, whereas
the actor samples Na tuples of states to learn. Then, with the current state, the next action is
determined following the policy in the actor.

Reward Function To match the quadratic cost function of OC, the reward function is also
defined in a quadratic form. It represents the sum of the squared observable state and weighted
control action

r(yk, uk) = −yT
k yk − 0.1uT

k uk, (3-5)

in RL notation it is

r(st, at) = −sT
t st − 0.1aT

t at. (3-6)

Network Configuration The estimation of the value function depends on the neural network.
As discussed in subsection 2-2-5, the amount of nodes, layers and which type of activation is
used are significant. With an eye on more complicated future controller design and for the

Master of Science Thesis G.L.G.J. Faassen

18 Controller Design for Longitudinal Vehicle Dynamics

sake of a RL algorithm in the most general form, it makes sense to implement a function
approximator with nonlinear properties and universal approximation capabilities. Through-
out the years various activation functions have been tested on different problems and as of
2018, rectifier functions such as Rectified Linear Unit (ReLU) activation function are the
most popular [44, 45, 46]. An altered form of the rectifier unit is the Bent Identity activation
function, it can be mathematically described by Equation 3-7 and is visualised in Figure 3-3.

φ(pt) =

√
p2

t + 1− 1
2 + pt (3-7)

Bent Identity Activation Function

Delft Center for Systems and Control

−3 −2 −1 0 1 2 3
−2
−1

0
1
2

pt

φ
(p

t)

Figure 3-3: Bent Identity Activation Function.

For linear systems with quadratic reward function, e.g. Equation 3-6, it is known that the
infinite horizon state value function is also quadratic [47]. Therefore, besides a network
with only Fully Connected (FC) layers and nonlinear activation, also a network with a layer
including quadratic function approximation is considered. In this work called a Quadratic
Feature Layer (QFL). In this layer every input is multiplied with itself and every other input.
For every n inputs in this layer there are n(n+1)

2 outputs and there are no weights or biases, an
example is given in Figure 3-4. After the QFL, a fully connected layer outputs the weighted
values of the QFL to one node, i.e. the value function.

Example Quadratic Feature Layer

s1,t

s2,t

at

s
2
1,t

s
2
2,t

a
2
t

s1,ts2,t

s1,tat

s2,tat

Figure 3-4: Example of a quadratic feature layer with three inputs and six outputs.

To compare the performance of both networks, with the QFL and the FC layer, they are
tested with the linear model described by Equation 3-3 and Equation 3-4. The network’s
goal is to estimate the value function and thereby minimising the Temporal Difference (TD)

G.L.G.J. Faassen Master of Science Thesis

3-3 Optimal Output Control Benchmark 19

error. Then, comparing the TD-error each network yields, a conclusion can be drawn upon
their performance. The network that yields to the smallest error, performs best. In this test
the network with a QFL has the configuration: 2-3-1, the network with a FC layer has the
configuration 2-30-1. As can be observed in Figure 3-5 the TD-error of the QFL is much lower
than the error to which the FC layer converges. The TD-error of the FC layer converges to
an order of 10−2 whereas the TD-error for the QFL converges to an order of 10−9. Because
the QFL yields a more promising result it will be used henceforth.

TD error of network with QFL and FC bent identity layer

Delft Center for Systems and Control

305 310 315 320 325 330 335 340
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
·10−2

Steps

δ T
D

σQFL
µQFL
σFC
µFC

Figure 3-5: The TD-error of both a network with the QFL and FC layer is shown. Both networks
have run 10 times with 500 episodes and 100 steps per episode, the plot is 50.000 steps long but
is truncated for clarity. Due to the fact the agent does not learn when it builds up the experience
in the buffer the first error is plotted at 305.

State Reconstruction As the system dynamics are only partially observable and to further
improve the critic’s estimation of the value function, one state is reconstructed. The state is
constructed by a learned observer inside the critic, it consists of a fully connected layer that
approximates the missing state via a Finite Impulse Response (FIR) filter on past actions.
The FIR filter uses back propagation to restore the missing state information. In this case
it only reconstructs the second state, and not the third, as this unobserved information has
highest influence on the observable state. To reconstruct the second state 40 previous actions
are appended to the input of the network. This amount of actions is enough for the finite
impulse response to settle within a bound so that the state can be reconstructed and the
observer is not over fitting. For a more elaborate explanation, please refer to Puccetti et al.
[48].

3-3 Optimal Output Control Benchmark

For a fair comparison, the optimal output controller has to be set up following the same
specifications as the RL agent. As stated in section 2-1 the cost function is specified by

Master of Science Thesis G.L.G.J. Faassen

20 Controller Design for Longitudinal Vehicle Dynamics

Ĵ = trace
(∞∑

k=0
((A−BKyC)T)k(Q + CT KT

y RKyC)(A−BKyC)k
)

. (3-8)

The continuous system matrices A, B and C are given by Equation 3-3 and Equation 3-4,
they are discretised following standard state-space discretisation [3]. The OC cost function
will be weighted according to the RL reward function, as stated by Equation 3-6. Therefore
weighing matrices Q and R are

Q =

1 0 0
0 0 0
0 0 0

 , R = 0.1. (3-9)

Algorithm 1 in Appendix A then states how the optimal output controller gain is derived.

3-4 Summary

In this chapter the vehicle models used for training and testing are described. Furthermore
is explained how the acRL controller is learned and the OC controller is derived.

A high fidelity nonlinear model is used to simulate the vehicle. This model consists of the
vehicle dynamics and a low-level controller. The vehicle dynamics include driving resistance,
sensor noise and communication delays. The low-level controller linearises the effects of the
drive-train. For both RL and OC only the velocity is observable.

The agent consists of an actor and a critic which in term both consist of a learning and
an evaluative/act part. The reward that the agent obtains from the environment is from a
quadratic reward function that has the same form as the OC cost function. A buffer inside
the agent stores tuples of states, actions and rewards on which the actor and critic learn their
policy and value function respectively. In the critic a neural network approximates the value
function. Two types of network are taken into consideration, a FC network with nonlinear
activation functions called bent identity and a QFL with quadratic function approximation.
Both are tested on the linear system. The TD-error is considered as a measure of performance
for the networks. The QFL yields a TD-error in the order of 10−9 where as the FC layer settles
at TD-errors of the order 10−2. Therefore the network with QFL is chosen to continue with.
To further improve learning a state reconstruction is performed. This reconstruction uses a
fully connected layer with a FIR filter on past actions to approximate one missing state of
the system, i.e. the acceleration.

For the implementation of an Optimal Output Control (OOC) specific weighing matrices
are needed. These matrices are set in such a way the cost function matches the RL reward
function. Q is a zero-matrix where only position (1,1) has a value of 1, because the only signal
that passed through for feedback is velocity. The value of R is set to 0.1.

G.L.G.J. Faassen Master of Science Thesis

Chapter 4

Simulation Study

As described in the previous chapter, a nonlinear vehicle model is used to learn a controller
with the RL agent in a simulation. In this chapter the environmental settings such as speed,
gear and sampling time will be discussed. Also the agents configuration of network, batch
and episode size will be specified. After that the results of learning in the simulated model
will be discussed.

4-1 Learning the Controller

For the RL agent to be able to learn, some parameters have to be set in the environment and
in the agent. Important components to consider in both actor and critic are the structure of
the network, the optimiser used to update the weights and biases in the network and the size
of the storage buffer, batch and episodes.

Agent In the actor the network is not as extended as in the critic, here it represents the
value of the linear controller gain. It contains one input, being the current state st, and one
output, at, the weight that links these two is the controller gain Kp. The critic’s network has
a more extensive structure:

– The input consists of the current observable state, st, 40 appended previous actions,
at−40, ..., at−1 and the current action, at.

– The first layer

• Passes through the current observable state

• Passes the appended previous actions through a fully connected layer with linear
activation functions to reconstruct the missing state

• Passes through the current action

– The second layer passes all three inputs through a quadratic feature layer

Master of Science Thesis G.L.G.J. Faassen

22 Simulation Study

– The third layer passes all six inputs through a fully connected layer with linear activation
functions to form the state-action value function

This network architecture is illustrated in Figure 4-1.

Neural Network Architecture

.

.

.

.

.

s1,t

at−1

at

at−40

s1,t

s2,t

at

Q

Figure 4-1: A schematic display of the network’s configuration with FIR filter, Quadratic Feature
Layer and Fully Connected layers.

The optimiser determines how fast the network’s parameters can converge to their optimal
value. As the actor and the critic work together, their respective performance is linked. It is
important to choose proper optimisers to suit both learning trajectories. Meaning that the
the optimiser in the critic has to be chosen to be as fast as possible. The optimiser in the
actor on the other hand cannot be too fast. As the actor only has to learn one value, the
approximation of the value function in the critic might not be able to keep up and it can end
up not learning at all. This causes the agent to perform suboptimal. Therefore as optimiser
in the critic the Levenberg-Marquardt (LM) algorithm is used and in the actor the Stochastic
Gradient Descent (SGD) algorithm.

The storage buffer contains past state and actions from which the actor and critic sample.
The buffer stores the 500 last state-action pairs and their rewards. For every step the critic
samples a random batch of 300 tuples of states, actions and rewards from the buffer and
pushes them through the network. Then using temporal difference learning, the weights of
the network are adjusted to be a better fit of the state-action-value function Q. In a similar
way, the actor samples a random batch of 100 tuples of states to update its weight, i.e. the
controller gain, following the Deterministic Policy Gradient (DPG) method. The length of
each episode is set at 140 steps. This is because the state reconstructor in the critic needs 40
past actions to be able to reconstruct the unobserved state. As in the 40 first steps nothing
is learned, the episodes are effectively a 100 steps long. Learning the value function in the
critic is done with a discount of 0.95. The discount is needed for the rewards to converge to
a finite sum. In addition it determines how rewards that lie in the future are valued, more
discount places less emphasis on the future and more on immediate reward [49]. It is desirable

G.L.G.J. Faassen Master of Science Thesis

4-1 Learning the Controller 23

to consider rewards as far in the future as possible, therefore the discount factor needs to be
high. In the current system setting a discount of 0.95 was the maximum for which the agent
was still able to learn properly. Table 4-1 summarizes these settings.

Table 4-1: Settings of the Agent

Parameter Actor Critic
Optimiser Stochastic Gradient Descent Levenberg-Marquardt
Storage Buffer (same for both) 500 tuples 500 tuples
Batch Size 100 tuples 300 tuples
Steps per Episode 140 steps 140 steps
Discount factor - 0.95

Environment In the environment, i.e. the vehicle model, there are only certain parameters
that can be modified, other influences like load, drag coefficient or engine specifications are
fixed. The main environmental parameters are shown in Table 4-2.

Table 4-2: Environmental Settings Vehicle Model for two cases.

Parameter Symbol Case 1 Case 2
Speed svelocity 20 km/h 40 km/h
Gear g 2 3
Time constant τ 0.910 0.632
Sampling time T 0.02 0.02

Two cases for the environment are set, first driving 20 km/h in second gear, and secondly
driving 40 km/h in third gear. The sampling time is set to 20 milliseconds as this is the
sampling frequency of the controller in the actual vehicle. An important note to make here
is the time constant τ mentioned in chapter 3. In the vehicle model τ is incorporated via a
lookup table and is therefore not a fixed value as it depends on the revolutions of the engine.
Though τ varies slightly during the run using a lookup table, it converges to a specific value
as the agent is able to stabilise the system. This τ is then used to determine the optimal
output controller, as can be seen in Equation 3-3 the time constant has a big influence on
the system dynamics and is therefore crucial to the determination of the gain. The range of
τ according to the lookup table is plotted in Figure 4-2.

Master of Science Thesis G.L.G.J. Faassen

24 Simulation Study

Lookup table for time constant τ

Delft Center for Systems and Control

1,000 2,000 3,000 4,000 5,0000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Engine revolutions per minute [rpm]

τ

Figure 4-2: The normalised lookup table for time constant τ that is used by the vehicle model.

4-2 Results

To compare the behaviour of RL and OC in different environmental scenarios and to see if
model-free learning has an advantage over model-based control, three scenarios are presented.

– Driving at 20 km/h on a flat road.

• Agent will be trained for driving in second gear and compared to OC set for driving
in second gear.

• Agent will be trained for driving in second gear and compared to OC set for driving
in first gear.

– Driving at 40 km/h on a flat road.

• Agent will be trained for driving in third gear and compared to OC set for driving in
third gear.

• Agent will be trained for driving in third gear and compared to OC set for driving in
second gear.

– Driving at 20 km/h on a road with 10% inclination.

• Agent will be trained for driving in second gear and compared to OC set for driving
in second gear on a flat road.

To measure the performance of the policy, a recurring test run is introduced as performance
validation. After every umpteenth episode, the agent executes a 1 episode test run. In this
run the agent starts from a specific initial state, without learning, and with the controller
settings at that given time. Note that the test run does not necessarily have the same length
as a normal training episode. It has to be long enough to let the system settle so all rewards
can be accumulated, when the run is too short the test could indicate a better or worse
performance than that is actually true. As this run is identical every time, it is a good way
to measure the performance. The initial state, i.e. the offset δvelocity, from which the test run
will start is chosen to be -3 km/h. The initial state can be chosen arbitrary from within the

G.L.G.J. Faassen Master of Science Thesis

4-2 Results 25

probable operating region of the controller. Also an initial gain has to be given, this gain has
to stabilise the system and in this case Kp = −2 is used, again, this can be chosen arbitrary.

4-2-1 Driving at 20 km/h on a flat road

RL and OC in same system settings The agent is trained to drive at 20 km/h in second
gear, the optimal controller is also configured for driving at 20 km/h in second gear. From
Figure 4-3b it can be inferred that the performance of the agent matches the optimal controller
after training for about 110 episodes. This seems reasonable as the controller gains are
approximately the same from this point on. The similarities in performance are to be expected
since the optimal controller is derived from a the linearised system of the vehicle model in
this specific set point. Exact values for the gains and rewards of RL and OC are shown in
Table 4-3.

Development of learned gain and accumulated rewards per test run at 20 km/h

Delft Center for Systems and Control

0 50 100 150 200

−2

−1.75

−1.5

−1.25

−1

Episodes

K
p

ga
in

σRL
µRL
OC

(a) Learned Kp-gain

Delft Center for Systems and Control

0 50 100 150 200
−13.5

−13

−12.5

−12

−11.5

−11

Episodes

A
cc

um
ul

at
ed

re
w

ar
d

σRL
µRL
OC

(b) Acculmulated Rewards per Validation Run

Figure 4-3: The development of the controller gain Kp and the accumulated reward in the test
run are compared to their optimal output control counterpart. This learning simulation has run
20 times, each 200 episodes with 140 steps. The test during training runs every 5 episodes and
is 500 steps long.

Table 4-3: Values of RL and OC at 20 km/h.

Kp-gain Accumulated Reward
RL -1.1013 -11.07
OC -1.1181 -11.06

Master of Science Thesis G.L.G.J. Faassen

26 Simulation Study

Figure 4-4a depicts how the state response develops while the agent learns a more optimal
controller gain. The behaviour of the state response is in line with what is to be expected.
The agent’s initial controller estimation is set at Kp = −2 and therefore implying a powerful
state response with corresponding overshoot. As the agent learns a more appropriate gain the
state response becomes more similar to the optimal control state response as can be observed
in Figure 4-4b.

Development of state response whilst learning optimal gain at 20 km/h

Delft Center for Systems and Control

0 5 10 15 20 25 30 35 40
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

Test Run Episodes

δ v
el

oc
ity

[k
m

/h
]

σvelocity µvelocity

15 15.5 16
−3
−2
−1

0

(a) Development of State Response

Delft Center for Systems and Control

0 50 100 150 200 250 300
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5

Steps

δ v
el

oc
ity

[k
m

/h
]

σRL
µRL
Setpoint
OC

(b) State Response Final Test Run

Figure 4-4: The development of the state response while the agent is learning the optimal
gain. The final test run is compared with the state response of the optimal control gain, they are
almost identical. This similarity is expected as the optimal controller was derived for the linearised
system of this environment. The test during training runs every 5 episodes and it is 500 steps
long. Figure 4-4b is only plotted until 300 steps for clarity.

RL and OC in altered system settings To highlight the difference between non-model
based learning and model-based control with poor model information the following situation
is presented. The system does no longer align with the configuration for which the optimal
controller is derived. In this case the car is still driving at 20 km/h in second gear, but the
OC controller is determined for driving at 20 km/h in first gear. With this gear change the
time constant τ changes accordingly as the engine makes more revolutions to maintain the
same speed.

In Figure 4-5a the difference is shown between the learned RL gain, the OC gain for the
corresponding system and the OC gain for the altered system. It can be observed that for
the altered system, i.e. driving in first gear, OC suggests a more aggressive controller gain
than it did for the driving in second gear. Figure 4-5a shows that for the altered system the
RL agent also converges to a slightly higher value for the gain but proportionally is still much
more conservative. As to be expected, in Figure 4-5b can than be seen that the performance
of the optimal controller drops. Exact values for the gains and rewards of RL and OC are
shown in Table 4-4.

G.L.G.J. Faassen Master of Science Thesis

4-2 Results 27

Performance of RL and OC in altered system at 20 km/h

Delft Center for Systems and Control

0 50 100 150 200

−2

−1.75

−1.5

−1.25

−1

Episodes

K
p

ga
in

σRL
µRL
OCaltered
OC

(a) Kp-gains

Delft Center for Systems and Control

0 50 100 150 200
−13.5

−13

−12.5

−12

−11.5

−11

Episodes

A
cc

um
ul

at
ed

re
w

ar
d

σRL
µRL
OCaltered
OC

(b) Acculmulated Rewards per Test Run

Figure 4-5: Comparison between RL and OC for two cases. OC derived for the proper system
(dashed) and OC derived for an altered system (solid) where the gear is changed. The poor model
information leads to a higher gain and worse performance. This learning simulation has run 20
times, each 150 episodes with 140 steps. The test during training runs every 5 episodes and it is
500 steps long.

Table 4-4: Values of RL, OC and OCaltered at 20 km/h.

Kp-gain Accumulated Reward Time constant τ

RL -1.1013 -11.07 n.a.
OC -1.1181 -11.06 0.910
OCaltered -1.2235 -11.15 0.186

Master of Science Thesis G.L.G.J. Faassen

28 Simulation Study

When looking at the state response of the two controllers, Figure 4-6, the consequence of the
higher gain of the altered OC can be observed. The optimal controller is now more powerful
and will thus have overshoot where as the RL controller and the previous optimal controller
do not.

State response RL and OC in altered system at 20 km/h

Delft Center for Systems and Control

0 50 100 150 200 250 300
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5

Steps

δ v
el

oc
ity

[k
m

/h
]

σRL
µRL
Setpoint
OC
OCaltered

Figure 4-6: Comparison between RL and OC for two cases. OC derived for the proper system
(dashed) and OC derived for an altered system (solid) where the gear is changed. The poor
model information leads to a higher gain which results in overshoot of the state response. The
test during training runs every 5 episodes and it is 500 steps long. The figure is only plotted until
300 steps for clarity.

4-2-2 Driving at 40 km/h on a flat road

RL and OC in same system settings The agent is trained to drive at 40 km/h in third
gear, the optimal controller is also configured for driving at 40 km/h in third gear. As
from Figure 4-7b can be inferred is that the performance of the RL and OC controller are
again almost the same. As opposed to driving at 20 km/h in this case the agent takes on
a more conservative gain than OC suggests. Noticeable is also that the agent converges to
its optimal gain much earlier than in the 20 km/h case. In the previous case both gain and
accumulated reward settled at around 110 episodes. Here after approximately 60 the optimal
gain is reached whereas after 40 episodes the accumulated reward is on par with OC.

Observing the development of the state response in Figure 4-8a, the state response has a lot
of overshoot with an initial gain of -2. As the gain of the agent converges the state response
gradually behaves like a first order system. Comparing then the state responses in Figure 4-8b
it can be seen that the OC controller has some overshoot, this is due to its higher controller
gain whereas RL is more conservative and thus has a smoother state response.

G.L.G.J. Faassen Master of Science Thesis

4-2 Results 29

Development of learned gain and accumulated rewards per test run at 40 km/h

Delft Center for Systems and Control

0 50 100 150
−2

−1.75

−1.5

−1.25

−1

−0.75

Episodes

K
p

ga
in

σRL
µRL
OC

(a) Learned Kp-gain

Delft Center for Systems and Control

0 50 100 150

−13.5

−13

−12.5

−12

−11.5

−11

Episodes

A
cc

um
ul

at
ed

re
w

ar
d

σRL
µRL
OC

(b) Acculmulated Rewards per Test Run

Figure 4-7: Development of the controller gain Kp and the accumulated reward in the test run
compared with OC. Noticeable is that RL converges to a more conservative gain than OC while
their performance match. This learning simulation has run 20 times, each 150 episodes with 140
steps. The test during training runs every 5 episodes and it is 500 steps long.

Table 4-5: Values of RL and OC at 40 km/h.

Kp-gain Accumulated Reward
RL -0.8773 -11.21
OC -1.1556 -11.19

Development of state response whilst learning optimal gain at 40 km/h

Delft Center for Systems and Control

0 5 10 15 20 25 30
−3

−2.5
−2

−1.5
−1

−0.5
0

0.5

Test Run Episodes

δ v
el

oc
ity

[k
m

/h
]

σvelocity µvelocity

5 5.5 6
−3
−2
−1

0

(a) Development of State Response

Delft Center for Systems and Control

0 100 200 300 400

−3
−2.5

−2
−1.5

−1
−0.5

0
0.5

Steps

δ v
el

oc
ity

[k
m

/h
]

σRL
µRL
Setpoint
OC

(b) State Response Final Test Run

Figure 4-8: Development of the state response while the agent is learning the optimal gain.
Because of the more conservative gain of RL its state response is damped and does not has
overshoot like OC. The final test run is compared with the state response of the optimal control
gain. The test during training runs every 5 episodes and it is 500 steps long. Figure 4-8b is only
plotted until 400 steps for clarity.

Master of Science Thesis G.L.G.J. Faassen

30 Simulation Study

RL and OC in altered system settings Again to compare the difference between non-model
based learning and poor model-based control, a situation is presented in which the system
configuration of the OC controller are no longer accurate. The agent is still trained for driving
at 40 km/h in third gear, whereas the OC controller is derived for driving at 40 km/h in
second gear.

When observing Figure 4-9a the same behaviour of the OC controller towards the RL agent
is seen. As the gear is changed, the time constant τ increases and leads to a higher gain for
OC. The accumulated rewards are less but still do not differ that much from the RL agent,
see Figure 4-7b. The corresponding values for controller gain, accumulated reward and time
constant are shown in Table 4-6.

Performance of RL and OC in altered system at 40 km/h

Delft Center for Systems and Control

0 50 100 150
−2

−1.75

−1.5

−1.25

−1

−0.75

Episodes

K
p

ga
in

σRL
µRL
OCaltered
OC

(a) Kp-gains

Delft Center for Systems and Control

0 50 100 150

−13.5

−13

−12.5

−12

−11.5

−11

Episodes

A
cc

um
ul

at
ed

re
w

ar
d

σRL
µRL
OCaltered
OC

(b) Acculmulated Rewards per Test Run

Figure 4-9: Comparison between RL and OC for two cases. OC derived for the proper system
(dashed) and OC derived for an altered system (solid) where the gear is changed. The false
system information leads to an even higher gain for optimal control and a corresponding worse
performance. This learning simulation has run 20 times, each 150 episodes with 140 steps. The
validation during training runs every 5 episodes and it is 500 steps long.

Table 4-6: Values of RL, OC and OCaltered at 40 km/h.

Kp-gain Accumulated Reward Time constant τ

RL -0.8773 -11.21 n.a.
OC -1.1556 -11.19 0.632
OCaltered -1.2445 -11.25 0.600

When looking at Figure 4-10 the same behaviour as seen in the 20 km/h case can be observed.
Because of the change in the system, the OC controller is now more powerful and thus will
have even more overshoot.

G.L.G.J. Faassen Master of Science Thesis

4-2 Results 31

State response RL and OC in altered system at 40 km/h

Delft Center for Systems and Control

0 100 200 300 400

−3
−2.5

−2
−1.5

−1
−0.5

0
0.5

Steps

δ v
el

oc
ity

[k
m

/h
]

σRL
µRL
Setpoint
OC
OCaltered

Figure 4-10: Comparison between the RL and OC for two cases. OC derived for the proper
system (dashed) and OC derived for an altered system (solid) where the gear is changed. The
poor model information leads to a higher gain and therefore results in even more overshoot. The
test during training runs every 5 episodes and it is 500 steps long. The figure is only plotted until
400 steps for clarity.

Master of Science Thesis G.L.G.J. Faassen

32 Simulation Study

4-2-3 Driving at 20 km/h on a road with 10% inclination

A scenario is presented in which the change of the system is more extreme than only a gear
change. In this scenario the car is driving at 20 km/h uphill with a 10% inclination, i.e.
5.71◦. Where the RL agent can train on the model with this system setting the linear model
has no way of adjusting to a road inclination, as τ does not change, the OC controller is the
same as driving on a flat road at 20 km/h.

As the environment changes to include the inclination, a big difference can be observed. From
Figure 4-11a can be derived that the RL controller converges to a much lower gain than it
did when the car was driving on a flat road. Noticeable is also that it takes longer for the
agent to converge to this gain, approximately 175 episodes. The lower gain then also yields a
better result, i.e. accumulated reward, as can be seen in Figure 4-11b. Exact values of gain
and accumulated reward are shown in Table 4-7.

When looking at the state response of the two controllers it can be seen that the RL controller,
with its much lower gain, yields a state response that is damped more than the optimal
controller. The OC controller being more forceful rises faster and converges earlier but still
shows a small oscillation before it settles.

G.L.G.J. Faassen Master of Science Thesis

4-2 Results 33

Development of learned gain and accumulated rewards per test run
at 20 km/h with 10% inclination

Delft Center for Systems and Control

0 50 100 150 200
−2

−1.75

−1.5

−1.25

−1

−0.75

Episodes

K
p

ga
in

σRL
µRL
OC

(a) Learned Kp-gain

Delft Center for Systems and Control

0 50 100 150 200
−19.5

−19
−18.5

−18
−17.5

−17
−16.5

−16
−15.5

Episodes

A
cc

um
ul

at
ed

re
w

ar
d

σRL
µRL
OC

(b) Acculmulated Rewards per Validation Run

Figure 4-11: Development of the controller gain Kp and the accumulated reward in the test
compared with OC. Because the optimal controller cannot account for the road inclination its gain
and performance differ from RL. This learning simulation has run 10 times, each 150 episodes
with 140 steps. The test during training runs every 5 episodes and it is 500 steps long.

Table 4-7: Values of RL and OC at 20 km/h with 10% inclination

Kp-gain Accumulated Reward
RL -0.6989 -15.59
OC -1.1181 -15.79

State response RL and OC in altered system at 20 km/h with 10% inclination

Delft Center for Systems and Control

0 100 200 300 400

−3
−2.5

−2
−1.5

−1
−0.5

0
0.5

Steps

δ v
el

oc
ity

[k
m

/h
]

σRL
µRL
Setpoint
OC

Figure 4-12: Comparison between the RL and OC state response for when the optimal controller
is determined for an altered system. As the controllers do not compare the state responses are
quite different. The RL controller is conservative and yields a damped state response. The gain
of OC is higher, the state response rises faster but settles with a small oscillation. The test during
training runs every 5 episodes and it is 500 steps long. The figure is only plotted until 400 steps
for clarity.

Master of Science Thesis G.L.G.J. Faassen

34 Simulation Study

4-3 Discussion

To show that the performance of a learned controller can match optimal control, a comparison
is made where both controllers are simulated for the same speed and gear. In both cases their
performance is comparable. The similarity in performance is not unexpected as a linearised
model of the nonlinear high fidelity model is used to determine the optimal controller. This
controller is then used in the comparison with the vehicle model set to the same specifications
as the linearised model. Noteworthy is that for driving at 20 km/h RL converges to almost
the exact value as OC and therefore their performance is the same. But for driving at
40 km/h same performance for RL as OC was reached with two relatively dispersed gains,
Kp,RL = −0.8773 and Kp,OC = −1.1556. It seems that the RL agent finds a different optimal
path to stabilise the system with less control action than OC. A reason for this can be the way
how RL and OC both handle the dependency of the initial state on the control problem. As
mentioned in section 2-1, OC makes an assumption that distributes a set of initial states on the
unit circle and then averages the performance over them. So the emphasis lies completely on
the optimal gains corresponding that specific region (the unit circle). On the other hand the
RL agent is relatively free to explore the forthcoming performance from various initial states
as it can sample an arbitrary number of initial states from any region. The region from which
RL samples its initial states can be chosen arbitrary. As it is not bounded, the exploration is
much richer and may very well lead to a control path matching the performance of optimal
control, but requires less control action. Also interesting is that RL is able to converge to an
optimal gain much faster while driving at 40 km/h than driving at 20 km/h. A reason for
this could be that at higher speeds the low-level controller exerts less influence on the system
and the system becomes easier to control for RL. Also, what could help the agent at higher
speed is the fact that the speed deviations that can occur are relatively smaller. Looking at
the state response it can also be observed that in the 20 km/h scenario the RL and OC align.
Noteworthy is that the response resembles a second order system whereas when properly
controlled, the response of a first order system is expected. The main reason for this is the
influence of the low-level controller in the system. When looking at the 40 km/h case the
response is much more like a first order system, as expected.

Secondly a comparison is made between OC and RL where the optimal controller is designed
with poor model information. A situation is presented in which the vehicle is driving again
at 20 and at 40 km/h but in both cases the OC controller was set to drive in a different gear
as RL. This simulation defines the actual use case for RL in autonomous driving controller
design. OC is a model-based controller design method, meaning that when derived it is only
optimal for one specific model setting. When this changes, the controller performs suboptimal.
This is where RL takes advantage of the fact that it is non-model based. The RL agent can
adapt when the system changes, it is not bound to a specific setting of the model. In both
cases when comparing RL with OC in a changed model environment, it can be clearly seen
that where RL is able to change and maintain its performance level whereas OC can not and
performs worse. When observing the state responses of the altered OC controllers with the
RL controller, the effect of more overshoot is to be expected with a stronger controller.

Last a comparison was made between RL and OC for a situation in which the car is driving
uphill on a road with a 10% inclination. This comparison illustrates an extreme situation
change and emphasises the important of accurate system knowledge in the case of OC even
more. As accurate system knowledge is not always available the advantages of learning in a

G.L.G.J. Faassen Master of Science Thesis

4-3 Discussion 35

model-free fashion becomes evident. RL is able to adapt to the system in any situation and
in this comparison it can then be clearly seen that it converges to a better controller gain.
This controller then yields a better performance and in the validation run the state settles
with less osculation.

Master of Science Thesis G.L.G.J. Faassen

36 Simulation Study

G.L.G.J. Faassen Master of Science Thesis

Chapter 5

Experimental Comparison

The goal is to let the Reinforcement Learning (RL) agent learn and adapt controller settings
in real time as the car drives. In the current state the RL algorithm is not robust or fast
enough to do this. To verify its learning results from the simulations in the previous chapter
an experiment to compare the controllers in a real world setting is set up. As the agent can
not learn in the actual vehicle1, the learned gains are set as fixed controllers and their state
responses will be evaluated. First the comparison will be described whereafter the results will
be discussed.

5-1 Experimental Preliminaries

In the experiment the objective is to compare the learned RL controllers from the simulations,
against its OC counterparts and a controller set by BMW. At BMW there are many different
models which are being used, for the given case as benchmark "BMW-controller" a gain of
Kp = −0.7 was advised for low speeds. The corresponding controller gains are again shown
in Table 5-1 and Table 5-2. The following scenarios are tested.

– Driving at 20 km/h on a flat road in second gear.

• Using RL controller trained for driving at 20 km/h in second gear.

• Using OC controller derived for driving at 20 km/h in second gear.

• Using OC controller derived for driving at 20 km/h in first gear.

• Using advised BMW controller.

1A BMW 7 series, as of which also the nonlinear model is derived.

Master of Science Thesis G.L.G.J. Faassen

38 Experimental Comparison

– Driving at 40 km/h on a flat road.
• Using RL controller trained for driving at 40 km/h in third gear.
• Using OC controller derived for driving at 40 km/h in third gear.
• Using OC controller derived for driving at 40 km/h in second gear.
• Using advised BMW controller.

Table 5-1: Corresponding gains for driving 20 km/h in second gear.

Kp-gain
BMW -0.7
RL -1.1013
OC -1.1181
OCaltered -1.2235

Table 5-2: Corresponding gains for driving 40 km/h in third gear.

Kp-gain
BMW -0.7
RL -0.8773
OC -1.1556
OCaltered -1.2445

For the test run in the simulation study an offset of -3 km/h is used to show the state
response’s rate of stabilisation. To mimic this scenario in the experiment, the car was driven
at a constant speed of 17 km/h and 37 km/h whereafter the speed input is increased to 20
km/h and 40 km/h respectively.

5-2 Results

In the simulation study the offset of 3 km/h can be seen as a step input on time step t0.
Because of how the software is configured in the car due to safety this can not be recreated.
Therefore when the car is driven at 17 km/h and the input to the controller is changed to 20
km/h, a ramp-input is passed to the controller.

5-2-1 Driving at 20 km/h

Taking into consideration that the gains for RL and OC in the same setting are very close to
one another it is to be expected that their behaviours match (Figure 5-1b and 5-1d). What
is interesting to see when comparing the two optimal controllers (Figure 5-1c and 5-1d), the
controller determined for the altered system does have more overshoot than the response of
the controller for the correct system. Still, comparing these responses to the response of the
BMW-gain in Figure 5-1a it can inferred that the BMW-gain is the only one able to dampen
out the oscillations. A gain in the region of 1.1-1.2 is apparently too high and keeps exciting
the system, only a more conservative gain is able to decrease the oscillation.

G.L.G.J. Faassen Master of Science Thesis

5-2 Results 39

State response of driving 20 km/h

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
17

17.5
18

18.5
19

19.5
20

20.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(a) BMW-gain: -0.7

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
17

17.5
18

18.5
19

19.5
20

20.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(b) RL-gain: -1.1013

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
17

17.5
18

18.5
19

19.5
20

20.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(c) OCaltered-gain: -1.2235

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
17

17.5
18

18.5
19

19.5
20

20.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(d) OC-gain: -1.1181

Figure 5-1: The various state responses plotted for driving from 17 km/h to 20 km/h, each
experiment was performed three times.

Master of Science Thesis G.L.G.J. Faassen

40 Experimental Comparison

5-2-2 Driving at 40 km/h

Driving at 40 km/h with the proposed gains yields a opposite response to what could be
observed in the 20 km/h experiment. The more conservative BMW and RL controllers are
apparently too weak to decrease the oscillations, as can be inferred from Figure 5-2a and
Figure 5-2b. The controllers derived via optimal control have higher gains and seem therefore
be able to damp the oscillations. Also here, as in the 20 km/h case, the overshoot the OC
controller for the proper gear (third) yields is less than the overshoot the controller for the
altered system, i.e. second gear. The altered OC gain that is proposed is higher than the
gain for OC in the proper system, therefore it stabilises the velocity better. It seems that a
higher controller gain is desired at higher speed, this is at odds with the derived conclusion
from the simulation study.

State response of driving 40 km/h

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
37

37.5
38

38.5
39

39.5
40

40.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(a) BMW-gain: -0.7

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
37

37.5
38

38.5
39

39.5
40

40.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(b) RL-gain: -0.8773

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
37

37.5
38

38.5
39

39.5
40

40.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(c) OCaltered-gain: -1.2445

Delft Center for Systems and Control

0 2 4 6 8 10 12 14
37

37.5
38

38.5
39

39.5
40

40.5

time [s]

ve
lo

ci
ty

[k
m

/h
]

Setpoint
µvelocity
σvelocity

(d) OC-gain: -1.1556

Figure 5-2: The various state responses plotted for driving from 37 km/h to 40 km/h, each
experiment was performed three times.

G.L.G.J. Faassen Master of Science Thesis

5-3 Discussion 41

5-3 Discussion

The experimental data propose interesting behaviour of the controllers when used in a real
world setting. When driving at 20 km/h the RL controller as well as the OC controllers
are not able to decrease the velocity’s oscillation where as the BMW controller is. The RL
and OC gains are in a region of 1.1-1.2, this compared to the BMW controller of 0.7 is too
high. On the contrary when evaluating the BMW controller at 40 km/h, it is oscillating.
In the given experiment for both speeds a gain of 0.7 was used. Given the fact that for
various system settings different controllers are optimal, proper gain scheduling is required
for optimal performance. In hindsight for driving 40 km/h a different (higher) gain would
have been more appropriate. This can be inferred from the OC gains in both situations, as
they are able to decrease the oscillation. The importance of gain scheduling is also emphasized
by the difference that can be observed between the optimal controllers. At both speeds the
optimal controller derived for an altered system yields higher overshoot and thus performs
worse. As RL is able to adjust it is more flexible towards these changes.

The difficulty in comparison lies also in the difference between the model used for training
and the actual vehicle. The nonlinear model used for training is not an accurate model of
the vehicle that is used for the experiment. Also, both model and vehicle have a low-level
controller. This controller tries to linearise certain effects exercised on the system. These
effects can vary from drive-train, like gears or throttle demand, to external settings such as
changes in road surface or drag. Different settings of this low-level controller can drive apart
the output of the whole model drastic. Besides, in this experiment a learned and optimal
controller are compared with a manually tuned controller. Performance criterion for both
controller design methods may not even include penalising oscillations as a control engineer
would.

Master of Science Thesis G.L.G.J. Faassen

42 Experimental Comparison

G.L.G.J. Faassen Master of Science Thesis

Chapter 6

Conclusion

The bigger picture behind this work is to make a comparison for controller design in au-
tonomous vehicles. A comparison between a classical control theory method and a novel
machine learning method is proposed. The idea is to emphasize the advantage of learning
over theory. For this the focus lies with longitudinal control for autonomous vehicles. More
specific, with speed control using Optimal Control (OC), i.e. classic control theory, and
Reinforcement Learning (RL), i.e. machine learning.

The goal for final application is an autonomous vehicle. The design process started with a
linearised model of a vehicle as described in chapter 3. With this linearised vehicle model the
initial structure of the RL agent was derived. Also the linearised model is used to determine
the OC gains further on. As function approximator in the critic a nonlinear neural network
structure was compared with a quadratic function approximator. The quadratic approxima-
tion yields much lower error rate of the approximated function and is therefore chosen to be
used henceforth. Further also an approach to reconstruct unobservable system dynamics is
applied. Using past actions with a fully connected layer as finite impulse response filter it is
possible to reconstruct an unobserved state, the acceleration.

In chapter 4 simulations using a nonlinear high fidelity vehicle model are presented. These
simulations underline the difference between classic controller design and learning a controller.
The simulations were conducted at two different speeds, 20 km/h and 40 km/h. For initial
comparison the performance of both the OC controller and the RL agent was on par. This
equal performance was to be expected as the OC controller is designed following a linearised
version of the the model in the same exact system settings. In a situation where the system
settings in the model change, learning makes the difference. This difference can be explained
by the fact that classical control algorithms, as OC, rely on observable model information.
When proper model information is available an optimal controller can be designed, but as
in many situations this information is not completely or properly available and therefore
the controller can perform suboptimal. Learning methods like RL can operate without any
model information. To compare this change of system with respect to the performance of the
controllers various scenarios were presented: Driving at 20 km/h and at 40 km/h whereafter
the OC parameters were implemented for a different gear than in which the system was

Master of Science Thesis G.L.G.J. Faassen

44 Conclusion

actually operating. A gear change is chosen as the comparable modification in the model.
This is done because the change in gear can be represented through an adjustment of the
time constant that is part of the system matrices of the linearised system. The time constant
representing the behaviour of the drive-train. Also a case was presented in which the system
was running in an altered setting, i.e. driving on a road with 10% inclination. From these
simulations it can be clearly observed performance of RL and OC is comparable when used
in the same system settings. But, in all cases where system changes occur RL outperforms
its OC counterpart.

To validate the obtained results from the simulation study an experimental comparison is
conducted in chapter 5. Although it is difficult to draw a proper conclusion from data between
a learning metric and any other form of control, when the learning algorithm is not able to
train on that specific system, some conclusions can be drawn. From the simulation study
and from the 20 km/h experiment it can be concluded that the performance of RL and
OC derived with proper model information are comparable. When comparing the optimal
controllers derived for different system settings in the experiment, it is clear that proper
gain scheduling is important for optimal performance. OC performs worse, i.e. has more
overshoot when derived for an altered system. As RL is able to account for system changes it
can always adapt its controller settings to perform on par with an optimal controller derived
for the proper system settings.

If then the question that was formulated in the beginning of this work is considered again:

"Can Reinforcement Learning be beneficial for longitudinal control of autonomous vehicles?"

It can be concluded that RL can be beneficial for longitudinal control of autonomous vehicles.
It benefits from the fact that methods like OC rely on proper model information, while
learning can be done without system knowledge. As gain schedules that are depending on
a lot of model parameters can become complicated in higher orders RL has the potential to
learn controller settings in every situation independent of how many model parameters are
involved.

6-1 Future Work

The application of learning methods such as RL in longitudinal control have the potential to
improve on many levels, some remarks on future work are:

As stated above and in chapter 5 learning in the system where the algorithm should be
operational is key to a proper learning process. Therefore to be able to apply RL methods in
actual vehicles the agent has to be able to learn in an actual vehicle. Of course performing
this with random initialisation is not possible as it is prone to breaking parts of the system or
potentially being hazardous. But, applying a form of agent that is pre-trained in a simulation
model and letting that agent learn in the car could yield promising results.

One of the main difficulties one faces trying to properly implement RL in any system is tuning
the hyperparameters of the agent. Looking at a way to determine, or learn, the most optimal
hyperparameter settings and letting the actor and critic be operational to their full potential
is something would benefit the complete optimisation scheme.

G.L.G.J. Faassen Master of Science Thesis

6-1 Future Work 45

An important part of the optimisation process of the RL agent is the reward function. The
reward function determines if what the agent does is "good". Therefore, a proper reward
function that is specifically designed for a given problem could be a major contribution.

Additionally to the reward function, the determination of the value function is also key to
the total operation of the RL algorithm. In this work a quadratic function approximation
was used as it was already known that the value function would take on a quadratic form.
Of course as problems become more difficult it would be best to use a more general function
approximation for example in the form of a neural network with non linear activation and
even deep neural networks. As this work also focussed on obtaining a linear controller from
the RL algorithm the "network" in the actor did only consist of one weight, i.e. the linear
controller gain. But as the functions to be solved become more complicated, more extensive
networks or deep networks could also be implemented in the critic and actor. The latter
would allow for design of a nonlinear controller.

Master of Science Thesis G.L.G.J. Faassen

46 Conclusion

G.L.G.J. Faassen Master of Science Thesis

Appendix A

Optimal Control

A-1 Regular Optimal Control

On basis of full-state feedback one would minimise the cost function J [3, 4, 24], given by

J =
∞∑

k=0
xT

k Qxk + uT
k Ruk. (A-1)

By solving the Algebraic Riccati Equation

P = AT PA− (AT PB)(R + BT PB)−1(BT PA) + Q, (A-2)

and from this P can be determined and consecutively the optimal controller could be calcu-
lated following

K = (BT PB + R)−1BT PA. (A-3)

Obtaining control law

uk = −Kxk (A-4)

A-2 Output Feedback Control

For output feedback the control law will take on a different form

uk = −Kyk (A-5)

Master of Science Thesis G.L.G.J. Faassen

48 Optimal Control

or
uk = −KCxk. (A-6)

On this basis Equation 2-1 can be rewritten as

xk+1 = (A−BKC)xk, (A-7)

where

xk = (A−BKC)kx0. (A-8)

From this we infer a cost function in the following form

J = xT
0

[∞∑
k=0

(A−BKC)kT (Q + CT KT RKC)(A−BKC)k
]
x0

J = xT
0 Px0.

(A-9)

This can be rewritten into

xT
0 Px0 = trace(Px0xT

0), (A-10)

and thus

J = trace(Px0xT
0). (A-11)

Because the initial states are evenly distributed on the surface of the n-dimensional unit
sphere the following holds

E{x0xT
0 } = 1

nI. (A-12)

And the average performance becomes

Ĵ = trace(P)

Ĵ = trace

(∞∑
k=0

(A−BKC)kT (Q + CT KT RKC)(A−BKC)k
)

.
(A-13)

The optimal output controller can then be determined via an iterative solution, e.g. by
following Algorithm 1.[25, 26]

G.L.G.J. Faassen Master of Science Thesis

A-2 Output Feedback Control 49

Algorithm 1 Iterating optimal output feedback controller (Matlab)
Given:

System matrices → (A, B, C)
Weighing matrices → Q and R
Initial parameter, K0

y , that stabilises system

1: Ā = A + BFC
2: Q̄ = Q + CT F T RFC
3: P = dlyap(Ā, Q̄)
4: Ĵ = @(F)(trace(P))
5: Ky = fminsearch(@(F)(Ĵ(F)), K0

y)

Master of Science Thesis G.L.G.J. Faassen

50 Optimal Control

G.L.G.J. Faassen Master of Science Thesis

Appendix B

Reinforcement Learning Solving
Methods

Before discussing various learning methods in depth some fundamental RL principles have to
be explained.

Exploration & Exploitation RL problems usually do not feature complete model information
(Model-free RL) and therefore, as stated before, makes use "trial-and-error" to interact with
the environment to be able to learn optimal value functions or policies. At first, the agent will
perform random actions to explore the environment. After some time it will have obtained
some policy with a particular performance. A dilemma presents itself, the agent can follow this
policy, being certain of obtaining a specific amount of reward from the policy, i.e. exploiting
the information that is has gathered. Or, in order to find out if there is an improvement
to make, the agent will have to try different actions. These different actions may lead to a
deterioration of the performance, but could also lead to improvement i.e. it has to explore to
learn. Finding a proper balance is key in the RL exploration-exploitation dilemma.[8, 27]

On-policy & Off-policy When the agent learns the optimal policy and simultaneously exe-
cutes the actions it describes it is called on-policy learning. In RL a distinction can be made
between on-policy and off-policy learning. Off-policy methods follow a certain policy without
exploration and learn the optimal policy independently of the agent’s actions.[8, 27]

Online & Offline Learning Letting an agent learn and control a real-world system through,
initially, random interaction with the environment is not a safe approach. This is why a
distinction can be made between online and offline reinforcement learning. In an online
learning situation the agent directly learns by interaction with the environment.[8, 27] For
example, a car needs to find an optimal path to a parking spot, it is not desirable to let
it drive and explore the environment because there will be a fair chance of harming others
or itself. This is where offline learning comes in, the environment is simulated and here the

Master of Science Thesis G.L.G.J. Faassen

52 Reinforcement Learning Solving Methods

agent will learn how to control the car. Online and offline learning are not necessarily two
different ways of letting the agent learn, a combination could work very well. A simulation is
never an exact copy of the real-world and therefore after the agent has done a lot of training
in simulation it can be fined-tuned operating in the real-world.

B-1 Value Function Methods

Value function based methods rest on the idea of valuing individual state or state-action pairs.
Maximising the accumulated values of these states or state-action pairs is then the goal, i.e.
finding the value function for optimal policy π∗, see Equation 2-15 for the state-action-value
function. Indirectly through the value function, by looking at which action yields the highest
value, the optimal policy is derived.[50, 51] To estimate an optimal value function or state-
action-value function a variety of algorithms have been developed, the three main types will
be further discussed.

B-1-1 Monte Carlo

Monte Carlo (MC) methods are model-free online methods that uses samples to estimate
average sample returns. At the end of each episode the agent evaluates all returned values for
state st ∈ S and averages them. Long-term rewards are treated like random variables by the
MC algorithms, therefore it uses the sampled means as an estimate of the values.[8, 27, 51]
A representation of this is given by Algorithm 2.

Algorithm 2 Monte Carlo Value Function Algorithm
Initialisation:

T ← terminal state
π ← policy to be evaluated
V ← arbitrary value function
γ ← discount factor
α ← step size parameter

1: for t← 0 : (T − 1) do
2: Generate episode using policy π
3: for each st in the episode do
4: rt ← reward following st

5: Rt ←
∑∞

k=0 γkrt+k+1
6: V (st)← V (st) + α[Rt − V (st)]
7: end for
8: end for

B-1-2 Dynamic Programming

Dynamic Programming (DP) is a model-based class and refers to a set of algorithms that is
able to compute the value function and optimal policy.[8, 27, 30, 50] These methods are called
value and policy iteration respectively. The transition probability matrix Pa

ss′ and reward

G.L.G.J. Faassen Master of Science Thesis

B-1 Value Function Methods 53

function Ra
ss′ are known and because of this, the model does not have to be predetermined as

it can be learnt from the data.[51] Value iteration is a form of DP that focuses on the direct
estimation of the value function, the policy evaluation is broken off after one iteration and
blended into the value function update. This update rule consists of a combination of the
policy improvement and truncated evaluation steps

Vk+1(s) = max
a

E{rt+1 + γVk(st+1)|st = s, at = a}

= max
a

∑
s′

Pa
ss′ [Ra

ss′ + γVk(s′)]. (B-1)

B-1-3 Temporal Difference

Temporal Difference (TD) Learning is a solving method that combines properties of both
the Monte Carlo and Dynamic Programming algorithms. TD methods are like MC methods
model-free and like DP do not have to wait until the end of an episode to be able to update
the value function, they can do it after every time step.[51, 52] TD methods make use of
the temporal error, i.e. the difference between the estimated value of the old and new state.
In this difference the received reward for the current state has also be taken into account,
Equation B-3. This error is used to learn the value estimates, in other words, TD methods
learn new values based on previous approximated values. This is called bootstrapping.[27]

TD(0) & TD(λ)

TD learning bares similarities with MC methods, but instead of having to wait a full episode,
it is able to update after each time step. When the TD algorithm updates, observing the
information after one time step, this is called TD(0), the most simple TD method.[52, 53]
The TD(0) value function update rule is given by

V (st) = V (st) + α[rt + γV (st+1)− V (st)], (B-2)

where rt+1 + γV (st+1) is called the TD target. When looking at line 6 of Algorithm 2 the
similarity can be seen, in effect the MC update is nothing more than TD(0) with return Rt

as its target, i.e. the full episode is used for approximation. Furthermore, from Equation B-2
the TD error can be derived as

δT D = rt + γV (st+1)− V (st). (B-3)

A way of to unifying the MC and TD(0) methods is by implementing TD(λ) where λ ∈
[0, 1].[53] Here, n-step prediction and parameter λ allow interpolation between TD(0) and
MC. The n-step prediction states how many steps are taken to perform evaluation, n = 1
equals λ(0) where as n = ∞ represents MC. Performing a n-step prediction λ is used in a
way to average the n-step backups following, λn−1. The resulting averaged backup towards
the return is called the λ-return, Rλ

t . How this return is calculated and interacts with TD(λ)
algorithm can be interpreted as in Algorithm 3.

Master of Science Thesis G.L.G.J. Faassen

54 Reinforcement Learning Solving Methods

Algorithm 3 TD(λ) Algorithm
Initialisation:

π ← policy to be evaluated
V ← arbitrary value function
γ ← discount factor
n ← n-step prediction
λ ← mixing coefficient weight
α ← step size parameter

1: for each time step t of episode do
2: at ← action given by policy π for st

3: rt ← reward following (st, at)
4: Rn

t ←
∑n

k=1 γk−1rt+k + γkV (st+k)
5: Rλ

t ← (1− λ)
∑∞

n=1 λn−1Gn
t

6: V (st)← V (st) + α[Rλ
t − V (st)]

7: end for

Q-Learning

Maybe the most widely used algorithm for model-free value function learning is Q-learning.[54]
It is an off-policy method that uses experienced rewards for an estimation of the agent’s Q-
value function to incrementally estimates Q-values, i.e. the state-action pairs. The update
rule of Q-learning

Qt+1(st, at) = Qt(st, at) + α[rt + γ max
a

Qt(st+1, a)−Qt(st, at)] (B-4)

bears a resemblance to Equation B-2 as the part between brackets is again the TD error.
Therefore, like in DP and TD(λ) the Q-learning algorithm is able to locally update a Q-value
on the basis of the next Q-value.

SARSA

SARSA (for State-Action-Reward-State-Action, i.e. (st, at, rt+1, st+1, at+1)) is the on-policy
version of Q-learning. Meaning that SARSA, while following an initially given exploration
policy π, will try to estimate a policy π.[55] The update rule for SARSA is given by

Qt+1(st, at) = Qt(st, at) + α[rt + γQt(st+1, π(st+1))−Qt(st, at)]. (B-5)

B-2 Policy Methods

Value function methods look for a way of approximate an optimal value function given any
policy. Policy methods look at the RL problem from a control aspect as they focus on
approximating an optimal policy.[56] Both MC and DP methods also have a policy based
approach counterpart which, as well as the most known policy gradient methods, will be
discussed.

G.L.G.J. Faassen Master of Science Thesis

B-2 Policy Methods 55

B-2-1 Monte Carlo

In MC policy methods, evaluation of an approximated policy and value function is important.
As the policy is steered to a more optimal solution with respect to the current value function,
the value function is changed in the direction to be a better fit to the value function of the new
policy.[8, 56] This way the value function and the policy are like one another’s moving target.
Because the value function and policy shift, optimality is reached for both. Policy improve-
ment relies on making the policy greedy towards the state-action-value function. Algorithm
4 will give a clearer view of the steps to be taken.

Algorithm 4 Monte Carlo Policy Algorithm
Initialisation:

T ← terminal state
π ← arbitrary starting policy
Q ← arbitrary state-action-value function
γ ← discount factor
α ← step size parameter

1: for t← 0 : (T − 1) do
2: Generate episode using policy π
3: for each (st, at) in the episode do
4: rt ← reward following (st, at)
5: Rt ←

∑∞
k=0 γkrt+k+1

6: Q(st, at)← Q(st, at) + α[Rt −Q(st, at)]
7: end for
8: for each st in the episode do
9: π(st)← arg maxa Q(st, at)

10: end for
11: end for

B-2-2 Dynamic Programming

Very similar to policy evaluation MC method there is a method developed within DP, policy
iteration. Policy iteration also makes use of a two stage evaluation and improvement cycle.
The difference is that in contrast to MC it can update after each time step and does not have
to wait until the end of the episode.[8, 30] The value function update rule stays the same as
Equation B-1 and therefore the new greedy policy, π′, will become

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

E{rt+1 + γV π(s′)}

= arg max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV π(s′)].
(B-6)

Master of Science Thesis G.L.G.J. Faassen

56 Reinforcement Learning Solving Methods

B-2-3 Policy Gradient

Policy Gradient (PG) methods rest on the idea of using gradient descent or ascent to update
its policy and therefore maximising the expected return J(πθ) directly.[56, 57] Here the policy
is defined as πθ : S×A×θ and denotes the probability of selecting an action a for state s given
policy parameter vector θ. The algorithm will keep updating the vector θ as these parameters
represents the the final structure of the policy and thus the value of the controller gain. The
parameter update direction is given by the gradient of the expected return ∇θJ(πθ), i.e. takes
the direction of steepest descent or ascent of the return that is to be expected. As PG is an
algorithm that operates in continuous time the gradient is defined as

∇θJ(πθ) = ∇θ

∫
τ

Pθ(τ)Rt(τ)dτ, (B-7)

where τ is the trajectory, i.e. τ = (s0, a0, s1, a1, ..., sT , aT), and Pθ(τ) is the probability for
the agent selecting an action a in a state s according to policy πθ(a|s), i.e. Pθ(τ) = P(τ |θ).
The update parameter θ is then defined as

θk+1 = θk + α∇θJ(πθ), (B-8)

here α ∈ [0, 1] is a learning rate.

G.L.G.J. Faassen Master of Science Thesis

Bibliography

[1] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomous Driving. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2016.

[2] T. A. S. Nielsen and S. Haustein, “On sceptics and enthusiasts: What are the expecta-
tions towards self-driving cars?,” Transport Policy, vol. 66, pp. 49–55, 2018.

[3] D. E. Kirk, Optimal control theory: An introduction / Donald E. Kirk. Mineola, N.Y.:
Dover Publications, 2004.

[4] H. Kwakernaak and R. Sivan, Linear optimal control systems. New York and Chichester:
Wiley-Interscience, 1972.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning.”

[6] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis, “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354 EP –, 2017.

[7] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “Mastering
chess and shogi by self-play with a general reinforcement learning algorithm.”

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction / Richard S.
Sutton and Andrew G. Barto. Adaptive computation and machine learning, Cambridge,
Mass. and London: MIT Press, 1998.

[9] D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang, “Full-range adaptive cruise
control based on supervised adaptive dynamic programming,” Neurocomputing, vol. 125,
pp. 57–67, 2014.

Master of Science Thesis G.L.G.J. Faassen

58 Bibliography

[10] E. F. Camacho, D. R. Ramírez, D. Limón, D. M. de La Peña, and T. Álamo, “Model
predictive control techniques for hybrid systems,” IFAC Proceedings Volumes, vol. 42,
no. 17, pp. 1–13, 2009.

[11] S. E. Li, Z. Jia, K. Li, and B. Cheng, “Fast online computation of a model predictive
controller and its application to fuel economy–oriented adaptive cruise control,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1199–1209, 2015.

[12] R. Schmied, H. Waschl, R. Quirynen, M. Diehl, and L. del Re, “Nonlinear mpc for emis-
sion efficient cooperative adaptive cruise control,” IFAC-PapersOnLine, vol. 48, no. 23,
pp. 160–165, 2015.

[13] Krzysztof Czarnecki, “Operational design domain for automated driving systems - tax-
onomy of basic terms.”

[14] P. Polack, B. d’Andréa Novel, M. Fliess, A. d. La Fortelle, and L. Menhour, “Finite-time
stabilization of longitudinal control for autonomous vehicles via a model-free approach.”

[15] D. Görges, “Relations between model predictive control and reinforcement learning,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 4920–4928, 2017.

[16] Q. Zhu, B. Dai, Z. Huang, Z. Sun, and D. Liu, “An adaptive longitudinal control
method for autonomous follow driving based on neural dynamic programming and inter-
nal model structure,” International Journal of Advanced Robotic Systems, vol. 14, no. 6,
p. 172988141774071, 2017.

[17] C. Desjardins and B. Chaib-draa, “Cooperative adaptive cruise control: A reinforcement
learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 12,
no. 4, pp. 1248–1260, 2011.

[18] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration for reinforcement
learning,” IEEE transactions on neural networks, vol. 18, no. 4, pp. 973–992, 2007.

[19] B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll, “Learning throt-
tle valve control using policy search,” in Advanced Information Systems Engineering
(D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Ty-
gar, M. Y. Vardi, G. Weikum, C. Salinesi, M. C. Norrie, and Ó. Pastor, eds.), vol. 7908
of Lecture Notes in Computer Science, pp. 49–64, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013.

[20] X.-s. WANG, Y.-h. CHENG, and W. SUN, “A proposal of adaptive pid controller based
on reinforcement learning,” Journal of China University of Mining and Technology,
vol. 17, no. 1, pp. 40–44, 2007.

[21] M. Sedighizadeh and A. Rezazadeh, “Adaptive pid controller based on reinforcement
learning for wind turbine control,” World Academy of Science, Engineering and Tech-
nology, International Journal of Electrical and Information Engineering, vol. 2, no. 1,
2008.

G.L.G.J. Faassen Master of Science Thesis

59

[22] M. Kashki, Y. L. Abdel-Magid, and M. A. Abido, “A reinforcement learning automata
optimization approach for optimum tuning of pid controller in avr system,” in Advanced
Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence
(D.-S. Huang, D. C. Wunsch, D. S. Levine, and K.-H. Jo, eds.), vol. 5227 of Lecture Notes
in Computer Science, pp. 684–692, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[23] A. el Hakim, H. Hindersah, and E. Rijanto, “Application of reinforcement learning on self-
tuning pid controller for soccer robot multi-agent system,” in 2013 Joint International
Conference on Rural Information & Communication Technology and Electric-Vehicle
Technology (rICT & ICeV-T), pp. 1–6, IEEE, 26-Nov-13 - 28-Nov-13.

[24] D. P. Bertsekas, Dynamic programming and optimal control. Belmont, Mass.: Athena
Scientific, 2nd ed. ed., 2001.

[25] W. Levine and M. Athans, “On the determination of the optimal constant output feed-
back gains for linear multivariable systems,” IEEE Transactions on Automatic Control,
vol. 15, no. 1, pp. 44–48, 1970.

[26] J. Lunze, Regelungstechnik 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[27] M. van Otterlo and M. Wiering, “Reinforcement learning and markov decision processes,”
in Reinforcement Learning (M. Wiering and M. van Otterlo, eds.), vol. 12 of Adaptation,
Learning, and Optimization, pp. 3–42, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012.

[28] F. S. Hillier, E. A. Feinberg, and A. Shwartz, Handbook of Markov Decision Processes,
vol. 40. Boston, MA: Springer US, 2002.

[29] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning: Structural assump-
tions and computational leverage,” Journal of Artificial Intelligence Research, vol. 11,
pp. 1–94, 1999.

[30] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton University Press, 1972.

[31] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are uni-
versal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[34] S. Liang and R. Srikant, “Why deep neural networks for function approximation?.”

[35] B. C. Csáji, “Approximation with artificial neural networks,” Master’s thesis, Faculty of
Sciences Eötvös Loránd University Hungary.

[36] M. van Gerven, “Computational foundations of natural intelligence,” Frontiers in com-
putational neuroscience, vol. 11, p. 112, 2017.

[37] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and or-
ganization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

Master of Science Thesis G.L.G.J. Faassen

60 Bibliography

[38] S. Krig, “Feature learning and deep learning architecture survey,” in Computer Vision
Metrics (S. Krig, ed.), vol. 29, pp. 375–514, Cham: Springer International Publishing,
2016.

[39] S. Krig, “Feature learning architecture taxonomy and neuroscience background,” in Com-
puter Vision Metrics (S. Krig, ed.), vol. 29, pp. 319–374, Cham: Springer International
Publishing, 2016.

[40] F. X. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanism. Washington: Spartan Books, 1961.

[41] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in SIAM Journal on Control and
Optimization, pp. 1008–1014, MIT Press, 2000.

[42] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Determinis-
tic policy gradient algorithms,” in Proceedings of the 31st International Conference on
Machine Learning (E. P. Xing and T. Jebara, eds.), vol. 32 of Proceedings of Machine
Learning Research, (Bejing, China), pp. 387–395, PMLR, 22–24 Jun 2014.

[43] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning.”

[44] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics
(G. Gordon, D. Dunson, and M. Dudík, eds.), vol. 15 of Proceedings of Machine Learning
Research, (Fort Lauderdale, FL, USA), pp. 315–323, PMLR, 11–13 Apr 2011.

[45] G. Lin and W. Shen, “Research on convolutional neural network based on improved relu
piecewise activation function,” Procedia Computer Science, vol. 131, pp. 977–984, 2018.

[46] P. Petersen and F. Voigtlaender, “Optimal approximation of piecewise smooth functions
using deep relu neural networks,” Neural networks : the official journal of the Interna-
tional Neural Network Society, vol. 108, pp. 296–330, 2018.

[47] K. Ogata, Modern control engineering. Upper Saddle River, NJ and London: Prentice
Hall, 3rd ed. ed., 1997.

[48] L. Puccetti, C. Rathgeber, and S. Hohmann, “Reinforcement learning for output control
of a linear serial plant.” Unpublished manuscript, Munich, 2019.

[49] A. Schwartz, “A reinforcement learning method for maximizing undiscounted rewards,”
in Proceedings of the Tenth International Conference on International Conference on
Machine Learning, ICML’93, (San Francisco, CA, USA), pp. 298–305, Morgan Kaufmann
Publishers Inc., 1993.

[50] P. L. Bartlett, “An introduction to reinforcement learning theory: Value function meth-
ods,” in Advanced Lectures on Machine Learning (G. Goos, J. Hartmanis, J. van Leeuwen,
S. Mendelson, and A. J. Smola, eds.), vol. 2600 of Lecture Notes in Computer Science,
pp. 184–202, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

[51] J. Kober and J. Peters, Reinforcement Learning in Robotics: A Survey, pp. 9–67. Cham:
Springer International Publishing, 2014.

G.L.G.J. Faassen Master of Science Thesis

61

[52] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, pp. 9–44, Aug 1988.

[53] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 4, no. 1, pp. 1–103, 2010.

[54] C. J. C. H. Watkins, Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, UK, May 1989.

[55] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist systems,”
Tech. Rep. TR 166, Cambridge University Engineering Department, Cambridge, Eng-
land, 1994.

[56] M. P. Deisenroth, “A survey on policy search for robotics,” Foundations and Trends in
Robotics, vol. 2, no. 1-2, pp. 1–142, 2011.

[57] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in Advances in Neural Information
Processing Systems 12 (S. A. Solla, T. K. Leen, and K. Müller, eds.), pp. 1057–1063, MIT
Press, 2000.

Master of Science Thesis G.L.G.J. Faassen

62 Bibliography

G.L.G.J. Faassen Master of Science Thesis

Glossary

List of Acronyms

ACC Adaptive Cruise Control

AI Artificial Intelligence

ANNs Artificial Neural Networks

CACC Cooperative Adaptive Cruise Control

CC Cruise Control

DP Dynamic Programming

DPG Deterministic Policy Gradient

FC Fully Connected

FIR Finite Impulse Response

LM Levenberg-Marquardt

MC Monte Carlo

MDP Markov Decision Process

ML Machine Learning

OC Optimal Control

OOC Optimal Output Control

PG Policy Gradient

QFL Quadratic Feature Layer

R2V Road-to-Vehicle

RBF Radial Basis Function

Master of Science Thesis G.L.G.J. Faassen

64 Glossary

RL Reinforcement Learning

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

TD Temporal Difference

V2V Vehicle-to-Vehicle

G.L.G.J. Faassen Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Related Work
	Research Objective
	Thesis Outline

	Theoretical Framework
	Optimal Control
	Classical Optimal Control
	Optimal Output Control

	Reinforcement Learning
	Agent-Environment Interaction
	Policy
	Reward Function
	Value Function
	Function Approximation
	Actor-Critic

	Summary

	Controller Design for Longitudinal Vehicle Dynamics
	Vehicle Model
	Reinforcement Learning Set-up
	Optimal Output Control Benchmark
	Summary

	Simulation Study
	Learning the Controller
	Results
	Driving at 20 km/h on a flat road
	Driving at 40 km/h on a flat road
	Driving at 20 km/h on a road with 10% inclination

	Discussion

	Experimental Comparison
	Experimental Preliminaries
	Results
	Driving at 20 km/h
	Driving at 40 km/h

	Discussion

	Conclusion
	Future Work

	Appendices
	Optimal Control
	Regular Optimal Control
	Output Feedback Control

	Reinforcement Learning Solving Methods
	Value Function Methods
	Monte Carlo
	Dynamic Programming
	Temporal Difference

	Policy Methods
	Monte Carlo
	Dynamic Programming
	Policy Gradient

	Back Matter
	Glossary
	List of Acronyms

