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Monte Carlo renormalization: The triangular Ising model as a test case

Wenan Gud;** Henk W. J. Blote®* and Zhiming Reh
lPhysics Department, Beijing Normal University, Beijing 100875, China
2The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
3Faculty of Applied Sciences, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
“Lorentz Institute, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 23 December 2004; published 18 April 2005

We test the performance of the Monte Carlo renormalization method in the context of the Ising model on a
triangular lattice. We apply a block-spin transformation which allows for an adjustable parameter so that the
transformation can be optimized. This optimization purportedly brings the fixed point of the transformation to
a location where the corrections to scaling vanish. To this purpose we determine corrections to scaling of the
triangular Ising model with nearest- and next-nearest-neighbor interactions by means of transfer-matrix calcu-
lations and finite-size scaling. We find that the leading correction to scaling just vanishes for the nearest-
neighbor model. However, the fixed point of the commonly used majority-rule block-spin transformation
appears to lie well away from the nearest-neighbor critical point. This raises the question whether the majority
rule is suitable as a renormalization transformation, because the standard assumptions of real-space renormal-
ization imply that corrections to scaling vanish at the fixed point. We avoid this inconsistency by means of the
optimized transformation which shifts the fixed point back to the vicinity of the nearest-neighbor critical
Hamiltonian. The results of the optimized transformation in terms of the Ising critical exponents are more
accurate than those obtained with the majority rule.
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I. INTRODUCTION Ising model has also been reported by Baiéteal. [8], who
o used a majority-rule block-spin transformation. The exis-
The Monte Carlo renormalization grouMCRG) was  tence of redundant operators may suggest the possibility to
first introduced by Mg 1] and developed into an efficient move the fixed point along the direction of a redundant field
tool for the investigation of phase transitions by Swendsemby means of a modification of the blocking rule. If, in this
[2,3]. Many applications have been reported. Especially thevay, the fixed point could be shifted to the original simulated
three-dimensional Ising model has been the subject of exterHamiltonian, then immediate convergence to the fixed point
sive research effortg4—8]. The convergence of the method would be realized10]. However, Fisher and Randeffia3]
appears to depend on the number of renormalization steg®inted out that, in general, the thermodynamical observ-
and on the number and character of the couplings included iables of the simulated Hamiltonian will display unique cor-
the renormalization analysis. It is natural that the resultgections to scaling. According to the theory based on as-
[4-8] have become more accurate following development§umptions which include the existence of the transformation
of the algorithms and computer technology. However, itand its analyticity, such corrections are generated by irrel-
proved difficult to compete with the accuracies obtained fol€vant scaling fields. Thus, the corrections should vanish if
the three-dimensional Ising model by means of other techON€ Uses a transformation that brings the fixed point to the
niques; see, e.g., R4D] and references therein. The MCRG Simulated Hamiltonian. It is clear that something is wrong or
method using the majority rule has been observed to displa issing in this picture; the corrections to scaling of the origi-

a rather irregular convergence with the number of renormall'a! Hamiltonian are in general nonzero and should obviously
ization steps[8]. To improve the convergence Swendsenbe independent of the renormalization transformation used to

[10] had already suggested a modified blocking rule WhiChanalyze the system. Possible explanations stipulate that the

imately t f th t-neiahbor Isi d T}ssumptions made in real-space renormalization theory are
approximatély transiorms the nearest-neighbor 1Sing Moadgh, ajiq. For instance, the transformation between the original
at its critical point into itself, which thus also assumes the

. . ; ) and the renormalized couplings may be ill defifgéd]—i.e.,
rc_)Ie ofa .f|xe.d point. Corrections to scalmg are usually aSSOnpot exist in the thermodynamic limit. Or the assumption of
ciated with irrelevant scaling fields, but irrelevant scaling

. ; ; . analyticity of the transformation may be wrong. In that case
fields do not necessarily lead to corrections to scaling. Her yuety y g

: ﬁonanalytic contributions might enter in the “analytic” part
‘.Nfl recall thhe so-pglleld r_edur|1dgnt oSpheranﬂﬂ th|ct(13dolr?20t of the transformation or in the renormalized couplings.
Influence the critical singularity. Shankar an uptz2] Referencg15] addressed the question of the analyticity of
identified redundant operators and their eigenvalues from th

. : - ; fhe block-spin transformation in the context of the three-
majority-rule MCRG dat_a of two-dimensiond2D) ISINg " gimensional Ising model. Indeed it reported strong singular
model on the square lattice. A redundant operator in the 3

[B)ehavior, albeit for a somewhat unusual transformation,
which involved only weak correlations between the block
spin and the original spins. No strong nonanalyticities were
*Electronic address: waguo@bnu.edu.cn found for “normal” transformations. That work also ad-
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FIG. 1. Triangular lattice and blocking procedure. The dashed boxes contain periodic unitxadf/8 lattice. The “shifted” stacking of
these boxes serves to satisfy the hexagonal symmetry of the periodic boundary conditions of the system. In order to define the lattice as a
two-dimensional array labeled with indiceandj, the edges of these boxes are chosen along lattice edges. The blocking procedure combines
three spingblack dot$ into a block spin(triangle). The block spingshown as black dots on the rigliorm another triangular lattice of size
L/3 X L/3, which fits in an ordinary rhombus-shaped periodic box.

dressed the question whether the transformation could benalization effect associated with the approach of the fixed
modified such that consistency is restored with the standargoint.
assumptions in real-space renormalization theory, which im- This paper is organized as follows. Section Il briefly re-
ply that the corrections to scaling vanish at the fixed point ofviews the MCRG method and some further technical details.
the transformation. This question was investigated for a critidn Sec. Ill, we present the transfer-matrix analysis of the
cal 3D Ising model with second- and third-neighbor interac-corrections to scaling as a function of the ratio of the nearest-
tions, chosen such as to ensure that the leading correction teighbor and next-nearest-neighbor interactions and deter-
scaling is strongly suppressed. The optimization of themine the points where these corrections vanish. Then, we
block-spin transformation such that the fixed point is close tacalculate the fixed point of the majority rule and introduce a
the simulated Hamiltonian then apparently resulted in fasmodified transformation in order to bring the fixed point to
convergence and a relatively high accuracy of the criticathe nearest-neighbor critical point. In Sec. IV, we compare
exponents. the convergence and accuracy of the majority rule and the
In the present work we investigate the analogous problermodified transformation using the results for the eigenvalues
in two dimensions. Whereas there seems little reason foof the linearized transformation matrix. We discuss our find-
accurate determinations of exactly known critical exponentsings in Sec. V.
the question under what circumstances the MCRG technique
works well is a fundamental and important issue, because it Il. MODEL AND METHOD
leads to insight into the properties of real-space renormaliza-
tion transformations. While the corrections to scaling and Since the MCRG method has amply been reviey&d],
their associated irrelevant fields may be more difficult to ob-We present only a brief outline. The reduced Hamiltonian of
serve in two than in three dimensions, the choice of twadthe Ising model can be written compactly:
dimensions alleviates restrictions due to the rapid increase of o
the computer time requirements with system size, as they HS =- D K,S,, (1)
apply to three-dimensional models. One of the reasons to a=0
select the triangular Ising model is that one can define a ) ) ) ) ]
block-spin transformation such that each blocking step reWhereSis a spin configuration, thi, are couplings, and the
duces the number of spins by factor of only 3. Thus, a relaS. @ré the conjugate lattice sums of spin products. For ex-
tively large number of blocking steps can be performed. @mple,K, may be the magnetic field argj==;s; the sum of
First, we shall demonstrate that the leading correction t&!l SPins; K, may be the nearest-neighbor coupling &d
scaling vanishes at the nearest-neighbor Hamiltonian of this >wSS; the sum over all nearest-neighbor spin products. A
model. We show this by means of transfer-matrix calcula-special “coupling” is the background energy densky
tions and finite-size scaling. Next, we determine the fixedvhich is conjugate to the number of spifig
point of the commonly used majority-rule block-spin trans-  Application of a block-spin transformation to Monte
formation. We find that it is well separated from the nearestCarlo—generated configuratio§deads to configurationS'
neighbor critical point. However, a modified block-spin described by a Hamiltoniahl’ =H(K,K3,K5, ...;S'). The
transformation brings it back to the vicinity of the critical renormalized couplingK,, are assumed to be analytic func-
nearest-neighbor Hamiltonian. In analogy with the threedions of the original ones, even at the infinite-system critical
dimensional case, we may expect that consistency with thpoint.
assumption of analyticity will then yield better convergence For the present renormalization analysis of the Ising
and more accurate results. A test of this idea is facilitatednodel on the triangular lattice we follow the spin-blocking
because the critical point and exponents of this model areethod introduced by Niemeijer and van Leeuvj&f]. As
exactly known. Moreover, since we can perform relativelyshown in Fig. 1, we divide the lattice into up triangles of
many blocking steps, we have a better chance to quantitdhree site each. Each such triangle is then replaced by a block
tively determine the finite-size effect, as well as the renor-spins’ with a probabilityP(s’;s;,s,,S3) Wheres,, s,, s; are
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the three original spins; this probability defines the renormal- . o o ISP ¢ U))
ization transformation. B%: <<5(c1)5<é)>> = <52)§¢|%)> B (§;))<S<[;)> = oK) (4)
B

Application of this blocking procedure leads to a system
of block spins that form another triangular lattice. In a finite and
system of block spins, careful consideration must be given to e
a technical problem concerning the choice of the axes in (i) — /7 i—D\\ — /D i=Dy _ /iy /-y — A"
relation with the periodic boundary conditions. As shown in Cup =SSy ) =SS5 ™) ~ (SN ™) = K™
Fig. 1, the block spins form a lattice that is rotated 442 (5)
(or 7r/6) with respect to the original lattice. Let the original
lattice have sizé&. X L, with periodic boundary conditions in can be calculated by means of Monte Carlo sampling; thus,
both lattice directions—i.es,1;=5;j ands; | .1=5 1. Letthe  also theT, can be calculated. Since the even and odd lattice
vectors spanning the original elementary cell@eX and  sums are not correlated, this analysis can be performed sepa-
€,=(V3y—X)/2 wherex andy are Cartesian unit vectors. The rately in the even and odd coupling subspaces. Consideration
vectors describing the size of the periodic box can simply bédas to be given to the boundary conditions which require
chosen as. €, andL€,. The periodic box of the block-spin different handling during the even and odd renormalization
lattice has obviously the same siahen expressed in origi- steps.
nal lattice units But the rotation of the lattice and the larger  The fixed point of the transformation can also be found if

size of the elementary cell prescribe the choice of a periodighe distanceK of the original Hamiltonian to the fixed point
box of a different shape, for instance, spanned by vectorgs small. For a triangular Ising system containing <pins,
L(26,+€,) andLe,. This box has the same area as the origi-the |attice sums calculated aftarrenormalization steps on

nal one, and the spanning vectors are integer linear combine remaining 8™ sites are denote§™". One can linearize
nations of the original ones; it is thus equivalent. The formergg “

vector has a Iength\s@, which covers precisely edges of
the lattice of block spins, so that the vector defines a lattice (gprmmmy — Py = X [P pmOy)
axis along which the spins can be counted. However, the B
latter vector does not have this property. We ude?2€; _ /PN (p,0
+8&,)/3 instead. It has a length &f/ 3 new lattice units. The «S(“ S(ﬁ MK ©)
box spanned by.(26,+&,), ~L(26,+6,)/3 provides a natural and solve the distancéK from this equation.
way to label and store the/3 block spins by two coordi- The present MCRG calculations involve the following
natesi=1,... L andj=1,... L/3. Note thatLé, [andnot  steps
-L(26,+6,)/3] still describes one direction of periodic shift (i) The generation of a critical spin configuration by
in accordance with the periodic boundary conditions. Theremeans of the Metropolis and WolffL7] methods. In this
fore, the boxes are periodically repeated in a “shifted” fashwork, typically two Metropolis sweeps and ten Wolff cluster
ion, as shown in Fig. 1. The periodic unit composed of thesteps are used to generate a new spin configuration.
block spins has the same hexagonal symmetry as the original (ii) Calculation of the lattice sumsS,,.
system. After a second blocking operation, the lattice as- (iii) Execution of the block-spin transformation which re-
sumes the original orientation and one can, e.g., simply usduces the number of lattice sites by a factor of 3.
the original periodic box spanned Wy, L& which now (iv) The same as stefii), using the reduced spin lattice.
accommodated /3 X L/3 sites. The mode of storage de- (v) Repetition of stepgiii) and(iv). This sequence stops
scribed here for the renormalized system can obviously alsat system size 3 3.
be used in the simulation of a system lot/3 spins with (vi) Calculation and accumulation of the cross products
boundary conditions of hexagonal symmetry. S(;)Sg).

The renormalization procedure can be iterated until the ~(vii) Repetition of stepgi)—(vi) (called a “cycle) for a
system becomes too small for useful analysis. We denote tharge number of configurations.

renormalization level by superscripts. Thus, afteznormal- The transformation matriX is approximated by solving
ization  transformations the  Hamiltonian isH"  Eq. (3) in a subspace spanned by a finite number of cou-
:H(KS),K?,K(Z'), ...;3Y). The corresponding linearized plings. We have included up to ten even couplings and five
renormalization transformation matrix odd couplings in our simulations, as defined in Fig. 2. As we
shall see, this is enough to reach a satisfactory convergence
. gk of the eigenvalues. Under iteration of the block-spin trans-
Tg}% = ﬁK(iljl) (2 formation, thng)(a/>0) are assumed to approach the fixed
B

point of the transformation, where the eigenvalued afe-
is related to lattice sum correlations via termine the critical exponents.
Ill. CORRECTIONS TO SCALING

(i) 0) — )
EO B,y Ty5= Cap: ) AND THE FIXED POINT
y>

Models in the same universality class share the same type
where the correlations of leading singularities in thermodynamic quantities at their
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FIG. 2. The ever(a) and odd(b) couplings used in the present
analysis. The black circles represent the spins participating in these 04 L . . . . ‘
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critical points. In general, also corrections to scaling are de-

scribed by a common set of exponents within a universality FIG. 3. Amplitude of the finite-size correction in the critical
class. We consider the free energy density of a model nederrelation length vs the coupling ratiun/Kyn. This amplitude
criticality, as a function of a relevant temperature fielhd S Proportional to the irrelevant scaling fiel@) Ising model on the
an irrelevant fieldu. According to the well-established Sduare lattice andb) Ising model on the triangular lattice.
framework of the renormalization theory, which assumes the

existence of a critical fixed point and the analyticity of the [19] involves the calculation of the correlation lengtfrom
transformation(see, e.g., Ref.18)), its singular part has the which the so-called scaled magnetic gag(L,t,u)
following scaling behavior in the thermodynamic limit: =L/[27&,(L,t,u)] can be obtained. Expansion of its scaling
equation leads to

Xn(L,t,u) = Xy + gttt + a,ulyi+ -+, (9

fo(t,u) = |t|f (£ 1, ]t VM)

=[t|Mf(21,0 +alt P+ -1, (@)

) _ The magnetic scaling dimension satisfi§s=1/8, and one
wherey, andy; are the relevant and irrelevant renormaliza-asy. =1 andy,=-2 for the Ising model. For a giveKyy,

tion exponents, respectively. Differentiation of the free en-g,¢ may express the equation
ergy yields the scaling behavior of thermodynamic quanti-
ties. For instance, the specific heat behaves as Xin(L,t,u) =Xy (10

Co(t,u) = [t| by + byult| Y+ --- 1. (8) in terms ofKyy andK_NNN and solve n_umerica_lly folK i fOr
a range of system sizés In the solutions, which are denoted
The term with exponent y/y—i.e., the correction to Kynn(L), the effect of the irrelevant field, which is propor-
scaling—has an amplitude proportional to the irrelevant scaltional to u, is compensated by a nonzero temperature field
ing field u, which is zero at the fixed point of the renormal- that asymptotically satisfietscuL—>—i.e., Kynn(L) = Kynne
ization transformation. In general a point on a critical mani-+bL™3. Numerical analysis thus yields the amplitudie
fold displays nonzero corrections to scaling and can thereforghich is proportional to the irrelevant scaling field, as well
not serve as a fixed point of a transformation satisfying theas the critical value of the next-nearest-neighbor coupling

aforementioned assumptions. Knnne: DY means of extrapolation of the finite-size solutions
Consider an Ising model with nearest-neighbor couplingkn(L).
Knn and next-nearest-neighbor coupligyyy. The irrel- Figure 3 shows the correction-to-scaling amplitudes

evant scaling field can be estimated by transfer-matrix calcuyersus the critical ratidyyn/ Kyy for the Ising models with

lations and finite-size scaling. Consider a triangular Isingferromagnetic couplings on square and triangular lattices.
model with nearest-neighbor coupliig,y and next-nearest- Apparently the correction to scaling just vanishes for the
neighbor coupling<ynn. Instead of(Kyy, Kynn) We use the  nearest-neighbor Ising model on the triangular lattice, while
scaling fields(t,u) to express the scaling properties. Theit is appreciable for the nearest-neighbor Ising model on the
model is wrapped on an infinitely long cylinder with a cir- square lattice. In the latter case, the leading correction to
cumference ot lattice edges. The transfer-matrix technique scaling vanishes d€y\n/Kyn= 0.3. The result for the trian-
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gular lattice is in accordance with the existence of a fixed TABLE I. Fixed point of the majority rule, estimated in the

point in an exact renormalization analysis of the nearesttwo-dimensional even coupling subspace: finite-size data and ex-

neighbor triangular Ising model by Hilhorst al.[20]. trapolated values. The errors in the last decimal places, shown in
There seems to exist considerable freedom in the choicearentheses, were estimated from the variations in the results during

of the probabilityP used in the block-spin transformation. the last iteration steps.

For instance, one may adopt the majority rule, but there exist -

other possibilities, which we shall explore below. It has been L S K Knnn

a W|desprea_d belief is that the assumptions, on WhICh the 9% 9 9% 3 0.3611(2) ~0.0543(2)

renormalization theory is based, are satisfied for a wide range

of block-spin transformations. Thus, modification of the 279 9x9 0.3518(2) ~0.0488(2)
transformation rule was believed to shift the fixed point only 2rx27 27X9 0.3485(2) ~0.0466(2)
along redundant directions, which do not affect the correc- 81x27 27X 27 0.3468(2) -0.0455(2)
tions to scaling. However, this belief was not supported by 81x81 81x 27 0.3464(2) -0.0452(2)
results reported in Ref15]. These results indicated instead © 0.346(2) -0.045(1)

that the requirement that the corrections to scaling vanish at

the fixed pointdoes impose a constraion the transforma-

tion in the case of the three-dimensional Ising model. lines of Ref.[15] the probability of a block spis’ is chosen
A commonly chosen transformation is the so calledas

majority-rule transformation: i.e.,

e /
| P(s) = 2RO (1)
P(s 5.5, 53)_{1 if ' =sgr(s; +s,+s3), 2 costiws,)
o 0 if 8" # sgris; + 5, +5y). wheres, is the sum of the spins on a triangular fasgss;

. . . ) .  +FSH+Ss.
The question arises naturally where is the fixed point of this By varying w, it appears possible to adjust the solution
transformation for the Ising model on the triangular lattice. sk _"of Eq. (6) in the two-dimensional even subspace
According to Eq.(6), one can locate the fixed point of a (spanned by, andKyyy) to a sufficiently small value. Our
transformation from a comparison of lattice sums of two sysyyymerical results show that the value @wfhas only a weak
tems with equal size but at different renormalization levels fipjte-size dependence. The best estimate 4s1.258. With

These sums are thus obtained from simulations of two Sysjs value the block-spin transformation, truncated torhe
tems with different sizes. In order to determine the irrelevant o subspace, does not significantly move the Hamiltonian

scaling fields of the original Hamiltonian, the best results argway from the nearest-neighbor critical point.

expected fom as small as possible. Thus we used0, m

=1 and solved’K, on the basis of simulations of two sub-

sequent system sizes in the even coupling subspaces of di- IV. EIGENVALUES AND EXPONENTS

mension 2 and 3 respectively. To reduce the linearization

error, we have estimated the fixed point iteratively; i.e., we To compare the two different block-spin rules, we have
first simulated the nearest-neighbor Hamiltonian, estimategerformed extensive MCRG simulations. Each simulation in-
the fixed point Hamiltonian by solving Ed6). The latter  volved the generation of £Qconfigurations, each of which
Hamiltonian was then used for new simulatidmgich con-  was followed by the renormalization blocking and correla-
sisted only of Metropolis steps, because the presence of atlon procedures. Statistical errors of the lattice sums and cor-
ditional antiferromagnetic interactions affects the efficiencyrelations of the lattice sums are estimated by dividing the
of cluster algorithmsand for a second solution of E¢), simulation a number of shorter runs and calculating the stan-
etc. Although the estimated fixed points display a substantiaiiard deviation between the results of the subruns.

finite-size dependence, apparent convergence is still found in

both the two- and three-dimensional even coupling sub- TABLE II. Fixed point of the majority rule, estimated in the
spaces. The final results are shown in Tables | and Il. Exthree-dimensional even coupling subspace: finite-size data and ex-
trapolation of these finite-size data to infinity yields the lo-trapolated values. The errors in the last decimal places, shown in
cation of the fixed point as listed in the last rows of the twoparentheses, were estimated from the variations in the results during

tables. the last iteration steps.
Our final estimations show that the fixed point of the
majority-rule transformation of the Ising model on the trian- L S Kun KN Ky

gular lattice is well separated from the nearest-neighbor criti=
cal model. On the basis of the transfer-matrix results given 9x%3 0.427(1)  -0.0463(5  -0.0389(5)
above, we expect corrections to scaling with a positive am- 27%9 9x9  0.388(1) -0.0325(5) -0.0326(5)
plitude b at the fixed point, apparently in conflict with the 27x27  27x9  0.379(1) -0.0291(5)  -0.0312(5)

underlying assumptions. 81x27 27x27 0.373(1) -0.0269(5) -0.0301(5)
In order to restore consistency, we introduce a modified g1x81 81x27 0.371(1) -0.0263(5) —0.0298(5)
block-spin transformation such that the fixed point moves to 0.370(2)  -0.026(1) -0.030(1)

the critical point of nearest-neighbor model. Following the

046126-5



GUO, BLOTE, AND REN PHYSICAL REVIEW E71, 046126(2005

TABLE lll. Largest eigenvalues of the majority-rule transformation matrix inrige5 even coupling subspace. The statistical error in
the data is approximately 0.0003.

i\p 10 9 8 7 6 5 4 3

1 1.653704 1.653505 1.653410 1.653081 1.652479 1.650893 1.645550 1.695418
2 1.711253 1.711037 1.710827 1.710254 1.708959 1.703025 1.759714

3 1.724861 1.724722 1.723996 1.722573 1.716360 1.777823

4 1.728788 1.728342 1.726711 1.720288 1.784270

5 1.729631 1.728416 1.722031 1.786435

6 1.728706 1.722093 1.787168

7 1.722542 1.787104

8 1.787676

According to the theory, a critical Hamiltonian param- blocking steps, is described by standard renormalization
etrized by irrelevant fieldsi; and u, renormalizes towards theory as formulated above. However, a quantitative descrip-
thercritical fixed point. After one step with scale factor tion of the finite-size effect of the renormalization transfor-
=y3 it arrives atu;b%, u,b%, wherey; andy; are the two mation itself is not available. This effect may be associated
leading irrelevant renormalization exponents. The leading eiwith the truncation of the space of operators and has been
genvalue in the even subspaceT(Slg, which is denoted’,  found to be smooth and to decay f422]. These results
and that in the odd subspace, deno}%&l should thus ap- agree with the assumption that renormalization transforma-
proach the fixed-point valuedd and(y3)1%8 as dictated by tions are local in character, but are restricted to relatively
the temperature and magnetic renormalization expongnts Small finite sizes. Under these circumstances we attempt to
=1 andy,,=15/8, respectively. describe the finite-size effect in terms of an expansion in the

In practice, one is naturally subject to restrictions con-inverse number of sites.
cerning the finiteness of the system and the truncation of the Taking into account all these effects, one may extrapolate
coupling space to a finite number of dimensions. We havéhe leading eigenvalues at the fixed point according to the
included up to ten even couplings and five odd couplings iffollowing fit formula:
our analyses, both for the majority rule and the modified | (in _ [~ iy i i
rule. We shall see that this is enough for the caIcuIations)“g'OC)(p) = Noot D1(V3)Y1+ bp(v3)1 + €3N+ g3
presented in this paper. The largest system included in our +c33<p—i)ys+c43<p—i)y4+d(\E)iV@(P‘”Vl, (12)
analyses has'8sites—i.e., a 24% 243 system. The smallest ) . )
system that was simulated hadstes—i.e., a % 3 system. where different sets of coefficients apply to the eigenvalues

The solution of Eq/(3) in terms of the linearized renor- N the éven and odd coupling subspaces. The exponents
malization transformation matrix", at theith renormaliza- Y2 Y& Y4 Serve to describe the finite-size effect. They are set
Q,

tion level is still dependent on the leviend the numben, 25 ~1 ~2, =3, —4, respeciively. The leading and subleading
of couplings included. Thus an extrapolation procedure hagrelevant fe”OVm?"Z?‘t'O” exponents are denq_zednd Y-
: . | . he last term of this fit formula describes the mixed effect of

to be applied to the eigenvalues of t'ﬁa@ . After i renormal- o SR
ization steps of a system of 3ites the system has shrunk to renormalization and finite size.
377 sites. We denote the pertinent leading eigenvalugéi)gf
truncated ton, dimensions aag'”C)(p) and )\f)"”c)(p).

The renormalization effect on these eigenvalues, associ- We first analyze the largest eigenvalues of the linearized
ated with the approach of the fixed point with the number oftransformation in the five-dimensional even and odd sub-

A. Results of the majority rule and the modified rule

TABLE IV. Largest eigenvalues of the majority-rule transformation matrix inrfre5 odd coupling subspace. The statistical error in the
data is approximately 0.00015.

i\p 10 9 8 7 6 5 4 3
1 2.730199 2.730195 2.730211 2.730201 2.730195 2.730163 2.730076 2.726260
2 2.773272 2.773272 2.773260 2.773260 2.773204 2.773176 2.768895
3 2.791232 2.791231 2.791204 2.791194 2.791069 2.786765
4 2.797330 2.797324 2.797274 2.797198 2.792882
5 2.799578 2.799540 2.799433 2.795107
6 2.800388 2.800293 2.795968
7 2.800598 2.796270
8 2.796371
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TABLE V. Eigenvalues of the modified rule transformation matfix=1.258 in the n.=5 even coupling subspace. The estimated
statistical error in the data is approximately 0.0003.

i\p 10 9 8 7 6 5 4 3
1 1.708660 1.708615 1.708684 1.708735 1.708734 1.708597 1.709245 1.694470
2 1.725449 1.725540 1.725570 1.725460 1.725277 1.725550 1.710963
3 1.729391 1.729291 1.729405 1.729316 1.729749 1.715674
4 1.731048 1.730904 1.730914 1.731122 1.717573
5 1.731546 1.731354 1.732069 1.718616
6 1.731564 1.732176 1.718922
7 1.732312 1.719175
8 1.719252
spaces by fitting the data with formu{&2). This yields the Next, we present the results of the modified rule. Table V

extrapolated fixed-point values and allows a comparison belists the largest eigenvaluesg’5)(p) of the modified rule
tween the results obtained by the two different transformarenormalization transformation witw=1.258 in the five-
tions. We begin with the results obtained by the majoritydimensional even coupling subspace. These data show that
rule. i the renormalization effect is much smaller than for the ma-

Table 11l lists the eigenvalu@sg’s)(p) of the majority-rule  jority rule, which indicates that the fixed point has indeed
transformation matrix in the five-dimensional even couplingmoved towards nearest-neighbor Hamiltonian. A nonlinear
subspace. Preliminary fits show that the amplitudes of théeast-squares fit yields the eigenvalueas 1.731€2), with
terms with 3*7¥s and 3P+ are not significant. Since this y?=38. The number of degrees of freedom is 29 in this fit.
holds for all fits including these terms, we neglected themThe statistical errors of the raw data are estimated as about
We sety; to be free in the fitting procedure, whijeis setas  0.0003. The result fok, is much closer to the exact value
-4. The fit yields the extrapolated eigenvalue as than the result of the majority rule. Moreover, the exact value
=1.733@2) and the irrelevant exponent gs=-1.695), dif- lies inside the error margin as produced by the fit. The result
ferent from the expected value -2. for the leading irrelevant exponentys=-1.21).

The statistical error of the raw data is estimated as 0.0003. Table VI lists the eigenvalues'®(p) of the modified
Then, this fit has a residugf=833, which is much too large  renormalization transformation witw=1.258 in the odd
in comparison with the number of degrees of freedom whichcoupling space truncated to five dimensions. A S|m|Iar fit
is 29. Furthermore the exact valy8 lies outside the esti- yields the fixed-point eigenvaluk,=2.800 789), with x°
mated error margin of the result of the fit fag. =10. The number of degrees of freedom in this fit is 29, and

Table IV lists the largest eigenvalueé)"S)(p) of the the statistical errors of the raw data are about 0.00015.
majority-rule renormalization transformation matrix in the Again, the extrapolated value is much closer to the exact
five-dimensional odd coupling subspace. A similar fit of thevalue than that of majority rule. The exact value lies just a
data yields an extrapolated eigenvalyg=2.800 679), with little outside the & error margin of the least-squares fit. The
X>=16 which is to be compared with a number of 29 degreesesult for the irrelevant exponent yg=-1.6(1).
of freedom. The statistical errors of the raw data are esti- Some results fory; from the fits for A\, and A, of the
mated as 0.000 15. The result for the leading irrelevant exmodified block-spin transformation are not close to the
ponent isy;=—-1.992). The exact value 8'1®is also slightly ~ known Ising correction exponent —2. A somewhat specula-
outside the estimated uncertainty range about the extrapdive interpretation, mentioned in Sec. V involves the Potts
lated odd eigenvalue. subleading thermal exponent —4f23]. Settingy;=-4/3, a

TABLE VI. Eigenvalues of the modified rule transformation matfas=1.258 in the n.=5 odd coupling subspace. The estimated
statistical error in the data is approximately 0.00015.

i\p 10 9 8 7 6 5 4 3

1 2.791732 2.791727 2.791731 2.791723 2.791697 2.791697 2.791701 2.790458
2 2.795678 2.795680 2.795682 2.795680 2.795620 2.795615 2.794304

3 2.798618 2.798604 2.798606 2.798573 2.798551 2.797178

4 2.799832 2.799824 2.799811 2.799739 2.798382

5 2.800394 2.800351 2.800366 2.798950

6 2.800635 2.800596 2.799194

7 2.800731 2.799349

8 2.799424
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TABLE VII. Comparison of results of the majority rule and of 1.74
the modified transformation. The exact values &ge1.73205... R,
and\,=2.80092.... 1.73 ¢
Exact value Majority rule Modified rule L 172}
e V3 1.7330(2) 1.7319(2)
Ao (V3)15/8 2.80067(9) 2.80078(9) AN
1.7

. i i , . 1 2 3 456 7 8 910
fit of the data forn"?(p) and \"¥(p) with expression(12) number of couplings
yields A,=1.731 778) and\,=2.801 098), respectively.

To compare the results of the two different block-spin  FIG. 5. Eigenvalues of the modified-rule transformation
transformations, we include the main results in Table VII.=1.258 in the even subspace, extrapolated to the fixed point of the
Apparently, the modified block-spin rule leads to a bettermodified rule, as a function of the coupling subspace dimensional-
estimation of leading eigenvalues of the linearized transfority. The dashed line indicates the exact vaiig
mation matrix, both in the even and odd subspaces.

. . . . V. DISCUSSION
B. Convergence with the dimensionality

of the coupling subspace Our MCRG calculations on two-dimensional Ising model
In the past years, the number of couplings used in show that, just as for the three-dimensional model, the choice

MCRG analyses of the 3D Ising model has increased from #f a renormalization transformation with a fixed point with

in Ref.[4] to 99 in Ref.[8]. The ordering of these couplings suppressed cor_rect_|0ns to scalmg_leads to |r_nprove_1d estimates
is a significant problem in order to avoid the situation thatOf the renormalization exponents in comparison with the ma-
“important” couplings are left out, which would affect the jority rulfa. Our choice for theltransformayon aims to put the
resulting eigenvalue estimates, if not included in the analy{iX€d point on the nearest-neighbor Hamiltonian. This is con-
sis. An empirical criterion to distinguish “important” and venient from a computational point of vie\0] but the main
“less important” couplings was introduced in REf]. This  €ason behind this choice is that the leading correction to

led to fast apparent convergence with increasip§7]. scaling vanishes in the nearest-neighbor triangular model.

We have included up to ten even couplings in the analysisWe have found that the majority rule has a fixed point with

They are shown in Fig. 2. We have performed fits of the@Ppreciable antiferromagnetic interactions with further
largest eigenvalues according to Etg) for n.=1 to 10 even neighbors. We have not explicitly calculated the corrections
couplings. The results of the least-squares fits are shown f¢ Scaling in this point. But the linear behavior of the
Fig. 4 for the majority rule and in Fig. 5 for the modified transfe_r-matrlx results presented in Fig. 3 indicates thgit f[he
block-spin transformation witho=1.258. The eigenvalues corrections are nonzero at the fixed point of the majority
display a satisfactory apparent convergence with the numbdHle- , L , .

of couplings. Statistically significant changes are absent for 1 1€ failure of this fixed point to obey the analytic form of
more than two couplings in the odd subspace and for morkhe renormalization equations is inconsistent with the pre-

than five couplings in the even subspace. This holds for botiailing description of the fixed point in the renormalization
types of block-spin transformation. group theory. In order to fit such fixed points into the theory

Thus we may be confident that the five-dimensional cou®n€ has to abandon one or more of the aforementioned as-
pling subspace, used in the analysis presented in precedifyMmPtions. Reference24] uses a mechanism that explains
section, is large enough. the presence of corrections even at the fixed point and that
generates nonanalytic contributions in the renormalized
176 — Hamiltonian. In the present work, we have successfully at-

tempted to suppress the numerical problems such as associ-
175 ated with nonanalytic contributions by restoring consistency
with the usual picture of vanishing correction amplitudes at
o 174t the fixed_ point. Indeed we ol_aserved better convergence of
’ the leading even and odd eigenvalues to their fixed-point
values.
1731 Another significant phenomenon is visible from the fixed-
17 point estimates in Tables | and Il for the majority rule, which

display a significant finite-size dependence, even up to rela-
tively large sizes. This indicates that the assumption of local-
ity of the renormalization transformation is not well satisfied.
FIG. 4. Eigenvalues of the majority-rule transformation in the IN comparison, the modified rule is better behaved: the value
even subspace, extrapolated to the fixed point of the majority rulepf w, which adjusts the fixed point to the nearest-neighbor
as a function of the subspace dimensionality. The dashed line indiHamiltonian, has only a weak finite-size dependence. Fur-
cates the exact valugs. thermore, the estimated fixed point at the extrapolated value

1 2 3 45 6 7 8 910
number of couplings
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of w displays a finite-size effect of only 1®for the smallest The effect of the nonvanishing corrections to scaling at
system, decreasing to 10for the largest systems; this is the fixed point of the majority-rule renormalization transfor-
small in comparison with the effects visible in Tables | andmation, in terms of the deviations of the eigenvalues, seems
II. less serious for the two-dimensional Ising model than for that
Our analyses showed that the convergence to the fixegh three dimension§15]. This difference may be related to

point, as deduced from the dependence of the largest eigefhe values of the irrelevant exponents, which predict a faster
values on the number of renormalization steps, can be dgtecay of corrections in two dimensions.

scribed by an effective exponept in the range -Zy; < As a concluding remark, we emphasize that, although our

~1.2, in some cases clearly different from the known irrel-oh0ach leads to a distinct improvement over the majority
evant exponent —2. Furthermore, the analysis of the secongyie the problem of the convergence to the fixed point is
largest eigenvalue in the even subspace yields an wrelevag ly partly solved,; i.e., we still observe corrections that in-

f)ip;gg;lgof Th_elﬁgggfie?rrultgeThmeaé?rrg?/ egtjiﬁat?ars]dir):i t:hesedicate that the fixed point does not yet precisely coincide
tvv(.) alues are somewhat ﬁcerta'n because of the oce with the simulated Hamiltonian. Further improvements may
vaiu w u : u UGe achieved using block-spin transformations with more free

rence of pairs of complex eigenvalues. parameters, so that the fixed point may be shifted to the

It is tempting to interpret this effective exponent in terms t-neiuhbor Hamiltonian i higher-di ional
of two contributions: one with the expected irrelevant eXpO'nﬁr?éessu-Q:F;gceor amifionian in a higher-dimensional cou-

nent —2 and another with an exponent —4/3 which is the®
subleadingg=2 Potts temperature expondi23]. However,

for the g-state Potts model, the correction-to-scaling ampli-
tudes associated with the subleading exponent seem to van-
ish just atg=2—i.e., the Ising modd|23,26|. Forq=2, the )
effects described by this exponent have been observed only One of us(\W.G,) wishes to thank the Abdus Salam ICTP,
in partial differential approximant25] and in quantities in- Where part of this research was done, for hospitality. It is a
volving explicit differentiations with respect to the number pleasure to thank Professor J.M.J. van Leeuwen for a valu-
of stateg [26]. The theory of conformal invariandeee Ref.  able discussion and X.F. Qian for contributing to the transfer-
[27] and references thergiindeed predicts the existence of matrix technique used to determine the correction-to-scaling
a set of exponents in the Ising model, including —4/3, that deamplitudes. This research is supported by the National Sci-
not contribute to the thermodynamic properties. Howevergnce Foundation of China under Grant No. 10105001, and by
these exponents can still describe to other properties, such asgrant from Beijing Normal University. It is also supported
percolative and geometric properties of Ising configurationsn part by the FOM(“Stichting voor Fundamenteel Onder-
[28]. Perhaps corrections with exponent —4/3 could enter irzoek der Materig’ which is financially supported by the
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