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We test the performance of the Monte Carlo renormalization method in the context of the Ising model on a
triangular lattice. We apply a block-spin transformation which allows for an adjustable parameter so that the
transformation can be optimized. This optimization purportedly brings the fixed point of the transformation to
a location where the corrections to scaling vanish. To this purpose we determine corrections to scaling of the
triangular Ising model with nearest- and next-nearest-neighbor interactions by means of transfer-matrix calcu-
lations and finite-size scaling. We find that the leading correction to scaling just vanishes for the nearest-
neighbor model. However, the fixed point of the commonly used majority-rule block-spin transformation
appears to lie well away from the nearest-neighbor critical point. This raises the question whether the majority
rule is suitable as a renormalization transformation, because the standard assumptions of real-space renormal-
ization imply that corrections to scaling vanish at the fixed point. We avoid this inconsistency by means of the
optimized transformation which shifts the fixed point back to the vicinity of the nearest-neighbor critical
Hamiltonian. The results of the optimized transformation in terms of the Ising critical exponents are more
accurate than those obtained with the majority rule.
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I. INTRODUCTION

The Monte Carlo renormalization groupsMCRGd was
first introduced by Maf1g and developed into an efficient
tool for the investigation of phase transitions by Swendsen
f2,3g. Many applications have been reported. Especially the
three-dimensional Ising model has been the subject of exten-
sive research effortsf4–8g. The convergence of the method
appears to depend on the number of renormalization steps
and on the number and character of the couplings included in
the renormalization analysis. It is natural that the results
f4–8g have become more accurate following developments
of the algorithms and computer technology. However, it
proved difficult to compete with the accuracies obtained for
the three-dimensional Ising model by means of other tech-
niques; see, e.g., Ref.f9g and references therein. The MCRG
method using the majority rule has been observed to display
a rather irregular convergence with the number of renormal-
ization stepsf8g. To improve the convergence, Swendsen
f10g had already suggested a modified blocking rule which
approximately transforms the nearest-neighbor Ising model
at its critical point into itself, which thus also assumes the
role of a fixed point. Corrections to scaling are usually asso-
ciated with irrelevant scaling fields, but irrelevant scaling
fields do not necessarily lead to corrections to scaling. Here
we recall the so-called redundant operatorsf11g which do not
influence the critical singularity. Shankar and Guptaf12g
identified redundant operators and their eigenvalues from the
majority-rule MCRG data of two-dimensionals2Dd Ising
model on the square lattice. A redundant operator in the 3D

Ising model has also been reported by Baillieet al. f8g, who
used a majority-rule block-spin transformation. The exis-
tence of redundant operators may suggest the possibility to
move the fixed point along the direction of a redundant field
by means of a modification of the blocking rule. If, in this
way, the fixed point could be shifted to the original simulated
Hamiltonian, then immediate convergence to the fixed point
would be realizedf10g. However, Fisher and Randeriaf13g
pointed out that, in general, the thermodynamical observ-
ables of the simulated Hamiltonian will display unique cor-
rections to scaling. According to the theory based on as-
sumptions which include the existence of the transformation
and its analyticity, such corrections are generated by irrel-
evant scaling fields. Thus, the corrections should vanish if
one uses a transformation that brings the fixed point to the
simulated Hamiltonian. It is clear that something is wrong or
missing in this picture; the corrections to scaling of the origi-
nal Hamiltonian are in general nonzero and should obviously
be independent of the renormalization transformation used to
analyze the system. Possible explanations stipulate that the
assumptions made in real-space renormalization theory are
invalid. For instance, the transformation between the original
and the renormalized couplings may be ill definedf14g—i.e.,
not exist in the thermodynamic limit. Or the assumption of
analyticity of the transformation may be wrong. In that case
nonanalytic contributions might enter in the “analytic” part
of the transformation or in the renormalized couplings.

Referencef15g addressed the question of the analyticity of
the block-spin transformation in the context of the three-
dimensional Ising model. Indeed it reported strong singular
behavior, albeit for a somewhat unusual transformation,
which involved only weak correlations between the block
spin and the original spins. No strong nonanalyticities were
found for “normal” transformations. That work also ad-*Electronic address: waguo@bnu.edu.cn
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dressed the question whether the transformation could be
modified such that consistency is restored with the standard
assumptions in real-space renormalization theory, which im-
ply that the corrections to scaling vanish at the fixed point of
the transformation. This question was investigated for a criti-
cal 3D Ising model with second- and third-neighbor interac-
tions, chosen such as to ensure that the leading correction to
scaling is strongly suppressed. The optimization of the
block-spin transformation such that the fixed point is close to
the simulated Hamiltonian then apparently resulted in fast
convergence and a relatively high accuracy of the critical
exponents.

In the present work we investigate the analogous problem
in two dimensions. Whereas there seems little reason for
accurate determinations of exactly known critical exponents,
the question under what circumstances the MCRG technique
works well is a fundamental and important issue, because it
leads to insight into the properties of real-space renormaliza-
tion transformations. While the corrections to scaling and
their associated irrelevant fields may be more difficult to ob-
serve in two than in three dimensions, the choice of two
dimensions alleviates restrictions due to the rapid increase of
the computer time requirements with system size, as they
apply to three-dimensional models. One of the reasons to
select the triangular Ising model is that one can define a
block-spin transformation such that each blocking step re-
duces the number of spins by factor of only 3. Thus, a rela-
tively large number of blocking steps can be performed.

First, we shall demonstrate that the leading correction to
scaling vanishes at the nearest-neighbor Hamiltonian of this
model. We show this by means of transfer-matrix calcula-
tions and finite-size scaling. Next, we determine the fixed
point of the commonly used majority-rule block-spin trans-
formation. We find that it is well separated from the nearest-
neighbor critical point. However, a modified block-spin
transformation brings it back to the vicinity of the critical
nearest-neighbor Hamiltonian. In analogy with the three-
dimensional case, we may expect that consistency with the
assumption of analyticity will then yield better convergence
and more accurate results. A test of this idea is facilitated
because the critical point and exponents of this model are
exactly known. Moreover, since we can perform relatively
many blocking steps, we have a better chance to quantita-
tively determine the finite-size effect, as well as the renor-

malization effect associated with the approach of the fixed
point.

This paper is organized as follows. Section II briefly re-
views the MCRG method and some further technical details.
In Sec. III, we present the transfer-matrix analysis of the
corrections to scaling as a function of the ratio of the nearest-
neighbor and next-nearest-neighbor interactions and deter-
mine the points where these corrections vanish. Then, we
calculate the fixed point of the majority rule and introduce a
modified transformation in order to bring the fixed point to
the nearest-neighbor critical point. In Sec. IV, we compare
the convergence and accuracy of the majority rule and the
modified transformation using the results for the eigenvalues
of the linearized transformation matrix. We discuss our find-
ings in Sec. V.

II. MODEL AND METHOD

Since the MCRG method has amply been reviewedf3,6g,
we present only a brief outline. The reduced Hamiltonian of
the Ising model can be written compactly:

HsSd = − o
a=0

`

KaSa, s1d

whereS is a spin configuration, theKa are couplings, and the
Sa are the conjugate lattice sums of spin products. For ex-
ample,K1 may be the magnetic field andS1=oisi the sum of
all spins; K2 may be the nearest-neighbor coupling andS2
=okNNlsisj the sum over all nearest-neighbor spin products. A
special “coupling” is the background energy densityK0
which is conjugate to the number of spinsS0.

Application of a block-spin transformation to Monte
Carlo—generated configurationsS leads to configurationsS8
described by a HamiltonianH8=HsK08 ,K18 ,K28 , . . . ;S8d. The
renormalized couplingsKa8 are assumed to be analytic func-
tions of the original ones, even at the infinite-system critical
point.

For the present renormalization analysis of the Ising
model on the triangular lattice we follow the spin-blocking
method introduced by Niemeijer and van Leeuwenf16g. As
shown in Fig. 1, we divide the lattice into up triangles of
three site each. Each such triangle is then replaced by a block
spin s8 with a probabilityPss8 ;s1,s2,s3d wheres1, s2, s3 are

FIG. 1. Triangular lattice and blocking procedure. The dashed boxes contain periodic units of aL3L /3 lattice. The “shifted” stacking of
these boxes serves to satisfy the hexagonal symmetry of the periodic boundary conditions of the system. In order to define the lattice as a
two-dimensional array labeled with indicesi and j , the edges of these boxes are chosen along lattice edges. The blocking procedure combines
three spinssblack dotsd into a block spinstriangled. The block spinssshown as black dots on the rightd form another triangular lattice of size
L /33L /3, which fits in an ordinary rhombus-shaped periodic box.
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the three original spins; this probability defines the renormal-
ization transformation.

Application of this blocking procedure leads to a system
of block spins that form another triangular lattice. In a finite
system of block spins, careful consideration must be given to
a technical problem concerning the choice of the axes in
relation with the periodic boundary conditions. As shown in
Fig. 1, the block spins form a lattice that is rotated byp /2
sor p /6d with respect to the original lattice. Let the original
lattice have sizeL3L, with periodic boundary conditions in
both lattice directions—i.e.,sL+1,j =s1,j andsi,L+1=si,1. Let the
vectors spanning the original elementary cell beeW1= x̂ and
eW2=sÎ3ŷ− x̂d /2 wherex̂ andŷ are Cartesian unit vectors. The
vectors describing the size of the periodic box can simply be
chosen asLeW1 and LeW2. The periodic box of the block-spin
lattice has obviously the same sizewhen expressed in origi-
nal lattice units. But the rotation of the lattice and the larger
size of the elementary cell prescribe the choice of a periodic
box of a different shape, for instance, spanned by vectors
Ls2eW2+eW1d andLeW2. This box has the same area as the origi-
nal one, and the spanning vectors are integer linear combi-
nations of the original ones; it is thus equivalent. The former
vector has a lengthLÎ3, which covers preciselyL edges of
the lattice of block spins, so that the vector defines a lattice
axis along which the spins can be counted. However, the
latter vector does not have this property. We use −Ls2eW1

+eW2d /3 instead. It has a length ofL /3 new lattice units. The
box spanned byLs2eW2+eW1d, −Ls2eW1+eW2d /3 provides a natural
way to label and store theL /3 block spins by two coordi-
natesi =1, . . . ,L and j =1, . . . ,L /3. Note thatLeW2 fand not
−Ls2eW1+eW2d /3g still describes one direction of periodic shift
in accordance with the periodic boundary conditions. There-
fore, the boxes are periodically repeated in a “shifted” fash-
ion, as shown in Fig. 1. The periodic unit composed of the
block spins has the same hexagonal symmetry as the original
system. After a second blocking operation, the lattice as-
sumes the original orientation and one can, e.g., simply use
the original periodic box spanned byLeW1, LeW2 which now
accommodatesL /33L /3 sites. The mode of storage de-
scribed here for the renormalized system can obviously also
be used in the simulation of a system ofL2/3 spins with
boundary conditions of hexagonal symmetry.

The renormalization procedure can be iterated until the
system becomes too small for useful analysis. We denote the
renormalization level by superscripts. Thus, afteri renormal-
ization transformations the Hamiltonian is Hsid

=HsK0
sid ,K1

sid ,K2
sid , . . . ;Ssidd. The corresponding linearized

renormalization transformation matrix

Tab
sid ;

]Ka
sid

]Kb
si−1d s2d

is related to lattice sum correlations via

o
g.0

Bag
sid Tgb

sid = Cab
sid , s3d

where the correlations

Bab
sid = kkSa

sidSb
sidll = kSa

sidSb
sidl − kSa

sidlkSb
sidl =

]kSa
sidl

]Kb
sid s4d

and

Cab
sid = kkSa

sidSb
si−1dll = kSa

sidSb
si−1dl − kSa

sidlkSb
si−1dl =

]kSa
sidl

]Kb
si−1d

s5d

can be calculated by means of Monte Carlo sampling; thus,
also theTab

sid can be calculated. Since the even and odd lattice
sums are not correlated, this analysis can be performed sepa-
rately in the even and odd coupling subspaces. Consideration
has to be given to the boundary conditions which require
different handling during the even and odd renormalization
steps.

The fixed point of the transformation can also be found if

the distancedKW of the original Hamiltonian to the fixed point
is small. For a triangular Ising system containing 3p spins,
the lattice sums calculated aftern renormalization steps on
the remaining 3p−n sites are denotedSa

sp,nd. One can linearize
as

kSa
sp+m,n+mdl − kSa

sp,ndl = o
b

fkkSa
sp+m,n+mdSb

sp+m,0dll

− kkSa
sp,ndSb

sp,0dllgdKb s6d

and solve the distancedKW from this equation.
The present MCRG calculations involve the following

steps
sid The generation of a critical spin configuration by

means of the Metropolis and Wolfff17g methods. In this
work, typically two Metropolis sweeps and ten Wolff cluster
steps are used to generate a new spin configuration.

sii d Calculation of the lattice sumsSa.
siii d Execution of the block-spin transformation which re-

duces the number of lattice sites by a factor of 3.
sivd The same as stepsii d, using the reduced spin lattice.
svd Repetition of stepssiii d and sivd. This sequence stops

at system size 333.
svid Calculation and accumulation of the cross products

Sa
sidSb

s jd.
svii d Repetition of stepssid–svid scalled a “cycle”d for a

large number of configurations.
The transformation matrixT is approximated by solving

Eq. s3d in a subspace spanned by a finite number of cou-
plings. We have included up to ten even couplings and five
odd couplings in our simulations, as defined in Fig. 2. As we
shall see, this is enough to reach a satisfactory convergence
of the eigenvalues. Under iteration of the block-spin trans-
formation, theKa

sidsa.0d are assumed to approach the fixed
point of the transformation, where the eigenvalues ofT de-
termine the critical exponents.

III. CORRECTIONS TO SCALING
AND THE FIXED POINT

Models in the same universality class share the same type
of leading singularities in thermodynamic quantities at their
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critical points. In general, also corrections to scaling are de-
scribed by a common set of exponents within a universality
class. We consider the free energy density of a model near
criticality, as a function of a relevant temperature fieldt and
an irrelevant field u. According to the well-established
framework of the renormalization theory, which assumes the
existence of a critical fixed point and the analyticity of the
transformationssee, e.g., Ref.f18gd, its singular part has the
following scaling behavior in the thermodynamic limit:

fsst,ud = utud/ytfss±1,utu−yi/ytud

= utud/ytffss±1,0d + autu−yi/ytu + ¯ g, s7d

whereyt and yi are the relevant and irrelevant renormaliza-
tion exponents, respectively. Differentiation of the free en-
ergy yields the scaling behavior of thermodynamic quanti-
ties. For instance, the specific heat behaves as

Csst,ud = utud/yt−2fb0 + b1uutu−yi/yt + ¯ g. s8d

The term with exponent −yi /yt—i.e., the correction to
scaling—has an amplitude proportional to the irrelevant scal-
ing field u, which is zero at the fixed point of the renormal-
ization transformation. In general a point on a critical mani-
fold displays nonzero corrections to scaling and can therefore
not serve as a fixed point of a transformation satisfying the
aforementioned assumptions.

Consider an Ising model with nearest-neighbor coupling
KNN and next-nearest-neighbor couplingKNNN. The irrel-
evant scaling field can be estimated by transfer-matrix calcu-
lations and finite-size scaling. Consider a triangular Ising
model with nearest-neighbor couplingKNN and next-nearest-
neighbor couplingKNNN. Instead ofsKNN,KNNNd we use the
scaling fieldsst ,ud to express the scaling properties. The
model is wrapped on an infinitely long cylinder with a cir-
cumference ofL lattice edges. The transfer-matrix technique

f19g involves the calculation of the correlation lengthj from
which the so-called scaled magnetic gapXhsL ,t ,ud
=L / f2pjhsL ,t ,udg can be obtained. Expansion of its scaling
equation leads to

XhsL,t,ud = Xh + a1tL
yt + a2uLyi + ¯ . s9d

The magnetic scaling dimension satisfiesXh=1/8, and one
hasyt=1 andyi =−2 for the Ising model. For a givenKNN,
one may express the equation

XhsL,t,ud = Xh s10d

in terms ofKNN andKNNN and solve numerically forKNNN for
a range of system sizesL. In the solutions, which are denoted
KNNNsLd, the effect of the irrelevant field, which is propor-
tional to u, is compensated by a nonzero temperature field
that asymptotically satisfiest~uL−3—i.e., KNNNsLd.KNNN,c

+bL−3. Numerical analysis thus yields the amplitudeb,
which is proportional to the irrelevant scaling field, as well
as the critical value of the next-nearest-neighbor coupling
KNNN,c, by means of extrapolation of the finite-size solutions
KNNNsLd.

Figure 3 shows the correction-to-scaling amplitudesb
versus the critical ratioKNNN/KNN for the Ising models with
ferromagnetic couplings on square and triangular lattices.
Apparently the correction to scaling just vanishes for the
nearest-neighbor Ising model on the triangular lattice, while
it is appreciable for the nearest-neighbor Ising model on the
square lattice. In the latter case, the leading correction to
scaling vanishes atKNNN/KNN<0.3. The result for the trian-

FIG. 2. The evensad and oddsbd couplings used in the present
analysis. The black circles represent the spins participating in these
couplings.

FIG. 3. Amplitude of the finite-size correction in the critical
correlation length vs the coupling ratioKNNN/KNN. This amplitude
is proportional to the irrelevant scaling field.sad Ising model on the
square lattice andsbd Ising model on the triangular lattice.
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gular lattice is in accordance with the existence of a fixed
point in an exact renormalization analysis of the nearest-
neighbor triangular Ising model by Hilhorstet al. f20g.

There seems to exist considerable freedom in the choice
of the probabilityP used in the block-spin transformation.
For instance, one may adopt the majority rule, but there exist
other possibilities, which we shall explore below. It has been
a widespread belief is that the assumptions, on which the
renormalization theory is based, are satisfied for a wide range
of block-spin transformations. Thus, modification of the
transformation rule was believed to shift the fixed point only
along redundant directions, which do not affect the correc-
tions to scaling. However, this belief was not supported by
results reported in Ref.f15g. These results indicated instead
that the requirement that the corrections to scaling vanish at
the fixed pointdoes impose a constrainton the transforma-
tion in the case of the three-dimensional Ising model.

A commonly chosen transformation is the so called
majority-rule transformation: i.e.,

Pss8;s1,s2,s3d = H1 if s8 = sgnss1 + s2 + s3d,

0 if s8 Þ sgnss1 + s2 + s3d.
J

The question arises naturally where is the fixed point of this
transformation for the Ising model on the triangular lattice.
According to Eq.s6d, one can locate the fixed point of a
transformation from a comparison of lattice sums of two sys-
tems with equal size but at different renormalization levels.
These sums are thus obtained from simulations of two sys-
tems with different sizes. In order to determine the irrelevant
scaling fields of the original Hamiltonian, the best results are
expected forn as small as possible. Thus we usedn=0, m
=1 and solveddKa on the basis of simulations of two sub-
sequent system sizes in the even coupling subspaces of di-
mension 2 and 3 respectively. To reduce the linearization
error, we have estimated the fixed point iteratively; i.e., we
first simulated the nearest-neighbor Hamiltonian, estimated
the fixed point Hamiltonian by solving Eq.s6d. The latter
Hamiltonian was then used for new simulationsswhich con-
sisted only of Metropolis steps, because the presence of ad-
ditional antiferromagnetic interactions affects the efficiency
of cluster algorithmsd and for a second solution of Eq.s6d,
etc. Although the estimated fixed points display a substantial
finite-size dependence, apparent convergence is still found in
both the two- and three-dimensional even coupling sub-
spaces. The final results are shown in Tables I and II. Ex-
trapolation of these finite-size data to infinity yields the lo-
cation of the fixed point as listed in the last rows of the two
tables.

Our final estimations show that the fixed point of the
majority-rule transformation of the Ising model on the trian-
gular lattice is well separated from the nearest-neighbor criti-
cal model. On the basis of the transfer-matrix results given
above, we expect corrections to scaling with a positive am-
plitude b at the fixed point, apparently in conflict with the
underlying assumptions.

In order to restore consistency, we introduce a modified
block-spin transformation such that the fixed point moves to
the critical point of nearest-neighbor model. Following the

lines of Ref.f15g the probability of a block spins8 is chosen
as

Pss8d =
expsvs8sbd
2 coshsvsbd

, s11d

wheresb is the sum of the spins on a triangular face:sb=s1
+s2+s3.

By varying v, it appears possible to adjust the solution
dKa of Eq. s6d in the two-dimensional even subspace
sspanned byKNN andKNNNd to a sufficiently small value. Our
numerical results show that the value ofv has only a weak
finite-size dependence. The best estimate isv<1.258. With
this value the block-spin transformation, truncated to thenc
=2 subspace, does not significantly move the Hamiltonian
away from the nearest-neighbor critical point.

IV. EIGENVALUES AND EXPONENTS

To compare the two different block-spin rules, we have
performed extensive MCRG simulations. Each simulation in-
volved the generation of 108 configurations, each of which
was followed by the renormalization blocking and correla-
tion procedures. Statistical errors of the lattice sums and cor-
relations of the lattice sums are estimated by dividing the
simulation a number of shorter runs and calculating the stan-
dard deviation between the results of the subruns.

TABLE I. Fixed point of the majority rule, estimated in the
two-dimensional even coupling subspace: finite-size data and ex-
trapolated values. The errors in the last decimal places, shown in
parentheses, were estimated from the variations in the results during
the last iteration steps.

L S KNN
* KNNN

*

939 933 0.3611s2d −0.0543s2d
2739 939 0.3518s2d −0.0488s2d
27327 2739 0.3485s2d −0.0466s2d
81327 27327 0.3468s2d −0.0455s2d
81381 81327 0.3464s2d −0.0452s2d

` 0.346s2d −0.045s1d

TABLE II. Fixed point of the majority rule, estimated in the
three-dimensional even coupling subspace: finite-size data and ex-
trapolated values. The errors in the last decimal places, shown in
parentheses, were estimated from the variations in the results during
the last iteration steps.

L S KNN
* KNNN

* K3N
*

939 933 0.427s1d −0.0463s5d −0.0389s5d
2739 939 0.388s1d −0.0325s5d −0.0326s5d
27327 2739 0.379s1d −0.0291s5d −0.0312s5d
81327 27327 0.373s1d −0.0269s5d −0.0301s5d
81381 81327 0.371s1d −0.0263s5d −0.0298s5d

` 0.370s2d −0.026s1d −0.030s1d
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According to the theory, a critical Hamiltonian param-
etrized by irrelevant fieldsu1 and u2 renormalizes towards
the critical fixed point. After one step with scale factorb
=Î3 it arrives atu1b

yi, u2b
yj, whereyi and yj are the two

leading irrelevant renormalization exponents. The leading ei-
genvalue in the even subspace ofTab

sid , which is denotedle
sid,

and that in the odd subspace, denotedlo
sid, should thus ap-

proach the fixed-point valuesÎ3 andsÎ3d15/8, as dictated by
the temperature and magnetic renormalization exponentsyt
=1 andyh=15/8, respectively.

In practice, one is naturally subject to restrictions con-
cerning the finiteness of the system and the truncation of the
coupling space to a finite number of dimensions. We have
included up to ten even couplings and five odd couplings in
our analyses, both for the majority rule and the modified
rule. We shall see that this is enough for the calculations
presented in this paper. The largest system included in our
analyses has 310 sites—i.e., a 2433243 system. The smallest
system that was simulated has 33 sites—i.e., a 933 system.

The solution of Eq.s3d in terms of the linearized renor-
malization transformation matrixTab

sid at theith renormaliza-
tion level is still dependent on the leveli and the numbernc
of couplings included. Thus an extrapolation procedure has
to be applied to the eigenvalues of theTab

sid . After i renormal-
ization steps of a system of 3p sites the system has shrunk to
3p−i sites. We denote the pertinent leading eigenvalues ofTab

sid

truncated tonc dimensions asle
si,ncdspd andlo

si,ncdspd.
The renormalization effect on these eigenvalues, associ-

ated with the approach of the fixed point with the number of

blocking steps, is described by standard renormalization
theory as formulated above. However, a quantitative descrip-
tion of the finite-size effect of the renormalization transfor-
mation itself is not available. This effect may be associated
with the truncation of the space of operators and has been
found to be smooth and to decay fastf22g. These results
agree with the assumption that renormalization transforma-
tions are local in character, but are restricted to relatively
small finite sizes. Under these circumstances we attempt to
describe the finite-size effect in terms of an expansion in the
inverse number of sites.

Taking into account all these effects, one may extrapolate
the leading eigenvalues at the fixed point according to the
following fit formula:

le,o
si,ncdspd = le,o + b1sÎ3diyi + b2sÎ3diy j + c13

sp−idy1 + c23
sp−idy2

+ c33
sp−idy3 + c43

sp−idy4 + dsÎ3diyi3sp−idy1, s12d

where different sets of coefficients apply to the eigenvalues
in the even and odd coupling subspaces. The exponentsy1,
y2, y3, y4 serve to describe the finite-size effect. They are set
as −1, −2, −3, −4, respectively. The leading and subleading
irrelevant renormalization exponents are denotedyi and yj.
The last term of this fit formula describes the mixed effect of
renormalization and finite size.

A. Results of the majority rule and the modified rule

We first analyze the largest eigenvalues of the linearized
transformation in the five-dimensional even and odd sub-

TABLE IV. Largest eigenvalues of the majority-rule transformation matrix in thenc=5 odd coupling subspace. The statistical error in the
data is approximately 0.00015.

i \p 10 9 8 7 6 5 4 3

1 2.730199 2.730195 2.730211 2.730201 2.730195 2.730163 2.730076 2.726260

2 2.773272 2.773272 2.773260 2.773260 2.773204 2.773176 2.768895

3 2.791232 2.791231 2.791204 2.791194 2.791069 2.786765

4 2.797330 2.797324 2.797274 2.797198 2.792882

5 2.799578 2.799540 2.799433 2.795107

6 2.800388 2.800293 2.795968

7 2.800598 2.796270

8 2.796371

TABLE III. Largest eigenvalues of the majority-rule transformation matrix in thenc=5 even coupling subspace. The statistical error in
the data is approximately 0.0003.

i \p 10 9 8 7 6 5 4 3

1 1.653704 1.653505 1.653410 1.653081 1.652479 1.650893 1.645550 1.695418

2 1.711253 1.711037 1.710827 1.710254 1.708959 1.703025 1.759714

3 1.724861 1.724722 1.723996 1.722573 1.716360 1.777823

4 1.728788 1.728342 1.726711 1.720288 1.784270

5 1.729631 1.728416 1.722031 1.786435

6 1.728706 1.722093 1.787168

7 1.722542 1.787104

8 1.787676
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spaces by fitting the data with formulas12d. This yields the
extrapolated fixed-point values and allows a comparison be-
tween the results obtained by the two different transforma-
tions. We begin with the results obtained by the majority
rule.

Table III lists the eigenvaluesle
si,5dspd of the majority-rule

transformation matrix in the five-dimensional even coupling
subspace. Preliminary fits show that the amplitudes of the
terms with 3sp−idy3 and 3sp−idy4 are not significant. Since this
holds for all fits including these terms, we neglected them.
We setyi to be free in the fitting procedure, whileyj is set as
−4. The fit yields the extrapolated eigenvalue asle
=1.7330s2d and the irrelevant exponent asyi =−1.69s5d, dif-
ferent from the expected value −2.

The statistical error of the raw data is estimated as 0.0003.
Then, this fit has a residualx2=833, which is much too large
in comparison with the number of degrees of freedom which
is 29. Furthermore the exact valueÎ3 lies outside the esti-
mated error margin of the result of the fit forle.

Table IV lists the largest eigenvalueslo
si,5dspd of the

majority-rule renormalization transformation matrix in the
five-dimensional odd coupling subspace. A similar fit of the
data yields an extrapolated eigenvaluelo=2.800 67s9d, with
x2=16 which is to be compared with a number of 29 degrees
of freedom. The statistical errors of the raw data are esti-
mated as 0.000 15. The result for the leading irrelevant ex-
ponent isyi =−1.99s2d. The exact value 315/16 is also slightly
outside the estimated uncertainty range about the extrapo-
lated odd eigenvalue.

Next, we present the results of the modified rule. Table V
lists the largest eigenvaluesle

si,5dspd of the modified rule
renormalization transformation withv=1.258 in the five-
dimensional even coupling subspace. These data show that
the renormalization effect is much smaller than for the ma-
jority rule, which indicates that the fixed point has indeed
moved towards nearest-neighbor Hamiltonian. A nonlinear
least-squares fit yields the eigenvaluele as 1.7319s2d, with
x2=38. The number of degrees of freedom is 29 in this fit.
The statistical errors of the raw data are estimated as about
0.0003. The result forle is much closer to the exact value
than the result of the majority rule. Moreover, the exact value
lies inside the error margin as produced by the fit. The result
for the leading irrelevant exponent isyi =−1.2s1d.

Table VI lists the eigenvalueslo
si,5dspd of the modified

renormalization transformation withv=1.258 in the odd
coupling space truncated to five dimensions. A similar fit
yields the fixed-point eigenvaluelo=2.800 78s9d, with x2

=10. The number of degrees of freedom in this fit is 29, and
the statistical errors of the raw data are about 0.00015.
Again, the extrapolated value is much closer to the exact
value than that of majority rule. The exact value lies just a
little outside the 1s error margin of the least-squares fit. The
result for the irrelevant exponent isyi =−1.6s1d.

Some results foryi from the fits for le and lo of the
modified block-spin transformation are not close to the
known Ising correction exponent −2. A somewhat specula-
tive interpretation, mentioned in Sec. V involves the Potts
subleading thermal exponent −4/3f23g. Settingyi =−4/3, a

TABLE V. Eigenvalues of the modified rule transformation matrixsv=1.258d in the nc=5 even coupling subspace. The estimated
statistical error in the data is approximately 0.0003.

i \p 10 9 8 7 6 5 4 3

1 1.708660 1.708615 1.708684 1.708735 1.708734 1.708597 1.709245 1.694470

2 1.725449 1.725540 1.725570 1.725460 1.725277 1.725550 1.710963

3 1.729391 1.729291 1.729405 1.729316 1.729749 1.715674

4 1.731048 1.730904 1.730914 1.731122 1.717573

5 1.731546 1.731354 1.732069 1.718616

6 1.731564 1.732176 1.718922

7 1.732312 1.719175

8 1.719252

TABLE VI. Eigenvalues of the modified rule transformation matrixsv=1.258d in the nc=5 odd coupling subspace. The estimated
statistical error in the data is approximately 0.00015.

i \p 10 9 8 7 6 5 4 3

1 2.791732 2.791727 2.791731 2.791723 2.791697 2.791697 2.791701 2.790458

2 2.795678 2.795680 2.795682 2.795680 2.795620 2.795615 2.794304

3 2.798618 2.798604 2.798606 2.798573 2.798551 2.797178

4 2.799832 2.799824 2.799811 2.799739 2.798382

5 2.800394 2.800351 2.800366 2.798950

6 2.800635 2.800596 2.799194

7 2.800731 2.799349

8 2.799424
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fit of the data forle
si,5dspd andlo

si,5dspd with expressions12d
yields le=1.731 77s8d andlo=2.801 09s8d, respectively.

To compare the results of the two different block-spin
transformations, we include the main results in Table VII.
Apparently, the modified block-spin rule leads to a better
estimation of leading eigenvalues of the linearized transfor-
mation matrix, both in the even and odd subspaces.

B. Convergence with the dimensionality
of the coupling subspace

In the past years, the number of couplingsnc used in
MCRG analyses of the 3D Ising model has increased from 7
in Ref. f4g to 99 in Ref.f8g. The ordering of these couplings
is a significant problem in order to avoid the situation that
“important” couplings are left out, which would affect the
resulting eigenvalue estimates, if not included in the analy-
sis. An empirical criterion to distinguish “important” and
“less important” couplings was introduced in Ref.f7g. This
led to fast apparent convergence with increasingnc f7g.

We have included up to ten even couplings in the analysis.
They are shown in Fig. 2. We have performed fits of the
largest eigenvalues according to Eq.s12d for nc=1 to 10 even
couplings. The results of the least-squares fits are shown in
Fig. 4 for the majority rule and in Fig. 5 for the modified
block-spin transformation withv=1.258. The eigenvalues
display a satisfactory apparent convergence with the number
of couplings. Statistically significant changes are absent for
more than two couplings in the odd subspace and for more
than five couplings in the even subspace. This holds for both
types of block-spin transformation.

Thus we may be confident that the five-dimensional cou-
pling subspace, used in the analysis presented in preceding
section, is large enough.

V. DISCUSSION

Our MCRG calculations on two-dimensional Ising model
show that, just as for the three-dimensional model, the choice
of a renormalization transformation with a fixed point with
suppressed corrections to scaling leads to improved estimates
of the renormalization exponents in comparison with the ma-
jority rule. Our choice for the transformation aims to put the
fixed point on the nearest-neighbor Hamiltonian. This is con-
venient from a computational point of viewf10g but the main
reason behind this choice is that the leading correction to
scaling vanishes in the nearest-neighbor triangular model.
We have found that the majority rule has a fixed point with
appreciable antiferromagnetic interactions with further
neighbors. We have not explicitly calculated the corrections
to scaling in this point. But the linear behavior of the
transfer-matrix results presented in Fig. 3 indicates that the
corrections are nonzero at the fixed point of the majority
rule.

The failure of this fixed point to obey the analytic form of
the renormalization equations is inconsistent with the pre-
vailing description of the fixed point in the renormalization
group theory. In order to fit such fixed points into the theory
one has to abandon one or more of the aforementioned as-
sumptions. Referencef24g uses a mechanism that explains
the presence of corrections even at the fixed point and that
generates nonanalytic contributions in the renormalized
Hamiltonian. In the present work, we have successfully at-
tempted to suppress the numerical problems such as associ-
ated with nonanalytic contributions by restoring consistency
with the usual picture of vanishing correction amplitudes at
the fixed point. Indeed we observed better convergence of
the leading even and odd eigenvalues to their fixed-point
values.

Another significant phenomenon is visible from the fixed-
point estimates in Tables I and II for the majority rule, which
display a significant finite-size dependence, even up to rela-
tively large sizes. This indicates that the assumption of local-
ity of the renormalization transformation is not well satisfied.
In comparison, the modified rule is better behaved: the value
of v, which adjusts the fixed point to the nearest-neighbor
Hamiltonian, has only a weak finite-size dependence. Fur-
thermore, the estimated fixed point at the extrapolated value

TABLE VII. Comparison of results of the majority rule and of
the modified transformation. The exact values arele=1.73205. . .
andlo=2.80092. . ..

Exact value Majority rule Modified rule

le
Î3 1.7330s2d 1.7319s2d

lo sÎ3d15/8 2.80067s9d 2.80078s9d

FIG. 4. Eigenvalues of the majority-rule transformation in the
even subspace, extrapolated to the fixed point of the majority rule,
as a function of the subspace dimensionality. The dashed line indi-
cates the exact valueÎ3.

FIG. 5. Eigenvalues of the modified-rule transformationsv
=1.258d in the even subspace, extrapolated to the fixed point of the
modified rule, as a function of the coupling subspace dimensional-
ity. The dashed line indicates the exact valueÎ3.
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of v displays a finite-size effect of only 10−3 for the smallest
system, decreasing to 10−4 for the largest systems; this is
small in comparison with the effects visible in Tables I and
II.

Our analyses showed that the convergence to the fixed
point, as deduced from the dependence of the largest eigen-
values on the number of renormalization steps, can be de-
scribed by an effective exponentyi8 in the range −2&yi8&
−1.2, in some cases clearly different from the known irrel-
evant exponent −2. Furthermore, the analysis of the second-
largest eigenvalue in the even subspace yields an irrelevant
exponent yi =−1.62s5d for the majority rule and yi =
−1.26s5d for the modified rule. The error estimates in these
two values are somewhat uncertain because of the occur-
rence of pairs of complex eigenvalues.

It is tempting to interpret this effective exponent in terms
of two contributions: one with the expected irrelevant expo-
nent −2 and another with an exponent −4/3 which is the
subleadingq=2 Potts temperature exponentf23g. However,
for the q-state Potts model, the correction-to-scaling ampli-
tudes associated with the subleading exponent seem to van-
ish just atq=2—i.e., the Ising modelf23,26g. For q=2, the
effects described by this exponent have been observed only
in partial differential approximantsf25g and in quantities in-
volving explicit differentiations with respect to the number
of statesq f26g. The theory of conformal invariancessee Ref.
f27g and references thereind indeed predicts the existence of
a set of exponents in the Ising model, including −4/3, that do
not contribute to the thermodynamic properties. However,
these exponents can still describe to other properties, such as
percolative and geometric properties of Ising configurations
f28g. Perhaps corrections with exponent −4/3 could enter in
our analysis from nonthermodynamic geometric aspects in-
troduced by the block-spin transformation.

The effect of the nonvanishing corrections to scaling at
the fixed point of the majority-rule renormalization transfor-
mation, in terms of the deviations of the eigenvalues, seems
less serious for the two-dimensional Ising model than for that
in three dimensionsf15g. This difference may be related to
the values of the irrelevant exponents, which predict a faster
decay of corrections in two dimensions.

As a concluding remark, we emphasize that, although our
approach leads to a distinct improvement over the majority
rule, the problem of the convergence to the fixed point is
only partly solved; i.e., we still observe corrections that in-
dicate that the fixed point does not yet precisely coincide
with the simulated Hamiltonian. Further improvements may
be achieved using block-spin transformations with more free
parameters, so that the fixed point may be shifted to the
nearest-neighbor Hamiltonian in a higher-dimensional cou-
pling subspace.
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